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Abstract
This paper considers an important component of the wheat distribution problem known as grain mixing (wheat blending). 
We represent the grain mixing problem as a permutation-based combinatorial optimization problem, which both a genetic 
algorithm and differential evolution are adapted and applied to solve. The proposed algorithms explore a search space that 
aims at finding a quality mixing of wheat from grain bins that generate the maximum profit at a grain elevator. The experi-
mental results demonstrate that mixing bins provide more profit than not mixing and that the evolutionary approaches lead 
to consistently higher profits than the non-evolutionary methods.
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Introduction

Agriculture and agricultural products are essential in sus-
taining lives on the planet. Considerable planning is required 
to feed the population on the Earth efficiently. Issues, such as 
crop rotation or mixed cropping techniques, optimal seeding 
and fertilizing, proper irrigation, and efficient harvest and 
distribution need to be considered for agriculture to meet the 
needs of most people. Through the emergence of informa-
tion technologies and software tools in agricultural sectors, it 
is now possible to collect real-time data and use that data to 
enhance the farming experience. Appropriately using these 
digital tools helps to protect the environment, increase over-
all profit, and reduce waste.

In this paper, we consider an important component of the 
food supply chain, referred to as grain mixing. The grain 
considered in our case is wheat, mainly winter wheat that 
accounts for approximately 70–80% of the wheat production 
in the US [5]. The lifecycle of winter wheat starts with plant-
ing that takes place from mid-August through October, fol-
lowed by a dormant period from November to March. Har-
vest takes place from mid-May to mid-July of the following 
year. The farmers store the harvested grain into several bins 
and then transport the grain via trucks to sell the wheat to 
the local grain markets (i.e., elevators). In some states, such 
as Montana, the price they get from the elevators depends 
on the quality (protein content) of the wheat.

Several factors play an essential role when determining 
the profit from wheat production. In Montana, one of the 
critical elements determining the price of a bushel of wheat 
is protein content, which is affected by several environmen-
tal factors such as temperature during the growing season, 
soil nitrogen levels, genetics, timing, and precipitation. Due 
to the resulting variations, protein content changes not only 
from year to year but also from crop to crop. In fact, there 
can even be significant protein variation within a field. The 
technology is available to track the protein content in a 
bushel of wheat on site; however, it is expensive, making it 
inaccessible to several smaller farmers. Consequently, most 
wheat producers end up taking their harvest to the closest 
elevators and collecting whatever amount is paid to them. 
Ultimately, the goal of this work was to see if it is worth 
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investing in the technology and infrastructure needed to 
track the protein level and mix the wheat on site.

This paper extends our previous work [29] where we 
applied and adapted two different evolutionary approaches: 
genetic algorithms and differential evolution to solve the 
grain mixing problem. We adapted the order crossover (OX) 
operator for the GA implementation and proposed a new dif-
ferential mutation operator for the DE implementation. The 
main extensions in this paper include the following. First, we 
provide a formal, mathematical programming specification 
of the problem. We then provide a theorem to show that the 
problem is NP-hard.1 Next, we adapted both the partially 
mapped crossover (PMX) operator as an alternative cross-
over operator for the GA implementation and the relative 
position indexing (RPI) operator as an alternative mutation 
operator for the DE implementation. All these methods were 
compared against a naïve no-mix strategy to determine if 
mixing grain increases the profit in the first place and also 
compared against a deterministic greedy approach to evalu-
ate if the added complexity of the evolutionary approaches 
is beneficial. We also included more experimental results 
with a detailed performance analysis of the methods used.

The remainder of this paper is organized as follows. The 
following section provides the background that includes the 
formal mathematical definition of the grain mixing problem, 
existing approaches, and concepts for the methodology used 
for this study. We also include  a theorem to show that this 
problem is NP-hard, thus justifying the need for heuristic or 
approximate approaches. The data collected for this study 
is introduced in “Grain Mixing Dataset”. The next section 
presents the deterministic approaches, and the consecutive 

sections present the evolutionary approaches for solving the 
grain mixing problem, and the experimental design, respec-
tively. The experimental results and analysis of the results 
are presented in “Results and Analysis”. “Conclusion and 
Future Works” concludes our paper and outlines the planned 
future work.

Background

The Grain Mixing Problem

One of the goals of this study is to develop methods for 
farmers to maximize their overall wheat distribution profit 
when selling wheat at multiple local grain elevators. In Mon-
tana, when selling wheat, the price per bushel of grain varies 
based on a range of protein levels. Each elevator has a base 
protein range for which a base price is paid and follows a 
premium-dockage curve where the price/bushel is increased 
for a higher protein level and decreased for a lower protein 
level. For example, if the base protein level is (11, 12)% , the 
price might be $4 per bushel where it might increase to $6/
bu with protein levels of (12, 13)% . The payment schedule 
can be viewed as a step function of the protein level with 
prices per bushel. There are many cases where the protein 
level of a bin is short of reaching a higher price range or may 
be above the minimum protein requirement having no added 
benefit in terms of price. Therefore, it might be possible to 
mix grain from a high-quality (in terms of protein level) bin 
with a low-quality bin to improve the average protein level, 
where the low-quality bin reaches the next step in the price 
range and the high-quality bin remains in the same step in 
the price range, yielding a better overall profit.

Fig. 1   A simple grain mixing 
example

1  Due to its length, the full proof can be found in [30].
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Figure 1 illustrates an example of how mixing grain could 
be useful for making a better overall profit. In the example, 
there are three bins with different numbers of bushels and 
protein levels. Table  1 represents example elevator prices 
for different quality grains. Many small farmers, who do 
not track the protein level of their wheat would load each 
truck with grains from a single bin and sell the unmixed 
grain to the elevators. A truck has a maximum bushel capac-
ity it can carry which is 100 bu in our example. The price 
they will get from all the bins without any mixing would be 
(50 ∗ $3 + 100 ∗ $4 + 50 ∗ $6) = $850 . However, if they 
were to track the protein content and mix grains as shown in 
the figure; load truck one with 50 bushels from bin one and 
50 bushels from bin two, and load truck two with 50 bushels 
from bin two and 50 bushels from bin three, the price they 
will get would be (100 ∗ $4 + 100 ∗ $6) = $1000 . Therefore, 
mixing grain in this scenario increases the profit by $150.

A key challenge in the grain mixing problem is to find 
the optimal bin-pair combination and bushels drawn from 
each bin to load trucks that will yield maximum profit. For 
example, in Fig.  1, there are also other ways to mix grains. If 
we load truck one by mixing 50 bushels from bin one and 50 
bushels from bin three (average protein level 11.5), and truck 
two by taking 100 bushels from bin two without any mix-
ing, the total profit would be (100 ∗ $4 + 100 ∗ $4) = $800 
which yield a profit less than taking all the grains separately.

Although protein level in a truck plays a significant role in 
determining the profit from wheat distribution, we also need 
to consider other factors such as mixing cost and delivery 
cost in the profit model. When mixing grain from multiple 
bins to load a truck, there is an associated mixing cost that 
depends on the mixing difficulty level. The farmers divide 
their farms into multiple sites for better farm management 

(also known as site-specific farming [43]) and store grains 
in site-specific locations. The mixing difficulty depends on 
each bin site. For example, mixing grain from bins that are 
on the same site has a lower difficulty level than mixing bins 
that are on different sites. A difficulty level of 0 indicates no 
mixing and the mixing cost is also 0. However, a difficulty 
level of 4 indicates that the bins from which we are mixing 
are from different sites and farther away from each other. 
The mixing cost might be $0.1 per bushel in this case. Fig-
ure 2 depicts the mixing difficulty scenario based on the site 
location and Table  2 shows the associated mixing cost for 
different mixing difficulties, which were provided by one of 
the farmers with whom we are working.

The delivery cost for a truck transporting to the nearest 
elevators depends on the distance between the site location 
and the elevators. For example, a truck moving from site one 
to elevator one has a delivery cost of $0.2 per bushel whereas 
moving to the same elevator from site three has a cost of 
$0.18 per bushel. Moreover, the delivery cost varies based on 
the distance between a specific site and multiple elevators.

