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ABSTRACT

We present a description of the AI-ESTATE (IEEE 1232.1)
standard for representing and exchanging diagnostic models.
These models are based on accepted approaches to performing
system diagnostics in both commercial and military
environments. Specifically, we will discuss a standard approach
to representing diagnostic fault trees and enhanced diagnostic
inference models.

1. INTRODUCTION

Many approaches exist for performing fault diagnosis including
methods for improving the diagnostic process have been
studied, with particular attention coming from the artificial
intelligence community. A number of tools have been
developed that use modeling of one form or another to provide
a structure that allows diagnostic reasoning to be undertaken
for both testability assessment and diagnostic strategy
development. One formal approach from artificial intelligence
that facilitates developing diagnostics is derived from the
principles of formal logic. This approach uses enhanced
diagnostic inference models (EDIMs) to capture logical
relationships between tests and faults in a unit. These models
have been derived from several commercially available
tools, including STAT, STAMP, TEAMS, WSTA, and
AL-TEST™.

Recent initiatives by the Institute of Electrical and Electronics
Engineers (IEEE) on standardizing test architectures have
provided a unique opportunity to improve the development of
test systems. The IEEE P1232 “Artificial Intelligence
Exchange and Service Tie to All Test Environments (Al-
ESTATE)™ initiative is attempting to usher in the next
generation in product diagnostics by standardizing diagnostic
services and development tool interfaces. By using problem
encapsulation, defining interface ‘boundaries, developing
exchange formats and specifying standard services, Al-
ESTATE provides a methodology for developing diagnostic
systems that will be interoperable, have transportable software,
and move beyond vendor and product specific solutions.

The concepts in the AI-ESTATE standard are not limited to the
specific area of test, but apply to manual, automatic, and semi-
automatic test, as well as the domains of electronic,
mechanical, pneumatic, and other types of systems. The Al-
ESTATE subcommittee designed the P1232 standards to
abstract specific test and product details out of the diagnostic
models and to tie these models to domain-specific models as
needed to complete the test system. This paper is necessarily
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limited in scope. The paper provides an overview of the
diagnostic models as provided by the AI-ESTATE standards’.

2. AI-ESTATE

The AI-ESTATE subcommittee has established several
ambitious goals for the AI-ESTATE standards that include:

e  Provide a standard interface between diagnostic reasoners
and other functional elements that reside within an Al-
ESTATE system.

e  Provide formal data specifications to support the exchange
of information relevant to the techniques commonly used
in system test and diagnosis.

e  Maximize compatibility of diagnostic reasoning system
implementations.

e Accommodate embedded,
diagnostic systems.

¢  TFacilitate portability, reuse, and sharing of diagnostic
knowledge.

coupled, and stand-alone

To achieve these goals, the AI-ESTATE subcommittee
proceeded to define an architecture for a standard diagnostic
system and then defined component standards for information
exchange and software interfaces.

An Architecture for Diagnosis

The AI-ESTATE architecture presented in Figure 1 shows a
conceptual view of an AI-ESTATE-conformant system®. Al-
ESTATE applications may use any combination of functional
elements and interfunction communication as shown in the
figure. The service specification (P1232.2)%, or other
specifications relevant to the particular functional element,
define the form and method of communication between
reasoning systems and other functional elements. AI-ESTATE
identifies reasoning services provided by a diagnostic reasoner
so that transactions between test system components and the
reasoner are portable.

