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Abstract—Stochastic search algorithms are an effective method
for solving the B-spline knot selection problem. Unfortunately,
they often require a large number of (in this case, expensive)
fitness function evaluations to find good solutions. In an at-
tempt to mitigate this issue, we apply a modern cooperative
coevolutionary algorithm – Factored Evolutionary Algorithms
(FEAs) – to the B-spline knot selection problem. We demonstrate
FEA’s performance on a variety of benchmark functions, and we
compare FEA to traditional stochastic search methods. We also
propose an FEA-specific method to evaluate Mean Squared Error
(MSE) more efficiently, thus reducing the theoretical runtime.

I. INTRODUCTION

Fitting a curve to data (i.e. nonlinear regression) is an
important and foundational problem for many fields, as we
often obtain data which follow some unknown functional
form. B-spline basis functions are a popular choice to form
a basis for approximating unknown functions due to their
efficiency (with respect to number of parameters) and ability
to adapt to different functional forms. Adaptation is achieved
by the selection of knot points (referred to as the knot-
selection problem), which determine the underlying function
space allowed to fit the data and hence the quality of fit for a
particular dataset/knot-vector combination.

A. B-spline Regression

B-spline basis functions are piecewise polynomial functions
of a given degree d defined by a nondecreasing sequence
called a knot vector: k = (k0,k1, ...,kp) [1]. B-spline basis
functions can then be defined recursively through the Cox-de
Boor formulation [2]. The base case is:

Bi,0(x) =

{
1 if ki ≤ x < ki+1

0 otherwise
.

The general case for the i-th basis function of degree d is:

Bi,d(x) =
x− ki

ki+d − ki
Bi,d−1(x)+

ki+d+1 − x

ki+d+1 − ki+1
Bi+1,d−1(x).

A B-spline curve C of order d+1 (degree d) with p knot points
is then defined as a linear combination of the basis functions:

C(x) =

p∑
i=1

θiBi,d(x). (1)

The functional form of the B-spline basis functions and curves
gives properties that C(x) is a piecewise polynomial function

of degree d over each interval (ki,ki+1), is continuous at
the knot locations k (for d > 0) and has d − 2 continuous
derivatives.

B-spline regression splines use this functional form to fit a
curve to data D = {xi,yi}ni=1 according to the model

yi = f(xi) + ϵi =

p∑
i=1

θiBi,d(xi) + ϵi.

The parameters of this model is estimated by minimizing MSE

θ̂ = argmin
θ

n∑
i=1

(ŷi − yi)
2, (2)

whose solution is obtained by solving the normal equations,
resulting in

θ̂ = (B⊤B)−1B⊤y (3)

where Bi,j = Bj,d(xi). This is a linear optimization prob-
lem, which for B-spline regression, the design matrix B is
potentially very sparse (depending on the number and order
of B-spline bases) enabling the system to be solved efficiently
with sparse linear solvers.

B. Knot Selection

In the B-spline knot selection problem, we find the model
coefficients θ̂ and the knot vector kopt that minimize MSE:

kopt, θ̂ = argmin
k,θ

n∑
i=1

(ŷi − yi)
2. (4)

Note that it is possible for other criteria to be used to determine
the optimal knot vector (e.g. AIC, BIC, GCV, Cp). Also
note that because k is nondecreasing, the solution space is
constrained to the p-simplex:

Sp[a, b] = {k ∈ Rd : a = k1 < k2 < · · · < kp = b}.

Allowing the knot-vector to vary, turns a simple linear
optimization problem (Eqn 2) into a nonlinear optimization
problem (Eqn 4), called the full-functional problem [3], with a
potentially large number of stationary points [4]. In particular,
Jupp [5] showed that the “lethargy” property is intrinsic to the
knot selection problem, which has the consequence that the
objective function has many stationary points, is non-convex,
and has poor convergence for gradient based algorithms when



solutions are near the boundary, which is often the case.
Further, Zhou and Shen [6] described the knot confounding
problem, which arises from the interdependence of knots
on the resulting quality of fit. This problem manifests as
a problem for step-wise insertion/removal algorithms where
knots cannot be added, removed, or moved without modifying
nearby knots or severely degrading fit.

