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Abstract—Numerical Weather Prediction (NWP) is a process of
using numerical simulation to track and predict weather patterns
over time. NWP is presented with a number of challenges in
that it aims for precision in a situation that is by its nature
uncertain and influenced by factors that are very difficult to
enumerate. As an alternative, Empirical Weather Prediction
(EWP) attempts to use observational data to construct models
of weather phenomena. We evaluate a deep learning method
applied to EWP to make wind vector determinations from
radiometric data using data collected from Hurricane Sandy. Our
approach uses unsupervised pre-training of stacked autoencoders
to construct multilayer perceptrons. We then discuss the role of
our approach as an important step in positioning EWP as a
viable alternative to NWP.

I. INTRODUCTION

The use of artificial neural networks in weather prediction

systems has been growing due to the effectiveness that they

have seen in a variety of other areas. Some of these domains,

such as meteorology, have been dominated by disciplines

that favor precise mathematical inference over the imprecision

inherent in the use of machine learning. Today, weather

prediction is done mostly using mathematical tools from

atmospheric science to extrapolate from the current conditions

of the atmosphere into the future.

Mathematical precision in weather prediction can be com-

putationally expensive. Very large supercomputers have to be

dedicated to the problem of weather prediction[1], since the

operations that are necessary to make these predictions often

involve performing numerical integration and differentiation at

a high precision[2]. Imprecision creeps into the system at every

level, since there are many causes of uncertainty in a system

as complex as the weather. In addition to the uncertainty

surrounding weather prediction, sometimes the state of the

features of the atmosphere that we want to determine (in this

case, the wind) must be inferred using other data that do

not include the previous states of that features (in this case,

radiometric data).

Radiometric measurements of the atmosphere, which can be

used directly to determine temperature, moisture content, and

precipitation type as point observations, do not include wind

data. If the main interest is in determining wind vectors, and

radiometric data is all that is available, inferences must be

made. We hypothesize that wind vector determinations can

be made using deep multilayer perceptrons that have been

conditioned using unsupervised pre-training on radiometric

data.

Figure 1. Hurricane Sandy on October 29, 2012 [3]

Figure 1 shows a satellite image of Hurricane Sandy, which

affected the East Coast of the United States in the Fall of

2012. Considering that the economic and social impact of this

storm was significant, and because a variety of conditions exist

within a hurricane that might be representative of the larger

wind vector determination problem, we considered it a suitable

data set to test our hypothesis. Our goal is for techniques like

ours to play a role in enhancing the situational awareness of

those affected by such storms.

II. BACKGROUND

A. Related Work

Shi, et al. [4] performed “nowcasting” of precipitation

by formulating it as a spatiotemporal sequence forecasting

problem that can be solved using a sequence-to-sequence

learning framework. The goal of their nowcasting task is “to

perform precise and timely predictions in a local region over

a short period of time.” They used multiple Convolutional

LSTM layers (i.e., FC-LSTM models that have convolutional

structures in both the input-to-state and state-to-state transi-

tions) to form an encoding-forecasting structure for capturing

spatiotemporal correlations from the data.

After acknowledging that weather data is nonlinear and

follows irregular trends, Abhishek, et al. developed nonlin-

ear models using ANNs to create weather data simulations
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[2]. In this paper they asserted “... massive computational

power required to solve the equations that describe the at-

mosphere, error involved in measuring the initial conditions,

and an incomplete understanding of atmospheric processes...”

were significant factors motivating the ANN approach. Their

approach specifically addressed temperature forecasting and

used an assemblage of temperature data, year over year, to

predict a recent daily maximum temperature. In contrast to the

deterministic (NWP) approach, they observed high accuracy in

the predictions made by their ANNs.

Using deep methods for rainfall prediction has seen an in-

creasing trend in recent years. Hernández, et al. [5] used deep

learning to predict accumulated daily precipitation a day in

advance. They used a “multilayer autoencoder” (not a stacked

autoencoder), where the hidden layers of the autoencoders are

connected directly to single nodes in the single hidden layer of

a multilayer perceptron. They used a variety of input variables

related to rainfall, such as relative humidity, temperature,

dew point, previous rainfall, sun brightness, and barometric

pressure, collected over ranges varying from the previous three

to the previous five days. Their technique outperformed using

a multilayer perceptron alone and significantly outperformed

the work of Abhishek et al. [6] who used a multilayer

perceptron three layers deep with 10 and 20 nodes per layer.

