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Abstract—Factored Evolutionary Algorithms (FEA) have been
shown to be an effective method to optimize objective functions
by partitioning the search space into overlapping subpopulations,
or factors. FEA is comprised of three main steps: Update,
Compete, and Share. While there exists previous work exploring
FEA’s convergence properties, it is still unknown where FEA
obtains most of its performance gains. In this paper, we examine
FEA performance by evaluating FEA on a set of commonly
used deceptive unitation functions as well as several versions of
the Royal Road problem. These problems provide a complex
landscape for the search algorithm to explore but are well
understood and researched. In evaluating FEA on these problems,
we discovered that FEA’s Compete step contributes the most to
its performance effectiveness. Additionally, we identify a class of
problems that may degrade the performance of FEA.

I. INTRODUCTION

Combinatorial and nonlinear optimization remain among

the most difficult yet important classes of problems being

addressed today by advanced, heuristic search methods [1].

One such approach to heuristic search often used to solve

such problems is defined by the class of population-based

algorithms, including Evolutionary Algorithms and swarm-

based algorithms, because the randomness used in the search

process helps to escape local optima.

Factored Evolutionary Algorithms (FEA) are a generaliza-

tion of cooperative coevolutionary algorithms [2], [3] that

allow for subpopulations to overlap with one another [4]. FEA

decomposes the optimization problem into a set of factors and

encourages the factors to overlap, which allows the factors

to compete with one another for inclusion in a full solution.

Another unique property of FEA is that it allows for any

population based algorithm to be used as the underlying

optimization algorithm [5]. Consequently, subpopulations or

subswarms are associated with each factor, and the desired

search algorithm is used to search the subspace covered by

that factor. Furthermore, creating the factors is based upon

grouping variables that are highly correlated [4], [6].

Previous work by Strasser et al. demonstrated that the best-

performing factor architecture also maintained better diversity

between the individuals [6]. However, it is unknown in this

case how the increased diversity relates to the improved

performance. Furthermore, the question still remains as to

whether FEA’s performance is influenced most by creating

subpopulations through the factoring of the function or by

competition and collaboration among factors. Specifically, if

a factor architecture is poorly constructed, will FEA still be

able to locate good solutions?

We explore three questions in this paper. The first is what

types of problems individual factors are able to solve. Second,

we examine how effective competition is in combining solu-

tions from the overlapping factors. Finally, we investigate if

there exist guidelines for creating factors for problems without

intuitive methods for factoring the function.

To investigate these questions, we explore how FEA per-

forms on two sets of functions with binary variables: unitation
functions, which are functions whose fitness is based on the

number of zeros and ones in the input vector, and the Royal

Road functions, which were proposed by Mitchell et al. to

explore the building block hypothesis in GAs [7]. Even though

these functions themselves do not have complex definitions,

they are still able to define complex search spaces [8], and the

functions contain properties found in real-world problems.

Previous work by Strasser et al. analyzed the performance of

FEA on performing abductive inference on Bayesian networks

and maximizing NK landscapes [4]. Unfortunately, since these

problems are NP-complete, it is difficult to determine per-

formance of various algorithms relative to global optimality

on reasonably-sized instances of these problems. By using

unitation and Royal Road functions, we are able to analyze

the number of evaluations FEA requires directly to find the

optimal solution. This also allows us to observe how robust

FEA is to deception.

The rest of the paper is organized as follows. We begin by

first reviewing related work in Section II, followed by a review

of FEA in Section III. Section IV presents the experimental

setup followed by the results for unitation functions in Section

V and the results for the Royal Road functions in Section VI.

An analysis of the results is given in Section VII. We conclude

the paper with a summary of the work presented in this paper

and several areas of future work in Section VIII.

II. RELATED WORK

The earliest version of FEA was named Particle-based Rout-

ing with Overlapping Swarms for Energy Efficiency (PROSE)

and was developed by Haberman and Sheppard [9]. PROSE

was first developed to create an energy-aware routing protocol

for sensor networks that ensures reliable path selection while

minimizing energy consumption during message transmission.

In their work, the authors let each subswarm represent a sensor
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node and all of the sensor’s neighbors in the network. They

were able to show that PROSE extends the life of the sensor

networks by performing significantly better than energy-aware

routing protocols that were state-of-the-art at the time.

Later work by Ganesan Pillai and Sheppard extended

PROSE to learn the weights of deep artificial neural networks

[10]. In that work, the authors developed an algorithm called

Overlapping Swarm Intelligence (OSI) where each swarm

corresponds to a unique path from input to output in the

network. A common vector of weights is maintained across

the swarms to describe a global view of the network, which is

created by combining the weights of the best particles in each

of the swarms. The authors showed that OSI outperformed

several other PSO-based algorithms, as well as standard back-

propagation, on deep networks.