Problem Statement

The grain mixing problem aims to determine the optimal 
mix of wheat from storage bins to maximize profit when 
sold to a set of elevators. In this section, we present the 
mathematical model for the grain mixing problem studied in 
this paper. The input instances of the problem are described 
using the notation in Table  3 with the decision variables 
represented as shown in Table 4. The variables consist of 
both integer and continuous values. For example, the specific 

Table 1   Elevator price for grain 
mixing example

Protein range (%) Price/
Bushel 
($)

[10, 11) 3
[11, 12) 4
[12, 13) 6

Fig. 2   Mixing difficulty based 
on farm site

Table 2   Mixing cost based on difficulty level

Difficulty Level Description Cost/Bushel ($)

0 No mixing 0.000
1 Easy 0.001
2 Moderate 0.010
3 Difficult 0.050
4 Very difficult 0.100
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variables with bins and elevators are restricted to be an inte-
ger whereas the variables with bushels, protein contents, 
mixing and delivery cost, and elevator prices are continuous.

The objective of the Grain Mixing Problem is to find a 
sequence of trucks that maximizes the overall profit given 
by:

Subject to:

(1)
max

∑
ti∈T

∑
bj,bk∈B

∑
e∈E

∑
ge,l∈Ge

((g
p

e,l
− (mbj,bk

+ dbk ,e))

× ti,j,k,e,l)

(2)ti,j,k ≤ CT ∀ti ∈ T ∀bj, bk ∈ B

(3)ti,j,k ≥ 0 ∀ti ∈ T ∀bj, bk ∈ B

(4)
∑
ti∈T

ti,j ≤ bbu
j

∀bj ∈ B

(5)
∑
ti∈T

ti,j,k ≤
∑
bj∈B

bbu
j

(6)t
pr

i
× ti,j,k = b

pr

j
× ti,j + b

pr

k
× ti,k ∀ti ∈ T

(7)
t
pr

i
× ti,j,k,e,l < g

Max_pr

e,l
× ti,j,k ∀ti ∈ T ∀ge,l ∈ Ge

Note that the objective function given in Eq. 1 reflects the 
nonlinearity of the premium-dockage curve with the inflec-
tion point given by the base price/bushel gp

e,l
 . Eqs. 2 and 

3 represents the linear truck capacity constraints. Bushels 
loaded from two bins in a truck cannot exceed the maximum 
capacity of that truck. Equations 4 and 5 represents linear 
bin content constraints. Bushels drawn from a single bin to 
load multiple trucks cannot exceed the initial content (bushel 
amount) of that bin and the sum of all bushels loaded into 
multiple trucks cannot exceed the total bushels of all bins. 
Equation 6 represents the weighted average protein level of a 
truck after mixing grain from two bins. Finally, Eqs. 7 and 8 
are the grade protein requirements that assign a grade (price) 
and elevator to the truck based on elevator protein require-
ment and truck protein content. The last three constraints 
contain a product of two decision variables which introduces 
nonlinearity in these equations.

Problem Complexity

On the surface, it would appear that, by the nature of apply-
ing even an MILP-based approach, our problem could be 
very difficult. That said, we realize there also exist MILP 
instances with efficient exact solutions, so we endeavored to 
assess the underlying computational complexity of our prob-
lem formally. To that end, we prove a theorem that the grain 
mixing problem is NP-Hard following a reduction from the 
3-Dimensional Matching problem. Due to its length, we 
refer the interested reader to [30]. There, the full proof is 
provided, as well as some additional discussion explaining 
how the specifics of the problem presented here fits within 
the scope of the theorem.

Existing Approaches

The grain mixing problem studied in this paper relates to the 
classical blending optimization problem [9]. In general, the 
blending problem involves mixing two or more collections 
of grain with different characteristics to produce a single (or 
multiple) final product(s) that either lowers the production 
cost or improves the profit (or both). Next, we discuss some 
existing approaches from the literature that were used to 
solve related blending optimization problems.

Linear Programming LP is an optimization tool for solv-
ing a continuous-space optimization problem. It is possible 
to solve the classical blending problems by linear program-
ming (LP) methods if both the objective function and the 
constraints are linear [19]. There exist a few works that 
attempted to solve the decision version of the grain mix-
ing problem (also known as wheat blending) with linear 

(8)
t
pr

i
× ti,j,k,e,l ≥ g

Min_pr

l
× ti,j,k ∀ti ∈ T ∀ge,l ∈ Ge

Table 3   Notation used in Grain Mixing Problem

B Set of bins.
E Set of elevators

bbu
j

bj ∈ B . Bushel content in bin bj.
b
pr

j
bj ∈ B . Protein content in bin bj.

CT Constant Capacity of each truck.
Ge Set of grades for elevator e ∈ E.
g
p

e,l
ge,l ∈ Ge . Base Price/Bushel for grade ge,l.

g
Min_pr

e,l
ge,l ∈ Ge . Minimum Protein requirement of grade ge,l.

g
Max_pr

e,l
ge,l ∈ Ge . Maximum Protein requirement of grade ge,l.

mbj ,bk
Mixing cost for mixing bins bj, bk ∈ B.

dbk ,e Delivery cost for transporting grain from bk to elevator e.

Table 4   Decision variables in the Grain Mixing Problem

T Set of trucks for transporting all the grain
ti,j,k,e,l Bushels drawn from bj and bk to fill ti 

achieving grade ge,l.
t
pr

i
Protein content of truck ti.
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programming. Hayka and Cakmalki utilized LP methods 
capable of predicting the optimal wheat blend ratio for a 
targeted final quality to produce a bread making flour [16]. 
Haas used the simplex algorithm to find the optimum blend 
that satisfies the customer’s specific solvent retention capaci-
ties (SRC) [15]. In many real-world applications, the LP 
formulation is often not suitable to address specific blending 
needs. In our case, there is no specific targeted wheat qual-
ity (each truck’s protein content is determined at runtime), 
which makes it challenging to solve the problem by only 
using LP.

Mixed-integer linear programming MILP is often used to 
solve many real-world blending problems [34]. MILP is a 
variation of linear programming where some decision vari-
ables are restricted to integer values. There are exact and 
approximation methods to solve IP/MILP problems; how-
ever, MILP is known to be NP-hard [20]. Bilgen and Ozkara-
han proposed an MILP model to optimize the cost for the 
wheat supply chain (blending, loading, transportation, and 
storage), where the model used a specific blending formula 
for mixing [3]. MILP has also been used in the blending of 
oil [27], water [38], gasoline [18], and chemical fertilizer 
[2]. In our problem, the truck protein content and the grade 
protein content constraints (product of two decision vari-
ables) makes it challenging to be used exactly in an MILP 
solver. Furthermore, the premium-dockage curve used by the 
elevator is a nonlinear function based on a baseline protein 
level. Although it is possible to relax the problem for MILP, 
we left this as future work.

Meta-heuristic approaches For complex blending prob-
lems, meta-heuristic approaches such as evolutionary and 
swarm-based algorithms have also been used in the litera-
ture. Xiang et al. proposed a hybrid evolutionary method 
to solve the wheat blending problem in Australia [23]. 
Their method used a GA with a heuristic method and a 
linear-relaxed version of the simplex algorithm to solve the 
blending problem. Their work closely relates to our mixing 
problem; however, the problem formulation differs based 
on the US wheat market. In our problem, there is an added 
constraint on the capacity a truck can carry, and the farmers 
have the choice of delivering wheat to multiple elevators 
depending on the price. Evolutionary approaches have also 
been used for blending gasoline [7] and composite lami-
nates [1]. Fomeni formulated blending tea optimization as a 
multi-objective optimization approach and used Monte Carlo 
simulation for solving the tea blending problem [11]

Most of the work for the wheat blending problem in the 
US market has been done by the milling companies to pro-
duce client-specific bread making flour. To the best of our 
knowledge, our approach is the first to address the grain-
mixing problem to increase profitability to the farmers.

Combinatorial Optimization Problems (COPs)

Combinatorial optimization is the process of maximizing 
or minimizing an objective function of a discrete, large 
configuration space domain [28]. The objective function is 
often subject to equality and/or inequality constraints, as 
well as integrity restrictions on many variables. Due to the 
robust general model, combinatorial optimization is used 
to represent a variety of problems in fields such as opera-
tions research, combinatorics, graph theory, and logic. Some 
example problems in operations research include efficient 
distribution of goods, machine sequencing, and production 
scheduling [8]. There exist many COPs in the literature that 
can be solved using polynomial-time algorithms. For exam-
ple, some such problems can be modeled as LP or Integer LP 
(ILP) problems and can be solved exactly in polynomial time 
[25]. Some example problems that fall into this category are 
the shortest path, maximum flow, spanning tree, and match-
ing problems [21].

