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Abstract—Large scale global optimization is where we seek to
optimize a function with a high number of decision variables.
Cooperative co-evolutionary algorithms (CCEA) improve opti-
mization performance on these large scale problems through a
divide and conquer approach. How the problem is divided can
have a large impact on optimization performance. We provide
two new decomposition methods that are capable of generating
overlapping groups of variables. We apply a generalized CCEA
called factored evolutionary algorithm (FEA) that is capable
of optimizing and combining overlapping sub-problems. We
compare results to existing methods to analyze the effect of
introducing overlap in the sub-problems. We use five functions
from the CEC’2010 benchmark suite as a base of comparison
for all algorithms. We show that overlap can be beneficial for
optimizing problems that are not fully separable.

Index Terms—cooperative co-evolution, particle swarm opti-
mization, problem decomposition, factored evolutionary algo-
rithms

I. INTRODUCTION

Function optimization is a problem that pervades many
real-world tasks. Finding optimal solutions through exact
approaches is often intractable; therefore, meta-heuristic tech-
niques, such as stochastic hillclimbing [1] and population-
based algorithms, are often used. Among the population-
based approaches, Genetic Algorithms (GA) [2] and Particle
Swarm Optimization (PSO) [3] have proven widely applicable
and effective in fields such as economics [4], aerospace
engineering [5], and precision agriculture [6]. However, for
problems with a large number of dimensions, it may be
difficult for these algorithms to find good solutions. To address
this problem, Potter and De Jong proposed Cooperative Co-
Evolutionary Algorithms (CCEA) [7]. CCEA decomposes the
problem into 1-dimensional disjoint sub-problems. These sub-
problems are then solved individually and combined into a
global solution. CCEA can use any evolutionary algorithm
(EA) as the optimizer for the sub-problems, e.g., particle
swarm optimization [8], genetic algorithm [7], or differential
evolution [9].

CCEA has been extended beyond the original 1-dimensional
sub-problems to allow for different disjoint problem decompo-
sitions, where the set of optimization variables is divided into
different groups [8], [10], [11]. The problem decomposition
has been shown to influence the efficacy of the associated

CCEA methods [12], [13]. We also use the term “factor”
throughout this paper to refer to one of the decomposed
sub-problems, and “factor architecture” to refer to the set of
factors.

The Factored Evolutionary Algorithm (FEA) introduces the
inclusion of overlapping sub-populations corresponding to the
factor decomposition and proposes a general framework for
associated decomposition-based methods such as CCEA [14].
In overlapping FEA, instead of the variables being decom-
posed into disjoint factors, variables are allowed to belong
to multiple sub-populations. The resulting overlap requires
that factors compete to be a part of the global solution.
After competition, a new global solution is shared with all
factors by being reinserted into the associated subpopulations.
In previous research, overlapping subpopulations have been
shown to improve upon co-evolutionary results, especially in
the context of combinatorial optimization [14]. The effect of
overlap between factors on the performance of real-valued,
large scale optimization is the focus of this paper.

One popular method for problem decomposition in CCEA
is Differential Grouping (DG) [10], [11]. DG uses variable
interactions to determine subdivision, grouping together highly
interacting variables and minimizing interactions between
groups. However, DG does not allow for overlapping groups,
which motivates developing new decomposition methods that
can create overlapping factors for FEA.

Several studies have found that decomposition strategies
for CCEA and FEA methods can impact overall model per-
formance [12], [14], [15]. As a result, robust decomposition
strategies have been proposed, which attempt to capture inter-
actions within groups to enable efficient optimization [10],
[11], [16], [17], [18]. In support of this prior work, this
paper has two main contributions: an empirical examination
of the effect of overlap in FEA architectures on large scale,
continuous optimization problems and the introduction of two
novel overlapping grouping methods to further assess the
importance of these decomposition methods.

The rest of the paper is organized as follows: in Section
II we provide background information about the problem
and approaches. We then provide related work in Section
III, and we present our novel decomposition methods in
Section IV. We describe our experimental setup in Section



V. Results are presented (Section VI) and discussed (Section
VII) before providing concluding remarks and potential future
work (Sections VIII, IX).

