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Abstract—The use of phase-type distributions is an established
method for extending the representational power of continuous
time Bayesian networks beyond exponentially-distributed state
transitions. In this paper, we propose a method for learning
phase-type distributions from known parametric distributions.
We find that by using particle swarm optimization to minimize
a modified KL-divergence value, we are able to efficiently obtain
good phase-type approximations for a variety of parametric
distributions. Our experiments show that particle swarm opti-
mization outperforms genetic algorithms and hill climbing with
simulated annealing. In addition, we investigate the trade-off
between accuracy and complexity with respect to the number
of phases in the phase-type distribution. Finally, we propose and
evaluate an extension that uses informed starting locations during
optimization, which we found to improve convergence rates when
compared to random initialization.

I. INTRODUCTION

It is necessary in many domains to model a system as it
evolves through time. This can be accomplished by discretizing
time into uniform slices. However, this approach requires the
selection of a time granularity, and this can be inefficient
when there is no natural choice of granularity in the system
under study. An alternative approach is to model time as
continuous, which explicitly represents temporal dynamics
while eliminating the need for a uniform time granularity.

Continuous time Bayesian networks (CTBNs) provide a
framework for modeling time directly, and numerous exten-
sions have expanded the representational power of the model.
In their original form, CTBNs can only model systems with
exponentially distributed duration times. To address this, a
method has been recently developed to allow CTBNs to model
systems with durations that occur according to a variety of
distributions. In this paper, we apply particle swarm opti-
mization to parameterize phase-type distributions, the use of
which allows the CTBN framework to support non-exponential
duration times.

A. Continuous Time Bayesian Networks

A Markov process is a memoryless stochastic process,
meaning that future states of the process are independent of
previous states given the current state. A continuous time
Markov process (CTMP) describes the evolution of a process
in continuous time over a finite set of discrete states. A CTMP

is represented as an initial distribution over the states, and a
square transition intensity matrix Q with dimensions equal to
the number of states in the process. An element qij in row i,
column j of the matrix indicates the intensity with which the
process transitions from state i to state j. More formally, the
time it takes to transition between the states i and j is drawn
from an exponential distribution with a rate that corresponds
to the entry qij . The diagonal entries in Q are defined to be
the negative sum of the remaining entries in the row, which
ensures that every row in the matrix sums to zero. Any row
with a nonzero entry represents a state that will eventually
transition to another, and is referred to as a transient state.
If a row contains all zeros, there is no way to transition to
another state and it is therefore considered an absorbing state.
A Markov process will eventually transition into an absorbing
state if one exists, and will remain in that state permanently.

A CTBN is a factored representation of a Markov process
[1]. This representation has two components: an initial distri-
bution over the variables in the model, and a set of conditional
intensity matrices (CIMs) for each variable. The factorization
is achieved by taking advantage of conditional independencies,
which are encoded using a directed graph, the nodes of which
represent the variables in the process. Each CIM is an intensity
matrix conditioned on an instantiation of the node’s parents.
The CTBN formulation provides a framework that can model
time directly in a way that other temporal models, such as
dynamic Bayesian networks, cannot.

Although CTBNs have been successfully used to model
system change over time, the framework does have practical
limitations. In particular, the computational efficiency achieved
by CTBNs is rooted in their exploitation of the Markov prop-
erty, which is reliant on the use of exponential distributions. As
a consequence, CTBNs in their original form can only describe
processes with exponentially distributed duration times. This
restriction can be very limiting when it comes to modeling
real-world domains. The desire to retain the computational
advantages afforded by CTBNs while simultaneously expand-
ing their scope to describe more complex distributions has
motivated the use of phase-type distributions as an extension
to the CTBN framework.

Phase-type distributions, represented by the time until
absorption in a Markov process, can be used to closely ap-
proximate any positive parametric distribution. This versatility,
combined with their adherence to the Markov property, makes978-1-4799-7560-0/15/$31 c©2015 IEEE



phase-type distributions especially valuable in the context of
CTBNs. Recent work has shown that phase-type distributions
can be used to extend the expressive power of CTBNs by
transforming each state within the CIM into multiple phases,
and using the absorbing phase to define an exit distribution to
another state in the system [2]. This allows the CTBN to retain
the Markov property and the related efficiency gains, while
also providing a more expressive model that can approximate
a greater number of distributions. A more formal treatment of
phase-type distributions can be found in Section II-C of this
paper.