Subsequently, a distributed version of OSI was developed

by Fortier et al. called Distributed Overlapping Swarm Intelli-

gence (DOSI) [11]. With DOSI, a communication and sharing

algorithm was defined so that swarms could share values while

also competing with one another. The key distinction from OSI

was that a single global solution was not maintained for fitness

evaluation. Their results showed that DOSI’s performance was

close to that of OSI’s on several different networks.

OSI and DOSI have also been applied to the full and partial

abductive inference problems in Bayesian networks, where the

task is to find the most probable set of states for a set of

nodes in the network, given a set of observations [5], [12]

The authors were able to show that both OSI and DOSI

outperformed several other population-based and traditional

inference algorithms, including PSO, GA, simulated anneal-

ing, stochastic local search, and mini-bucket elimination.

Other applications of OSI and DOSI include learning the

parameters or structure of Bayesian networks. For example,

Fortier et al. adapted OSI to learn the structure of Bayesian

classifiers by allowing subswarms to learn the links for each

variable in the network [13]. The authors were able to show

that in most cases OSI was able to significantly outperform

competing structure learning approaches.

When learning Bayesian networks, latent or unobserved

variables are often introduced, and Fortier et al. used OSI to

learn the parameters of these latent variables [14]. A subswarm

is created for each node with unknown parameters and all of

the variables in that node’s Markov blanket. The authors were

able to show that OSI outperformed competing approaches,

including the traditionally-applied expectation-maximization

algorithm, and that the amount of overlap between the sub-

swarms can impact the performance of OSI.

Strasser et al. were the first to define FEA as a general

approach that can utilize any stochastic search algorithm [4].

Additionally, the authors were able to show that the best

factor architecture is one that groups variables that have a high

correlation. Later work by Strasser and Sheppard was able to

prove that FEA converges to a single solution. Additionally,

the authors were able to prove that FEA may become stuck

in suboptimal solutions, called pseudominima, but that such

behavior can be made rare with the right architecture [15].

III. FACTORED EVOLUTIONARY ALGORITHMS

FEA is a class of optimization algorithm that functions

by factoring the objective function. FEA is similar to the

cooperative EAs like CCGA and CPSO; however, FEA en-

courages subpopulations to overlap with one another, allowing

the subpopulations to compete and share information. Because

FEA is able to work with any stochastic search algorithm,

we were able to show that the FEA class includes CCPSO,

CCGA, OSI, island EAs, and others. Here, we review a general

definition of the FEA model presented by Strasser et al. [4].

For a more in-depth explanation, including pseudo-code, we

refer the reader to the previously mentioned paper.

There are three major subfunctions in FEA: Update, Com-

pete and Share. The Update function is the simplest and

applies the base heuristic search algorithm to its local set

of variables. The Compete function constructs a full solution

from the factors that can be used by the factors to evaluate a

partial solution, while the Share step uses this full solution to

inject information back into the factors.

Given a function f(X) to be optimized with X =
〈X1, X2, . . . , Xn〉, let Si be some subset of X. We call Si

a factor for which we will define a subpopulation. FEA then

optimizes f over the variables in Si by holding Ri = X \ Si

constant. In FEA we encourage the factors to be proper subsets

of X where at least one factor overlaps with another factor.

Without loss of generality, we assume every factor overlaps

some other factor.

Because each subpopulation is optimizing over a subset of

values in X, the subpopulation defined for Si needs to know

the values of Ri for the local fitness evaluations. Given a factor

Si and its remaining values Ri, fitness for a partial solution in

Si can be determined by calculating f(Si∪Ri). The values for

Ri are derived from the other subpopulations, which allows Si

to use values optimized by these other subpopulations.

The goal of the Compete step in FEA is to find the subpopu-

lations with the state assignments that have the best fitness for

each variable. FEA accomplishes this by constructing a global

solution vector G = 〈X1, X2, . . . , Xn〉 that evaluates the

optimized values from subpopulations. A variety of methods

can be used to construct G, but we found a greedy approach

can be effective [4].

The Share step serves two purposes. First, it allows over-

lapping subpopulations to inject share knowledge with their

neighbors. Previous work by Fortier et al. believed that this is

one of the largest contributors to the FEA’s performance [5].

Second, the Share step sets each factor’s Ri values so that

each Si can evaluate its partial solution on f . Here, we use

the method in Strasser et al. [4] where each Si is seeded with

values from G.

The entire FEA algorithm works as follows. First, all of

the subpopulations Si are initialized. Next FEA searches by

iterating over each subpopulation and having each optimize

over its variables for a set number of iterations. Then G
is updated by the Compete step. Finally, the Share step is

performed by seeding each subpopulation with values from G.



These three steps (Update, Compete, and Share) are repeated

until some stopping criterion is satisfied, upon which the full

global solution G is returned as the final solution.

IV. EXPERIMENTS

To gain a better understanding of its performance, we

evaluate FEA on a set of unitation and Royal Road functions.

Unitation functions are functions in which the fitness is based

upon counting the number of 1’s. Royal Road functions are

variations of unitation functions in that, in addition to the

fitness being based upon the number of 1’s, a specific structure

is imposed upon the fitness landscape.

