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Abstract

Game playing has been a popular problem area for research in artificial intelligence and
machine learning for many years. In almost every study of game playing and machine
learning, the focus has been on games with a finite set of states and a finite set of actions.
Further, most of this research has focused on a single player or team learning how to play
against another player or team that is applying a fixed strategy for playing the game.

In this dissertation, we provide and evaluate algorithms for learning strategies
in two player games with large state and action spaces. First, we focus on the class of
differential games in which the state space and the action space are both continuous. We
model these games as discrete Markov games and provide methods for representing the state
and actions spaces at varying levels of resolution. Second, we explore multi-agent learning
and develop algorithms for “co-learning” in which all players attempt to learn their optimal
strategies simultaneously.

Specifically, in this dissertation we compare several algorithms for a single player
to learn an optimal strategy against a fixed opponent. Next we combine the results of
one algorithm—a genetic algorithm—with a second algorithm—a memory-based learning
algorithm—to yield performance exceeding the capabilities of either algorithm alone. Then

we explore two approaches to co-learning in which both players learn simultaneously. We
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demonstrate strong performance by a memory-based reinforcement learner and comparable
but faster performance with a tree-based reinforcement learner. In addition to the experi-
mental results, we also provide an overview of machine learning and game playing as well

as an overview of differential and Markov games.
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Chapter 1

Introduction

1.1 Games and Artificial Intelligence

Since the genesis of the study of artificial intelligence (AI), Al researchers have found game
playing to be a fertile area for exploring and expanding the capabilities of machines in
problem solving. Games offer the human many challenges and opportunities for exploring
his or her own abilities in finding strategies for personal advance—generally at the expense
of the opponent. Attempting to instill game playing abilities in the computer has opened
new avenues for studying approaches to efficient search, pattern recognition, classification,
and knowledge representation.

Initially, research in computer game playing was limited to constructing fixed
strategies for the computer to apply against a human opponent. The worth of the strategy
was determined on the basis of how well the computer fared against the human. How many

times did the computer win? How long did the game last? Was the computer, at least, an



interesting opponent to play?

Until Arthur Samuel developed his checkers player [297, 298], the thought of con-
structing a machine that could “learn” to play a game capable of competing with a human
was just a dream. With Samuel’s checkers player, artificial intelligence took a step for-
ward, demonstrating that a mere machine could not only be programmed to solve complex
problems but could actual learn how to solve these problems by applying knowledge gained
from previous experience. Since Samuel built his learning checkers player, the field of ma-
chine learning and the study of game playing have come together to yield several significant

advances.

1.2 Machine Learning

Research in machine learning has focused on developing approaches for machines to auto-
matically develop strategies and algorithms for solving many types of problems. Some of
the types of problems explored include data classification, data mining, automatic program-
ming, control theory, and planning.

Classification systems identify a concept class from a set of available classes to
which a particular example belongs [3, 10, 61, 91, 119, 182]. Data classification usually
proceeds from a set of available attributes and associated values. A training set is used
to present examples of concept classes, and the classifier constructed is designed to be
consistent with that training set. The classifier can classify new examples based on the

knowledge gained from the training set.



The emphasis of data mining is on analyzing a large set of data to determine
relationships among the data and to derive previously unknown concept classes. Data
mining stems from work in statistics and unsupervised learning and has drawn from ideas
taken from automatic discovery [2, 66, 79, 124, 185]. Many approaches to data mining use
techniques such as clustering, rule induction, and classification to analyze the large set of
data. From this set of data, data mining systems attempt to induce general “laws” and
classification procedures for characterizing the data.

Automatic programming had lost popularity until recently with the advent of ge-
netic programming, evolutionary programming, and relational learning. The task of auto-
matic programming is to derive a procedure for a program using a set of examples or formal
specifications of that behavior [198, 206, 208, 219]. Genetic programming approaches the
problem by representing programs as parse trees of functions and variables and applying a
genetic algorithm to populations of parse trees to evolve programs satisfying requirements
and maximizing performance on a set of test cases.

Control theory focuses on developing optimal procedures for maintaining equilib-
rium or for achieving some performance objective by determining values of several “control
variables” in a dynamic system [1, 26, 40, 45, 71, 100, 101, 156, 237, 252, 253]. Machine
learning systems attempt to determine optimal values for these control variables from expe-
rience rather than explicitly solving a set of differential equations. For example, the classic
“inverted pendulum” involves deriving appropriate durations of constant thrust on either

side of a cart to keep a pole balanced upright on the cart using experience from previous



attempts to balance the pole.

Finally, planning attempts to determine optimal strategies for an agent to apply in
performing some task [74, 106, 107, 131, 288]. These strategies usually consist of sequences
of steps to perform, and generally, the objective is to reach some terminal state (as opposed
to maintaining an equilibrium as in control problems). Classic planning problems in artificial
intelligence have included stacking blocks and navigating mazes. A key distinction between
control systems and planning systems is the focus on achieving a specific goal; although,

frequently the distinction between them becomes blurred [252].

1.3 Learning and Intelligent Agents

Recently, the machine learning community has paid increasing attention to problems of
delayed reinforcement learning [37, 121, 179, 225, 228, 318, 368]. These problems usually
involve an agent that has to make a sequence of decisions, or actions, in an environment
that provides feedback about those decisions. The feedback about those decisions might be
considerably delayed, and this delay makes learning much more difficult. In this case, the
problem is called a delayed reinforcement problem [109, 167, 168, 220, 221, 317, 343, 363].
The basic loop followed in sequential decision making tasks such as these includes evaluating
the current state, taking an action, and computing the new state. This loop is repeated
until the system either reaches a goal state or recognizes that it will never terminate.

To date, research in multiple agent planning and control has been limited largely to

the area of distributed artificial intelligence [138, 283, 329, 330, 331, 341, 356] and artificial



life [83, 116, 117, 172, 299, 325]. In distributed AI (DAI), several agents cooperate to achieve
some goal or accomplish some task. The task is usually one of sufficient complexity that
no single agent can accomplish the task alone. Because the agents cooperate, research in
distributed Al has focused primarily on developing efficient procedures for communicating
between the agents to enable the agents to develop the cooperative plans.

Although artificial life research does explore issues related to both cooperation and
competition, its primary focus is on the emergence of intelligent behavior in a population
of agents. For example, one area of application that has received considerable attention
is the evolution of foraging behavior among artificial organisms (e.g., artificial ants) in the
presence of predators. Also, migration patterns of artificial birds have been evolved. In
none of these cases has behavior of individual agents been the focus of the research.

Recently, work has begun to appear that focuses on learning in multi-agent systems
[56, 65, 150, 303, 328, 327, 329, 341]. Stone and Veloso provide a taxonomy of multi-agent
systems by focusing on attributes such as agent homogeneity, communication, deliberative
versus reactive control, and number of agents [329]. Problems in multi-agent systems are
distinct from problems in DAT and distributed computing, from which the field was derived,
in that DAI and distributed computing focus on information processing and multi-agent
systems focus on behavior development and behavior management. In addition, problems
in multi-agent systems are distinct from problems in artificial life in that multi-agent systems
still focus on individual behaviors and artificial life focuses on population dynamics. So far,

most work in learning and multi-agent systems has focused on multiple agents’ learning



complementary behaviors in a coordinated environment to accomplish some task, such as
team game playing [330, 337, 338, 341], combinatorial optimization [116, 117], and obstacle
avoidance [150].

The research discussed in this dissertation combines work in control and planning
in the context of competitive multi-agent systems. In particular, we focus on exploring
methods for the on-line learning of optimal strategies for playing differential games. Differ-
ential games are related to control problems in that the objective is to determine values of
a set of control variables that optimize some objective function (namely, payoff) and sat-
isfy the constraints of the game. The games are related to planning problems in that each
player, independently, attempts to make a decision to force the state of the game into the
best state for that player. We note that very little current research in reinforcement learn-
ing has considered situations where multiple, individual agents are competing and learning
simultaneously how to accomplish their respective tasks.

In the case of pure competition where cooperation is assumed not to be possible,
communication between the agents is not a concern because communication assumes the
prospect of cooperation. Further, because each agent has an objective in conflict with the
other agents, population behavior is not of interest either. Thus, the focus of the research
reported in this dissertation is in the area of learning optimal strategies among multiple
competing individual agents. As will be described in more detail, we focus on problems
from the area of differential game theory known as pursuit games and apply reinforcement

learning as the primary learning paradigm.



1.4 Assumptions

In this dissertation, we develop and evaluate several approaches to learning how to play
games. We do not focus on board games (e.g., chess, othello, checkers), games of chance
(e.g., craps roulette), card games (e.g., poker bridge), or any other of the normally studied
games in Al. Rather, we study a branch of game theory that until now has not been studied
extensively in either Al or machine learning—differential game theory.

