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Abstract In this paper we propose several approximation
algorithms for the problems of full and partial abductive
inference in Bayesian belief networks. Full abductive infer-
ence is the problem of finding the k most probable state
assignments to all non-evidence variables in the network
while partial abductive inference is the problem of finding
the k most probable state assignments for a subset of the non-
evidence variables in the network, called the explanation set.
We developed several multi-swarm algorithms based on the
overlapping swarm intelligence framework to find approx-
imate solutions to these problems. For full abductive infer-
ence a swarm is associated with each node in the network.
For partial abductive inference, a swarm is associated with
each node in the explanation set and each node in the Markov
blankets of the explanation set variables. Each swarm learns
the value assignments for the variables in the Markov blan-
ket associated with that swarm’s node. Swarms learning state
assignments for the same variable compete for inclusion in
the final solution.
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1 Introduction

Bayesian networks (BNs) have become popular in the artifi-
cial intelligence community and are commonly used in prob-
abilistic expert systems. One reason for their popularity is
that they are capable of providing compact representations of
joint probability distributions by exploiting conditional inde-
pendence properties of the distributions. BNs are directed
acyclic graphs where the nodes represent random variables
and edges specify conditional dependence and independence
assumptions between the variables. Each node in the net-
work has an associated conditional probability distribution
that specifies a distribution over the values of a variable given
the possible joint assignments of its parents.

There are several problems associated with performing
inference on Bayesian networks. One such problem is that of
abductive inference. Abductive inference is the problem of
finding the maximum a posteriori (MAP) probability state of
the variables of a network, given a set of evidence variables
and their corresponding state. This problem is often referred
to as the k-most probable explanation (k-MPE) problem. If
we let XU = X\X O , where X denotes the variables in the
network, the problem of abductive inference is to find the
most probable state assignment to the variables in XU given
the evidence X O = xO :

MPE(XU , xO) = arg max
xu∈XU

P(xu |xO)

In Shimony (1994), it was shown that abductive inference
for Bayesian networks is non-deterministic Polynomial-time
hard (NP-hard). Because of this, much research has been
done to explore the possibilities of obtaining partial or
approximate solutions to the problem of both partial abduc-
tive inference and full abductive inference. However, in
Dagum and Luby (1993) it was shown that even the prob-
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lem of finding a constant factor approximation of the k-MPE
is NP-hard.

Partial abductive inference (PAI) is the problem of finding
the k most probable state assignments for a subset of the
variables X E ⊂ XU , known as the explanation set:

PAI(X E , xO) = arg max
xE ∈X E

P(xE |xO)

= arg max
xE ∈X E

∑

xR∈X R

P(xE , xR |xO),

where X R = XU \X E . This problem is more useful than
general abductive inference in most practical applications
since it allows for the selection of only the relevant variables
as the explanation set. However, Gamez (1998) proved that
partial abductive inference is an even more complex problem
than full abductive inference.

In this paper, we present several swarm-based approxi-
mation algorithms to the partial and full abductive inference
problems. Our approach to these problems is based on the
overlapping swarm intelligence (OSI) framework, first intro-
duced by Haberman and Sheppard (2012). In all of the algo-
rithms presented here, a swarm is associated with a subset
of the nodes in the network. Each swarm learns the value
assignments for variables in the Markov blanket associated
with that swarm’s node. Swarms learning state assignments
for the same variable are said to overlap. These swarms com-
pete to determine which state assignments will be used in the
final solution. Each swarm in our approach uses the discrete
multi-valued PSO algorithm described in Veeramachaneni
et al. (2007) to search for partial solutions; however, any
swarm-based algorithm suitable for the task can be used.

For both problems, we developed both distributed and
non-distributed versions of the algorithms. In the non-
distributed algorithms, all swarms have access to the set of
the k best global state assignments seen so far, while in the
distributed algorithms, such global information is not main-
tained and consensus is reached through inter-swarm com-
munication. We refer to the distributed versions of these algo-
rithms as distributed overlapping swarm intelligence (DOSI).

We compare the results of our algorithms to several other
local search algorithms. We hypothesized and will show that
our algorithms outperform these competing algorithms in
terms of the log likelihood of solutions found on a variety of
complex networks.

Table 1 provides definitions for all abbreviations used in
this work:

2 Background

2.1 Bayesian networks

A Bayesian network is a directed acyclic graph that encodes
a joint probability distribution over a set of random vari-

Table 1 Abbreviations used

Abbreviation Description

PSO Particle swarm optimization

PAI Partial abductive inference

MPE Most probable explanation

NP Non-deterministic polynomial-time

DOSI Distributed overlapping swarm intelligence

DOSI-Comp DOSI (no competition mechanism)

DOSI-Comm DOSI (no communication mechanism)

DMVPSO Discrete particle swarm optimization

GA-Full Genetic algorithm (full abductive inference)

GA-Part Genetic algorithm (partial abductive inference)

MBE Mini-bucket elimination

NGA Nitching genetic algorithm

OSI Overlapping swarm intelligence

SA Simulated annealing

SLS Stocastic local search

ables, where each variable can assume one of an arbitrary
number of mutually exclusive values (Koller and Friedman
2009). In a Bayesian network, each random variable is rep-
resented by a node, and edges between nodes in the network
represent a probabilistic relationships between the random
variables. Each root node contains a prior probability distri-
bution while each non-root node contains a probability dis-
tribution conditioned on the node’s parents. For any set of
random variables in the network, the probability of any entry
of the joint distribution can be computed using the chain
rule.

P(X1, ..., Xn) =
n∏

i=1

P(Xi |Xi+1, ..., Xn)

Using the local distributions specified by the BN, the joint
distribution can be represented equivalently as

P(X1, . . . , Xn) =
n∏

i=1

P(Xi |Pa(Xi )).

In a Bayesian network, the Markov blanket of a node con-
sists of the node’s parents, children, and children’s parents. A
variable Xi is conditionally independent of all other variables
in the network given its Markov blanket.

{Xi ⊥ (X\({Xi } ∪ M B(Xi ))) |M B(Xi )}
An example illustrating the concept of a Markov blanket is
shown in Fig. 1. Figure 1a shows the Markov blanket of d3,
Fig. 1b shows the Markov blanket of d5, and Fig. 1c shows the
Markov blankets of both d3 and d5. In the example, nodes in
the Markov blanket of d3 and nodes in the Markov blanket d5

are shown with a dashed rectangle. In Fig. 1c nodes that are in
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(a)

(b)

(c)

Fig. 1 Markov blanket example

the Markov blankets of both d3 and d5 (namely c and d4) are
shown to be inside both dashed rectangles, thus indicating an
overlap. We will exploit these overlaps later.

2.2 Particle swarm optimization

All algorithms proposed here are based on the particle swarm
optimization (PSO) algorithm proposed by Eberhart and
Kennedy (1995). PSO is a population-based search technique
inspired by the behavior of fish schools and bird flocks. In
PSO the population is initialized with a number of random
solutions called particles. The search process updates the
position vector of each particle based on that particle’s corre-
sponding velocity vector. These velocity vectors are updated
at each iteration based on the fitness of the states visited by
the particles. Eventually all particles move closer to an opti-
mum in the search space. The pseudocode for the traditional
PSO algorithm is presented in Algorithm 1.

PSO begins by randomly initializing a swarm of parti-
cles over the search space. On each iteration of the algo-
rithm, a particle’s fitness is calculated using the fitness func-
tion. The personal best position is maintained in the vec-
tor pi . The global best position found among all particles
is maintained in the vector pg . At the end of each itera-
tion a particle’s velocity, vi , is updated based on pi and
pg . The use of both personal best and global best positions
in the velocity equation ensures diverse responses within
the swarm and provides a balance between exploration and
exploitation.

In Algorithm 1, P is the particle swarm, U (0, φi ) is a
vector of random numbers uniformly distributed in [0, φi ],
⊗ is component-wise multiplication, vi is the velocity of
a particle, and xi is the object parameters or position of a
particle.

Three parameters need to be defined for the PSO algo-
rithm:

– φ1 determines the maximum force with which a particle
is pulled toward pi ;

– φ2 determines the maximum force with which a particle
is pulled toward pg;

– ω is the inertia weight.

The inertia weight ω is used to control the scope of the search
and eliminate the need for a maximum velocity. Even so, it
is customary to specify maximum velocity as well.

2.3 Discrete particle swarm optimization

Kennedy and Eberhart (1997) present a variation of the orig-
inal PSO algorithm for problems with binary-valued solu-
tions. In this algorithm, each particle’s position is a vec-
tor from the d-dimensional binary solution space xi ∈
{0, 1}d and each particle’s velocity is a vector from the d-
dimensional continuous space, vi ∈ [0, 1]d . Each velocity
term denotes the probability of a particle’s position term hav-
ing a value of 0 or 1 in the next iteration. The velocity of a par-
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ticle is updated as in traditional PSO (Eberhart and Kennedy
1995), while each particle’s position is updated using the
following equation:

p(xi = 1) = 1

1 + exp(−vi )

While this algorithm has been shown to be effective, it is
limited to discrete problems with binary valued solution ele-
ments.