II. BACKGROUND

A. Optimization

Real valued functions are often optimized by using ap-
proaches such as hill-climbing [1] and gradient descent [19].
Alternatives utilizing population-based meta-heuristics are be-
coming increasingly popular, especially for high-dimensional
problems. Here, we focus on the cooperative co-evolutionary
methods since they have been demonstrated to be efficient and
effective at solving such large scale problems.

1) Cooperative Co-Evolutionary Algorithms: In the con-
text of high-dimensional problems, co-evolutionary algorithms
have become increasingly popular [20]. Co-evolutionary ap-
proaches divide the population into subpopulations corre-
sponding to subsets of the solution. The subpopulations are
then optimized separately, using the population-based algo-
rithm of choice, before combining them to find the final solu-
tion. There are two broad types of co-evolutionary algorithms,
competitive and cooperative co-evolution, where the former is
based on a predator-prey model [21], and the latter is based on
symbiotic relationships in biology [7]. In this paper we will
focus on cooperative methods.

Potter and De Jong based CCEA on the biological phe-
nomenon of different species cooperating to improve each
other’s growth and quality of life [7]. In their initial version
of CCEA, an n-dimensional problem is decomposed into n
1-dimensional subproblems, each with its own subpopulation
that is optimized individually. The subpopulations are then
evaluated based on the subproblem, as well as the overall
objective function. Finally, the best individuals from each
subpopulation are combined to create the final solution. This
approach was extended to create k m-dimensional subprob-
lems, where m� n [8]. Yang et al. further introduced random
grouping, where decision variables are reassigned randomly
to different subpopulations in each cycle [9]. The idea of this
approach was to capture variable interaction without explicitly
determining which variables interact. This random grouping
approach was then applied to CCPSO by Li et al. with CC-
PSO-rg-aw along with adaptive weighting [9], [22] and CC-
PSO2 which additionally included a new PSO update rule to
improve performance [23]. Zhang and Chiang also proposed
CPSOATT which uses consensus based PSO and fine-tuning to
escape local optima to obtain high quality optimization results
[24].

2) Factored Evolutionary Algorithms: In previous research,
a framework for cooperative co-evolutionary methods was cre-
ated termed Factored Evolutionary Algorithms (FEA), which
included the novel concept of using overlapping subpopula-
tions [14]. This is not to be confused with the Multi-factorial
Evolutionary Algorithm (MFEA) [25], which presents a novel
optimization paradigm to help solve multiple, potentially un-
related tasks. For example, MFEA has been used to solve
different problems in optimizing resources in cloud computing,

which is in contrast to FEA, which refers to subdividing a
single problem into subproblems.

In FEA, the idea of subpopulations is extended to that of
factors that overlap, which means a single decision variable
can belong simultaneously to more than one factor. If a
variable belongs to several factors, a decision has to be made
regarding which subpopulation holds the best representation
of that variable. In order to determine this, competition is
introduced between the overlapping subpopulations, before
sharing the the optimal value for that variable across all
subpopulations.

More formally, FEA divides the decision variables in an
optimization problem into s factors Fi ⊂ X , i = 1, . . . , s and
assigns a subpopulation Si to each factor Fi. This represen-
tation can be adapted to fit both single population EA’s and
CCEA’s by setting s = 1 or setting s = |X | and

⋃s
i=1 Si = X ,

Si ∩ Sj = ∅, ∀i, j i 6= j. The proposed framework denotes
a factor’s solution as a partial solution, whereas the solution
to the entire problem is known as the global solution G. G is
derived by assembling the best members of the subpopulations
through the previously mentioned competition process and is
then used to share values for variables that are not part of the
factor to create a full context for evaluation. When optimizing
a factor to find a partial solution, only the variables that are part
of the subpopulation are changed, while the other variables are
set to be constant based on the context derived from G.