As with any other branch of game theory, differential game theory is quite complex
and offers many different avenues of research. Differential game theory focuses on games in
which the moves are simultaneous, and state transitions are modeled by differential equa-
tions. Although solving differential games is difficult, differential game theory is valuable
when applied directly to solving problems such as those in economics, adaptive control, and
national defense. For example, several ships navigating to different docks in a harbor may
have competing objectives if their courses cross. Further, missile or torpedo evasion can me
modeled directly as differential games. Further, results from differential game theory can be
applied to more general game theory by converting the differential equations to difference
equations or some other representation of state transition. To manage the complexity of

this research and to limit its scope, we make several assumptions about the games we study.

o Two-player games. We restrict the number of players in the games we study (with
one exception) to two; however, we anticipate extension to three or more players as

straightforward. The primary reason for this restriction is the availability of a large



literature base in game theory; we will be able to select several interesting games
that have been analyzed that will be useful for demonstrating the capabilities of the

algorithms we study.

o Zero-sum games. We restrict the games to zero-sum games where payoff received by
one player is at the equivalent expense to that player’s opponent. This restriction,
generally, is not necessary. We decided to limit the games to zero-sum games to sim-
plify analysis while still providing several interesting games. In particular, analysis is
simplified because we need only consider a single payofl function rather than modeling

separate payoff functions for each player.

o Multi-stage games. We assume that all of the games require multiple steps for each
player. This is referred to as a multi-stage game and is typified by games such as

chess, checkers, card games, and most sports.

o Markov decision processes. Because a decision will need to be made at each stage of
play, we impose a Markovian restriction: The optimal decision at each stage of play
depends on the current state and time only. Thus, historical information is irrelevant
in determining the best course of action, and the optimal decision is a greedy one
that optimizes the immediate or long-term expected reward that is estimated from
the current state. The concept of a Markov decision process and a Markov game is

formalized in Chapter 2.

o Infinite horizon games. For the games we study, we apply a finite horizon and a



terminal payoff only. However, we apply a discounted reward function as if the horizon
where infinite. Many games have the ability to continue indefinitely (e.g., economic
games) or require so many moves that it is impractical to consider play to the end
(e.g., chess). These games usually are modeled as infinite horizon games. Infinite
horizon games can be modeled as finite horizon games simply by specifying a fixed
horizon for evaluation. This is only significant when assigning payoff. If the game
applies a running payoff (i.e., payoff is assigned at each step), then infinite horizon
games may require discounting to determining a measure of expected payoff. On the
other hand, finite horizon games can compute an expected payoff directly on the basis
of the length of the horizon. In the event of terminal payoff games, with a finitte
but unknown horizon, discounting is still appropriate when estimating the expected

payoff of the game.

1.5 Contributions

This dissertation concentrates on the problem of learning in differential games and develops
approaches for learning approximate optimal solutions to discrete Markov versions of these
games. Further, because differential games assume simultaneous actions by the players,
these games are more general than traditional games in extensive form. Consequently,
the results of this dissertation can be applied to the general class of two-player games in

extensive form. The major contributions provided by this dissertation include the following;:



10

o A direct comparison of three distinct learning approaches is given where the algorithms

are applied to two difficult pursuit games. Strengths and weakness of these algorithms
on tasks with large state and action spaces as well as adaptations of the algorithms

to these tasks are discussed.

A method for generating good examples for a nearest-neighbor approach to game play-
ing is provided using a second learning algorithm. Experimental results demonstrate
the utility of a combination of learning approaches in which the resulting behavior
surpasses the behavior of either algorithm when functioning alone. Improvements in

convergence time, successful agent performance, and memory requirements are shown.

A novel algorithm for co-learning is provided in which all players use a shared mem-
ory base to derive optimal strategies for several differential games. This algorithm

demonstrates the ability to learn approximate optimal strategies simultaneously.

A second novel algorithm for learning is provided in which all players use a common
decision tree to derive approximate optimal strategies for several differential games.
This algorithm demonstrates the potential for improvement in learning time and mem-

ory requirements.

An extensive review of machine learning and game playing is provided with a focus on
reinforcement learning, Markov games, and co-learning. Several reviews of reinforce-
ment learning and World Wide Web pages bringing together resources on learning and

games exist, but this is the first review that focuses on the application of reinforcement
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learning to co-learning in games.

1.6 Organization of this Dissertation

This dissertation is organized in eight chapters. In this, the first chapter, we introduce
the topic of reinforcement learning and differential games by stating the problem to be
solved and the applicable domains. We discuss the assumptions and motivation for the
dissertation, outline the major contributions of the research, and provide a breakdown for
the remainder of the dissertation.

Because the focus of this dissertation is on learning strategies for differential games,
Chapter 2 provides a brief overview of differential game theory. The chapter is not intended
to provide solution approaches for these games but provides definitions, objectives, and
examples from differential game theory. The chapter further motivates the need for learning
in differential games by discussing the complexity associated with solving these kinds of
games.

Chapter 3 provides a review of past research in machine learning and game playing.
This chapter surveys other work related to learning and game playing. We present the
problem of game learning in the context of Markov decision processes and discuss several
approaches to solving MDPs. We then focus, specifically, on reinforcement learning applied
to games and end with a review of the work most relevant to this dissertation—co-learning
and differential games.

Chapter 4 describes our initial results on the subject of learning and differential
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games. This chapter provides the formulation of a differential game of pursuit as a reinforce-
ment learning problem. It then focuses on one game in particular—the evasive maneuvers
game—and provides a comparison of three learning strategies on two forms of the game.
The three strategies are 1-nearest neighbor, genetic algorithms, and @-learning. The two
forms of the game are evasion of a single pursuer and evasion of two pursuers.

Proceeding from the results in Chapter 4, Chapter 5 describes an approach for
improving the algorithm with the lowest performance by applying a novel bootstrapping
method from the highest performance strategy (i.e., genetic algorithms). This chapter fo-
cuses on the one evader, two pursuer game and demonstrates that the teaching approach
yields better performance than either learning method by itself. The chapter also cov-
ers potential benefits of editing the memory base and provides results of an experiment
demonstrating these benefits.

Considerable prior work exists on learning strategies for one player in a game, but
little work is available where all players learn their strategies simultaneously. The field of
multi-agent learning is gaining interest and popularity, but to date work has focused on
developing cooperating agents, not competing agents. Chapters 6 and 7 provide the results
of experiments in an attempt to focus on this void in multi-agent competitive co-learning.

In Chapter 6, we present a novel memory-based algorithm for co-learning and
discuss experiments on four games: 1) a simple game of force, 2) a simple game of pursuit
and evasion, 3) pursuit and evasion in the half plane, and 4) pursuit and evasion with

limited player mobility. Closed form solutions are provided and compared to the results of
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learning for the first three games, and experiments comparing a heuristic solution to the
results of learning are provided for the fourth.

Chapter 7 extends the results of Chapter 6 by providing another novel approach
to co-learning using a tree partitioning the state space. The need for another algorithm
is motivated by the large memory and computational requirements of the memory-based
approach. The algorithm described in Chapter 7 was developed specifically to reduce these
requirements while attempting to maintain good learning performance.

The algorithm described in Chapter 7 constructs a tree, partitioning the state
space and associating game matrices with each partition. The algorithm grows the tree
dynamically while learning strategies for both players within each partition. Chapter 7 also
provides a discussion about experimental results, including player performance and learning
time, directly comparing the results with the memory-based approach.

Finally, Chapter 8 provides a summary of the work performed and reviews the
major contributions of the research. In this chapter, we point out several areas for future
research and discuss implications derived from the current work.

Some of the work reported in this dissertation has been reported in preliminary
form in papers that are cited here. Results in Chapter 4 will appear in “A Teaching
Method for Memory-Based Control” by J. Sheppard and S. Salzberg in the journal, Artificial
Intelligence Review [307] and have appeared in “Memory-Based Learning of Pursuit Games”
by J. Sheppard and S. Salzberg as Johns Hopkins technical report, JHU-94-02 [304]. The

results from Chapter 5 appeared in “Bootstrapping Memory-Based Learning with Genetic
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Algorithms” by J. Sheppard and S. Salzberg presented at the 1994 AA AT Workshop on Case-
Based Reasoning [305], “Combining Memory Based Reasoning with Genetic Algorithms”
by J. Sheppard and S. Salzberg in Proceedings of the Sizth International Conference on
Genetic Algorithms [306], and will appear in the previously referenced article in Artificial
Intelligence Review. This research has been supported, in part, by the National Science
Foundation under Grant Nos. IRI-9116843 and IRI-9223591 and through the educational

assistance program at ARINC Incorporated.
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Chapter 2

An Overview of Differential Game
Theory

2.1 Elements of Game Theory

Game theory is the formal study of conflict and competition. The purpose of studying
games is to determine rational decisions by competitors intending to maximize some payoff
or minimize some penalty. Games have been studied along a wide variety of dimensions,

such as the following;:

Two-player or n-player games.

e Cooperative or competitive games (or some combination).

Constant sum or non-constant sum games.

Single stage or multi-stage games.

Perfect information or imperfect information games.
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2.1.1 Properties of a Game

In general, a game can have n > 1 players. When n = 1, a game is considered to be an
optimal control problem in which the player attempts to maximize some payoff relative to
a set of fixed control laws or a fixed strategy. Much research in game theory has focused
on two-player games. These games are mathematically interesting yet relatively simple to
describe and visualize. In this dissertation, we focus on two-player games with one minor
exception. In Chapters 4 and 5, we present a game with three players, except the game is
played as a two-player game where one “player” is a team of two agents.

Cooperative games provide a means of communication between players, thus open-
ing the possibility of the players establishing alliances or cooperating in some way. Cooper-
ation may occur when the expected payoffs to all players are maximized but each player still
has strictly selfish interests. Frequently, cooperative games limit cooperation to pre-play
discussion and establishing binding agreements. In non-cooperative games, no commu-
nication is permitted between the players. Thus, pre-play discussion is prohibited and
agreements cannot be made. Instead, play is determined by examining the current state
and the expected payoffs.

One method of representing a game (especially a two-person game) is by using a
payoff matrix. The payoff matrix has the form given in Table 2.1. Fach row, ¢, corresponds
to strategy (or action) ay for player P1, and each columen, j, corresponds to strategy (or
action) aé for player P2. Each cell of the matrix represents the payoff received by each

player given the associated actions are played. Thus pij = fl(ai, aé) is the payoff received



Table 2.1: Payoff matrix for two-player non-zero-sum game in normal form.

P1/P2 al a3 al
ai | pit/pyt | pitles” pi" /oy
ai | pit/p3t | p¥/p3 pi" /03"
ot | P/ est | P e Py /oy
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by player P1 when P1 plays action @} and P2 plays action aé. Further, p;j = folal, aé) is
the payoff received by player P2 when P1 plays action a} and P2 plays action aé.