AI-ESTATE assumes a client-server or cooperative processing
model in defining the diagnostic services. One significant
difference between a traditional client-server model and Al-
ESTATE is the assumption of a possibly abstract application
executive mediating service requests. In some sense, this
application executive can be regarded as a service broker for
the subsystems in ‘the test environment. Services are
“published” to the application executive, and service requests
from other subsystems are matched to the available services to
satisfy the request. This idea is analogous to the CORBA




architecture except with no underlying assumption of being
object-oriented. Further, since the application executive can be
abstract, it is still possible for subsystems to interact directly
with other subsystems using their published services.
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Figure 1. AI-ESTATE Architecture

-From the vantage point of an AI-ESTATE diagnostic reasoner,
one sees the interaction with the application executive on two
planes. First, the AI-ESTATE reasoner makes available several
services (as defined by IEEE P1232.2) to the application
executive for traversing diagnostic models or actually
performing diagnosis given test results. Second, the diagnostic
reasoner interfaces with other subsystems in the test
environment (e.g., the test system) by requesting services from
the application executive. For example, while the reasoner will
not perform any tests, it is likely to request certain tests be
performed in certain contexts. The application executive will be
used to submit the request to the test system.

In addition to interfacing with the application executive, it is
assumed the AI-ESTATE reasoner has direct access to
diagnostic models. IEEE Std 1232.1 provides a means for
exchanging models between conformant reasoners, and this
exchange can either be accomplished using model traversal
services or using the interchange format defined in 1232.1.

Diagnostic Models

The current version of IEEE Std 1232.1 defines three models
for use in diagnostic systems——a common element model, a
fault tree model, and an enhanced diagnostic inference model.
All of the models were defined using ISO 10303-11,
EXPRESS’. EXPRESS is a language for defining information
models and has received widespread acceptance in the
international standards communities of ISO and IEC. For
example, EDIF 3 0 0 and EDIF 4 0 0 were defined using
EXPRESS.

The common element model defines information entities, such
as a test, a diagnosis, an anomaly, and a resource, which are
expected to be needed by any diagnostic system. The common
element model also includes a formal specification of costs to
be considered in the test process. The remaining two models
represent knowledge that may be used by specific types of
diagnostic systems. The fault tree model defines a decision tree
based on outcomes from tests performed by the test system.
Each node of the tree corresponds to a test with some set of
outcomes. The outcomes of the tests are branches extending
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from the test node to other tests or to diagnostic conclusions
(such as No Fault). Typically, test programs are designed
around static fault trees; therefore, the AI-ESTATE
subcommittee decided to include a representation for a fault
tree in the standard, even though fault trees are not typically
considered to be Al systems.

The AI-ESTATE fault tree model imports elements and
attributes from the common element model. Typically, test
systems process fault trees by starting at the first test step,
performing the indicated test, and traversing the branch
corresponding to the test’s outcome. The test program follows
this procedure recursively until it reaches a leaf in the tree,
indicating it can make a diagnosis.

The enhanced diagnostic inference model (EDIM) is based on
the dependency model. Historically, test engineers used the
dependency model to map relationships between functional
entities in a system under test and tests that determine whether
or not these functions are being performed correctly. In the
past, the model characterized the connectivity of the system
under test from a functional perspective using observation
points (or test points) as the junctions joining the functional
entities together. If a portion of the system fed a test point, then
the model assumed that the test associated with that test point
depended on the function defined by that part of the system.

Recently, researchers and practitioners of diagnostic modeling
found that the functional dependency approach to modeling
was problematic and could lead to inaccurate models. Believing
the algorithms processing the models were correct, researchers
began to identify the problems with the modeling approach and
to determine how to capitalize on the power of the algorithms
without inventing a new approach to model-based diagnosis.
They found that the focus of the model should be on the tests
and the faults those tests detect rather than on functions of the
system. In particular, the focus of the model shifted to the
inferences drawable from real tests and their outcomes,
resulting in a new kind of model called the “diagnostic
inference model.” The enhanced diagnostic inference model,
defined by AI-ESTATE, generalizes the diagnostic inference
model by capturing hierarchical relationships and general
logical relationships between tests and diagnoses.

The information models defined in the AI-ESTATE standard,
by themselves, provide a common way of talking about the
information used in diagnosis, but this is not enough for a
standard. In AI-ESTATE, these models also provide the basis
for a neutral exchange format. Using this neutral format,
multiple vendors can produce diagnostic models in the format
to enable their use by other tools that understand that format.