More specifically, competition occurs between overlapping
factors to set the shared variable(s). The partial solution is
injected into the global solution G for evaluation, where each
subpopulation containing the shared variable substitutes its
values for that variable into G for evaluation. Whichever factor
results in the best global fitness for that specific variable gets
to inject the variable value in the global solution. The resulting
G is then shared with all factors.

B. Decomposition

An important aspect of cooperative co-evolutionary algo-
rithms is the way the problem is decomposed into factors.
Chen et al. [26] explored a Variable Interaction Learning
(VIL) approach to problem decomposition [12] in an at-
tempt to determine if correctly identifying variable interaction
improves performance. VIL uses a bottom-up approach to
finding variable interaction, merging interacting variables into
groups based on random permutations of the variables. They
concluded that when the problem decomposition identified at
least 10% of the total number of interactions, CCEA benefits
from the decomposition strategy.

Because of the bottom-up approach, certain combinations
of variables are not examined, and the method is not capable
of determining when variables are partially or fully separable,
where a function is said to be fully separable if all variables are
independent of one another and partially separable if groups
of variables are independent of one another [27]. It is because
of these limitations we chose not to include this method in
our study.



C. Differential Grouping

Differential Grouping (DG) is based on a process of iden-
tifying partial separability [10]. It was introduced to auto-
matically decompose a problem into subgroups to be used in
CCEA. When using CCEA for large-scale optimization prob-
lems, DG has become a popular method to determine which
variables should belong to which factors. The decomposition
strategy allows for variables that are interacting to belong to
the same group, while minimizing interdependence between
factors. Interaction is determined by measuring how much the
function changes between pairs of points. We measure ∆1

by changing the value of xi and evaluating the function at
both points. We then change xj to a different value and then
compute ∆2 by re-evaluating the function at the points from
∆1. Geometrically speaking, in R2 this is evaluating ∆1 and
∆2 along parallel edges of a rectangle. The authors prove that
xi and xj are not independent if the difference between ∆1

and ∆2 is large enough.
DG uses the aforementioned approach to create groups

of variables. It starts by holding a variable constant and
performing a pair-wise comparison to all other variables,
where the other variables’ values are changed. Two values ∆1

and ∆2 are calculated by varying the values for the variables
that are being evaluated. If |∆1 −∆2| > ε, the variables are
said to interact, and the corresponding variable is removed
from the set of remaining decision variables. The ε parameter
plays an important role in determining interactions: a smaller
ε will detect weaker interactions. Omidvar et al. [28] show
that finding an underlying structure of interaction to create
the factors improves CCEA’s performance compared to the
random grouping approach by Yang et al. [9].

III. RELATED WORK

Similar to FEA, the idea of combining competitive and
cooperative methods was used by Goh and Tan [21] who
combined the power of the two types of co-evolutionary algo-
rithms to create a new competitive-cooperative co-evolutionary
algorithm (COEA). In their algorithm, each subpopulation
competes to represent a specific factor. The resulting factors
then cooperate to find a better overall solution. This particular
process enables the algorithm to find interdependencies among
the different subpopulations, where similar subpopulations
represent similar factors. The competitive pressure also enables
a structure to emerge, which obviates the need for an algorithm
such as DG. COEA was used for multi-objective optimization
(MOO), and more specifically dynamic MOO. Their results
showed that while their approach did improve optimization
for dynamic environments, there were no significant improve-
ments with static MOO. Since we are not focusing on MOO
in this paper, COEA was not compared in our study.

Liu et al. [29] also use a soft grouping method for CCEA,
where variable membership in a group is decided probabilis-
tically. In this approach all variables belong to each group,
i.e., groups are fully overlapping, but how much influence
each of these variables has within a group is decided by a
randomly assigned probability. Therefore, this approach is not

a decomposition approach. That said, their approach was found
to perform well on the CEC 2010 benchmark functions [27],
especially with respect to non-separable functions.