The matrix in Table 2.1 is actually two matrices, and games using this form are
called bimatriz games. If Yayi,aq, fi(a1,az2) + fa(ai,az) = k, where k is some constant,
the corresponding game is called a constant sum game. If one of the payoff functions is
modified to subtract k (e.g., f(a1,a2) = fa(a1,az)—k), then we find that Vaq, az, fi(a1,az2)+
fi(ay,az) = 0, and the resulting game is called a zero-sum game. Zero-sum games (therefore,
constant sum games) can be represented with a single matrix consisting of the values of
just fi(a,az), because fi(ar,az) = —f3(a1,az).

When representing a game as a matrix, the game is said to be in normal form. In
this case, all decisions to be made in playing the game are made “up front.” In a sense,
the game has been collapsed to a single “stage” where the decision is made. If decisions are
made throughout the play of the game (i.e., in multiple stages), the game is said to be in
extensive form. Games in extensive form can be represented as a tree in which decisions are
made at the internal nodes of the tree that cause transitions to a new state in the game.

Finally, we can draw a distinctions between perfect and imperfect information
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games. If at a given point of a game, each player knows or can deduce the entire history
leading up to that point in the game (or the history does not matter), then the game is
a perfect information game. We define an information set to be the set of vertices in a
game tree, sz'7 such that if player p is currently at vertex v € sz'7 then p does not know
which vertex in sz’ is the current vertex. A game of perfect information is one for which all
information sets contain exactly one vertex. A game of imperfect information is one where

there exists an information set V;/ such that |V;/| > 1.

2.1.2 Solutions to a Game

Given the characteristics of a game, one of the principal goals of game theory is to un-
derstand the properties of optimal play. To gain such an understanding, one must define
what constitutes optimal play. The most widely accepted definition of optimal play is the
Nash equilibrium point. (Because extensive form games can be represented in normal form,
for the moment, we limit the representation of the game to normal form and consider only
non-cooperative games.) We define a Nash equilibrium point as follows. Given a game I',

let P be the set of players and A, be the set of actions (or strategies) for players p € P.
Definition 2.1 Let A = {(a1,...,a,)|a1 € Ay A---Na, € A} be the set of joint strategies.

Definition 2.2 For any p € P, a;, € A,, and a € A}, let alla;, denote the member of A

obtained by replacing a, by a;. This is a unilateral defection from joint strategy a by player
p.

Definition 2.3 Let f,(a) denote the payoff to player p given joint strategy a € A.
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Definition 2.4 If, for all a;, € A, we have fy(al|a},) < fy(a), then a € A is admissible.

In other words, player p has no profitable unilateral defection from a.

Definition 2.5 Joint strategy a € A is a Nash equilibrium point for game U if and only if

it is admissible for all players p € P.

Unfortunately, this definition is not satisfactory; many games do not have a Nash
equilibrium point when considering only pure strategies (i.e., specific strategies prescribed
at the start of play). In this case, we consider the set of mized strategies. The set of
mixed strategies for player p, ¥,, is defined to be the set of probability distributions over
the strategy space A,. From this, we can determine a Nash equilibrium point for any

normal-form game.

Theorem 2.1 (Nash) Given any n-player non-cooperative game, there exists at least one

Nash equilibrium point consisting of mixed strategies.

Proof: See [250, 254, 360].

If we reconsider the concept of a normal form game and limit our discussion to
two-person zero-sum games, it has been shown that Nash equilibrium points with mixed
strategies can be found by solving the following linear program. Let f7 be the expected

value of the game I" given in normal form.
minimize f" subject to

S plar) = 1, where p(ar) > 0
a1 €A
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Vay € Ay, Y plar)far,az) — f7 <0

az€As

This will determine an optimal mixed strategy for player P1. For player P2, the dual linear
program must be solved.

maximize f™ subject to

S plaz) = 1, where p(az) > 0
az€As

Vay € Ay, Y plag)flar,az) — f7 >0

a1 €A

This will find an optimal mixed strategy for player P2. The exchangeability property of
Nash equilibrium points ensures that pairing any optimal mixed strategy for player P1 with
any optimal mixed strategy for player P2 will maintain optimal play for both players.

If we return to the notion of an imperfect information game in extensive form,
then we need to consider the strategies available to a player in an information set. Similar
to defining the set of mixed strategies to each player in a game in normal form, if we define
the set of “mixed strategies” for each player for each information set in a game of imperfect

information, then we have defined behavioral strategies for each player [217].

Theorem 2.2 (Kuhn) Given a game with perfect recall with behavioral strategies

(B1, P2, ..., 0p) induced by a set of mized strategies (01,02,...,0,), then for each player

i; fi(ﬁ17ﬁ27"'7ﬁp) = fi(Ul,Uz,...,Up).

Proof: See [199].
Given the concept of a behavioral strategy, we can modify (slightly) our solution

concept by applying the theorem by Nash and the theorem by Kuhn. Specifically, we
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determine a payoff matrix at each stage of play and solve it as if it is a normal-form game.
The resulting mixed strategies define the behavioral strategies at the stage of the game.
The concept of behavioral strategies is important in Chapters 6 and 7. Further, we extend

the linear programming approach to behavioral strategies in Section 2.3.

2.2 Markov Decision Processes

For purposes of this dissertation, we restrict our attention to two-person zero-sum games
of imperfect information. Further, we limit the scope to positional games. A positional
game is a game in which the sequence of moves leading up to the current state is irrelevant
in deciding the optimal strategy to apply. Thus it is also a game of perfect recall because
history does not matter. This property is called the Markov property and is derived from
the study of Markov decision processes.

A Markov decision process (MDP) is defined by a set of states, §, a set of actions,
A, a set of transitions between states, 7, associated with a particular action, and a set of
discrete probability distributions, P, over the set S. Thus 7 : § x A — P. Associated with
each action while in a given state is a cost (or reward), ¢(s,a). Given a Markov decision
process, the goal is to determine a policy, 7(s), (i.e., a set of actions to be applied from
a given state) to minimize total expected discounted cost. Figure 2.1 provides a graphical
view of a part of a Markov decision process.

Let f™(s;) represent the total expected discounted infinite horizon cost under pol-

icy 7 from state s;. Let v (0 < < 1) be a discount factor which has the effect of controlling
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p(s(D) | s(i).a(1))
)
c[s(i).a(1)]
p(s(D) | (i).a(n))

p(s(m) | s(i),a(1))

c[s(i).a(m)]

—_—

p(s(m) | s(i),a(n))

Y

t-1 time t
Figure 2.1: Graphical view of a Markov decision process.

the influence of future cost on 7. Then,

FT(si) = Ex | D _7'e(se,m(s0))|s0 = si
=0

where E.[-]is the expectation given policy 7. Note we can estimate f7(s;) for some 7(s;) = a

as follows [35]:

[T (si) = QY (siya) = e(siya) +7 Y p(sjlsiy a) f(s))

5;€S

From this, we are able to establish a policy, = based on the current estimate Q7; namely,

select w(s;) = a such that,

Qf"(si, 7(s;)) = min Qf(si, a)

a€A
This equation is in the form of the Bellman optimality equation which can be solved for all
f(s;) using several techniques such as dynamic programming [41].

Two approaches to solving MDPs are value iteration and policy iteration [35, 211,
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269]. The object of solving an MDP is to find a policy that maximizes the reward or

minimizes the cost from the current state.

2.2.1 Value Iteration

Value iteration is an approach to solving MDPs in which the expected values for acting
optimally from each state are updated based on the expected optimal values from subsequent
states. The approach falls in the class of iterative relaxation algorithms [316]. Iterative

relaxation algorithms take the general form

Vi(s) = (L=m)Viea(s) + 0V (s)

=Vioi(s)+ 77(‘7(8) — Vici(s))

where Vi(s) is the value approximation at time ¢ for state s, V(s) is a new value estimate for
state s, and 7 is an update rate, 0 < n < 1. Thus, the new value approximation is derived
from the previous value approximation combined with an immediate estimate of the value
for that state. Generally, this immediate estimate is derived from an immediate cost and
an approximation of subsequent state values.

Initially, Vs € S, Vo(s) = 0. Then one step in the value iteration algorithm consists

of evaluating the following.

Vs€8,a€A,Q) (s,a) =c(s,a)+7 Y p(s']s,a)Veei(s)
s'eS

Vi(s) = Q1 (s, mi(s))



24

Each iteration is called a sweep, and the space is swept until such time that
max [Vi(s) = Vi_i(s)] < €
SES

for some pre-defined error, e.

Value iteration is a form of dynamic programming and can be shown to be a
special case of iterative relaxation, in particular, when 5 = 1 and V(s) = QY (s,7(s)). A
more generally used form of value iteration in machine learning is @-learning [363] which

has the form

Qi(s,a) = (1= n)Qi-1(s, a) + nle(s, ) + 7Qr-1(s', 7(s)]

where s’ is the state transitioned to when applying action « in state s and ¢(s, a) is the cost
of applying action a in state s. In this update equation, the role of Vi(s) is filled by Q(s,a)
and the role of V() is filled by ¢(s,a) + ¥Q¢_1(s', 7(s')). Q-learning is discussed further in

Chapters 3 and 4.

2.2.2 Policy Iteration

Policy iteration is similar to value iteration in that a sequence of value functions is main-
tained. In value iteration, each value function Vi(s) is the approximation of the expected
cost of applying an optimal policy, m, from state s. In policy iteration, each value function,
Vi(s), is the approximation of the expected cost of applying a greedy policy, 7, from state s
based on the previous value function, V;_1(s).

As in value iteration, policy iteration begins by initializing the value function,
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Vo(s) = 0, for all states. Then a greedy policy is determined such that

Vs € §,7y(s) = arg Hgﬂ Q(s,a)

where Q(s,a) has been updated using

Q(s,a) = c(s,a)+7 > p(sils,a)Vioi(si)

5, €S
Given the new policy, the new value function, Vy(s), is determined by solving the system of

simultaneous equations given by

Vs € S, Vi(s) = (s, () +7 D plsils. 7l s))Valsi)
5, €S

These equations can be solved by any of a number of algorithms for solving systems of
simultaneous equations (e.g., Gaussian elimination). The policy iteration is halted when

there is no change in the value estimate, Vi(s) for all s.

