
A Formal Approach to Deriving Factored
Evolutionary Algorithm Architectures

Shane Strasser, John Sheppard
Gianforte School of Computing

Montana State University

Bozeman, MT 59717-3880

Stephyn Butcher
Dept of Computer Science

Johns Hopkins University

Baltimore, MD 21218-2608

Abstract—Factored Evolutionary Algorithms (FEA) are a class
of evolutionary search-based optimization algorithms that have
been applied successfully to various problems, such as training
neural networks and performing abductive inference in graphical
models. An FEA is unique in that it factors the objective
function by creating overlapping subpopulations that optimize
over a subset of variables of the function. One consideration
in using an FEA is determining the appropriate factor archi-
tecture, which determines the set of variables each factor will
optimize. In this paper, we provide a formal method for deriving
factor architectures and give theoretical justification for its use.
Specifically, we utilize factor graphs of variables in probabilistic
graphical models as a way to define factor architectures. We also
prove how a class of problems, like maximizing NK landscapes,
are equivalent to abductive inference in probabilistic graphical
models. This allows us to take a factor graph architecture and
apply it to NK landscapes and a set of commonly used benchmark
functions. Finally, we show empirically that using the factor
graph representation to derive factors for FEA provides the best
performance in the majority of cases studied.

I. INTRODUCTION

Factored Evolutionary Algorithms (FEA) are a relatively new

family of Evolutionary Algorithms (EA) that create overlap-

ping subpopulations [1]. This idea is similar to how poly-

nomials can be decomposed into a product of factors. FEA

decomposes the optimization problem into a set of subpopula-

tions, or factors that, when put together, represent full solutions

to the problem. Additionally, FEA encourages the factors to

overlap, which allows the factors to compete with one another

to determine state values to include in the final full solution.

FEA was presented original as an extension to Particle

Swarm Optimization (PSO). While PSO have been applied

successfully to a wide range of problems, it is susceptible to

what is called “two steps forward and one step back,” which

happens when near optimal parts of an individual’s current

position may be thrown away if the rest of an individual’s

position causes the individual to have low fitness [2]. FEA

helps mitigate “two steps forward and one step back” in

PSO by creating subpopulations that optimize over subsets

of variables in the optimization problem.

One open area of research with FEA is how to determine the

overlapping factors. For example, Ganesan Pillai and Sheppard

created a factor for each unique path of a neural network

starting and ending at an input and output node, respectively

[3]. Later work by Fortier et al. used a different factor

architecture where each factor learned the weights for each

neuron in the neural network [4]. Subsequent to this work,

Fortier et al. created subswarms for working with Bayesian

networks by using a node’s Markov Blanket, which consists

of the node’s parents, children, and children’s parents [5].

In a Bayesian network, a node is conditionally independent

of all other nodes in the network given its Markov Blanket.

By creating subswarms consisting of a node and its Markov

blanket, subswarms are able to optimize a single node in the

network without having to worry about the influence from

other nodes in the network.

Previous work by Strasser et al. demonstrated on a variety

of problems that the choice of factor architecture has a strong

influence on performance [1]. However, that work lacked any

formal framework for deriving a factor architecture for any

problem, thus requiring a user to compare different factor ar-

chitectures through tuning. In this paper, we propose a general

process for deriving factor architectures that can be extended

to multiple types of optimization problems. In particular, our

process extends an idea inspired by Fortier et al. [5], [6]

who derived their factors using Bayesian network Markov

blankets. For our approach, we derive the factor architectures

by extracting the Markov blankets of each variable, but this

time using a factor graph derived from characteristics of the

target objective function. Factor graphs are a generalization of

Bayesian networks in that they use a hypergraph representation

to encode a joint probability distribution over a set of random

variables. As a way to justify this approach, we begin by

proving that optimizing NK-landscapes can be mapped to

factor graphs, thus further strengthening the hypothesis that

such mappings exist for many types of optimization problems.

Next, we investigate why certain factor architectures outper-

form others. Our previous work only hypothesized that iden-

tifying conditional dependence properties among the variables

in a problem could be exploited to capture relevant variable

interactions when defining factors since Markov blankets de-

fine global independence properties in a problem domain. In

this study, we perform additional experiments to explore how

factors derived in this way improve the balance of exploration

and exploitation over using alternative architectures by exam-

ining convergence rate and diversity in the swarm. We show

that the factor graph-based approach improves on both when

compared to alternative architectures.
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Finally, our previous work on PSO-based FEA used the

Discrete Multi-Valued PSO (DMVPSO) algorithm as the un-

derlying optimization algorithm [7]. However, recent work

by Strasser et al. proposed a new discrete PSO algorithm

called Integer and Categorical PSO (ICPSO) that was shown

to outperform DMVPSO and other discrete PSO variants [8].

