
Vol.:(0123456789)

SN Computer Science (2022) 3:172
https://doi.org/10.1007/s42979-022-01062-8

SN Computer Science

ORIGINAL RESEARCH

Mixing Grain to Improve Profitability in Winter Wheat Using
Evolutionary Algorithms

Md Asaduzzaman Noor1 · John W. Sheppard1 · Sean Yaw1

Received: 28 July 2021 / Accepted: 10 February 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
This paper considers an important component of the wheat distribution problem known as grain mixing (wheat blending).
We represent the grain mixing problem as a permutation-based combinatorial optimization problem, which both a genetic
algorithm and differential evolution are adapted and applied to solve. The proposed algorithms explore a search space that
aims at finding a quality mixing of wheat from grain bins that generate the maximum profit at a grain elevator. The experi-
mental results demonstrate that mixing bins provide more profit than not mixing and that the evolutionary approaches lead
to consistently higher profits than the non-evolutionary methods.

Keywords Grain mixing · Precision agriculture · Combinatorial optimization · Genetic algorithm · Differential evolution

Introduction

Agriculture and agricultural products are essential in sus-
taining lives on the planet. Considerable planning is required
to feed the population on the Earth efficiently. Issues, such as
crop rotation or mixed cropping techniques, optimal seeding
and fertilizing, proper irrigation, and efficient harvest and
distribution need to be considered for agriculture to meet the
needs of most people. Through the emergence of informa-
tion technologies and software tools in agricultural sectors, it
is now possible to collect real-time data and use that data to
enhance the farming experience. Appropriately using these
digital tools helps to protect the environment, increase over-
all profit, and reduce waste.

In this paper, we consider an important component of the
food supply chain, referred to as grain mixing. The grain
considered in our case is wheat, mainly winter wheat that
accounts for approximately 70–80% of the wheat production
in the US [5]. The lifecycle of winter wheat starts with plant-
ing that takes place from mid-August through October, fol-
lowed by a dormant period from November to March. Har-
vest takes place from mid-May to mid-July of the following
year. The farmers store the harvested grain into several bins
and then transport the grain via trucks to sell the wheat to
the local grain markets (i.e., elevators). In some states, such
as Montana, the price they get from the elevators depends
on the quality (protein content) of the wheat.

Several factors play an essential role when determining
the profit from wheat production. In Montana, one of the
critical elements determining the price of a bushel of wheat
is protein content, which is affected by several environmen-
tal factors such as temperature during the growing season,
soil nitrogen levels, genetics, timing, and precipitation. Due
to the resulting variations, protein content changes not only
from year to year but also from crop to crop. In fact, there
can even be significant protein variation within a field. The
technology is available to track the protein content in a
bushel of wheat on site; however, it is expensive, making it
inaccessible to several smaller farmers. Consequently, most
wheat producers end up taking their harvest to the closest
elevators and collecting whatever amount is paid to them.
Ultimately, the goal of this work was to see if it is worth

This article is part of the topical collection “Applications of
bioinspired computing (to real world problems)” guest edited by
Aniko Ekart, Pedro Castillo and Juanlu Jiménez-Laredo.

 * Md Asaduzzaman Noor
 mdasaduzzaman.noor@student.montana.edu

 John W. Sheppard
 john.sheppard@montana.edu

 Sean Yaw
 sean.yaw@montana.edu

1 Gianforte School of Computing, Montana State University,
Bozeman, MT 59717, USA

http://orcid.org/0000-0001-8726-8226
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01062-8&domain=pdf

 SN Computer Science (2022) 3:172 172 Page 2 of 20

SN Computer Science

investing in the technology and infrastructure needed to
track the protein level and mix the wheat on site.

This paper extends our previous work [29] where we
applied and adapted two different evolutionary approaches:
genetic algorithms and differential evolution to solve the
grain mixing problem. We adapted the order crossover (OX)
operator for the GA implementation and proposed a new dif-
ferential mutation operator for the DE implementation. The
main extensions in this paper include the following. First, we
provide a formal, mathematical programming specification
of the problem. We then provide a theorem to show that the
problem is NP-hard.1 Next, we adapted both the partially
mapped crossover (PMX) operator as an alternative cross-
over operator for the GA implementation and the relative
position indexing (RPI) operator as an alternative mutation
operator for the DE implementation. All these methods were
compared against a naïve no-mix strategy to determine if
mixing grain increases the profit in the first place and also
compared against a deterministic greedy approach to evalu-
ate if the added complexity of the evolutionary approaches
is beneficial. We also included more experimental results
with a detailed performance analysis of the methods used.

The remainder of this paper is organized as follows. The
following section provides the background that includes the
formal mathematical definition of the grain mixing problem,
existing approaches, and concepts for the methodology used
for this study. We also include a theorem to show that this
problem is NP-hard, thus justifying the need for heuristic or
approximate approaches. The data collected for this study
is introduced in “Grain Mixing Dataset”. The next section
presents the deterministic approaches, and the consecutive

sections present the evolutionary approaches for solving the
grain mixing problem, and the experimental design, respec-
tively. The experimental results and analysis of the results
are presented in “Results and Analysis”. “Conclusion and
Future Works” concludes our paper and outlines the planned
future work.

Background

The Grain Mixing Problem

One of the goals of this study is to develop methods for
farmers to maximize their overall wheat distribution profit
when selling wheat at multiple local grain elevators. In Mon-
tana, when selling wheat, the price per bushel of grain varies
based on a range of protein levels. Each elevator has a base
protein range for which a base price is paid and follows a
premium-dockage curve where the price/bushel is increased
for a higher protein level and decreased for a lower protein
level. For example, if the base protein level is (11, 12)% , the
price might be $4 per bushel where it might increase to $6/
bu with protein levels of (12, 13)% . The payment schedule
can be viewed as a step function of the protein level with
prices per bushel. There are many cases where the protein
level of a bin is short of reaching a higher price range or may
be above the minimum protein requirement having no added
benefit in terms of price. Therefore, it might be possible to
mix grain from a high-quality (in terms of protein level) bin
with a low-quality bin to improve the average protein level,
where the low-quality bin reaches the next step in the price
range and the high-quality bin remains in the same step in
the price range, yielding a better overall profit.

Fig. 1 A simple grain mixing
example

1 Due to its length, the full proof can be found in [30].

SN Computer Science (2022) 3:172 Page 3 of 20 172

SN Computer Science

Figure 1 illustrates an example of how mixing grain could
be useful for making a better overall profit. In the example,
there are three bins with different numbers of bushels and
protein levels. Table 1 represents example elevator prices
for different quality grains. Many small farmers, who do
not track the protein level of their wheat would load each
truck with grains from a single bin and sell the unmixed
grain to the elevators. A truck has a maximum bushel capac-
ity it can carry which is 100 bu in our example. The price
they will get from all the bins without any mixing would be
(50 ∗ $3 + 100 ∗ $4 + 50 ∗ $6) = $850 . However, if they
were to track the protein content and mix grains as shown in
the figure; load truck one with 50 bushels from bin one and
50 bushels from bin two, and load truck two with 50 bushels
from bin two and 50 bushels from bin three, the price they
will get would be (100 ∗ $4 + 100 ∗ $6) = $1000 . Therefore,
mixing grain in this scenario increases the profit by $150.

A key challenge in the grain mixing problem is to find
the optimal bin-pair combination and bushels drawn from
each bin to load trucks that will yield maximum profit. For
example, in Fig. 1, there are also other ways to mix grains. If
we load truck one by mixing 50 bushels from bin one and 50
bushels from bin three (average protein level 11.5), and truck
two by taking 100 bushels from bin two without any mix-
ing, the total profit would be (100 ∗ $4 + 100 ∗ $4) = $800
which yield a profit less than taking all the grains separately.

Although protein level in a truck plays a significant role in
determining the profit from wheat distribution, we also need
to consider other factors such as mixing cost and delivery
cost in the profit model. When mixing grain from multiple
bins to load a truck, there is an associated mixing cost that
depends on the mixing difficulty level. The farmers divide
their farms into multiple sites for better farm management

(also known as site-specific farming [43]) and store grains
in site-specific locations. The mixing difficulty depends on
each bin site. For example, mixing grain from bins that are
on the same site has a lower difficulty level than mixing bins
that are on different sites. A difficulty level of 0 indicates no
mixing and the mixing cost is also 0. However, a difficulty
level of 4 indicates that the bins from which we are mixing
are from different sites and farther away from each other.
The mixing cost might be $0.1 per bushel in this case. Fig-
ure 2 depicts the mixing difficulty scenario based on the site
location and Table 2 shows the associated mixing cost for
different mixing difficulties, which were provided by one of
the farmers with whom we are working.

The delivery cost for a truck transporting to the nearest
elevators depends on the distance between the site location
and the elevators. For example, a truck moving from site one
to elevator one has a delivery cost of $0.2 per bushel whereas
moving to the same elevator from site three has a cost of
$0.18 per bushel. Moreover, the delivery cost varies based on
the distance between a specific site and multiple elevators.

