
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 2, APRIL 2017 281

Factored Evolutionary Algorithms
Shane Strasser, Member, IEEE, John Sheppard, Fellow, IEEE,

Nathan Fortier, Member, IEEE, and Rollie Goodman, Member, IEEE

Abstract—Factored evolutionary algorithms (FEAs) are a new
class of evolutionary search-based optimization algorithms that
have successfully been applied to various problems, such as
training neural networks and performing abductive inference
in graphical models. An FEA is unique in that it factors the
objective function by creating overlapping subpopulations that
optimize over a subset of variables of the function. In this paper,
we give a formal definition of FEA algorithms and present empir-
ical results related to their performance. One consideration in
using an FEA is determining the appropriate factor architecture,
which determines the set of variables each factor will optimize.
For this reason, we present the results of experiments compar-
ing the performance of different factor architectures on several
standard applications for evolutionary algorithms. Additionally,
we show that FEA’s performance is not restricted by the under-
lying optimization algorithm by creating FEA versions of hill
climbing, particle swarm optimization, genetic algorithm, and
differential evolution and comparing their performance to their
single-population and cooperative coevolutionary counterparts.

Index Terms—Differential evolution (DE), genetic algo-
rithm (GA), NK landscapes, particle swarm optimization (PSO).

I. INTRODUCTION

MANY important problems require optimization,
including bin packing, the traveling salesman problem,

job shop scheduling, neural network training, and Bayesian
network inference [1]. Often, stochastic search algorithms
are used to solve such problems because the randomness
used in the algorithms helps the algorithm to escape local
optima. One of the best-known families of stochastic search
algorithms is evolutionary algorithms (EAs).

In this paper, we present an extension of EA called factored
evolutionary algorithms (FEAs) that has been found to perform
very well in finding high quality solutions. FEA factors the
optimization problem by creating overlapping subpopulations
that optimize over subsets of variables. Before introducing the
details of FEA, we first provide background information on
some of the most commonly used EAs.

One of the best-known EAs is the genetic algorithm (GA)
which is inspired by the idea of Darwinian evolution. Each
individual in a GA acts like a chromosome and is modified
in a manner that mimics genetics [2]. During each iteration,

Manuscript received September 22, 2015; revised January 14, 2016,
April 20, 2016, and July 11, 2016; accepted August 15, 2016. Date of publica-
tion August 24, 2016; date of current version March 28, 2017. (Corresponding
author: Shane Strasser.)

The authors are with the Department of Computer Science,
Montana State University, Bozeman, MT 59717 USA (e-mail:
shane.strasser@msu.montana.edu).

Digital Object Identifier 10.1109/TEVC.2016.2601922

candidate solutions undergo operations such as reproduction
and mutation. In reproduction, the candidate solutions first are
selected for duplication and then reproduce using crossover.
Mutation occurs after reproduction by changing randomly
selected dimensions in the individual to some other value.

Differential evolution (DE) is another population-based
algorithm that has been found to perform well on a variety
of optimization problems [3]. The DE algorithm is similar
to GA in that individuals undergo mutation, crossover, and
selection. During mutation, a dimension of the individual’s
mutation vector is calculated using a weighted sum and dif-
ference of three unique randomly selected individuals. Next,
crossover creates a trial vector for an individual by combin-
ing parts of the individual’s mutation vector with its current
position. Finally, in selection, the fitness of the new indi-
vidual is compared to the current location. If the fitness is
better, the individual’s current position is set equal to the
trial vector, but if the fitness is worse, the individual remains
unchanged.

Another population-based approach to optimizing a function
is called particle swarm optimization (PSO) [4]. Whereas GA
and DE use a population of individuals that reproduce with
one another, PSO uses a swarm of particles that “fly” around
the search space. In addition to a vector that represents a can-
didate solution, particles use a velocity vector to control how
the particles move in the search space. Each particle keeps
track of its own best position found in a vector and the best
position discovered by the entire swarm. During each update,
a particle’s position is moved toward its own best position and
the best position in the swarm.

While GAs and DE have been applied successfully to a
wide range of problems, they are susceptible to hitchhiking,
which is when poor values become associated with good
schemas [5], [6]. Similarly, PSO can be prone to what is called
“two steps forward and one step back,” which happens when
near optimal parts of a individual’s current position may be
thrown away if the rest of an individual’s position causes
the individual to have low fitness [7]. Much of the existing
work done to avoid hitchhiking and two steps forward and
one step back in EAs is focused on maintaining diversity in
the individuals [8]. For example, Parsopoulos and Vrahatis [9]
presented an extension to PSO in which the swarm uses the
concept of “repulsion” to keep individuals away from the cur-
rent global and local best solutions. However, these approaches
only address the symptoms of hitchhiking, such as conver-
gence to suboptimal solutions. We propose an extension of
EAs called FEAs that helps directly mitigate hitchhiking and
two steps forward and one step back in GA, DE, and PSO.

1089-778X c© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

282 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 2, APRIL 2017

The idea behind FEA is similar to how polynomials can
be decomposed into a product of factors. FEA decomposes
the optimization problem into a set of subpopulations, or fac-
tors that, when put together, represent full solutions to the
problem. Additionally, FEA encourages the factors to overlap
with one another, which allows the factors to compete with
one another for inclusion in the full solution [10]. There are
three main functions that FEA uses: 1) solving; 2) competition;
and 3) sharing. The first is the solving or optimization step,
which iterates over all of the factors and allows each factor to
optimize over its variables. Next, FEA performs competition
by finding sets of values from each factor that create a full
solution with a high fitness. Finally, the algorithms perform-
ing sharing by using the full solution to inject information into
the factors.

FEA is a generalized framework inspired by an earlier algo-
rithm known as overlapping swarm intelligence (OSI), which
is similar to PSO except that it uses overlapping subswarms.
OSI has been used to train deep neural networks and to
perform abductive inference in Bayesian networks, a type
of probabilistic graphical model that is highly useful for
reasoning under conditions of uncertainty in a multitude of
applications [10], [11]. Here, by extending OSI into FEA,
we allow any evolutionary or swarm-based algorithm to be
utilized as the underlying optimization algorithm, broadening
the range of applications in which a factored approach may
be successful.

In this paper, we provide three primary contributions
related to FEA. First, we give a detailed, formal defini-
tion of the FEA algorithm. Second, we conduct experiments
exploring the relative merits of different factor architectures,
i.e., methods of creating the subpopulations in the algorithm,
in order to demonstrate the important of these architectures
to the algorithm’s performance. The proposed architectures
are tested on several difficult problems from the literature:
abductive inference in Bayesian networks, NK landscapes,
which are a mathematical framework that generates tunable
fitness landscapes for evaluating EAs, and a set of 7 bench-
mark optimization functions. In each case, the architectures
tested are tailored to the type of problem to which FEA is
being applied. Third, we conduct another set of experiments
intended to demonstrate that the FEA approach can make
use of a variety of underlying search algorithms. FEA vari-
ants using each of four underlying EAs—a GA, DE, PSO,
and hill climbing (HC), either the continuous or discrete
variants thereof depending on the application—are applied
to the three problems listed above. For each variant, its
performance is compared to the single-population and coop-
erative coevolutionary counterparts of the same underlying
algorithm.

The remainder of this paper is organized as follows. We first
discuss the related work in Section II and then give a detailed
description of FEA in Section III. Section IV contains the nec-
essary background and experiments regarding different factor
architectures. Finally, we compare FEA to single population
algorithms and cooperative coevolutionary (CC) algorithms
in Section V and provide our conclusions and future work
in Section VI.

II. RELATED WORK

CC algorithms, some of the earliest algorithms that sub-
divide an optimization problem in an evolutionary setting,
were originally proposed by Potter and De Jong [12]. In
that work, Potter and De Jong [12] developed an algo-
rithm called the cooperative coevolutionary GA (CCGA) that
uses subspecies to represent nonoverlapping subcomponents
of a potential solution. Complete solutions are then built by
assembling the current best subcomponents of the subspecies.
This paper showed that in most cases CCGA significantly
outperformed traditional GAs. Only in cases where the opti-
mization function had high interdependencies between the
function variables (i.e., epistasis) did CCGA struggle because
relationships between variables were ignored.