To specify the neutral exchange format, the AI-ESTATE
subcommittee decided to use an instance language defined by
the ISO STEP (Standards for the Exchange of Product data)
community based on EXPRESS—EXPRESS-1'°. EXPRESS-I
is an instance language defined to facilitate developing
example instances of information models and to facilitate
developing test cases for these models.

As an alternative, the ISO STEP community has defined a
standard physical file format derived from EXPRESS models.
Unfortunately, the STEP physical file format is very difficult
for a human to read but very easy for a computer to process.



The AI-ESTATE subcommittee found added benefit in
EXPRESS-I over the STEP physical file format in that the
language is both computer-processable and human-readable.

Diagnostic Services

The AI-ESTATE standard defines several software services to
be provided by a diagnostic reasoner. The nature of these
services enables the reasoner to be embedded in a larger test
system; however, it is possible that the diagnostic system is a
stand-alone application connected to a graphical user interface
of some kind. Currently, the services defined by AI-ESTATE
are classified as either static model accessor services, or
reasoner state accessor services. Following the object-oriented
programming paradigm, we found that all services could be
represented in one of four forms: create, get, put, or
delete.

3. AI-ESTATE DATA AND KNOWLEDGE
SPECIFICATION

Currently, IEEE Std 1232.1-1997 defines three information
models to be used for knowledge exchange:

o  The common element model
e  The fault tree model
e  The enhanced diagnostic inference model

AI-ESTATE does not anticipate these being the only models
included in the standard, but they provide both a baseline
model (the fault tree model) and a widely used, successful
model for dynamic diagnosis (the EDIM). In addition, the
common element model has been designed to cover the basic
entities expected to be used by any reasoning model. Future
efforts in model are expected to cover constraint models, neural
network models, belief network models, and first-order rule-
based models.

Common Element Model

The common element model defines a top-level structure to be
used by all specific reasoning models. Since the AI-ESTATE
philosophy emphasizes abstraction and separation of test/fault
details from diagnostics, the entities in the common element
model do not contain sufficient information for testing. The
CEM does provide an arbitrary structure for organizing tests,
diagnoses, anomalies, and resources. This arbitrary structure is
defined in terms of a lattice in which it is assumed top-down
relationships exist and no cycles exist in the models. In addition
to defining the primary entities used for diagnosis, the CEM
provides a flexible cost model to be used by a diagnostic
reasoner in optimization.

The simplified view of the CEM (Figure 2) shows, explicitly,
the separation between test and diagnosis. Diagnoses
correspond to the conclusions to be drawn by the reasoner, and
the anomalies correspond to “physical” conditions in the unit
being tested. Thus a diagnosis (conclusion) is mapped to an
anomaly (physical condition). Tests require resources to be
executed and generate outcomes to be used in diagnosis. The
attribute for resource is given as an optional attribute since
resources may be handled external to the reasoner. Even if
resources are specified, the resource model within AI-ESTATE
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is not sufficiently robust to capture all of the needed
information about the resource. AI-ESTATE expects the TRIM
to provide the needed information. Note no relationships
between tests and diagnoses are shown in this model. Such
relationships are the purpose of the reasoning models which
provide the logical relationship between test and diagnosis.
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outcome

Figure 2. Simplified Common Element Model

AI-ESTATE assumes the potential for multiple models to be
available for diagnosis. All of these models are “wrapped up”
into a container called diagnostic_knowledge which
defines the knowledge .base for this unit and .context. For
purposes of optimization, cost is only associated with tests and
resources. Note the cost elements specified in AI-ESTATE are
intended to provide expected costs rather than actual costs.