The binary state assumption was relaxed by Veeramacha-
neni et al. (2007) who propose a discrete multi-valued PSO
(DMVPSO) algorithm. In this algorithm, each particle’s posi-
tion is a d-dimensional vector of discrete values in the range
[0, M − 1] where M is the cardinality of each state variable.
The velocity of each particle is a d-dimensional vector of
continuous values, as above. A particle’s velocity vi is trans-
formed into a number Si between [0, M] using the following
equation:

Si = M

1 + exp(−vi )

Then each particle’s position is updated by generating a ran-
dom number according to the Gaussian distribution, xi ∼
N (Si , σ × (M − 1)) and rounding the result. To ensure the
particle’s position remains in the range [0, M − 1] the fol-
lowing formula is applied:

xi =
⎧
⎨

⎩

M − 1 xi > M − 1
0 xi < 0
xi otherwise

2.4 Consensus

In a network of agents, a consensus is reached once the agents
agree regarding certain quantities of interest that depend on
the state of all agents (Olfati-Saber et al. 2007). A consensus
algorithm is an interaction rule that specifies the informa-
tion exchange between agents to ensure that consensus is
reached. In such algorithms cooperation between agents is
often required, where cooperation is defined as “giving con-
sent to providing one’s state and following a common pro-
tocol that serves the group objective.” We have developed
a cooperative consensus algorithm in the context of DOSI
for full and partial abductive inference. In our distributed
abductive inference algorithm we have removed the global
set of state assignments used for fitness evaluation. Instead,
each swarm maintains a set of personal state assignments that
are updated through inter-swarm communication. During
this communication, swarms compete and share state assign-
ments to ensure consensus. This communication mechanism
defines an interaction rule that ensures that the agents will
reach consensus regarding the states of each node in the net-
work.

3 Related work

3.1 Traditional approaches to the k-MPE problem

An exact algorithm to solve the k-MPE problem called bucket
elimination was proposed by Dechter (1996). This algo-
rithm uses a form of variable elimination in which the node
with the fewest neighbors in eliminated at each iteration.
Bucket elimination uses max-marginal-ization instead of
sum-marginalization when eliminating a variable and stores
the most probable state assignment for the variable. Like
variable elimination, this algorithm has worst-case time com-
plexity that is exponential in the tree width of the network.

An approximation algorithm for the MPE problem called
mini bucket elimination (MBE) is described in Dechter
(2003). This algorithm is a variation of bucket elimination
and can address both partial and full abductive inference.
The parameters of MBE can be modified so that the algo-
rithm produces exact solutions to the abductive inference
problem.

A divide and conquer algorithm that provides an exact
solution to the k-MPE problem is described by Nilsson
(1998). Nilsson’s approach is based on the flow propaga-
tion algorithm proposed by Dawid (1992) for finding the
k-MPE for junction trees. While the algorithm is faster than
other exact abductive inference algorithms such as bucket
elimination, it also has exponential time complexity and is
impractical for large networks.

A simulated annealing algorithm (SA) for partial abduc-
tive inference was proposed by de Campos et al. (2001).
This approach uses an evaluation function based on clique
tree propagation. The algorithm begins with a single state
assignment, and at each iteration a single variable is modified
within that assignment. A hash table is maintained consisting
of (assignment, probability) pairs and each new assignment
is stored in this table. If an assignment is found that is not
stored in the hash table, then the probability of the assign-
ment is computed. Since SA only modifies a single state at
each iteration, the algorithm can avoid recalculating all of the
initial clique potentials when evaluating a new state assign-
ment.

A stochastic local search (SLS) algorithm for solving the
MPE problem was proposed by Kask and Dechter (1999).
In this approach, stochastic local search was combined with
Gibbs Sampling. The results of the author’s experiments indi-
cate that their approach outperforms other techniques such
as stochastic simulation, simulated annealing, or hillclimbing
alone.

The Elvira Consortium software environment uses a junc-
tion tree-based algorithm to approximate a solution to the
k-MPE Problem (Elvira Consortium 2002). This algorithm
is based on Nilsson’s algorithm, but approximate probability
trees are used in place of the true probability trees.
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3.2 Soft approaches to the k-MPE problem

Several researchers have used soft computing techniques to
find approximate solutions to the k-MPE problem. Gelsema
(1995) describes a genetic algorithm for full abductive infer-
ence (GA-Full) in Bayesian networks. In this approach, the
states of the variables in the Bayesian network are represented
by a chromosome corresponding to a vector of Boolean val-
ues. Each value in the chromosome corresponds to a state
assignment for a node in the network. Crossover and muta-
tion are applied to the chromosomes to generate offspring
from parent chromosomes. To evaluate chromosome fitness,
the chain rule is applied.

A graph-based evolutionary algorithm for performing
approximate abductive inference on Bayesian Networks was
developed by Rojas-Guzman and Kramer (1993). In their
method, the graphs specify a possible solution that is a com-
plete description of a state assignment for a Bayesian net-
work. Fitness of a chromosome is based on the absolute
probability of the chromosome’s corresponding assignment.
However, this approach was designed to find a single most
probable explanation rather than the k-MPE.

A genetic algorithm for partial abductive (GA-Part) infer-
ence was proposed by de Campos et al. (1999). In this
approach, the state assignments for the subset of variables
are represented as a chromosome consisting of integers. To
evaluate the fitness of each chromosome, probabilistic prop-
agation is used.

Sriwachirawat and Auwatanamongkol (2006) developed
a niching genetic algorithm (NGA) to find k-MPE, designed
to utilize the “multifractal characteristic and clustering prop-
erty” of Bayesian networks. This algorithm makes use
of the observation that there are regions within the joint
probability distribution of the Bayesian network that are
highly “self-similar.” Because of this self-similarity, the
authors chose to organize their GA using a probabilistic
crowding method that biases the crossover operator toward
self-similar individuals in the population. Chromosomes
in this approach were encoded as described by Gelsema
(1995).

Pillai and Sheppard (2012) describe a discrete multi-
valued PSO (DMVPSO) approach for finding k-MPE (Veera-
machaneni et al. 2007). In Pillai’s algorithm, each particle’s
set of object parameters is represented by a string of integers
corresponding to state assignments for each node in the net-
work. The chain rule is used to calculate the fitness of each
particle. The results of the authors’ experiments indicated
they were able to find competitive explanations much more
efficiently than the approaches used by Gelsema (1995) and
Sriwachirawat and Auwatanamongkol (2006).

3.3 Distributed optimization

Much work has been done in the area of distributed optimiza-
tion. Rabbat and Nowak (2004) analyzed the convergence of
distributed optimization algorithms in sensor networks. The
authors proved that, for a large set of problems, these algo-
rithms will converge to a solution within a certain distance
of the global optimum.

Olfati-Saber et al. (2007) provided an analysis of con-
sensus algorithms for multi-agent networked systems. The
authors defined several types of consensus problems and
described methods of convergence and performance analysis
multi-agent distributed systems.

Patterson et al. (2010) provided an analysis of the con-
vergence rate for the distributed average consensus algo-
rithm. This work also included an analysis of the relationship
between the convergence rate and the network topology.

Boyd et al. (2011) analyzed convex distributed optimiza-
tion in the context of machine learning and statistics. The
authors argued that the alternating direction method of mul-
tipliers (ADMM) can be applied to such distributed opti-
mization algorithms. In ADMM a problem is divided into
small local subproblems that are solved and used to find a
solution to a large global problem. The authors showed that
this approach can be applied to a wide variety of distributed
optimization problems.

3.4 Distributed soft computing

Several distributed genetic algorithms (GA) have been pro-
posed, which are commonly referred to as Island Mod-
els (Tanese et al. 1989; Whitley and Starkweather 1990;
Belding 1995; Whitley et al. 1999). In these models, sev-
eral subpopulations known as islands are maintained by
the genetic algorithm, and members of the populations are
exchanged through a process called migration. These meth-
ods have been shown to obtain better quality solutions than
traditional GAs (Whitley and Starkweather 1990). Because
the islands maintain some independence, each island can
explore a different region of the search space while shar-
ing information with other islands through migration. This
improves genetic diversity and solution quality (Whitley et
al. 1999).

van den Bergh and Engelbrecht (2000) developed several
distributed PSO methods for the training of multi-layer feed-
forward neural networks. These methods include NSPLIT
in which there is a single particle swarm for each neuron in
the network and LSPLIT in which there is a swarm assigned
to each layer of the network. The results obtained by van
den Bergh and Engelbrecht indicate that the distributed
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algorithms outperform traditional PSO methods. Note, how-
ever, that these methods do not include any communication
between the swarms and provide access to a global fitness
function.