More dynamic versions of CCGA have been proposed that
allow for subpopulations to evolve over time [13]. When stag-
nation is detected in the population, a new subpopulation
is initialized randomly and added to the set of subpopula-
tions. Similarly, a subpopulation is removed if it makes small
contributions to the overall fitness. Because of the dynamic
subpopulations, there does exist the possibility that two sub-
populations may overlap with another. However, there is no
guarantee that subpopulations will overlap, and the algorithm
does not have a function to resolve discrepancies between
overlapping subpopulations. Potter and De Jong [13] were
able to demonstrate that their algorithm could evolve the
correct number of subpopulations and was competitive with
domain-specific algorithms on training cascade networks.

This idea of CC algorithms was also extended by
Van den Bergh and Engelbrecht [7] to use PSO to train neural
networks. In their paper, Van den Bergh and Engelbrecht [7]
tested four fixed subpopulation architectures of their own
design. Comparing these four different architectures, the suc-
cess of the algorithms was highly dependent on the architec-
ture used, due to the interdependencies between the variables.
By keeping variables with interdependencies together, the
algorithm was more effective at exploring the search space [7].

Later, Van den Bergh and Engelbrecht [14] extended their
work by applying it to a wider range of optimization problems.
Cooperative PSO (CPSO) was introduced as a generalization
of the authors’ prior work, which was able to get around
the problem of losing good values since each dimension is
optimized by a single subpopulation. However, one draw-
back to CPSO is that it can become trapped in what the
authors call pseudominima, which are places that are min-
ima when looking at a single dimension but over the entire
search space are not local minima. To avoid this problem,
Van den Bergh and Engelbrecht [14] described a hybrid algo-
rithm that alternates between CPSO and PSO. The result
was an algorithm that always outperformed PSO and was
competitive with but more robust than CPSO.

CC algorithms have also been applied to DE. Shi et al. [6]
proposed a simple extension of CCGA to DE, called CCDE.
Other extensions have been more complex, such as those
presented by Yang et al. [15], where Yang et al. [15] developed
a weighted cooperative algorithm that used DE to optimize
problems over 100 dimensions. This algorithm utilized a
weighting scheme to allow for the evolution of subpopulations

STRASSER et al.: FACTORED EVOLUTIONARY ALGORITHMS 283

where the function was optimized within the subpopulations.
Yang et al.’s [15] algorithm was found to outperform regular
CC algorithms on most of the test functions explored.

A variation of CC algorithms that used evolving subpop-
ulations was also proposed by Li and Yao [16]. Here, the
subpopulation sizes were allowed to grow or to shrink when
stagnation was detected, creating a wider range of variable
groups. Li and Yao [16] showed that their algorithm performed
better than others on functions that had complex multimodal
fitness landscapes, but performed slightly worse than PSO on
unimodal functions. They noted that, while subpopulations
of random variables perform well, there should exist more
intelligent ways of creating subpopulations.

Similarly, this concept of optimizing over subsets of
the problem has been applied to other domains, such as
training neural networks. As a relatively new approach,
Srivastava et al. [17] presented a variation of backpropaga-
tion called Dropout in which random parts of the neural
network are deleted and the resulting “thinned” network
trained. After training several thinned networks, these net-
works are combined together to create the full neural network.
Srivastava et al. [17] found that Dropout outperformed stan-
dard backpropagation on full neural networks. In addition,
Dropout performed well on other types of networks, such as
restricted Boltzmann machines and deep belief networks.

OSI is a version of FEA that uses PSO as the underlying
optimization algorithm. It was introduced in 2012 and works
by creating multiple swarms that are assigned to overlapping
subproblems [18]. It was first used as a method to develop
energy-aware routing protocols for sensor networks that ensure
reliable path selection while minimizing energy consump-
tion during message transmission [18]. OSI was shown to be
able to extend the life of the sensor networks and to per-
form significantly better than current energy-aware routing
protocols.

The OSI algorithm was later extended by
Pillai and Sheppard [11] to learn the weights of deep artificial
neural networks. In that work, each swarm represents a
unique path starting at an input node and ending at an output
node. A common vector of weights is also maintained across
all swarms to describe a global view of the network, which
is created by combining the weights of the best particles in
each of the swarms. Pillai and Sheppard [11] showed that
OSI outperformed several other PSO-based algorithms as
well as standard backpropagation on deep networks.

A distributed version of OSI was developed subsequently
by Fortier et al. [19] called distributed OSI (DOSI). In that
paper, a communication and sharing algorithm was defined so
that swarms could share values while also competing with one
another. The key distinction from OSI is that a global solution
is not used for fitness evaluation. Fortier et al. [19] were able
to show that DOSI’s performance was close to that of OSI’s
on several different networks but there were several instances
when OSI outperformed DOSI.

OSI and DOSI have also been used for inference tasks in
Bayesian networks, such as abductive inference, where the task
is to find the most probable set of states for some nodes in the
network given a set of observations. Fortier et al. [10], [20]

applied OSI and DOSI to perform full and partial abductive
inference in Bayesian networks. Fortier et al. [10], [20] were
able to show that OSI and DOSI outperformed several other
population-based and traditional algorithms, such as PSO, GA,
simulated annealing, stochastic local search, and mini-bucket
elimination.

Other applications of OSI and DOSI include learning
Bayesian networks. Fortier et al. [21] adapted OSI to learn
the structure of Bayesian classifiers by allowing subswarms to
learn the links for each variable in the network, where each
variable represents an attribute in the data. For each variable in
the network, two subswarms were created: one of the incoming
links and other of the outgoing links. Fortier et al. [21] were
able to show that in most cases OSI was able to significantly
outperform the competing approaches.

When learning Bayesian networks, latent or unob-
served variables are often introduced into the network.
Fortier et al. [22] used OSI to learn the parameters of these
latent variables. A subswarm was created for each node with
unlearned parameters and all of the variables in that node’s
Markov blanket. Fortier et al. [22] were able to show that OSI
outperformed the competing approaches and that the amount
of overlap between the subswarms can impact the performance
of OSI.

We also make note of the multifactorial EA (MFEA),
introduced by Gupta et al. [23]. MFEA uses a single popula-
tion to solve multiple optimization problems simultaneously.
By optimizing different tasks that have additional influence
over the search process, MFEA creates an exchange of infor-
mation between the tasks. This creates an overlap between
the tasks, which is similar in concept to how FEA uses sets
of overlapping subpopulations. However, FEA’s focus is on
subdividing a single function (task) into overlapping sets of
variables and using subpopulations to optimize over sets of
variables. Because of the overlap in ideas, there does appear
to be a relationship between FEA and MFEA. We leave
exploration of FEA and MFEA as future work.

III. FACTORED EVOLUTIONARY ALGORITHMS

FEAs are a new class of optimization algorithms that work
by subdividing the optimization problem. FEA is similar to
cooperative EAs like CCGA and CPSO; however, FEA encour-
ages subpopulations to overlap with one another, allowing the
subpopulations to compete and share information. FEA is also
a generalization of the OSI algorithm since it allows for any
EA to be used as the underlying optimization algorithm. This
allows for FEA to be a general class of algorithms that includes
CPSO, CCGA, OSI, and Island EAs. Here, we present a gen-
eral definition of the FEA model that extends those presented
in [10] and [11].

There are three major subfunctions in FEA: 1) solving;
2) competition; and 3) sharing. The solve function is the
simplest and allows each factor to optimize over its set of
variables. The competition function creates a full solution that
is used by factors to evaluate a partial solution, while the
sharing step uses the full solution to inject information in

284 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 2, APRIL 2017

the factors. Before giving the pseudocode for these steps, we
first formally define factors in FEA.