In addition, outcomes have confidences associated with them.
The confidences are associated with the outcomes rather than
the tests since this is more general. It is expected that these
confidences do not define “actual” confidences from testing but
“expected” confidences.
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Figure 3. Simplified Cost Model

The simplified view of the cost model (Figure 3) illustrates the
distinction between time cost and non-time cost. Both cost
entities are intended to be “abstract” in the sense that any cost
measure can be used (subject to the types of units specified).
While many diagnostic systems may not make explicit use of
cost information, a cost model was necessary to support
maintenance feedback and dynamic diagnosis in which there is
an attempt to optimize the process. For each cost entity, a
specific cost “type” can be assigned. These types correspond to
setup cost, performance cost, re-entry cost, and access. In
addition, a “user-defined” type is permitted.




The primary entity of the cost model is cost. This entity, is an
abstract supertype and cannot be instantiated by itself. Rather,
it provides a higher order entity with common attributes to be
inherited by the subtypes. Two subtypes are defined:
time cost and non_time_cost. The only real difference
between these two types of costs is the set of units available. In
addition, the non_time cost entity can be specified in
terms of some cost per unit time.

Since diagnostics frequently focuses on probabilistic measures,
it was necessary to form some common basis for computing
these measures. Generally, such measures are based on
reliability statistics, the most commonly used statistic being
failure rate. For consistency, it was decided that all failure rates
would be provided per million hours. This can be converted
easily to any other basis if needed.

Fault Tree Model

The first “reasoner” model developed for AI-ESTATE was the
fault tree model. While not generally considered to be used in
artificial intelligence, this model provides a baseline for Al-
ESTATE since most test environments in existence today
follow some kind of fixed test strategy that can be modeled as a
fault tree. Even so, the Al community generally regards
“decision trees” to be special forms of rule bases. Since a fault
tree is a decision tree, fault trees also form the basis for a
restricted type of rule base.

The AI-ESTATE fault tree also extends the notion of the
traditional fault tree in two ways. First it permits test
confidences to be processed to establish a level of “belief” in
the reported diagnosis. Second, it provides the capability of
reporting “intermediate diagnoses” in the interior of the tree
rather than waiting until the leaves of the tree to report
diagnostic information.
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Figure 4. Simplified Fault Tree Model

The core of the fault tree model (Figure 4) references three
entities (shown in gray) from the common element model—
test, diagnosis, and outcome. The fault tree provides an
arbitrary number of outcomes to be processed (due to the
arbitrary outcomes that can be associated with a test in the
common element model). Thus an AI-ESTATE fault tree need
not be restricted to a binary decision tree. The only attribute of
the fault_tree model entity is a pointer to the first step of
the tree. Each step has a single test associated with it and a set
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of results. Each of these results corresponds to each of the legal
outcomes of that test. The test result then points to either the
next step in the tree or to a diagnosis.

The fault tree model is a subtype of the common element
model’s diagnostic_model. This construct indicates a
problem in EXPRESS in that EXPRESS does not handle
subtyping across schemata well. Nevertheless, for purposes of
the exchange format and the data typing, we are still able to use
the EXPRESS construct to show the needed relationship.

The following example shows a small portion of a fault tree
specified in EXPRESS-I. Note the fault tree model assumes the
incorporation of entities from the common element model.
These entities are not shown in the example. In this example,
the first entity, given as F'T, identifies the fault tree and points
to the first step (Stepl) of the tree.
FT = fault_tree_model{

SubOf (@modell) ;

fault tree -> @Stepl;
}i

Stepl = fault_tree_step{
test_step -> @t3;
result ->
(@S1_Resultl,@S1_Result2);
bi

S1_Resultl = test_result{
test_outcome -> @t3_pass;
next_step -> @Step2;
current_diagnosis -> ();

bi

One distinction between EXPRESS and EXPRESS-I is that
EXPRESS does not require supertype relationships to be
explicitly identified in the model; however EXPRESS-I does.
Since the common element model entities are explicitly
incorporated into the instantiated model, this is not a problem.
Instantiating the knowledge base will include all instantiated
diagnostic models as well, and the supertype/subtype
relationships can be specified explicitly.