A. Unitation Functions

A unitation function is a fitness function whose output is

based upon the number of ones in a binary array with no

restriction on where the ones in the array occur. Let u(X) be

the count of the number of ones in a binary array X

u(X) =

N∑

i=1

Xi

where Xi is the ith binary variable in X. The simplest

unitation fitness function is referred to as One Max (OM),

and is defined as

f(X) = u(X)

The optimal solution consists of all 1’s.

Two variations of OM are the Needle (N) and Bi-Needle
(BN) problems. N consists of a search space with a large flat

basin and a narrow optimal solution when the input contains

all 1’s, defined as

f(X) =

{
1 + α u(X) = N

1 otherwise.

where α > 0 is some constant. BN, on the other hand, contains

two narrow optimal solutions, one with all 0’s and one with

all 1’s, and is defined as

f(X) =

⎧
⎪⎨

⎪⎩

1 + α u(X) = 0

1 + α u(X) = N

1 otherwise.

In this paper, we are interested in understanding the ability

of FEA to handle deceptive problems. A deceptive function

is one where multiple paths to local optimum solutions exist;

however, one of more of those paths lead specifically to an

inferior local optimum. Three deceptive versions of N and BN

exists: DecTrap (DT), TwoTrap (TT), and DecTwoTrap (DTT).

DT contains one global optimum with all 1’s and one

suboptimal solution all 0’s. Additionally, the function slope

is defined such that the search will be biased towards the

suboptimal solution. Formally, it is defined as

f(X) =

{
N u(X) = N

N − 1− u(X) otherwise.

On this function, search will be led in one of two directions:

either toward all 0’s or all 1’s.
TT extends DT to contain two optimal solutions: all 0’s

and all 1’s. However, a suboptimal solution is centered in the

middle of the search space with N/2 1’s. Similar to DT, much

of the search space guides the search algorithm toward the

suboptimal solution. The function is defined as

f(X) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N − N
2 u(X) u(X) < N

5

2u(X)− 2
5N

N
5 ≤ u(X) ≤ N

2
8
5N − 2u(X) N

2 < u(X) ≤ 4
5N

N
2 u(X)− 2

5N
2 4

5N < u(X).

DTT is the opposite of TT; it has one optimal solution, one

suboptimal solution, and is defined as

f(X) =

⎧
⎪⎨

⎪⎩

N u(X) = N
2

−2u(X) +N − 2 u(X) < N
2

2u(X)−N − 2 N
2 < u(X).

B. Royal Road Functions
The Royal Road is an optimization problem that was

original intended to be easy for GAs to solve [7], [8]. The

function is defined as

f(X) =
∑

s∈S
csσs(X)

where X is a bit string and S defines a set of schemata. A

schema is a string where each element is from {0, 1,#} that

denotes a pattern in a bit string [7]. For example, a schema of

# 1 is a pattern that matches any string where the second bit

is 1 and the first bit is either 0 or 1. If the bit string X contains

a schema s, then σs(X) returns 1; otherwise it returns 0. cs
defines a cost or weight for schema s.

When first presented, Mitchell et al. proposed two different

Royal Road functions, denoted R1 and R2 respectively. It

was thought that R1 would be easy for a GA to solve by

providing intermediate schemata to guide the search process

as “building blocks.” R2, on the other hand, eliminates the

intermediate schemata, thus making search more difficult.

Contrary to expectation, the authors found that intermediate

schemata slowed down the GA.
Here, we extend R1 to combine characteristics of the

deceptive unitation functions with characteristics in the Royal

Road, which we denote R3. functions We do this by in-

troducing deceptive schemata into the set S . This is done

by adding a schema that match all 0’s in locations that are

offset of the schema that match all 1’s. Previous results on

factor architectures suggest a factor should be generated for

interrelated groups of variables. In R3, the negative schema

represents groups of related variables; however, those groups

of related variable are designed to lead to suboptimal solutions.

C. FEA on Unitation Functions
In this section we focus on 10-bit unitation functions. While

unitation and Royal Roads functions are usually tested with a

GA, for our FEA experiments, we use a discrete version of

PSO known as Integer and Categorical PSO (ICPSO) [16].



TABLE I
FACTOR ARCHITECTURES VARYING FACTOR SIZE WITH NO OVERLAP.

Name (Num Factors, Size)

F (1,10)
S9 (1,9), (1,1)
S8 (1,8), (1,2)
S7 (1,7), (1,3)
S6 (1,6), (1,4 )
S5 (2,5)
S4 (2,4), (1,2)
S3 (3,3), (1,1)
S2 (5,2)

TABLE II
FACTOR ARCHITECTURES WITH OVERLAP.

Name (Num Factors, Size)

F (1,10)
F2 (2,10)
F3 (3,10)
F4 (4,10)
F5 (5,10)
F6 (6,10)

1) Varying Factor Size: First we examine how the factor

size with no overlap affects the performance of FEA on the

base unitation functions. To do so, we generate factors of

decreasing size, starting with a full PSO and decreasing the

factor size by one. Because the focus is strictly on size, we do

not allow the factors to overlap. When possible, we generate

factors of equal size, such as two factors of size N/2. In the

case where factors consist of four bits, we create two factors

of size four and one of size two. Following this process gives

us the set of factor architectures shown in Table I.

