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Abstract—Bayesian networks are powerful probabilistic mod-
els that have been applied to a variety of tasks. When ap-
plied to classification problems, Bayesian networks have shown
competitive performance when compared to other state-of-the-
art classifiers. However, structure learning of Bayesian networks
has been shown to be NP-Hard. In this paper, we propose a
novel approximation algorithm for learning Bayesian network
classifiers based on Overlapping Swarm Intelligence. In our
approach a swarm is associated with each attribute in the
data. Each swarm learns the edges for its associated attribute
node and swarms that learn conflicting structures compete for
inclusion in the final network structure. Our results indicate
that, in many cases, Overlapping Swarm Intelligence significantly
outperforms competing approaches, including traditional particle
swarm optimization.

I. INTRODUCTION

Bayesian networks have proven to be a useful tool for
reasoning under uncertainty and have been applied in a variety
of fields. For instance, Bayesian networks have been used in
the field of bioinformatics to identify gene regulatory networks
[1]. They have also been applied to system diagnostics as a
method for predicting failures and tracking degradation [2],
[3], [4]. Many tasks that utilize Bayesian networks can be
viewed as classification problems. These problems require the
identification of a class label for instances described by a set
of attributes. Many authors have used Bayesian networks for
classification in medical diagnostics, music identification, and
other areas [5], [6], [7].

However, using Bayesian networks for classification re-
quires the construction of an effective model. Learning a
Bayesian network model from data has been shown to be NP-
Hard [8] and several authors have applied machine learning
techniques to the problem [9], [10], [11]. In the area of
classification, model learning typically consists of learning
relationships between the various features in the classification
problem. Learning classification models from pre-classified
data is an active research topic in machine learning.

We propose a swarm based approximation algorithm for the
problem of Bayesian classifier learning. Our approach is based
on the overlapping swarm intelligence (OSI) framework, first
introduced in [12]. In our algorithm, a swarm is associated
with each attribute in the data to be classified. Each swarm
learns the parent/child relationships for its corresponding at-
tribute. Swarms that learn conflicting parent/child relationships
compete for inclusion in the final network structure.
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II. BACKGROUND
A. Bayesian Networks

A Bayesian network is a directed acyclic graph that en-
codes a joint probability distribution over a set of random
variables, where each variable can assume one of an arbitrary
number of mutually exclusive values [13]. In a Bayesian
network, each random variable is represented by a node, and
edges between nodes in the network represent probabilistic
relationships between the random variables. Each root node
contains a prior probability distribution while each non-root
node contains a probability distribution conditioned on the
node’s parents. For the set of random variables in the network,
the probability of any entry of the joint distribution can be
computed using the chain rule.

P(X1,... Xp) = [[ P(Xil Xiza, . X0)
i=1
Using the local distributions specified by the BN, the joint
distribution can be represented equivalently as

P(Xy,...,X,) = HP(XAP&(XZ-)).
i=1

where Pa(X;) denotes the parents of X.

1) Structure Learning in Bayesian Networks: While, in
simple cases, a Bayesian network can be developed by an
expert, in many cases the problem of defining a Bayesian
network is too complex for manual construction. In these cases
Bayesian network structure and parameters can be learned
from data. One type of method for general Bayesian network
structure learning is score-based search. Score-based methods
rely on a function to evaluate how well the network model
matches the data, and they search for a structure that max-
imizes this function. A common scoring method to evaluate
Bayesian network structures is by the probability of the data
given the model. It was shown in [14] that the probability of
the data D given a candidate Bayesian network structure B
can be computed as follows.