However, for many real-world problems, the space of 
possible solutions is often too large to search exhaustively 
using brute force methods. In that case, approximation algo-
rithms are often used to provide fast but near-optimal solu-
tions. Example approximation algorithms that can provide 
approximation-guaranteed suboptimal solutions for some 
intractable problems include greedy, sequential, and local 
search algorithms [42, 44] and dynamic programming algo-
rithms [39]. Metaheuristic approaches have also been used 
as approximation algorithms for solving NP-Complete COPs 
but generally fail to provide any optimality guarantees [4].

The grain mixing problem studied here can be viewed as 
a permutation-based combinatorial optimization problem. 
In general, permutation-based problems are those where the 
solutions are encoded as permutations and the goal is to find 
the best set from all possible solutions for which a specific 
objective function is maximized (or minimized). In the grain 
mixing problem, the solutions can be represented as a set of 
bin-pair and mixing ratio combinations to load trucks, and 
the objective is to find the optimal set of combinations for 
which the total profit is maximized. The order in which the 
bin-pair are loaded into a truck matters due to the delivery 
cost which makes it a permutation-based problem. Other 
well-known permutation-based COPs include the Traveling 
Salesperson Problem (TSP), the Flow Shop Scheduling 
Problem (FSSP), and the Quadratic Assignment Problem 
(QAP) [6]. Most of these problems are known to be NP-
complete and rely on approximation algorithms rather than 
exact algorithms. Evolutionary algorithms such as genetic 
algorithms (GA) and differential evolution (DE) have been 
shown to be efficient approaches for solving permutation-
based COPs in the literature [37].
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Genetic Algorithm (GA)

A Genetic Algorithm (GA) is a stochastic search algorithm 
that mimics the evolutionary process of natural selection and 
“survival of the fittest.” The GA was first introduced by John 
Holland [12] and belongs to the larger class of evolution-
ary algorithms (EA). In the theory of evolution, individuals 
with better adaptation to the surrounding environment have 
a higher chance of survival and reproduction, while the less 
fit individuals will be eliminated in the process.

A GA tries to simulate the same process for solving an 
optimization problem. It starts with an initial population 
of individuals, where each individual represents a poten-
tial solution to the problem. The fitness of an individual is 
evaluated based on the objective function to be optimized, 
also sometimes called the fitness function. Then a selection 
process takes place where more fit individuals have a better 
chance to participate in the mating pool for producing off-
spring for the next generation. A crossover procedure takes 
place to create new offspring (i.e., children) that share some 
common gene characteristics from both parents. A muta-
tion operator is often applied that alters some genes in the 
individuals that help the GA to prevent converging to local 
optima. The process of fitness evaluation, selection, crosso-
ver, and mutation continue until finding a satisfactory solu-
tion or meeting some termination criterion.

The crossover operator plays an important role in GA’s 
search. For permutation-based COPs such as TSP, traditional 
crossover operators like one-point crossover, two-point 
crossover, and uniform crossover are not often suitable. 
Therefore, crossover variants such as ordered crossover, 
partially mapped crossover, cyclic crossover, etc., have been 
proposed for handling permutation-based problems [17, 35]. 
For this study, we used the ordered and partially mapped 
crossover operators, which are similar to those used with 

the TSP representation; however, we adapted both to fit our 
problem representation. Next, we discuss the two crossover 
operators in context with solving traditional permutation-
based problems, prior to adaptation.

Ordered Crossover (OX)

The OX operator was first introduced by Davis [10] as an 
alternative operator for solving the 2-D bin packing prob-
lem. The mechanism of the OX operator has been shown 
to be an effective operator for solving permutation-based 
problems such as TSP [32]. To demonstrate OX crosso-
ver, we will use the most common TSP representation 
where the cities are represented as integer vertices, and 
a legal tour is represented by a series of vertices. For 
example, let us consider a TSP instance with 8 cities. If 
4 → 1 → 2 → 5 → 8 → 6 → 7 → 3 → 4 is a legal tour, then 
the chromosome can be represented as (4 1 2 5 8 6 7 3).

Figure 3 demonstrates generating new offspring using 
the OX operator. First, it selects a random crossover point 
between two chosen parents. In the next step, it creates two 
empty offspring and copies the gene of the parents until the 
crossover point. In this example, offspring 1 copies genes 
from parent 1 and offspring 2 copies genes from parent 2. 
Then offspring 1 marks the gene in parent 2 that is already 
present in the sequence and copies the rest of the genes from 
parent 2 in the order they are present (excluding the marked 
one). Therefore, the OX operator respects the relative orders 
of the genes from parents when generating offspring. It also 
creates the offspring 2 analogously.

Partially Mapped Crossover (PMX)

The PMX operator was first introduced by Goldberg and 
Lingel [13], and for some problems, it provides better 

Fig. 3   Order crossover example 
on two TSP parents
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performance than other crossover operators. Figure  4 dem-
onstrates the offspring generation using the PMX operator. 
First, it selects two random cut points in the parent’s chro-
mosome that forms a substring. For the next step, offspring 
1 copies the substring of parent 2 (and offspring 2 copies the 
substring of parent 1) and creates a partial mapping of the 
substring. Then, offspring 1 further fills the sequence with 
genes from parent 1 that do not have any conflict. Finally, it 
uses the mapping to resolve the conflicts to generate legal 
offspring. For example, in Fig. 4b, genes 6 and 7 are con-
flicting in offspring 1, so the mapping ( 8 ↔ 6 ) is used to 
replace gene 6 with gene 8. Similarly, gene 5 replaces gene 
7 (following the double mapping 3 ↔ 7, and 5 ↔ 3 ). It then 
creates the offspring 2 analogously.

Differential Evolution (DE)

The computational steps of DE, which was first introduced 
by Storn and Price [40], are similar to the GA with a differ-
ence in the parameter vectors for exploring the search space. 
DE is computationally simple, reliable, and robust which 
makes it a competitive approach for solving continuous opti-
mization problems; however, DE needs to be adapted for 
combinatorial problems such as ours. Here, we will briefly 
describe the search mechanism of standard DE for solving 
continuous optimization problems. Like GA, DE also starts 
with a set of random individuals that represent a potential 
solution to the problem. Let xg

i
 represents the ith individual 

in generation g. To introduce new individuals in the popu-
lation, DE applies the differential mutation, crossover, and 
selection operators.

The differential mutant operator creates a mutant vector 
v
g

i
 by first taking the difference between two donor vectors, 

chosen randomly from the population. Then, the difference 
is scaled and added to a third donor vector (i.e., base vector) 

to obtain the final mutant vector. The equation for the mutant 
vector is defined as:

where, r1, r2, and r3 represents the population indices of 
the three donor vectors and are mutually exclusive (i.e., 
r1 ≠ r2 ≠ r3 ), and F ∈ (0,∞) represents the differential 
weight (i.e., a scaling factor).

After the mutation step, a crossover between the current 
individual (target vector) xg

i
 and the mutant vector vg

i
 takes 

place to create a trial vector ug
i
 as follows:

where CR represents the crossover rate and jrand represents 
a random value in the vector dimension [1, D]. The trial 
vector ui,g takes the jth real-value of either the target vector 
or mutant vector based on the condition.

Finally, a selection procedure selects a better individual 
between the trial vector and the current individual based on 
their fitness values for the next generation as follows:

Thus, if the trial vector has better fitness, it replaces the cur-
rent individual; otherwise, the current individual survives 
to the next generation. The process of mutation, crossover, 
and selection continues for each individual in the popula-
tion for each generation until the termination condition is 
satisfied, and the global best individual is returned as the 
final solution.