In this work, we replace DMVPSO with ICPSO and show a

marked improvement over results in our prior experiments.

II. RELATED WORK

The earliest version of FEA was called the Particle-based

Routing with Overlapping Swarms for Energy Efficiency

(PROSE) algorithm and was developed by Haberman and

Sheppard [9]. PROSE is a version of FEA that uses PSO as

the underlying optimization algorithm and was first used as a

method to develop energy-aware routing protocols for sensor

networks that ensure reliable path selection while minimizing

energy consumption during message transmission. In their

work, the authors let each subswarm represent a sensor node

and all of the sensor’s neighbors in the network. The authors

were able to show that PROSE extends the life of the sensor

networks by performing significantly better than energy-aware

routing protocols that were state-of-the-art at the time.

Later, Ganesan Pillai and Sheppard developed an extension

of PROSE, called Overlapping Swarm Intelligence (OSI), to

learn the weights of deep artificial neural networks [3]. In that

work, each swarm represents a unique path starting at an input

node and ending at each output node. A common vector of

weights is also maintained across all swarms to describe a

global view of the network, which is created by combining

the weights of the best particles in each of the swarms. The

authors showed that OSI outperformed several other PSO-

based algorithms as well as standard backpropagation on deep

networks.

OSI has also been used for a variety of tasks with Bayesian

networks, such as abductive inference, learning Bayesian

classifiers, and learning latent variable parameters. Fortier et
al. applied OSI to perform full and partial abductive infer-

ence in Bayesian networks and were able to show that OSI

outperformed several other population-based and traditional

inference algorithms [5], [6]. Later work by Fortier et al.
adapted OSI to learn the structure of Bayesian classifiers by

allowing subswarms to learn the links for each variable in

the network, where each variable represents an attribute in

the data [10]. The authors were able to show that, in most

cases, OSI was able to outperform the competing approaches

significantly. Fortier et al. also proposed an OSI algorithm

to learn the conditional probability tables of latent variables

in Bayesian networks [11]. A subswarm was created for each

node with unlearned parameters and all of the variables in that

node’s Markov blanket. The authors demonstrated that OSI

outperformed the competing approaches and that the amount

of overlap between the subswarms can impact the performance

of OSI.

NK fitness landscapes were first proposed by Kaufman

and have been used extensively in evaluating evolutionary

algorithms [12]. We too will be using these landscapes in

our evaluation of the various factor architectures. Weinberger

later proved that optimizing an NK landscape is NP-complete

[13]. NK landscapes have been extended to allow for mixed

variables, such as continuous, integer, and nominal [14]. The

authors first extended the binary NK landscape to continuous

by mapping it to an N -dimensional hypercube [0, 1]N and

mapping values on the interior of the hypercube using a multi-

linear interpolation technique. For integers, values are first

mapped to [0, 1] and then to a continuous NK landscape.

Nominal values required the landscapes to define fitness tables

that allow L values for the discrete variables.

Estimation of Distribution Algorithms (EDA) are a class

of EAs that use a probability distribution to generate new

individuals. The algorithm uses a set of selected individuals to

generate an estimated distribution that is then used to generate

new individuals [15]. EDAs are related to our work here, where

we show how a factor graph can represent NK landscapes,

because EDAs are able to capture the structure of variable

interactions [16]. However, our work differs in that we create

an exact mapping from NK landscapes to factor graphs and

therefore do not have to learn a probability distribution to

generate individuals in the population or swarms. This is also

similar to linkage discovering and factorization algorithms

presented by Wright and Sandeep; however, in our case,

we already know how the different variables in the function

interact with one another [17].

III. FACTORED EVOLUTIONARY ALGORITHMS

Factored Evolutionary Algorithms (FEA) are a new class

of optimization algorithms that work by subdividing the opti-

mization problem. FEA is similar to the cooperative EAs like

Cooperative Coevolutionary Evolutionary Algorithms (CCEA)

and Cooperative Particle Swarm Optimization (CPSO); how-

ever, FEA encourages subpopulations to overlap with one

another, allowing the subpopulations to compete and share

information. FEA is also a generalization of OSI since it

allows for any EA to be used as the underlying optimization

algorithm. This allows for FEA to be a general class of

algorithm that includes CCPSO, CCGA, OSI, and island EAs.

Here, we present a general definition of the FEA model

presented by Strasser et al. [1].

There are three major subfunctions in FEA: solving, com-

peting and sharing. The solve function is the simplest and

allows each factor to optimize over its set of variables. The

competition function creates a full solution that is used by

factors to evaluate a partial solution, while the share step uses

the full solution to inject information into the factors.