Ma et al. [30] provide a comprehensive overview of dif-
ferent decomposition strategies for CCEA. They note that
dynamic group assignments based on variable interaction
learning improves CCEA results compared to static and ran-
dom groupings. Five different groups of interaction learning
based decomposition are defined: perturbation (DG), distribu-
tion model (FEA), statistical model, approximate model, and
linkage adaptation. The latter three are not considered in this
work since approximate modeling is used for problems where
evaluating the objective function is too expensive and needs
to be approximated [31], linkage adaptation methods influence
operators of EA’s directly, and due to the high computational
expense of computing the statistical model Maximum Entropic
Epistasis [13]. For example, Schaffer and Morishima [32] add
a punctuation flag to the chromosome to indicate the crossover
point, thus effectively grouping each chromosome.

Since its inception, there have been adjustments to the DG
algorithm. In 2017, Omidvar, et al. [11] introduced DG2, a
version of DG that sets the ε threshold automatically and
reduces the number of necessary fitness evaluations to find
the groups of interacting variables. Sun et al. [18] also adjust
the ε threshold parameter in their recursive DG. Recursive
DG looks at a pair of a set of variables and divides each
subset recursively to increase efficiency. This approach was
adjusted further by Yang et al. [33] to create efficient recursive
DG, which further exploits gathered information about the
interaction between variable groups. Both of these adjustments
focus on improving the efficiency of DG but have no effect
on the grouping itself.

IV. METHODS

We present our new decomposition approaches for FEA
architectures. We present Overlapping Differential Grouping
(ODG) in Section IV-1 and a tree based decomposition in
Section IV-2. Both methods can produce overlapping variable
decompositions. ODG is an extension of DG [28] that contin-
ues to consider variables that have been marked as interacting
instead of removing them (as in DG) allowing for overlapping
groups. Tree based decomposition considers variables as nodes
in a tree, and creates factors based on adjacent nodes in the
tree.

1) Overlapping Differential Grouping: All of the versions
of DG discussed in Section II-C are intended to identify
disjoint factors in large-scale optimization. Here we present an
alternative approach that adjusts DG to allow factors to over-
lap. Algorithm 1 shows our Overlapping Differential Grouping
(ODG) algorithm. To find overlapping factors, instead of
removing a variable once it has been found to interact, that
variable remains in the set of decision variables. This allows
a variable to be marked as interacting with multiple other
variables: which leads to overlapping factors. This means that
the interaction step of DG will be performed on all decision
variables; however, for each such variable, only subsequent



Algorithm 1: Overlapping Differential Grouping
input : function f , lower bounds lb, upper bounds

ub, number of dimensions n, threshold ε
initialize: dims← {1, 2, . . . , n}, sepvars← {},

groupso ← {}
1 for i ∈ dims do
2 grp← {i}
3 for j ∈ dims ∧ j > i do
4 p1 ← lb× ones(1, n)
5 p2 ← p1
6 p2(i)← ub
7 ∆1 ← f(p1)− f(p2)
8 p1(j)← 0
9 p2(j)← 0

10 ∆2 ← f(p1)− f(p2)
11 if |∆1 −∆2| > ε then grp← grp ∪ j ;

12 if |grp| = 1 then sepvars← sepvars ∪ grp ;
13 else groupso ← groupso ∪ {grp};

output : groupso ∪ {sepvars}

variables are compared (line 3). This is because interactions
with all prior variables have already been considered, and don’t
need to be considered again. Note that the primary difference
between ODG and DG is that DG inserts an additional line
just before our line 12. Specifically, their line corresponds to

dims← dims \ grp

which removes members of that group from future considera-
tion.

2) Tree Based Grouping: Similar to ODG, tree based
differential grouping (Tree) is designed to create overlapping
factors. We consider each variable as a vertex in a graph, and
connect them in a tree T . Factors are then constructed to be
adjacent nodes in the tree. For purposes of our experiments,
we use a random tree, but we note that any tree could be used.
In early experiments we tested using maximal spanning trees
where edge weight is a variable interaction measure, but we
did not see significant benefit given the added computational
expense. One of our hypotheses is that, as long as the factor
architecture is connected, the origin of the underlying tree
(whether random or interaction-based) is not important. The
goal is to enable communication between the factors so that the
interacting effects propagate through the tree structure during
optimization.