This interdependence may also manifest as the “two steps
forward, one step back problem” in stochastic search al-
gorithms [7], where some dimensions move closer to the
optimal solution while others move away, contributing to
slower convergence rates and potentially suboptimal solutions.
Cooperative PSO (CPSO) was proposed as a way to mitigate
this phenomenon [7]. For this reason, cooperative evolutionary
algorithms (CCEA) are a natural choice for solving the knot
selection problem. In this work, we apply a Factored Evolu-
tionary Algorithm (FEA) [8], which is a generalized class of
CCEA, which include methods like CPSO [7] and CCGA [9].

II. LITERATURE REVIEW

Determining how best to solve the knot selection problem is
a well-studied field that has put forth many potential methods.
Each method has some way of determining both the optimal
number of knots and the optimal placement of those knots.
Early methods date back to the late 1960s and early 1970s.
For example, de Boor and Rice proposed the SWEEP and OPT
algorithm [10], which alternate between adding knots and then
repositioning one at a time.

Various step-wise forward and backward selection proce-
dures have also been proposed that use a variety of selection
criteria (e.g. MSE, AIC, BIC, GCV, Cp) to guide the insertion
and removal of knots. This includes work on TURBO [11],
MARS [12], LOGSPLINE, POLYMARS [13], and the inser-
tion/removal/relocation algorithm of Zhou and Shen [6].

There are also various methods based on geometric heuris-
tics. Park and Li [14] proposed a two-stage approach where in
the first stage, “dominant points” are selected and in the second
knot positions are optimized to balance inter-segment shape
index distance. Both Li et al. [15] and Michel and Zidna [16]
use heuristics based on estimates of discrete local curvature
for the addition of knots. Razdan uses arc length and curvature
estimates to select points of interest [17]. Aguilar et al. also
rely on estimates of curvature for a knot readjustment scheme
[18]. Some methods place knots where estimates of the fourth
derivative are largest (e.g., [19]). Yeh et al. [20] also make use
of derivatives as a heuristic for knot selection.

There is a growing body of work that use and adapt
stochastic search methods. Miyata and Shen [21] and Pittman
[22] used Genetic Algorithms (GA). Iglesias and Galvez [23]
and Mohanty and Fahnestock [24] use Particle Swarm Opti-
mization (PSO). Luo et al. [25] used Differential Evolution
(DE). Galvez and Iglesias used the Firefly algorithm [26] and
Galvez et al. used the elitist clonal selection algorithm [27].
Finally, Miyata and Shen [21], [28] used evolutionary algo-
rithms with simulated annealing. Stochastic search algorithms
often have good theoretical guarantees for finding an optimal

solution and work well in practice, but they can be expensive
computationally. Our work most closely relates to this body of
research by using factored evolutionary algorithms to solve the
knot selection problem. By using FEA, we investigate whether
CCEAs can be more efficient than traditional stochastic search
algorithms at solving the knot selection problem.

III. METHODS

We explore three traditional stochastic search algorithms as
base algorithms to FEA: PSO, DE, and GA. These algorithms
are well known stochastic search algorithms that have in
prior research been successfully applied to a wide variety of
optimization problems, including the knot selection problem
[29], [23], [25]. The novelty of our method is in the use of
FEA wrapped around these three methods.

A. Factored Evolutionary Algorithms

FEA is a relatively new class of stochastic search algorithms
that subdivides the problem into overlapping “factors” corre-
sponding to subsets of the variables optimized [8]. Each factor
is given its own optimization routine (often population based),
and the factors compete with and share information with one
another to iterate towards an optimal solution by maintaining
a global solution G also referred to as the context vector.

Given a parameter set k = {k1,k2, . . . ,kd} with index
set Id = {1, . . . , d}, the factor architecture F is a collection
of subsets of k such that F i ⊂ k for each F i ∈ F , and
∪|F |
i=1F i = k. Associated with each factor is an index set

Ii = {a ∈ Id : ka ∈ F i} and an optimization algorithm Si,
also referred to as a subpopulation, that searches the parameter
space defined by the factor F i. In the other direction, associ-
ated with each variable kj is the set of factors containing that
variable Oj = {Fk ∈ F : kj ∈ Fk} called the “overlap.”
Additionally, there are the subpopulations associated with
the factors in the overlap set, referred to as “overlapping
subpopulations” and denoted (OS)j = {Sk ∈ S : kj ∈ Fk}.
After initializing the global context G and each subpopulation
Si, the FEA algorithm repeats three steps until convergence:
update, compete, and share.