Given a function f : R
n → R to be optimized with

parameters X = 〈X1, X2, . . . , Xn〉, let Si be a subset of

X of size k. We call Si a factor but use this notation to

associate each factor with a subpopulation. Note that f can

still be optimized over the variables in Si by holding variables

Ri = X \ Si constant. A local subpopulation is then defined

over the variables in Si that are optimizing f . FEA is the case

where there are factors that are proper subsets of X and at



least one factor overlaps with another factor. Without loss of

generality, assume every factor overlaps some other factor.

Because each subpopulation is only optimizing over a subset

of values in X, the subpopulation defined for Si needs to know

the values of Ri for the local fitness evaluations. Given a factor

Si and its remaining values Ri, fitness for a partial solution

in Si can be calculated as f(Si ∪ Ri). The values for Ri are

derived from the other subpopulations, which thereby allows

Si to use values optimized by these other subpopulations. The

algorithm accomplishes this through competition and sharing

as follows.

The goal of competition in FEA is to find the subpopulations

with the state assignments that have the best fitness for each

variable. FEA accomplishes this by constructing a global

solution vector G = 〈X1, X2, . . . , Xn〉 that evaluates the

optimized values from subpopulations. While there are many

different ways to construct G, we use the greedy approach

presented by Strasser et al. [1].

The sharing step serves two purposes. The first is that

it allows overlapping subpopulations to inject their current

knowledge into one another. Previous work by Fortier et al.
discovered that this is one of the largest contributors to the

FEA’s performance [5]. The second purpose of the sharing step

is to set each factor’s Ri values so that each subpopulation Si

can evaluate its partial solution on f . Here, we use the share

algorithm presented by Strasser et al. where each Si is seeded

with a solution from G [1].

The entire FEA algorithm works as follows. First, all of the

subpopulations Si are initialized according to the optimization

algorithm being used and the factor architecture. After initial-

ization, FEA updates the states of the search by iterating over

each subpopulation and having each optimize over its variables

for a set number of iterations. Next, the full global solution

G is updated by the compete algorithm. Finally, sharing is

performed by seeding each subpopulation with values in G.

These three steps (update, compete, and share) are repeated

until some stopping criterion is satisfied, upon which the full

global solution G is returned as the final solution.

IV. MAPPING PROBLEMS TO FACTOR GRAPHS

In this work, we use FEA to maximize NK landscapes,

perform abductive inference in Bayesian networks, and min-

imize a set of benchmark functions. To do so, we first

develop a means to derive factor architectures by showing

the relationship between these different problems and factor

graphs. Here we prove that the problem of finding the global

maximum in an NK landscape reduces to the problem of

finding the most probable explanation in a factor graph. This

allows us to use the resulting resulting factor graph as a means

to derive factor architectures. This work is similar to that of

Gao and Culberson, but differs in that we fully describe a

transformation from NK landscapes to factor graphs and no

learning of the Bayesian network is required [18]. It is also

closely related to the work Mühlenbein and Mahnig with the

key difference being that our work proves mathematically how

optimizing an NK landscape reduces to abductive inference in

factor graphs [19]. The algorithm by Mühlenbein and Mahnig

used individuals in the EDA to estimate the parameters for

the Bayesian networks whereas our proof uses the fitness

functions in the NK landscape to derive the parameters for the

factor graph [19]. We begin by presenting a definition of factor

graphs, abductive inference for factor graphs from Abbeel et
al., and NK landscapes from Kauffman [12], [20].

A factor graph is representation of a joint probability

distribution. Let G = (V,E) be the set of vertices and edges

in the graph where V = {X ∪ φ}. X = {X1, X2, . . . , Xn} is

the set of variables and each Xi is a random variable. φ is

the set of factors that define the potentials between variables.

An edge ei,j ∈ E connects a factor φi to a variable Xj if

Xj is an argument of factor φi. Note that edges only exist

between variable nodes and factor nodes. The set of variables

that are connected to factor φi is denoted as Di, thus we can

think of each factor φi as a hyperedge in a hypergraph. A joint

distribution PΦ for a factor graph is then defined as

PΦ(X1, . . . , Xn) =
1

Z

m∏
i=1

φi(Di)

where Z is a normalization factor that is calculated as

Z =
∑
Xi∈X

(
m∏
i=1

φi(Di)

)
.

Given a variable Xi in a factor graph, we define the Markov

blanket as the set of variables Xk that are connected to any

of the factor nodes φj connected to the node Xi [20]. Next,

we give a definition for abductive inference in factor graphs.

Definition 1. Given a factor graph G, a set of evidence
variables XO ∈ G, and their corresponding states xO,
abductive inference is the problem of finding the maximum a

posteriori (MAP) probability states of the remaining variables
of G, XU = X\XO. Formally, we seek to find

MAP (XU ,XO) = argmax
x∈XU

m∑
i=1

log φi(di). (1)

where di is equal to the (full or partial) state assignments for
the variables connected to the factor φi defined by xO.