Recently, a new distributed approach to improve the
performance of the PSO algorithm has been explored
where multiple swarms are assigned to overlapping sub-
problems. This approach is called overlapping swarm intel-
ligence (OSI) (Haberman and Sheppard 2012; Pillai and
Sheppard 2011; Fortier et al. 2012). In OSI each swarm
searches for a partial solution to the problem and solu-
tions found by the different swarms are combined to form
a complete solution once convergence has been reached.
Where overlap occurs, communication and competition take
place to determine the combined solution to the full prob-
lem.

Haberman and Sheppard (2012) first proposed OSI as
a method to develop an energy-efficient routing proto-
col for sensor networks that ensures reliable path selec-
tion while minimizing the energy consumption during mes-
sage transmission. This algorithm was shown to be able to
extend the life of the sensor networks and to perform sig-
nificantly better than current energy-aware routing proto-
cols.

Pillai and Sheppard (2011) extended the OSI frame-
work to learn the weights of deep artificial neural net-
works. In this algorithm, the structure of the network is
separated into paths where each path begins at an input
node and ends at an output node. Each of these paths
is associated with a swarm that learns the weights for
that path of the network. A common vector of weights is
maintained across all swarms to describe a global view
of the network. This vector is created by combining the
weights of the best particles in each of the swarms. This
method was shown to outperform the backpropagation algo-
rithm, the traditional PSO algorithm, and both NSPLIT
and LSPLIT on deep networks. A distributed version of
this approach was developed subsequently by Fortier et al.
(2012).

3.5 Swarm intelligence algorithms

Aside from PSO, a variety of swarm-based algorithms have
been proposed by several authors. An in-depth discussion
of these algorithms including a comparison against PSO is
presented by Yang et al. (2013).

The Ant colony optimization (ACO) algorithm described
by Dorigo et al. (2006) is based on the foraging behavior
of ants. In ACO a population of ants build solutions to a
given optimization problem and the ants exchange infor-
mation on the quality of these solutions via a communica-
tion mechanism based on the pheromone producing behav-
ior of ants in nature. Each artificial ant builds a solution

by traversing a fully connected construction graph asso-
ciated with the problem. As ants traverse the graph, they
deposit a certain amount of pheromone on the edges of
the graph. The amount of pheromone deposited depends on
the quality of the solution found and ants have a higher
likelihood of traversing edges with higher pheromone val-
ues.

The artificial bee colony (ABC) algorithm developed
by Karaboga and Basturk (2008) is based on the behavior
of honeybee swarms. In this algorithm, a colony of artifi-
cial bees is used to obtain solutions to a given optimiza-
tion problem. The bee colony used in ABC contains three
groups of bees: employed bees, onlookers, and scouts. These
bees explore food sources that represent potential solutions
within the search space. Employed bees explore the neigh-
borhood of known food sources and communicate qual-
ity information to onlookers who then select one of the
food sources, while scouts randomly search for new food
sources.

A novel swarm-inspired algorithm called the Krill Herd
(KH) algorithm was proposed by Gandomi and Alavi
(2012). This algorithm is based on the herding behavior of
krill swarms in response to biological and environmental
processes. In KH, the fitness of each individual is a combi-
nation of the distance from the best solution found and from
the highest density of the swarm. Three actions are consid-
ered to determine the position of an individual krill at each
iteration: movement induced by other krill individuals, for-
aging activity, and random diffusion. Movement induced by
other krill individuals causes each individual to be attracted
to more fit individuals while being repelled by less fit indi-
viduals. This causes the krill to move toward better posi-
tions in the search space. After each iteration mutation and
crossover are applied to the population to generate new indi-
viduals.

The Cuckoo search algorithm proposed by Gandomi et al.
(2013) is based on the breeding behavior of some cuckoo
species in combination with the Lévy flight behavior of
birds and fruit flies. A Lévy flight is a random walk with
steps defined in terms of step-lengths which are associ-
ated with a certain probability distribution. The directions
of the steps in a Lévy flight are isotropic and random.
In the Cuckoo search algorithm, eggs are used to repre-
sent potential solutions to an optimization problem and
lower quality eggs are replaced by eggs representing higher
quality solutions. To begin, an initial population of solu-
tion eggs is generated. At each iteration, a cuckoo gener-
ates a new solution by Lévy flights, evaluates its quality,
and randomly chooses an existing solution to potentially
replace. If the new solution is of a higher quality, then
it replaces the old solution. Next, some percentage of the
worst solutions are removed and replaced with new solu-
tions.
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The Firefly algorithm (FA) developed by Yang (2009)
is a swarm-based algorithm based on firefly mating behav-
ior. In this algorithm, a population of fireflies is initialized
where the position of each firefly denotes a potential solu-
tion to an optimization problem. Each firefly has a bright-
ness value based on the fitness of the solution encoded by
its position. Fireflies move based on the brightness value
of other fireflies, their distance to other fireflies, and a ran-
dom coefficient. Unlike PSO, individuals in the firefly algo-
rithm do not explore the search space based on the indi-
vidual’s personal best position combined with the global
best position found by the algorithm as a whole. Instead,
each firefly explores the solution space based on the fit-
ness of its neighbors and its distance from those neigh-
bors.

4 Full abductive inference

Here we describe our distributed and non-distributed
approaches to solving the full abductive inference prob-
lem. We also discuss several experiments comparing these
approaches to existing full abductive inference algorithms.

4.1 Full abductive inference via OSI

Previously, we developed an approach for full abductive
inference based on the OSI methodology (Fortier et al. 2013).
In our approach a swarm is associated with each node in the
network. Each node’s corresponding swarm learns the vari-
able assignments associated with that node’s Markov blanket
using the DMVPSO algorithm. This representation provides
an advantage since every node in the network is condition-
ally independent of all other nodes when conditioned on its
Markov blanket. The pseudocode for our approach is shown
in Algorithm 2.

The main loop of this algorithm consists of two phases.
In the first phase, (lines 4–17) a single iteration of the tra-
ditional PSO algorithm is performed for each swarm. In the
second phase, (lines 19–26) for each of the k state assign-
ments, each swarm competes over the state of each node in
the network. The way in which the swarms compete is based
on the overlap of the Markov blankets for each node in the
network.

This algorithm requires that a set of k global state assign-
ments A be maintained across all swarms for inter-swarm
communication. A is initialized by forward sampling m ≥ k
samples and selecting the k most probable for inclusion in A.
Each particle’s position is defined by a d-dimensional vec-
tor of discrete values. Each position value corresponds to the
state of a variable in the swarm’s Markov blanket; thus each
particle represents a state assignment for part of the network.

We use log likelihood � to determine the quality of a com-
plete state assignment as follows:

�(X) = log

(
n∏

i=1

P(xi |Pa(xi ))

)

=
n∑

i=1

log P(xi |Pa(xi )),

where X = {x1, x2...xn} is a complete state assignment and
Pa(xi ) corresponds to the assignments for the parents of xi .

Here we describe the process used to evaluate the fitness
of each individual particle p. This evaluation requires that
a set of state assignments Bp be constructed using the state
of the particle p and the set of global state assignments A.
The sum of the log likelihoods for each state assignment
in Bp will be used as the particle’s fitness score. Given a
partial state assignment x p represented by some particle p in
swarm s and the set of complete global state assignments A =
{α1, . . . , αk} we can construct a new set of state assignments
Bp = {β1, . . . , βk} by inserting x p into each state assignment
αi ∈ A as follows:

∀βi ∈ Bp βi = {x p} ∪ αi\mbs,
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where mbs consists of the state assignments for the Markov
blanket of swarm s within Ai . We use Bp to calculate the
fitness f of each particle,

f (p) =
∑

βi ∈Bp

�(βi )

This function defines the fitness of particle p as the sum of
the log likelihoods of the assignments in A when the value
assignments encoded in p are substituted into A.

When two or more swarms share a node in the network
(such as c and d4 in Fig. 1) these swarms are said to over-
lap. At the end of each iteration of the algorithm, overlap-
ping swarms compete to determine which state is assigned
to a given node in each assignment αm ∈ A. This process is
shown in Algorithm 4. Algorithm 4 iterates over each com-
peting swarm and evaluates the fitness of the state vn encoded
in the best fit particle of the swarm. This evaluation is per-
formed by setting the state of node n in the assignment α to
the value vn and computing the log likelihood of this new
assignment. The state of node n that results in the highest
score is the state included in the state assignment α.

The competition described in Algorithm 4 is held between
the state assignments found by the personal best particles in
each swarm. The state resulting in the highest log-likelihood
is the one selected for inclusion. Once a node’s state has
been selected through competition, each swarm associated
with the node is seeded with this state. This is performed
by the Seed Swarms function shown in Algorithm 3. This
function iterates over each of the swarms S and replaces the
least fit particle in the swarm with the state vn for node n.
This allows for the transfer of information between different
swarms that are trying to optimize over the same values. In
the example presented in Fig. 1, the swarms associated with

d3 and d5 would compete to determine which state is assigned
to the nodes c and d4.