Our approach differs from Hernández, et al. in that we are

using unsupervised pre-training to train a deep network rather

than simply training the nodes of a multilayer perceptron.

Salman et al. compared the prediction performances of

recurrent neural networks, conditional restricted Boltzmann

machines, and convolutional neural networks to investigate

hierarchical weather representations that result from training

these networks [7]. Specifically, they wanted to predict the

behavior of El Niño / Southern Oscillation (ENSO) param-

eters. Given their study was preliminary, their methodology

was largely exploratory, and they did not claim that they had

a superior technique.

Grover et al. studied combining discriminatively trained

predictive models with a deep neural network that models the

joint statistics of weather related variables [8]. They used the

spatial characteristics of the data, learning long-range spatial

dependencies in the process. They applied their technique to

predict wind speeds, dew points, geopotential heights, and

temperature for a period of time ranging from 6 to 24 hours,

and their technique performed well against some state of the

art methods that are currently being used at NOAA.

B. Related Technologies

1) Discrete Global Grid Systems: NWP uses the Discrete

Global Gridding Systems (DGGS) as a method of geographical

binning. A DGGS is a system of adjacent polygons that cover

the entire planet [10]. Such systems allow the collection of

point observations that occur in the same vicinity so that each

point collected in a polygon is seen as representative of that

polygon. The size of these polygons determines the resolution

of the weather information system. In our experiments we did

not average the data points for each polygon in each time slice

Figure 2. Intuitive Depiction of the Hexagonal Discrete Global Grid System
[9]

Level: high

Level: mid

Level: low

Figure 3. The 21 3D DGGS Cell Lattice

because this allowed us to provide more individual data points

to the neural networks.

We use 15 kilometer grid cell sizes, so our system can

be described as having a resolution of 15 kilometers at sea

level. In addition, we use a geodesic DGGS grid that is based

on hexagonal grid shapes. This provides superior resistance

to shape distortion and size consistency [11]. To obtain a

representation of a DGGS suitable for insertion into a GIS

database we used dggridR [9], which is a system that creates

base polygons for this purpose. As an example, Figure 2 shows

a hexagonal DGGS superimposed over the entire planet at

three different resolutions.

Each cell in an area of study is represented by ch,a,t. The

symbol h represents the height relative to the center cell, or

cell of interest. The heights will be labeled “high,” representing

the cells above the center cell level, “middle” (mid) for those



at the same level, and “low” for cells at below the center

cell. The symbol a is the azimuth of the cell. Since these are

hexagonal cells there will be six cells surrounding the center

cell. These six cells are represented by azimuths 1 through

6 with the center cell represented by azimuth 0. The symbol

t represents the time slice relative to the time about which

we are attempting to make predictions, with a value of −1
representing the conditions from the previous time slice. In

our study, the cell about which we are attempting to make

predictions is designated cmid,0,0. We assume that the current

weather conditions cell cmid,0,0 are influenced directly by the

condition of this cell in the previous time slice cmid,0,−1 and

the conditions in the previous time slice of all of the cells in

the 3D lattice that are adjacent to this cell. In other words, we

incorporate conditions from c{high,mid,low},{0−6},−1.

2) Autoencoders and Unsupervised Pre-Training: Autoen-

coders, first introduced by Ackley et al. [12] are simple

neural networks that encode a vector of inputs into a lower-

dimensional representation, with the aim of decoding them into

their original feature space with minimal distortion [13]. They

form the basis of our neural networks used in our experiments.

In Unsupervised Pre-Training (UPT), autoencoders are trained

and stacked iteratively, where an autoencoder is trained to

capture the input’s main variations [14]. Figure 4 depicts the

operation of UPT. In the experimental analysis performed by

Erhan et al., results are offered that indicate that “unsupervised

pre-training guides the learning towards basins of attraction

of minima that support better generalization from the training

data set.” Consequently, in this study, we used UPT to learn

what is hypothesized to be an abstract hierarchy of features to

characterize the input data.