B. Motivation

To date, work on extending CTBNs through the use
of phase-type distributions has focused on the problem of
approximating a distribution that describes available data.
This has been achieved by applying expectation-maximization
algorithms to learn a model that optimizes the log-likelihood
of the data. While this approach works well in the presence
of abundant data, in many practical applications there is
inadequate data to describe a distribution sufficiently. Fitting
a distribution to data requires a minimum amount of data
points to measure goodness of fit [3]. In cases where there
is insufficient data, a viable alternative is to rely on domain
knowledge to indicate transition rates with a well-defined prob-
ability distribution. These distributions are known to describe
the behavior of a system accurately, and as such we will refer
to these probability distributions as “true” distributions.

A true distribution, unlike an unknown distribution de-
scribed by available data, is specified entirely by its parameters.
Using true distributions as a means to describe system behavior
is an established practice when performing tasks such as failure
rate analysis [4]. Learning phase-type distributions from true
distributions provides information about transition times for a
variable while avoiding the need for significant amounts of
data.

To this end, we propose casting the learning process as
an optimization problem that seeks to minimize the KL-
divergence of a learned phase-type distribution from the true
distribution. This is equivalent to maximizing the closeness
of the approximation. We chose to use particle swarm opti-
mization (PSO), a well-known swarm intelligence algorithm,
to solve this optimization problem. PSO has been successful
in related areas and has many useful extensions; therefore, we
hypothesize that it is well-suited to our application.

II. PARAMETRIC DISTRIBUTIONS

Our work is primarily motivated by a desire to model
system failures. For this reason, we focus our discussion on
a subset of distributions that are commonly used to model
time-to-failure (TTF); specifically, the Weibull and lognormal
distributions [5]. Exponential distributions are also frequently
used to model failure distributions, but CTBNs are already
naturally suited to model these distributions. We note that
although we limit the scope of our discussion to Weibull and
lognormal distributions, the framework we propose allows for
the approximation of any positive true distribution.

A. Weibull Distribution

Weibull is a flexible distribution parameterized by a rate
parameter λ and a shape parameter k [6]. Consider the case
where the input t to the distribution is interpreted as the TTF.
When k < 1, the Weibull distribution represents a decreasing
failure rate, and an increasing failure rate when k > 1. In the
special case where k = 1, the Weibull distribution reduces
to an exponential distribution with a rate of λ. When t is
positive, the probability density function (PDF) for the Weibull
distribution is defined as follows:

f(t;λ, k) =
k

λ

( t
λ

)k−1
exp

(
−
( t
λ

)k)
.

Since the failure rate for a Weibull distribution can be increas-
ing, decreasing, or constant, it can be used to model the “infant
mortality” stage (where k < 1), the “useful life” stage (where
k = 1), and the “end of life” stage (where k > 1) of an
object. When spliced together in this order, these three piece-
wise segments form what is often called the “bathtub” curve.
This is considered an appropriate model for the failure rate of
many objects, as it reflects a higher rate of failure surrounding
the birth and death of an object, and a smaller constant rate of
failure during the rest of the object’s lifespan. Additionally, it
has been suggested that this composite approach may prove to
be a more realistic model for TTF than monotone failure rate
models [7]. The plot for this distribution using several different
parameterizations is shown in Figure 1.

B. Lognormal Distribution

Another frequently used TTF curve is the lognormal dis-
tribution, which indicates that the log of a random variable
follows a normal distribution. Due to its dependence on the
normal distribution, the only necessary parameters for the log-
normal distribution are the mean parameter µ and the standard
deviation parameter σ. The lognormal distribution is suited
for instances where failure occurs due to an accumulation of
causes that have a multiplicative effect, a phenomenon known
as multiplicative degradation [8]. When the input t is positive,
the PDF for the lognormal distribution is as follows:

f(t;µ, σ) =
1

tσ
√

2π
exp

(
− (ln t− µ)2

2σ2

)
.

Figure 2 provides a plot of various parameterizations for this
distribution.

C. Phase-Type Distributions

Phase-type distributions are a semi-parametric class of
distributions that use exponential distributions as a means to
approximate general positive distributions, including (but not
limited to) both Weibull and lognormal. Formally, phase-type
distributions represent the time until absorption in a Markov
process with n transient states and one absorbing state [9]. The
transient states in the Markov process are also referred to as
the phases of the phase-type distribution. A variable will move
through these phases according to the exponential distributions
defined for each phase by the rates in the Markov process, until
the variable eventually reaches the absorbing state. The phase-
type distribution is defined as the distribution of the entire time
it takes the process to move through these phases.



Fig. 1: PDFs for various parameterizations of Weibull distri-
butions.

Fig. 2: PDFs for various parameterizations of lognormal dis-
tributions.