Whenever a state assignment is constructed, that assign-
ment is stored in A. At each iteration, A is pruned so that it
contains the k most probable assignments found so far. Once
the algorithm has terminated, A is returned.

4.2 Full abductive inference via DOSI

We have modified the OSI approach proposed in Fortier et al.
(2013) to eliminate the need for a set of global state assign-
ments to be maintained across all swarms. In the distrib-
uted approach each swarm s maintains a set of personal state
assignments denoted as As . The most probable assignments
learned by each swarm are communicated to the other swarms
and inserted into the their personal state assignments through
a periodic communication mechanism. In this context, the
most probable assignment learned by a swarm denotes the
state assignment that has the highest probability with respect
to the swarm’s set of personal state assignments. Since this
does not denote the probability with respect to any global net-
work, no global set of state assignments is required to com-
pute this probability. At each iteration of the algorithm the
swarm associated with a given node will hold a competition
between all swarms that share this node to determine the most
probable state assignment. This state assignment will then be
communicated to the other swarms. Because this approach
does not require a global network to be shared between
swarms, the learning process can be distributed. Initially a
set A is obtained by forward sampling m ≥ k samples. Each
As is initialized as the k most probable assignments in A.

Algorithm 5 shows the pseudocode for DOSI. Similar to
OSI, the main loop of this algorithm consists of two phases.
In the first phase (lines 8–22), a single iteration of the tra-
ditional PSO algorithm is performed for each swarm. In the
second phase (lines 23–38), overlapping swarms compete
over their set of personal state assignments and a communi-
cation mechanism is used to share information between the
swarms.

The fitness evaluation for each particle requires that a set
of state assignments Bs,p be constructed using the state of
the particle p and the set of personal state assignments As

associated with the swarm s of particle p. The sum of the log
likelihoods for each state assignment in Bs,p will be used as
the particle’s fitness score. The fitness calculation and the cal-
culation of Bs,p for a given swarm s and particle p is similar to
the calculation of Bp used in OSI. Given a partial state assign-
ment x p represented by some particle p in swarm s and the
set of personal state assignments As = {α1, . . . , αk} we can
construct a new set of state assignments Bs,p = {β1, . . . , βk}
by inserting x p into each state assignment αi ∈ As as
follows:
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∀βi ∈ Bs,p

βi = {x p} ∪ αi\mbs,

where mbs consists of the state assignments for the Markov
blanket of swarm s within αi . We use Bs,p to calculate the
fitness f of each particle,

f (p) =
∑

βi ∈Bs,p

�(βi )

This function defines the fitness of particle p in a swarm s as
the sum of the log likelihoods of the assignments in αs when
the state assignments encoded in p are substituted into αs .

Unlike OSI, once a node’s state has been selected by
the competition function, only the swarm associated with
the node is seeded with the new state. This is done to
reduce communication overhead. To share state assignments,
each swarm keeps track of a variable δn for each node n.
These variables indicate the minimum distance between the
swarm’s node and n in the moralized graph of the Bayesian
network. For example, a value of zero for δn indicates that n
is the swarm’s corresponding node while a value of one for
δn indicates that the swarm’s node is in the Markov blanket
of n. Values for δn are initially set to infinity for all nodes
other than the node assigned to that swarm. Values for δn are
set to 0 for the node assigned to the swarm. At each iteration
of the communication the tentative distances between each
pair of nodes are updated. A swarm s j will communicate
its value for a node n to another swarm si if si .δn > s j .δn .
This is done because nodes that have a smaller value for δn

are closer to n and, therefore, have a more current value for
the state of n. This communication mechanism ensures that
DOSI will reach consensus with respect to the values for δn

and the assigned values for a given state.
The communication mechanism is described in Algorithm

6. This algorithm iterates over each node n in the network.
If si .δn > s j .δn , then si .δn is set to the incremented value of
s j .δn and the state assignment for n in the As j is inserted into
Asi .

An example of several iterations of the communication
portion of the algorithm is shown in Fig. 2. Here the most
probable state assignment for F in each personal state assign-
ment is shown along with each swarm’s value for δF at the
beginning of each iteration. Values that are changed during
a given iteration are shaded and the nodes corresponding to
these changes are highlighted. In this example the swarm
associated with node F has determined through competition
that the best state assignment for F is 1. Prior to the first
iteration of communication δF = 0 for the swarm associated
with F while δF = ∞ in all other swarms. After the first
iteration

D.δF = F.δF + 1 = 1
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(a) (b) (c) (d)

Fig. 2 Share states example

since D · δF = ∞ > 0 = F · δF . When D updates its
value for δF it receives the most probable state assignment,
F = 1, from the swarm associated with F . During the second
iteration of communication D will share states with nodes B,
C , and E . Once the second iteration is complete, nodes B, C ,
and E have all set F = 1 in their personal state assignment
and B, C , and E have all set

δF = D.δF + 1 = 2

During the third iteration node B will share states with node
A. Since A · δF = ∞ > 2 = B · δF the swarm associated
with A will update its value for δF such that

A.δF = B.δF + 1 = 3

and A will set F = 1 based on the state of F in the personal
state assignment for node B. Once the third iteration is com-
plete for any given node in the network δF will contain the
minimum distance between that node and F in the moralized
graph of the network and all nodes will agree upon a value for
F . Once the personal state assignment for all swarms have
identical state assignments for some variable we say that the
network has reached consensus with respect to that variable.
In this example after the third iteration of communication the
swarms will reach consensus with respect to F . Eventually,
all incorrect tentative distances will be updated in this way
so that they reflect the correct distances between the nodes.

This algorithm is similar to Dijkstra’s algorithm in that
initially each node is assigned a tentative distance value for
each δn (zero for our initial node and infinity for all other
nodes) which is updated at each iteration through the com-
munication mechanism. After each iteration, each node will
update one of its δ’s only if one of its neighbors has a lower
δ value for the same node. Because each node starts with a
δ value of 0 for itself and ∞ for all others, the only δ’s that

will be update are nodes that are within each other’s MBs;
therefore, after the first iteration, all δ’s will either be 0, 1, or
∞. As this process is repeated, the δ will be increased by one
for each node as the value is distributed throughout the net-
work, which also corresponds to the distance from one node
to another node in the moralized graph. Eventually, all of the
nodes will have finite numbers for all δ’s in a fully connected
network. If the network is not fully connected, then there will
still exist some delta’s with values of ∞ for certain nodes.

4.3 Experimental design

For our first set of experiments, we compare our OSI and
DOSI algorithms for full abductive inference to SLS, GA-
Full, NGA, MBE, and DMVPSO. A cross-reference for iden-
tifying each of the tested algorithms is shown in Table 1.

For these comparisons we used the bipartite networks pre-
sented in Fig. 3 (Pillai and Sheppard 2012) along with four
additional Bayesian networks obtained from the Bayesian
network repository (Scutari 2012): Win95pts, Insurance,
Hailfinder, and Hepar2. The properties for all networks are
shown in Table 2. For all networks each leaf node in the net-
work was set as evidence with a 50 % probability. The state
of each evidence variable was chosen uniformly at random.

For each network, experiments were performed with dif-
ferent values of k: k = 2, 4, 6, 8. For all of the algorithms,
initial populations were generated using forward sampling.
In every experiment, the number of particles in each swarm
was set to 20 and σ was set to 0.2. The value for σ was taken
from Pillai and Sheppard (2012) to ensure consistency of
results. For the genetic algorithms, the population size was
set to 20. All algorithms were run until convergence. The
sums of the log likelihoods for the k most fit solutions found
in each run were averaged over ten runs of each algorithm.
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Fig. 3 Bipartite Bayesian networks used for experiments

Table 2 Properties of the test networks

Network Nodes Arcs Parameters Ave. MB size Ave. states

Network A 11 12 261 4 3.00

Network B 13 16 399 4.53 3.00

Network C 15 12 483 4.60 3.00

Win95pts 76 112 574 5.92 2.00

Insurance 27 52 984 5.19 3.30

Hailfinder 70 66 2,656 3.54 3.98

Hepar2 56 1,236 1,453 3.51 2.31

We compared using a paired t test with a confidence interval
of 95 % to evaluate significance. In addition to log likelihood,
we also measured the number of fitness evaluations required
by each algorithm for a comparison of computational com-
plexity.

For networks A, B, and C the MBE algorithm is used
to compute the exact solution for the full abductive infer-
ence problem. For all other networks MBE is used to find
an approximate solution with parameters m and i set to 2
and 3, respectively, since the networks are too large for exact
inference.

For our second set of experiments we performed a lesion
study (Langley 1988) by implementing two alternative ver-
sions of DOSI. In the first implementation (DOSI-Comp),
the competition mechanism has been disabled, while in the
second implementation (DOSI-Comm), the communication
mechanism has been disabled. We compare these alterna-
tive implementations to DOSI to validate our hypothesis that
both the competition and communication of DOSI improve

the algorithm’s performance in terms of average log like-
lihood of solutions found. All other parameters and design
decisions were the same as the first set of experiments.