A. Defining Subpopulations

Given a function f : R
n → R to be optimized with

parameters X = 〈X1, X2, . . . , Xn〉, let Si be a set of X of
size k. Note that f can still be optimized over the variables
in Si by holding variables Ri = X\Si constant. A local sub-
population can then be defined over the variables in Si that are
optimizing f . An algorithm that uses a set of subpopulations
to optimize a problem is called a multipopulation algorithm.
We denote the set of s subpopulations in a multipopulation
algorithm as S = ∪s

i=1Si.
When s = 1 and S1 = X, then S will have just a

single population that results in a traditional application of
the population-based algorithm, such as PSO, DE, or GA.
However, when s > 1, Si ⊂ X, and

⋃
Si = X for all

populations, the algorithm becomes a multipopulation algo-
rithm. FEA is the case where there are subpopulations that
are proper subsets of X and at least one subpopulation over-
laps with another subpopulation.1 Without loss of generality,
assume every subpopulation overlaps some other subpopula-
tion. Should there be disjoint subpopulations, we have a family
of FEAs.

Because each population is only optimizing over a subset of
values in X, the subpopulation defined for Si needs to know the
values of Ri for local fitness evaluations. Given a subpopula-
tion Si and its remaining values Ri, fitness for a partial solution
in subpopulation Si can be calculated as f (Si ∪ Ri). The val-
ues for Ri are derived from the other subpopulations, which
thereby allows Si to use values optimized by other subpopula-
tions. The algorithm accomplishes this through a competition
step and sharing step as follows.

B. Competition

The goal of competition in FEA is to find the subpopula-
tions with the state assignments that have the best fitness for
each dimension. Here, we present the competition algorithm
described in [10]. FEA constructs a global solution vector
G = 〈X1, X2, . . . , Xn〉 that evaluates the optimized values
from subpopulations. For every Xi ∈ X, the algorithm iter-
ates over every subpopulation containing Xi and finds the best
value from those subpopulations. The competition algorithm
is provided in Algorithm 1.

The algorithm first iterates over a random permutation of all
the variables in X, shown in line 2. Note that this permutation
changes each time the algorithm is run. Lines 4 and 5 initialize
variables that are used for the competition. Next, the algorithm
iterates over another random permutation of all the subpopu-
lations that are optimizing the variable Xi. Lines 10–15 then
compare the individual values of variable Xi by substituting
the subpopulations’ values into G. In our implementation, the
factor uses the best value found during the entire search pro-
cess as its candidate value to be evaluated in lines 10–15.

1If we do not require at least one overlap, other CC algorithms fit this
definition.

Algorithm 1 FEA Compete Algorithm
Input: Function f to optimize, subpopulations S
Output: Full solution G

1: randVarPerm← RandomPermutation(N)
2: for ranVarIndex = 1 to n do
3: i← randVarPerm[ranVarIndex]
4: bestFit← f (G)

5: bestVal← S0[Xi]
6: S i ← {Sk|Xi ∈ Sk }
7: randPopPerm← RandomPermutation(|S i|)
8: for ranPopIndex = 1 to |S i| do
9: Sj ← S i[randPopPerm[ranPopIndex]]

10: G[Xi]← Sj[Xi]
11: if f (G) is better than bestFit then
12: bestVal← Sj[Xi]
13: bestFit← f (G)

14: end if
15: end for
16: G[Xi]← bestVal
17: end for
18: return G

The values yielding the best fitness from the overlapping popu-
lations are saved and then inserted into G. Once the algorithm
has iterated over all variables in X, the algorithm exits and
returns G.

Note that the competition algorithm is not guaranteed to find
the best combination of values from each subpopulation, nor
does it guarantee the combination of values is better than the
previous G. This is because, in most scenarios, finding the best
combination of values will be as hard as the original problem.
However, by iterating over random permutations of X and S,
the algorithm is able to explore different combinations and is
still able to find good combinations of values. Additionally, a
factor could use other sources to derive its candidate solution
to be used during the competition phase, such as the current
best individual in the factor’s population. Finally, we note that
because the if-statement in line 11 uses a strictly greater-than,
the full global solution is only updated if the fitness improves.
This eliminates scenarios where a variable oscillates between
two different values with the same fitness, which also means
the full global solution should converge to a single solution
during the competition stage.

C. Sharing

The sharing step serves two purposes. The first is
that it allows overlapping subpopulations to inject their
current knowledge into one another. Previous work by
Fortier et al. [10] discovered that this is one of the largest
contributors to the FEA’s performance. The second purpose
of the sharing step is to set each subpopulation’s Ri values to
those in the full global solution G so that each subpopulation
Si can evaluate its partial solution on f . The sharing algorithm
is provided in Algorithm 2.

The share algorithm iterates over all the subpopulations
and sets each subpopulation’s Ri values using the global

STRASSER et al.: FACTORED EVOLUTIONARY ALGORITHMS 285

Algorithm 2 FEA Share Algorithm
Input: Full global solution G, subpopulations S

1: for all Si ∈ S do
2: Ri ← G \ Si

3: pw ← Si.worst()
4: pw ← G \ Ri

5: pw.fitness← f (pw ∪ Ri)

6: end for
7: return

Algorithm 3 FEA
Input: Function f to optimize, optimization algorithm A
Output: Full solution G

1: S ← initializeSubpops(f , X, A)
2: G← initializeFullGlobal(S)

3: repeat
4: for all Si ∈ S do
5: repeat
6: Si.updateIndividuals()
7: until Termination criterion is met
8: end for
9: G← Compete(f ,S)

10: Share(G,S)

11: until Termination criterion is met
12: return G

solution G (line 2). These values are then used by Si to eval-
uate its partial solutions. Next, the algorithm sets values in
subpopulation Si to those in G. To accomplish this, the algo-
rithm sets the current position of the individual with the worst
fitness in Si’s population to the values in G (lines 3 and 4). The
fitness is then recalculated in line 5 for the worst individual.

D. FEA Algorithm

Now, that the share and compete algorithms have been
defined, we can give the full FEA algorithm, which is provided
in Algorithm 3.

The algorithm works as follows. All of the subpopulations
are first initialized according to the optimization algorithm
being used and the subpopulation architecture (line 1). The
full global solution G is initialized in line 2.

Next, the algorithm begins interpopulation optimization,
which consists of three steps (lines 3–11). First, the algo-
rithm iterates over each subpopulation and optimizes the
values using the corresponding optimization algorithm until
some stopping criterion is met (line 6). The optimization of
each individual subpopulation is called the intrapopulation
optimization step. Following intraoptimization of all subpop-
ulations, competition occurs between subpopulations in the
compete function on line 9. Finally, the share function on
line 10 shares the updated best states between the subpop-
ulations. The interpopulation optimization steps are repeated
until the stopping criterion is met.

We note that while individual subpopulations may not con-
verge to the same solution, previous work has found that in

practice, the full global solution G converges to a single solu-
tion. This has yet to be proven formally; however, because
the full global solution converges to a single solution during
the competition step, FEA should also converge to a sin-
gle solution. We leave the formal proof of convergence as
future work.

IV. FACTORED ARCHITECTURE ANALYSIS

While there has been some work discussing different factor
architectures, there has been little work to optimize these factor
architectures for FEA. In this section, we verify empirically
that the performance of FEA is tied to the factor architectures.
To do so, we test a variety of architectures on three different
problems: 1) abductive inference in Bayesian; 2) maximizing
NK landscapes; and 3) optimizing of a set of commonly-used
test functions. For each problem, we define a set of different
factor architectures.

In our first set of experiments, we used PSO, as proposed
by Kennedy and Eberhart [4], as the underlying algorithm
within FEA for optimizing the benchmark test functions.
For the discrete categorical optimization problems, NK land-
scapes and Bayesian networks, we used discrete multivalued
PSO (DMVPSO), proposed in [24], as the underlying algo-
rithm in order to compare our results with previously pub-
lished results with OSI. We refer to this version of FEA as
FEA-DMVPSO.