Since a phase-type distribution depends only on a Markov
process, its parameters are specified fully by the initial distri-
bution and transition intensity matrix for the Markov process.
It is generally assumed that the probability of starting in the
absorbing state is zero, and in many cases it is further restricted
to ensure that the process starts in the first transient phase.
The movement of a variable through the transient phases of
the Markov process can be directed in a variety of ways.
In the most general case, all transient phases are capable
of transitioning to any other phase, including the absorbing
state. Specific classes of phase-type distributions restrict the
movement of a variable between the transient phase. Several
types of restricted phase-type distributions are discussed in the
review of related literature.

The PDF for a phase-type distribution is given as:

f(t) = α exp(St)S0 (1)

where α is a vector corresponding to the probability of starting
in each phase, S0 is a vector of intensities for transitioning to
the absorbing state from each of the other phases, and S is
a square matrix of intensities for transitioning between non-
absorbing phases. The matrix exponential operation, exp(S),
is defined by the Taylor series as shown.

exp(S) =

∞∑
k=0

1

k!
Sk (2)

Calculating the matrix exponential is generally intractable.
Fortunately, there exist a variety of methods for calculating

an approximate matrix exponential [10]. We chose to utilize
the most commonly used approximation, known as the scaling
and squaring method [11].

The idea behind scaling and squaring is to scale the matrix
by a power of two to reduce the norm to order one, and then
compute a Padé approximant1 for the matrix exponential on
the scaled matrix. Repeatedly squaring the resulting matrix
undoes the scaling. By using the scaling and squaring method
to calculate the matrix exponential, approximating the PDF
of a phase-type distribution becomes tractable. The ability to
approximate this PDF becomes important when evaluating the
quality of a phase-type approximation for a true distribution.

A phase-type distribution can be embedded directly into
a CIM for a CTBN without significantly changing the usage
of the CTBN [13]. A single row in a CIM can be replaced
by entries calculated using the phase-type distribution and the
original multinomial distribution defined by the row. When
performing inference over the CTBN, a node is interpreted
as being in a particular state if it is currently in any of the
phases that have been inserted for the state. The underlying
mechanics remain unchanged, since phase-type distributions
are built using exponential distributions, which adhere to the
Markov assumption.

III. RELATED WORK

This paper fills a gap in the literature, as PSO and sim-
ilar population-based methods have not yet been applied to
CTBNs. However, related areas contain research that validates
the choice of PSO for our optimization task. For instance,
PSO was used to maximize a symmetric version of KL-
divergence to assist in a feature transformation procedure
for a speaker-verification application [14]. This work was of
interest to us because we also use PSO to optimize KL-
divergence. In this case, the goal was to maximize a KL-
divergence approximation specific to Gaussian mixture models,
a common model for speaker-verification systems. The PSO-
based method was found to reduce the overall error rate of
verification as compared to the baseline method.

PSO has also been applied to learning Bayesian networks
(BNs) for fault-diagnosis applications. This is related to our
work in that CTBNs share many similarities with BNs and can
be used for similar applications. Sahin et al. used a distributed
PSO algorithm for an application in learning BN structure from
sensor data [15]. Rather than optimizing a distance measure,
in this case PSO optimized a network-evaluation score that
measures the optimality of candidate BN structures.

Fortier et al. used a multi-population variant of PSO, called
Overlapping Swarm Intelligence (OSI), to estimate parameters
in BNs [16]. OSI is a multi-swarm PSO algorithm, where
swarms are assigned to overlapping portions of the larger
search space and inter-swarm communication maintains a
global solution. OSI significantly outperformed the competing
approaches, including traditional PSO, a genetic algorithm, and
expectation-maximization (EM). It is worth noting that while
the results of the previously mentioned studies are promising,

1An [n,m] Padé approximant is a rational function consisting of a polyno-
mial of degree m divided by a polynomial of degree n, which is useful for
providing an approximation of the power series of another function [12].



a BN cannot model continuous time; therefore, a CTBN is
better suited to many real-world applications.

The use of phase-type distributions for CTBNs was first
proposed by Nodelman and Horvitz [13]. They demonstrated
that phase-type distributions can be inserted as subsystems in a
CTBN without altering the underlying mechanics of the model.
Their work was restricted to Erlang distributions, a subclass
of phase-type distributions where loops are not permitted, and
each phase is required to have the same rate parameter and
must be visited in order before transitioning to the absorbing
state. The use of an Erlang distribution was shown to improve
the performance of the CTBN model when the underlying
distribution was non-exponential. The primary contribution
made by the authors is the notion that phase-type distributions
can be inserted into a CTBN without changing the framework
as a whole. The specific details of how to parameterize the
phase-type distributions, however, were omitted.