During the update step (the for loop in Alg. 1), each
subpopulation Si is optimized relative to the objective function
f(k) allowing only the variables associated to its factor F i to
vary while the remaining variables ri = F i \k are held to the
values given by the global context G. During the compete step
(Alg. 2), variables in k are iterated through in a permuted order
p = perm(I). The subpopulations associated to the factors in
overlap set Opj , namely (OS)pj are considered for updating
variable kpj

in G. The value of kpj
in G is replaced by the

kpj
from the best solution found among the subpopulations

in (OS)pj
, so long as that solution has higher fitness than G.

Finally, during the share step (Alg. 3), each subpopulation Si

is updated so the nonfree variables ri coincide with G.
It is natural to consider “linear” factor architectures

with some amount of overlap for the B-spline knot se-
lection problem. For example, a set of variables k =
{k1, . . . ,kd} may be broken into a linear factor architecture



Algorithm 1 FEA
Input: Objective function f , optimization algorithm A, factor

architecture F , domain D
Output: Global context solution G

G← initializeGlobal(D)
Sort(G)
S ← initializeSubpops(f,F ,A)
repeat

for all Si ∈ S do
repeat

Si.updateIndividuals()
until Termination criterion is met

end for
G← Compete(f,S)
Share(G,S)

until Termination criterion is met
return G

F = {{k1,k2,k3}, {k2,k3,k4}, . . . , {kd−2,kd−1,kd}} with
a factor size of 3 and maximum overlap size of 3. This
architecture may mitigate the knot confounding and “two steps
forward, one step back” problems previously described as it
allows a subsequence of knots to be changed simultaneously
within the subpopulations. In addition, it enables performance
improvements by allowing “partial” fitness function evalua-
tions. Because we know the knots not associated with a given
factor do not change, we only need to partially update B when
evaluating Eqn. 2 and we can use the coefficients from the
previous iteration as a starting point for iterative solvers.

IV. EXPERIMENTS

We conducted experiments to compare the performance of
FEA to traditional stochastic search algorithms on a variety
of benchmark functions. We did this by running the B-spline
knot selection problem on each base algorithm (PSO, DE, and
GA) and the FEA version of each. We used the Mean Squared
Error (MSE) of the B-spline approximation as our metric for
these comparisons and considered six benchmark functions,
two levels of sample size and three levels of noise.

Five of the six benchmark functions were taken from
literature ([29] and [30]) illustrated in Figure 1. In particular,
we chose the “Blocks”, “Bumps”, “HeaviSine” and “Big
Spike” functions exactly as described in these papers. We
also modified the doppler function; instead using f(t) =

sin
(

20
t+0.3

)
. For the sixth benchmark, We created our own

functions by producing randomly generated B-spline curves.
We generated our random functions using either a Beta or
Uniform distribution of 30, 40, and 50 knot points and a
normal distribution of θ to produce the random B-spline
curves, (i.e. k ∼ BETA(a, b) or k ∼ UNIFORM(0, 1) and
θ ∼ NORMAL(µ, σ2) with yi(x) =

∑p
i=1 θiβi,d(x)+ϵi) with

parameters set to a = 1, b = 3, µ = 0, and σ2 = 1.
For each benchmark function, we sampled points uniformly

along the function (i.e. x ∼ UNIFORM(0, 1), adding normally
distributed noise to those points (i.e. y = f(x) + ϵ , ϵ ∼

Algorithm 2 FEA Compete
Input: Objective function f , optimization algorithm A, factor

architecture F , domain D, context G, subpopulations S
Output: Updated context G
p← perm(Id)
for j = 1 to d do

(OS)pj ← {Sk ∈ S : xj ∈ Fk}
bestVal ← G[pj ]
GCopy ← G
sort(GCopy)
bestFit ← f(GCopy)
q← perm(I |(OS)|)
for i = 1 to |(OS)| do

currV al← (OS)pj
[qi].getBestSolution()[pj ]

G[pj ]← currV al
GCopy ← G
sort(GCopy)
if f(GCopy) < bestF it then

bestVal ← currVal
bestFit ← f (GCopy)

end if
end for
G[pj ]← bestVal

end for
sort(G)
return G

Algorithm 3 FEA Share
Input: Objective function f , context G, subpopulations S
Output: Updated subpopulations S

for all Si ∈ S do
Si.contextVector← G
Si.updateDomain()
Si.updateFitness()

end for
return

N(0, σ2)), using sample sizes of n = 2000 and 5000. The
noise was sampled from a normal distribution with µ = 0,
and a σ2 that depended on the range of the given benchmark
function. For a function with range r = range(f), we used
standard deviations of σ = r

20 , r
12.5 , and r

5 . Finally, we allowed
each algorithm to run for 150,000 fitness function evaluations.