2) Varying the Number of Overlapping Factors: Next we

evaluate how the number of overlapping factors affect the

performance of FEA. Here, we are able to examine how

effective Compete is at determining optimal values for the

full global solution. Starting with two factors optimizing over

all ten variables, we increase the number of factors from two

to five. By increasing the number of factors, we are able to

evaluate how FEA is able to utilize multiple values for each

variable during Compete. Table II presents the different factor

architectures.

3) Varying Both Factor Overlap and Size: In these exper-

iments, we vary both factor size and the amount of overlap.

We use two factors of equal size and vary the number of bits

each factor is optimizing and the amount of overlap between

factors. Starting with two factors of size nine, we position each

factor at both ends of the ordered variables. In this case, factor

one optimizes bits 1–9 while factor two optimizes bits 2-10,

which gives an overlap of eight. We then decrease the size of

each factor, starting with nine and moving down to five, where

there is no overlap between the factors. Table III presents the

five different architectures.

D. FEA on Royal Road Functions

For the Royal Road functions, we used R1, R2, and R3 as

defined above. Factor sizes were set to 2, 4, 8, and 16 with

TABLE III
FACTOR ARCHITECTURES VARYING FACTOR SIZE AND OVERLAP

Name (Num Factors, Size) Overlap

F (1,10) —
T9 (2,9) 8
T8 (2,8) 6
T7 (2,7) 4
T6 (2,6) 2
T5 (2,5) 0

TABLE IV
TRIALS TO OPTIMUM WITH VARYING FACTOR SIZE

OM N BN DT TT DTT

F 200 200 200 13 126 200
S9 200 200 200 4 200 200
S8 200 200 200 7 180 200
S7 200 200 200 10 115 200
S6 200 200 200 15 58 200
S5 200 200 200 13 24 200
S4 200 200 200 5 101 200
S3 200 200 200 5 84 196
S2 200 200 200 8 88 175

an overlap of 1, 2, 4, and 8, respectively. We also consider

the case where there is no overlap, allowing us to replicate

previous results by Ochoa et al. [17].

E. Experimental Setup

In all experiments, we use ICPSO as the underlying opti-

mization algorithm as it has been shown to outperform other

discrete PSO algorithms [16]. In all architectures, we use a

budget of 50 individuals to distribute evenly between all the

factors. We also consider a full, single-population ICPSO.

All of the unitation functions had ten bits. Each algorithm

was run until the optimal solution was found; however, each

algorithm was given a budget of 35,000 evaluations before ter-

minating the algorithm on the unitation functions and 500,000

evaluations on the Royal Road functions. On the unitation

functions, we performed 200 trials and on the Royal Road, we

performed 30 trials. ICPSO completed one round of Updates

before Compete and Share were performed. Each algorithm

was initialized with randomly generated individuals. We note

that this has the side affect of each of the factor architectures

having individuals with different starting positions. However,

because each architecture often contains individuals of differ-

ent sizes, enforcing each architecture to have the individuals

with same initial solutions is infeasible.

V. RESULTS: UNITATION FUNCTIONS

A. Varying Factor Size

Table IV shows the number of successful trials to find

the optimal solutions, whereas Table V presents the average

number of fitness evaluations excluding the failures required

for each factor architecture to locate the optimal solution. The

average number of fitness evaluations is calculated only from

trials that were successful in locating the optimal solution.

Additionally, the standard error is shown for the number of

fitness evaluations.



TABLE V
AVERAGE FITNESS EVALUATIONS WITH VARYING FACTOR SIZE

OM N BN DT TT DTT

F 6.51E+2 (1.32E+1) 2.05E+3 (1.59E+2) 9.09E+2 (4.79E+1) 5.00E+2 (0.00E+0) 1.29E+3 (2.08E+2) 5.00E+2 (0.00E+0)
S9 6.83E+2 (1.41E+1) 2.79E+3 (1.72E+2) 1.52E+3 (7.95E+1) 5.06E+2 (0.00E+0) 5.29E+3 (4.58E+2) 5.06E+2 (0.00E+0)
S8 6.08E+2 (1.06E+1) 2.78E+3 (1.91E+2) 1.55E+3 (7.85E+1) 5.06E+2 (0.00E+0) 4.75E+3 (4.71E+2) 5.06E+2 (0.00E+0)
S7 5.43E+2 (6.81E+0) 3.48E+3 (2.23E+2) 1.85E+3 (1.08E+2) 5.06E+2 (0.00E+0) 2.98E+3 (3.97E+2) 5.06E+2 (0.00E+0)
S6 5.11E+2 (3.09E+0) 4.67E+3 (3.05E+2) 2.52E+3 (1.43E+2) 5.06E+2 (0.00E+0) 1.02E+3 (1.78E+2) 5.06E+2 (0.00E+0)
S5 5.06E+2 (0.00E+0) 4.71E+3 (3.09E+2) 2.22E+3 (1.39E+2) 5.06E+2 (0.00E+0) 5.06E+2 (0.00E+0) 5.06E+2 (0.00E+0)
S4 5.06E+2 (0.00E+0) 8.35E+3 (6.29E+2) 3.89E+3 (2.76E+2) 5.08E+2 (0.00E+0) 7.87E+2 (2.33E+1) 5.08E+2 (0.00E+0)
S3 5.06E+2 (0.00E+0) 1.05E+4 (6.81E+2) 6.14E+3 (3.85E+2) 5.10E+2 (0.00E+0) 1.02E+3 (5.63E+1) 5.10E+2 (0.00E+0)
S2 5.12E+2 (0.00E+0) 1.96E+4 (1.26E+3) 9.23E+3 (6.31E+2) 5.12E+2 (0.00E+0) 8.03E+2 (1.53E+2) 5.12E+2 (0.00E+0)