III. DATASET

We used the outputs of a Weather Research and Forecasting

(WRF) model simulation of Hurricane Sandy created by Zhang

and Gasiewski [15]. This storm system devastated the East

Coast of the United States in 2012 and was the second costliest

hurricane in United States history [16]. The simulation made

use of actual measurements from the storm but then enabled

generation of data with higher spatial and temporal resolution.

This is a common practice in NWP so that mesoscale weather

models can be improved to keep pace with instruments being

developed that provide data at these resolutions. Specifically,

WRF provides simulated data at a 5 km grid spacing and

generates the entire field at an interval of 15 minutes. Figure

5 shows the area of the Eastern seaboard covered by the

simulation during a 24 hour period. The area is bound in the

southwest at 26.4902◦N, 81.6064◦E and in the northeast at

41.2117◦N, 60.3809◦E.

Figure 5a shows the standard deviation of the barometric

pressure for various points of the storm over the 24 hour time

period. Here, lighter shades show lower standard deviation.

The area with the highest variation in barometric pressure was

in the northeast of the dataspace. Likewise, in Figure 5b the

lighter areas represent areas where the standard deviation of

the temperature over the entire 24 hour dataset was lower and

Figure 4. Unsupervised Pre-Training

the darker areas show where it was higher. As can be seen, the

area of greatest variability is in the extreme northwest of the

data space. This is the area where the storm is making landfall

and is affected by different atmospheric conditions than it is

over the ocean.

IV. APPROACH

A. Overview

We assume for our experiments that the current weather

conditions of any location depend on the following:

1) The previous weather conditions at that location.

2) The previous weather conditions at the locations imme-

diately surrounding that location.

Essentially, what this does is define a spatiotemporal “Markov

blanket” around the cell over which we are predicting the wind

vectors.

Autoregressive models like ARMAX [17] could be consid-

ered to make these predictions. But our ultimate goal was

in predicting wind vector components without using wind

as explicit inputs. The ARMAX more naturally applies the

knowledge of the prior wind vectors, thus defeating our

purpose. We wanted to ignore the wind vectors from the

previous time slice from consideration altogether.

For each experiment, we retrieved all data from each cell

for the entire duration of the simulation. These readings were

sorted by time. To simplify, each reading, including the wind

vector reading, was regarded as representative of the entire

cell from which it came. Since our DGGS cell resolution is

15 km and the simulation resolution was 5 km, there were
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Figure 5. Left (a) shows the barometric pressure variation, right (b) shows the temperature variation. Example locations for analysis were chosen at four
different areas with different standard deviations for barometric pressure and temperature.

several readings for each time slice for each cell. Therefore,

in most cases, the radiometric data do not correspond to the

exact locations of the wind vector data, but the two do always

occur in the same cell.

B. Data Storage

Our data was stored in a star-schema of point-cloud rasters

using the PostGIS extension of the PostgreSQL database

management system. This differs from extant meteorological

resources, which use database management systems to store

metadata and flat files to store the actual point data. The

reason we used PostGIS is because of the ease with which

queries for points internal to a 3D polygon (a “surface” in

GIS parlance) can be performed. This functionality comes

with a cost in storage space, however: The non-indexed system

occupied approximately 450 GB of storage while the indexed

data system for our 24-hours of 15-minute data required 1.2

TB of storage space. The data structures containing the DGGS

exist alongside the point data in the PostGIS database, which

facilitates queries for the data inside the polygons. The extra

space occupied by the DGGS grid itself was negligible.

C. Data Preparation

We analyzed each of 100 different locations distributed

evenly across the dataspace. Our experiments cover a variety

of pressure and temperature conditions, as can be seen in

Figures 5a and 5b; however, we highlight the results associated

with the four locations shown in this figure.

V. EXPERIMENTS

A. Overview

Our experimental procedure consisted of the following

steps:

1) For a location of interest, determine DGGS cell contain-

ing that location.

2) Query the database for the surrounding grid cells.

3) Query the database for all data points from all of the

relevant cells.

Table I
RAW FEATURES FOR EACH POINT IN THE SIMULATION

Reading Source Reading Name

Radiometry Measurements

Temperature
Pressure

Cloud Density
Rain Density

Ice Density
Snow Density

Graupel Density

Wind Speed
Wind u
Wind v
Wind w

4) Scale the data.

5) Time shift the wind data.