Let X be the set of n discrete variables in B, where
each variable X; € X has r; possible value assignments:
(1, ...,zr;). Let D be a set of data containing m cases, where
each case contains a value assignment for each variable in
X. Each variable X; € B has a set of parents, represented
by Pa(X;). Let w;; denote the j™ unique instantiation of



Pa(X;) relative to D. Define ¢; to be the number of unique
instantiation of Pa(X;) relative to D. Let N;;;, be the number
of cases in D in which variable X; has the value x; and
Pa(X;) is instantiated as w;;. Let

T
Nij = ZNM.
k=1

Then

n 7,_1
P(D|B) = HHNTM_NHNW (M

i=1j=1

Since the values for P(D|B) can be very small, the log
likelihood of the data given the model is often used as a scoring
metric:

L(D|B) =log P(D|B). 2)
Another scoring metric commonly used for Bayesian network
model selection is the Bayesian Information Criterion (BIC)
developed by Gideon E. Schwarz [15]. This metric introduces
a penalty term for the number of parameters in the candidate
model. The formula for the BIC [16] is as follows:

BIC = —2log P(D|B) + plog(m) (3)
where p is the number of free parameters.

In the area of classification a less general type of Bayesian
network structure is often learned. Given a classification prob-
lem consisting of a series of attributes A; and a class label C,
a Bayesian classifier is a Bayesian network in which a node is
associated with a each attribute A; and the class C. Typically,
an edge is placed in the structure from the class node to each of
the attribute nodes. Classification is performed by computing
the most probable state of the class C' given the states of the
attributes Ay, ..., A,,. One approach to Bayesian classification
is the Naive Bayes classifier. In this structure all attributes are
assumed to be conditionally independent given the class, and
there are no edges connecting any of the attribute nodes.

An alternative to Naive Bayes that relaxes the indepen-
dence assumption is the Tree Augmented Naive Bayes (TAN)
classifier described in [17]. The TAN algorithm strives to add
edges to the network that maximize the conditional mutual
information between the connected feature nodes given the
class, defined as follows:

1(x,v|c)=Y" P(ay,c )logp(x(xym )

) P(yle)

where X and Y are the feature variables, and x, y, and c are
the states of variables X, Y, and C respectively. This function
computes the information that Y provides about X when the
state of the class variable C' is known. The TAN algorithm is
described as follows:

x,y,c

1)  Construct an undirected graph G containing a node
for each feature.

2) Place a weighted edge between each pair of nodes
X and Y where the weight of the edge is defined as
I(X,Y]|C).

3) Find the maximum weighted spanning tree 7' of the
graph G.

Algorithm 1 Particle Swarm Optimization

repeat
for each particle position z; € P do
Evaluate position fitness f(z;)
if f(2:) > f(p;) then
Pi =
end if
if f(x:) > f(p,) then
Pg = T4
end if
v; = wy; + U0, ¢1) @ (p; — ;) + U0, ¢2) ® (pg — ;)
T; =T; +U;
end for
until termination criterion is met

4)  Add direction to the edges of T' by selecting a root
variable and setting the direction of all edges to be
outward from it.

5) Create a class node C' and add an edge from C' to
each feature node.

The TAN algorithm has been shown to have higher accuracy
that Naive Bayes on many problems.

B. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm was first
proposed by Eberhart and Kennedy [18]. PSO is a population
based search technique inspired by the behavior of fish schools
and bird flocks. In PSO the population is initialized with a
number of random solutions called particles. Each particle has
a position that encodes a potential solution in the search space
and a velocity that defines how the particles will move through
the search space. Each particle keeps track of the coordinates
in the search space that are associated with the best solution it
has found so far. These coordinates are called the personal best
position of the particle and denoted p; for the ith particle. The
algorithm also keeps track of the overall best solution value
and location, found so far by any particle in the population.
This is called the global best position and is denoted p,.

Both position and velocity are typically defined as vectors
of real numbers. The search process updates the position
vector of each particle based on that particle’s corresponding
velocity vector. These velocity vectors are updated at each
iteration based on the fitness of the states visited by the
particles. Eventually all particles move closer to an optimum
in the search space. The pseudocode for the traditional PSO
algorithm is presented in Algorithm 1.