4.4 Results

Tables 3, 4, 5 show the average sum of the log likelihoods
for each algorithm and each value of k. Bold values indicate
that the corresponding algorithm’s performance is statisti-
cally significantly better than all other algorithms for the
network given the corresponding value for k. Algorithms
that tie statistically for best are bolded. Table 3 shows the
average sum of the log likelihoods for the population-based
algorithms while Table 4 shows the average sum of the log
likelihoods for MBE and SLS. The results of the compar-
ison between DOSI-Comm and DOSI-Comp are shown in
Table 5.

In Fig. 4 we present the convergence plots for OSI, DOSI,
and DMVPSO. We are limiting the convergence plot com-
parison to DMVPSO because the results in Tables 3 and 4
indicate that DMVPSO is the most competitive when com-
pared to OSI and DOSI. In this figure, OSI-Best and DOSI-
Best denotes the average score for the best particle in each
swarm, while OSI-Avg and DOSI-Avg denotes the average
score for all particles in each swarm. PSO-Avg denotes the
average score for all particles in the swarm, while PSO-Best
denotes the score of the best particle in the swarm. These
plots were obtained by running each algorithm with k set
to 2.

4.4.1 Comparison against existing algorithms

For all networks containing more than 15 nodes we observe
that, based on the paired t tests on log likelihood, the OSI
algorithm outperforms all other approximate algorithms and
DOSI is never outperformed by any approximate algorithms
other than OSI. For Network A all population-based algo-
rithms tie statistically when k is set to 2, OSI, DOSI, and
DMVPSO tie statistically when k is set to 2 and 6, and OSI
outperforms all other approximate algorithms when k is set to
8. For Network B OSI, DOSI, and DMVPSO tie statistically
when k is set equal to 4 while OSI and DOSI tie statistically
for best when k is set equal to 2. OSI outperforms all other
approximate algorithms when k is set to 6 and 8. For Net-
work C all population-based algorithms tie statistically for
best when k is set equal to 2, 4, and 6. OSI outperforms all
other approximate algorithms when k is set to 8. For net-
works A, B, and C the average sum of the log likelihoods for
OSI differs from the exact solution by at most 0.4 while, for
DOSI, the average sum of the log likelihoods differs from
the exact solution by at most 3.11. For Win95pts OSI and
DOSI tie statistically for best when k is set equal to 2, 4, and
6. For Insurance OSI and DOSI tie statistically for best for
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Table 3 Comparison against population-based approaches

Network k OSI NGA GA-Full DMVPSO DOSI

Network A 2 −13.64 ± 0.02 −14.06 ± 0.51 −14.16 ± 0.87 −13.95 ± 0.73 −13.85 ± 0.58

4 −27.31 ± 0.10 −29.40 ± 1.59 −29.42 ± 1.69 −28.33 ± 2.29 −27.81 ± 0.70

6 −40.92 ± 0.03 −46.70 ± 2.77 −47.07 ± 3.77 −43.07 ± 2.67 −41.82 ± 2.51

8 −54.56 ± 0.03 −60.43 ± 2.12 −64.52 ± 4.18 −59.03 ± 3.68 −55.27 ± 0.45

Network B 2 −17.12 ± 0.07 −18.11 ± 0.48 −18.39 ± 0.56 −18.23 ± 0.40 −17.20 ± 0.16

4 −34.62 ± 0.14 −36.90 ± 1.14 −37.32 ± 1.49 −36.66 ± 0.57 −35.59 ± 1.45

6 −51.87 ± 0.24 −57.18 ± 2.63 −58.63 ± 2.16 −57.40 ± 1.90 −52.66 ± 0.64

8 −69.26 ± 0.32 −77.25 ± 1.69 −77.74 ± 2.84 −76.05 ± 2.02 −71.97 ± 2.19

Network C 2 −16.05 ± 0.02 −17.23 ± 1.53 −17.61 ± 1.47 −17.08 ± 1.26 −16.71 ± 0.96

4 −32.09 ± 0.05 −37.69 ± 2.87 −36.82 ± 1.73 −35.05 ± 1.52 −34.58 ± 4.24

6 −48.18 ± 0.11 −57.09 ± 2.56 −57.46 ± 1.69 −55.77 ± 2.45 −50.74 ± 2.15

8 −64.28 ± 0.19 −78.68 ± 5.01 −77.51 ± 3.21 −74.67 ± 2.77 −67.08 ± 2.59

Win95pts 2 −32.27 ± 5.59 −2,442.06 ± 545.94 −2,866.92 ± 755.73 −941.05 ± 1,236.95 −40.60 ± 10.96

4 −57.10 ± 3.85 −4,561.73 ± 1602.60 −5,615.89 ± 2,551.70 −2,162.27 ± 2,810.62 −125.07 ± 98.46

6 −90.21 ± 13.53 −9,580.33 ± 1,727.51 −9,314.64 ± 2,208.09 −3,858.00 ± 3,559.27 −350.87 ± 368.13

8 −124.78 ± 20.97 −13,885.76 ± 1,843.64 −13,240.43 ± 4,066.10 −5,947.98 ± 5,681.22 −520.60 ± 517.70

Insurance 2 −24.63 ± 2.29 −36.57 ± 6.80 −34.55 ± 2.99 −31.85 ± 2.38 −26.77 ± 4.14

4 −48.85 ± 3.04 −76.92 ± 19.59 −73.66 ± 7.87 −79.56 ± 8.43 −54.05 ± 6.08

6 −74.02 ± 9.14 −120.14 ± 13.54 −133.65 ± 26.96 −132.08 ± 15.91 −83.40 ± 9.83

8 −100.25 ± 7.25 −196.69 ± 35.05 −179.64 ± 25.23 −170.20 ± 24.44 −102.37 ± 12.98

Hailfinder 2 −69.51 ± 2.19 −176.20 ± 234.93 −102.08 ± 5.72 −247.79 ± 313.59 −86.74 ± 8.72

4 −142.31 ± 3.85 −355.61 ± 314.29 −502.07 ± 931.43 −425.46 ± 500.03 −183.56 ± 16.64

6 −210.29 ± 6.16 −1,210.99 ± 1,091.34 −1,069.50 ± 983.59 −1,795.57 ± 1,210.33 −260.12 ± 20.88

8 −278.88 ± 9.34 −2,217.57 ± 1,809.46 −2,282.79 ± 1061.93 −3,986.79 ± 983.68 −357.30 ± 30.19

Hepar2 2 −66.54 ± 0.00 −79.40 ± 2.10 −80.79 ± 2.82 −72.92 ± 2.07 −67.28 ± 1.44

4 −134.19 ± 1.85 −164.57 ± 3.87 −161.64 ± 4.02 −146.78 ± 7.59 −136.34 ± 2.64

6 −199.84 ± 0.67 −249.92 ± 7.44 −253.03 ± 7.61 −217.70 ± 10.71 −205.37 ± 5.68

8 −405.12 ± 3.75 −472.44 ± 5.72 −471.40 ± 7.42 −440.27 ± 11.95 −409.87 ± 6.13

all a values of k. For Hepar2 OSI and DOSI tie statistically
for best when k is set equal to 2, 4, and 8.

Table 4 indicates that for Network A OSI and DOSI tie
with exact inference when k is set to 2, 4, and 6, and OSI
ties with exact inference when k is set to 8. For Network B
both OSI and DOSI are outperformed by exact inference. For
Network C OSI and DOSI tie with exact inference when k is
set to 2, 4, and 6. For all other networks both OSI and DOSI
outperform MBE and SLS.

4.4.2 Comparison against modifications of DOSI

For all networks DOSI performs either equivalently or bet-
ter than DOSI-Comp and DOSI-Comm. For Network A all
algorithms tie statistically when k is set to 2, 4, and 8. For
Network B all algorithms tie statistically when k is set to 4
and 6, while DOSI and DOSI-Comp tie statistically when k
is set to 2 and 8. For Network C all algorithms tie statisti-

cally for best when k is set equal to 2 and 4, while DOSI
and DOSI-Comp tie statistically when k is set to 6 and 8.
OSI outperforms all other approximate algorithms when k
is set to 8. For Win95pts DOSI and DOSI-Comp tie statis-
tically for best for all values of k. For Insurance DOSI and
DOSI-Comp tie statistically for best when k is set to 2. For
Hailfinder DOSI and DOSI-Comm tie statistically for best
when k is set to 2 and 4, while DOSI and DOSI-Comp tie
statistically for best when k is set to 6. For Hepar2 DOSI
and DOSI-Comp tie statistically for best when k is set equal
to 8.