The algorithm is described more formally in Algorithm 2.
This algorithm iterates over each node in the tree and creates a
factor consisting of the variable i and the variables connected
to it in the tree T.neighbors(i). This method constructs a
simple tree-based architecture that has a connected factor de-
composition. In a connected factor decomposition, any factor
must be able to connect to any other factor through a sequence
of overlapping factors. More specifically, we can envision a
factor decomposition (i.e., factor architecture) to consist of a
graph where each vertex in the graph corresponds to a factor,

Fig. 1: Sample tree decomposition for function F20 with five
variables.

Algorithm 2: Tree Based Grouping
input : tree T , number of dimensions n
initialize: dims← {1, 2, . . . , n}, groupso ← {}

1 for i ∈ dims do
2 grp(i)← {i} ∪ {T.neighbors(i)}
3 groupso ← groupso ∪ {grp(i)}

output : groupso

and an edge is created between two factors whenever the
intersection of the variable sets in these factors is non-empty.
The resulting factor decomposition is said to be connected if
the resulting graph is connected. An illustration of such a tree
is shown in Figure 1 We note that tree-based grouping results
in a connected factor decomposition where this property does
not necessarily hold for ODG.

V. EXPERIMENTAL APPROACH

The purpose of this paper is to compare the influence of
the factor decomposition on large-scale optimization. Based
on this, we hypothesize that the overlapping factor decompo-
sition will provide significant benefit to optimization quality
specifically on problems with a non-separable component.
This is because the overlap inherently takes into account and
manages variable interactions during the compete and share
steps. Therefore, we hypothesize further that these interac-
tions can be handled through sufficient iterations of the FEA
algorithm to produce good results. This secondary hypothesis
is motivated by prior work in a distributed setting relating
the optimization process to a distributed consensus problem
and showing that relaxed consensus objectives can still lead
to effective performance [34].

For our experimental set-up, we follow the guidelines in
[27], performing 25 trials on 1000 dimensions. We hold the
number of function evaluations for most of experiments to
3× 106.

Several different algorithms are compared: CCEA, FEA,
and PSO; furthermore, we use PSO as the base algorithm
for both FEA and CCEA. For CCEA decomposition, we
use DG [28] and the original n 1-dimensional subproblem
decomposition for PSO – CPSO-S [8]. To decompose FEA,
we compare the proposed DG-extension (ODG) (section IV-1)
as well as the tree-based decomposition (Tree) using a random



tree (section IV-2). In addition, we use another tree-based
method, Tree2, where we merge the smallest pairs of factors
from the Tree method iteratively until the total number of
factors is 500. This helps determine the effect of factor
decomposition and number of factors. Since we use PSO as
the base algorithm for both FEA and CCEA methods, we also
compare our results with single-population PSO.

For consistency, hyperparameters are held constant across
functions and methods. We set 15 PSO iterations, and in earlier
experiments, we did not see an influence of performance on
PSO population size, so we set it to the smallest value: 10
particles per subswarm for all FEA and CCEA trials. We also
set ε to 10−3 for consistency across the different methods
and functions. We did not tune them individually because we
sought to test the influence of the overlap.

For the canonical PSO experiments we used a population
size of 1000 and used 3000 iterations in order to generate
the same number of function evaluations. For PSO hyperpa-
rameters we set c1 = c2 = 1.49445 and the inertia weight
ω = 0.729, following work in [35]. We also decided to use
the gBest topology.

Five CEC’ 2010 benchmark functions for the session on
large-scale global optimization [27] were used to test our
methods, since these were used in early experiments with
DG [10][28]. There are 20 functions split into five different
categories: 1) separable, 2) single-group shifted and m-rotated,
3) D/2m group shifted and m-rotated, 4) D/m group shifted
and m-rotated, and 5) non-separable functions. D corresponds
to the number of dimensions, and m determines how many
variables are in a single group. These benchmark functions are
all scalable, meaning the number of dimensions can be chosen.
Fully separable and non-separable functions are defined as
having 1-dimensional sub-vectors and having every pair of
decision variables interact respectively. Li, et al. [36] define
partially additively separable functions as having the following
general form, where xi are mutually exclusive decision vectors
of fi and m is the number of independent factors:

f(x) =

m∑
i=1

fi(xi) .