Problem Statement

The grain mixing problem aims to determine the optimal
mix of wheat from storage bins to maximize profit when
sold to a set of elevators. In this section, we present the
mathematical model for the grain mixing problem studied in
this paper. The input instances of the problem are described
using the notation in Table 3 with the decision variables
represented as shown in Table 4. The variables consist of
both integer and continuous values. For example, the specific

Table 1 Elevator price for grain
mixing example

Protein range (%) Price/
Bushel
($)

[10, 11) 3
[11, 12) 4
[12, 13) 6

Fig. 2 Mixing difficulty based
on farm site

Table 2 Mixing cost based on difficulty level

Difficulty Level Description Cost/Bushel ($)

0 No mixing 0.000
1 Easy 0.001
2 Moderate 0.010
3 Difficult 0.050
4 Very difficult 0.100

 SN Computer Science (2022) 3:172 172 Page 4 of 20

SN Computer Science

variables with bins and elevators are restricted to be an inte-
ger whereas the variables with bushels, protein contents,
mixing and delivery cost, and elevator prices are continuous.

The objective of the Grain Mixing Problem is to find a
sequence of trucks that maximizes the overall profit given
by:

Subject to:

(1)
max

∑
ti∈T

∑
bj,bk∈B

∑
e∈E

∑
ge,l∈Ge

((g
p

e,l
− (mbj,bk

+ dbk ,e))

× ti,j,k,e,l)

(2)ti,j,k ≤ CT ∀ti ∈ T ∀bj, bk ∈ B

(3)ti,j,k ≥ 0 ∀ti ∈ T ∀bj, bk ∈ B

(4)
∑
ti∈T

ti,j ≤ bbu
j

∀bj ∈ B

(5)
∑
ti∈T

ti,j,k ≤
∑
bj∈B

bbu
j

(6)t
pr

i
× ti,j,k = b

pr

j
× ti,j + b

pr

k
× ti,k ∀ti ∈ T

(7)
t
pr

i
× ti,j,k,e,l < g

Max_pr

e,l
× ti,j,k ∀ti ∈ T ∀ge,l ∈ Ge

Note that the objective function given in Eq. 1 reflects the
nonlinearity of the premium-dockage curve with the inflec-
tion point given by the base price/bushel gp

e,l
 . Eqs. 2 and

3 represents the linear truck capacity constraints. Bushels
loaded from two bins in a truck cannot exceed the maximum
capacity of that truck. Equations 4 and 5 represents linear
bin content constraints. Bushels drawn from a single bin to
load multiple trucks cannot exceed the initial content (bushel
amount) of that bin and the sum of all bushels loaded into
multiple trucks cannot exceed the total bushels of all bins.
Equation 6 represents the weighted average protein level of a
truck after mixing grain from two bins. Finally, Eqs. 7 and 8
are the grade protein requirements that assign a grade (price)
and elevator to the truck based on elevator protein require-
ment and truck protein content. The last three constraints
contain a product of two decision variables which introduces
nonlinearity in these equations.

Problem Complexity

On the surface, it would appear that, by the nature of apply-
ing even an MILP-based approach, our problem could be
very difficult. That said, we realize there also exist MILP
instances with efficient exact solutions, so we endeavored to
assess the underlying computational complexity of our prob-
lem formally. To that end, we prove a theorem that the grain
mixing problem is NP-Hard following a reduction from the
3-Dimensional Matching problem. Due to its length, we
refer the interested reader to [30]. There, the full proof is
provided, as well as some additional discussion explaining
how the specifics of the problem presented here fits within
the scope of the theorem.

Existing Approaches

The grain mixing problem studied in this paper relates to the
classical blending optimization problem [9]. In general, the
blending problem involves mixing two or more collections
of grain with different characteristics to produce a single (or
multiple) final product(s) that either lowers the production
cost or improves the profit (or both). Next, we discuss some
existing approaches from the literature that were used to
solve related blending optimization problems.

Linear Programming LP is an optimization tool for solv-
ing a continuous-space optimization problem. It is possible
to solve the classical blending problems by linear program-
ming (LP) methods if both the objective function and the
constraints are linear [19]. There exist a few works that
attempted to solve the decision version of the grain mix-
ing problem (also known as wheat blending) with linear

(8)
t
pr

i
× ti,j,k,e,l ≥ g

Min_pr

l
× ti,j,k ∀ti ∈ T ∀ge,l ∈ Ge

Table 3 Notation used in Grain Mixing Problem

B Set of bins.
E Set of elevators

bbu
j

bj ∈ B . Bushel content in bin bj.
b
pr

j
bj ∈ B . Protein content in bin bj.

CT Constant Capacity of each truck.
Ge Set of grades for elevator e ∈ E.
g
p

e,l
ge,l ∈ Ge . Base Price/Bushel for grade ge,l.

g
Min_pr

e,l
ge,l ∈ Ge . Minimum Protein requirement of grade ge,l.

g
Max_pr

e,l
ge,l ∈ Ge . Maximum Protein requirement of grade ge,l.

mbj ,bk
Mixing cost for mixing bins bj, bk ∈ B.

dbk ,e Delivery cost for transporting grain from bk to elevator e.

Table 4 Decision variables in the Grain Mixing Problem

T Set of trucks for transporting all the grain
ti,j,k,e,l Bushels drawn from bj and bk to fill ti

achieving grade ge,l.
t
pr

i
Protein content of truck ti.

SN Computer Science (2022) 3:172 Page 5 of 20 172

SN Computer Science

programming. Hayka and Cakmalki utilized LP methods
capable of predicting the optimal wheat blend ratio for a
targeted final quality to produce a bread making flour [16].
Haas used the simplex algorithm to find the optimum blend
that satisfies the customer’s specific solvent retention capaci-
ties (SRC) [15]. In many real-world applications, the LP
formulation is often not suitable to address specific blending
needs. In our case, there is no specific targeted wheat qual-
ity (each truck’s protein content is determined at runtime),
which makes it challenging to solve the problem by only
using LP.

Mixed-integer linear programming MILP is often used to
solve many real-world blending problems [34]. MILP is a
variation of linear programming where some decision vari-
ables are restricted to integer values. There are exact and
approximation methods to solve IP/MILP problems; how-
ever, MILP is known to be NP-hard [20]. Bilgen and Ozkara-
han proposed an MILP model to optimize the cost for the
wheat supply chain (blending, loading, transportation, and
storage), where the model used a specific blending formula
for mixing [3]. MILP has also been used in the blending of
oil [27], water [38], gasoline [18], and chemical fertilizer
[2]. In our problem, the truck protein content and the grade
protein content constraints (product of two decision vari-
ables) makes it challenging to be used exactly in an MILP
solver. Furthermore, the premium-dockage curve used by the
elevator is a nonlinear function based on a baseline protein
level. Although it is possible to relax the problem for MILP,
we left this as future work.

Meta-heuristic approaches For complex blending prob-
lems, meta-heuristic approaches such as evolutionary and
swarm-based algorithms have also been used in the litera-
ture. Xiang et al. proposed a hybrid evolutionary method
to solve the wheat blending problem in Australia [23].
Their method used a GA with a heuristic method and a
linear-relaxed version of the simplex algorithm to solve the
blending problem. Their work closely relates to our mixing
problem; however, the problem formulation differs based
on the US wheat market. In our problem, there is an added
constraint on the capacity a truck can carry, and the farmers
have the choice of delivering wheat to multiple elevators
depending on the price. Evolutionary approaches have also
been used for blending gasoline [7] and composite lami-
nates [1]. Fomeni formulated blending tea optimization as a
multi-objective optimization approach and used Monte Carlo
simulation for solving the tea blending problem [11]

Most of the work for the wheat blending problem in the
US market has been done by the milling companies to pro-
duce client-specific bread making flour. To the best of our
knowledge, our approach is the first to address the grain-
mixing problem to increase profitability to the farmers.

Combinatorial Optimization Problems (COPs)

Combinatorial optimization is the process of maximizing
or minimizing an objective function of a discrete, large
configuration space domain [28]. The objective function is
often subject to equality and/or inequality constraints, as
well as integrity restrictions on many variables. Due to the
robust general model, combinatorial optimization is used
to represent a variety of problems in fields such as opera-
tions research, combinatorics, graph theory, and logic. Some
example problems in operations research include efficient
distribution of goods, machine sequencing, and production
scheduling [8]. There exist many COPs in the literature that
can be solved using polynomial-time algorithms. For exam-
ple, some such problems can be modeled as LP or Integer LP
(ILP) problems and can be solved exactly in polynomial time
[25]. Some example problems that fall into this category are
the shortest path, maximum flow, spanning tree, and match-
ing problems [21].

However, for many real-world problems, the space of
possible solutions is often too large to search exhaustively
using brute force methods. In that case, approximation algo-
rithms are often used to provide fast but near-optimal solu-
tions. Example approximation algorithms that can provide
approximation-guaranteed suboptimal solutions for some
intractable problems include greedy, sequential, and local
search algorithms [42, 44] and dynamic programming algo-
rithms [39]. Metaheuristic approaches have also been used
as approximation algorithms for solving NP-Complete COPs
but generally fail to provide any optimality guarantees [4].

The grain mixing problem studied here can be viewed as
a permutation-based combinatorial optimization problem.
In general, permutation-based problems are those where the
solutions are encoded as permutations and the goal is to find
the best set from all possible solutions for which a specific
objective function is maximized (or minimized). In the grain
mixing problem, the solutions can be represented as a set of
bin-pair and mixing ratio combinations to load trucks, and
the objective is to find the optimal set of combinations for
which the total profit is maximized. The order in which the
bin-pair are loaded into a truck matters due to the delivery
cost which makes it a permutation-based problem. Other
well-known permutation-based COPs include the Traveling
Salesperson Problem (TSP), the Flow Shop Scheduling
Problem (FSSP), and the Quadratic Assignment Problem
(QAP) [6]. Most of these problems are known to be NP-
complete and rely on approximation algorithms rather than
exact algorithms. Evolutionary algorithms such as genetic
algorithms (GA) and differential evolution (DE) have been
shown to be efficient approaches for solving permutation-
based COPs in the literature [37].