Simple DE works best for numerical optimization 
problems with real-valued chromosome representations. 

v
g

i
= x

g

r1
+ F × (x

g

r2
− x

g

r3
)

u
g

i,j
=

{
v
g

i,j
, if rand(0, 1) ≤ CR or j = jrand

x
g

i,j
, otherwise

x
g+1

i
=

{
u
g

i
, if f (u

g

i
) ≤ f (x

g

i
)

x
g

i
, otherwise

Fig. 4   Partially mapped crosso-
ver example on two TSP parents
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However, for permutation-based representations, the arith-
metic operations to create the new mutant vector are not 
meaningful. Therefore, many differential mutation operators 
have been proposed in the literature to deal with permuta-
tion-based problems for DE. Some common mutation oper-
ator includes the Permutation Matrix, Adjacency Matrix, 
Relative Position Indexing, and Forward-Backward Trans-
formation approaches [31]. For the grain mixing problem, 
we adapt two different techniques for DE mutation. The first 
is adapted from the Relative Position Indexing (RPI) opera-
tor, and the second is based on perturbing the generation 
best individual chromosome with random individual chro-
mosomes in the population. Next, we will briefly discuss the 
Relative Position Indexing operator when applied to TSP 
instances and our proposed perturbation method.

Relative Position Indexing (RPI)

The RPI approach was adapted from the original differen-
tial mutation and is only applicable for permutation-based 
problems [24]. It has been applied successfully in COPs like 
permutation flow-shop scheduling [33, 36]. RPI first trans-
forms the integer permutation vectors into floating-point 
vectors and then applies the standard DE mutation on the 
floating-point vectors. The mutated floating-point vector is 
then transformed back into an integer permutation vector 
using the relative position indexing.

For example, let us consider three random donor vectors 
in the current population, xr1 , xr2 , and xr3 with the following 
representation where each vector represents a legal TSP tour.

To convert these integer vectors into floating point vectors 
with each entry in the half interval (0, 1], one approach is to 
divide each integer value with the highest value in the vector. 
After conversion, the floating-point vectors become:

Then, the standard DE mutation operator can be applied to 
the resulting vectors to obtain the floating mutation vector. 
With F = 0.4 , the floating mutant vector would be:

The final step is to convert the floating mutant vector back to 
the integer permutation representation. To do that, the RPI 

x
g

r1
=
[
1 5 3 6 7 4 2 8

]

x
g

r2
=
[
6 2 5 1 3 7 4 8

]

x
g

r3
=
[
8 2 3 6 7 5 1 4

]

x(f )
g

r1
=
[
0.125 0.625 0.375 0.750 0.875 0.500 0.250 1.000

]

x(f )
g

r2
=
[
0.750 0.250 0.625 0.125 0.375 0.875 0.500 1.000

]

x(f )
g

r3
=
[
1.000 0.250 0.375 0.750 0.875 0.625 0.125 0.500

]

v(f )
g

i
= x(f )

g

r1
+ F ×

(
x(f )

g

r2
− x(f )

g

r3

)

v(f )
g

i
=
[
0.025 0.625 0.475 0.500 0.675 0.600 0.400 1.200

]

is used, where the smallest floating-point value is replaced 
by the smallest integer value and the next smallest float-
ing-point by the next smallest integer value and so on until 
all the floating points are converted. After conversion, the 
mutant vector becomes:

The above mutant vector transformation is a legal tour; how-
ever, it may not always be the case if two or more floating-
point values happen to be the same. In that case, the trial 
vector is repaired or discarded for that individual in the cur-
rent generation.

Generation Best Perturbation (GBP)

The second differential mutation operator that we used 
involved perturbing the chromosome of the generation best 
individual. A similar approach has been proposed in the 
literature for solving application-specific problems using 
discrete DE [14, 41]. Our proposed GBP operator works as 
follows. Two random individuals along with the generation 
best individual are selected from the target population (all 
mutually exclusive), and the differential variation is achieved 
by deleting some genes from the generation best individual 
and inserting new genes from the two random individuals 
depending on the mutation factor. The mutation factor con-
trols the rate of perturbation of genes in the best individual 
to create the mutant vector. The proposed GBP operator can 
be represented as follows:

where, qi is a random number between (0, 1) and F ∈ [0, 1] 
is the mutation factor.

The resulting mutation can be thought of as a probability 
measure. For an F value of 0.5, the mutant vector has a 50% 
probability to copy a gene from x_best and a 25% probability 
to copy a gene from donor vector xr2 and a 25% probabil-
ity, to copy a gene from the donor vector xr3 . If the gene is 
already present in the mutant vector, it moves to the next 
index until it finds a valid gene entry.

Grain Mixing Dataset

The grain mixing dataset used in this project was collected 
from a local Montana farmer who tracks the protein level of 
his wheat. The dataset contains the data for wheat harvested 
in 2016 and 2017. All bushels of wheat were distributed 
among various bins. For our problem, a bin entry includes 

v
g

i
=
[
1 6 3 4 7 5 2 8

]

v
g

i,j
=

⎧
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x
g
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x
g
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F +
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the bin id, the site number where the wheat was harvested, 
the average protein level of wheat in that bin, and the total 
number of bushels stored in that bin. The wheat data we 
received contains a total of 16 bins with different number of 
bushels and protein content in each bin. The wheat distribu-
tion statistics for both years is shown in Table 5, and the 
details on each bin for the year 2017 are shown in Table  6.

The data provided also includes a list of elevators with 
their associated market prices for buying the wheat. An entry 
in the elevator list contains a premium-dockage curve with 
the base protein level, the price for the base protein level, the 
premium payment added to the base price for higher protein 

level (upPrice), and the dockage payment deducted from 
the base price for lower protein level (downPrice). We were 
provided information on three elevators for both years. The 
market prices for the three elevators are shown in Table 7.

Figure 5 illustrates the premium-dockage curves for the 
three elevators in 2017. The dots in each elevator’s curve 
shows the base protein level and base price/bushel for 
that elevator. As shown, the price of protein increases (or 
decreases) as a step function, and the step size differs based 
on the upProtein (or downProtein) levels from the base pro-
tein level, thus creating an inflection point at the base price.

Multiple trucks, each with a fixed capacity of 8,000 
bushels, were used to carry the wheat to the elevators. Note 
that there is a delivery cost involved in going to the eleva-
tors, ranging from $960 to $2,000 for a fully loaded truck, 
depending on the distance between a bin site and an elevator. 
Moreover, mixing the wheat from multiple bins to change 
the average protein content incurs a mixing cost. The mixing 
is restricted to two bins at a time due to farmers’ physical 
limitations. The mixing cost also depends on the site num-
ber of the bins; mixing two bins from the same site is less 
expensive than mixing bins from different sites due to the 
lower difficulty. Thus, for a fully loaded truck, the mixing 
cost varies from $8 to $800.

Baseline Deterministic Approaches

In this section, we introduced two deterministic approaches 
for solving the grain mixing problem. We use these two 
approaches for performing a baseline comparison to our 
proposed evolutionary methods. The first method is referred 
to as the “no mixing” approach that assumes that tracking 
protein content of the wheat is not available. Thus the wheat 
distribution profit is computed assuming no grain mixing 
has occurred. This approach will give us the naïve baseline 
profit, representing farmers who do not have the protein 
monitor on their harvesters. The baseline profit will then 
be used to compare other grain mixing approaches to assess 
the solution quality.

The second deterministic approach is referred to as the 
“greedy” mixing approach where the grain mix is deter-
mined based on a lookup table with combinations of bin 

Table 5   Wheat distribution statistics

Year Tot Bush Max Bu/Bin Min Bu/Bin Avg Bu/Bin

2016 114284.8 14836.8 1712.7 7142.8
2017 112417.5 14836.8 2985.3 7026.1
Year Tot Prot Max Prot/Bin Min Prot/Bin Avg Prot/Bin
2016 191.3 13.3 10.1 12.0
2017 190.1 13.8 10.1 11.9

Table 6   Farmer bin information for wheat harvested in 2017

Bin number Site Avg Protein Bushels

1 2 12.32 14836.8
2 7 13.78 7292.5
3 2 12.71 6395.3
4 6 11.34 8525.5
5 6 10.88 5713.36
6 1 12.58 7703.67
7 7 10.35 1712.67
8 1 10.72 4192.67
9 1 13.15 6539.83
10 3 10.11 7292.5
11 3 12.38 4921.32
12 7 12.01 7089.67
13 6 10.83 5050
14 3 12.13 8657.4
15 5 13.41 2985.3
16 2 11.4 13509

Table 7   Market prices for three 
elevators in Northwest Montana

Year Elevator Base Price BaseProtein upPrice upProtein downPrice downProtein

2016 1 3.32 11.25 0.03 0.75 -0.06 0.75
2 3.84 11.75 0.25 0.50 -0.30 0.50
3 3.54 12.00 0.50 0.60 -0.40 0.30

2017 1 4.42 11.50 0.05 0.50 -0.10 0.50
2 4.47 12.00 0.25 0.50 -0.30 0.50
3 4.39 12.20 0.50 0.60 -0.40 0.30
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pairs and pre-computed mixing ratios to provide the highest 
immediate profit, under the assumption there is sufficient 
grain left to fill the trucks. This provides a naïve baseline 
for farmers with protein monitors but who do not apply our 
proposed evolutionary method.