2.3 Markov Games

The game theory literature refers to MDPs applied to games as Markov games [355]. A
Markov game is an extension of the MDP in which decisions by multiple players must be
considered, and these decisions generally conflict. Under the restriction of two-person zero-
sum games, we define § to be the set of states, Ay to be the set of actions for player 1, A
to be the set of actions for player 2, and 7 to be the set of transitions. We also define a
set of discrete probability distributions, P, over the set §. Thus 7 : § x A; x Ay — P.

Associated with actions for each player is a cost (or reward), ¢1(s,a1) and cy(s, ag). Given a
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Markov game, the goal is for each player to determine a policy, 71(s) and 72(s), to minimize
total expected discounted cost given that the opponent is attempting to do the same and
the goals are conflicting.

Let f™(s;) be the total expected discounted cost under policy 71 from state s; for
player 1. Let f™(s;) be the total expected discounted cost under policy w3 from state s;

for player 2. Let v (0 < < 1) be a discount factor. Then,

S (sq)

£, [ivwst,m(smz(stwo ]

t=0

f@(si) = Em) li7t02(5t77T1(5t)7772(5t))|50 = 52’]

t=0

Given we are restricting analysis to zero-sum games, these two equations can be combined
because ¢1(s;, m1(s;), m2(si)) = —calsi, m1(s;), m2(s;)). We consider 7(s) to be the combined

policy of m1(s) and 72(s). Then,

E’V C(S¢, T St |80—82

as before. We can estimate f™(s;) for some 7(s;) = a as follows [211]:

fr(si) ~ Qf(8i7a17a2) = C(8i7a17a2) —I_ v Z p(5j|517017(12)f(5j)

5;€S

From this, we are able to establish a combined policy, = based on the current estimate Q7;

namely, select 7(s;) = (a1, az) such that,

Qfl(slvﬂ-l( Z Z P a1|8 a2|8) (8i7a17a2)

a1 €A az€A

where at each step, we must solve the linear program for player 1,

minimize f7(s;) subject to
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Z plai|s;) = 1, where p(aq|s;) > 0
a1 €A

val € -/417 Z p(a1|8i)Qf(8i7a17a2) - fr(si) S 0

az€As

and its dual for player 2,

maximize f"(s;) subject to

Z plaz|s;) = 1, where p(az|s;) > 0
az€A;

va? € -/427 Z p(a2|8i)Qf(8i7a17a2) - fr(si) Z 0

a1 €A

Selecting actions 7(s;) = (a1, aq) involves randomly selecting the actions according to the
probability distributions determined by the linear programs. These probability distributions
correspond to behavioral strategies for both players. In the event the game can be solved

with pure strategies, we can determine the optimal policy with,

Q7 (si,m1(5:), ma(51)) = min max QY (s;,a1,az)

which would also be found through linear programming.

Note the optimal policies for a Markov game differ significantly from the optimal
play of a Markov decision process in two ways. First, because the goals are conflicting, a
“rational” player will play so as to maximize its return in a worst case scenario. This leads
to the minimax formulation. Second, optimal policies in MDPs are stationary in that the
policy does not change as a function of time, and the policies are deterministic in that the
same action is always chosen whenever the agent is in a particular state s, for all s € S.

For Markov games, on the other hand, at least one policy exists that is stationary, but the
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optimal policy need not be deterministic. This corresponds to the notion of a behavioral
strategy in which an action is chosen according to a discrete probability distribution. The

Pa(s;) term reflects this probability distribution.

2.4 Differential Games

The class of problems we are studying falls in the discipline of differential game theory. Dif-
ferential game theory is an extension of traditional game theory where the game follows a
sequence of actions through a continuous state space to achieve some payoff [176, 177]. This
sequence can be modeled with a set of differential equations (called kinematic equations)
which are analyzed to determine optimal play by the players. We can also interpret differen-
tial games to be an extension of optimal control theory in which players’ positions develop
continuously in time, and we wish to optimize competing control laws for the players [126].
We restrict a differential game to be a two-person zero-sum game in which both players are
required to make a lengthy sequence of decisions to maximize payofl throughout the game.
Further, we formulate the game with a set of state variables and a set of control variables.
At a given instant in the game, the values of the state variables completely characterize
that state. The actions that are possible for each player are completely determined by the
control variables.

Finding a solution to a differential game consists of computing the “value” of the
game (based on the game’s payoff) and determining the optimal strategies for the players

that yield this value. Differential games are difficult to solve yet are important to the
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military and entertainment industries. More recently, systems for intelligent highways, air
traffic control, railroad monitoring, and ship routing are benefiting from differential game
theory in determining how to optimize vehicle control in the presence of competing goals.

Differential game theory originated in the early 1960s [176] in response to the
need for a more formal analysis of war games. In a differential game, the dynamics of the
game (i.e., the behaviors of the players) are modeled with a system of first order differential

equations of the form

dk ,
d—t] = h;(kt,at),] =1,...,n
where a' = (ai,...,a}) is the set of actions taken by p players at time ¢, k* = (k{,..., k}) is

a vector in real Euclidean n-space denoting a position in play (i.e., the state) for the game,
and h; is the history of the game for the jth dimension of the state space. In other words,
the differential equations model how actions taken by the players in the game change the
state of the game over time. In these games, the initial state of the game £ is given. Note
these differential equations are frequently represented as k; = h;(kt, at).

The object of analyzing a differential game is to determine the optimal strategies
for each player of the game and to determine the value of the game assuming all players

follow the optimal strategies. Payofl is represented as a set of payoff functions of the form

T
G= [ gl atydt 4 o (KT, i = 1
0

where ¢! is the payoff awarded at time ¢ to player ¢ based on the current state k% and the

action taken a’, and ?JZ'T is the payoff awarded at the end of the game (i.e., time 7"). This
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final payoff is dependent only on the terminal state k7. Usually, differential games consider
either integral payoff (referred to as a running cost game) or terminal payoff (referred to as
a terminal cost game), but not both.

Frequently, differential game theorists limit the scope of their analysis to zero-
sum two person games (thus (1 + (2 = 0) and impose a Markovian restriction such that
strategies depend only on time and the current state. The differential equations define
a path or trajectory through the state space of the game. The solution to the game is
then computed by solving the system of differential equations such that payoff to player 1
(denoted P for “pursuer”)1 is minimized and payoff to player 2 (denoted E for “evader”)

is maximized, yielding minimax strategies for each player, i.e.,

T
Vi(k) = min max {/o (0 oeds + (o "6)}

where Y; represents the set of strategies for player ¢, ¢° is the running cost (i.e., integral
payoff) applied under strategies o, and o., and v! is the terminal payoff applied under
strategies o, and o..

Solutions to two-person zero-sum differential games are characterized as an n-
dimensional surface providing a “barrier” between terminal conditions of the game. This
surface is referred to as the “boundary of the usable part” (BUP) of the state space. If the
current state of the game is on the BUP, and each player can play such that subsequent states

remain on the BUP, then the game is in a state of equilibrium. Accordingly, the regions to

L The designations based on “pursuer” and “evader” have their roots in games of pursuit and
evasion—the first games analyzed using differential game theory. Even differential games that do
not correspond to pursuit games tend to use this notation. We also use this notation for all of the
games discussed in this dissertation.
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either side of this boundary are referred to as the “usable part” (UP) and the “nonusable
part” (NUP) where the UP corresponds to the region where P is able to guarantee a win
and the NUP corresponds to the region where F/ can guarantee a win.

Mathematically, let x be a set of state vectors for the game, and 7 be the target
set of the game (i.e., the set of states in the game such that transitioning to a terminal state

can be forced). Then,

P = {x |x € 7T,30, € Ep,geai(f(x, 05,0¢) < 0}
NUP = {x | x € 7,307 € ¥, min ({(x,0,,07) > 0}
opEXp
BUP = {x | x € 7,30, € ¥,,307 € Ee,ggi(C(x, 05,0.) =0= U?eigp(f(x, O'p,O':)}

*

Under these definitions, o

and o7 would be the optimal strategies for each player to play.
The UP represents the region adjacent to the BUP reached at some previous point when
F deviated from optimal play and now cannot return to equilibrium. In the same way, the

NUP represents the region adjacent to the BUP reached at some previous point when P

deviated from optimal play and now cannot return to equilibrium.

2.5 Pursuit Games

One class of differential games that has been studied extensively is the pursuit game. In
the pursuit game, there are two players, a pursuer (denoted P) and an evader (denoted
FE). In the basic game, F is attempting to achieve some objective (e.g., F is a bomber

attempting to reach a bomb site or a pedestrian attempting to cross a parking lot) and P
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is attempting to prevent £ from achieving that objective (e.g., P is a missile attempting to
shoot down E or a mad driver of a car attempting to hit F.) The game terminates when
P successfully captures F or when E guarantees that capture is impossible (perhaps by
achieving its objective). Under this definition, the UP is a region surrounded by a lethal
envelope of P, the NUP is a region around F such that capture is impossible, and the BUP
is the surface of points separating these two regions.

One classic pursuit game studied in differential game theory is the Homicidal
Chauffeur game. In this game, we can think of the playing field being an open parking lot
with a single pedestrian crossing the parking lot and a single car. The driver of the car
tries to run down the pedestrian and proceeds to pursue the pedestrian through the parking
lot. Some of the constraints include that the game is played on a two dimensional playing
field, the car is faster than the pedestrian, but the pedestrian is more maneuverable than
the car. Generally, there are additional assumptions that both the car and the pedestrian
are traveling at a fixed speed, the car has a fixed minimum radius of curvature, and the
pedestrian is able to make arbitrarily sharp turns [39]. In the following, we present a
summary of an analysis of this game by Isaacs [177] and Basar and Olsder [39].