Finally, for the sake of completeness, we give a definition

for NK landscapes.

Definition 2. An NK landscape is a function f : BN → R
+

where BN is a bit string of length N . K specifies the number
of other bits in the string that a bit is dependent on. Given a
landscape, the fitness value is calculated as

f(X) =
1

N

N∑
i=1

fi(Xi, nbK(Xi)) (2)

where nbK(Xi) returns the K bits that are located within
Xi’s neighborhood. The individual functions are defined as
fi : BK → R

+.

Note that there are multiple ways to define the neighborhood

function. In our work, we return the next K contiguous bits



of the string starting at Xi. If the end of the string is reached,

then the neighborhood wraps back around to the beginning of

the string. Increasing K makes the variables more dependent

on one another, resulting in more rugged landscapes [21].

Given all of the previous definitions, we now show how op-

timizing NK landscapes can be reduced to abductive inference

in factor graphs.

Theorem 1. Given an NK landscape, a corresponding factor
graph can be defined such that each factor φi ∈ G correspond
to a function fi from the landscape and the optimization
problem in the NK landscape is equivalent to abductive
inference over the factor graph G.

Proof. Assume we are given an NK landscape L with N
bits and K interactions per bit. Remember the task for NK

landscape is to find state assignments x = 〈x1, x2, . . . , xn〉
for X that maximize the function given in Equation (2). This

maximization problem can be formulated as

M(L) = argmax
x∈V al(X)

n∑
i=1

fi(xi, nbK(xi)).

We will construct a factor graph G = (V,E) such that the

vector defining the most probable explanation for G is equal

to the vector denoting the global maximum of L.

For each bit in L, a variable node Xi and a factor node

φi are inserted into the factor graph G. Edges are then added

between φi and each node Xj in nbK(Xi). Due to our factor

graph construction, Di = {Xi, nbK(Xi)}. We then parame-

terize each factor φi as φi(Di) ← exp[fi(Xi, nbK(Xi))] for

each entry in the factor table. Note that if given an empty

evidence set XO, performing abductive inference on the newly

constructed factor graph (Equation 1) can be reduced to

MAP (XU ) = argmax
x∈V al(XU )

m∑
i=1

log φi(Di).

Since we defined φi(Di) = exp[fi(Xi, nbK(Xi))], we have

log φi(Di) = fi(xi, nbK(xi)). Therefore the optimization

problem can be rewritten as

MAP (XU ) = argmax
x∈V al(X)

n∑
i

fi(xi, nbK(xi)).

This equation is identical to the equation maximizing NK

landscapes, therefore, M(L) = MAP (X).

The result of proving Theorem 1 has several consequences.

First this shows a direct relationship between NK landscapes

and probabilistic graphical models, allowing us to use any

results for analyzing probabilistic graphical models on NK

landscapes and vice versa. For example, this result can be

used as an alternative reduction to prove the NP-completeness

of abductive inference in factor graphs. This includes results

using FEA to perform abductive inference on Bayesian net-

works. Secondly, it can allow for a new way to define NK

landscapes. For example, K could be viewed as an upperbound

to the number of variables connected to a factor. Additionally,

the discrete factors in the factor graph could be replaced

with continuous factors, which would define a new class of

continuous NK landscapes. For the purposes of this paper, we

will restrict our use of Theorem 1 to informing us on how to

apply FEA to binary NK landscapes.

We also extend this to any maximization function with a

similar form. This is expressed as follows.

Theorem 2. Given a function to be maximized with the form

f(X) =

N∑
i=1

fi(Xi, Xi+1, . . . , Xi+ki
)

a corresponding factor graph can be defined such that opti-
mizing the function is identical to abductive inference of the
factor graph.

Proof. Assume we are given a function f to be maximized

with N variables and that this maximization problem is

formulated as

M(f) = argmax
x∈V al(X)

n∑
i=1

fi(xi, xi+1, . . . xi+ki
).

We will construct a factor graph G = (V,E) such that the

vector defining the most probable explanation for G is equal

to the vector denoting the global maximum of f .

For each dimension in f , a variable node Xi and

a factor node φi are inserted into the factor graph G.

Edges are then added between φi and each node Xj in

{Xi+1, . . . Xi+ki}. Due to our factor graph construction, Di =
{Xi, Xi+1, . . . Xi+ki

}. We then parameterize each factor φi as

φi(Di) ← exp[]fi(Xi, Xi+1, . . . Xi+ki
)]

for each entry in the factor table. Note that if given an empty

evidence set XO, performing abductive inference on the newly

constructed factor graph (Equation 1) can be reduced to

MAP (XU ) = argmax
x∈V al(XU )

m∑
i=1

log φi(Di).