In DMVPSO, the velocity update equations remain mostly
unchanged from regular PSO [4]. However, the semantics
of the velocity vector are changed such that it denotes
the probability of a particle’s position taking on a specific
value. After the velocity is updated, it is transformed into
the interval [0, M − 1], where M is the number of val-
ues the variable may take on, using the sigmoid function
Si,j = [M − 1/1+ exp(−Vi,j)]. Next, each particle’s position
is updated by generating a random number according to the
Gaussian distribution, Xi,j ∼ N(Si,j, σ × (M − 1)) and round-
ing the result. Then, a piecewise function is used to ensure
all sampled values fall within the valid range [0, M− 1] [24].
In all our experiments, the PSO and DMVPSO ω parameters
were set to 0.729, and φ1 and φ2 were both set to 1.49618.
Each subpopulation for FEA had a population size of 10. We
will now describe the three different sets of experiments and
the results for each set.

A. Bayesian Networks

First, we define Bayesian networks [25]. Let G = (X, E) be
a directed acyclic graph. X is the set of random variables in a
joint probability distribution P(X1, . . . , Xn) and E represents
relationships between the random variables. Specifically, an
edge ei,j ∈ E means that Xi is conditionally dependent on Xj

A joint distribution for a Bayesian network is then defined as

P(X1, . . . , Xn) =
n∏

i=1

P(Xi|Pa(Xi))

where Pa(Xi) corresponds to the parents of Xi. With this
representation, a node’s Markov blanket is given node’s

286 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 2, APRIL 2017

TABLE I
PROPERTIES OF THE TEST BAYESIAN NETWORKS

parents, children, and its children’s parents. A node is con-
ditionally independent of all other nodes in the network given
its Markov blanket.

Next, given a set of evidence variables and their correspond-
ing states, abductive inference is the problem of finding the
maximum a posteriori (MAP) probability state of the remain-
ing variables of a network. If we let XU = X\XO, where
X denotes the variable nodes in the network, the problem of
abductive inference is to find the most probable state assign-
ment to the unobserved variables in XU given the evidence
XO = xo

MAP(XU, xo) = argmax
x∈XU

P(x|xO).

Note that multiplying small probabilities several times can
cause the values to go to zero. To deal with this issue, the
log is often used instead of the raw probabilities. Since taking
the log does not change the optimization problem, the MAP
equation becomes

MAP(XU, xO) = argmax
x∈XU

n∑

i=1

log P(Xi|Pa(Xi)).

1) Methodology: For all our experiments, we used an
empty evidence set; therefore, we are searching for the most
probable state assignment for all variables, i.e., XU = X.
While evidence could be applied to the network, setting
evidence introduces another set of parameters into the exper-
iments: which nodes in the network are assigned evidence.
Additionally, when evidence is applied to the network, the
number of variables to be optimized is reduced. Thus, by
choosing not to apply evidence, we are testing on a more
difficult optimization problem.

To test our architectures, we used the Hailfinder, Hepar2,
Insurance, and Win95pts Bayesian networks from the Bayesian
network repository [26]. These networks were chosen to be
consistent with [10], for the sake of comparison. Table I lists
the number of nodes, edges, parameters, and average Markov
blanket size for the selected networks. For each Bayesian net-
work, we compared four different factor architectures, which
are described below.

a) Random: Random subpopulations are considered as
the baseline architecture. For this approach, a random subpop-
ulation is constructed for each of the N variables. M variables
are then added to each of the N subpopulations. For each indi-
vidual Bayesian network, M was set to be equal to the rounded
average Markov blanket size for the network.

b) Parents: For each variable Xi, we construct a subpop-
ulation of individuals consisting of Xi ∪Pa(Xi). This is one of
the simplest ways to subdivide a Bayesian network and provide
overlap. Additionally, this architecture takes advantage of the

TABLE II
AVERAGE FITNESS OF DIFFERENT FACTOR ARCHITECTURES

FOR FEA-DMVPSO PERFORMING ABDUCTIVE

INFERENCE ON BAYESIAN NETWORKS

TABLE III
HYPOTHESIS TESTS COMPARING DIFFERENT FACTOR ARCHITECTURES

FOR FEA-DMVPSO PERFORMING ABDUCTIVE

INFERENCE ON BAYESIAN NETWORKS

structure of the log likelihood function that is used to evaluate
the fitness of individuals in the population.

c) Markov: This architecture uses the Markov blanket
of the nodes to create subpopulations, which offers arguably
one of the most natural ways to subdivide a Bayesian net-
work and provide overlap. Here, each subpopulation consists
of Xi ∪ Pa(Xi) ∪ Ch(Xi) ∪ Pa(Ch(Xi)) where Ch(Xi) returns
all children of Xi. In other words, the subpopulation con-
sists of a node itself, and every node in its Markov blanket.
This architecture may provide an advantage when performing
inference because every node in the network is condition-
ally independent of all other nodes when conditioned on its
Markov blanket.

d) Clique: The Clique Tree architecture is one of the
more complicated methods to create subpopulations. The
Bayesian network is first moralized, which consists of con-
necting parents of variables with an undirected edge. Next,
the directed edges of the Bayesian network are made to be
undirected, followed by triangulating the network. Finally, the
graph is decomposed into a clique tree by first computing the
maximal cliques and then finding the maximum spanning tree
weighted by the overlap size of neighboring cliques. Note that
unlike the previous architectures, this method does not build a
subpopulation by centering on a single variable. Instead, each
subpopulation corresponds to the variables in a clique in the
resulting clique tree.

2) Results: Table II shows the results for the
FEA-DMVPSO when performing abductive inference
on the four different Bayesian networks using the four
different factor architectures. The average fitness values,
along with the standard deviation for error bounds, are
displayed. Additionally, the results of statistical significance
testing using a Paired Student t-test with α > 0.05 between
each pairs of factor architectures are shown in Table III. If
an architecture performed significantly better than another
architecture on a particular Bayesian network, the network’s
abbreviation is shown where the row architecture outperforms
the column architecture. If there is no significant difference,
a “−” is shown.

STRASSER et al.: FACTORED EVOLUTIONARY ALGORITHMS 287

The Markov architecture outperformed all other
architectures on all networks. However, it only signifi-
cantly outperformed the Parents architecture on the Hailfinder
and Hepar2 networks, and the Clique architecture on the
Hailfinder and Insurance networks. The Parents architecture
also performed well on all networks except the Win95pts
network, whereas the Clique architecture performed well only
on the Hepar2 and Insurance networks. Finally, the random
architecture performed the worst on the Hepar2 and Insurance
networks and did not significantly outperform any of the
other architectures.

B. NK Landscapes

An NK landscape is a function f : BN → R
+ where BN is

a bit string of length N. K specifies the number of other bits in
the string that a bit is dependent on. Given a landscape, the fit-
ness value is calculated as f (X) = (1/N)

∑N
i=1 fi(Xi, nbK(Xi)),

where nbK(Xi) returns the K bits that are located within
Xi’s neighborhood. The individual functions are defined as
fi : BK → R

+, and are generally created randomly.
Note that there are multiple ways to define the neighborhood

function. In this paper, we return the next K contiguous bits
of the string starting at Xi. If the end of the string is reached,
then the neighborhood wraps back around to the beginning of
the string. Increasing K makes the variables more dependent
on one another, resulting in more rugged landscapes [27].

1) Methodology: We tested each architecture on NK land-
scapes with parameters N = 25, 40, and K = 2, 5, 10. In our
experiments, we compared the following factored architecture
strategies on 50 randomly generated landscapes.

a) Random: Random subpopulations for NK landscapes
are constructed similarly to the Random architecture used in
abductive inference in Bayesian networks. A subpopulation is
created for every variable, and M variables are then added to
each of the N subpopulations. For these experiments we set
M to be equal to K, giving each factor a size of K + 1.

b) Neighborhood: For each variable Xi, we create a sub-
population and add all the variables in the set nbK(Xi). This
results in subpopulation sizes of K + 1.

c) Loci: The loci subpopulation extends the neighbor-
hood architecture. Each variable Xi is still used to create a
subpopulation along with the variables in nbK(Xi). Therefore,
we add variable Xj to the subpopulation if Xi ∈ nbK(Xj). In
other words, the subpopulation consists of all the variables
in its neighborhood and all variables that contain Xi in their
neighborhood. The neighborhood architecture will result in
factors similar to those created by the Markov architecture for
Bayesian networks. This creates subpopulations of size 2K+1.