Stepl shows we are considering test t3 which has two
results, S1_Resultl and S1_Result2 corresponding to the
test passing or failing respectively. Assuming the test passes,
we go to S1_Resultl which points to the next step in the
tree, Step2. In this example, no intermediate diagnosis is
provided.

Enhanced Diagnostic Inference Model

The “primary” reasoning model defined in AI-ESTATE is the
enhanced diagnostic inference model (EDIM). Philosophically,
the EDIM is derived from the assumption that information
provided by tests is what matters rather than focusing on the
diagnoses that might be drawn. The EDIM does not explicitly
include sequence information but instead records logical
relationships between tests and diagnoses.

Since sequencing can be a significant concern, AI-ESTATE
provides a means for coupling EDIMs and fault trees together



by way of the diagnostic knowledge entity in the
common element model. At any point, if a test is selected that
is simultaneously a test in the EDIM and an initial test in a fault
tree, the application executive can shift from the EDIM to the
fault tree and follow the predefined sequence. When the fault
tree terminates, if tests remain that could further resolve the
diagnoses, the application executive can shift back to the EDIM
to continue.

outcome_infers

conjunct s{1:? disjunct s[1:?]

I mference;type{ PM( (ABS) inference
I

Q Q
test -inference diagnostic_inference

Figure 5. Simplified Enbanced Diagnostic Inference Model

confidence [

As shown in Figure 5, the core of the EDIM is the entity,
outcome_infers. This entity is associated with a particular
test outcome in the common element model. Recall that each
test outcome is unique and tied to a specific test. An EDIM is
nothing more than a collection of outcome_ infers
instances. Associated with each of these entities is a list of
conjuncts (AND’ed inferences) and disjuncts (OR’ed
inferences).

Associated with each inference is confidence in that
inference being drawn and an indication of whether or not the
inference is positive or negative. A positive inference is simply
an inference made. A negative inference is the NOT of the
indicated inference. The inference entity is actually an
abstract supertype of either a test inference or a diagnostic
inference. Thus, with any test, the state of a test (i.e., its
outcome) or diagnosis (i.e., whether or not is remains a
candidate) can be inferred.

As with the fault tree model, the EDIM is a subtype of the
entity diagnostic model from the common element
model (Figure 16). The EDIM must contain at least two
outcome_inference entities; otherwise, the inference is
trivial and a model is not needed.

The structure of the EDIM is very simple and, somewhat
surprisingly, very general. In fact, given this structure, any
arbitrary logical expression can be constructed and tied to a test
outcome. Thus the EDIM provides a significant enhancement
over the traditional DIM that is limited to binary outcomes,
conjuncted inferences on passing tests, and disjuncted
inferences on failing tests. (Actually, many implementations of
DIMs are slightly more general than this.)

The following example shows a small portion of an EDIM
derived from a digital fault dictionary. As described earlier, the
EDIM is really nothing more than a set of inferences as shown
in the inference attribute of edim.

edim =
enhanced diagnostic_inference_model{
SubOf (@modell) ;
inference ->
(Btl_pass_implies,@tl_fail implies,
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@t2_pass_implies,@t2_fail implies,

@t3_pass_implies,@t3_fail implies,

@t4_pass_implies,@t4_fail implies);
}i

tl_pass_implies = outcome_inference{
test_outcome -> @tl_pass;
conjuncts ->
(@x_sal_absent,@y_sal_absent,
@S_sal_absent,@C_sal,absent);
disjuncts -> ();

}i

x sal_absent = inference{
SupOf (€x_sal_elim);
pos_neg —>
inference_type{!positive};
confidence ->
confidence value(0.99);
}i

For a particular inference (t1_pass_implies), we see the
identification of the actual test outcome (t1 pass) and the
inferences that can be drawn. Note the test outcome points to
the respective test as one of its attributes thus eliminating the
need for the inference to point directly to the test. In this
example, the inferences are limited to a set of AND’ed
diagnostic inferences in which several candidate faults are
eliminated from consideration.