For our experiments, we ran the algorithms on one benchmark
function from each of the five categories for 1000 dimensions
and set m = 50; each function has a global minimum value
of 0.

1) F3: Separable—Shifted Ackley
2) F5: Single-group m-nonseparable—Shifted m-rotated

non-separable Rastrigin
3) F11: D/2m-group m-nonseparable—Shifted m-rotated

Ackley
4) F17: D/m-group m-nonseparable—Shifted m-dimen-

sional
5) F20: Fully nonseparable—Shifted Rosenbrock

VI. RESULTS

Because of the generality of the FEA framework, we apply
that framework to all of the architectures studied for this

TABLE I: Summary of groupings made by each algorithm.

Function DG ODG Tree Tree2

F3 Number of Factors 1000 1000 1000 500
Average Factor Size 1 1 2.998 5.99

F5 Number of Factors 951 1000 1000 500
Average Factor Size 1.051525 2.225 2.998 5.992

F11 Number of Factors 513 1000 1000 500
Average Factor Size 1.949318 13.208 2.998 5.988

F17 Number of Factors 40 1000 1000 500
Average Factor Size 25 24.252 2.998 5.994

F20 Number of Factors 266 1000 1000 500
Average Factor Size 3.759398 43.421 2.998 5.99

paper. We present metrics characterizing the different factor
architectures generated for our experiments in Table I. It is
interesting to note that as the non-separability of the function
increases, the factor size of ODG also increases. This is
because ODG detects the variable interactions and groups
them together; the more variable interactions, the larger the
interaction groups.

We ran experiments as outlined in Section IV. Table II
shows the mean value of the objective function found during
optimization, averaged over 25 trials, and the standard devia-
tion of the returned values for each of the functions. Entries
highlighted in bold are statistically significantly better than the
other algorithms, tested using Wilcoxon’s Rank-Sum Test at
a confidence interval of 95%. Note that when multiple entries
are bolded for a function, the corresponding methods were
found to be statistically the same as one another. For example,
for the fully separable function F3, the three methods—DG,
CPSO-S, ODG—were found to be statistically equivalent but
significantly better than Tree, Tree2, and PSO.

Observing the results in Table II, we see that the overlapping
methods typically outperform DG on the non-separable func-
tions. This indicates that the overlapping decomposition pro-
vides significant benefit as hypothesized. They also typically
have lower standard deviations, indicating more consistent and
stable performance when compared to DG. On every function
with a non-separable component, FEA methods perform com-
petitively.

We also plot the convergence curves for the first trial of
each method. These results can be seen in Figure 2. Based
on these results, we find a number of interesting results. First,
we see rapid convergence for the three best algorithms on
F3, which makes sense given the fact F3 is fully separable.
Thus we would not expect overlap to provide any benefit.
However, as soon as variable interaction is introduced (as
shown in the remaining four plots), DG suffers. We also find
that the type of factor architecture does, in fact, have an effect
on performance, given the fact the “best” architecture varies
across the functions studied.

Finally, we see that, on functions F17 or F20, none of the
methods converge well within the limited number of function
evaluations. Based on this, we ran a second set of experiments
and allowed the functions to run for double the number of
function evaluations (6×106). We ran 10 trials of each method
for double the number of fitness evaluations (i.e., 6×106), and



Fig. 2: Convergence plots for first trial of each method.
Learning terminates when max function evaluations (3× 106)
are reached

present the results in Table III. If we also consider Figure 3,
we see that most of the algorithms seem to have converged on
F20, but it appears that they have not yet converged on F17,
so there could be more benefit to continuing evaluation. The
results improve significantly for all except DG on F17, and
Single and Tree improve significantly on F20; however, the
relative performance of each method did not change on F20.
Specifically, if we rank the performance after 6 million fitness
evaluations, we see that the rank is the same as when we stop
at 3 million fitness evaluations.