For the OM function, both the full ICPSO and every factor

architecture were able to find the optimal solution every time.

However, S5, S4, and S3 were able to do so in the fewest

iterations, requiring on average only one iteration. Conversely,

on the N and BN functions, larger factors performed better.

The full swarm performed the best, while the best FEA

factor architecture was S9. Notably, out of all base unitation

functions, N required the most fitness evaluations.

On DT, the algorithms were able to locate the optimal

solution only 5% of the time. In terms of locating the best

solution, S6 performed the best, finding the optimal solution

15 times. The worst architectures were S3 and S4, which found

the optimal solution only five times. When the full ICPSO

and FEA found the optimal solution, it was always in a single

iteration. Additionally, the variety in the number of fitness

evaluations for this function is caused by the extra fitness

evaluations FEA performs during initialization.

The best architecture on TT was S9, which found the

optimal solution 100% of the time. However, it required the

most fitness evaluations, roughly nine times the number of

evaluations required needed by S5, which had the lowest suc-

cess rate out of all architectures. As the factor size decreased

from S9 to S5, both the number of successful trials and number

of evaluations steadily decreased. From S5 to S2, the number

of successful trials and fitness evaluations increased.

Finally, on DTT, the larger factor architectures performed

the best. The only two architectures that were unable to locate

the optimal solution 100% of the time were S3, and S2. Similar

to DT, FEA and the full swarm were always able to locate the

optimal solution in one iteration with the differences in the

number of fitness evaluations being caused by extra fitness

evaluations during initialization.

B. Varying Factor Overlap

Table VI presents the number of successful trials required

to find the optimal solution, whereas Table VII presents the

average number of fitness evaluations required for each factor

architecture to locate the optimal solution. The average number

of fitness evaluations is calculated only from trials that were

successful in locating the optimal solution. Additionally, the

standard error is shown for the number of fitness evaluations.

We note that the best architecture on OM was F4, which

required the fewest number of fitness evaluations. On the

TABLE VI
TRIALS TO OPTIMUM WITH VARYING FACTOR OVERLAP

OM N BN DT TT DTT

F 200 200 200 15 200 200
F2 200 200 200 9 200 200
F3 200 200 200 9 200 200
F4 200 200 200 16 200 200
F5 200 200 200 15 200 200
F6 200 200 200 15 200 200

other functions, FEA was often outperformed by the single-

population ICPSO; however, this difference was not always

significant. Only with DT and DTT is there a clear difference

between F and F2.

Next there appears to be a correlation between the increase

in both the number of factors and the number of fitness

evaluations; however, there are a few exceptions, such as F4

on N or F3 and F5 on BN. The only function that does not

display this correlation is DT, where there is an increase from

F to F2, but then the number of evaluations levels out.

C. Varying Both Size and Overlap

Table VIII presents the number of successful trials for the

various FEA factor architectures over each of the unitation

functions and Table IX shows the average number of fitness

evaluations for successful trials. The average number of fit-

ness evaluations is calculated only from the trials that were

successful in locating the optimal solution. Additionally, the

standard error is shown for the number of fitness evaluations.

For OM, the factor architecture T6 performed the best,

requiring the fewest number of fitness evaluations. On N and

BN, T9 and T8 tied with the full swarm (F); however, as the

factor size and overlap decreased from T8 to T5, the number

of fitness evaluations also increased.

DT was the most difficult function to optimize. On average,

each factor architecture was able to locate the optimal solution

only around 5% of the time. However, when FEA and the full

ICPSO found the optimal solution, it was done in only one

iteration. A similar result can be seen in DTT, where each

architecture located the optimal solution within one iteration.

Finally, on TT, the best architectures were T8 and T9, which

required the fewest number of fitness evaluations, taking only

11.5 iterations to find the optimal solution. As the amount of

overlap decreases, the performance begins to decrease as well.