2) Results: Table IV shows the results the FEA-DMVPSO
on maximizing NK landscapes using different factor archi-
tectures. Results from the hypothesis testing are in Table V,
where a + is shown if the row architecture is better than the
column architecture. If there is no significant difference or the
row architecture is worse than the column architecture, a − is
shown.

The neighborhood architecture always outperforms the Loci
and Random architectures. However, it is only significantly

TABLE IV
AVERAGE FITNESS OF DIFFERENT FACTOR ARCHITECTURES FOR

FEA-DMVPSO MAXIMIZING NK LANDSCAPES

TABLE V
HYPOTHESIS TESTS COMPARING DIFFERENT FACTOR ARCHITECTURES

FOR FEA-DMVPSO MAXIMIZING NK LANDSCAPES

better than the Loci architecture for K = 5 and K = 10.
Random was almost always the worst and was signifi-
cantly outperformed by Neighborhood and Loci, except when
N = 25, K = 10, where random performed statistically bet-
ter than the Loci architecture. A key observation from these
results is the Neighborhood architecture is never significantly
outperformed on any of the landscapes.

C. Test Functions

In this section, we evaluate the performance of FEA on
continuous optimization problems by applying the algorithm
to a set of test functions commonly used in the literature for
testing EAs and swarm algorithms.

1) Methodology: The seven functions selected for these
experiments were the Ackley’s, Dixon-Price, Exponential,
Griewank, Rosenbrock, Schwefel 1.2, and Sphere functions.
We used the same set of standard function ranges as presented
in [28]. All of the problems are minimization problems with
global minima of 0.0, except for the Exponential which has
a minimum of −1.0. Additionally, all of the problems are
scalable, meaning they can be optimized for versions of
any dimension. In our experiments, we used functions of
50 dimensions. For each function, we compared the following
factored architecture strategies.

a) Simple subswarm: Simple swarms are specified by
two parameters, l and m, where l controls how many variables
each subswarm optimizes over while m dictates how many
variables each neighboring subswarm overlap. For example,

288 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 2, APRIL 2017

TABLE VI
AVERAGE FITNESS OF DIFFERENT FACTOR ARCHITECTURES FOR FEA-PSO MINIMIZING DIFFERENT BENCHMARK TEST FUNCTIONS

values of 4 and 2 for l and m would create a subwarms S1 =
{X1, X2, X3, X4}, S2 = {X3, X4, X5, X6}, S3 = {X5, X6, X7, X8},
and so on. We will denote simple subswarm factor architecture
with parameters l and m as SS-l, m.

b) Centered subswarm: The centered subswarm gener-
ates a subswarm for each variable in the optimization problem.
For each subswarm, the next l variables are included in the
subswarm. The algorithm starts with variable X1 and adds the
next l variables {X2, X3 . . . Xl+1}. This is repeated for all vari-
ables. We note that in our implementation, we did not use any
wrap-around upon reaching the end of the list of variables.
Because of this, subswarms centered around variables toward
the end of the list of variables will be smaller. We denote this
architecture as CS-l.

2) Results: Table VI displays the results of the different
factor architectures on minimizing the benchmark test func-
tions. Results are displayed as average fitness over 30 trials
with the standard error shown in parentheses. CS-2 outper-
formed all other architectures on the Dixon-Price and Sphere
functions. It was outperformed by CS-5 on Ackley’s and
Griewank. CS-10 performed the best on Rosenbrock and
Schwefel. All of the architectures performed equally well
on the Exponential function. Neither of the SS architectures
performed better than the CS architectures.

While the results of all pairwise significance tests are not
shown, we note that in almost all cases, all of the CS archi-
tectures tied in terms of performance. Only on the Schwefel
problem did CS-5 and CS-10 perform significantly better than
CS-2. The difference between SS-4,2 and SS-10,5 was signifi-
cant for all functions except on the Exponential, Schwefel, and
Sphere. Similarly, the SC-2 and SC-5 were significantly dif-
ferent from SS-10,5 on all functions except the Exponential,
Schwefel, and Sphere. Finally, we note that CS-2 was only
significantly outperformed on the Schwefel function.

D. Analysis

From the Bayesian network results, the Markov architec-
ture performed the best across all networks. However, it was
only statistically better than the other architectures on cer-
tain networks. We believe this is because the size of FEA’s
factors also affect FEA’s performance. This can be demon-
strated by comparing Markov’s performance on the Win95pts
and Hailfinder networks. In the Win95pts network, the average
Markov blanket size of the network is 5.92 while the average
Markov blanket size in Hailfinder is 3.54. Markov failed to
be statistically better than Clique and Parents on Win95pts,
but was statistically better than all other architectures on the

Hailfinder network. These results also demonstrate that the
Markov architecture will usually perform the best on networks
that have relatively small average Markov blankets (<6).

Within the NK landscape experiments, the best-
performing architecture was Neighborhood. In almost
all cases, Neighborhood outperformed Loci and Random.
The Neighborhood architecture is similar to the Parents
architecture for abductive inference in Bayesian networks.
However, when K = 2, the Loci architecture, which is similar
to the Markov architecture for Bayesian networks, performed
better than the Neighborhood. This supports our previous
claim that the performance of FEA’s factors also depends
on the size of the factors. When K became large, Loci’s
performance became worse as compared to Neighborhood’s.

Based on the benchmark results, CS-2 was the best-
performing architecture except on the Schwefel function. In
that case, CS-5 and CS-10 performed the best. The Schwefel
function output is dominated by the summation of factors,
where the factor is composed of a product of input variables
and the number of variables in the product ranges from 1 to n.
This results in a function with variables that interact with one
another to a large degree. Based on the results, we see that
the factor architecture with larger subswarms, CS-10, is bet-
ter able to capture the high level of variable interaction in the
Schwefel function.

For the other benchmark functions, the problems are either
completely separable, like the Sphere function, or are dom-
inated by the summation of the product of only one or two
variables, like Rosenbrock. In those cases, the factor architec-
ture with small subswarms, CS-2, is capable of capturing the
variable interaction. These results indicate that the best fac-
tor architectures are those that are appropriately sized for the
product of variables in the benchmark function. Subswarms
that are too large can lead to problems such as hitchhik-
ing or “2 steps forward, 1 step backward,” like regular PSO.
However, if the subswarms are too small, then FEA loses its
effectiveness because variable interactions may not be captured
by the subswarms.

V. COMPARISON WITH OTHER ALGORITHMS

Based on the experiments in the previous section, we
demonstrated that there are factor architectures that perform
better than others under some conditions. However, those
experiments only demonstrated FEA using PSO or DMVPSO
as the underlying optimization algorithm. One of the advan-
tages to FEA is its generality; any EA can be used within
the factored framework. In this section, we compare four

STRASSER et al.: FACTORED EVOLUTIONARY ALGORITHMS 289

TABLE VII
COMPARISON OF SINGLE POPULATION, CC, AND FEA ALGORITHMS ON ABDUCTIVE INFERENCE ON BAYESIAN NETWORKS

different versions of FEA that each use a different underly-
ing optimization algorithm. Each algorithm is then compared
with single-population and CC versions of the underlying
algorithm.

A. Experiments

To demonstrate the general performance of FEA, we applied
FEA to abductive inference in Bayesian networks, maximizing
NK landscapes, and minimizing the benchmark test functions
from Section IV using HC, GA, DE, and PSO as the underly-
ing algorithms. On Bayesian networks and NK landscapes, we
used discrete DE (DDE) and DMVPSO. For the Bayesian net-
works, we used the set of networks in Table I. NK landscapes
were randomly generated using combinations of N = 2, 5, 10
and K = 2, 5, 10. For the benchmark optimization functions,
we used the Ackley’s, Dixon-Price, Exponential, Griewank,
Rosenbrock, Schwefel 1.2, and Sphere functions.