Since we defined φi(Di) = exp[fi(Xi, Xi+1, . . . Xi+ki
)],

we have log φi(Di) = fi(xi, xi+1, . . . , xi+ki
). Therefore the

optimization problem can be rewritten as

MAP (XU ) = argmax
x∈V al(X)

n∑
i

fi(xi, xi+1, . . . xi+ki)).

This equation is identical to maximizing the function f ,

therefore, M(f) = MAP (X).

We note two major differences between Theorem 1 and

Theorem 2. The first is that Theorem 2 does not place

any restriction on the variables being continuous or discrete.

Secondly, Theorem 2 does not require that each fi use the

same k + 1 inputs that NK landscapes require.

Note that this theorem only applies to maximization. How-

ever, the following Corollary applies the result to minimization

as well.



Corollary 1. Given a function to be minimized with the form

f(X) =
N∑
i=1

fi(Xi, Xi+1, . . . , Xi+ki
) (3)

a corresponding factor graph can be defined such that opti-
mizing the function is identical to abductive inference of the
factor graph.

Proof. Given a problem to be minimized, f with N variables,

we can transform the problem into a maximization problem

by creating the new function f ′(X) = −f(X). Theorem 2 can

then be applied directly to the transformed function f ′.

V. COMPARING FEA ARCHITECTURES

In previous work, we provided initial experiments looking

at possible factor architectures for FEA [1]. Here, we apply

the formal results given in this paper so that we can evaluate

the factor architectures derived from factor graphs on all of

the problem types. We also extend these prior experiments

by first incorporating the Integer and Categorical PSO by

Strasser et al. for discrete problems [8]. Additionally, our

prior results restricted the analysis to the average fitness of

each architecture on only four networks. Here, we incorporate

ten additional networks for performing abductive inference in

Bayesian networks and look at other performance characteris-

tics, such as population diversity, to gain a better understanding

of where each architecture gains its advantage.

A. ICPSO

The Integer and Categorical Particle Swarm Optimization

(ICPSO) algorithm is a new PSO algorithm developed by

Strasser et al. that has been shown to outperform other discrete

PSO algorithms [8]. In ICPSO, a particle p’s position is

represented as Xp = [Dp,1,Dp,2, . . . ,Dp,n] where each Dp,i

denotes the probability distribution for variable Xi. In other

words, each entry in the particle’s position vector is itself

comprised of a set of distributions Dp,i = [dap,i, d
b
p,i, . . . , d

k
p,i],

where djp,i corresponds to the probability that variable Xi takes

on value j for particle p.

A particle’s velocity is a vector of n vectors φ, one for each

variable in the solution, that adjust the particle’s probability

distributions.

Vp = [φp,1, φp,2, . . . , φp,n]

φp,i = [ψa
p,i, ψ

b
p,i, . . . , ψ

k
p,i].

where ψj
p,i is particle p’s velocity for variable i in state j. The

velocity and position update equations are identical to those of

traditional PSO and applied directly to the continuous values

in the distribution.

Vp = ωVp + U(0, φ1)⊗ (pBest−Xp)

+ U(0, φ2)⊗ (gBest−Xp)

Xp = Xp+Vp

The difference operator is defined as a component-wise differ-

ence between the two position vectors, i.e., for each variable

Xi and value j ∈ V als(Xi), d
j
(pBestp−Pp),i

= djpB,i − djp,i.

Here, djpB
is the personal best position’s probability that

variable Xi takes value j. The global best equation is identical

except pBestp is replaced with gBest and djpB,i with djgB,i.

The addition of the velocity vector to the position vector is

similarly component-wise over each value in the distribution.

For each probability for variable Xi and possible value j, the

addition is djp,i + ψj
p,i.

After the velocity and position update, an extra check

is performed to ensure that probabilities fall within [0, 1].
Additionally, the distribution is normalized to ensure that its

values sum to 1.

To evaluate a particle p, its distributions are sampled to

create a candidate solution Sp = [sp,1, sp,2, . . . , sp,n] where

sp,j denotes the state of variable Xj .

The fitness function is used to evaluate the sample’s fitness,

which then is used to evaluate the distribution. When a particle

produces a sample that beats the global or local best, both the

distributions from that particle’s position, Pp, and the sample

itself, Sp, are used to update the best values. Mathematically,

for all states j ∈ V als(Xi) the global best’s probability is

updated as

djgB,i =

⎧⎪⎨
⎪⎩

ε× djp,i if j 	= sp,i
djp,i +

∑
k∈V als(Xi)

∧k �=j

(1− ε)× dkp,i if j = sp,i

where ε, the scaling factor, is a user-set parameter that deter-

mines the magnitude of the shift in the distribution restricted

to [0, 1). This increases the likelihood of the distribution

producing samples similar to the best sample, while inherently

maintaining a valid probability distribution. The procedure for

setting the local best is directly analogous. The global best

sample is returned as the solution at the end of optimization.