6) Obtain cross validation splits for model evaluation.

7) For each cross validation trial, do the following:

a) Perform unsupervised pre-training over the stacks

of the autoencoder on the training set.

b) Train on training set.

c) Test on the test set.

The results of the cross-validation trials were then aggregated

to obtain a summary of the performance of our approach.

1) Locate DGGS Cells: For each of our points of interest

on the map, a PostGIS query is made to the database to

determine the DGGS cell that contains this point and another

to determine all of the cells surrounding this cell. For each of

these cells, their azimuths are recorded so they can be used

later to identify the location of individual readings.

2) Retrieve Cell Data Points: For each of the 21 cells

retrieved for each point of interest from the database 1, all

of the points contained in those cells are retrieved. Table I

shows the dimensions of a single data point. Wind u, Wind v,

and Wind w are the u, v, and w wind speed components of the

wind vector at that point. These are the points of data that we

are interested in for training our model. Note that u is the east

1Fourteen if the altitude of interest is at sea level.



/ west vector component, v the north / south component, and

w is the vertical component. Each of the readings are tagged

with the elevation and azimuth information from the cell in

which the reading was taken. For example, the temperature

for the highlevel cell at azimuth 260 would be tagged as

“azimuth_260_high_temperature.”

3) Scale the Data: The model resulting from training our

neural networks performed far better when we scaled all of

the data to a range of −1 to +1 and then de-scaled when

evaluating the predictions. To do this, all data retrieved from

the datastore, including the test data, was normalized to this

range.

4) Time Shift Wind Data: For each of the time slices the

target dimensions (in this case the wind vector component

values) from the next time slice are appended to the set

of dimension representing the current time slice. This is in

keeping with our assumption that the current wind vector

conditions are dependent on the values from the previous time

slice. We restrict this experimentation to only single-order

temporal consequences, meaning that we are only trying to

predict the wind vector values of the current time slice using

information from the time slice immediately preceding the

current one.

5) Obtain Cross Validation Splits: Arranging the data as we

have done with the above time shifting procedure allows us

to use k-fold cross-validation in our experiments. This would

not be possible if we were to assume that there were order-k
temporal consequences to each configuration of the training

data, and that these consequences were also reflected in the

test data. Fortunately, by defining the spatiotemporal Markov

blanket around each cell, this assumption becomes fairly safe.

If this were not the case, then we would only be able to

test wind vector determination on the latter part of the day,

training the networks sequentially up until then. Though other

configurations are reasonable, in this investigation we use 10-

fold cross-validation.

6) Unsupervised Pre-Training: For unsupervised pre-

training we stacked four layers of autoencoders, with layer

sizes from input to output of 150, 140, 130, and 120 re-

spectively. By using this configuration we include a “bottle-

neck” that is important for autoencoders to perform feature

abstraction. We also allow the network to learn an internal

hierarchical representation inherent in this data. Each layer

was conditioned using unsupervised pre-training. We chose

this network topology after experimenting with a variety of

network widths and numbers of layers. We found that this

topology offered the best performance.

7) Neural Network Training: After pretraining and as-

sembling the network, training proceeded using the normal

backpropagation training process. Each wind vector compo-

nent, u, v, and w was treated separately by training three

different networks using the pre-trained stacked autoencoder.

This follows from the assumption that the forces that influence

latitudinal, longitudinal, and vertical motion are independent

from each other as is the norm for the numerical weather

prediction community [18].

Table II
LATITUDE AND LONGITUDE OF CLOSELY INSPECTED LOCATIONS

Name Latitude Longitude
Location 1 37.07 -73.79
Location 2 38.34 -62.63
Location 3 30.69 -75.65
Location 4 28.14 -64.49

8) Testing the Networks: Unfortunately, since we are the

only ones using this data in this manner, and it is a new dataset

with the unique characteristics that enable this type of analysis

and prediction, we are unable to directly compare our results

to the results of anyone else. However, we do provide a novel

investigation into the use of this data using machine learning

techniques and we plan to build upon this knowledge.

B. Experimental Design

1) Distribution of Locations For Analysis: We chose four

points of interest to demonstrate the effectiveness of this

methodology. Note, however, that we ran our analysis on

all 100 data points described above. The points of interest

described here were chosen because they represent different

pressure/temperature profiles and are generally representative

of all of the results obtained. Table II shows the latitudes and

longitudes of these locations, and Figure 5 shows where the

points are located on the map.