Extensibility

A significant issue relevant to any standardization activity is
extensibility. Ideally, one would like to be able to readily
identify extensions to a standard for incorporation in the next
revision of the standard. In addition, one would like to control
extensions in such a way that they do not “invalidate” the
information specified in the standard.

AI-ESTATE chose to apply an idea from ATLAS to control
extensibility. Analogous to the EXTEND construct in ATLAS,
AI-ESTATE defines an EXTEND schema. Essentially, Al-
ESTATE has no model entity for extensions but permits
EXPRESS to be used as is for extending the models. To control
the extensions, AI-ESTATE imposes several rules for creating
new model] entities:

e Legal EXPRESS but no redefinition of existing 1232.1
schemata.

e Must use only types defined in 1232.1 or base.

o  Entities must be subtypes of 1232.1 entities.

e  Cannot invalidate conclusions drawn from a 1232.1-only
model.

e  Extensions must be labeled with prefix of extend .

¢ Use REFERENCE FROM to incorporate 1232.1 schemata.

The essence of the rules for extensibility is that all extensions
must be readily identified by examining the information model,
all new entities must be subtyped from existing entitics, no
existing entities can be “redefined”, and no inference drawn on
the unextended model can be invalidated by the extended
model. If these rules end up being too restrictive, then those
“extending” in such a way that violate the rules become non-



conformant. It is expected that any use of the non-conformant
extensions will identify areas where the AI-ESTATE standards
need to be updated prior to release as a “full-status” standard.
At that time, it is expected that the AI-ESTATE standard will
be specified on the critical interfaces list by the Executive
Agent’s Office.

In the following example, we identify the schema as an
extension by prepending extend_ to the name of the schema.

SCHEMA extend_schema_a;

REFERENCE FROM
ai_estate common element model;

TYPE extend_typel = STRING;
END TYPE;
TYPE extend type2 = REAL;

END_TYPE;

ENTITY extend ent_a;
SUPERTYPE OF (extend_ent_b)
SUBTYPE OF (outcome);
attl : extend_typel;

END ENTITY;

ENTITY extend ent b;
SUBTYPE OF (extend ent_a);
att2 : extend_type2;
att3 : SET ([0:?] OF cost;
END_ENTITY;

END_SCHEMA;

Existing entity definitions are incorporated from the common
element model. If this was an extension to the fault tree, entity
definitions from the fault tree would be incorporated as well. In
fact, it is likely that if the common element model is extended,
one or more of the reasoning models would need to be
extended too.

New types are defined within the EXTEND schema using
either base types or previously defined AI-ESTATE types.
These new types are used in defining the extended entities.
Only the extended entities are included in the EXTEND
schema since previously defined entities cannot be redefined.
The extended entities, rather than redefining existing entities,
subtype existing entities. To control arbitrary extensions, all
extended entities must be subtypes of a previously defined
entity.

4. SUMMARY

Given the assumptions of the AI-ESTATE architecture, the
models and services of AI-ESTATE have broad applicability to
advanced diagnostics. As claimed in the acronym, it is believed
that AI-ESTATE covers all essential elements of diagnostic
reasoners in all test environments. Nothing in the standard
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limits the applicability of the standard to a particular approach
to test.

The principal assumption of AI-ESTATE is separation of test
and diagnosis. Without this separation, the standards cannot be
used effectively. By separating the diagnostics from the test
process, it also provides a means of developing more accurate
diagnostics and a means for understanding and validating the
diagnostics.

The advantage to AI-ESTATE is that it provides a consistent
framework for incorporating diagnostic knowledge and
services in any test environment. For example, the standards
provide facilities for reasoning with multiple models and for
coupling fixed fault trees and dynamic EDIMs. In addition, this
framework supports a “plug and play” approach for
incorporating diagnostic reasoners into the ATS architecture.
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