TABLE VII
AVERAGE FITNESS EVALUATIONS WITH VARYING FACTOR OVERLAP

OM N BN DT TT DTT

F 1.68E+3 (1.09E+2) 1.68E+3 (1.09E+2) 9.64E+2 (4.71E+1) 5.00E+2 (0.00E+0) 4.33E+3 (4.17E+2) 5.00E+2 (0.00E+0)
F2 1.72E+3 (1.09E+2) 1.72E+3 (1.09E+2) 1.01E+3 (4.26E+1) 5.35E+2 (1.76E-1) 4.92E+3 (4.95E+2) 5.31E+2 (1.20E-1)
F3 1.73E+3 (1.12E+2) 1.73E+3 (1.12E+2) 9.47E+2 (4.13E+1) 5.35E+2 (1.10E+0) 5.69E+3 (5.93E+2) 5.34E+2 (9.92E-2)
F4 1.87E+3 (1.21E+2) 1.87E+3 (1.21E+2) 1.10E+3 (5.92E+1) 5.53E+2 (1.74E+1) 5.99E+3 (5.98E+2) 5.35E+2 (7.58E-2)
F5 1.79E+3 (1.12E+2) 1.79E+3 (1.12E+2) 9.82E+2 (4.49E+1) 5.41E+2 (6.65E-1) 5.98E+3 (6.39E+2) 5.41E+2 (6.32E-2)
F6 1.86E+3 (1.21E+2) 1.86E+3 (1.21E+2) 1.13E+3 (5.84E+1) 5.36E+2 (0.00E+0) 7.39E+3 (8.60E+2) 5.36E+2 (3.67E-2)

TABLE VIII
TRIALS TO OPTIMUM WITH VARYING BOTH FACTOR SIZE AND OVERLAP

OM N BN DT TW DTT

F 200 200 200 15 200 200
T9 200 200 200 16 200 200
T8 200 200 200 10 200 200
T7 200 200 200 16 200 200
T6 200 200 200 13 200 200
T5 200 200 200 15 21 200

T5 was the worst factor architecture, which was able to find

the optimal solution only 21 times; however, when it did so,

it required only one iteration.

VI. RESULTS: ROYAL ROAD FUNCTIONS

Table X presents the results for the different factor archi-

tectures on the Royal Road functions. “Success” refers to the

number of times the algorithm was able to locate the optimal

solution. “Evals” is the average number of evaluations required

to find the optimal solution with the standard error shown in

parentheses. A bold value indicates the factor architecture was

significantly better than all other architectures using a Paired

Student t-Test with α = 0.05. If two or more values are bolded,

there was no significant difference among those architectures,

but they were significantly better than the rest. Note that the

mean and standard error were calculated only for the trials that

were able to locate the global optimums succesfully, which is

why certain algorithms running on R3 have a standard erorr of

“NA’.’ In FEA, this also includes evaluations used during the

competition phase. We note that each algorithm required 250

fitness evaluations during the initialization of the population.

On R1, full ICPSO was less effective than every factor

architecture, only being able to locate the optimal solution 17

times. The best architectures had size = 8, overlap = 0; size =

16, overlap = 0;and size = 16, overlap = 8, which required the

fewest number of fitness evaluations by a significant margin.

On R2, full ICPSO had a much easier time locating the optimal

solution, doing so 100% of the time. The best architecture had

size = 16, overlap = 0, and the fewest number of evaluations.

R3, on the other hand, presented a much tougher challenge.

Note that because several of the architectures were able to

locate the optimal solution only once, hypothesis testing was

not performed between the architectures. In terms of locating

the optimal solution, both size =16, overlap = 8 and size =16,

overlap = 0 had the best performance, as they successfully

located the optimal solution four times. Additionally, when

they did locate the optimal solution, they required the second-

fewest number of fitness evaluations. The size = 8, overlap =

0 architecture performed the best, requiring only 8400 fitness

evaluations; however, it did so only once.

To help interpret the results, particularly on R3, we also

present the average fitness over all 30 trials of the Full and

FEA versions of ICPSO in Table XI. From this table, we

can see that the best architecture was size = 16, overlap =

8 followed by size = 8, overlap = 0. While most architec-

tures achieved perfect performance on R1 and R2, these two

architectures performed the best in terms of fitness for R3.

VII. ANALYSIS

From the experiments varying just the factor size, we

observe the following. On OM, the smaller factors performed

better than the larger factors. This supports our hypothesis that

the variables in OM are independent. Conversely, the archi-

tectures with large factors outperformed those with smaller

factors on all other functions. This suggests that although

all functions are based upon the number of 0’s and 1’s, by

requiring specific values, variable interactions result.

Another result is that on most functions, the best algorithm

was the full ICPSO. Only on OM and TT did FEA outperform

the single-population. FEA’s superior performance on the OM

is due to the Compete step, a Greedy algorithm that is able to

join together the best solutions from individual factors quickly.