 SN Computer Science (2022) 3:172 172 Page 6 of 20

SN Computer Science

Genetic Algorithm (GA)

A Genetic Algorithm (GA) is a stochastic search algorithm
that mimics the evolutionary process of natural selection and
“survival of the fittest.” The GA was first introduced by John
Holland [12] and belongs to the larger class of evolution-
ary algorithms (EA). In the theory of evolution, individuals
with better adaptation to the surrounding environment have
a higher chance of survival and reproduction, while the less
fit individuals will be eliminated in the process.

A GA tries to simulate the same process for solving an
optimization problem. It starts with an initial population
of individuals, where each individual represents a poten-
tial solution to the problem. The fitness of an individual is
evaluated based on the objective function to be optimized,
also sometimes called the fitness function. Then a selection
process takes place where more fit individuals have a better
chance to participate in the mating pool for producing off-
spring for the next generation. A crossover procedure takes
place to create new offspring (i.e., children) that share some
common gene characteristics from both parents. A muta-
tion operator is often applied that alters some genes in the
individuals that help the GA to prevent converging to local
optima. The process of fitness evaluation, selection, crosso-
ver, and mutation continue until finding a satisfactory solu-
tion or meeting some termination criterion.

The crossover operator plays an important role in GA’s
search. For permutation-based COPs such as TSP, traditional
crossover operators like one-point crossover, two-point
crossover, and uniform crossover are not often suitable.
Therefore, crossover variants such as ordered crossover,
partially mapped crossover, cyclic crossover, etc., have been
proposed for handling permutation-based problems [17, 35].
For this study, we used the ordered and partially mapped
crossover operators, which are similar to those used with

the TSP representation; however, we adapted both to fit our
problem representation. Next, we discuss the two crossover
operators in context with solving traditional permutation-
based problems, prior to adaptation.

Ordered Crossover (OX)

The OX operator was first introduced by Davis [10] as an
alternative operator for solving the 2-D bin packing prob-
lem. The mechanism of the OX operator has been shown
to be an effective operator for solving permutation-based
problems such as TSP [32]. To demonstrate OX crosso-
ver, we will use the most common TSP representation
where the cities are represented as integer vertices, and
a legal tour is represented by a series of vertices. For
example, let us consider a TSP instance with 8 cities. If
4 → 1 → 2 → 5 → 8 → 6 → 7 → 3 → 4 is a legal tour, then
the chromosome can be represented as (4 1 2 5 8 6 7 3).

Figure 3 demonstrates generating new offspring using
the OX operator. First, it selects a random crossover point
between two chosen parents. In the next step, it creates two
empty offspring and copies the gene of the parents until the
crossover point. In this example, offspring 1 copies genes
from parent 1 and offspring 2 copies genes from parent 2.
Then offspring 1 marks the gene in parent 2 that is already
present in the sequence and copies the rest of the genes from
parent 2 in the order they are present (excluding the marked
one). Therefore, the OX operator respects the relative orders
of the genes from parents when generating offspring. It also
creates the offspring 2 analogously.

Partially Mapped Crossover (PMX)

The PMX operator was first introduced by Goldberg and
Lingel [13], and for some problems, it provides better

Fig. 3 Order crossover example
on two TSP parents

SN Computer Science (2022) 3:172 Page 7 of 20 172

SN Computer Science

performance than other crossover operators. Figure 4 dem-
onstrates the offspring generation using the PMX operator.
First, it selects two random cut points in the parent’s chro-
mosome that forms a substring. For the next step, offspring
1 copies the substring of parent 2 (and offspring 2 copies the
substring of parent 1) and creates a partial mapping of the
substring. Then, offspring 1 further fills the sequence with
genes from parent 1 that do not have any conflict. Finally, it
uses the mapping to resolve the conflicts to generate legal
offspring. For example, in Fig. 4b, genes 6 and 7 are con-
flicting in offspring 1, so the mapping (8 ↔ 6) is used to
replace gene 6 with gene 8. Similarly, gene 5 replaces gene
7 (following the double mapping 3 ↔ 7, and 5 ↔ 3). It then
creates the offspring 2 analogously.

Differential Evolution (DE)

The computational steps of DE, which was first introduced
by Storn and Price [40], are similar to the GA with a differ-
ence in the parameter vectors for exploring the search space.
DE is computationally simple, reliable, and robust which
makes it a competitive approach for solving continuous opti-
mization problems; however, DE needs to be adapted for
combinatorial problems such as ours. Here, we will briefly
describe the search mechanism of standard DE for solving
continuous optimization problems. Like GA, DE also starts
with a set of random individuals that represent a potential
solution to the problem. Let xg

i
 represents the ith individual

in generation g. To introduce new individuals in the popu-
lation, DE applies the differential mutation, crossover, and
selection operators.

The differential mutant operator creates a mutant vector
v
g

i
 by first taking the difference between two donor vectors,

chosen randomly from the population. Then, the difference
is scaled and added to a third donor vector (i.e., base vector)

to obtain the final mutant vector. The equation for the mutant
vector is defined as:

where, r1, r2, and r3 represents the population indices of
the three donor vectors and are mutually exclusive (i.e.,
r1 ≠ r2 ≠ r3), and F ∈ (0,∞) represents the differential
weight (i.e., a scaling factor).

After the mutation step, a crossover between the current
individual (target vector) xg

i
 and the mutant vector vg

i
 takes

place to create a trial vector ug
i
 as follows:

where CR represents the crossover rate and jrand represents
a random value in the vector dimension [1, D]. The trial
vector ui,g takes the jth real-value of either the target vector
or mutant vector based on the condition.

Finally, a selection procedure selects a better individual
between the trial vector and the current individual based on
their fitness values for the next generation as follows:

Thus, if the trial vector has better fitness, it replaces the cur-
rent individual; otherwise, the current individual survives
to the next generation. The process of mutation, crossover,
and selection continues for each individual in the popula-
tion for each generation until the termination condition is
satisfied, and the global best individual is returned as the
final solution.

Simple DE works best for numerical optimization
problems with real-valued chromosome representations.

v
g

i
= x

g

r1
+ F × (x

g

r2
− x

g

r3
)

u
g

i,j
=

{
v
g

i,j
, if rand(0, 1) ≤ CR or j = jrand

x
g

i,j
, otherwise

x
g+1

i
=

{
u
g

i
, if f (u

g

i
) ≤ f (x

g

i
)

x
g

i
, otherwise

Fig. 4 Partially mapped crosso-
ver example on two TSP parents

 SN Computer Science (2022) 3:172 172 Page 8 of 20

SN Computer Science

However, for permutation-based representations, the arith-
metic operations to create the new mutant vector are not
meaningful. Therefore, many differential mutation operators
have been proposed in the literature to deal with permuta-
tion-based problems for DE. Some common mutation oper-
ator includes the Permutation Matrix, Adjacency Matrix,
Relative Position Indexing, and Forward-Backward Trans-
formation approaches [31]. For the grain mixing problem,
we adapt two different techniques for DE mutation. The first
is adapted from the Relative Position Indexing (RPI) opera-
tor, and the second is based on perturbing the generation
best individual chromosome with random individual chro-
mosomes in the population. Next, we will briefly discuss the
Relative Position Indexing operator when applied to TSP
instances and our proposed perturbation method.

Relative Position Indexing (RPI)

The RPI approach was adapted from the original differen-
tial mutation and is only applicable for permutation-based
problems [24]. It has been applied successfully in COPs like
permutation flow-shop scheduling [33, 36]. RPI first trans-
forms the integer permutation vectors into floating-point
vectors and then applies the standard DE mutation on the
floating-point vectors. The mutated floating-point vector is
then transformed back into an integer permutation vector
using the relative position indexing.

For example, let us consider three random donor vectors
in the current population, xr1 , xr2 , and xr3 with the following
representation where each vector represents a legal TSP tour.

To convert these integer vectors into floating point vectors
with each entry in the half interval (0, 1], one approach is to
divide each integer value with the highest value in the vector.
After conversion, the floating-point vectors become:

Then, the standard DE mutation operator can be applied to
the resulting vectors to obtain the floating mutation vector.
With F = 0.4 , the floating mutant vector would be:

The final step is to convert the floating mutant vector back to
the integer permutation representation. To do that, the RPI

x
g

r1
=
[
1 5 3 6 7 4 2 8

]

x
g

r2
=
[
6 2 5 1 3 7 4 8

]

x
g

r3
=
[
8 2 3 6 7 5 1 4

]

x(f)
g

r1
=
[
0.125 0.625 0.375 0.750 0.875 0.500 0.250 1.000

]

x(f)
g

r2
=
[
0.750 0.250 0.625 0.125 0.375 0.875 0.500 1.000

]

x(f)
g

r3
=
[
1.000 0.250 0.375 0.750 0.875 0.625 0.125 0.500

]

v(f)
g

i
= x(f)

g

r1
+ F ×

(
x(f)

g

r2
− x(f)

g

r3

)

v(f)
g

i
=
[
0.025 0.625 0.475 0.500 0.675 0.600 0.400 1.200

]

is used, where the smallest floating-point value is replaced
by the smallest integer value and the next smallest float-
ing-point by the next smallest integer value and so on until
all the floating points are converted. After conversion, the
mutant vector becomes:

The above mutant vector transformation is a legal tour; how-
ever, it may not always be the case if two or more floating-
point values happen to be the same. In that case, the trial
vector is repaired or discarded for that individual in the cur-
rent generation.