4.5 Discussion

The paired t tests on the sum of the log likelihoods indi-
cate that both OSI and DOSI performed better than the other
approximate methods for nearly all values of k. These results
show that our algorithms outperform the other methods for
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Table 4 Comparison against MBE and SLS

Network k OSI SLS MBE DOSI

Network A 2 −13.64 ± 0.02 −19.40 ± 2.58 −13.64 −13.85 ± 0.58

4 −27.31 ± 0.10 −38.40 ± 4.12 −27.27 −27.81 ± 0.70

6 −40.92 ± 0.03 −59.20 ± 3.69 −40.91 −41.82 ± 2.51

8 −54.56 ± 0.03 −82.01 ± 8.47 −54.55 −55.27 ± 0.45

Network B 2 −17.12 ± 0.07 −24.65 ± 5.47 −16.99 −17.20 ± 0.16

4 −34.62 ± 0.14 −48.90 ± 4.48 −34.37 −35.59 ± 1.45

6 −51.87 ± 0.24 −72.73 ± 8.01 −51.59 −52.66 ± 0.64

8 −69.26 ± 0.32 −93.71 ± 5.15 −68.86 −71.97 ± 2.19

Network C 2 −16.05 ± 0.02 −23.67 ± 4.68 −16.03 −16.71 ± 0.96

4 −32.09 ± 0.05 −50.11 ± 5.89 −32.07 −34.58 ± 4.24

6 −48.18 ± 0.11 −71.88 ± 6.51 −48.10 −50.74 ± 2.15

8 −64.28 ± 0.19 −98.24 ± 8.31 −64.14 −67.08 ± 2.59

Win95pts 2 −32.27 ± 5.59 −3,529.16 ± 1,215.55 −2,992.69 −40.60 ± 10.96

4 −57.10 ± 3.85 −8,469.61 ± 2,217.93 −5,991.64 −125.07 ± 98.46

6 −90.21 ± 13.53 −11,412.51 ± 1,872.39 −8,996.11 −350.87 ± 368.13

8 −124.78 ± 20.97 −14,708.08 ± 1,830.15 −12,006.28 −520.60 ± 517.70

Insurance 2 −24.63 ± 2.29 −1,004.74 ± 992.53 −39.76 −26.77 ± 4.14

4 −48.85 ± 3.04 −2,097.83 ± 1,558.87 −83.85 −54.05 ± 6.08

6 −74.02 ± 9.14 −3,778.13 ± 1,181.34 −125.14 −83.40 ± 9.83

8 −100.25 ± 7.25 −4,797.66 ± 1,964.59 −170.11 −102.37 ± 12.98

Hailfinder 2 −69.51 ± 2.19 −2,121.23 ± 1,648.51 −90.44 −86.74 ± 8.72

4 −142.31 ± 3.85 −6,175.14± 2,845.54 −186.99 −183.56 ± 16.64

6 −210.29 ± 6.16 −9,255.36 ± 3,385.27 −274.01 −260.12 ± 20.88

8 −278.88 ± 9.34 −10,032.40 ± 1,965.23 −368.84 −357.30 ± 30.19

Hepar2 2 −66.54 ± 0.00 −88.42 ± 9.07 −72.21 −67.28 ± 1.44

4 −134.19 ± 1.85 −177.58 ± 9.46 −148.68 −136.34 ± 2.64

6 −199.84 ± 0.67 −266.16 ± 9.42 −233.23 −205.37 ± 5.68

8 −405.12 ± 3.75 −460.57 ± 25.72 −472.46 −409.87 ± 6.13

all networks containing more than 15 nodes. This indicates
that both OSI and DOSI have an advantage when used to
perform inference on more complex networks.

The results shown in Table 5 indicate that, for all net-
works, DOSI performs either equivalently or better than the
modified versions of DOSI and for all networks containing
more than 15 nodes DOSI outperformed either one or both of
these alternative implementations. These results support the
hypothesis that the increased performance obtained by OSI
and DOSI is due to the representation of each swarm being
based on the Markov blankets and the corresponding com-
munication and competition that occurs between overlapping
swarms. Recall that each variable Xi is conditionally inde-
pendent of all other variables in the network given its Markov
blanket. By defining each node’s swarm to cover its Markov
blanket, we ensure that the swarm learns the state assign-
ments for all variables upon which that node may depend.
Also, since multiple swarms learn the state assignments for
a single variable, our approach ensures greater exploration

of the search space. Through competition, we ensure that the
best variable state assignments found by the swarms are used
in the final k explanations.

The results in Table 3 and 4 also indicate that the OSI
algorithm outperforms DOSI for several experiments. This
result is reinforced by the convergence plots in Fig. 4, which
show that OSI-Best often converges to a higher score than
DOSI-Best. We believe that this is due to the communica-
tion delay that results from DOSI being truly distributed.
Because the DOSI algorithm requires several iterations of
the communication procedure for the swarms to reach con-
sensus with respect to the k most probable state assign-
ments for each variable, the fitness evaluations of a parti-
cle may be inaccurate prior to reaching consensus. If con-
sensus has not been reached then some swarms may not
have received updated state assignments from swarms out-
side of their Markov blankets, so the fitness evaluations per-
formed in these swarms would be relying on outdated state
assignments.
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Table 5 Comparison against modifications of DOSI

Network k DOSI DOSI-Comp DOSI-Comm

Network A 2 −13.15 ± 0.32 −13.25 ± 0.46 −13.14 ± 0.27

4 −26.09 ± 0.39 −27.07 ± 2.35 −26.49 ± 0.51

6 −39.29 ± 0.36 −40.33 ± 1.44 −40.45 ± 1.40

8 −52.81 ± 1.30 −53.96 ± 1.67 −56.17 ± 4.35

Network B 2 −15.96 ± 0.65 −16.27 ± 0.67 −17.41 ± 2.06

4 −33.60 ± 2.02 −33.58 ± 2.87 −33.18 ± 1.56

6 −52.24 ± 2.26 −53.85 ± 5.13 −52.86 ± 4.00

8 −68.62 ± 3.62 −69.36 ± 6.28 −75.20 ± 3.56

Network C 2 −17.33 ± 0.25 −17.23 ± 0.33 −17.83 ± 1.37

4 −34.67 ± 0.62 −36.07 ± 3.76 −34.91 ± 0.85

6 −52.71 ± 0.78 −53.62 ± 2.64 −53.90 ± 1.37

8 69.88 ± 1.20 −71.20 ± 2.67 −74.25 ± 2.53

Win95pts 2 −65.64 ± 13.68 −211.43 ± 469.26 −207.70 ± 471.30

4 −125.68 ± 13.49 −134.46 ± 17.50 −4,067.57 ± 614.37

6 −564.42 ± 384.45 −1,027.76 ± 1440.54 −6,289.36 ± 1197.70

8 −1,258.92 ± 367.16 −1,395.12 ± 1016.51 −7,915.30 ± 1678.76

Insurance 2 −36.20 ± 3.49 −37.13 ± 4.56 −39.07 ± 3.75

4 −70.11 ± 5.83 −82.21 ± 9.90 −91.77 ± 10.10

6 −105.18 ± 14.81 −117.19 ± 14.62 −427.69 ± 371.47

8 −142.77 ± 15.25 −163.98 ± 11.54 −722.26 ± 773.90

Hailfinder 2 −83.50 ± 5.13 −87.98 ± 6.71 −85.27 ± 4.78

4 −159.91 ± 8.63 −242.77 ± 106.83 −157.78 ± 9.44

6 −274.13 ± 15.38 −277.02 ± 23.71 −762.74 ± 662.30

8 −350.56 ± 28.82 −379.61 ± 29.37 −1,111.45 ± 1,054.07

Hepar2 2 −78.70 ± 0.32 −79.19 ± 0.48 −80.94 ± 1.65

4 −157.60 ± 0.65 −158.91 ± 1.64 −161.76 ± 1.94

6 −233.77 ± 1.67 −236.04 ± 2.36 −252.35 ± 5.98

8 −232.18 ± 2.48 −234.58 ± 4.12 −239.96 ± 5.49

The convergence plots presented in Fig. 4 show that, while
OSI-Best often converges to a higher score than DOSI-Best,
the average scores for the best particles are very close. This
reinforces the results in Tables 3 and 4, illustrating that the
difference in solution quality between the two algorithms is
often insignificant. The convergence plots also show that the
rates of convergence tend to be similar for both algorithms in
terms of both average and best scores. This indicates that the
communication mechanism used by DOSI does not greatly
impact the number of iterations required for convergence.

The convergence plots presented in Fig. 4 also show that
the average scores of the particles in the DMVPSO algorithm
tend to be much lower than the average scores for particles
in OSI and DOSI. This is consistent with the performance
advantage that is seen when comparing OSI and DOSI to the
other approximate methods in Tables 3 and 4.