To predict each of the three vector components (u, v, and

w) we used three separate networks, both pre-trained and

trained separately. We did this because these three components

should be treated as if they are independent. The assemblage

of three networks produced three different vector components.

We claim that it is not reasonable to recombine the three com-

ponents from all observations since unique cross validation

splits were created for each of the three vector components at

each point of interest.

2) Evaluating the Use of Wind Vector Measurements:
For comparison, we wanted to get a sense for how having

knowledge of all of the previous time slice’s wind vector

measurements influenced the predictions that were made. In

one set of experiments we removed all wind vector mea-

surements, relying solely on radiometric data for wind vector

prediction. For the other thread, we included all wind vector

measurements for each cell except for the cell about which

we were making predictions.

C. Experimental Results

Table III shows the root mean squared error (RMSE) of

predictions for all three vector components for the locations

studied, concentrating on the four closely inspected locations

with an average over the k folds. It also shows an average

RMSE over all 100 locations studied. Table IV shows the co-

efficient of determination values (R2) for these same locations

with an average R2 value over all 100 locations studied. Here

R2 = 1−
∑

i(yi − fi)
2

∑
i(yi − ȳ)2



Table III
DEEP NETWORK RMSE FOR THE LOCATIONS STUDIED

u component v component w component
With Wind Without Wind With Wind Without Wind With Wind Without Wind

Location 1 0.0794 0.1042 0.1218 0.1894 0.1590 0.1022
Location 2 0.1688 0.1505 0.0631 0.1121 0.1415 0.1523
Location 3 0.0115 0.0596 0.1031 0.1284 0.1103 0.1324
Location 4 0.1048 0.1245 0.1736 0.2107 0.1373 0.1241

Avg Over All 100 0.0850 0.1235 0.0958 0.1326 0.1203 0.1359

Table IV
COEFFICIENT OF DETERMINATION (R2) OF DEEP NETWORKS FOR LOCATIONS STUDIED

u component v component w component
With Wind Without Wind With Wind Without Wind With Wind Without Wind

Location 1 0.4630 0.3300 0.4558 0.1737 -2.1930 -0.5132
Location 2 0.0769 0.0627 0.7621 0.5473 -0.0673 -0.1679
Location 3 0.9606 0.7963 0.4401 0.3246 0.0818 -0.0407
Location 4 0.5161 0.4617 0.1710 0.0286 -0.1488 -0.1368

Avg Over All 100 0.5956 0.4265 0.5462 0.3888 -0.1931 -0.3395

where fi is the ith predicted value from the neural net, yi
is the ith target (observed) value, and ȳ is the mean target

(observed) value over the range of prediction.

The results of one representative fold from Location 1

in Figure 5 are represented in Figure 6a–f. This location

corresponds to the eye of the storm, which is an area of both

greater barometric pressure and temperature variability. The

ground truth values ("Actual" values) differ between charts

of the same vector component because they were randomly

drawn from the data in the k-fold cross-validation process.

We chose to show the results from Location 1 because it is

representative of the types of results that we achieved without

being either the best or the worst result.

VI. DISCUSSION

In general, we found that the stacked autoencoders per-

formed well across the 100 points examined. We begin by

examining Location 1, which corresponds to the eye of the

storm. Given this is the eye which has high variability among

pressure and temperature, we were not surprised when we

found wind vector functions that varied more dramatically.

Even with the highly variable network output, it appears

in Figure 6 that the predicted values generally simulate the

underlying distribution of the actual values. It is interesting

that the difference between actual and predicted values is

greater when the previous time slice’s wind vector information

is used for prediction. At this time, we cannot explain the

increase in error, and this will be a topic of future research.

When considering the w vectors specifically, we found that

the data was highly noisy and difficult to predict. Based on

conversations with research meteorologists at the University

of Colorado, we were advised that the w vector component

should be regarded as Gaussian noise [18]. When examining

the results in Table IV, we found that the R2 values are mostly

negative. This happens when the predictions do not explain the

variability in the input data very well. The positive results for

RMSE (Table III), on the other hand, may be showing that our

stacked autoencoder was still successful learning the Gaussian

distribution.