We also singled out F20 to examine the effect of the factor
architecture. This is because F20 comes from the fully non-
separable group of functions. We note from the problem defi-
nition that each variable i interacts with i−1 and i+1. So we
manually craft a factor architecture covering these interactions
in order to examine the benefit of a factor architecture that
matches the interactions within the problem. For trials limited
to the standard 3×106 function evaluations, we find an average
over 25 trials of 4.597E+03. This improves upon the next best
score produced by FEA by over a factor of 2.

It is worth noting that CPSO-S performed by far the best,
specifically on F20. In particular, CPSO-S performs over 2
orders of magnitude better than the next best algorithm (Tree).
Potential reasons are discussed in Section VII.

Fig. 3: Convergence plots for F17 and F20 with 6 × 106

function evaluations

VII. DISCUSSION

Our results reaffirm that proper problem decomposition
is important for large scale optimization. Canonical PSO
performed the worst on every function, typically by several
orders of magnitude. So any type of problem decomposition
will improve optimization performance on these large-scale
optimization problems. Even so, the basic decomposition
performed by DG was not shown to be particularly effective
on several of the functions studied.

In general, the introduction of overlapping factors in the
problem decomposition helps with optimization on non-
separable problems. The poor performance of the Tree algo-
rithms on F3, which was completely separable, was expected
since these methods always produce overlapping factors. Since
F3 is fully separable, the overlap does not provide any ben-
efit, and instead increases the difficultly of solving the sub-
problems by increasing their dimensionality. We also want to
note that ODG performed very well on this function in that it
was able to recognize the fully separable nature, thus reducing
to DG.

On the other hand, the benefit of the overlap is very
prominent in F20. The FEA methods show improvement by
many orders of magnitude over that of CCEA using DG. The
performance of CPSO-S is discussed later. F20 is a fully non-
separable problem indicating that overlap may be beneficial.
If we look at F17, we also see a similar result where the
overlapping methods perform significantly better than the non-
overlapping methods, further supporting the hypothesis that
overlap is beneficial to non-separable problems.

It is worth noting that, as expected, the factor architecture
seems to be important at determining optimization success.
This observations is very prominent in the improvement on
F20. By addressing the underlying variable interactions present
in the function with a manually defined factor architecture, the
results were improved by several orders of magnitude.

Despite the improvements shown by choosing the correct
factor architecture, it is interesting that Tree and Tree2 both
produce architectures that lead to high quality results despite
not addressing any underlying properties of the function. That
implies that having overlapping factors is a great benefit
to optimization, which can be further extended by carefully



TABLE II: Comparison of different optimization methods on CEC 2010 benchmark functions. Bold values indicate best results
that were significantly better (Wilcoxon Rank-Sum p-value < 0.05)

Function DG CPSO-S ODG Tree Tree2 PSO Manual

F3 Mean 5.79E-05 5.93E-05 5.92E-05 1.37E+00 1.79E+01 2.16E+01
std 8.23E-06 9.08E-06 9.52E-06 4.24E-01 4.91E+00 8.43E-03

F5 Mean 8.05E+09 5.95E+08 1.22E+09 5.53E+08 5.56E+08 3.63E+10
std 2.58E+09 1.30E+08 4.15E+08 1.12E+08 1.27E+08 2.31E+09

F11 Mean 2.08E+02 2.00E+02 2.04E+02 2.20E+02 2.22E+02 2.37E+02
std 4.52E-01 1.07E-02 3.67E-01 1.46E+00 2.48E-01 5.86E-02

F17 Mean 1.77E+06 2.58E+06 1.57E+06 1.75E+06 1.37E+06 3.29E+07
std 1.07E+05 1.74E+05 7.79E+04 1.42E+05 1.04E+05 1.91E+06

F20 Mean 6.10E+09 7.36E+01 4.58E+06 1.18E+04 1.41E+06 6.82E+12 4.60E+03
std 4.74E+09 2.31E+01 7.81E+06 2.62E+03 6.91E+05 1.71E+11 2.17E+03

TABLE III: Comparison of different optimization methods on F17 and F20 with double the number of function evaluations.
Bold values indicate best results that were significantly better (Wilcoxon Rank-Sum p-value < 0.05)