The work by Nodelman and Horvitz was later extended
from Erlang distributions to Erlang-Coxian distributions,
which are another more expressive subclass of phase-type
distributions [2]. A Coxian distribution is similar to an Erlang
distribution in that it does not permit cycles in the phases.
In contrast, however, a Coxian distribution may be uniquely
parameterized at each phase, and any of the phases may
transition to the absorbing state. An Erlang-Coxian distribution
combines these two ideas by forcing sequential progression
through the Erlang phases until the Coxian phases are reached,
at which point the phase may either transition to the next phase,
or go to the absorbing state directly.

The addition of the Coxian phases increases the expressive-
ness of the model, but at the cost of added complexity through
an increase in the required number of parameters. Instead of
requiring a single rate parameter λ, two additional parameters
are required for each phase in the Coxian distribution. This ad-
ditional complexity can be managed by restricting the Coxian
distribution to only two phases. Gopalratnam et al. propose a
method for learning these parameters from data based on EM.
Unlike the method we propose here, their technique attempts
to parameterize the distribution such that the log-likelihood
between the data and the model is maximized.

After demonstrating the utility of Erlang distributions as
subsystems in CTBNs, in subsequent work Nodelman et al.
discuss a method for performing EM and structural EM (SEM)
to learn the parameters and structure of a CTBN model from
partially observed data [17]. This EM algorithm further relaxes
the restrictions on which subclasses of phase-type distributions
are applicable, such that any phase-type distribution can be
used. This allows phases to occur within a loop, significantly
improving the expressiveness of the model. The experiments
again showed a marked improvement over a CTBN model
that did not use phase-type distributions. Nodelman et al.
demonstrate the utility of this approach, but we explore a
different angle with our contributions. While Nodelman learns
phase-type distributions from data, we learn the parameters for
a phase-type distribution to fit a known distribution.

IV. APPROACH

The primary goal of our research is to provide a method
for learning a phase-type distribution that accurately approxi-

Fig. 3: Example of a phase-type distribution fitted to a Weibull
distribution with a rate of 1.0 and a shape of 1.5.

mates a given true distribution. To achieve this, we first cast
the parameterization of the approximation distribution as an
optimization problem. We then solve the optimization problem
such that the result is a parameterization of a phase-type
distribution that accurately approximates the specified true
distribution.

As an example, consider a Weibull distribution with a
rate parameter of 1.0 and a shape parameter of 1.5. The
learned initial distribution and transition matrix for a phase-
type distribution that approximates this Weibull distribution is
as follows:

P (X) = (0.98 0.02 0.00) ,

Q =

(−2.09 1.98 0.11
0.00 −1.99 1.99
0.00 0.00 0.00 .

)
A plot of the PDFs for both the Weibull distribution and the
approximating phase-type distribution is shown in Figure 3.
For reference, the goodness of fit for this approximation is
quantified by a KL-divergence value of 0.0361.

We chose PSO as our optimization method due to its
success in related applications. Additionally, it is an any-
time algorithm, which gives the user the option to accept a
suboptimal solution prior to convergence. We measured the
performance of PSO by comparing it against two other well-
established optimization algorithms.

A. Kullback-Leibler Divergence

In this work, we utilize the Kullback-Leibler divergence
measure, often referred to simply as KL-divergence. KL-
divergence serves as a measure of the information lost when
approximating a true distribution with an approximating dis-
tribution, and is equal to zero if the two distributions are
identical. Using this principle, we are able to construct an
accurate approximation by choosing phase-type parameters
that minimize the KL-divergence of the phase-type distribution
from the true distribution.

The KL-divergence of distribution Q from distribution P
is denoted as DKL(P ||Q). For the case when P and Q
are continuous, KL-divergence is defined by Equation 3. In
practice, a discrete approximation can be used that evaluates
the PDF for each distribution at specified intervals. In this



work, we use the equation specified by Equation 4. Note that
in addition to evaluating the distributions at discrete intervals,
we restrict the upper bound of the summation to be a finite
value less than infinity. We have manually specified an upper
bound of 2.5 since we have deemed it the area of interest for
the distribution. An automated approach could be taken that
chooses the upper bound based on the percentage of the distri-
bution covered, as determined by the cumulative distribution
function (CDF). Furthermore, we have introduced an absolute
value to the log term, which is a modification to the standard
KL-divergence equation. This is done to avoid situations where
underestimation in one section of the approximate PDF might
mask overestimation in another, which may occur due to the
fact that the log term can be positive or negative.