In Algorithm 1, P is the particle swarm, U(0, ¢;) is a
vector of random numbers uniformly distributed in [0, ¢;], ® is
component-wise multiplication, v; is the velocity of a particle,
and z; is the object parameters or position of a particle. Three
parameters need to be defined for the PSO algorithm:

e ¢ determines the maximum force with which a
particle is pulled toward p;;

e (o determines the maximum force with which a
particle is pulled toward pg;

e w is the inertia weight.



The inertia weight w is used to control the scope of the search
and eliminate the need for specifying a maximum velocity.
Even so, it is customary to specify maximum velocity as well.

1) Discrete Particle Swarm Optimization: A discrete multi-
valued PSO (DMVPSO) algorithm was proposed by Veera-
machaneni et al. [19]. In this algorithm, each particle’s position
is a d-dimensional vector of discrete values in the range
[0, M — 1] where M is the cardinality of each state variable.
The velocity of each particle is a d-dimensional vector of con-
tinuous values, as above. A particle’s velocity is transformed
into a number between [0, M] using the following equation:

M

Si = 1+ exp(—v;)

Then each particle’s position is updated by generating a
random number according to the Gaussian distribution, z; ~
N(S;,0 x (M — 1)) and rounding the result. To ensure the
particle’s position remains in the range [0, M —1] the following
formula is applied:

M-1 z;>M-1
€Xr; = 0 x; <0
T; otherwise

III. RELATED WORK
A. Traditional Bayesian Structure Learning

Yuan et al. [20] propose an exact algorithm for Bayesian
structure learning based on the A* algorithm. This is a state
space search technique in which admissible heuristics are used
to search only the most promising portions of the search
space. The authors propose two heuristics for use with the
A* algorithm. The first, involves a relaxation of the acyclicity
constraint for Bayesian networks. The second, reduces the
relaxation of the first heuristic by preventing directed cycles
within some variable groups. While both heuristics are admis-
sible and consistent, the first results in too much relaxation
and causes the search space to have a loose bound. While the
computational complexity of this algorithm is exponential, the
authors’ experiments indicate that it outperforms existing exact
structure learning methods in terms of both search time and
bounding of the search space.

Zheng et al. [21] proposed averaged one-dependence es-
timators (AODE), a Bayesian classification algorithm that
addresses the attribute-independence problem of the naive
Bayes classifier, which has been shown to be more accurate
than traditional naive Bayes in many cases. Unlike other
Bayesian classifiers, AODE does not perform model selection,
but instead averages the probability of the class node given the
attributes over all possible one-dependence Bayesian classifiers
to determine the class of each instance.

The Greedy Thick Thinning algorithm (GTT) described by
Heckerman [22] is a common approach to Bayesian structure
learning. The algorithm begins with a fully connected graph
and removes arcs between nodes based on conditional inde-
pendence tests. GTT then optimizes the structure by modifying
the graph and scoring the result. The modifications used by
GTT include adding an arc if one does not already exist, and
removing or reversing an arc if it already exists. The modified
network is then scored, and if the modifications fail to improve

the network, the algorithm returns the current structure. To
encourage greater exploration, a predetermined number of
network perturbations are produced after each scoring.

Heckerman also describes a simulated annealing algorithm
for general structure learning [22]. In simulated annealing the
system is initialized to some initial temperature 7. Then some
change to the network is randomly chosen and is applied based
on the value of p = exp(Ae/T}), where Ae is the change in
fitness. If Ae > 1, then the change is accepted; otherwise,
the change is accepted with probability p. This selection and
evaluation process is repeated o times or until we make [
changes. If no changes are made in « repetitions, then the
search is terminated. Otherwise, the temperature is lowered by
multiplying Ty by a decay factor 0 < v < 1, and the search
process continues. If the temperature has been lowered more
than § times, then the algorithm is terminated.