For each Bayesian network, 50 trials were performed for
each algorithm. Because NK landscapes are randomly gen-
erated, we generated 50 landscapes, and each algorithm was
then run 50 times on each landscape. Similarly, 50 trials were
performed on each benchmark function.

We used the DDE algorithm proposed in [29], which rounds
the individual’s position during fitness evaluations to handle
integer values. An indexing scheme is then used to map the
integer value to the discrete value [29]. During tuning, we
found that a value of 0.25 for both DE and DDE’s mutation
rate and a differential factor of 0.55 performed the best. For
the GA, tournament section and one-point crossover were used
along with uniform mutation with a mutation rate of 0.02. PSO
and DMVPSO used the same parameter values as the previous
experiments in Section IV.

The FEA versions of the algorithms used the Markov (Loci)
architecture for the Bayesian networks and NK landscapes.
While the Neighborhood/Factor architectures outperformed
Markov/Loci when there was a large amount of interaction
between variables, we wanted to use the same architecture
over all problems for consistency, and the Markov/Loci archi-
tectures still performed well over all problems. Additionally,
the use of this architecture allows a more direct comparison
to previously published results by [10]. For the benchmark
functions, we used SC-2 on all functions except on the
Schwefel function, which used CS-10. This was because

SC-2 performed the best or tied on those functions while
CS-10 performed the best on the Schwefel function. Each sub-
swarm performed ten iterations before competition and sharing
were performed.

For the CC versions of DMVPSO, GA, DDE, and HC,
N/2 subpopulations optimizing over two variables each were
created, since these parameters gave the best results dur-
ing preliminary testing across all algorithms. These algo-
rithms are similar to the CPSO-SK model presented by
Van den Bergh and Engelbrecht [7]. When evaluating the fit-
ness of a subpopulation for the CC algorithm, we use the
best known value from the other subpopulations to fill in the
remaining values. While this is different than other imple-
mentations, such as those presented in [12], it uses the same
source for values that FEA uses when it constructs the global
solution G.

FEA, CC and the single-population algorithms were given
a total of 350 individuals, except for the HC versions, where
only 75 individuals were used. These values were found to per-
form well during tuning for all algorithms. On the CC and FEA
algorithms, individuals were distributed evenly across each of
the subswarms. All algorithms were stopped once the best
fitness did not improve after 15 iterations.

B. Results

Table VII shows the results of comparing single-population
and CC algorithms to the FEA versions on performing abduc-
tive inference on the four different Bayesian networks. Bold
values indicate a statistically significant difference between
the single population, CC, and FEA versions of the corre-
sponding underlying algorithms, using Paired Student t-tests
with a 0.05 significance level. If two algorithms tied, both
values are bolded. In all cases, the FEA versions of the algo-
rithms performed better than the CC versions. However, FEA
did not always perform better than the single population algo-
rithms. For example, the single-population GA tied with the
FEA version on all four networks. The single-population DDE
tied with FEA-DDE on the Hepar2. FEA-HC was significantly
outperformed by HC on Hepar2, but tied on the Hailfinder
and Insurance networks. The only instance in which FEA
was significantly outperformed by the single-population algo-
rithm was HC on the Hepar2 network. Finally, FEA-DMVPSO
significantly outperformed DMVPSO on all four networks.

290 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 2, APRIL 2017

TABLE VIII
COMPARISON OF SINGLE POPULATION, CC, AND FEA ALGORITHMS ON MAXIMIZING NK LANDSCAPES

TABLE IX
COMPARISON OF SINGLE POPULATION, CC, AND FEA ALGORITHMS ON OPTIMIZING BENCHMARK FUNCTIONS

The results comparing single-population, CC, and FEA
algorithms on the NK landscapes are shown in Table VIII.
Similar to the Bayesian network results, the FEA versions
of the algorithms significantly outperformed the CC versions.
FEA-DMVPSO always outperformed the single-population
versions. However, FEA-DDE was outperformed on the sim-
plest landscapes (N = 25, K = 2). GA significantly outper-
formed FEA-GA on N = 25, K = 2, N = 25, K = 5, and
N = 40, K = 2, but tied on N = 40, K = 5. FEA-GA
outperformed the single-population algorithm when K = 10.
Looking at the HC algorithms, FEA outperformed the single-
population algorithm only on N = 40, K = 10. The single
population HC significantly outperformed the FEA version on
N = 25, K = 2 and N = 25, K = 5. On the other landscapes
(N = 25, K = 10, N = 40, K = 2, N = 40, K = 5), the FEA
and single population HC algorithms tied.

Tables IX and X show the results of comparing single-
population, CC algorithms, and FEA versions on optimiz-
ing the benchmark functions. Results are presented as the
mean value over 30 trials along with the standard error
shown in parentheses. Overall, the FEA versions of the algo-
rithms performed the best. FEA-PSO was outperformed by
CC-FEA on the Dixon-Price and Griewank functions. On the
Ackley’s function, CC-DE performed significantly better than
FEA-DE. The GA outperformed FEA-GA on the Griewank
function while CC-GA performed significantly better on the
Rosenbrock function. FEA-HC performed significantly bet-
ter than single-population and CC versions on all functions.
Finally, there are several instances where the CC and FEA
algorithms tied.

TABLE X
COMPARISON OF SINGLE POPULATION, CC, AND FEA ALGORITHMS

ON OPTIMIZING BENCHMARK FUNCTIONS

We also looked at the number of fitness evaluations each
algorithm required. For the sake of conciseness, the combined
results of the discrete and continuous problems are presented
in Table XI. The “update” column gives the number of fitness
evaluations each of the algorithms used while updating the
individuals, while the “total” column presents the total num-
ber of evaluations used by the algorithm. We present these
two different values because FEA requires extra fitness eval-
uations during the competition phase of the algorithm, and
thus it may not be appropriate to consider only the total num-
ber of fitness evaluations. For example, the FEA-PSO uses
5.02E+05 fitness evaluations while updating the subpopu-
lations. But during the competition phase, it performed an
additional 3.80E+00 fitness evaluations, giving it a total of
5.41E+05 fitness evaluations.

STRASSER et al.: FACTORED EVOLUTIONARY ALGORITHMS 291

TABLE XI
RESULTS COMPARING THE NUMBER OF FITNESS EVALUATIONS

ON DISCRETE AND CONTINUOUS FUNCTIONS

Fig. 1. Fitness curve plotting fitness versus iterations on single population,
CC, and FEA DMVPSO algorithms maximizing NK landscapes with N = 25
and K = 2.

In almost all cases, the FEA algorithms required more fit-
ness evaluations than the single-population and CC versions.
On the continuous functions, CC-GA and CC-DE both
performed more fitness evaluations than the FEA versions.
HC also performed more fitness evaluations than FEA-HC on
the continuous problems. While FEA does require additional
fitness evaluations during the competition step, this number
is small compared to the total number of fitness evaluations
performed by FEA. We note that the extra number of fitness
evaluations required during competition make up around 10%
of the total number of fitness evaluations.

Finally, we present fitness curves from DMVPSO
maximizing NK landscapes N = 25, K = 2 and PSO
minimizing the Rosenbrock function. Fig. 1 presents the aver-
age best fitness over time on the NK landscape problem while
Fig. 2 shows the same for the Rosenbrock function. The curve
labeled “single” refers to the single population algorithm while
“CC” and “FEA” refer to the CC and FEA versions, respec-
tively. Note that the y-axis is on a log scale to allow for a
compact representation of the results. Additionally, a single
iteration for CC and FEA involves iterating over all subpopula-
tions and allowing each subpopulation to run for ten iterations
while an iteration for a single population is given after updat-
ing each of the individuals one time. All algorithms were
stopped if, after 15 iterations, the best fitness failed to improve.
For both figures, FEA and CC were both able to converge
quickly to good values. The single-population algorithm took
longer to converge, and also converged to a less-fit solution.