Generation Best Perturbation (GBP)

The second differential mutation operator that we used
involved perturbing the chromosome of the generation best
individual. A similar approach has been proposed in the
literature for solving application-specific problems using
discrete DE [14, 41]. Our proposed GBP operator works as
follows. Two random individuals along with the generation
best individual are selected from the target population (all
mutually exclusive), and the differential variation is achieved
by deleting some genes from the generation best individual
and inserting new genes from the two random individuals
depending on the mutation factor. The mutation factor con-
trols the rate of perturbation of genes in the best individual
to create the mutant vector. The proposed GBP operator can
be represented as follows:

where, qi is a random number between (0, 1) and F ∈ [0, 1]
is the mutation factor.

The resulting mutation can be thought of as a probability
measure. For an F value of 0.5, the mutant vector has a 50%
probability to copy a gene from x_best and a 25% probability
to copy a gene from donor vector xr2 and a 25% probabil-
ity, to copy a gene from the donor vector xr3 . If the gene is
already present in the mutant vector, it moves to the next
index until it finds a valid gene entry.

Grain Mixing Dataset

The grain mixing dataset used in this project was collected
from a local Montana farmer who tracks the protein level of
his wheat. The dataset contains the data for wheat harvested
in 2016 and 2017. All bushels of wheat were distributed
among various bins. For our problem, a bin entry includes

v
g

i
=
[
1 6 3 4 7 5 2 8

]

v
g

i,j
=

⎧
⎪⎨⎪⎩

x
g

best,k
if 0 ≤ qj ≤ F

x
g

r2,l
if F ≤ qj ≤

�
F +

1−F

2

�

x
g

r3,m
if

�
F +

1−F

2

�
≤ qj ≤ 1

SN Computer Science (2022) 3:172 Page 9 of 20 172

SN Computer Science

the bin id, the site number where the wheat was harvested,
the average protein level of wheat in that bin, and the total
number of bushels stored in that bin. The wheat data we
received contains a total of 16 bins with different number of
bushels and protein content in each bin. The wheat distribu-
tion statistics for both years is shown in Table 5, and the
details on each bin for the year 2017 are shown in Table 6.

The data provided also includes a list of elevators with
their associated market prices for buying the wheat. An entry
in the elevator list contains a premium-dockage curve with
the base protein level, the price for the base protein level, the
premium payment added to the base price for higher protein

level (upPrice), and the dockage payment deducted from
the base price for lower protein level (downPrice). We were
provided information on three elevators for both years. The
market prices for the three elevators are shown in Table 7.

Figure 5 illustrates the premium-dockage curves for the
three elevators in 2017. The dots in each elevator’s curve
shows the base protein level and base price/bushel for
that elevator. As shown, the price of protein increases (or
decreases) as a step function, and the step size differs based
on the upProtein (or downProtein) levels from the base pro-
tein level, thus creating an inflection point at the base price.

Multiple trucks, each with a fixed capacity of 8,000
bushels, were used to carry the wheat to the elevators. Note
that there is a delivery cost involved in going to the eleva-
tors, ranging from $960 to $2,000 for a fully loaded truck,
depending on the distance between a bin site and an elevator.
Moreover, mixing the wheat from multiple bins to change
the average protein content incurs a mixing cost. The mixing
is restricted to two bins at a time due to farmers’ physical
limitations. The mixing cost also depends on the site num-
ber of the bins; mixing two bins from the same site is less
expensive than mixing bins from different sites due to the
lower difficulty. Thus, for a fully loaded truck, the mixing
cost varies from $8 to $800.

Baseline Deterministic Approaches

In this section, we introduced two deterministic approaches
for solving the grain mixing problem. We use these two
approaches for performing a baseline comparison to our
proposed evolutionary methods. The first method is referred
to as the “no mixing” approach that assumes that tracking
protein content of the wheat is not available. Thus the wheat
distribution profit is computed assuming no grain mixing
has occurred. This approach will give us the naïve baseline
profit, representing farmers who do not have the protein
monitor on their harvesters. The baseline profit will then
be used to compare other grain mixing approaches to assess
the solution quality.

The second deterministic approach is referred to as the
“greedy” mixing approach where the grain mix is deter-
mined based on a lookup table with combinations of bin

Table 5 Wheat distribution statistics

Year Tot Bush Max Bu/Bin Min Bu/Bin Avg Bu/Bin

2016 114284.8 14836.8 1712.7 7142.8
2017 112417.5 14836.8 2985.3 7026.1
Year Tot Prot Max Prot/Bin Min Prot/Bin Avg Prot/Bin
2016 191.3 13.3 10.1 12.0
2017 190.1 13.8 10.1 11.9

Table 6 Farmer bin information for wheat harvested in 2017

Bin number Site Avg Protein Bushels

1 2 12.32 14836.8
2 7 13.78 7292.5
3 2 12.71 6395.3
4 6 11.34 8525.5
5 6 10.88 5713.36
6 1 12.58 7703.67
7 7 10.35 1712.67
8 1 10.72 4192.67
9 1 13.15 6539.83
10 3 10.11 7292.5
11 3 12.38 4921.32
12 7 12.01 7089.67
13 6 10.83 5050
14 3 12.13 8657.4
15 5 13.41 2985.3
16 2 11.4 13509

Table 7 Market prices for three
elevators in Northwest Montana

Year Elevator Base Price BaseProtein upPrice upProtein downPrice downProtein

2016 1 3.32 11.25 0.03 0.75 -0.06 0.75
2 3.84 11.75 0.25 0.50 -0.30 0.50
3 3.54 12.00 0.50 0.60 -0.40 0.30

2017 1 4.42 11.50 0.05 0.50 -0.10 0.50
2 4.47 12.00 0.25 0.50 -0.30 0.50
3 4.39 12.20 0.50 0.60 -0.40 0.30

 SN Computer Science (2022) 3:172 172 Page 10 of 20

SN Computer Science

pairs and pre-computed mixing ratios to provide the highest
immediate profit, under the assumption there is sufficient
grain left to fill the trucks. This provides a naïve baseline
for farmers with protein monitors but who do not apply our
proposed evolutionary method.

No Mixing Approach

The “no mixing” (NoMix) approach calculates the baseline
profit without any grain mixing. The algorithm starts by
taking a single bin at a time and loading trucks with grain
from that bin until the grain in the bin is exhausted. For a
partially loaded truck (i.e., when not enough grain is left to
load the truck fully), the method checks if that truck provides
any profit (i.e., revenue > delivery_cost) when going to an
elevator. If not, the grain in that truck is discarded without
any penalty, and the truck is freed up to be used to load
grain from another bin. Finally, the total profit is calculated
by summing the individual profits from all loaded trucks.

Greedy Mixing Approach

The “greedy mixing ” (GreedyMix) approach first cre-
ates a lookup profit table (LPT) by considering all the
possible bin pair combinations with different mix-
ing ratios. In our dataset, there are a total of 16 bins and
P(16, 2) = 16!∕(16 − 2)! = 240 ways to select two bins.
Here, we used the permutation to determine the delivery
cost when a truck transporting to an elevator only depends
on the site number of the second bin. Therefore, the order
from which a truck loads grain changes the profit. Moreo-
ver, to make the LPT finite, we discretized the mixing ratio
� ∈ {0.1, 0.2, 0.3, ..., 0.9} . Therefore, in the LPT, there are a

total of 240 × 9 = 2160 unique entries. Table 8 shows a sub-
set of the LPT for a particular set of elevators/markets and
their premium-dockage curves. Each entry in the LPT also
contains an additional field MaxProfit. This field tells us the
maximum profit a truck can have when fully loaded follow-
ing the bin pair and mixing ratio combination of that entry.

To find a solution, the algorithm sorts the profit table in
descending order of MaxProfit and traverses it from the top.
For any particular combination, if both bins have enough
grain left to fill a new truck using the mixing ratio � , the
algorithm fills the truck and records the profit. Otherwise, it
partially fills the truck with the remaining grain from both
bins and includes it in the solution if the truck provides
profit (or discards the unprofitable mix otherwise without
any penalty). For example, in the case of the combination
((1, 2), � = 0.5) , if there are 5000 bushels left in bin 1 but
only 3000 bushels left in bin 2, the algorithm will take 4000
bushels from bin 1 (half the capacity of the truck) and 3000
bushels from bin 2. Therefore, the total number of bushels in
that truck will be 7000, and the mixing ratio will be updated
accordingly.

After the first sweep through the LPT, if there exists a
single bin with sufficient grain remaining to make a profit
(where other bins do not have any bushels left to make a
profitable combination), a new truck is filled with the
remaining grain from that bin. No mixing cost is incurred for
this truck. Finally, the total profit is calculated by summing
the individual profits from all loaded trucks. Algorithm 1
shows the pseudocode for the greedy mixing approach.