B. Experimental Setup

In these experiments, we tested each of the architectures

on three different problems: abductive inference in Bayesian

networks, maximizing NK landscapes, and minimizing a set of

commonly-used test functions. For the Bayesian networks, we

used a set of networks from the Bayesian Network Repos-

itory [22]. NK landscapes were generated randomly using

combinations of N = 25, 40 and K = 2, 5, 10. For each

Bayesian network, 30 trials were performed for each factor

architecture. Because NK landscapes are randomly generated,

we generated 30 landscapes. Each version of FEA was then run

30 times on each landscape. On the benchmark test functions,

we used the Brown, Dixon & Price, Powell Singular, Rana,

and Rosenbrock. These functions were chosen because they

match the form of the function shown in Equation 3, and each

fi is comprised of more than one variable. We also note that

Brown, Powell Singular, and Rana supplement the results from

[1].

On the NK landscapes and abductive inference, we used

ICPSO as the underlying search algorithm. On the benchmark

problems, we used a standard “gbest” PSO. For both PSOs,



the ω parameter was set to 0.729, and φ1 and φ2 were both

set to 1.49618. In ICPSO, the scaling value ε was set to 0.75,

which was recommended by Strasser et al. [8]. Additionally,

each factor contained ten individuals. These values were found

to perform well for all architectures on all problems during

tuning of the algorithms. We note that comparisons with

single population PSOs and other approaches are omitted

here because previous work by Strasser et al. and Strasser

and Sheppard demonstrated that FEA versions of evolutionary

algorithms outperformed a single population and cooperative

coevolutionary versions [1], [23].

For each of the problem types, we used three different

methods for deriving factor architectures based on factor

graphs.

Parents— For each variable Xi, we construct a subpopula-

tion of individuals consisting of elements in the neighborhood

of Xi.

Markov— This architecture uses the Markov blanket of the

nodes to create subpopulations, which offers arguably one of

the most natural ways to subdivide a probabilistic graphical

model and provide overlap. For each problem, a factor is

created for each variable Xi consisting of Xi and all the nodes

in Xi’s Markov blanket.

Random— Random subpopulations are considered as the

baseline architecture. For this approach, a random subpopula-

tion is constructed for each of the N variables. K variables

are then added to each of the N subpopulations. We used

two different values for K. The first is setting it equal to the

number of variables in a node’s neighborhood and denote it

as Random (P). Random (M) denotes a random architecture

where M is set equal to the average size of a Markov blanket

for each test problem.

Similar to the work by Strasser et al. and Fortier et al., we

hypothesize that the Markov architecture will outperform the

other architectures [1], [5]. Additionally, we hypothesize that

in the Random architectures, the subpopulations with fewer

variables, Random (P), will outperform Random (M) because

it will be less susceptible to “two steps forward and one step

back”.

C. Results

Table I shows the results for performing abductive inference

on the Bayesian networks using FEA-ICPSO. Results are

reported for each of the four different factor architectures

in terms of average fitness values. The standard error for

confidence bounds is given in parentheses. Similarly, Table

II displays the results of FEA-ICPSO to maximize NK land-

scapes. Finally, we present the benchmark results in Table III.

All results are averaged over 30 trials. In all tables, a bold

value indicates that a Paired Student t-Test with α = 0.05
determined that factor architecture significantly outperformed

the others on that specific problem. All cases satisfied the

requirements for the Paired Student t-Test. If multiple values in

a single row are bold, that means that the bolded architectures

were not statistically significantly different from each other

but significantly outperformed all non-bolded architectures.

Looking at Table I, we can see that Markov always signifi-

cantly outperforms all competing architectures. The next best

performing architecture was Parents, as it outperformed both

Random architectures on the Alarm, Andes, Child, Diabetes,

Hepar2, Insurance, Link, Pathfinder, and Win95pts networks.

On the Barley, Water, and Pigs networks, the Random (M)

architecture performed second best, while on Mildew and

Hailfinder, Random (P) was second.

For the NK landscapes, Markov again demonstrated the

best performance to a statistically significant level. Out of the

remaining architectures, Parents performed best and was only

outperformed by Random(M) on N = 25 and K = 10.

Finally, Markov had the best overall performance on the

benchmark functions, statistically outperforming the other

methods in most cases. However, it failed to differ statistically

from Random (M) on Dixon & Price and appeared to be

outperformed by Random (P) on the Rosenbrock function.

However, this difference between Random (P) and Markov

on the Rosenbrock was also not significant. Parents was

second only on Brown while Random (M) performed best on

the Dixon & Price and second best on the Powell Singular

functions. Random (P) was best on Rosenbrock and second

best on the Rana.