In analyzing this game, it turns out that the solution is relatively simple and
depends on four parameters—the speed of the car, the speed of the pedestrian, the radius
of curvature of the car and the “lethal envelope” of the car (i.e., the distance between the

car and the pedestrian that is considered to be “close enough” to hit the pedestrian). The
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kinematic equations characterizing this game are given by

tp = wvpsinfp

yp = wvgcosfp

ip = wvgsinfg

g = wvgcosfg

. vp

bp = —o¢p=uwpop
PP

. /UE

bp = —o¢p=wpop
PE

where vp is P’s speed, vg is E’s speed, 0p is the turn angle of P, 8 is the turn angle of F,
pp is P’s minimum radius of curvature, pg is E’s minimum radius of curvature, wp is P’s
angular velocity, and wg is E’s angular velocity. Thus the game is controlled by ¢p and ¢g
for P and E respectively.? Note, |op| < 1 and |¢pg| < 1. Thus for either player, if ¢; = 0,
player ¢ moves in a straight line. If ¢; = £1, player ¢ makes its sharpest possible turn in
the positive or negative direction.

To simplify analysis, we generally select a player as a point of reference and track
relative positions. For the following, we consider play relative to P’s position. In addition,
Isaacs speaks of reducing the state space by collapsing the kinematic equations into this
common frame of reference. If we center play on P’s position, then we need only track F’s

position through the game. In this relative frame of reference, we have,

r = (2g—ap)cosbp — (yg — yp)sinbfp

2 The variables ¢p and ¢ are used to parameterize the game which in turn permits the reduced
form of the game described later in the section.
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y = (zg—ap)sinfp — (yg — yp)cosbp

g = 0g—0p

Also, the equations of motion become,

T = —wpppy+ vpsingg

WpOpT — VP + VE COS O

.
[l

Note this makes the game separable, meaning the impact of the two players on the state of
the game can be determined separately.
If we normalize the problem by making vp = 1 and wp = 1, then the kinematic

equations become,

T = wvgsingg — yop

y = vgcosop—1+agp

with new control variables, ¢p for P and ¢ for F.
Isaacs shows that, assuming optimal play by both players, if +, the speed ratio z—;,

is less than 1 (i.e., the car is faster than the pedestrian), and if

l
—>4/1=~24sin"ty -1
p

then capture will occur, where [ is the lethal range. Otherwise, escape can occur. This is
illustrated in Figure 2.2. To read this figure, note that the position of £ does not appear

explicitly. The coordinates are relative to P’s position, and it is assumed P is facing to the
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right. If F lies within the region designated by the UP, then capture is imminent. If F
lies in the region designated by the NUP, the escape is guaranteed. The BUP indicated the
boundary between these two states and need not be a simple line as shown in the figure.
In this figure, if the above inequality holds, the UP has an infinite area directly
in front of P, and P’s greater speed guarantees P can force IV into the UP. On the other
hand, Figure 2.2 also shows the small, finite size of the UP which permits escape to occur

where the inequality does not hold. Isaacs shows that the UP is defined by the equations

z(r) = (I—wvgT)cos(s +wpT)+ psinwpr

y(r) = (I—wvg7)sin(s +wpr)+ p(1 — coswpT)

where 7T represents time T — ¢t with the restriction that 0 < 7 < #, and s is a point in
the UP which is where capture occurs. What this means is if the ratio of the lethal range
to the radius of curvature exceeds the maneuverability of the pedestrian at the designated
speeds, then the pedestrian will be hit no matter what.

From this analysis, Basar and Olsder [39] determine optimal strategies for the
players to ensure the state trajectories follow the BUP. They define a switch function
Az, y) = aVy(z,y) — yVao(z,y) where Vy(z,y) and V,(z,y) are 2 and y components of
VV, a vector normal to the BUP, and V is defined as in Section 2.4. From this, we can
denote (V,V,) as a vector emanating from P’s position. Then the optimal control for E is
to select ¢}, such that (cos ¢}, sin ¢F.) is co-linear with (V;,V,). So,

Ve

cos ¢ = ——m———
VVE+ V2
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Direction of Pursuit

BUP
NUP
UP
BUP
\
Small radius of curvature Large radius of curvature

Figure 2.2: Solution configurations for the Homicidal Chauffeur game.
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sin ¢3, = Yy
ro= 4
VVE+ V2
Basar and Olsder point out further that normalizing VV reduces determining V, and V), to
determining the direction of VV. Thus, V,, = 1/1 — v} and V,, = vg. So, cos ¢y = /1 — v},
and sin ¢}, = vg, yielding ¢ = cos™! (/1 — v%. The optimal control for P is to choose ¢%

such that

5o = sgn(Ac(z,y)), A.#0
P71 any admissible ¢p, A.=0

|z

where sgn(z) = “.

2.6 Examples

In addition to the classical Homicidal Chauffeur game, a wide variety of differential games
have been studied. Many pursuit games focus on fixed control parameters in the dynamics,
such as speed, and only permit changes in turn angle or angular velocity. Prasad and Rajan
considered the case where, in addition to controlling turn angle, the players had control over
speed as well [267]. This complicates play by permitting multi-dimensional action spaces.
Many researchers limit studies to two dimensions, arguing that the complexities
in two dimensions are, in themselves, worthy of study. Unfortunately, these cases are
frequently insufficient to cover real-world problems which take place in three dimensions, or
at least in two and a half dimensions. Ardema and Rajan examine the three-dimensional
aircraft pursuit problem and focus on real-time characteristics of any feasible control law

[17]. Such cases are closer to 2% dimensions given normal orientations of pilots in gravity.
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Merz considered a true three-dimensional pursuit game by considering stochastic guidance
of satellites in orbit, engaged in a pursuit-evasion conflict [230].

As an interesting discrete problem, similar to the Lady in the Lake [205], Bernhard
et al. consider the Rabbit and Hunter game [47] under conditions of stationary and non-
stationary dynamics. In both the Lady in the Lake and the Rabbit and Hunter games, one
player is constrained to follow a boundary while the other player has free movement. In
the Lady in the Lake, a lady is swimming in a lake and is being pursued by a man running
around the perimeter of the lake. In the Rabbit and Hunter, a rabbit is trapped against
a wall and makes random jumps back-and-forth while the hunter attempts to shoot the
rabbit.

Other work in differential game theory is extending the number of players. Yavin
describes a three-player game in which two agile players attempt to evade a single pursuer
[376]. At the same time, the evaders want to shoot down the pursuer. This is also an
example of the two-target game where a player has two competing objectives [141, 322].
Imado and Ishihara also consider the case where two missiles attempt to shoot down an
airplane [175]. Lai and Tanaka consider general n-person games where each player attempts
to force opponents into a terminal location in the playing field [200].

Related to work in partially observable Markov decision processes [70, 71, 180],
Galperin and Skowronski are studying games in which noise is introduced into game dynam-
ics [134]. Corless et al. consider the case where state information is uncertain [88]. Chan

and Ng consider partial observability in linear-quadratic games [72], and Yavin considers
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y>0

X-axis

Figure 2.3: Playing field for a simple differential game.

the case where the process of observing the state is deceptive or is somehow interrupted

[375).

2.7 A Simple Differential Game

To illustrate the problems associated with solving (and ultimately learning) differential
games, we provide a simple example of players attempting to move an object in the plane.
This game is described in detail in [205]. The playing field is shown in Figure 2.3. In this
game, there are two players, P and . An object is placed in the plane somewhere above
the z-axis (i.e., y > 0) at a random location and begins to drop toward the z-axis. The
two players exert opposing forces on the object in an attempt to control where the object
crosses the z-axis. In this game, P is attempting to minimize z while F is attempting to
maximize . The dynamics of the game force the object to fall at all times, i.e., the object
cannot be suspended indefinitely above the z-axis.

To solve this game, we begin by examining the equations of motion (i.e., the
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kinematic equations) which are given as,

z = Av 4+ Bsinu

y = —14+ Bcosu
v < 1
u € [0,27)

where A and B are parameters defining the dynamics of the game, and u and » are the
controls set by P and F respectively. We assume the game has a terminal payofl equal to
the value of  at the point the object crosses the z-axis.

To understand the dynamics of this game, we note that the kinematic equations
can be rewritten as a vector equation, separating the impact of the two players on the
outcome. When such separation is possible, the differential game is said to be a separable

game. Specifically, we see

X = ((Bsinu)é, + (Bcosu)é,) + (Ave, — &)

where €, and e, are unit vectors in the directions of the z- and y-axes respectively. Notice
that player P dominates the first term of the equation (i.e., the value of the first term is
fully determined by the action taken by P), and player £ dominates the second term (i.e.,
the value of the second term is fully determined by the action taken by F).

From this vector equation, we can construct vectograms describing how each player
affects the movement of the object. These vectograms are given in Figure 2.4. In this figure,

the circle on the left is P’s vectogram and indicates that P is able to determine the direction
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Downward force
E —_—
u E’sforce vector
B \/
1
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, | 2A b\ _
P sforce vector | ‘ Horizontal force

Figure 2.4: Vectograms for play in the simple vector game.

of the force vector to be applied against the object, but not the magnitude. This direction is
indicated by u, and the magnitude is given by B. The triangle on the right is F’s vectogram
and indicates that F is able to determine the magnitude of the force vector to be applied
against the object, but not the direction. The magnitude varies from —1 to 1, but the
direction is determined by combining a downward force of fixed magnitude and a horizontal
force determined by the control variable v.

We are now in a position to “solve” the game. Given F wants to maximize z, it
should be clear from the vectograms that F would select »* = 1. This has the effect of
applying the greatest force along the z-axis in the positive direction. The force in the y
direction is fixed and negative, so we know the game will ultimately terminate by crossing
the z-axis.