DKL(P ||Q) =

∫ ∞
0

P (t) log
P (t)

Q(t)
dt (3)

≈ DKL(P ||Q) =

n∑
i=1

P (i)
∣∣∣ log

P (i)

Q(i)

∣∣∣ (4)

The calculation in 4 requires knowledge of the PDFs of
both distributions. The PDF for the true distribution is unique
to each distribution, but it is generally a trivial calculation. We
use an approximation of the PDF for a phase-type distribution,
along with the PDF for the true distribution, to compute the
KL-divergence as described in Equation 4.

B. Optimization

Selecting parameters for the phase-type approximation of
a true distribution is an optimization problem that seeks to
minimize KL-divergence. PSO has demonstrated utility in
solving these types of problems, and for a baseline comparison
we also implemented a genetic algorithm (GA) and a simple
hill-climbing algorithm that uses simulated annealing.

1) Particle Swarm Optimization: PSO begins by initializ-
ing a population of particles, each of which has a position in
the search space that represents a possible candidate solution
[18]. The quality of each particle’s position can be evaluated
using a fitness function that is problem-specific. Particles move
through the search space as defined by their velocity, which
is updated during each iteration of the algorithm according to
the following velocity update equation:

vi = ωvi + U(0, φ1)⊗ (pi − xi) + U(0, φ2)⊗ (pg − xi).
Here, vi is the velocity for particle i, xi is the position of
particle i, pi is the best position seen by particle i, and pg is
the best position seen by any particle in the population. For
our purposes, KL-divergence is the fitness function, and the
“best” solution is defined to be the solution with the lowest
KL-divergence value. The first term is known as momentum,
which pulls the particle in the direction it was previously going.
The second term is the cognitive component, which draws the
particle toward the best solution it has ever found, and the third
is the social component, which draws the particle toward the
best solution any particle in the swarm has ever found. The
parameters φ1, φ2, and ω are user-defined constants which
are manually tuned to control the degree to which each term
influences the particle’s movement.

The entire population is collectively referred to as a swarm,
and the behavior of a particle is intended to mimic the social

behavior of animals, such as flocking birds or schooling fish.
The effect of the velocity update equation is that an individual
particle is drawn toward three locations based on the momen-
tum, the cognitive component, and the social component. This
social component achieves the desired flocking behavior.

2) Genetic Algorithm: Genetic algorithms, as their name
suggests, are an attempt to bring the advantages of Darwinian
evolution to optimization algorithms [19]. The idea behind a
genetic algorithm is to start with a population of randomly
generated solutions, which are in this case assignments of
values to the parameters of a phase-type distribution. Each
solution in the population is called an individual or chromo-
some, and the fitness for these solutions is calculated as their
KL-divergence from the true distribution. Iteratively, a new
“offspring” population is created from the existing population
as follows.

First, two parent chromosomes are chosen such that as-
signments with lower KL-divergence are more likely to be
selected. In our genetic algorithm implementation, we used
tournament selection. This compares a small pool of candidate
parents uniformly selected from the population and chooses a
parent from this pool using a probability distribution weighted
by fitness. The parent is then returned to the population and
another parent is selected in the same manner; thus, it is
possible to have the same chromosome as both parents.

Once the parents have been selected, crossover takes place.
We utilized multi-point crossover, which involves randomly
selecting sections of parameters and swapping them between
the parents to create two offspring chromosomes. For our
application we found that five-point crossover, which involves
swapping five sections, gave the best results. The resulting
offspring are then mutated, a process that randomly changes
the values of some of their parameters by a small amount.

This process repeats until a desired number, n, of new
offspring have been created, at which point the generation is
completed and is used to replace n individuals from the old
population. The algorithm is repeated for a specified number of
generations, after which the fittest individual in the population
is returned as the solution.

3) Hill-Climbing with Simulated Annealing: Hill-climbing
using simulated annealing is a numerical analogue to the
process of slowly cooling metals so that they crystallize at
their minimum energy state, to improve upon the basic hill-
climbing search [20].