The probability of a solution with ten 1’s being generated

is 1
210 = 0.097%, whereas the probability of a subsolution

with two 1’s is 1
4 = 25%. Given these odds, there is a high

likelihood that each of the factors will contain the optimal

subsolution, which Compete is then able to combine together

into the optimal solution. Conversely, the full swarm can rely

only on velocity updates to locate the optimal solution.

TT demonstrates the drawback of using a greedy method

for Compete. As the population size decreases, a greater

emphasis is placed on Compete being able to assemble good

solutions. Because the majority of the search space leads to

the suboptimal solution, the likelihood of Compete finding the

optimal solution is small. Additionally, once Compete locates

the suboptimal solution, the full global solution is unable to

leave the suboptimal solution because finding a better solution

requires changing more than one bit. Only when the full global

solution is initialized in a region that leads to the optimal

solution are the smaller factors able to find the optimum.

Meanwhile, FEA with the S9 architecture is able to locate

the optimal solution more often than full ICPSO because FEA



TABLE IX
AVERAGE FITNESS EVALUATIONS WITH VARYING BOTH FACTOR SIZE AND OVERLAP

OM N BN DT TW DTT

F 6.71E+2 (1.20E+1) 1.68E+3 (1.09E+2) 9.64E+2 (4.71E+1) 5.00E+2 (0.00E+0) 4.33E+3 (4.17E+2) 5.00E+2 (0.00E+0)
T9 5.65E+2 (7.64E+0) 2.03E+3 (1.27E+2) 9.82E+2 (4.40E+1) 5.29E+2 (4.87E-1) 3.48E+3 (3.15E+2) 5.26E+2 (1.05E-1)
T8 5.69E+2 (7.60E+0) 1.86E+3 (9.79E+1) 9.63E+2 (4.02E+1) 5.23E+2 (5.77E-1) 3.34E+3 (3.09E+2) 5.21E+2 (7.83E-2)
T7 5.36E+2 (5.16E+0) 2.12E+3 (1.19E+2) 1.15E+3 (6.47E+1) 5.18E+2 (2.56E-1) 5.24E+3 (4.75E+2) 5.16E+2 (7.73E-2)
T6 5.15E+2 (2.55E+0) 3.48E+3 (2.35E+2) 1.59E+3 (9.17E+1) 5.12E+2 (1.54E-1) 1.99E+4 (1.64E+3) 5.11E+2 (5.02E-2)
T5 5.06E+2 (0.00E+0) 4.46E+3 (2.96E+2) 2.27E+3 (1.28E+2) 5.06E+2 (0.00E+0) 5.06E+2 (0.00E+0) 5.06E+2 (0.00E+0)

TABLE X
AVERAGE NUMBER OF EVALUATIONS FOR FEA TO FIND OPTIMAL SOLUTION ON ROYAL ROAD FUNCTIONS.

R1 R2 R3
Success Evals Success Evals Success Evals

Full 17 4.28E+4(7.99E+3) 30 3.24E+4(3.64E+3) 2 4.50E+4(3.34E+4)

Size = 2
29 2.54E+5(1.65E+4) 28 2.36E+5(2.09E+4) 1 5.36E+4(NA)

Overlap = 0
Size = 4

30 9.77E+4(7.70E+3) 30 1.08E+5(9.69E+3) 4 9.41E+4(4.24E+4)
Overlap = 0

Size = 8
30 3.39E+4(3.41E+3)3.39E+4(3.41E+3)3.39E+4(3.41E+3) 30 4.26E+4(3.99E+3) 1 8.34E+3(NA)

Overlap = 0
Size = 16

30 2.28E+4(2.56E+3)2.28E+4(2.56E+3)2.28E+4(2.56E+3) 30 2.26E+4(2.12E+3)2.26E+4(2.12E+3)2.26E+4(2.12E+3) 4 2.12E+4(6.05E+3)
Overlap = 0

Size = 2
27 3.27E+5(2.81E+4) 27 3.64E+5(2.16E+4) 1 2.48E+5(NA)

Overlap = 1
Size = 4

30 1.59E+5(1.48E+4) 30 1.36E+5(1.47E+4) 2 1.58E+5(1.77E+3)
Overlap = 2

Size = 8
30 7.27E+4(8.87E+3) 30 5.88E+4(5.19E+3) 1 1.05E+5(NA)

Overlap = 4
Size = 16

30 4.56E+4(5.22E+3)4.56E+4(5.22E+3)4.56E+4(5.22E+3) 30 3.57E+4(4.15E+3) 4 1.92E+4(5.73E+3)
Overlap = 8

TABLE XI
AVERAGE FITNESS OF FEA ON ROYAL ROAD FUNCTIONS.

Full
Size = 2 Size = 4 Size = 8 Size = 16 Size = 2 Size = 4 Size = 8 Size = 16

Overlap = 0 Overlap = 0 Overlap = 0 Overlap = 0 Overlap = 1 Overlap = 2 Overlap = 4 Overlap = 8

R1 204.00 252.00 256.00 256.00 256.00 244.00 256.00 256.00 256.00
R2 128.00 123.20 128.00 128.00 128.00 120.80 128.00 128.00 128.00
R3 139.47 122.13 127.47 130.67 125.33 118.40 126.67 109.33 137.60

has a smaller search space to explore. Conversely, S8 has less

chance of success because it requires both of the bits in the

smaller factor to be 0s or 1s, instead of just one variable being

0 or 1, as is the case in S9.