Fig. 2. Fitness curve plotting fitness versus iterations on single population,
CC, and FEA PSO algorithms minimizing the Rosenbrock function. Note that
the y-axis is shown on a logarithmic scale to allow for a compact display of
fitness values over time.

C. Analysis

The Paired t-tests on the sum of the log likelihoods
show that FEA versions of DMVPSO all performed signif-
icantly better than the corresponding single-population and
CC versions. This demonstrates that FEA’s use of overlap-
ping subpopulations is more effective than the nonoverlapping
subpopulations used by the CC algorithm.

Additionally, the results suggest that on difficult problems,
such as the Hailfinder Bayesian network, FEA offers an
increase in performance for almost all algorithms. We believe
that this is because FEA’s overlapping subpopulations help the
algorithm avoid hitchhiking and two steps forward, one step
back. If a subpopulation contains a poor value due to hitch-
hiking, a better value from a different subpopulation may be
selected during the competition. This new value will then be
injected into the other subpopulation during the share step of
FEA, thus eliminating the value that is hitchhiking.

The results from the NK landscapes further support this
hypothesis. FEA’s performance over single-population and CC
algorithms is significant on the landscapes with high variable
interaction (K = 10). On those problems, the landscape is
more complex, which increases the probability of the algo-
rithms becoming trapped in local optimum. We believe that
FEA is able to maintain more diversity during the search
process because the subpopulations are updated indepen-
dently during the solve step. This is a similar concept to the
Island model for EAs, where (full) subpopulations are updated
independently of one another.

Finally, the benchmark function results further support our
hypothesis that FEA versions of population-based algorithms
perform better than both single-population and CC algorithms
on complex or difficult problems. Many of the test functions
used are designed to be difficult problems with many traps and
valleys. FEA allows the algorithm to escape these by breaking
up variables that are hitchhiking and allowing the algorithm to
maintain diversity between the subpopulations. This is espe-
cially noticeable when comparing HC and FEA-HC, where
FEA-HC always outperformed HC. Because HC is a greedy
algorithm that only moves in directions with better fitness,
it is susceptible to becoming stuck in local optima. FEA-HC
allows the individuals to escape those suboptimal locations by
sharing information between those individuals.

292 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 2, APRIL 2017

The results also support the claims in [10] that the
increased performance obtained by FEA—or, in that case,
OSI specifically—is due to a representation of each subpopu-
lation that allows communication and competition to occur
between overlapping populations. When there is no over-
lap between subpopulations, such as in the CC algorithms,
the performance was significantly worse than when there is
overlap, like in FEA. By defining each node’s subpopula-
tion to cover its Markov blanket when performing abductive
inference, we ensure that each population learns the state
assignments for all variables upon which that node may
depend. Also, because multiple subpopulations optimize over
each variable, the FEA algorithm allows greater exploration
of the search space. Through competition and sharing, FEA is
able to find good combinations of variable state assignments
from the subpopulations are used in the final solution.

While FEA does find better solutions, we observe that FEA
almost always requires more fitness evaluations. Some of the
additional fitness evaluations do come from the competition
step. However, as noted earlier, this only makes up around
10% of the total number of fitness evaluations in the situa-
tions we observed. We believe this percentage is related to the
number of iterations FEA uses to update each subpopulation.
If FEA only ran each subpopulation for one iteration, then the
percentage of fitness evaluations used during the competition
step would increase. However, if the FEA had each subpop-
ulation run for more iterations, than the percentage of fitness
evaluations incurred during competition would decrease.

We believe there are two possible explanations for other
additional fitness evaluations. The first is that FEA maintains
more diversity between individuals and therefore takes longer
to converge than the single populations and CC algorithms.
However, when looking at the fitness curves in Figs. 1 and 2,
FEA-PSO and FEA-DMVPSO required fewer FEA iterations
than the single population algorithms. This is likely to vary
based on the algorithm and problem.

Another possible source of the increase in fitness evalua-
tions is the fact that FEA updates each subpopulation for ten
iterations. Only after updating each of the subpopulations and
performing competition and sharing does FEA check to see if
convergence has occurred. If FEA and the single population
algorithm both performed the same number of iterations, one
would expect FEA to use ten times the number of fitness eval-
uations. In other words, the single population algorithm would
perform 90% fewer fitness evaluations than FEA. Based on our
results in Table XI, this number is usually between 20% and
80% in practice. However, in the worst cases, such as FEA-GA
and FEA-DE on the discrete problems, the single population
algorithm used 97% fewer fitness evaluations than FEA. In
these two cases, we believe that the FEA versions maintain
greater diversity between the individuals, and therefore require
more iterations to converge.

VI. CONCLUSION

In this paper, we have made several contributions. The
first is that we have provided a formal definition for the
FEA algorithm. Second, we showed empirically that taking
advantage of groupings of highly related variables is the

best way to create subswarms. We compared different archi-
tectures for several applications and determined that, in the
majority of cases, the factor architectures that combined all
directly interacting variables in subpopulations performed the
best. This paper also demonstrates that FEA’s performance is
not related to the specific underlying optimization algorithm,
through experiments comparing various versions of FEA that
use multiple well-known population- and swarm-based algo-
rithms. Additionally, we showed that FEA often outperforms
CC methods to a significant degree, reinforcing the importance
of the overlapping factors to FEA’s success. Finally, we present
results regarding the number of fitness evaluations required by
FEA versus single-population algorithms, and showed that the
competition step in FEA contributes only a small fraction of
these additional fitness evaluations.

There are a variety of areas we wish to explore for future
work. The first is to explore the convergence properties of
FEA further. While FEA appears to always converge to good
solutions in practice, the theoretical convergence properties
are still under investigation. To accomplish this, we plan to
determine if convergence proofs for various EA methods, such
as PSO, GA, and CCGA, can be adapted and applied to FEA.
A related area of work is the empirical convergence properties
of FEA. For example, we would like to investigate how FEA’s
parameters, such as the number of iterations during interfactor
and intrafactor optimization affect FEA’s performance.

The complexity of FEA also merits further analysis. As
demonstrated in our results, FEA requires more fitness eval-
uations than its single-population counterparts. However, we
believe this is influenced by the number of iterations FEA
allows each subpopulation to perform during the solve step.
To verify this, we plan to vary the number of iterations allowed
during the solve step and compare the performance in terms
of fitness and number of fitness evaluations.

Beyond this, we also want to explore hierarchical FEA
architectures. Based on the results in Section IV, we see that
the size of the factor can influence the performance of the
different FEA architectures. We want to explore creating a
hierarchical FEA for problems where factor sizes become too
large to continue to avoid hitchhiking. In those cases, sub-
factors could be created, which would result in a single FEA
itself being composed of several FEAs.

Another area we want to explore is mapping functions to
probabilistic graphical models. If the function is mapped to a
probabilistic graphical model, we can then utilize the archi-
tectures presented here as way to derive a factor architecture
quickly.

Finally, we plan to apply FEA to a wider range of opti-
mization problems; for example, additional benchmark test
functions and combinatorial optimization problems such as
3-SAT. This will help inform us further regarding to what type
of problems FEA is most effective at solving. Additionally,
we want to investigate the scalability of FEA by applying it
to large optimization problems.

ACKNOWLEDGMENT

The authors would like to thank the members of the
Numerical Intelligent Systems Laboratory at Montana State

STRASSER et al.: FACTORED EVOLUTIONARY ALGORITHMS 293

University for their comments and advice during the devel-
opment of this paper. The authors would also like to thank
Dr. B. Haberman at the Johns Hopkins University Applied
Physics Laboratory and Dr. K. G. Pillai at Cerner Corporation
for their ideas during the formative stages of this research.

REFERENCES

[1] J. C. Spall, Introduction to Stochastic Search and Optimization:
Estimation, Simulation, and Control. New York, NY, USA: Wiley, 2005.