Location 2 was on the leading edge of the storm. The pre-

dictions generated by the stacked autoencoders were more in

keeping with the ground truth for the v (east–west) component

of the wind vector. The RMSE values were correspondingly

lower here as well. The u component, however, presented

more of a challenge due to much higher variability. In our

future experiments using this dataset, we intend to find a

meteorological basis for this.

Location 3 proved to be the most predictable of the four

locations discussed here. This is a location that is well inside

the rain bands of the Hurricane, which is an area where storms

exhibit the greatest organization in terms of wind direction

and speed. This is especially true when the values of the wind

vector components were known beforehand.

Location 4 was in a situation that is somewhat opposite

from what is seen at Location 2. This location was at the

trailing edge of the storm over open water. In this case it

was the v vector component that exhibited a greater degree

of predictability. As with Location 2, further experimentation

using this dataset will necessitate an understanding of why

this occurs, as well as clarification on whether or not there

are predictable differences in the conditions at the leading and

trailing edges of hurricanes in general.

From our experiments we see that general simulation of

wind vector functions is possible using only radiometric data.

We believe that the reasons for these positive results are

that physical influences transfer spatially in a way that is

predictable by the recognition of higher-order patterns in

the data describing the adjacent spaces and their histories.

Surprisingly we do not see consistent improvement when

information about the wind vectors from the previous time

slice is included. Although this may be a question for the

meteorological community, this work may be a contribution

to that community by identifying scientific questions to ask.

Even so, our results are interesting and encouraging, since it



is a goal of this research to enable wind vector predictions

from radiometric data alone. Thus our long-term intent is to

use wind only to provide the ground truth during training.

We observe that training a deep stacked autoencoder is able

to approximate the distribution of wind vector components

using nothing but radiometric data. We also observe that the

predictions tend to have a smoothing effect on the outliers in

the data, though we do not know exactly how to characterize

the outlying observations in the first place. For example, it is

possible that these outliers are an calibration artifacts of the

simulation or the original instrumentation. It is also possible

that noise was added into the simulation to bring it closer to

reality or to define a desirable test scenario.

VII. CONCLUSIONS AND FUTURE WORK

Remote sensing data is different from what is normally

termed as “big data,” since this data is highly structured.

However, data collection in this area results in enormous

volumes that must be spatially and temporally correlated.

Because of this, to use remote sensing data effectively in

machine learning (i.e., create systems that are relatable and

queryable such that timely predictions can be made) different

data deployment regimes than those traditionally used in

the meteorology community must be exploited. We intend

to experiment with large scale distributed storage systems

to facilitate an environment more favorable for this type of

analysis. Such a system would be necessary to make any of

this analysis usable for real-world data.

A successful outcome of research into appropriate data

systems will facilitate an expansion of the spatial extent of

the inputs to our networks. This will allow us to explore more

complex hierarchical relationships among phenomena in the

weather space, such as n-order spatial and temporal influences.

An avenue of research that will closely follow this paper is

testing the longer-term (on the scale of hours) prediction capa-

bilities of this procedure. This will involve generating models

for all involved dimensions and so will require considerably

more time for processing. The process will be to train the

networks on the first part of the day, extrapolate for the next

several hours, and test against the actual (WRF-simulated) data

at the end of the day.

The fact that we are inferring wind vector begs the question:

can we create an accurate simulation environment using wind

vector values that we predict (essentially using newly predicted

wind vector values as inputs)? How far into the future can we

run these predictions and still expect reasonable accuracies

from the models? In doing this we would have to compare

this deep-learning prediction framework with current states of

the art in NWP (such as WRF) and see which system ends up

with values that are closer to reality.

Finally, a major intent of this research is to identify en-

codings in deep neural networks for use in transfer learning.

We hypothesize that neural networks exhibit organizational

characteristics that allow them to be partitioned based on

the features learned, and that these partitions can be used

to construct new networks that combine relevant partitions

from the networks. We intend to use test this hypothesis in

the weather domain as well as other compatible domains such

as precision agriculture (e.g., yield prediction).
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Figure 6. Predicted vs Actual plots for one representative cross validation fold at Location 1. The magnitude of error over the range of the predictions is
shown by the shaded region between the plots.
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