While OSI and DOSI appear to outperform the other
methods in terms of the log likelihoods of solutions found,
these algorithms require many more fitness evaluations

than the other approaches. Figure 5 indicates that, while
the number of nodes in the network has little effect on
the number of fitness evaluations required by the compet-
ing algorithms, the number of fitness evaluations required
by the OSI and DOSI algorithms is higher for networks
with a large number of nodes. This is because our algo-
rithms create a separate swarm for each of the nodes in
the network, causing the number of swarms and the num-
ber of fitness evaluations to increase with the number of
nodes.

5 Partial abductive inference

In the following sections, we present our distributed and non-
distributed approaches to solving the partial abductive infer-
ence problem. We also discuss several experiments compar-
ing these approaches to existing partial abductive inference
algorithms.
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(a) (b)

(c) (d)

Fig. 4 Full abductive inference convergence plots

Fig. 5 Number of fitness evaluations

5.1 Partial abductive inference via OSI

Like the full abductive inference algorithm, our approach
to partial abductive inference uses the DMVPSO algorithm
(Veeramachaneni et al. 2007) and is based on the OSI
methodologies described in Haberman and Sheppard (2012)
and Pillai and Sheppard (2011). With this method, we assign
a swarm to each node in the explanation set and a swarm to
each node in the explanation node’s Markov blanket.

Similar to full abductive inference, a global set of state
assignments A is maintained across all swarms and is used
for inter-swarm communication. These assignments are ini-
tially set to a state assignment obtained using a forward sam-
pling process. Like full abductive inference, each particle’s
position is defined by a d-dimensional vector of discrete val-
ues and each value corresponds to the state of a variable in
the swarm’s Markov blanket. However, each particle’s object
parameters contain only state assignments for variables in the
explanation set. Thus each particle represents a partial state
assignment for the explanation set. The quality of each state
assignment xE for the explanation set is determined by the
log likelihood � of that assignment given the evidence xO as
shown below:

�(xE ) = log(P(xE |xO)) = log

(
∑

xR

P(xE , xR |xO)

)

Since this calculation can be computationally expensive, we
use the likelihood weighting algorithm to evaluate the quality
of a state assignment (Neapolitan 2004).

Our algorithm begins by generating m samples using like-
lihood weighting given xO as evidence. These samples are
used to compute the approximate log likelihood (denoted �a):
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�a(xE ) = log

(
∑

s∈M

W (xE , s)

ws

)

where M is the set of samples generated by likelihood we of
sample s, and W (Bp, s) is defined as,

W (xE , s) =
{

ws xE ∈ s
0 otherwise

To evaluate the fitness of a given particle, a set of state
assignments Bp must be constructed using the state of the
particle p and the set of global state assignments A. The sum
of the log likelihoods associated with the state assignments in
Bp is used as the fitness for particle p. Given a partial state
assignment x p represented by some particle p in swarm s
and the set of global state assignments for the explanation
set A = {α1, . . . , αk} we can construct a new set of partial
state assignments Bp = {β1, . . . , βk} by inserting x p into
each state assignment αi ∈ A as follows:

∀βi ∈ Bp βi = {x p} ∪ αi\mbs,

where mbs consists of the state assignments for expla-
nation set variables in the Markov blanket of swarm s
within αi . We use Bp to calculate the fitness f of each
particle,

f (p) =
∑

βi ∈Bp

�a(βi )

Thus the fitness of particle p is the sum of the approximate log
likelihoods of the assignments in A when the value assign-
ments encoded in Bp are substituted into A.

After each iteration of the algorithm, swarms that share
a node in the network compete to determine which state is
assigned to the node in each assignment αm ∈ A. This com-
petition is held between the partial state assignments found
by the personal best particles in each swarm. The state that
results in the highest approximate log likelihood is the one
included in the assignment. This process is the same as for
abductive inference and is shown in Algorithm 4.

Each time a state assignment is constructed, it is stored in
A. At each iteration A is pruned so that the k most probable
partial assignments are retained in A. Once the algorithm has
terminated A is returned.

5.2 Partial abductive inference via DOSI

In this section we present our modification of the OSI algo-
rithm for partial abductive inference that eliminates the need
for a set of global state assignments to be maintained across
all swarms. As with distributed full abductive inference,
each swarm s maintains a set of the most probable per-
sonal state assignments found by that swarm, denoted as
As . The most probable assignments learned by each swarm
are communicated to the other swarms and inserted into the

swarm’s personal state assignment through a periodic com-
munication mechanism. At each iteration of the algorithm
the swarm associated with a given node n will hold a compe-
tition between all swarms that share n to determine the most
probable state assignment for n.

The fitness calculation and the calculation of Bs,p for a
given swarm s and particle p are similar to the calculation of
Bp used in OSI. Given a partial state assignment x p repre-
sented by some particle p in swarm s and the set of personal
state assignments As = {α1, . . . , αk} we can construct a new
set of state assignments Bs,p = {β1, . . . , βk} by inserting x p

into each state assignment αi ∈ As as follows:

∀βi ∈ Bs,p βi = x p ∪ αi\mbs,

where mbs consists of the state assignments for the Markov
blanket of swarm s within αi . We use Bs,p to calculate the
fitness f of each particle,

f (p) =
∑

βi ∈Bs,p

�(βi )

Thus the fitness of particle p in a swarm s is the sum of the
approximate log likelihoods of the assignments in αs when
the state assignments encoded in p are substituted into αs .
Algorithm 8 shows the pseudocode for this algorithm.
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The ShareStates method in this approach is identical to the
ShareStates method described for full abductive inference via
DOSI (Algorithm 6) except that only state assignments for
nodes within the explanation set are shared. Similarly, the
competition between nodes remains the same as the compe-
tition used for full abductive inference (Algorithm 4) except
that swarms only compete over nodes within the explanation
set. These modifications, combined with the use of likeli-
hood weighting for fitness evaluation, are the primary differ-
ences between this approach and full abductive inference via
DOSI.

5.3 Experimental design

We compare partial abductive inference via OSI and DOSI
against four other partial abductive inference algorithms:
MBE, DMVPSO, GA-Part, and SA. A cross-reference to
the names of the algorithms tested is shown in Table 1. For
these experiments, DMVPSO is a modification of the algo-
rithm proposed in Pillai and Sheppard (2012) so that it can
be used to perform partial abductive inference. As with OSI,
our modified DMVPSO uses likelihood weighting to approx-
imate the log likelihood for fitness evaluation. To compare
these algorithms, we used the same networks as described
in Fig. 3 and Table 2. Nodes were randomly selected for
inclusion in the explanation set with a 25 % probability.

For our experiments we ran each algorithm on each of the
networks. We evaluated all algorithms with k set to 2, 4, 6,
and 8, respectively. For all of the algorithms, initial popula-
tions were generated using a forward sampling process. In
every experiment, the number of particles in each swarm
was set to 20. For the genetic algorithms, the population
size was set to 20. We ran all algorithms until convergence.
We averaged the log likelihoods of the solutions found by
the various algorithms over 10 runs and compared the solu-
tions using a paired t test to evaluate significance. For the
t test the confidence interval was 95 %. We also measured
the number of fitness evaluations performed by each of the
algorithms to compare the computational complexity of each
approach.

For networks A, B, and C the MBE algorithm is used to
compute the exact solution for the partial abductive infer-
ence problem. For all other networks MBE is used to find an
approximate solution with parameters m and i set to 2 and 3,
respectively.

5.4 Results

In Table 6, we show the average sum of the log likelihoods
for each algorithm and each value of k. Bold values indi-
cate that the corresponding algorithm’s performance is sta-
tistically significantly better than the other algorithms for
the network given the corresponding value for k. Values for
algorithms that tie statistically for best are also bolded.

For all networks other than Network A OSI and DOSI tie
statistically with or outperform MBE. For Networks A, B,
and C both OSI and DOSI find the optimal solution for all
values of k with one exception. In Network A when k is set
to 2 neither OSI or DOSI find the exact solution.