D. Analysis

Based on our results, the Markov architecture performs best

on the majority of problems. This is because this architec-

ture groups variables together that are highly related, allow-

ing interactions to be captured by inter-swarm optimization.

Similarly the Parents architecture groups variables that are

highly related; however, the resulting swarm for a variable

Xi contains the variables that Xi is dependent on, but does

not contain variables that depend on it. Thus, Markov superior

performance can be attributed to the fact that it includes both

sets of variables in each swarm, and thus does a better job of

grouping highly related variables.

Even though the Markov architecture has larger factors,

it does not appear to suffer from “two steps forward and

one step back”, which often affects populations that optimize

over large sets of variables. This is illustrated by the fact

Random (M), which has larger factors, outperformed Random

(P) on all networks except Hailfinder, Hepar2, Mildew, and

Win95pts. If “two steps forward and one step back” had

been present, we would have expected the larger factors to

impede the algorithm’s performance. The NK landscape results

further support these claims: the Random (M) architecture

outperformed the smaller random architecture, Random (P),

on all landscapes tested.

Additionally, Parents outperformed Random (M) on almost

all NK Landscapes. This suggests that the level of interaction

between factor variables, rather than the sizes of the factors,

is more important when creating a factor architecture.

To investigate further where the Markov architecture’s per-

formance gains originate, we analyzed the diversity over time

for each of the different architectures. Because most individ-

uals optimize over different subsets of variables, we used the



TABLE I
RESULTS OF FEA-ICPSO PERFORMING ABDUCTIVE INFERENCE ON BAYESIAN NETWORKS.

Markov Parents Random (M) Random (P)

Alarm −1.01E+01 (5.74E−01) −1.32E+01 (6.24E−01) −1.40E+01 (7.76E−01) −1.55E+01 (8.49E−01)
Andes −5.54E+01 (5.07E−01) −5.98E+01 (6.72E−01) −6.62E+01 (7.12E−01) −6.68E+01 (1.16E+00)
Barley −4.08E+01 (7.76E−01) −4.50E+01 (1.08E+00) −4.39E+01 (1.14E+00) −4.94E+01 (1.42E+00)
Child −6.09E+00 (2.68E−01) −7.30E+00 (3.25E−01) −7.71E+00 (2.93E−01) −8.36E+00 (3.33E−01)
Diabetes −1.10E+04 (3.13E+02) −1.37E+04 (4.02E+02) −1.43E+04 (2.13E+02) −1.48E+04 (4.54E+02)
Hailfinder −2.90E+01 (3.40E−01) −7.03E+01 (2.76E+01) −9.10E+01 (3.32E+01) −5.11E+01 (1.98E+01)
Hepar2 −1.62E+01 (4.59E−01) −1.71E+01 (4.82E−01) −1.75E+01 (5.29E−01) −1.71E+01 (5.08E−01)
Insurance −1.01E+01 (3.51E−01) −1.14E+01 (5.21E−01) −1.16E+01 (4.03E−01) −1.24E+01 (4.95E−01)
Link −3.13E+03 (2.31E+02) −4.76E+03 (3.96E+02) −4.67E+03 (3.42E+02) −6.52E+03 (3.61E+02)
Mildew −8.20E+02 (7.71E+01) −1.04E+03 (8.13E+01) −1.06E+03 (1.03E+02) −1.02E+03 (1.32E+02)
Pathfinder −4.22E+02 (5.94E+01) −7.03E+02 (7.91E+01) −1.14E+03 (1.02E+02) −1.34E+03 (1.47E+02)
Pigs −2.15E+02 (9.34E−01) −2.22E+02 (1.19E+00) −2.21E+02 (1.11E+00) −2.43E+02 (1.95E+01)
Water −3.27E+02 (5.52E+01) −4.67E+02 (6.80E+01) −3.87E+02 (8.32E+01) −5.45E+02 (8.25E+01)
Win95pts −1.76E+01 (6.68E−01) −2.32E+01 (8.08E−01) −5.04E+01 (1.96E+01) −3.16E+01 (1.17E+00)

TABLE II
RESULTS OF FEA-ICPSO MAXIMIZING NK LANDSCAPES.

Markov Parents Random (M) Random (P)

N = 25
K = 2 1.78E+01 (2.21E-02) 1.76E+01 (2.42E-02) 1.72E+01 (2.68E-02) 1.71E+01 (2.84E-02)
K = 5 1.81E+01 (1.64E-02) 1.79E+01 (1.92E-02) 1.77E+01 (1.92E-02) 1.72E+01 (2.20E-02)
K = 10 1.78E+01 (1.62E-02) 1.75E+01 (1.64E-02) 1.77E+01 (1.47E-02) 1.72E+01 (1.87E-02)

N = 40
K = 2 2.81E+01 (3.07E-02) 2.78E+01 (3.13E-02) 2.72E+01 (3.53E-02) 2.71E+01 (3.55E-02)
K = 5 2.89E+01 (2.22E-02) 2.84E+01 (2.43E-02) 2.79E+01 (2.77E-02) 2.73E+01 (2.97E-02)
K = 10 2.84E+01 (2.13E-02) 2.81E+01 (2.15E-02) 2.78E+01 (2.33E-02) 2.72E+01 (2.47E-02)

TABLE III
RESULTS OF FEA-PSO MINIMIZING BENCHMARK FUNCTIONS.