Fig. 5 Premium-dockage curve
of three elevators in Northwest
Montana in 2017

SN Computer Science (2022) 3:172 Page 11 of 20 172

SN Computer Science

Table 8 Partial lookup
profit table based on a set of
premium-dockage curves

ID BinPair_1 BinPair_2 MixRatio Protein Elevator MaxProfit

1 1 2 0.1 13.63 3 41992
2 1 2 0.2 13.49 3 41992
3 1 2 0.3 13.34 2 38632
4 1 2 0.4 13.20 2 38632
5 1 2 0.5 13.05 2 38632
6 1 2 0.6 12.90 3 37992
7 1 2 0.7 12.76 2 36632
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

2155 16 15 0.4 12.61 2 35200
2156 16 15 0.5 12.41 1 33200
2157 16 15 0.6 12.20 1 33200
2158 16 15 0.7 12.00 1 33200
2159 16 15 0.8 11.80 2 33200
2160 16 15 0.9 11.60 2 33200

Fig. 6 Sample encoding for
genetic algorithm

Evolutionary Approaches

For this study, we utilized two evolutionary approaches
namely a GA and DE, to solve the grain mixing problem.
We introduced a novel permutation-based representation for
these approaches tailored specifically to the grain mixing
problem. Specifically, we used a permutation to specify an
order for how to load trucks so as ensure the constraints
remain satisfied. Next, we discuss our specific implementa-
tion of the GA and DE for solving the grain mixing problem.

Genetic Algorithm

Encoding

For an individual chromosome in the target population, we
utilized a permutationbased representation where each gene
in the chromosome is a unique tuple ⟨ID, bin_pair, �⟩ . Here

bin_pair specifies the pair of bins used to load a truck, and
� represents the mixing ratio (the number of bushels drawn
from each bin for mixing). There are a total of 2160 unique
mixes defined in the LPT, and ID represents an integer iden-
tifier for each combination. Therefore, each ID in the chro-
mosome is going to appear exactly once to ensure a feasible
solution in the search space. When generating a potential
solution for an individual, the mixing combination in each
tuple is used for loading trucks (fully/partially) as long as the
bin pairs have grain left to do so. An example of the chromo-
some representation is shown in Figure 6.

Initial Population

For the initial population P, we create N individuals where
each individual’s chromosome consists of m random mixing
combinations (without any duplicate ID), and the size of
chromosome m is also a tunable parameter. The m mixing

 SN Computer Science (2022) 3:172 172 Page 12 of 20

SN Computer Science

combinations are used for loading trucks when generating
a potential solution; therefore, the size of m should be suf-
ficiently large to transport all of the grain to the elevator.

Fitness Function

The fitness of an individual I is calculated as follows:

where the method IndividualMix takes the m mixing com-
binations from the individual’s chromosome as input. To
generate a feasible solution, it first calculates the maximum
profit that can be achieved for each combination (assum-
ing a fully loaded truck for that combination), and sorts the
mixing combinations with respect to the maximum profit.
Then, it performs two sweeps in the sorted combination list
to load the trucks. In the first sweep, for a particular com-
bination, if both bins in the combination have enough grain
left to load a truck fully/partially and can make a profit, it
loads the truck and records the profit. Otherwise, it discards
the grain in that truck and moves to the next combination.
In the second sweep, it checks for unused combinations in
the sorted list, and for a particular combination, if a single
bin has enough grain left to make a profit, it loads a truck
without incurring any mixing cost. The second sweep is
important as the size of m is generally much lower than the
total 2160 combinations, and some bin-pair combinations
might not be present in the chromosome list. if the size of m
is close to the total number of mixing combinations, then it
will perform similarly to the greedy approach. Finally, the
method loads l trucks out of m mixing combinations (where
l < m) without violating any constraints and returns the total
profit of all loaded trucks. The pseudocode for IndividualMix
is shown in algorithm 2.

fitness(I) = IndividualMix()

Selection

The GA uses tournament selection [26] to select parents
from the current population to generate new offspring for
the next generation. A tournament consists of s randomly
selected individuals from the current population, and the
individual with the highest fitness (tournament winner) is
added to the mating pool to generate new offspring. The
selection pressure that controls the GA’s convergence rate
highly depends on the tournament size.

Crossover

After the selection process, the GA applies a crossover oper-
ator to generate new offspring. For this study, we adapted
two different crossover operators—OX and PMX—designed
for handling permutation-based GA representations. A brief
description of these operators on the TSP representation is
given in Sects. “Ordered Crossover (OX)” and “Partially
Mapped Crossover (PMX)”, respectively. For the grain mix-
ing representation, these operators closely follow the TSP
representation. However, the major difference is that, unlike
TSP, the grain mixing representation does not follow a strict
permutation. In the permutation-based TSP representation,
all of the cities appear in the chromosome list and, based
on the order in which they are arranged, the fitness value
changes. However, in the grain mixing representation, the
chromosome list will utilize a subset of the 2160 mixing
combinations, scanned according to the permutation. There-
fore, for two different individuals, the mixing combinations
selected in the chromosome may not be exactly the same.

As the fitness function sorts the mixing combinations in
the chromosome based on the maximum profit, the relative
order in which the combinations appear does not affect the
fitness value; however, the permutation interpretation allows
the problem constraints to be enforced. Then introducing

SN Computer Science (2022) 3:172 Page 13 of 20 172

SN Computer Science

new mixing combinations in the chromosome list affects the
fitness value. Although a gene is represented by the tuple
< ID, bin_pair, 𝛼 > where the bin_pair and mixing ratio �
is used to load trucks in the fitness function, only the integer
combination ID is used to shuffle the genes in the crossover
operators.

Mutation

After applying the crossover operator, the mutation operator
is applied to the current population to add diversity for the
next generation. Our mutation operator randomly selects a
subset of individuals in the current population based on the
mutation probability. Then, for each selected individual, it
swaps a randomly selected mixing combination in the chro-
mosome with a new mixing combination that is not already
present in the chromosome. Finally, it recalculates the fit-
ness of the mutated individuals to obtain a feasible solution
(fitness value).

Differential Evolution

Our approach to applying DE to the grain mixing problem is
similar to the GA approach; however, the major differences
lie in the computational steps and the search mechanism.
The encoding, initial population, and fitness function used
in DE are the same as in GA. The main differences lie in
the mutation, crossover, and selection operators. Next, we
discuss our specific implementation of these operators.

Mutation

For this study, we used two differential mutation operators.
The first one is an adaptation of Relative Position Index-
ing (RPI) as described in Sect. “Relative Position Indexing
(RPI)”. To illustrate the adapted RPI, consider three donor
vectors xr1, xr2 , and xr3 . For example purposes only, assume
there are a total of 10 mixing combinations, and the vector
length of each donor vector is 5 (i.e., draws 5 combinations
out of 10). The donor vector’s representation is as follows
(note that the bin pair and mixing ratio are excluded for
simplicity):

From these, we create a union vector that includes all of the
different combination IDs from the three donor vectors as
follows:

xr1 =
[
9 4 6 1 3

]

xr2 =
[
7 10 2 4 8

]

xr3 =
[
3 10 9 1 4

]

The next step is to transform all of the integer values to
floating-point values by dividing each vector element by the
largest integer in the vector list and then mapping these val-
ues back onto the original donor vectors as follows:

Next, the standard DE mutation operator is applied to the
real-valued donor vectors to obtain the real-valued mutant
vector (suppose F = 0.5) as follows:

The final step is to convert the floating mutant vector to an
integer-valued mutant vector. To do that, we use the float-
ing union vector. Each value in v(f) is compared against the
values in U(f) and for the U(f) value for which the distance
is the minimum, the corresponding integer combination ID
from U is selected to replace the floating-point value. The
ID which has been assigned to the mutant vector is removed
from the list U and U(f) to avoid any duplicate entry. The
procedure is illustrated as follows:

The second differential mutation operator is the Generation
Best Perturbation (GBP) as described in Sect. “Generation
Best Perturbation (GBP)”. For the GBP illustration, let us
consider the same donor vectors that we used in the RPI
example. With a mutation factor of 0.5 and q ∈ random(0, 1) ,
the mutation vector v can be obtained as follows:

U = xr1 ∪ xr2 ∪ xr3

=
[
1 2 3 4 6 7 8 9 10

]

U(f) =
[
0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

]

x(f)r1 =
[
1.0 0.44 0.67 0.11 0.33

]

x(f)r2 =
[
0.7 1.0 0.2 0.4 0.8

]

x(f)r3 =
[
0.3 1.0 0.9 0.1 0.4

]

v(f) = x(f)
g

r1
+ F ×

(
x(f)

g

r2
− x(f)

g

r3

)

=
[
1.2 0.44 0.32 0.26 0.53

]

U =
[
1 2 3 4 6 7 8 9 10

]

U(f) =
[
0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

]

v(f) =
[
1.2 0.44 0.32 0.26 0.53

]

v =
[
10 4 3 2 6

]

q =
[
0.57 0.19 0.32 0.84 0.07

]

xbest =
[
9 4 6 1 3

]

xr2 =
[
7 10 2 4 8

]

xr3 =
[
3 10 9 1 4

]

v =
[
7 9 4 3 6

]

 SN Computer Science (2022) 3:172 172 Page 14 of 20

SN Computer Science

Crossover

After creating the mutant vector, binomial crossover is per-
formed between the target vector xg

i
 and the mutant vector

v
g

i
 to create the trial vector ug

i
 . The crossover operation is

similar to the standard DE crossover, however, in our imple-
mentation, the trial vector first copies the chromosome of
the mutant vector vi,g and replaces the gene with the target
vector xi,g only if it is not already present in the trial vector
and the crossover condition (rand(0, 1) ≤ CR or j = jrand)
condition is satisfied.

Selection

The selection operator is the same as standard DE. It selects
the better individual by comparing the fitness of the trial
vector ui,g and the target vector xi,g . If the trial vector has
a higher fitness value than the target vector, the target vec-
tor is replaced by the trial vector for the next generation.
Otherwise, the trial vector is discarded and the target vector
remains in the population for the next generation.