In the original hill-climbing algorithm, the candidate solu-
tion, which for our purposes is a parameterization of the model,
is initialized at a random state in the search space. Then, at
each iteration, a random neighbor state is considered. If the
neighboring state is found to have a better fitness value than the
current state, the neighbor is accepted and becomes the current
state. For our implementation, a better fitness value is defined
as a lower KL-divergence. Simulated annealing introduces an
extra step at each iteration to avoid becoming stuck in local
optima. Once a neighbor state is selected, if the neighbor
is worse, it is accepted or rejected based on the acceptance
probability:

P (accept) = exp

(
energy(current)− energy(neighbor)

kT

)



where the energy of a given parameterization is its KL-
divergence from the true distribution, k is the Boltzmann
constant, and T is a value known as the temperature, which is
initialized to some positive number and is slightly decreased
at each iteration. A better neighbor state will still always be
accepted, but now a worse solution may also be accepted based
both on how much worse it is and on the temperature at that
iteration.

The gradual lowering of the temperature parameter pro-
duces the desired annealing effect: the likelihood of accepting
a worse solution is initially high but decreases as a function of
time. This enables the algorithm to avoid becoming stuck in
local optima early in the search process while still converging
on a close-to-optimal solution in the later iterations of the
search.

V. EXPERIMENTS

In addition to comparing optimization algorithms, we ex-
plored the effects of several other factors on the ability to
learn phase-type approximations. Specifically, we were also
interested in how much an increase in the number of phases
in the model added to its expressive power. Additionally, we
proposed and evaluated alternatives to random initialization
of solutions during optimization. The relevant experiments are
detailed in the remainder of this section.

A. Optimization Methods

We ran the PSO, genetic algorithm, and hill-climbing with
simulated annealing (HC) optimization algorithms on various
parameterizations of Weibull and lognormal distributions. For
the Weibull distribution we varied both the rate and shape
parameters from 0.5 to 2.0 by increments of 0.1 for a total of
225 instances. The same values were used with the lognormal
distribution for the mean and standard deviation parameters.

For this initial experiment, we fixed the size of the learned
distribution to three phases. We used general phase-type dis-
tributions, which have no structural restrictions. The intensity
matrix and initial distribution for each phase-type distribution
were serialized so that they conformed to the optimization
algorithm frameworks. This was done by extracting all non-
diagonal entries from the intensity matrix excluding the last
row, since the diagonal entries for each row of the intensity
matrices can be computed as the negative sum of the rest
of the row, and the last row was always set to 0 since the
corresponding state is absorbing. We also included all but
the last value of the initial distribution in the serialization,
since the last value is the complement of the remaining values,
such that the initial distribution sums to one. The result is a
vector of size Θ(n2), where n is the number of phases. We
bounded the valid search space for the optimization such that
the initial distribution values were smaller than one, while the
entries for the intensity matrix are bounded by some positive
user-specified value which we set to 2.00 for all experiments.
The deserialization process reverses the described procedure to
produce a phase-type distribution that can be used to evaluate
candidate solutions for the optimization algorithms.

Algorithms were compared using the KL-divergence be-
tween the final learned phase-type distribution and the true
distribution. The parameters for each algorithm were manually

TABLE I: Comparison of Optimization Algorithms

PSO GA HC
Weibull 0.0498 0.0815 0.2996

Lognormal 0.0154 0.0394 0.0888

tuned. Hill-climbing used an initial temperature of 100 and
decreased this value by a factor of 0.05 at each iteration.
For the genetic algorithm, we used 100 individuals, five-point
crossover, and two-parent tournament selection with a 75%
chance of choosing the fittest parent. PSO used five particles,
the behavior of which was dictated by a velocity update
equation with a momentum of 0.9, a personal learning rate of
1.0, and a social learning rate of 1.5. Each of the algorithms
were run for 1000 iterations, which in all cases appeared to
be sufficient for convergence.

The mean performances for each algorithm measured in
KL-divergence from the target distribution are summarized in
Table I . Algorithms were compared with the Wilcoxon signed-
rank test with a confidence level of 0.95, a nonparametric test
chosen because the datapoints originate from different distri-
butions. Based on our statistical analysis, PSO significantly
outperforms the GA, which in turn significantly outperforms
HC. For this reason, we focus the rest of our experiments on
how well PSO performs under varying conditions and omit
any further results for GA and HC.

We also investigated PSO’s ability to approximate distribu-
tions over different regions of the parameter space. As specified
above, we used the 225 parameterizations for Weibull and
lognormal and plotted the KL-divergence values obtained using
PSO in Figure 4. Figure 4a illustrates that relatively low KL-
divergence values are obtained for the majority of the search
space, with the exception of those cases when the rate is low
and the shape is high. Similarly, we find from Figure 4b that
most parameterizations of the lognormal distribution can be
approximated well, but performance degrades when both the
mean and standard deviation are low.