[2] J. H. Holland, Adaptation in Natural and Artificial Systems: An
Introductory Analysis With Applications to Biology, Control, and
Artificial Intelligence. Ann Arbor, MI, USA: Univ. Michigan Press,
1975.

[3] S. Das and P. N. Suganthan, “Differential evolution: A survey of the
state-of-the-art,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31,
Feb. 2011.

[4] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proc. IEEE Int. Conf. Neural Netw., Perth, WA, Australia, 1995,
pp. 1942–1948.

[5] M. Mitchell, S. Forrest, and J. H. Holland, “The royal road for genetic
algorithms: Fitness landscapes and GA performance,” in Proc. 1st Eur.
Conf. Artif. Life, Cambridge, MA, USA, 1992, pp. 245–254.

[6] Y.-J. Shi, H.-F. Teng, and Z.-Q. Li, “Cooperative co-evolutionary dif-
ferential evolution for function optimization,” in Advances in Natural
Computation. Heidelberg, Germany: Springer, 2005, pp. 1080–1088.

[7] F. Van den Bergh and A. P. Engelbrecht, “Cooperative learning in neural
networks using particle swarm optimizers,” South African Comput. J.,
vol. 26, pp. 84–90, 2000.

[8] S. Cheng, Y. Shi, and Q. Qin, “Population diversity of particle swarm
optimizer solving single-and multi-objective problems,” Int. J. Swarm
Intell. Res., vol. 3, no. 4, pp. 23–60, 2012.

[9] K. E. Parsopoulos and M. N. Vrahatis, “On the computation of all global
minimizers through particle swarm optimization,” IEEE Trans. Evol.
Comput., vol. 8, no. 3, pp. 211–224, Jun. 2004.

[10] N. Fortier, J. Sheppard, and S. Strasser, “Abductive inference in
Bayesian networks using distributed overlapping swarm intelligence,”
Soft Comput., vol. 19, no. 4, pp. 981–1001, 2015.

[11] K. G. Pillai and J. Sheppard, “Overlapping swarm intelligence for train-
ing artificial neural networks,” in Proc. IEEE Swarm Intell. Symp. (SIS),
Paris, France, 2011, pp. 1–8.

[12] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach
to function optimization,” in Parallel Problem Solving From Nature—
PPSN III. Heidelberg, Germany: Springer, 1994, pp. 249–257.

[13] M. A. Potter and K. A. De Jong, “Cooperative coevolution: An archi-
tecture for evolving coadapted subcomponents,” Evol. Comput., vol. 8,
no. 1, pp. 1–29, 2000.

[14] F. Van den Bergh and A. P. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225–239, Jun. 2004.

[15] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary opti-
mization using cooperative coevolution,” Inf. Sci., vol. 178, no. 15,
pp. 2985–2999, 2008.

[16] X. Li and X. Yao, “Cooperatively coevolving particle swarms for
large scale optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 2,
pp. 210–224, Apr. 2012.

[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural net-
works from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1,
pp. 1929–1958, 2014.

[18] B. K. Haberman and J. W. Sheppard, “Overlapping particle swarms for
energy-efficient routing in sensor networks,” Wireless Netw., vol. 18,
no. 4, pp. 351–363, 2012.

[19] N. Fortier, J. W. Sheppard, and K. G. Pillai, “DOSI: Training artificial
neural networks using overlapping swarm intelligence with local credit
assignment,” in Proc. Joint IEEE 6th Int. Conf. Soft Comput. Intell.
Syst. (SCIS) 13th Int. Symp. Adv. Intell. Syst. (ISIS), Kobe, Japan, 2012,
pp. 1420–1425.

[20] N. Fortier, J. Sheppard, and K. G. Pillai, “Bayesian abductive infer-
ence using overlapping swarm intelligence,” in Proc. IEEE Swarm Intell.
Symp. (SIS), Singapore, 2013, pp. 263–270.

[21] N. Fortier, J. Sheppard, and S. Strasser, “Learning Bayesian classifiers
using overlapping swarm intelligence,” in Proc. IEEE Swarm Intell.
Symp. (SIS), Orlando, FL, USA, 2014, pp. 1–8.

[22] N. Fortier, J. Sheppard, and S. Strasser, “Parameter estimation in
Bayesian networks using overlapping swarm intelligence,” in Proc.
Genetic Evol. Comput. Conf. (GECCO). Madrid, Spain, 2015, pp. 9–16.

[23] A. Gupta, Y.-S. Ong, and L. Feng, “Multifactorial evolution: Toward
evolutionary multitasking,” IEEE Trans. Evol. Comput., vol. 20, no. 3,
pp. 343–357, Jun. 2016.

[24] K. Veeramachaneni, L. Osadciw, and G. Kamath, “Probabilistically
driven particle swarms for optimization of multi valued discrete prob-
lems: Design and analysis,” in Proc. IEEE Swarm Intell. Symp. (SIS),
Honolulu, HI, USA, 2007, pp. 141–149.

[25] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Francisco, CA, USA: Morgan Kaufmann, 1988.

[26] M. Scutari. (2012). Bayesian Network Repository. [Online]. Available:
http://www.bnlearn.com/bnrepository/

[27] H. Aguirre and K. Tanaka, “A study on the behavior of genetic
algorithms on NK-landscapes: Effects of selection, drift, mutation,
and recombination,” IEICE Trans. Fundamentals Electron. Commun.
Comput. Sci., vol. E86-A, no. 9, pp. 2270–2279, 2003.

[28] A. P. Engelbrecht, “Fitness function evaluations: A fair stopping con-
dition?” in Proc. IEEE Swarm Intell. Symp. (SIS), Orlando, FL, USA,
2014, pp. 1–8.

[29] J. Lampinen and I. Zelinka, “Mixed integer-discrete-continuous
optimization by differential evolution,” in Proc. 5th Int. Conf. Soft
Comput., 1999, pp. 77–81.

Shane Strasser (M’11) received the B.S. degree
in computer science and mathematics from the
University of Sioux Falls, Sioux Falls, SD, USA, and
the M.S. degree in computer science from Montana
State University, Bozeman, MT, USA, where he is
currently pursuing the Ph.D. degree in computer
science.

His current research interests include artificial
intelligence and machine learning with a focus on
evolutionary and swarm algorithms.

Mr. Strasser has received several awards, includ-
ing the 2012 Outstanding Ph.D. MSU Computer Science Researcher Award
and the 2011 AUTOTESTCON Best Student Paper Award.

John Sheppard (F’07) received the B.S. degree
in computer science from Southern Methodist
University, Dallas, TX, USA, and the M.S. and Ph.D.
degrees in computer science from Johns Hopkins
University, Baltimore, MD, USA.

He was the Inaugural RightNow Technologies
Distinguished Professor in Computer Science with
Montana State University, Bozeman, MT, USA,
where he currently holds an appointment as the
College of Engineering Distinguished Professor with
the Computer Science Department, MSU. He is also

an Adjunct Professor with the Department of Computer Science, Johns
Hopkins University, Baltimore, MD, USA. He was a Fellow with ARINC
Inc., Annapolis, MD, USA, for almost 20 years. His current research inter-
ests include Bayesian classification, dynamic Bayesian networks, evolutionary
methods, and reinforcement learning.

Nathan Fortier (M’10) received the undergraduate
degree in computer science from Montana Tech,
Butte, MT, USA, in 2011, and the M.S. and Ph.D.
degrees from Montana State University, Bozeman,
MD, USA, in 2013 and 2015, respectively.

He is currently an Applications Engineer with
Golden Helix, Bozeman. His current research
interests include swarm algorithms and probabilis-
tic graphical models.

Dr. Fortier was a recipient of the MSU’s Award
for Outstanding Ph.D. Computer Science Researcher
in 2015.

Rollie Goodman (M’16) received the undergraduate
degree in economics from Lewis & Clark College,
Portland, OR, USA, in 2014. She is currently
pursuing the M.S. degree in computer science with
Montana State University, Bozeman, MD, USA,
focusing on artificial intelligence and machine learn-
ing.

Her current research interests include evolutionary
and swarm-based algorithms.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