Cooper et al. describe a method for constructing Bayesian
networks from data called K2 [14]. K2 is a greedy algorithm
that determines the set of edges that best matches the data
given a node ordering. If some node X; precedes node X;
in the ordering, then X; cannot be a parent of X;. K2 visits
each node X; based on the sequence specified in the ordering
and greedily inserts a parent into the parent set of X; if the
addition of the parent maximizes the score of the network.
Their algorithm uses P(B, D) as the scoring function.

B. Multi-population Algorithms

Several authors have proposed multi-population genetic
algorithms (GA) [23], [24], [25], [26]. In these models, several
subpopulations are maintained by the genetic algorithm, and
members of the populations are exchanged through a process
called migration. These methods have been shown to obtain
better quality solutions than traditional GAs [24] when applied
to the problems of neural network parameter learning, the
traveling salesman problem, and several deceptive problems
proposed by Goldberg et al. [27]. Because the islands maintain
some independence, each island can explore a different region
of the search space while sharing information with other
islands through migration. This improves genetic diversity and
solution quality [26].

Bergh and Engelbrecht developed several multi-population
PSO methods for training multi-layer feedforward neural net-
works [28]. These methods include NSPLIT in which there is
a single particle swarm for each neuron in the network and
LSPLIT in which there is a swarm assigned to each layer of
the network. The authors’ claim that splitting the swarms in
this way results in a finer-grained credit assignment, reducing
the possibility of neglecting a potentially good solution for a
specific component of the solution vector. The results obtained
by van den Bergh and Engelbrecht indicate that the distributed
algorithms outperform traditional PSO methods. The authors
did not compare these methods to any non-PSO approaches.
Note, however, that these methods do not include any commu-
nication between the swarms and provide access to a global
fitness function.

Recently a new distributed approach to improve the per-
formance of the PSO algorithm has been explored where mul-
tiple swarms are assigned to overlapping subproblems. This
approach is called Overlapping Swarm Intelligence (OSI) [12],



[29], [30]. In OSI each swarm searches for a partial solution
to the problem, and solutions found by the different swarms
are combined to form a complete solution once convergence
has been reached. Where overlap occurs, communication and
competition take place to determine the combined solution to
the full problem.

Haberman and Sheppard first proposed OSI as a method
to develop an energy-efficient routing protocol for sensor
networks that ensures reliable path selection while minimizing
the energy consumption during message transmission [12].
In this approach a swarm is associated with each node in
the sensor network and each swarm consists of a particle
for its corresponding node and the particles for all of the
nodes immediate neighbors. Thus, the swarms for a given
node overlaps with its neighboring swarms. This algorithm
was shown to be able to extend the life of the sensor networks
and to perform significantly better than current energy-aware
routing protocols.

Ganesan Pillai extended the OSI method to learn the
weights of deep artificial neural networks [29]. This algorithm
separates the structure of the network into paths where each
path begins at an input node and ends at an output node.
Each of these paths is associated with a swarm that learns
the weights for that path of the network. A common vector of
weights is maintained across all swarms to describe a global
view of the network. This vector is created by combining
the weights of the best particles in each of the swarms.
This method was shown to outperform the backpropagation
algorithm, the traditional PSO algorithm, and both NSPLIT
and LSPLIT on deep networks. A distributed version of this
approach was developed subsequently by [30].

Fortier and Sheppard developed a method for abductive
inference in Bayesian Networks based on OSI [31]. In this
approach, multiple swarms are used to find the most probable
state assignments for a Bayesian network given the evidence.
Each node in the network is associated with a swarm that
learns the state assignments for its Markov blanket. Swarms
periodically communicate and compete for inclusion in the
final set of most probable state assignments.

C. Soft Computing Bayesian Structure Learning

Several researchers have applied soft computing techniques
to the problem of Bayesian structure learning. Wang et al
proposed a PSO algorithm [9] where the position of each
particle is an n x n adjacency matrix with n being the number
of variables in the network. The fitness function for a candidate
network in this approach is the log likelihood of the data given
the model as shown in Equation 2. Before constructing the
Bayesian network for fitness evaluation, the adjacency matrix
is checked for cycles and the cycles are removed.