Determining the optimal strategy for P is less clear because P wants to minimize x
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xy)

a E’sforce vector
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C LA,

Resultant force vector

P’ sforce vector

Figure 2.5: Combined vectogram in the simple vector game.

and can only provide a “direction” for the force to be applied; magnitude is predetermined
by the kinematic equation and is independent of direction. Because this is a separable
game (and can therefore be represented with vectograms), let us combine the vectograms
to determine the optimal play for P (Figure 2.5). For this problem, we want to find «* such
that we minimize the inclination [ of the trajectory with respect to the y-axis.

Let f5 be E’s force vector, and let fp be P’s force vector. Let i'represent the
resultant force vector such that f = i'E—I—i'p. We can see that the magnitude of i'E isv1+ A2,
Since fis at a tangent to P’s control circle (which is required in order to minimize 3), we

So the angle between i'E and i'p is cos™! -2

V14+42°

ks

know that the angle between fand fp is 5

To find u*, we note that we must subtract the angle between i'E and i'p from 27. Then we

must subtract 6 from this result to get u*. Note § = 7 — cos™! \/1’_?_7. So,
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w* = 27 —cos™! L — (E — cos™! L)
2 V14 A?
-1 A -1 B

37
— — — 08—
2 14 A2 V14 A?
Given the optimal strategies u* and v*, we can also compute the value of the game

by following the resulting trajectory. For some initial point of play (2o, y0), we can compute

the payoff to be,

yo(A + Bsin u*)
1— Bcosu*

Yo (A — Bcos [cos_1 A _ cos7! L D

V(zo,90) = o+

— o+ V1$AZ 142
_ Bsi —1__ A _ oe-1_B ]
1 — Bsin [cos T cos e

2.8 A Simple Pursuit Game

Now consider the following simple pursuit game. Assume we have two players, P and F,
where P is trying to capture F. The game area (i.e., the state space) is limited to the
plane, ®2. Bach player can choose their instantaneous heading of ¢p and ¢ respectively.
Assume the speeds of P and E (vp and vy respectively) are constant and that the speed
of P is greater than the speed of F. From this description, we can write the equations of

motion as

tp = —vpsingp

yp = wvpcosop
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T = —vgsino¢g

YE = UVECOSQg

where (zp,yp) and (g, yg) are instantaneous positions of P and E respectively. Finally,

we assume that P has a lethal envelope, [ > 0, such that P captures F if

\/(QCP —op)*+(yp —yp)* <1

As described previously, it is convenient to consider relative positions of P and F.

Without loss of generality, we consider the state of the game relative to P, yielding
Y=Y —YypP
r=xp— g

We can also consider the speed ratio,

The new kinematic equations then become,
9 = cOS ¢pp — QL COs Pp

T = sin ¢ — asin pp
The kinematic structure of this game (without relative coordinates) is shown in Figure 2.6.
Although shown in the first quadrant in Euclidean space, either player can appear

in any quadrant. After converting to relative coordinates, the kinematic structure becomes

that shown in Figure 2.7.
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Figure 2.6: Kinematic structure of simple pursuit game.

X-axis

A
U

Figure 2.7: Kinematic structure of simple pursuit game in relative coordinates.
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Figure 2.8: Effects of deviating from optimal strategy in simple pursuit game.

In this game, P is always able to capture I, and the target set for the game is
defined as {(z,y)|z% + y? < [?}. TFor this game, the optimal strategies for P and E are
identical. In particular,

x
¢op = ¢p arctan —
C)

To prove these strategies are optimal, we need to consider another strategy for each player.
This would correspond to considering unilateral defections as described in Section 2.1. The
strategies for P and F select ¢% and ¢% such that P and E travel along the line connecting
them. Therefore, intuitively, we can see the effect of deviating from this line (Figure 2.8).
When considering Figure 2.8, we can see that while P may continue to gain on
FE, if P deviates from traveling directly toward F, P fails to close as quickly. In other
words, d* < dy, where d* is the distance between F and P if playing optimally. Further, if
FE deviates from traveling directly away from P, then P will close more quickly. In other

words, d* > ds.
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Figure 2.9: Optimal strategy for simple pursuit in the half plane.

If we extend the game such that there is a boundary along z = 0 (i.e., the game
occurs in the half plane), then the optimal strategy for P and E is the same until F and P
approach the boundary. When this occurs, the previous strategy is applied until F reaches
the boundary. At this point, F immediately turns to follow the boundary away from P.
P continues to aim directly at £; no sudden turn to follow the boundary will be required
since P will smoothly transition to following the boundary while following £ (Figure 2.9).

Throughout this dissertation, we consider several games, including the simple game
of force, the simple pursuit game, and the simple pursuit game in the half plane. In addition,
three more complex games are considered including a variant of the Homicidal Chauffeur
game where P has a fixed, complex strategy, a variant of the Homicidal Chauffeur with two
pursuers, and an extension of the Homicidal Chauffeur where both P and F have restricted

mobility.
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Chapter 3

Machine Learning and Games: A
Review

3.1 Learning Game Strategies: The Problem

Although games have been a popular topic for study in artificial intelligence and machine
learning, little research has been done in multi-agent learning and games. In fact, only
limited work has been performed in multi-agent learning and control; however, this is be-
coming a topic of great interest in the reinforcement learning community. Until recently, the
majority of the work was performed within the context of distributed artificial intelligence
and artificial life.

As with other problems in reinforcement learning, learning strategies for game
playing can be posed as a control problem. The object is for an agent (or player) to learn
the “best” or “optimal” strategy to use against its opponent. In the context of two-player

games where one player is applying a fixed strategy, the second player optimizes its strategy
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to yield maximum payofl in the game. When both players are attempting to learn, each
must be sensitive to the fact the opponent’s strategy is not fixed. Thus, what may be
“optimal” in one context (i.e., with a particular strategy applied) will not necessarily be
optimal in another context. Of course, if the expected payoffs are known for the various
joint strategies, then “learning” reduces to solving the game.

Most researchers exploring machine learning and games are not interested in find-
ing new methods for solving games in game theory. Instead, they focus on problems such

as the following:

o Fxpected payoffs are not known. In a normal form game, this is equivalent to filling
out the entries in the payoff matrix. In an extensive form game, this could involve
learning the heuristic evaluation function to be applied at the interior nodes of the

game tree [123, 140, 155, 156, 157, 204, 258, 259, 260, 261, 286).

o Opponent capabilities are not known. In most studies in game theory, each player
knows the permissible actions for itself and its opponent. In problems such as differ-
ential games, this may not be true. For example, a pursuer may have a long range
and be able to pursue the evader for a long period of time, but the evader may assume
(given the nature of the encounter) that the range is more limited. This problem is

addressed through techniques such as opponent modeling [68, 67, 69, 243].

o The game environment is not fully described. This differs from games of imperfect

information in that the environment can be learned from experience. Thus, the in-
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formation sets associated with various states in the game can vary over time as the
players learn the environment. This is analogous to exploring the environment in

navigation problems [208, 209, 219, 238, 239].

o The game dynamics are uncertain [134]. This is analogous to the problem of learning
an opponent’s strategy except that the dynamics, usually, are fixed. Learning game

dynamics when the dynamics are not fixed is also of interest [152, 165].

In this chapter, we review recent work in learning game strategies. Although each
of the above issues are touched upon, the focus of this chapter is on reviewing learning
algorithms designed to learn strategies in two person games. We begin with the problem of
a player learning a strategy to apply against a fixed opponent and then consider the research
addressing problems where both players are learning. Finally, we discuss research in related
areas within artificial intelligence such as distributed artificial intelligence, artificial life, and

multi-agent systems.

3.2 Learning Methods and Markov Decision Processes

In the previous chapter, we introduce the problem of solving Markov decision processes
(MDPs). We provided two standard approaches to solving MDPs—value iteration and
policy iteration. These methods require (in their basic form) full sweeps of the state-
action space to find optimal policies. For problems with large state or action spaces, these

approaches become impractical.
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Research in learning and MDPs has focused on developing approaches to finding
optimal policies in MDPs when the state or action spaces becomes large. Many of the al-
gorithms are derivatives of the value and policy iteration algorithms but focus on sweeping
only parts of the space. Other algorithms apply ideas from reinforcement learning to func-
tion approximators and genetic algorithms to learn the policies. In the following sections,

we describe several of these algorithms.

3.2.1 (-Learning and Dynamic Programming

The basic algorithm for value iteration was given in Chapter 2 and consists of repeated

application of the following

Vs € S,a€ A Vi(s) = QtV(smt(S))

where
QY (s.7(s)) = min QY (s.a)
QY (ss0) = elssa) +9 3 o, (4(s)
until

max [Vi(s) = Via(s)] < ¢

Applying the procedure directly is a synchronous approach to dynamic programming where
all state-action paris are updated at each time step.
Barto et al. [35, 37, 34] describe two alternative approaches to solving an MDP

that appear to be less computationally expensive and are both forms of asynchronous dy-
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namic programming. The first approach, which they refer to as “asynchronous dynamic
programming,” is a derivative of Gauss-Seidel dynamic programming [48] in which, for each
state s and each time step t = 0,1,..., update Vi(s) as follows:

Vi(s) = min C(S,a)+75%p(8’|8,a)v(8’)

= min Q¢ (s,7(s))

where

V() = { Vi(s'), ifs<s

Vi—1(s'), otherwise
and “<” indicates an ordering relation on the states.

As in Gauss-Seidel dynamic programming, asynchronous dynamic programming
does not update all states simultaneously. However, where Gauss-Seidel dynamic program-
ming still performs a systematic “sweep” of all states, asynchronous dynamic programming
allows states to be updated at arbitrary points in time. When a state is updated, it uses
the current values of successive states.