No Mixing Approach

The “no mixing” (NoMix) approach calculates the baseline 
profit without any grain mixing. The algorithm starts by 
taking a single bin at a time and loading trucks with grain 
from that bin until the grain in the bin is exhausted. For a 
partially loaded truck (i.e., when not enough grain is left to 
load the truck fully), the method checks if that truck provides 
any profit (i.e., revenue > delivery_cost ) when going to an 
elevator. If not, the grain in that truck is discarded without 
any penalty, and the truck is freed up to be used to load 
grain from another bin. Finally, the total profit is calculated 
by summing the individual profits from all loaded trucks.

Greedy Mixing Approach

The “greedy mixing ” (GreedyMix) approach first cre-
ates a lookup profit table (LPT) by considering all the 
possible bin pair combinations with different mix-
ing ratios. In our dataset, there are a total of 16 bins and 
P(16, 2) = 16!∕(16 − 2)! = 240 ways to select two bins. 
Here, we used the permutation to determine the delivery 
cost when a truck transporting to an elevator only depends 
on the site number of the second bin. Therefore, the order 
from which a truck loads grain changes the profit. Moreo-
ver, to make the LPT finite, we discretized the mixing ratio 
� ∈ {0.1, 0.2, 0.3, ..., 0.9} . Therefore, in the LPT, there are a 

total of 240 × 9 = 2160 unique entries. Table 8 shows a sub-
set of the LPT for a particular set of elevators/markets and 
their premium-dockage curves. Each entry in the LPT also 
contains an additional field MaxProfit. This field tells us the 
maximum profit a truck can have when fully loaded follow-
ing the bin pair and mixing ratio combination of that entry.

To find a solution, the algorithm sorts the profit table in 
descending order of MaxProfit and traverses it from the top. 
For any particular combination, if both bins have enough 
grain left to fill a new truck using the mixing ratio � , the 
algorithm fills the truck and records the profit. Otherwise, it 
partially fills the truck with the remaining grain from both 
bins and includes it in the solution if the truck provides 
profit (or discards the unprofitable mix otherwise without 
any penalty). For example, in the case of the combination 
((1, 2), � = 0.5) , if there are 5000 bushels left in bin 1 but 
only 3000 bushels left in bin 2, the algorithm will take 4000 
bushels from bin 1 (half the capacity of the truck) and 3000 
bushels from bin 2. Therefore, the total number of bushels in 
that truck will be 7000, and the mixing ratio will be updated 
accordingly.

After the first sweep through the LPT, if there exists a 
single bin with sufficient grain remaining to make a profit 
(where other bins do not have any bushels left to make a 
profitable combination), a new truck is filled with the 
remaining grain from that bin. No mixing cost is incurred for 
this truck. Finally, the total profit is calculated by summing 
the individual profits from all loaded trucks. Algorithm 1 
shows the pseudocode for the greedy mixing approach.

Fig. 5   Premium-dockage curve 
of three elevators in Northwest 
Montana in 2017
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Table 8   Partial lookup 
profit table based on a set of 
premium-dockage curves

ID BinPair_1 BinPair_2 MixRatio Protein Elevator MaxProfit

1 1 2 0.1 13.63 3 41992
2 1 2 0.2 13.49 3 41992
3 1 2 0.3 13.34 2 38632
4 1 2 0.4 13.20 2 38632
5 1 2 0.5 13.05 2 38632
6 1 2 0.6 12.90 3 37992
7 1 2 0.7 12.76 2 36632
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

2155 16 15 0.4 12.61 2 35200
2156 16 15 0.5 12.41 1 33200
2157 16 15 0.6 12.20 1 33200
2158 16 15 0.7 12.00 1 33200
2159 16 15 0.8 11.80 2 33200
2160 16 15 0.9 11.60 2 33200

Fig. 6   Sample encoding for 
genetic algorithm

Evolutionary Approaches

For this study, we utilized two evolutionary approaches 
namely a GA and DE, to solve the grain mixing problem. 
We introduced a novel permutation-based representation for 
these approaches tailored specifically to the grain mixing 
problem. Specifically, we used a permutation to specify an 
order for how to load trucks so as ensure the constraints 
remain satisfied. Next, we discuss our specific implementa-
tion of the GA and DE for solving the grain mixing problem.

Genetic Algorithm

Encoding

For an individual chromosome in the target population, we 
utilized a permutationbased representation where each gene 
in the chromosome is a unique tuple ⟨ID, bin_pair, �⟩ . Here 

bin_pair specifies the pair of bins used to load a truck, and 
� represents the mixing ratio (the number of bushels drawn 
from each bin for mixing). There are a total of 2160 unique 
mixes defined in the LPT, and ID represents an integer iden-
tifier for each combination. Therefore, each ID in the chro-
mosome is going to appear exactly once to ensure a feasible 
solution in the search space. When generating a potential 
solution for an individual, the mixing combination in each 
tuple is used for loading trucks (fully/partially) as long as the 
bin pairs have grain left to do so. An example of the chromo-
some representation is shown in Figure 6.

Initial Population

For the initial population P, we create N individuals where 
each individual’s chromosome consists of m random mixing 
combinations (without any duplicate ID), and the size of 
chromosome m is also a tunable parameter. The m mixing 
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combinations are used for loading trucks when generating 
a potential solution; therefore, the size of m should be suf-
ficiently large to transport all of the grain to the elevator.

Fitness Function

The fitness of an individual I is calculated as follows:

where the method IndividualMix takes the m mixing com-
binations from the individual’s chromosome as input. To 
generate a feasible solution, it first calculates the maximum 
profit that can be achieved for each combination (assum-
ing a fully loaded truck for that combination), and sorts the 
mixing combinations with respect to the maximum profit. 
Then, it performs two sweeps in the sorted combination list 
to load the trucks. In the first sweep, for a particular com-
bination, if both bins in the combination have enough grain 
left to load a truck fully/partially and can make a profit, it 
loads the truck and records the profit. Otherwise, it discards 
the grain in that truck and moves to the next combination. 
In the second sweep, it checks for unused combinations in 
the sorted list, and for a particular combination, if a single 
bin has enough grain left to make a profit, it loads a truck 
without incurring any mixing cost. The second sweep is 
important as the size of m is generally much lower than the 
total 2160 combinations, and some bin-pair combinations 
might not be present in the chromosome list. if the size of m 
is close to the total number of mixing combinations, then it 
will perform similarly to the greedy approach. Finally, the 
method loads l trucks out of m mixing combinations (where 
l < m ) without violating any constraints and returns the total 
profit of all loaded trucks. The pseudocode for IndividualMix 
is shown in algorithm 2.

fitness(I) = IndividualMix()

Selection

The GA uses tournament selection [26] to select parents 
from the current population to generate new offspring for 
the next generation. A tournament consists of s randomly 
selected individuals from the current population, and the 
individual with the highest fitness (tournament winner) is 
added to the mating pool to generate new offspring. The 
selection pressure that controls the GA’s convergence rate 
highly depends on the tournament size.

Crossover

After the selection process, the GA applies a crossover oper-
ator to generate new offspring. For this study, we adapted 
two different crossover operators—OX and PMX—designed 
for handling permutation-based GA representations. A brief 
description of these operators on the TSP representation is 
given in Sects. “Ordered Crossover (OX)” and “Partially 
Mapped Crossover (PMX)”, respectively. For the grain mix-
ing representation, these operators closely follow the TSP 
representation. However, the major difference is that, unlike 
TSP, the grain mixing representation does not follow a strict 
permutation. In the permutation-based TSP representation, 
all of the cities appear in the chromosome list and, based 
on the order in which they are arranged, the fitness value 
changes. However, in the grain mixing representation, the 
chromosome list will utilize a subset of the 2160 mixing 
combinations, scanned according to the permutation. There-
fore, for two different individuals, the mixing combinations 
selected in the chromosome may not be exactly the same.