An island model genetic algorithm for Bayesian structure
learning was proposed by Regnier-Coudert et al. In this algo-
rithm, each chromosome consists of an ordering of the nodes
in the network [10]. For a given ordering, each node can only
be a parent of a node ahead of it in the ordering. A Bayesian
network is constructed from an ordering by applying the K2
edge selection algorithm described in [14] to the ordering. The
fitness function for a candidate network in this approach is

denoted as:
F(B) = P(B,D) 5)

The populations of chromosomes are separated into several
islands running the genetic algorithm in parallel. The search is
periodically paused and migration occurs between the islands.
In this approach the genetic algorithm acts as a heuristic to
learn a variable ordering for the K2 algorithm.

Wu et al proposed an ant colony optimization algorithm
for Bayesian structure learning called K2ACO [11]. In this
algorithm the representation is similar to that used in [10].
Each individual represents a node ordering, and the fitness of
each ordering is calculated by running the K2 search algorithm.
Each ant in the algorithm traverses a graph of the nodes in
the network and an ant in node ¢ moves to node j according
to a probabilistic state transition rule based on the amount
of pheromone on the edge between ¢ and j. The amount of
pheromone deposited on an edge is based on Equation 5. The
order of the nodes in the graph traversal containing the highest
pheromone levels defines the variable ordering for the K2
algorithm.

IV. OSI STRUCTURE LEARNING

Given a classification problem consisting of a series of
attributes A; and a class label C, a Bayesian classifier is a
Bayesian network in which a node is associated with each
attribute A; and the class C'. Classification is then performed
by computing the most probable state of the class C' given the
states of the attributes Aq, ..., A,. We propose an algorithm
for learning Bayesian network classifiers based on OSI. The
pseudocode for our approach is shown in Algorithm 2.

In this algorithm, a swarm is associated with each attribute
node in the network. Each node’s corresponding swarm learns
the input and output edges associated with that node. A global
network G is maintained across all swarms for inter-swarm
communication. This global network is represented by an n x
n adjacency matrix M. Each element m; ; in the matrix is
defined as shown in Equation 6.

_J 1 if node j is a parent of node i
Minj = { 0 otherwise ©)

The global network is initialized using the Tree Augmented
Naive Bayes (TAN) algorithm, and a single particle in each
swarm is initialized to the positions defined by the initial global
network. This is done to ensure that particles do not initially
explore unproductive regions of the search space.

Each particle’s position x; is defined by a d-dimensional
vector of binary values where z; € {0,1}4, d = 2n, and n
is the number of nodes in the network. Each position value
in the first half of the vector determines if a given variable in
the network is a parent of the node, while each position value
in the second half of the vector determines if a given variable
in the network is a child of the node. For a particle in the
swarm associated with node i, the position vector encodes all
elements in the column and row associated with node 7 in the
adjacency matrix M. These position values are constrained so
that if a node X is a parent of X; then X; cannot be the child
of X j-

An example illustrating our representation is shown in
Figure 1. In the first section of the figure, the representation
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Fig. 1: Representation example

Algorithm 2 OSI

1: Generate G and M using TAN
2: Initialize particles in each swarm

3. repeat

4:  for each swarm s do

5 for each particle, p € s do

6: Add edges of p to G

7 Remove cycles from G

8 Calculate particle fitness f(p)

9 if f(p) > p’s personal best fitness then

10: Update p’s personal best position and fitness
11: end if

12: if f(p) > the global best fitness then

13: Update global best position and fitness for s
14: end if

15: Update p’s velocity and position

16: end for

17:  end for
18:  for each entry m; ; € M do

19: Let s; be the swarm associated with node
20: Let s; be the swarm associated with node ¢
21: if s; and s; conflict over M; ; then