There are two ways for FEA to locate the optimal solution:

through an individual factor locating the solution independent

of all factors or by Compete piecing together good values from

individual factors. This leads us to two possible explanations

for FEA’s poor performance on the unitation functions. First,

by distributing 50 individuals between the factors, the individ-

ual factors are not as efficient as the full ICPSO at finding the

optimal solutions. Ideally, we would expect FEA to be able

to overcome the difference between the factor sizes and the

full global solution by having factors collaborating with one

another. FEA performs this collaboration through Compete.

Second, the greedy search in Compete makes it impossible

for the full global solution to escape a local basin when more

than one variable must be changed simultaneously. Therefore,

if the full global solution becomes located at a suboptimal

point, FEA can only locate an optimal solution if the factors

locate the optimal solutions on their own. But because each

factor has fewer individuals than a single-population ICPSO,

the likelihood of finding the optimal solution decreases.

When varying the amount of overlap factor size, we discov-

ered the best factor architectures has two large factors with

a large amount of overlap. In the majority of the functions,

T9 required the fewest fitness evaluations. Only on OM was

T9 outperformed by a significant margin. While T9 required

the most evaluations on DT and DTT, the architecture was

still able to find the optimal solution within one iteration.

Additionally, the number of evaluations was relatively small.

We believe that this is because the larger factors are able

to balance the benefits of having a global view of the entire

function while decreasing the number of bits to optimize. For

example, in N for T9, the last factor only has to find a solution

that has a 1 for the last bit in order for the first factor to able

locate the optimal solution. This is because the second factor

is the only factor optimizing over the last bit. Likewise, the



first factor only has to find a solution with a 1 for the first bit

for the second factor to be able to locate the optimal solution.

From these results, we conclude that Compete is not effec-

tive at piecing together good solutions in unitation functions

that have a high degree of variable interaction. This is because

Compete is able to change only one bit at a time; therefore,

if multiple bits need to be changed simultaneously for the full

global solution to move from a suboptimal solution, Compete

is unable to do so. Finally, we found that smaller factors are

effective only when high interaction occurs between variables.

Then the bits are unable to interact efficiently with one another

to locate good solutions.

In the Royal Road results, we observe that the larger factor

architectures performed the best on all functions. We believe

this is because these larger factors map more closely to the

basic building blocks. For example, in size = 2, overlap = 0, an

individual factor must rely on six other factors locating all 1’s

at the same time in order to satisfy the smallest building block.

Conversely, larger factors are able to find the good schema

without requiring that other factors be in specific positions.

We also note that the results in Table X differ from those

of Ochoa et al. [17]. That work showed that the optimal

architecture was size = 4, overlap = 0. However, we found

that the best non-overlapping architecture was size = 16. As

stated previously, we believe that the larger factor sizes allow

the individual factors to have a better global picture of the

fitness landscape.

On comparing the overlapping factors versus the non-

overlapping factors, we discovered that overlap was almost

always a detriment to the performance of FEA on the Royal

Road functions. The only time overlap did not hurt perfor-

mance was for size = 16, overlap = 8. This is because the

overlapping factors are attempting to locate the two halves of

the different schemata.

R3 further demonstrates that having factors optimize over

two halves negatively impacts the performance. This function

contained groups of “negative” schemata that caused all of the

architectures to be misled. In size = 8, overlap = 4, this means

that there are factors optimizing over the variables within the

deceptive schema. A factor optimizing over those variables is

more likely to locate a schema of 0’s instead of one with all

1’s, because the factor is able to see an increase in fitness

independent of the values in the full global solution.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we evaluated the peformance of FEA on two

sets of binary problems: unitation and Royal Road functions.

From the unitation functions, we discovered that there are

several instances where the Compete step in FEA struggles to

build good solutions. In the Royal Road functions, we demon-

strated for the regular Royal Road functions, the optimal factor

architecture is one that maps factors directly to schemata.

However, we also discovered scenarios where mapping factors

directly to schemata decreased the performance FEA.

For future work, we first want to explore hierarchical

factors. Based on the results presented here, we see that the

size of the factor can influence the performance of the different

architectures. We want to explore creating a hierarchical FEA

for problems where factor sizes become too large to help avoid

hitchhiking. In those cases, subfactors could be created, which

would result in a FEA being composed of several FEAs.
We also plan to investigate the scalability of FEA. Previous

work by Strasser et al. demonstrated that FEA can require

a large number of fitness evaluations due to the competition

step [4]. We will explore how to reduce complexity by

using different competition schemes. Additionally, we plan

to evaluate FEA on a wider range of functions to further

determine FEA’s performance characteristics.
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