Experimental Design

For this study, we were able to collect real wheat harvest
information for the years 2016 and 2017 from a Northwest
Montana farmer. To further evaluate the performance of
the mixing algorithms, we created twelve additional data-
sets. Among them, two datasets were created by swapping
the elevator prices for both years. In other words, the bin
information for year 2017 was used with the elevator prices
from 2016 and vice-versa. Then we created 5 artificial data-
sets for each year. For these datasets, the elevators, mixing
cost, and delivery cost remained the same, however, the bin
contents were altered. We used the same 16 bins, and the
number of bushels and the protein content in each bin were
assigned randomly falling within a pre-specified lower and
upper bound.

For the initial population, GA and DE implementations
created random individuals by taking a small subset of the
total mixing combinations to form the chromosome. The
intuition was that, for a small subset of the mixing combi-
nations, the IndividualMix method would return a different

result than the GreedyMix algorithm based on the few
choices of bin combinations. The goal of the GA and DE
algorithms is to find the best sequence from the profit table
for which the profit is maximized. Therefore, chromosome
size plays an important role in the overall solution. The sub-
set has to be selected in such a way that it contains sufficient
bin combinations to empty all of the grain in the bins. If the
subset is too small, then it may not contain an entry for a
particular bin; therefore, all of the bushels of that bin may
go unused in the solution. If the subset is too large, then it
will perform like the GreedyMix algorithm with all of the
choices for filling a truck.

The hyperparameters, along with the size of the chro-
mosome used in the GA and DE algorithms, were tuned
manually. Table 9 shows the tuned parameter values used
in the GA and DE algorithms for all of test cases. Column
#MaxIter represents the maximum generation number, and
column #MC represents the number of mixing combinations
in the chromosome list (chromosome size). Column F rep-
resents the mutation factor for the DE algorithm. These sets
of parameters provided the highest average profit for the real
datasets, so they were used for all of the experiments.

To further assess the effectiveness of the evolutionary
approaches, we also introduced a Random algorithm as a sto-
chastic baseline. This method creates 100 individuals by ran-
domly taking 100 mixing combinations from the total 2,160
combinations and returns the individual with the highest
profit. The Random algorithm helps us assess if the evolu-
tionary algorithms are exploring the search space efficiently
to provide a better solution than random search.

The deterministic approaches always yield the same
solution; however, that is not the case with the evolution-
ary approaches and the random search algorithm. They
are stochastic, so to evaluate their performance, we ran 10
experiments on each dataset and recorded the average overall
profit.

Results and Analysis

Profitability Analysis

Table 10 shows the performance of the different algorithms
for each of the different test cases studied. The column
Dataset identifies which data was used by the algorithms
to generate the results. The notation R_year indicates the
real dataset for the respective year. RF_year indicates the
flipped market version of the real datasets, and A∗_year indi-
cates the artificial datasets for each of the respective years.
The values in the table show the overall profit obtained by
each algorithm, expressed in thousands of US dollars. For
both GA and DE, there are two versions, one for each of
the different adapted operators. The overall profit from the

Table 9 Parameter settings for GA and DE algorithms

Algo #MaxIter Population #MC Tournament Mutation

GA 500 200 50 5 0.2
Algo #MaxIter Population #MC CR F
DE 500 100 100 0.9 0.5

SN Computer Science (2022) 3:172 Page 15 of 20 172

SN Computer Science

stochastic algorithms (i.e., GA, DE, and Random) are the
mean and standard deviation over 10 runs of experiments;
however, the profit did not change for the deterministic algo-
rithms (Greedy, and NoMix). The bold values represent the
maximum profit obtained across the algorithms for a respec-
tive dataset, and the underline values represent a sufficient
profit increase from the base solution (i.e., NoMix). If the
increased profit is more than $5000 from the base solution,
we call it sufficient as the average price for protein monitors
costs around $5000.

Based on different algorithms’ performance, we note that
the evolutionary approaches lead to a higher overall profit
compared to the NoMix solution in every case. For all data-
sets, GA’s OX and PMX operators, and DE’s GBP operator
consistently provided a sufficient profit increase. Surpris-
ingly, for DE, the RPI operator did not perform as well as
the GBP operator. Although RPI provided a sufficient profit
increase for most of the datasets (except for two), the profit
from RPI is consistently lower than the other evolutionary

operators for most of the test cases. Comparing the two
crossover operators of the GA, the PMX operator for all test
cases provided a higher profit than the OX operator. And,
comparing all evolutionary approaches, DE with the GBP
operator performed best for the real and flipped datasets,
whereas the GA with the PMX operator performed best for
all the artificial datasets.

The overall profit from the Random and Greedy algo-
rithms are consistently lower than the evolutionary
approaches for all test cases. Furthermore, for most of the
test cases, they failed to provide a sufficient profit increase
from the base solution, and for some datasets yielded a profit
lower than the base solution. Based on the performance of
the Random algorithm, it is evident that the evolutionary
approaches are effectively exploring the search space to find
a better solution, and the greedy solution suggests that the
added complexity of the evolutionary approaches is ben-
eficial for finding a better overall profit. Unfortunately, the
cost associated with the production (harvesting) was not

Table 10 Performance of the
different algorithms (profit in
thousands of dollars)

Dataset GA DE Random Greedy NoMix

OX PMX RPI GBP

R_2016 435.3 435.5 430.9 436.0 427.5 430.5 424.5
±1.04 ±1.53 ±0.48 ±0.50 ±0.86

R_2017 495.5 496.1 494.2 497.1 489.7 491.6 487.1
±0.59 ±0.98 ±0.77 ±0.74 ±0.53

RF_2016 505.3 506.0 502.8 506.2 500.9 499.9 499.7
±1.03 ±0.54 ±0.38 ±0.37 ±0.63

RF_2017 427.6 428.7 424.0 429.1 420.6 423.1 418.0
±1.36 ±1.34 ±0.96 ±0.67 ±0.60

A1_2016 416.6 418.2 411.2 417.1 405.6 394.5 395.4
±1.39 ±2.08 ±1.02 ±1.34 ±1.21

A2_2016 562.2 563.9 558.0 562.7 548.9 533.1 545.2
±2.44 ±1.85 ±1.32 ±2.04 ±2.24

A3_2016 589.8 592.6 583.1 588.7 568.3 543.9 569.9
±2.63 ±1.91 ±1.90 ±1.73 ±3.39

A4_2016 575.3 576.6 566.9 572.8 556.4 520.4 539.9
±1.60 ±1.91 ±1.96 ±1.98 ±1.92

A5_2016 534.9 536.4 527.3 533.8 512.7 496.9 512.2
±1.59 ±1.53 ±1.13 ±1.98 ±2.51

A1_2017 621.8 623.9 610.2 620.8 595.8 581.7 608.9
±3.38 ±2.37 ±2.43 ±3.31 ±2.28

A2_2017 537.0 539.4 529.5 538.4 520.1 515.8 520.6
±2.16 ±1.98 ±1.75 ±1.33 ±1.68

A3_2017 675.3 678.5 668.4 676.1 661.8 655.8 643.9
±1.49 ±1.96 ±1.37 ±1.58 ±2.32

A4_2017 451.3 452.7 449.4 452.5 442.4 435.6 430.1
±1.56 ±0.87 ±1.24 ±1.06 ±1.16

A5_2017 684.5 687.0 677.0 686.2 670.9 656.0 663.5
±1.58 ±2.71 ±1.11 ±2.36 ±2.95

 SN Computer Science (2022) 3:172 172 Page 16 of 20

SN Computer Science

provided, which would be necessary to provide a more com-
plete estimate of profit.

On the surface, one may suppose that the Greedy solu-
tion should provide the optimal results since it creates all
possible combinations of mixes and selects the mix greedily
based on the maximum profit. This claim might be true if
there existed an infinite number of bushels in all of the bins.

But, in the real world, our problem is constrained to con-
sider a limited (and possibly different) number of bushels for
different bins, and loading a truck greedily based on profit
may not always be possible if there are no bushels left in a
specific bin. Furthermore, the truck might be partially filled
based on the remaining bushels of bins, giving a lower profit
than in an infinite grain context. Therefore, for all the test

Table 11 Best solution from
GA(PMX) for R_2017 dataset

Pair Mix P1_Bu P2_Bu Protein Load Elv Profit

(9, 2) 0.50 4000.0 4000.0 13.47 8000.0 3 41600.0
(15, 2) 0.65 2985.3 1600.0 13.54 4585.3 3 23843.6
(9, 2) 0.60 2539.8 1692.5 13.40 4232.3 3 22008.1
(3, 12) 0.70 5600.0 2400.0 12.50 8000.0 2 36560.0
(6, 12) 0.90 7200.0 800.0 12.52 8000.0 2 36240.0
(3, 6) 0.61 795.3 503.7 12.66 1299.0 2 5318.1
(8, 12) 0.29 1600.0 3889.7 11.64 5489.7 2 23764.8
(1, 4) 0.30 2400.0 5600.0 11.63 8000.0 2 34552.0
(1, 4) 0.58 4000.0 2925.5 11.91 6925.5 2 29911.2
(1, 5) 0.50 4000.0 4000.0 11.60 8000.0 2 34480.0
(1, 7) 0.72 4436.8 1712.7 11.77 6149.5 2 26319.7
(10, 11) 0.60 4800.0 3200.0 11.02 8000.0 1 33912.0
(14, 13) 0.70 5600.0 2400.0 11.74 8000.0 2 33760.0
(14, 5) 0.64 3057.4 1713.4 11.68 4770.8 2 20132.6
(13, 11) 0.61 2650.0 1721.3 11.43 4371.3 1 18315.8
(16, 10) 0.80 6400.0 1600.0 11.14 8000.0 1 33120.0
(8, 10) 0.74 2592.7 892.5 10.56 3485.2 1 14301.1
(16, 1) 0.00 7109.0 0.0 11.40 7109.0 1 29644.5
Total 112417.5 497783.6