As the fitness function sorts the mixing combinations in 
the chromosome based on the maximum profit, the relative 
order in which the combinations appear does not affect the 
fitness value; however, the permutation interpretation allows 
the problem constraints to be enforced. Then introducing 
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new mixing combinations in the chromosome list affects the 
fitness value. Although a gene is represented by the tuple 
< ID, bin_pair, 𝛼 > where the bin_pair and mixing ratio � 
is used to load trucks in the fitness function, only the integer 
combination ID is used to shuffle the genes in the crossover 
operators.

Mutation

After applying the crossover operator, the mutation operator 
is applied to the current population to add diversity for the 
next generation. Our mutation operator randomly selects a 
subset of individuals in the current population based on the 
mutation probability. Then, for each selected individual, it 
swaps a randomly selected mixing combination in the chro-
mosome with a new mixing combination that is not already 
present in the chromosome. Finally, it recalculates the fit-
ness of the mutated individuals to obtain a feasible solution 
(fitness value).

Differential Evolution

Our approach to applying DE to the grain mixing problem is 
similar to the GA approach; however, the major differences 
lie in the computational steps and the search mechanism. 
The encoding, initial population, and fitness function used 
in DE are the same as in GA. The main differences lie in 
the mutation, crossover, and selection operators. Next, we 
discuss our specific implementation of these operators.

Mutation

For this study, we used two differential mutation operators. 
The first one is an adaptation of Relative Position Index-
ing (RPI) as described in Sect. “Relative Position Indexing 
(RPI)”. To illustrate the adapted RPI, consider three donor 
vectors xr1, xr2 , and xr3 . For example purposes only, assume 
there are a total of 10 mixing combinations, and the vector 
length of each donor vector is 5 (i.e., draws 5 combinations 
out of 10). The donor vector’s representation is as follows 
(note that the bin pair and mixing ratio are excluded for 
simplicity):

From these, we create a union vector that includes all of the 
different combination IDs from the three donor vectors as 
follows:

xr1 =
[
9 4 6 1 3

]

xr2 =
[
7 10 2 4 8

]

xr3 =
[
3 10 9 1 4

]

The next step is to transform all of the integer values to 
floating-point values by dividing each vector element by the 
largest integer in the vector list and then mapping these val-
ues back onto the original donor vectors as follows:

Next, the standard DE mutation operator is applied to the 
real-valued donor vectors to obtain the real-valued mutant 
vector (suppose F = 0.5 ) as follows:

The final step is to convert the floating mutant vector to an 
integer-valued mutant vector. To do that, we use the float-
ing union vector. Each value in v(f) is compared against the 
values in U(f) and for the U(f) value for which the distance 
is the minimum, the corresponding integer combination ID 
from U is selected to replace the floating-point value. The 
ID which has been assigned to the mutant vector is removed 
from the list U and U(f) to avoid any duplicate entry. The 
procedure is illustrated as follows:

The second differential mutation operator is the Generation 
Best Perturbation (GBP) as described in Sect. “Generation 
Best Perturbation (GBP)”. For the GBP illustration, let us 
consider the same donor vectors that we used in the RPI 
example. With a mutation factor of 0.5 and q ∈ random(0, 1) , 
the mutation vector v can be obtained as follows:

U = xr1 ∪ xr2 ∪ xr3

=
[
1 2 3 4 6 7 8 9 10

]

U(f ) =
[
0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

]

x(f )r1 =
[
1.0 0.44 0.67 0.11 0.33

]

x(f )r2 =
[
0.7 1.0 0.2 0.4 0.8

]

x(f )r3 =
[
0.3 1.0 0.9 0.1 0.4

]

v(f ) = x(f )
g

r1
+ F ×

(
x(f )

g

r2
− x(f )

g

r3

)

=
[
1.2 0.44 0.32 0.26 0.53

]

U =
[
1 2 3 4 6 7 8 9 10

]

U(f ) =
[
0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

]

v(f ) =
[
1.2 0.44 0.32 0.26 0.53

]

v =
[
10 4 3 2 6

]

q =
[
0.57 0.19 0.32 0.84 0.07

]

xbest =
[
9 4 6 1 3

]

xr2 =
[
7 10 2 4 8

]

xr3 =
[
3 10 9 1 4

]

v =
[
7 9 4 3 6

]
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Crossover

After creating the mutant vector, binomial crossover is per-
formed between the target vector xg

i
 and the mutant vector 

v
g

i
 to create the trial vector ug

i
 . The crossover operation is 

similar to the standard DE crossover, however, in our imple-
mentation, the trial vector first copies the chromosome of 
the mutant vector vi,g and replaces the gene with the target 
vector xi,g only if it is not already present in the trial vector 
and the crossover condition (rand(0, 1) ≤ CR or j = jrand) 
condition is satisfied.

Selection

The selection operator is the same as standard DE. It selects 
the better individual by comparing the fitness of the trial 
vector ui,g and the target vector xi,g . If the trial vector has 
a higher fitness value than the target vector, the target vec-
tor is replaced by the trial vector for the next generation. 
Otherwise, the trial vector is discarded and the target vector 
remains in the population for the next generation.

Experimental Design

For this study, we were able to collect real wheat harvest 
information for the years 2016 and 2017 from a Northwest 
Montana farmer. To further evaluate the performance of 
the mixing algorithms, we created twelve additional data-
sets. Among them, two datasets were created by swapping 
the elevator prices for both years. In other words, the bin 
information for year 2017 was used with the elevator prices 
from 2016 and vice-versa. Then we created 5 artificial data-
sets for each year. For these datasets, the elevators, mixing 
cost, and delivery cost remained the same, however, the bin 
contents were altered. We used the same 16 bins, and the 
number of bushels and the protein content in each bin were 
assigned randomly falling within a pre-specified lower and 
upper bound.

For the initial population, GA and DE implementations 
created random individuals by taking a small subset of the 
total mixing combinations to form the chromosome. The 
intuition was that, for a small subset of the mixing combi-
nations, the IndividualMix method would return a different 

result than the GreedyMix algorithm based on the few 
choices of bin combinations. The goal of the GA and DE 
algorithms is to find the best sequence from the profit table 
for which the profit is maximized. Therefore, chromosome 
size plays an important role in the overall solution. The sub-
set has to be selected in such a way that it contains sufficient 
bin combinations to empty all of the grain in the bins. If the 
subset is too small, then it may not contain an entry for a 
particular bin; therefore, all of the bushels of that bin may 
go unused in the solution. If the subset is too large, then it 
will perform like the GreedyMix algorithm with all of the 
choices for filling a truck.

The hyperparameters, along with the size of the chro-
mosome used in the GA and DE algorithms, were tuned 
manually. Table 9 shows the tuned parameter values used 
in the GA and DE algorithms for all of test cases. Column 
#MaxIter represents the maximum generation number, and 
column #MC represents the number of mixing combinations 
in the chromosome list (chromosome size). Column F rep-
resents the mutation factor for the DE algorithm. These sets 
of parameters provided the highest average profit for the real 
datasets, so they were used for all of the experiments.

To further assess the effectiveness of the evolutionary 
approaches, we also introduced a Random algorithm as a sto-
chastic baseline. This method creates 100 individuals by ran-
domly taking 100 mixing combinations from the total 2,160 
combinations and returns the individual with the highest 
profit. The Random algorithm helps us assess if the evolu-
tionary algorithms are exploring the search space efficiently 
to provide a better solution than random search.

The deterministic approaches always yield the same 
solution; however, that is not the case with the evolution-
ary approaches and the random search algorithm. They 
are stochastic, so to evaluate their performance, we ran 10 
experiments on each dataset and recorded the average overall 
profit.