B. Number of Phases

The next experiment investigated the effect of varying
the number of phases in the phase-type distribution. Phase-
type distributions with more phases have more representational
power, and therefore allow for a more accurate approximation.
However, more phases implies more parameters in the resulting
CTBN, and therefore increased model complexity.

For this experiment, we used five representative pa-
rameterizations each for the Weibull and lognormal dis-
tributions. For the Weibull distribution, these values were
(0.8, 1.7), (1.0, 1.5), (1.3, 1.7), (0.7, 0.7) and (1.0, 0.5), where
the first value in each pair is the rate and the second value of
the pair corresponds to the shape. In the case of the lognormal
distribution, we used (0.8, 1.2), (1.0, 1.2), (1.0, 1.0), (1.2, 1.0)
and (0.95, 1.0), where the first value of each pair is the mean
and the second is the standard deviation.

For each of these ten true distributions, we used PSO to
learn phase-type distributions with varying numbers of phases.
Specifically, we started with a single phase (which is equivalent
to the exponential distribution) and increased incrementally to



(a) Approximating Weibull

(b) Approximating lognormal

Fig. 4: KL-divergence values for approximating parameteriza-
tions of Weibull and lognormal distributions using PSO.

ten phases. Our analysis of these results consisted of a series
of Wilcoxon signed-rank tests with a confidence level of 0.95.
The single-phase distribution was significantly outperformed
by every other case. We also found that the use of only two
phases was significantly worse than using three, four, five, and
six phases. In addition, using six phases was significantly better
than using seven and eight, as well as one and two.

C. Informed Initialization

Our final experiment tested an extension to our proposed
algorithm, which we call informed initialization. The idea is
that rather than initializing particles randomly, we can use a
more intelligent starting solution. This is accomplished by first
approximating a variety of distributions using random initial-
ization and saving the resulting parameters for the phase-type
distributions. When learning a new distribution, the algorithm

Fig. 5: Effect of informed initialization on KL-divergence.

can then initialize particles using a similar cached solution by
calculating the sum of the differences between parameters and
sorting the list.

For this experiment, the set of saved solutions was gener-
ated using the experiments run in Section V-A, resulting in 225
potential starting positions for each distribution. For the true
distributions, we used the ten distributions discussed in Section
V-B and the parameters for each were perturbed by +0.05
so that they could not be found exactly in the set of saved
solutions. We varied the number of particles in the swarm that
were initialized using a saved solution from zero (equivalent to
random initialization) to all five. When multiple particles used
informed initialization, solutions were drawn from the saved
set in order of similarity.

The performance of the algorithm as a function of the
number of iterations for the cases when zero, one, and five
particles use informed initialization is shown in Figure 5.
Using more particles initialized with informed starting posi-
tions resulted in faster convergence to lower KL-divergence
values. We omitted two, three, and four initialized particles
from the graph for clarity, but we noted that there was an
incremental decrease in the KL-divergence for each case. We
also used a Wilcoxon signed-rank test with a confidence level
of 0.95 to compare the results of zero initialized particles
to five initialized particles after every 200 iterations. Results
indicate that the informed initialization performs significantly
better than random initialization at 0, 200, 400, 600, and
800 iterations. Although informed initialization appears to
perform better after 1000 iterations as well, the decrease in
KL-divergence from standard PSO is no longer statistically
significant.

VI. DISCUSSION AND CONCLUSIONS

The experiment from Section V-A showed that of the
optimization methods considered, PSO performed best. In
addition, Figure 4 gives a sense of how well phase-type
distributions are able to approximate various parameterizations
of Weibull and lognormal distributions. KL-divergence values
were higher when the true distribution had harsher peaks in its
PDF. This indicates that phase-type distributions are better at



approximating smooth distributions. Intuitively, using a larger
number of phases should mitigate this problem.

The conclusion to be drawn from the experiment in Section
V-B is that a phase-type distribution with a single phase or
few phases may lead to unsatisfactory approximations. Six
phases seems optimal, as further increasing the number of
phases does indeed increase expressiveness, but also makes
optimization more difficult. Since the search space increases
quadratically with the number of phases, adding more phases
greatly expands the parameter space the optimization method
must search. We found that three phases is likely sufficient
to get a reasonable approximation, and two phases may also
work when model complexity is a concern.

As discussed in Section V-C, informed initialization does
appear to improve the approximations. Initializing the entire
swarm in this way produced significantly better results at
intermediate stages of the optimization process. In addition,
Figure 5 shows that the solution converges much faster when
informed initialization is used, which could be beneficial to
applications where learning time is important.