Function DG CPSO-S ODG Tree Tree2 Manual

F17 Mean 1.68E+06 1.56E+06 9.82E+05 1.02E+06 1.07E+06
std 4.28E+04 1.37E+05 6.42E+04 9.30E+04 1.12E+05

F20 Mean 4.25E+09 6.24E+01 4.26E+06 6.21E+03 9.94E+05 4.43E+03
std 2.83E+09 7.45E+01 8.29E+06 8.12E+02 4.35E+05 1.38E+03

choosing a factor architecture. This seems to provide a level
of support for our secondary hypothesis.

We also note that using variable interaction as the basis for
problem decomposition may not be beneficial in creating an
appropriate factor architecture. ODG considers these interac-
tions and is capable of determining separability, but it does not
always outperform the random architectures Tree and Tree2. It
is possible that ODG does not capture these interactions fully,
or there may be other properties of the problem decomposition,
such as connectivity, that play a larger role.

A consistent and unexpected result is the performance of
CPSO-S on all functions. CPSO-S is the simplest version
of CCEA with PSO, and is not expected to perform well
on non-separable problems because it does not consider any
form of variable interaction. However, CPSO-S is competitive
across all functions. In particular, it achieved the lowest score
on F11 and F20. We believe that this is due to the shape
of the underlying function landscape, or a byproduct of the
hyperparameter settings. The number of PSO iterations was
set fairly small at 15 to balance the number of function
evaluations. So CPSO-S might be better able to optimize since
it only considers 1-dimensional populations, while the other
algorithms potentially had more dimensions in the factors.
Note that this result can also be a byproduct of the challenges
associated with using fitness evaluations as the means for
making results comparable, as pointed out by Engelbrecht
[37]. In particular, across the various factor architectures, not
all fitness evaluations are created equal.

VIII. CONCLUSION

In this paper we examined different decomposition methods
for factored evolutionary particle swarm optimization, as com-
pared to each other and the single-population equivalent. We
extended Differential Grouping to create overlapping groups
and created two new tree based decomposition approaches.
The algorithms were tested using five representative functions

from the set of CEC’2010 benchmark functions using the
proposed guidelines [27]. Results show that overlap can be
beneficial for optimization of non-separable problems, or
problems with a non-separable component.

IX. FUTURE WORK

The impact of factor decomposition is still not well un-
derstood. More testing involving variable interaction within
overlapping factor decompositions as well as the impact of
connected factor decompositions on optimization performance
is necessary. Another interesting question would be consid-
ering the impact of the amount of overlap and the size
of individual factors have on optimization performance. Our
results may indicate improved performance on smaller group
sizes due to the success of CPSO-S.

Limited hyperparameter tuning was performed in order to
maintain consistency across the experiments, so further tuning
to improve performance of the individual methods would be
beneficial. Due to the limited number of function evaluations,
the number of parameter configurations was fairly limited. In
addition, as highlighted by Engelbrecht [37], using numbers
of fitness evaluations for determining terminations, and by
extension for determining the basis for comparison, may be
problematic and not as fair as most expect. The guidelines
for the CEC 2010 studies were set before Engelbrecht’s study
appeared, so this process should be reconsidered. Removing
the FE restriction and tuning parameters for each algorithm
on each function could yield significant new insight into the
relationships between factor architectures and optimization
performance.

Furthermore, there are several other decomposition strate-
gies that can be created. We would like to look at expanding
some of the proposed methods as well as exploring other exist-
ing methods. Because of the increased flexibility introduced by
the overlap, we can imagine many methods that better consider
the function landscape and can lead to increased performance.



We propose a fairly simple extension from our Tree based
decomposition by creating a maximal spanning tree from the
interactions between variables. Another approach is to employ
a hierarchical decomposition strategy based on local variable
interactions across the function’s domain.

Finally, we believe a framework can be created to formalize
and unify the wide variety of problem decompositions that
exist. Such a unification could result in an improved decision
making process to discover the right factor architecture for a
problem.
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