The second approach is called real-time dynamic programming (RTDP) because it
provides an on-line learning strategy rather than the traditional off-line strategies of other
dynamic programming algorithms. RTDP applies a greedy strategy with respect to the
current estimate of V(s), V(s), to define the policy for the controller. Whenever an action
is taken, the cost/payoff of that action is applied immediately to update V(s) To ensure
convergence of RTDP, it is necessary to visit all states “infinitely” often. Omne approach

used to ensure this is to require that all states be selected infinitely often as initial states.
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One of the problems with methods such as asynchronous dynamic programming
and RTDP is that these methods require a complete understanding of the transition proba-
bilities, p(s'|s,a), underlying the MDP [35]. They also require knowledge of the immediate
costs, ¢(s,a). The requirement to know the cost holds, in particular, in the off-line case
but can be relaxed when learning on line as in RTDP. In many control tasks, such as the
differential games studies in this dissertation, such knowledge may not be available.

A conceptually simple approach to solving MDPs with incomplete knowledge was
proposed by Watkins in 1989 [363, 364] called )-learning. As with traditional value iteration
methods, @-learning can be performed both off line and on line. In J-learning, the controller
maintains estimates of the optimal () values for each admissible state-action pair. These )
values are estimated based on experience applying admissible actions in each state, rather
than based on an evaluation function that includes the state-transition probabilities. In
off-line ¢)-learning, as in off-line dynamic programming, a successor function is defined that
provides a new state, s’, with probability p(s'|s, ). Obviously, this successor function must
have knowledge of the underlying probabilities. In on-line @)-learning, however, an explicit
successor function is not required since the actual system provides the successor states.

During control, the controller keeps track of the succession of states visited, the
actions taken in each state, and the costs incurred as a result of taking the actions in each
state. Either during control or upon termination, the () values are updated as follows. Let

Q+(s,a) be the @ value at time ¢ when action « is performed in state s. Then this () value
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is updated by computing

Qur1(s,a) = [1 = ay(s,a)]Qu(s, ) + s, a)le(s, a) + 7Qu(s', 7(s"))]

where ay(s, a) is the value of the learning rate for state-action pair (s,a) at time ¢, v is the
discount rate, Q(s',7(s')) = mingea Q(s',a), and s’ is the successor state.

Note that a learning rate is associated with each state-action pair rather than pro-
viding a single learning rate for the entire update process. Note further that the learning
rate is not constant. Typically, 0 < ay(s,a) < 1 and a,(s,a) decreases over time. Specif-
ically, a4(s,a) is changed only when action « is applied in state s. For convergence, the

schedule for changing ay(s,a) must conform to the following requirements [363, 364]. For

all s € S and a € A,

o0
Z a(s,a) = o0
t=1

o0
Zat(s, a)? < oo
=1
One schedule that satisfies these requirements, proposed by Barto et al. [35], is

agT

as,a) = m
where ag is the initial learning rate (applied to all state-action pairs), 7 is a user-defined
parameter, and n;(s,a) is the number of times (s, a) has been updated at time ¢.

Given the algorithm presented above, with the associated requirements on the

learning rate, Watkins proved that, assuming each state-action pair is visited (and updated)

infinitely often, (s, a) will converge to the optimum ) values with probability one. To
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ensure that each action is considered at each state, a method must be applied where actions
are selected other than according to the Greedy policy. One commonly applied approach is
to assign a probability distribution to the admissible actions in the current state. Frequently,

the Boltzmann distribution is used.

where T is a parameter controlling the shape of the distribution. As 7T increases, the
distribution approaches uniform. As T decreases, the probability of selecting an action
according to the Greedy policy approaches one. Usually, T is defined to decrease over time,

similar to the way ay(s, a) is defined.

3.2.2 Memory-Based Reinforcement Learning

In the previous section, we described learning algorithms based on dynamic programming
which assume successive updates to expected payoff are made to all state-action pairs.
Because of the requirement that all state-action pairs be updated, the natural representation
for these algorithms is a lookup table. Unfortunately, when problems have extremely large
state or action spaces, lookup tables are no longer practical.

For very large state or action spaces, many researchers in reinforcement learning
are using techniques in function approximation. One approach to function approximation—
memory-based learning—stores a set of examples as representatives of regions in the state-
action space. During control, current conditions are matched against the stored examples

and actions are derived from the actions associated with these examples. In the simplest
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case, a memory base consists of several state-action pairs. When faced with a new state, the
example with the state “nearest” to the current state is found, and the associated action
is selected. Learning consists of storing state-action pairs that lead to successful control in
the past.

Although conceptually simple, this approach to memory-based control has several
difficulties. First, selecting the examples to be stored in the first place is non-trivial. Unless
an oracle or teacher is available to provide good actions in response to various states, the
initial memory base is likely to be populated by trial-and-error. This leads to the second
difficulty. Just because a sequence of events leads to a successful outcome, this result is not
sufficient to infer that all of the actions taken were, in fact, the best or even good. Storing a
large number of intermediate state-action pairs that are not strong positive examples could
limit the ultimate performance of the controller. Thus a mechanism for evaluating and,
perhaps, editing the examples in the memory base is required. Third, choosing from the
set of previously stored actions limits the ability to generalize, especially if operating in a
large action space. Then it becomes important to be able to interpolate between actions
within a region.

One approach to combating these problems has been proposed by Atkeson, Moore,
and Schaal [26, 27, 25, 110, 237]. In their approach, they apply local weighted regression
among the examples to determine the proper action. The memory base consists of a set
of triples, (s,a,b), where s represents the state, a is the action, and b is the “behavior” or

the outcome of taking action @ in state s. In traditional reinforcement learning, b would
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correspond to the expected payoff of taking action @ in state s and then performing optimally
from that point forward.

In Atkeson’s approach, an “inverse” control model is used to determine the desired
action [22, 23, 24]:

a—= f_l(S,b)

where, typically, the control model is represented as

b= f(s,a)

This latter form is referred to as the “forward” model. Learning consists of using experience
to develop an approximation to f, f If the inverse model is available (i.e., f_l), then this
model can be used for control by matching the current state and desired outcome (using
maximum expected payoff or minimum expected cost) with the examples in the memory
base and, if necessary, interpolating among the available actions.

Moore suggests that inverse models, although somewhat natural, can lead to prob-
lems if there is not a one-to-one mapping between actions and behaviors or if there are noisy
examples in the memory base [26, 237]. As a result, he proposes working directly with the
forward model. Using the memory base then consists of searching through available actions
(in a given state) until the desired outcome is found.

Given either of these approaches to memory-based control, we still need an ap-
proach for learning the memory base in the first place. As already discussed, simply storing

examples as they are experienced is not a good idea. Two issues must be addressed. First,
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examples need to be chosen to represent the underlying search space. Second, behaviors
must be learned which will lead to the development of the learned control model, f

As mentioned earlier, random exploration can provide an initial set of examples
for the memory base. If we also learn resulting behaviors, then it is possible for this naive
approach to lead to strong behavior. The disadvantage to the approach is that areas of the
search space may be oversampled, leading to an increased search burden, and other areas
may be undersampled, leading to degraded performance when in those regions.

Several researchers have investigated approaches to varying the resolution of the
memory base according to the requirements of the problem [104, 110, 240, 312]. For example,
Moore and Atkeson’s parti-game algorithm uses the concept of an adversary attempting to
thwart search to determine how to explore the search space [240]. In the current version of
parti-game, the problem to be solved is limited to the case where there exists a known goal
region rather than a reward function. This limits the class of problems to which parti-game
can be applied, but the algorithm provides a powerful approach to partitioning the space.

Initially, parti-game defines a partitioning of the space and attempts to determine
the shortest path from each partition to the partition containing the goal. This can be done
using an all-pairs shortest path algorithm such as Dijkstra’s algorithm [89]. Because this
strategy alone can lead to situations where the controller gets hopelessly stuck, parti-game
approximates the number of steps to the goal based on the worst-case scenario. In other
words, in computing the shortest path, parti-game assumes an adversary can place the

controller in the worst position within a partition from which to reach the goal. In such a
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case, it is possible that the adversary could place the controller in a position from which
there is no path to the goal.

For the above procedure to work, the controller must have a detailed model of the
environment. In general, such a model of the environment may not be available, so Moore
and Atkeson extend parti-game to the case where the adversary only considers observed
experience. Note that the controller may still end up in a partition with no exit. At this
point, parti-game decides the partition should be subdivided under the premise that not all
areas within the partition lead to the controller getting stuck.

To partition the space further, parti-game collects all partitions identified as
“losers” that are adjacent to non-losing partitions. A losing partition is one in which
the controller can get stuck. Parti-game also collects all non-losing neighbors to these par-
titions. The algorithm then splits each of the partitions in half along the long axis and
recomputes whether or note the partitions are losers.

In addition to generating the examples, expected behaviors must also be learned.
Within the memory-based framework, behaviors (or outcomes) can correspond to the es-
timate of expected payoff. In this case, any of the real-time dynamic programming or
temporal difference methods can be applied to update these behaviors [16, 43, 44, 53, 210,
263, 264, 265]. In fact, this strategy is used with the algorithms in this dissertation and is

discussed in Chapters 6 and 7.
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3.2.3 Temporal Difference Learning

In reinforcement learning, considerable attention has been given to Sutton’s Temporal Dif-
ference Learning algorithm [76, 77, 78, 103, 104, 105, 155, 156, 157, 178, 232, 280, 332,
333, 334, 342, 343, 344, 350]. This approach focuses on the problem of predicting expected
discounted payoff from a given state. It has been shown that @)-learning is a special form
of temporal difference learning where the “look-ahead” is cut off. Specifically, @-learning is
shown to be equivalent to TD(0) when there exists only one admissible action in each state
[35, 103].

The temporal difference method is intended to be applied in “multi-step prediction
problems” where payoff is not awarded until several steps after a prediction for payoff is
made. This is exactly the problem that arises with delayed reinforcement. At each step, an
agent predicts what its future payoff will be, based on several available actions, and chooses
its action based on the prediction. However, the ramifications for taking the sequence of
actions are not revealed until (typically) the end of the process.