Table 12 Best solution from
DE(GBP) for R_2017 dataset

Pair Mix P1_Bu P2_Bu Protein Load Elv Profit

(6, 2) 0.30 2400.0 5600.0 13.42 8000.0 3 41920.0
(15, 2) 0.64 2985.3 1692.5 13.54 4677.8 3 24324.6
(9, 12) 0.89 6539.8 800.0 13.03 7339.8 2 35378.0
(3, 12) 0.80 6395.3 1600.0 12.57 7995.3 2 36538.5
(1, 6) 0.23 1600.0 5303.7 12.52 6903.7 2 31135.6
(11, 7) 0.74 4800.0 1712.7 11.85 6512.7 2 28134.7
(10, 12) 0.25 1600.0 4689.7 11.54 6289.7 2 27171.4
(1, 4) 0.40 3200.0 4800.0 11.73 8000.0 2 34552.0
(1, 4) 0.39 2400.0 3725.5 11.72 6125.5 2 26456.0
(1, 5) 0.60 4800.0 3200.0 11.74 8000.0 2 34480.0
(1, 5) 0.53 2836.8 2513.4 11.64 5350.2 2 23059.2
(10, 11) 0.97 4000.0 121.3 10.18 4121.3 1 16646.0
(14, 13) 0.70 5600.0 2400.0 11.74 8000.0 2 33760.0
(14, 13) 0.54 3057.4 2650.0 11.53 5707.4 2 24085.2
(8, 10) 0.71 4192.7 1692.5 10.54 5885.2 1 24305.8
(16, 2) 0.00 4800.0 0.0 11.40 4800.0 1 20016.0
(16, 12) 0.00 4000.0 0.0 11.40 4000.0 1 16680.0
(3, 16) 0.00 0.0 4709.0 11.40 4709.0 1 19636.5
Total 112417.5 498279.5

SN Computer Science (2022) 3:172 Page 17 of 20 172

SN Computer Science

cases, the Greedy solution not only failed to provide optimal
results but also gave a lower profit (in the artificial test cases)
than the base solution. The evolutionary approaches do sug-
gest that taking a sub-optimal bin-pair combination can yield
a higher overall profit than the greedy optimal choice due to
the varying bin sizes.

Next, we examine the best complete solutions obtained
from the GA’s PMX operator in Table 11 and DE’s GBP
operator in Table 12 for the real R_2017 dataset. In these
tables, the column name “Pair” identifies the pair of bins
mixed to load a truck, “P1_Bu” and “P2_Bu” specify the
number of bushels taken from each bin in the pair, “Protein”
shows the weighted average protein level, “Load” gives the
total amount of wheat loaded in the truck (max 8000 bu)
and “Elv” identifies the elevator where the truck delivers
the grain.

The mixing ratio of the last truck in the PMX solution
(Table 11) is 0, which indicates that after the first sweep
in the mixing combination (chromosome list), sufficient
grain remained in bin 16. Therefore, it loaded the truck
separately with the remaining grain without incurring any
mixing cost. We observed the same scenario in the GBP
solution (Table 12) where the last three trucks show a mix-
ing ratio of 0, and sufficient grain remained in bin 16 for all
three trucks. Both best solutions loaded grain from bin 16
separately, which implies that mixing bin 16 with other bins
might reduce the overall profit.

All of the grain-mixing algorithms provided a similar
solution format but with different bin-pair mixings. A com-
plete solution shows a farmer how to load each truck with
bushels from respective bins to generate the solution’s over-
all profit.

Population Diversity

One of the questions to be addressed is whether or not the
evolutionary methods, those superior to the deterministic
and random methods, might be converging prematurely.
One approach to evaluate this is by considering the extent
to which population diversity is lost as evolution proceeds.
Therefore, we completed an analysis of population diversity
for both GA and DE.

To assess the population diversity, we tracked the fitness
(profit) of the best individual and the average fitness of the
population in each generation. Since our permutation-based
representation is composed of mixing combinations, for
different mixing combinations the fitness might be similar.
Therefore, in our case, using only fitness values to monitor
diversity may not be appropriate. Moreover, not all of the
mixing combinations in the chromosome are used in the final
solution returned by the IndividualMix method due to vary-
ing grain content in the bins. Therefore, we analyzed both
genotypic diversity, which compares mixing combinations

in the chromosome between two individuals, and pheno-
typic diversity, which compares the actual mixing combina-
tions used in the final solution (generated by IndividualMix)
between two individuals.

To compute diversity, we used Levenshtein distance (i.e.,
edit distance) [22] to compare different mixing combina-
tions. Levenshtein distance is used to measure the distance
between two strings by determining the minimum number of
insertions, deletions, and substitutions required to transform
one string into another. To use Levenshtein distance for our
diversity measure, we encoded the mixing combinations to
make them into strings. Recall that a mixing combination is
a tuple < bin_pair1, bin_pair2, 𝛼 > . We have 16 bins in our
datasets, which are encoded hexadecimally (from 0 to F),
and 10 mixing ratios (including 0, meaning no mixing) that
are encoded from 0 to 9. For example, the string encoding
for the combination < 2, 15, 0.6 > becomes “1E6”. In this
way, all of the mixing combinations in a chromosome are
transformed into a sequence of strings.

When generating the final solution, a mixing ratio may
not be a single decimal value due to having a partially loaded
truck. In that case, the value is encoded to the closest integer
(e.g., 0.64 would be encoded to 6). As measuring edit dis-
tance between all pairs of individuals for all of the genera-
tions is computationally expensive, we used the generation
best individual as a reference point. All other individuals in
the current population were compared against the generation
best individual for measuring the distance. Figure 7 shows
the fitness, genotypic and phenotypic diversity of the evolu-
tionary algorithms for the R_2017 dataset.

In Fig. 7, column (a) shows the genotypic diversity, and
column (b) shows the phenotypic diversity for the differ-
ent recombination operators used in GA and DE. For each
subfigure, the x axis represents the generation number, the
left y axis represents the edit distance, and the right y axis
represents the fitness (profit) in thousands of US dollars.
The top green line shows the best individual fitness for the
current generation, and the lower blue line represents the
average individual fitness for the current generation. The box
plots show the edit distance statistics of the individuals after
every 50 generation. GA uses 50 mixing combinations in
the chromosome, which is why the maximum edit distance
between two individuals would be 150 if all the combina-
tions were different (since each combination is encoded by
a three-character value) for the genotypic conversion. How-
ever, DE uses 100 combinations, and the maximum distance,
in this case, is 300. For the phenotypic diversity, the actual
mixing combinations used to load the trucks range from
approximately 18 to 25, and the maximum distance could
be 75 or higher.

Looking at the diversity plots for GA’s OX and PMX
operators, the average fitness curve seems to converge on the
generation best; however, the edit distance box plots show

 SN Computer Science (2022) 3:172 172 Page 18 of 20

SN Computer Science

that there is diversity both in the chromosome representation
(genotypic) and actual (phenotypic) solutions. Furthermore,
PMX seems to control the population diversity slightly bet-
ter than OX, which might explain why PMX provided a bet-
ter solution for all test cases compared to OX. On the other
hand, the diversity plots for the DE’s mutation operators

are different from the GA operators, portraying the differ-
ent search mechanisms of the two approaches. The aver-
age fitness curve for DE is increasing gradually as it always
replaces a current individual with an individual with a better
fitness value. The plots from the RPI operator show that
convergence is slow, compared to the GBP operator. This

Fig. 7 Monitoring population
diversity of the best solutions
in R_2017 dataset. The x axis
shows the generation number,
the left y axis shows the edit
distance, and the right y axis
shows the fitness. The top green
line tracks the best individual
fitness, and the lower blue line
tracks the average individual
fitness

SN Computer Science (2022) 3:172 Page 19 of 20 172

SN Computer Science

may be the reason why RPI performed the worst compared
to all other operators. Although GBP’s genotypic diversity is
quite high for all generations, the phenotypic diversity shows
that, as generations progress, more individuals with slightly
different solutions from the generation’s best solution appear
in the population.

Conclusion and Future Works

We have considered several approaches for determining
how to maximize the profit of wheat production by mix-
ing different numbers of bushels to change the protein level
contained in a truck being delivered to an elevator. In some
states, the price of a bushel of wheat depends on its protein
level as measured at the elevator. Our intent was to deter-
mine if mixing different protein levels can yield a mix such
that the farmer will receive more profit than taking them
separately, thus justifying the expense of purchasing and
employing expensive protein monitoring equipment on their
harvesters. We adapted and applied two different evolution-
ary approaches—a genetic algorithm and differential evolu-
tion—to address the grain mixing (wheat blending) problem.
The experimental results from both real and simulated data-
sets showed that the evolutionary approaches consistently
provided an increased profit compared to no mixing, greedy
mixing, and random mixing approaches. Furthermore, all
of the test cases showed there was benefit in investing in the
protein monitors.