Results and Analysis

Profitability Analysis

Table 10 shows the performance of the different algorithms 
for each of the different test cases studied. The column 
Dataset identifies which data was used by the algorithms 
to generate the results. The notation R_year indicates the 
real dataset for the respective year. RF_year indicates the 
flipped market version of the real datasets, and A∗_year indi-
cates the artificial datasets for each of the respective years. 
The values in the table show the overall profit obtained by 
each algorithm, expressed in thousands of US dollars. For 
both GA and DE, there are two versions, one for each of 
the different adapted operators. The overall profit from the 

Table 9   Parameter settings for GA and DE algorithms

Algo #MaxIter Population #MC Tournament Mutation

GA 500 200 50 5 0.2
Algo #MaxIter Population #MC CR F
DE 500 100 100 0.9 0.5
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stochastic algorithms (i.e., GA, DE, and Random) are the 
mean and standard deviation over 10 runs of experiments; 
however, the profit did not change for the deterministic algo-
rithms (Greedy, and NoMix). The bold values represent the 
maximum profit obtained across the algorithms for a respec-
tive dataset, and the underline values represent a sufficient 
profit increase from the base solution (i.e., NoMix). If the 
increased profit is more than $5000 from the base solution, 
we call it sufficient as the average price for protein monitors 
costs around $5000.

Based on different algorithms’ performance, we note that 
the evolutionary approaches lead to a higher overall profit 
compared to the NoMix solution in every case. For all data-
sets, GA’s OX and PMX operators, and DE’s GBP operator 
consistently provided a sufficient profit increase. Surpris-
ingly, for DE, the RPI operator did not perform as well as 
the GBP operator. Although RPI provided a sufficient profit 
increase for most of the datasets (except for two), the profit 
from RPI is consistently lower than the other evolutionary 

operators for most of the test cases. Comparing the two 
crossover operators of the GA, the PMX operator for all test 
cases provided a higher profit than the OX operator. And, 
comparing all evolutionary approaches, DE with the GBP 
operator performed best for the real and flipped datasets, 
whereas the GA with the PMX operator performed best for 
all the artificial datasets.

The overall profit from the Random and Greedy algo-
rithms are consistently lower than the evolutionary 
approaches for all test cases. Furthermore, for most of the 
test cases, they failed to provide a sufficient profit increase 
from the base solution, and for some datasets yielded a profit 
lower than the base solution. Based on the performance of 
the Random algorithm, it is evident that the evolutionary 
approaches are effectively exploring the search space to find 
a better solution, and the greedy solution suggests that the 
added complexity of the evolutionary approaches is ben-
eficial for finding a better overall profit. Unfortunately, the 
cost associated with the production (harvesting) was not 

Table 10   Performance of the 
different algorithms (profit in 
thousands of dollars)

Dataset GA DE Random Greedy NoMix

OX PMX RPI GBP

R_2016 435.3 435.5 430.9 436.0 427.5 430.5 424.5
±1.04 ±1.53 ±0.48 ±0.50 ±0.86

R_2017 495.5 496.1 494.2 497.1 489.7 491.6 487.1
±0.59 ±0.98 ±0.77 ±0.74 ±0.53

RF_2016 505.3 506.0 502.8 506.2 500.9 499.9 499.7
±1.03 ±0.54 ±0.38 ±0.37 ±0.63

RF_2017 427.6 428.7 424.0 429.1 420.6 423.1 418.0
±1.36 ±1.34 ±0.96 ±0.67 ±0.60

A1_2016 416.6 418.2 411.2 417.1 405.6 394.5 395.4
±1.39 ±2.08 ±1.02 ±1.34 ±1.21

A2_2016 562.2 563.9 558.0 562.7 548.9 533.1 545.2
±2.44 ±1.85 ±1.32 ±2.04 ±2.24

A3_2016 589.8 592.6 583.1 588.7 568.3 543.9 569.9
±2.63 ±1.91 ±1.90 ±1.73 ±3.39

A4_2016 575.3 576.6 566.9 572.8 556.4 520.4 539.9
±1.60 ±1.91 ±1.96 ±1.98 ±1.92

A5_2016 534.9 536.4 527.3 533.8 512.7 496.9 512.2
±1.59 ±1.53 ±1.13 ±1.98 ±2.51

A1_2017 621.8 623.9 610.2 620.8 595.8 581.7 608.9
±3.38 ±2.37 ±2.43 ±3.31 ±2.28

A2_2017 537.0 539.4 529.5 538.4 520.1 515.8 520.6
±2.16 ±1.98 ±1.75 ±1.33 ±1.68

A3_2017 675.3 678.5 668.4 676.1 661.8 655.8 643.9
±1.49 ±1.96 ±1.37 ±1.58 ±2.32

A4_2017 451.3 452.7 449.4 452.5 442.4 435.6 430.1
±1.56 ±0.87 ±1.24 ±1.06 ±1.16

A5_2017 684.5 687.0 677.0 686.2 670.9 656.0 663.5
±1.58 ±2.71 ±1.11 ±2.36 ±2.95
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provided, which would be necessary to provide a more com-
plete estimate of profit.

On the surface, one may suppose that the Greedy solu-
tion should provide the optimal results since it creates all 
possible combinations of mixes and selects the mix greedily 
based on the maximum profit. This claim might be true if 
there existed an infinite number of bushels in all of the bins. 

But, in the real world, our problem is constrained to con-
sider a limited (and possibly different) number of bushels for 
different bins, and loading a truck greedily based on profit 
may not always be possible if there are no bushels left in a 
specific bin. Furthermore, the truck might be partially filled 
based on the remaining bushels of bins, giving a lower profit 
than in an infinite grain context. Therefore, for all the test 

Table 11   Best solution from 
GA(PMX) for R_2017 dataset

Pair Mix P1_Bu P2_Bu Protein Load Elv Profit

(9, 2) 0.50 4000.0 4000.0 13.47 8000.0 3 41600.0
(15, 2) 0.65 2985.3 1600.0 13.54 4585.3 3 23843.6
(9, 2) 0.60 2539.8 1692.5 13.40 4232.3 3 22008.1
(3, 12) 0.70 5600.0 2400.0 12.50 8000.0 2 36560.0
(6, 12) 0.90 7200.0 800.0 12.52 8000.0 2 36240.0
(3, 6) 0.61 795.3 503.7 12.66 1299.0 2 5318.1
(8, 12) 0.29 1600.0 3889.7 11.64 5489.7 2 23764.8
(1, 4) 0.30 2400.0 5600.0 11.63 8000.0 2 34552.0
(1, 4) 0.58 4000.0 2925.5 11.91 6925.5 2 29911.2
(1, 5) 0.50 4000.0 4000.0 11.60 8000.0 2 34480.0
(1, 7) 0.72 4436.8 1712.7 11.77 6149.5 2 26319.7
(10, 11) 0.60 4800.0 3200.0 11.02 8000.0 1 33912.0
(14, 13) 0.70 5600.0 2400.0 11.74 8000.0 2 33760.0
(14, 5) 0.64 3057.4 1713.4 11.68 4770.8 2 20132.6
(13, 11) 0.61 2650.0 1721.3 11.43 4371.3 1 18315.8
(16, 10) 0.80 6400.0 1600.0 11.14 8000.0 1 33120.0
(8, 10) 0.74 2592.7 892.5 10.56 3485.2 1 14301.1
(16, 1) 0.00 7109.0 0.0 11.40 7109.0 1 29644.5
Total 112417.5 497783.6

Table 12   Best solution from 
DE(GBP) for R_2017 dataset

Pair Mix P1_Bu P2_Bu Protein Load Elv Profit

(6, 2) 0.30 2400.0 5600.0 13.42 8000.0 3 41920.0
(15, 2) 0.64 2985.3 1692.5 13.54 4677.8 3 24324.6
(9, 12) 0.89 6539.8 800.0 13.03 7339.8 2 35378.0
(3, 12) 0.80 6395.3 1600.0 12.57 7995.3 2 36538.5
(1, 6) 0.23 1600.0 5303.7 12.52 6903.7 2 31135.6
(11, 7) 0.74 4800.0 1712.7 11.85 6512.7 2 28134.7
(10, 12) 0.25 1600.0 4689.7 11.54 6289.7 2 27171.4
(1, 4) 0.40 3200.0 4800.0 11.73 8000.0 2 34552.0
(1, 4) 0.39 2400.0 3725.5 11.72 6125.5 2 26456.0
(1, 5) 0.60 4800.0 3200.0 11.74 8000.0 2 34480.0
(1, 5) 0.53 2836.8 2513.4 11.64 5350.2 2 23059.2
(10, 11) 0.97 4000.0 121.3 10.18 4121.3 1 16646.0
(14, 13) 0.70 5600.0 2400.0 11.74 8000.0 2 33760.0
(14, 13) 0.54 3057.4 2650.0 11.53 5707.4 2 24085.2
(8, 10) 0.71 4192.7 1692.5 10.54 5885.2 1 24305.8
(16, 2) 0.00 4800.0 0.0 11.40 4800.0 1 20016.0
(16, 12) 0.00 4000.0 0.0 11.40 4000.0 1 16680.0
(3, 16) 0.00 0.0 4709.0 11.40 4709.0 1 19636.5
Total 112417.5 498279.5
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cases, the Greedy solution not only failed to provide optimal 
results but also gave a lower profit (in the artificial test cases) 
than the base solution. The evolutionary approaches do sug-
gest that taking a sub-optimal bin-pair combination can yield 
a higher overall profit than the greedy optimal choice due to 
the varying bin sizes.