22: m; j < compete(s;, S;)

23: if s; wins competition : seed s; with m; ;
24: else seed s; with m; ;

25: end if

26:  end for
27: until termination criterion is met

28: return A

used by the particles in swarms S, and S¢ is shown, and
the edge represented by each position value is indicated.
Our algorithm inserts the position vectors for the particles
in swarms S4 and S¢ into an adjacency matrix, as shown
in the second section of the figure. In the adjacency matrix,
positions learned by swarm S¢ are shown in the lighter color,
while positions learned by swarm S4 are shown in the darker
color. Entries in the matrix that are learned by both swarms are
highlighted with both colors. Once the particle positions have
been inserted into the adjacency matrix, a network containing
the edges defined by the original particle positions can be
constructed as shown in the third section of the figure.

To insert a substructure .S; for a node X; into the network,

all edges connecting to X; are removed and the edges encoded
in .S; are added to the network. The is done by inserting the row
and column elements defined by a particle’s position vector
into the global adjacency matrix M. From this adjacency
matrix a Bayesian network is constructed and an outgoing edge
is inserted from each attribute A; and the class C.

When inserting the substructure of a particle into the
network, cycles may be introduced. To prevent this, a two
step process is performed each time a substructure is inserted
into the global network. First, we locate the cycles using the
following process:

e Identify a source node (a node that either has no
incoming edges or no outgoing edges).

e Delete the source node and its edges.

e  Repeat until there are no source nodes.

Once this process is complete the remaining network consists
of the existing cycles. Next each cycle is broken by randomly
selecting one of the nodes in the cycle and removing one of
its remaining outgoing edges.

For this problem, two swarms are said to overlap if their
highest scoring particle positions conflict. The positions of
two particles p; and p; are said to conflict if, for a given
entry m; ; in the adjacency matrix M, p; encodes a different
value for m; ; than p;. At the end of each iteration of the
algorithm, a competition is held between overlapping swarms
to determine which set of edges is inserted into the network.
This competition is held between the conflicting position
values of the most fit particles of each competing swarm. The
values resulting in the best fitness score are included in the
global adjacency matrix M.

After each competition, the swarm resulting in the lowest
fitness is seeded with the position of the winning swarm. This
involves replacing the position value for the lowest ranked
invidual in the swarm with the value in the global solution.

A. Fitness Evaluation

We compared four fitness functions to evaluate the quality
of a network. The first fitness function (OSI-LL) is the log
likelihood of the data given the model as defined in Equation 2.
The second fitness function (OSI-BIC) is Bayesian information
criterion described in Equation 3. The third fitness function



(OSI-ERR) is the classification error of the network when used
to classify the training data as defined in Equation 7.
Il
error = 7%:'1:1 : @)
i Fi+ T
where F; is the number of examples incorrectly classified as
class ¢ and T} is the number of examples correctly classified
as class 7. The final fitness function (OSI-CMI) is the average
conditional mutual information of each edge in the network
given the class as defined by Equation 8.

2xyyer (X, Y[0)
E|

where E denotes the set of edges in the network, (X,Y)

denotes the edge between nodes X and Y, and I(X,Y|C)

is the conditional mutual information between nodes X and
Y given the class C.

ACMI =

®)

The fitness of particle p is defined as the quality of the
network G when the substructure defined by the particle’s
parameters is inserted into the network.