For this study, we made certain assumptions, such as lim-
iting the mixing to only two bins at a time for the problem
representation. This was based on limits given to us by the
farmers. In future work, we would like to consider if mixing
more than two bins would provide a better profit, thereby
justifying to the farmers the more complicated process of
mixing from multiple bins. It is also our intent to explore
the suitability of comparing to a MINLP or a relaxed MILP
model; however, the inherent nonlinearity constraints of the
problem would seem to suggest optimization quality would
be limited. Furthermore, a more realistic cost model that
includes the production cost associated with harvesting, the
cost of the protein tracking device and supporting infrastruc-
ture, and alternative representations of the model will be
considered as future work.

Funding There is no funding associated with this work.

Declarations

Conflicts of interest The authors declare that they have no conflict of
interest.

References

 1. Adams DB, Watson LT, Gürdal Z, Anderson-Cook CM. Genetic
algorithm optimization and blending of composite lami-
nates by locally reducing laminate thickness. Adv Eng Softw.
2004;35(1):35–43.

 2. Ashayeri J, van Eijs A, Nederstigt P. Blending modelling
in a process manufacturing: a case study. Euro J Oper Res.
1994;72(3):460–8.

 3. Bilgen B, Ozkarahan I. A mixed-integer linear programming
model for bulk grain blending and shipping. Int J Prod Econ.
2007;107(2):555–71.

 4. Blum C, Roli A. Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Comput Surv.
2003;35(3):268–308.

 5. Bond JJ. Wheat sector at a glance. U.S. Department of Agricul-
ture. https:// www. ers. usda. gov/ topics/ crops/ wheat/ wheat- sector-
at-a- glance. Last accessed 07/14/21.

 6. Ceberio J, Irurozki E, Mendiburu A, Lozano J. A review on
estimation of distribution algorithms in permutation-based
combinatorial optimization problems. Progress Artificial Intell.
2012;1:103–17.

 7. Chen X, Wang N. Optimization of short-time gasoline blending
scheduling problem with a dna based hybrid genetic algorithm.
Chem Eng Process. 2010;49(10):1076–83.

 8. Crama Y. Combinatorial optimization models for production
scheduling in automated manufacturing systems. Euro J Oper
Res. 1997;99(1):136–53.

 9. Dantzig G. Formulation a linear programming model. In: Linear
programming and extensions, pp. 42–50. Princeton Univ. Press,
Princeton, NJ (1963).

 10. Davis L. Applying adaptive algorithms to epistatic domains. In:
Proceedings of the 9th International Joint Conference on Artificial
Intelligence - Volume 1, p. 162–164. Morgan Kaufmann Publish-
ers Inc. (1985).

 11. Djeumou Fomeni F. A multi-objective optimization approach
for the blending problem in the tea industry. Int J Prod Econ.
2018;205:179–92.

 12. Goldberg DE, Holland JH. Genetic algorithms and machine learn-
ing. Mach Learn. 1988;3(2–3):95–9.

 13. Goldberg DE, Lingle R. Alleles, loci and the traveling salesman
problem. In: Proceedings of the 1st International Conference on
Genetic Algorithms, p. 154–159. L. Erlbaum Associates Inc.,
USA (1985).

 14. Guo Q, Tang L. Modelling and discrete differential evolution algo-
rithm for order rescheduling problem in steel industry. Comput
Ind Eng. 2019;130:586–96.

 15. Haas N. Optimizing Wheat Blends for Customer Value Creation:
A Special Case of Solvent Retention Capacity. MS Thesis, Kansas
State University, USA (2011).

 16. Hayta M, Cakmalki U. Optimization of wheat blending to produce
breadmaking flour. J Food Process Eng. 2001;24:179–92.

 17. Hughes JA, Houghten S, Ashlock D. Permutation Problems,
Genetic Algorithms, and Dynamic Representations, pp. 123–149.
Springer International Publishing (2017).

 18. Jia Z, Ierapetritou M. Mixed-integer linear programming model
for gasoline blending and distribution scheduling. Ind Eng Chem
Res. 2003;42(4):825–35.

 19. Karloff H. Linear Programming. USA: Birkhauser Boston Inc.;
1991.

 20. Krentel MW. The complexity of optimization problems. J Comput
Syst Sci. 1988;36(3):490–509.

 21. Lawler E. Combinatorial Optimization: Networks and Matroids.
Rinehart and Winston: Holt; 1976.

https://www.ers.usda.gov/topics/crops/wheat/wheat-sector-at-a-glance
https://www.ers.usda.gov/topics/crops/wheat/wheat-sector-at-a-glance

 SN Computer Science (2022) 3:172 172 Page 20 of 20

SN Computer Science

 22. Levenshtein VI. Binary codes capable of correcting dele-
tions, insertions, and reversals. Cybernet Control Theory.
1966;10(8):707–10.

 23. Li, X., Bonyadi, M.r., Michalewicz, Z., Barone, L.: A hybrid
evolutionary algorithm for wheat blending problem. TheScien-
tificWorldJournal 2014, 967254 (2014)

 24. Lichtblau D. Relative position indexing approach. In: Differential
Evolution: A Handbook for Global Permutation-Based Combi-
natorial Optimization, pp. 81–120. Springer Berlin Heidelberg
(2009).

 25. Matouek J, Gärtner B. Understanding and using linear program-
ming. Berlin, Heidelberg: Springer-Verlag; 2006.

 26. Miller B, Goldberg D. Genetic algorithms, tournament selection,
and the effects of noise. Complex Syst. 1995;9:193–212.

 27. Moro LFL, Pinto JM. Mixed-integer programming approach
for short-term crude oil scheduling. Ind Eng Chem Res.
2004;43(1):85–94.

 28. Nemhauser GL, Wolsey LA. Integer and Combinatorial Optimiza-
tion. USA: Wiley-Interscience; 1988.

 29. Noor MA, Sheppard JW. Evolutionary grain-mixing to improve
profitability in farming winter wheat. In: Applications of Evolu-
tionary Computation, pp. 113–129. Springer International Pub-
lishing (2021).

 30. Noor MA, Yaw S, Zhu B, Sheppard JW. Optimal grain mixing
is NP-Complete. arXiv: 2112. 08501 (2021). https:// arxiv. org/ abs/
2112. 08501 v1.

 31. Onwubolu G, Davendra D. Differential evolution for permuta-
tion—based combinatorial problems. In: Differential Evolution:
a handbook for global permutation-based combinatorial optimiza-
tion, pp. 13–34. Springer Berlin Heidelberg (2009).

 32. Otman A, Jaafar A. A comparative study of adaptive crossover
operators for genetic algorithms to resolve the traveling salesman
problem. Int J Comput Appl. 2011;31(11):49–57.

 33. Pan QK, Wang L, Qian B. A novel differential evolution algorithm
for bi-criteria no-wait flow shop scheduling problems. Comput
Oper Res. 2009;36(8):2498–511.

 34. Pochet Y, Wolsey LA. Production planning by mixed integer pro-
gramming. 1st ed. Incorporated: Springer Publishing Company;
2010.

 35. Potvin J. Genetic algorithms for the traveling salesman problem.
Ann Oper Res. 1996;63:337–70.

 36. Qian B, Wang L, Hu R, liang Wang W, Huang D, Wang X. A
hybrid differential evolution method for permutation flow-shop
scheduling. Int J Adv Manuf Technol 38, 757–777 (2008).

 37. Radhakrishnan A, Jeyakumar G. Evolutionary algorithm for
solving combinatorial optimization—a review. In: Innovations in
Computer Science and Engineering, pp. 539–545. Springer Sin-
gapore (2021).

 38. Randall D, Cleland L, Kuehne CS, Link GWB, Sheer DP. Water
supply planning simulation model using mixed-integer lin-
ear programming “engine.” J Water Resources Plann Manag.
1997;123(2):116–24.

 39. Sniedovich M. Dynamic programming: foundations and princi-
ples. Taylor & Francis (2010).

 40. Storn R, Price K. Differential evolution—a simple and efficient
adaptive scheme for global optimization over continuous spaces.
Tech. rep., TR-95-012, International Computer Science Institute,
Berkeley (1995).

 41. Tasgetiren MF, Pan QK, Liang YC. A discrete differential evolu-
tion algorithm for the single machine total weighted tardiness
problem with sequence dependent setup times. Comput Oper Res.
2009;36(6):1900–15.

 42. Vazirani VV. Approximation algorithms. Springer (2001).
 43. Whelan B. Site-Specific Crop Management, pp. 597–622.

Springer International Publishing (2018).
 44. Williamson DP, Shmoys DB. The Design of Approximation Algo-

rithms. Cambridge University Press (2011).

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2112.08501
https://arxiv.org/abs/2112.08501v1
https://arxiv.org/abs/2112.08501v1

	Mixing Grain to Improve Profitability in Winter Wheat Using Evolutionary Algorithms
	Abstract
	Introduction
	Background
	The Grain Mixing Problem
	Problem Statement
	Problem Complexity
	Existing Approaches
	Combinatorial Optimization Problems (COPs)
	Genetic Algorithm (GA)
	Ordered Crossover (OX)
	Partially Mapped Crossover (PMX)

	Differential Evolution (DE)
	Relative Position Indexing (RPI)
	Generation Best Perturbation (GBP)

	Grain Mixing Dataset
	Baseline Deterministic Approaches
	No Mixing Approach
	Greedy Mixing Approach

	Evolutionary Approaches
	Genetic Algorithm
	Encoding
	Initial Population
	Fitness Function
	Selection
	Crossover
	Mutation

	Differential Evolution
	Mutation
	Crossover
	Selection

	Experimental Design
	Results and Analysis
	Profitability Analysis
	Population Diversity

	Conclusion and Future Works
	References