The goal of this work was to develop a method for ap-
proximating known parametric distributions using phase-type
distributions. We demonstrated that this can be accomplished
by using PSO to minimize a modified KL-divergence value.
We compared PSO to two baseline algorithms and found that it
produced the best approximations. We explored how well this
procedure performs for a variety of parameterizations of both
Weibull and lognormal distributions, and also tested how the
number of phases impacts the quality of the approximation. Fi-
nally, we proposed and tested an extension that uses informed
initialization to improve convergence speed of the optimization
algorithm. Experiments in these areas have shown promising
results, paving the way for additional application of PSO and
related algorithms to CTBNs.

VII. FUTURE WORK

One possible area for future work involves alternate ap-
proximations of the matrix exponential. The scaling and squar-
ing method, while accurate, is also computationally expensive.
A potential improvement to our approach could be to use a
faster approximation initially, and later switch back to the
more accurate scaling and squaring. The threshold at which
this switch is most effective, along with the specific alternate
method used, is left to future work.

We would also like to experiment with approximating dis-
tributions beyond Weibull and lognormal. The same framework
can be used for any positive distribution, so long as the PDF
can be calculated for the KL-divergence calculation. While we
expect our results will generalize, it is possible that features
unique to other distributions may influence the ability to find
satisfactory phase-type approximations.

We plan to provide a more formal treatment of the process
required to embed phase-type distributions into a conditional
intensity matrix. Although this has been discussed briefly
by Nodelman and Horvitz, as well as in later works, there
has been no mathematically rigorous explanation given that
describes the embedding process. Furthermore, discussion of
the embedding process typically assumes certain features of

the phase-type distribution, such as an initial distribution that
deterministically starts in the first phase.

Finally, we are interested in the effects of moving to a
distributed PSO implementation. Several of the papers refer-
enced in the related literature take this approach, and it is likely
that a distributed approach would increase the efficiency of our
proposed method of parameterizing phase-type approximations
of true distributions.

REFERENCES

[1] U. Nodelman, C. Shelton, and D. Koller, “Continuous time Bayesian
networks,” in Proceedings of the 18th Conference on Uncertainty in
Artificial Intelligence, 2002, pp. 378–387.

[2] K. Gopalratnam, H. Kautz, and D. S. Weld, “Extending continuous
time Bayesian networks,” in Proceedings of the National Conference
on Artificial Intelligence, vol. 20. AAAI Press, 2005, p. 981.

[3] J. Banks, Handbook of Simulation. John Wiley & Sons, 1998.
[4] V. T. Farewell and R. L. Prentice, “A study of distributional shape in

life testing,” Technometrics, vol. 19, no. 1, pp. 69–75, 1977.
[5] J. D. Kalbfleisch and R. L. Prentice, The Statistical Analysis of Failure

Time Data. John Wiley & Sons, 2011, ch. Failure Time Models.
[6] J. T. de Oliveira, “Statistical choice of univariate extreme models,”

Statistical Distribution in Scientific Work: Applications in Physical,
Social and Life Sciences, vol. 6, pp. 367–387, 1981.

[7] S. Rajarshi and M. Rajarshi, “Bathtub distributions: a review,” Commu-
nications in Statistics - Theory and Methods, vol. 17, 1988.

[8] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “Exploiting struc-
tural duplication for lifetime reliability enhancement.” in Proceedings
of the 32nd Annual International Symposium on Computer Architecture.
IEEE Computer Society, 2005, pp. 520–531.

[9] O. O. Aalen, “Phase–type distributions in survival analysis,” Scandina-
vian Journal of Statistics, vol. 22, no. 4, pp. pp. 447–463, 1995.

[10] C. Moler and C. Van Loan, “Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later,” SIAM Review, vol. 45,
no. 1, pp. 3–49, 2003.

[11] N. J. Higham, “The scaling and squaring method for the matrix expo-
nential revisited,” SIAM Journal on Matrix Analysis and Applications,
vol. 26, no. 4, pp. 1179–1193, 2005.

[12] G. A. Baker Jr. and J. L. Gammel, “The Padé approximant and
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Physics, ser. Mathematics in Science and Engineering. Academic Press,
1970, vol. 71.

[13] U. Nodelman and E. Horvitz, “Continuous time Bayesian networks for
inferring users’ presence and activities with extensions for modeling
and evaluation,” Microsoft Research, vol. July-August, 2003.

[14] M.-S. Kim, I.-H. Yang, and H.-J. Yu, “Maximizing distance between
GMMs for speaker verification,” in Fourth International Conference on
Natural Computation. IEEE, 2008, pp. 175–178.
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