B. Computational Complexity

We first derive the computational complexity of OSI and
show which step has the most computational burden in the
algorithm. To do so, we break down each step in the algorithm.
We refer to the pseudocode shown in Algorithm 2.

e  Cycle Removal—Cycle removal (line 7) can be per-
formed in O(|V|?) where V is the set of verticies. Let
n be the number of entries in the adjacency matrix.
Then |V| = /n, and the complexity of cycle removal
is O(n).

e Fitness Evaluation—Next, we determine the com-
plexity of evaluating the fitness of an individual par-
ticle (line 8). To do so, we approximate the fitness
function complexity as O(nA), where n is number
of entries in the adjacency matrix, and A denotes
the computational complexity specific to the fitness
function used to evaluate each particle. When this
is combined with cycle removal the time complexity
becomes O(nA + n) = O(nA)

e  Optimization Algorithm—Next, we determine the
complexity of the underlying PSO algorithm (lines
5-16). We assume that the algorithm has m = |P)|
individuals, where P is the set of all the individuals
in the population. During each iteration, an individual
with n variables has its position and fitness updated.
These two steps are done sequentially, with updating
the position having a complexity of O(n) and while
evaluating the fitness is O(nA). This is done m times,
once for for each individual; therefore, assuming the
algorithm performs L iterations, the total complexity
is O(nALm).

To complete our analysis of the complexity of OSI, we
next show the complexity of the two main parts of OSI: solve
and competition.

e  Solve—The solve step in OSI (lines 4—17) involves
iterating over the set of subpopulations S and having

each one optimize over its variables. Using the com-
plexity from above for optimization algorithms, each
subpopulation has a complexity of O(nLm). Since
this is done s = |S| times, the total complexity of
this step is O(snALm).

e  Competition—In OSI, the competition step (lines 18—
24) is used to find the optimal set of values for
the variables in X. This is done by iterating over
all the variables and then comparing the fitness of
the two competing individuals. Note that there are
n variables and 2 subpopulations while each fitness
evaluation has a complexity of O(nA). Therefore, the
total complexity of the competition step in OSI is
O(2n?A) = O(n?A).

Thus OSI iterates over the solve and competition steps &
times. Combining the steps above and multiplying times k
gives a complexity of

O(0SI) = O(k(nALms + n*A))
= O(knALms + kn?A)

In the algorithm presented above, a swarm is associated with
each attribute in the classification problem, therefore s = n.
Substituting this into the above equation, we now have

O(0SI) = O(kn?*ALm + kn?A)
= Ok(n*ALm)

Based on these results, we can see that OSI will almost
always be more computationally complex due to the n? factor.
However, the parameters k, L, and m in OSI can be set such
that it becomes competitive with PSO.

V. EXPERIMENTS
A. Methodology

To evaluate our algorithm, several experiments were per-
formed using datasets from the UCI Machine Learning Repos-
itory [32]. These experiments focused on comparing our al-
gorithm with the PSO algorithm discussed in [9], the Tree
Augmented Naive Bayes algorithm [17], and the Greedy
Thick Thinning algorithm [22]. Our comparisons also include
modification of the PSO algorithm discussed in [9] using each
of the fitness functions described above. We compared these
algorithms to four different versions of our own algorithm
using each fitness function described in Section 4.1.

For the OSI algorithms, five particles were assigned to each
sub-swarm. For the single swarm PSO, the total number of
particles was five times the number of features, to ensure a
fair comparison between the algorithms. For both swarm-based
algorithms, ¢; and ¢ were set to 1.49618, while w was set
to 0.7298. Eberhart and Shi empirically determined that these
are good parameter choices for w, ¢1, and ¢o [33].

To evaluate the performance of the algorithms, the data was
divided into training and testing data sets using a 5 X 2 cross-
validation procedure. We performed pairwise comparisons of
average classification accuracy using a paired Student t-test
for each pair of algorithms. For all t-tests we used a 95%
confidence interval. We hypothesize that OSI will outperform



TABLE I: Datasets used in experiments

[ Dataset [[ Attributes | Classes | Instances |

Ecoli 5 8 334
Vote 16 2 435

Nursery 8 5 12960
Car 6 4 1728
CMC 9 3 1473
TicTacToe 9 2 958
Spect 22 2 267

traditional PSO for most datasets and, when the proper fitness
function is chosen, OSI will outperform both TAN and Greedy.