For Network A OSI, DOSI, and DMVPSO tie statisti-
cally when k is set to 2. Otherwise, OSI and DOSI have the
best performance. For Network B OSI, DOSI, and DMVPSO
tie statistically for best for all values of k. For Network C
OSI, DMVPSO, and DOSI tie statistically when k is set to 4
while OSI and DOSI have the best performance otherwise.
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Table 6 Comparison with other approaches

Network k OSI GA-Part DMVPSO SA MBE DOSI

Network A 2 −3.20 ± 0.00 −7.70 ± 1.92 −3.20 ± 0.00 −7.70 ± 2.58 −2.91 −3.20 ± 0.00

4 −8.39 ± 0.00 −14.59 ± 1.82 −8.92 ± 0.72 −11.86 ± 3.59 −8.39 −8.39 ± 0.00

6 −13.95 ± 0.00 −21.89 ± 2.17 −14.62 ± 0.84 −21.24 ± 2.59 −13.95 −13.95 ± 0.00

8 −23.57 ± 0.00 −24.95 ± 1.49 −23.57 ± 0.00 −25.01 ± 1.44 −23.57 −23.57 ± 0.00

Network B 2 −2.87 ± 0.00 −4.37 ± 0.65 −2.87 ± 0.00 −4.84 ± 0.68 −2.87 −2.87 ± 0.00

4 −7.55 ± 0.00 −9.03 ± 0.94 −7.55 ± 0.00 −9.10 ± 1.30 −7.55 −7.55 ± 0.00

6 −12.40 ± 0.00 −14.33± 0.54 −12.40 ± 0.00 −14.38 ± 0.76 −12.40 −12.40 ± 0.00

8 −18.22 ± 0.00 −18.83 ± 0.60 −18.22 ± 0.00 −18.85 ± 0.43 −18.22 −18.22 ± 0.00

Network C 2 −5.17 ± 0.00 −7.26 ± 1.79 −5.17 ± 6.81 −8.01 ± 2.15 −5.17 −5.17 ± 0.00

4 −11.47 ± 0.00 −15.77 ± 4.33 −11.47 ± 0.00 −18.51 ± 4.54 −11.47 −11.47 ± 0.00

6 −18.20 ± 0.00 −24.40 ± 2.83 −18.41 ± 0.26 −37.80 ± 11.32 −18.20 −18.20 ± 0.00

8 −25.15 ± 0.00 −33.29 ± 3.74 −26.32 ± 1.36 −58.56 ± 14.54 −25.15 −25.15 ± 0.00

Win95pts 2 −5.29 ± 0.00 −9.96 ± 2.98 −5.62 ± 0.45 −601.36 ± 310.82 −753.65 −5.29 ± 0.00

4 −12.45 ± 0.00 −20.23 ± 2.47 −13.26 ± 0.97 −1,943.27 ± 381.27 −2,952.21 −12.45 ± 0.00

6 −20.48 ± 0.00 −32.14 ± 3.82 −21.89 ± 1.58 −3,135.72 ± 468.31 −2,961.54 −20.48 ± 0.00

8 −28.69 ± 0.00 −43.14 ± 5.16 −32.22 ± 3.32 −4,403.11 ± 886.28 −5,904.43 −28.69 ± 0.00

Insurance 2 −6.47 ± 1.24 −1,045.61 ± 380.91 −9.86 ± 2.19 −1,341.29 ± 310.79 −22.52 −6.68 ± 1.22

4 −13.05 ± 0.52 −2,313.46 ± 811.42 −28.85 ± 17.83 −2,535.85 ± 380.35 −42.75 −13.60 ± 1.16

6 −20.29 ± 0.35 −3,285.61 ± 864.35 −574.56 ± 760.88 −4,318.95 ± 311.18 −62.97 −20.59 ± 0.92

8 −27.88 ± 0.49 −3,963.88 ± 855.26 −298.07 ± 346.66 −5,659.35 ± 516.60 −87.79 −27.84 ± 0.53

Hailfinder 2 −14.49 ± 0.52 −607.45 ± 574.35 −14.65 ± 0.76 −972.83 ± 353.91 −1,484.99 −14.95 ± 1.03

4 −31.32 ± 2.39 −929.10 ± 821.42 −31.97 ± 4.24 −2,464.16 ± 352.25 −2,969.98 −31.31 ± 1.70

6 −49.79 ± 6.23 −1456.29 ± 417.35 −47.66 ± 4.22 −4,101.11 ± 381.97 −4,454.96 −49.80 ± 3.30

8 −72.93 ± 4.33 −1,694.31 ± 968.11 −71.91 ± 3.14 −5,441.21 ± 354.90 −5,939.95 −72.03 ± 4.24

Hepar2 2 −8.12 ± 0.42 −20.68 ± 1.57 −9.47 ± 0.93 −609.28 ± 308.44 −25.03 −8.48 ± 0.58

4 −17.44 ± 0.76 −39.46 ± 4.09 −19.60 ± 2.01 −157.19 ± 11.44 −49.81 −19.80 ± 0.85

6 −27.49 ± 1.03 −57.81 ± 5.53 −32.77 ± 2.07 −2,112.15 ± 1,336.86 −73.46 −28.15 ± 1.41

8 −36.87 ± 1.34 −80.85 ± 7.33 −42.97 ± 2.18 −3,754.73 ± 1,094.14 −100.14 −38.42 ± 1.49

For Win95pts and Insurance both DOSI and OSI have the
best performance for all values of k. For Hailfinder OSI,
DMVPSO, and DOSI tie statistically for best for all values
of k. For Hepar2 OSI and DOSI tie statistically when k is set
to 2, 6, and 8. Otherwise, OSI has the best performance.

In Fig. 6 we compare the number of fitness evaluations
required by each of the algorithms with respect to the number
of nodes in the network. We find a very similar performance
trend to Fig. 5 for similar reasons.

In Fig. 7 we present the convergence plots for OSI, DOSI,
and DMVPSO. In this figure, OSI-Best and DOSI-Best
denote the average score for the best particle in each swarm,
while OSI-Avg and DOSI-Avg denote the average score for
all particles in each swarm. PSO-Avg denotes the average
score for all particles in the swarm, while PSO-Best denotes
the score of the best particle in the swarm. These plots were
obtained by running each algorithm with k set to 2 on the
four largest networks.

5.5 Discussion

The paired t tests on the sum of the probabilities indicate
that OSI and DOSI performed either equal to or better than
the other methods for most values of k on nearly all net-
works. While the OSI approach does not appear to have an
advantage over DMVPSO when used on Hailfinder and Net-
work B, we can see that it outperformed the other meth-
ods on all other networks for most values of k. We believe
that our algorithms were not able to outperform DMVPSO
approaches when used on Hailfinder because this network
has many more parameters than the other networks and
the solution space for this network contains many local
optima.

Consistent with our lesion studies on full abductive
inference, we believe that the increased performance of
OSI and DOSI is due to each swarm being associated
with the Markov blanket of a single node and the result-
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Fig. 6 Number of fitness evaluations

ing communication and competition between overlapping
swarms. DOSI was found to outperform all approaches
not based on OSI and DOSI tied statistically with OSI
for most networks and values for k. This result indicates
that DOSI provides an effective distributed alternative to
traditional OSI for the problem of partial abductive infer-
ence.

Like the results for full abductive inference, the con-
vergence plots presented in Fig. 7 show that, while OSI-
Best often converges to a higher score than DOSI-Best, the

average scores for the best particles are usually similar. In
fact, the average scores of the best particles in DOSI are
higher than those in OSI for the Hailfinder network. This
reinforces the results in Table 6, illustrating that the dif-
ference between the two algorithms is often insignificant.
However, higher average scores of the best particles in an
algorithm may not necessarily indicate a higher log likeli-
hood for the k best explanations found by the algorithm as a
whole.

The convergence plots for partial abductive inference also
show a much lower average score for particles in DMVPSO
when compared to the average scores of particles in OSI
and DOSI. This result, when combined with the results pre-
sented in Table 6, provides strong evidence for the perfor-
mance advantage of OSI and DOSI when compared to other
approximate methods.

While OSI and DOSI appear to outperform the other
methods in terms of the log likelihood of solutions found,
these methods require many more fitness evaluations than
the other approaches. However, the correlation between the
number of nodes and number of fitness evaluations is not
as strong in the case of partial abductive inference since
the number of required swarms is tied to the size of the
explanation set rather than the number of nodes in the net-
work.

(a) (b)

(c) (d)

Fig. 7 Partial abductive inference convergence plots
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6 Conclusions

We have presented several swarm-based algorithms for both
full and partial abductive inference in Bayesian networks. In
these algorithms a swarm is associated with each relevant
node in the network and that swarm learns the state assign-
ments for its node’s Markov blanket. These algorithms are
based on OSI and we have presented both distributed and
non-distributed versions of each algorithm. We compared
our algorithms to several other approaches to the partial and
full abductive inference problems. Our results indicate that,
while our approach is more computationally expensive than
competing methods, both OSI and DOSI significantly outper-
form the other approaches on most networks studied in terms
of the log likelihood of solutions found. Also, for nearly all
of the experiments, DOSI outperformed all approaches that
were not based on OSI and, in many cases, tied statistically
with OSI.

For future work we plan to explore alternative representa-
tions and competition strategies to reduce the computational
complexity of our algorithms. For example, we could vary the
number of particles for each swarm based on the complexity
of the swarm’s Markov blankets. In this way we could reduce
the computational complexity of our algorithm by assigning
smaller swarms to nodes whose Markov blankets have fewer
parameters. We are also developing the theory of the general
OSI and DOSI methodologies by showing the convergence
of OSI. To do so, we plan on drawing from the approaches of
Patterson et al. (2010) and Boyd et al. (2011) on the distrib-
uted consensus problem to analyze the relationship between
OSI convergence rate and the structure of the sub-swarms.
Finally, we will also analyze the rate of consensus for DOSI
when applied to problems with both discrete and continuous
search spaces by drawing on the theory presented by Olfati-
Saber et al. (2007).
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