Markov Parents Random (M) Random (P)

Brown 1.66E−02 (1.51E−03) 3.39E−02 (3.20E−03) 4.12E−02 (6.99E−03) 6.09E−02 (6.23E−03)
Dixon & Price 3.60E+00 (4.22E−01) 4.10E+00 (3.55E−01) 3.57E+00 (5.64E−01) 5.64E+00 (5.75E−01)
Powell Singular 4.76E−01 (2.74E−02) 6.68E−01 (5.05E−02) 6.44E−01 (5.04E−02) 4.35E+00 (3.26E+00)
Rana −1.39E+04 (9.46E+01) −1.32E+04 (1.29E+02) −1.30E+04 (1.28E+02) −1.24E+04 (1.30E+02)
Rosenbrock 6.92E+01 (9.01E+00) 6.94E+01 (1.28E+01) 5.66E+01 (1.19E+01) 7.15E+01 (6.27E+00)

genotype variance, a measure of the distance between each

individual and the “average” individual, to measure diversity

[24]. This variance is calculated as 1
N×P

∑N
i=1

∑P
j=0(x̄i −

xi,j)
2 where x̄i is Xi average value across the population for

variable, xi,j is individual i’s value for variable Xj , P is the

total number of individuals, and N is the number of variables

in the problem being optimized. The graphs for both fitness

and diversity over time for FEA-PSO are shown in Figure 1.

Results are presented for 100 trials of FEA-ICPSO optimiz-

ing an NK landscape with parameters N = 25 and K = 2.

The y-axis on the left denotes the average diversity, while the

y-axis on the right is the best fitness. The x-axis shows the

number of FEA iterations, where each iteration consists of the

update, compete, and share steps, and each factor performs 5

updates during a single iteration.

When considering fitness, the Markov architecture con-

verges the fastest, and it maintains the best population diversity

over time. We believe this is because the Markov architecture

provides the best balance between the number of variables

in the factors and the level of interaction being handled.

Larger factors provide more variation between individuals’

state assignments, thus leading to higher diversity in the
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population. Given this, we might expect the Markov and

Random (M) architectures to have identical diversity curves, as

they yield the same factor sizes for NK Landscapes; however,

we observed that both Random architectures had relatively

low diversity. Also, while Parents has smaller factors than

Random (M), its diversity was higher on average. This implies

that factor size is not the only influence on average diversity,

and that grouping together highly interactive variables also

increases the average diversity.

VI. CONCLUSIONS AND FUTURE WORK

We present a formal method for deriving factor architectures

for FEA. First, we provide a mapping of the optimization

problems to a factor graph. Based on the resulting factor graph,

a factor architecture derived. Finally, we demonstrate that for

the majority of problems studied, the optimal architecture is

based on Markov blankets in the factor graph.
Several different areas for future work exist. First we plan to

investigate why the Markov architecture performed worse than

the Random architectures on Rosenbrock. One hypothesis is

that the relationships between variables in the Markov blanket

are actually deceptive, causing FEA to become trapped in a

local minimum.
Second, we plan to explore the convergence properties

of FEA. To accomplish this, we will examine convergence

properties for various EA methods, such as PSO, GA, and

CCGA, and examine whether they can be adapted to FEA.

This will extend our recent work that provided a more gener-

alized view of FEA, independent of the underlying algorithms

[23]. We will also investigate how FEA’s parameters, such as

the number of iterations during inter-factor and intra-factor

optimization affect FEA’s performance.
In this paper, we assumed that a factor graph could be

derived by analysis of the actual fitness function. However,

there may be cases where the fitness function will not be

directly observable. For those situations, we will examine first

sampling the fitness function and then using the generated

samples to generate a factor graph. The resulting factor graph

can then be used to generate the factors for FEA.
A more dynamic approach would be to adapt FEA to use

algorithms like EDA and linkage analysis, where during the

update of the factors, FEA would use one of these methods to

determine if variables needed to be added or removed from a

factor. This would result in an FEA that automatically detects

variable interactions and adjusts accordingly.
Finally, we plan to investigate the scalability of FEA. Previ-

ous work by Strasser et al. demonstrated that FEA can require

a large number of fitness evaluations due to the competition

step [1]. We will explore how to reduce complexity by using

different competition schemes.
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