We gave each of the traditional algorithms a population
size of 1000 and tuned the base algorithms’ other parameters,
including the number of knots, through Bayesian optimization
[31]. By using Bayesian optimization to tune the number of
knots, we avoided some of the issues with incremental addition
and removal of knot points. FEA had two more parameters
to tune, namely the factor size and overlap for the factor
architecture, which were also tuned via Bayesian optimization.
The additional number of parameters to tune in FEA means
that tuning the algorithm is more difficult than tuning the
base stochastic search algorithms alone. That said, we allowed
FEA’s tuning to run for the same amount of iterations as the



Fig. 1. Benchmark functions used in experiments. Bottom-right (F) is the random benchmark function with 30-knots, drawn from a uniform distribution.

TABLE I
EXPERIMENTAL RESULTS FOR BENCHMARK FUNCTIONS WITH n = 5000, σ = r

5

Function DE GA PSO DE FEA GA FEA PSO FEA
BigSpike 27.9663 27.0731 26.5264 27.5446 26.8739 26.6234
Blocks 3.0990 1.6143 1.5496 1.4277 1.4696 1.5751
Bumps 19.5134 6.6819 6.8302 6.2533 6.2911 8.0621

HeaviSine 1.4825 1.5047 1.4710 1.4393 1.4933 1.4869
MDoppler 0.0130 0.0102 0.0097 0.0100 0.0107 0.0108

Unif30 0.0470 0.0348 0.2384 0.0348 0.0344 0.0339
Unif40 0.0417 0.0506 0.0330 0.0310 0.0311 0.0321
Unif50 0.0738 0.1397 0.0556 0.0486 0.0490 0.0481
Beta30 0.0426 0.0482 0.0341 0.0341 0.0344 0.0345
Beta40 0.0901 0.1267 0.0699 0.0515 0.0502 0.0534
Beta50 0.0860 0.1170 0.0600 0.0459 0.0463 0.0545

base stochastic search algorithms.

V. RESULTS

Results of our experiments comparing FEA to the base
algorithms are provided in Table I with the best for each
function in bold. We only present the results for the large
sample size (n = 5000) and large noise level (σ = r

5 )
as we saw similar patterns across all sample size and noise
levels. The results show FEA outperforms or is competitive
with the best performing algorithm on all of the benchmark
functions. Additionally, the DE and GA variants of FEA
outperformed the PSO variant. It is interesting to note that
DE performed worst on the benchmark functions while the
FEA variant of DE usually performed best. Alternatively, the
base PSO algorithm was fairly competitive with all of the other
algorithms while the FEA variant appears to have degraded its
performance several cases. Interestingly, as the dimensionality
of the problem increased in the random function benchmarks,
FEA algorithms appeared to perform better compared with
the base algorithms. The experiment scripts 1, a python FEA

1https://github.com/jordanschupbach/feareuExperiments

implementation 2 and modifications to FEA for the B-spline
knot selection problem 3 are publicly available.

VI. DISCUSSION

The B-spline knot selection problem is a difficult optimiza-
tion problem due to the large number of local optima in
the objective function and the large search space. Traditional
stochastic search algorithms have been used to solve this
problem effectively, but they are often slow and can get stuck
in local optima. Our experiments show that FEA is competitive
with or outperforms baseline stochastic search algorithms on
the B-spline knot selection problem for the benchmark func-
tions we considered. This was achieved with each algorithm
being given the same fitness function evaluation budget. We
have also shown that FEA can be modified to allow for
partial fitness function evaluations, which can lead to potential
performance gains. We believe this is a promising approach to
the B-spline knot selection problem and that further research
in this area is warranted, to investigate how or when CCEAs
such as FEA may perform better than the base algorithms.

2https://github.com/jordanschupbach/pyFEA
3https://github.com/jordanschupbach/pyBsplineFEA
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