These experiments were performed using seven datasets:
Nursery, Car, CMC, TicTacToe, Spect, Vote, and Ecoli. We
selected datasets with large numbers of instances, and most
selected datasets have few or no continuous attributes. For
the datasets containing continuous attributes, each continuous
attribute was discretized into five bins using equal frequency
binning. The information about the datasets used is summa-
rized in Table L.

B. Results

Tables II and III show the average classification accuracy
for each algorithm and each dataset. Bold values indicate
that the corresponding algorithm’s performance is statistically
significantly better than all other algorithms for the dataset.
Algorithms that tie statistically for best are bolded.

Table II compares the classification accuracy of the swarm
based approaches. For all datasets, either OSI-ERR or OSI-
CMI tie statistically for best. Also, for all but two of the
datasets, the OSI algorithm with the highest classification
accuracy outperforms traditional PSO using the same fitness
function.

Table III compares the average classification accuracy of
TAN, GREEDY, and the swarm based algorithms that most
frequently achieved the highest classification accuracy. For
the Vote dataset, all algorithms other than PSO-ERR tie
statistically for best. For the TicTacToe dataset OSI-ERR ties
statistically with PSO-ERR for best. OSI-CMI outperforms all
competing algorithm for every other dataset.

C. Discussion

The paired t-tests on the classification accuracy indicate
that either OSI-ERR, or OSI-CMI performed better than or
equivalent to the other methods for every dataset. These results
show that OSI-CMI outperforms the other methods for three
of the datasets. OSI-ERR and OSI-CMI are the methods that
most frequently outperformed the other approaches and these
algorithms outperformed TAN, Greedy, and the competing
PSO algorithms on all but two of the datasets. This indicates
that both OSI-ERR and OSI-CMI have an advantage when
used to learn the structures of Bayesian classifiers. More
importantly, an OSI-based method was always listed as one
of the winning algorithms.

We also note that our paired t-tests showed that the OSI
algorithms outperformed the single swarm PSO algorithms for
many of the datasets, while single swarm PSO algorithms

never significantly outperformed the OSI algorithm using the
same fitness function. These results indicate that the communi-
cation and competition introduced by OSI gives the algorithm
an advantage over traditional PSO.

Since multiple swarms learn the structure for a single
node, our approach ensures greater exploration of the search
space, which results in improved performance in terms of
classification accuracy. Also, since the swarms are split over
the nodes of the network, the possibility of neglecting a
potentially good sub-structure for a specific component of a
complete structure is reduced.

The results in Table II also indicate that no fitness function
clearly outperforms the others for all data sets. However,
conditional mutual information appears to allow OSI to have
the best performance for five of the seven datasets. In all cases,
when OSI-CMI failed to achieve the best score, OSI-ERR
had the best performance. These results indicate that, when
average conditional mutual information fails to provide good
performance, classification accuracy may be a good alternative
scoring metric.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a swarm-based algorithm for the learn-
ing of Bayesian network classifiers. In this algorithm a swarm
is associated with each attribute in the data, and that swarm
learns parent/child edges for its attribute node. We compared
our algorithms to several other approaches to Bayesian network
structure learning. Our results indicate that OSI significantly
outperforms the other approaches on several of the datasets
studied in terms of classification accuracy and that at least
one OSI-based method is always among the winners.

For future work we plan to extend our approach to the
problem of general structure learning. We will compare our
more general approach to structure learning with several other
structure learning algorithms such as the K2 algorithm [14] and
its variations [14], [11]. We will also apply OSI to the problems
of parameter estimation and latent variable learning. We are
also developing the theory of the general OSI. We plan to
study the convergence of OSI by drawing from the approaches
of [34] and [35] on the distributed consensus problem to
analyze the relationship between OSI convergence rate and the
structure of the sub-swarms. We will also empirically verify
the existence of optimal swarm overlap structures and are
developing methods to identify good overlap structures for OSI
when applied to a given problem.
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