Next, we examine the best complete solutions obtained 
from the GA’s PMX operator in Table 11 and DE’s GBP 
operator in Table 12 for the real R_2017 dataset. In these 
tables, the column name “Pair” identifies the pair of bins 
mixed to load a truck, “P1_Bu” and “P2_Bu” specify the 
number of bushels taken from each bin in the pair, “Protein” 
shows the weighted average protein level, “Load” gives the 
total amount of wheat loaded in the truck (max 8000 bu) 
and “Elv” identifies the elevator where the truck delivers 
the grain.

The mixing ratio of the last truck in the PMX solution 
(Table  11) is 0, which indicates that after the first sweep 
in the mixing combination (chromosome list), sufficient 
grain remained in bin 16. Therefore, it loaded the truck 
separately with the remaining grain without incurring any 
mixing cost. We observed the same scenario in the GBP 
solution (Table 12) where the last three trucks show a mix-
ing ratio of 0, and sufficient grain remained in bin 16 for all 
three trucks. Both best solutions loaded grain from bin 16 
separately, which implies that mixing bin 16 with other bins 
might reduce the overall profit.

All of the grain-mixing algorithms provided a similar 
solution format but with different bin-pair mixings. A com-
plete solution shows a farmer how to load each truck with 
bushels from respective bins to generate the solution’s over-
all profit.

Population Diversity

One of the questions to be addressed is whether or not the 
evolutionary methods, those superior to the deterministic 
and random methods, might be converging prematurely. 
One approach to evaluate this is by considering the extent 
to which population diversity is lost as evolution proceeds. 
Therefore, we completed an analysis of population diversity 
for both GA and DE.

To assess the population diversity, we tracked the fitness 
(profit) of the best individual and the average fitness of the 
population in each generation. Since our permutation-based 
representation is composed of mixing combinations, for 
different mixing combinations the fitness might be similar. 
Therefore, in our case, using only fitness values to monitor 
diversity may not be appropriate. Moreover, not all of the 
mixing combinations in the chromosome are used in the final 
solution returned by the IndividualMix method due to vary-
ing grain content in the bins. Therefore, we analyzed both 
genotypic diversity, which compares mixing combinations 

in the chromosome between two individuals, and pheno-
typic diversity, which compares the actual mixing combina-
tions used in the final solution (generated by IndividualMix) 
between two individuals.

To compute diversity, we used Levenshtein distance (i.e., 
edit distance) [22] to compare different mixing combina-
tions. Levenshtein distance is used to measure the distance 
between two strings by determining the minimum number of 
insertions, deletions, and substitutions required to transform 
one string into another. To use Levenshtein distance for our 
diversity measure, we encoded the mixing combinations to 
make them into strings. Recall that a mixing combination is 
a tuple < bin_pair1, bin_pair2, 𝛼 > . We have 16 bins in our 
datasets, which are encoded hexadecimally (from 0 to F), 
and 10 mixing ratios (including 0, meaning no mixing) that 
are encoded from 0 to 9. For example, the string encoding 
for the combination < 2, 15, 0.6 > becomes “1E6”. In this 
way, all of the mixing combinations in a chromosome are 
transformed into a sequence of strings.

When generating the final solution, a mixing ratio may 
not be a single decimal value due to having a partially loaded 
truck. In that case, the value is encoded to the closest integer 
(e.g., 0.64 would be encoded to 6). As measuring edit dis-
tance between all pairs of individuals for all of the genera-
tions is computationally expensive, we used the generation 
best individual as a reference point. All other individuals in 
the current population were compared against the generation 
best individual for measuring the distance. Figure 7 shows 
the fitness, genotypic and phenotypic diversity of the evolu-
tionary algorithms for the R_2017 dataset.

In Fig. 7, column (a) shows the genotypic diversity, and 
column (b) shows the phenotypic diversity for the differ-
ent recombination operators used in GA and DE. For each 
subfigure, the x axis represents the generation number, the 
left y axis represents the edit distance, and the right y axis 
represents the fitness (profit) in thousands of US dollars. 
The top green line shows the best individual fitness for the 
current generation, and the lower blue line represents the 
average individual fitness for the current generation. The box 
plots show the edit distance statistics of the individuals after 
every 50 generation. GA uses 50 mixing combinations in 
the chromosome, which is why the maximum edit distance 
between two individuals would be 150 if all the combina-
tions were different (since each combination is encoded by 
a three-character value) for the genotypic conversion. How-
ever, DE uses 100 combinations, and the maximum distance, 
in this case, is 300. For the phenotypic diversity, the actual 
mixing combinations used to load the trucks range from 
approximately 18 to 25, and the maximum distance could 
be 75 or higher.

Looking at the diversity plots for GA’s OX and PMX 
operators, the average fitness curve seems to converge on the 
generation best; however, the edit distance box plots show 
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that there is diversity both in the chromosome representation 
(genotypic) and actual (phenotypic) solutions. Furthermore, 
PMX seems to control the population diversity slightly bet-
ter than OX, which might explain why PMX provided a bet-
ter solution for all test cases compared to OX. On the other 
hand, the diversity plots for the DE’s mutation operators 

are different from the GA operators, portraying the differ-
ent search mechanisms of the two approaches. The aver-
age fitness curve for DE is increasing gradually as it always 
replaces a current individual with an individual with a better 
fitness value. The plots from the RPI operator show that 
convergence is slow, compared to the GBP operator. This 

Fig. 7   Monitoring population 
diversity of the best solutions 
in R_2017 dataset. The x axis 
shows the generation number, 
the left y axis shows the edit 
distance, and the right y axis 
shows the fitness. The top green 
line tracks the best individual 
fitness, and the lower blue line 
tracks the average individual 
fitness
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may be the reason why RPI performed the worst compared 
to all other operators. Although GBP’s genotypic diversity is 
quite high for all generations, the phenotypic diversity shows 
that, as generations progress, more individuals with slightly 
different solutions from the generation’s best solution appear 
in the population.

Conclusion and Future Works

We have considered several approaches for determining 
how to maximize the profit of wheat production by mix-
ing different numbers of bushels to change the protein level 
contained in a truck being delivered to an elevator. In some 
states, the price of a bushel of wheat depends on its protein 
level as measured at the elevator. Our intent was to deter-
mine if mixing different protein levels can yield a mix such 
that the farmer will receive more profit than taking them 
separately, thus justifying the expense of purchasing and 
employing expensive protein monitoring equipment on their 
harvesters. We adapted and applied two different evolution-
ary approaches—a genetic algorithm and differential evolu-
tion—to address the grain mixing (wheat blending) problem. 
The experimental results from both real and simulated data-
sets showed that the evolutionary approaches consistently 
provided an increased profit compared to no mixing, greedy 
mixing, and random mixing approaches. Furthermore, all 
of the test cases showed there was benefit in investing in the 
protein monitors.

For this study, we made certain assumptions, such as lim-
iting the mixing to only two bins at a time for the problem 
representation. This was based on limits given to us by the 
farmers. In future work, we would like to consider if mixing 
more than two bins would provide a better profit, thereby 
justifying to the farmers the more complicated process of 
mixing from multiple bins. It is also our intent to explore 
the suitability of comparing to a MINLP or a relaxed MILP 
model; however, the inherent nonlinearity constraints of the 
problem would seem to suggest optimization quality would 
be limited. Furthermore, a more realistic cost model that 
includes the production cost associated with harvesting, the 
cost of the protein tracking device and supporting infrastruc-
ture, and alternative representations of the model will be 
considered as future work.
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