According to Sutton [332], the temporal difference method can be considered as
an extension of the prototypical supervised learning rule based on gradient descent. If we
assume a prediction depends upon a vector of modifiable weights w and a vector of state
variables x, then supervised learning uses a set of paired state vectors and actual outcomes
to modify the weights to reduce the error between the predictions and the known outcomes.

Let a be a learning rate (as in ()-learning), = be the value of the actual payoff,

and P; be the predicted payofl at time {. Then the supervised learning update procedure
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can be represented as

Awt = Oé(Z - Pt)vat

where V,, P; is the gradient of P; with respect to the weight vector w.

This method works best for single-step prediction problems. For multi-step predic-
tion, the vector w cannot be updated until the end of a sequence, and all observations and
predictions must be remembered until the end of the sequence. Sutton’s temporal difference

method permits incremental update and is based on the observations that

2= P =) (Poy1— P
k=t

where P,,+1 = 2. In this case, the supervised learning rule becomes,

i
Awt = Oé(PH_l - Pt) Z Vka
k=1

(see [332] for derivation). This update can be computed incrementally because it depends
only on a pair of successive predictions (P; and Piyq), and on the sum of past values for
Vb

Sutton goes on to describe a family of temporal difference methods based on the
influence past updates have on the current update of the weight vector. These methods are
based on a parameter, A € [0, 1], which specifies a discount factor in the prediction equation
(see Section 2.2), and refers to the family as the TD(\) family. When A = 0, past updates
have no influence on the current update. When A = 1, all past predictions receive equal
weight. Assuming it is desirable for the update procedure to be more sensitive to recent

predictions than to distant predictions, the changes are weighted according to A*. Thus the
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update equation becomes

i
Awt = Oé(PH_l - Pt) Z At_kvak
k=1

When A = 0, this equation reduces to
Awt = Oé(PH_l - Pt)vat

Given the nature of the TD(\) algorithm, the most common application of the algorithm is
for training neural networks. For TD(0), in addition to neural networks, the approach has

been applied (through @-learning) to lookup tables and memory-based approaches.

3.2.4 Genetic Algorithms

The final approach to learning in Markov decision processes that we discuss here is the
use of genetic algorithms (GAs) to learn sequential decision rules. As with other methods
of learning to solve MDPs, GAs must associate sets of admissible actions to states in the
problem and provide a means to select the most appropriate action to maximize expected
payoftf.

The first application of GAs to MDPs arose from work in classifier systems [50,
149, 167, 168]. In a classifier system, rules are binary condition/action pairs that work
within a message-passing architecture (Figure 3.1). State information is converted into
a binary message and placed on the message list. The messages on the message list are
matched against the condition part of all of the rules (or classifiers) in the system. All rules

that match a particular message compete to fire. When a rule fires, the action part of the
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Figure 3.1: Standard architecture of a classifier system.
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rule defines a new message to be put on the message list, and the old messages are removed.

The cycle continues until a message appears on the message list that can be translated into

a set of actions to be applied to the environment. These actions change the state, and the

cycle repeats.

Learning takes place in two steps. First, each rule has an associated value (e.g.,

expected payoff) that represents strength and is used in competition. These values indicate

the fitness of the rules and are also used by the genetic algorithm in selection. The values

are updated using a reinforcement learning procedure called the bucket brigade. In the

bucket brigade, when rules match the current message list, they issue a bid to fire, B(C, ).

Specifically,

B(C,t) = bR(C)s(C, 1)
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where b is a fraction of the strength to be bid, s(C,¢) is the strength of the classifier C' at
time ¢, and R(C') is the “specificity” of €, defined to be the number of non-don’t-cares in
the condition part of €' divided by the length of the condition part of C'. Should C' win the

competition, the strength is updated as
s(Cyt+1) = s(C,t)— B(C,t)+aB(C',1)

where C’ is the classifier that put the message on the message list in the previous time step
causing C' to fire, and «a is the number of classifiers that fired in the current time step.
The second learning approach is the genetic algorithm. Classifiers are modified
in a series of generations where individual classifiers are selected to be duplicated with
probability in proportion to their fitness. Once a new set of classifiers is selected, certain
classifiers are modified through mutation and crossover. Each “bit” in a classifier can take on
a value from the alphabet {0,1,#}, where “#” indicates a “don’t care.” During mutation,
a bit is selected and changed at random. During crossover, two classifiers are selected and
random substrings of the two classifiers are swapped. Through mutation and crossover, new
classifiers are introduced to permit exploration of the space of possible classifiers.
Grefenstette et al. [153] propose an alternative approach to learning sequential
decision rules using a more general production system architecture which they call CPS
(Competitive Production System). In their approach, rules are not limited to binary clas-
sifiers but have attributes of several types incorporated into the conditions and actions of
several types replacing messages. There is no message list in CPS. Instead, the current

state is mapped into the forms needed by the rule conditions, rules compete based on how
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well they match the current state and based on strength, and actions have an immediate
effect on the environment. In a sense, traditional classifier systems are analogous to “de-
liberative agents” where the agents may take multiple reasoning steps before selecting an
action. CPS, on the other hand, is analogous to a “reactive agent” in which a decision is
made immediately based on the current state.

CPS is folded into a two-part learning system similar to the two-part learning
of a classifier system. First, a credit-assignment subsystem updates strengths associated
with all of the rules. Instead of using the bucket brigade, Grefenstette uses an approach
called “profit sharing” in which mean profit and an estimate of the variance of the payoff
is updated (see Section 4.3.3 for more details). The rule strength is then the difference
between the mean and the variance.

Second, a genetic algorithm generates rule sets. This approach represents the sec-
ond significant departure from traditional classifiers (the first being the more “natural” rule
form). Rather than operating on individual rules (except for mutation), the GA maintains
the integrity of the rules and works on rule sets. A set of rules is combined into a tactical
plan, and the GA operates on a population of plans. New plans are produced by selecting
rules from parent plans and by mutating conditions or actions on individual rules. Crossover
between two rules is not permitted.

The complete learning system with CPS, the credit-assignment subsystem, the
GA, and a domain-specific simulator is called SAMUEL (Strategy Acquisition Method Using

Empirical Learning). The basic architecture of SAMUEL using several different learning
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68

modules provides the basis for all of the algorithms studied in this dissertation and is

shown in Figure 3.2 in the context of the GA.

3.3 Co-Learning Methods and Games

In the past ten years, research in the area of reinforcement learning and control has literally
exploded. New algorithms and new theoretical results are being published at a high rate.
Unfortunately, multi-agent reinforcement learning has received limited attention (although
that is changing), and, even then, most of the research has focused on cooperative agents.
Research in reinforcement learning and game playing has largely been limited to a single
agent learning to play against a fixed opponent. Such situations reduce to problems of
control learning.

Recently, some research has begun to appear in which multiple competing agents
(usually two) are learning simultaneously. With two notable exceptions, all of this work
has been done within the last five years. In the following sections, we review this work and

suggest directions for research reported in this dissertation and for further research in the

field.

3.3.1 Samuel’s Checkers Player

It is interesting that one of the earliest success stories in machine learning was an ap-
proach similar to temporal difference learning applied to game playing. In 1959 and 1967,

Arthur Samuel reported on experiments he performed with a machine learning an evalua-
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tion function for board positions in the game of checkers [297, 298]. Samuel also reported on
experiments in rote learning, but we limit the discussion to his novel reinforcement learning
procedure.

Early research in computer game playing focused on developing evaluation func-
tions to be used in searching game trees. Because non-trivial games, such as chess and
checkers, have game trees that cannot be fully searched, the evaluation functions provided
a prediction of performance from interior nodes of the tree, given “optimal” play from that
point forward. These evaluation functions were hand constructed and generally provided
no better than mediocre performance.

Samuel’s idea was to use experience from actual play to learn the evaluation func-
tion. Then the computer could adapt its play to improve its performance by gradually im-
proving the ability of the evaluation function to predict performance. In Samuel’s approach,
two players were designated—one (designated Alpha) modified its evaluation function dur-
ing play and the other (designated Beta) used a static evaluation function corresponding to
the best function learned so far.

Samuel’s evaluation function was a linear function of 16 terms (attributes), taken
from a set of 38 terms, plus a small set of binary connective terms (permitting pairwise
combinations of certain attributes). Each term had a coefficient that was a positive or
negative power of two, derived from the correlation between predictive “accuracy” and
performance. At a particular state in the game, the scoring polynomial (i.e., the evaluation

function) is used with lookahead to select a move using minimax. In addition, the current
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board position is scored. The current score is compared to the minimax backed-up score
and the difference computed. The coefficients in the scoring polynomial are then modified
to reduce the difference in the scores. Note that this approach assumes the backed-up
score is more accurate than the current score, presumably because the backed-up scores are
computed from states closer to the terminal board positions in the game. Note further that
this is exactly the assumption made in Sutton’s TD(0) algorithm [332].

In addition to updating coefficients on the terms, Samuel observed that the per-
formance of the scoring polynomial depended on the current 16 terms selected from the
38 available terms. Samuel hand picked the 38 terms and (somewhat arbitrarily) decided
the scoring polynomial would only use 16 of these terms. He then associated a “low term”
tally with each term, indicating the number of times each term had the lowest correlation
between the sign of the term and the sign of the difference between the current score and
the backed-up score. When the tally exceeded a pre-set threshold, the term was removed
from the polynomial and a new term was selected from the remaining 22 unused terms.

Although not traditionally considered an implementation of a multi-agent learning
strategy, the self-play learning methodology, where Alpha plays Beta and Beta has the
best learned polynomial so far, is suggestive of a strategy proposed by Grefenstette and
Daley [152]. In their approach, competing agents “co-evolve” rules for engagement where
each agent alternates learning (see Section 3.3.6). Because the two checker players are
essentially the same, transferring a learned polynomial to Beta is analogous to alternating

learning between Alpha and Beta. The primary difference is that Alpha and Beta do not
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follow two independent paths as they learn—Beta’s strategy comes from Alpha’s experience.

3.3.2 Temporal Difference Methods and TD-Gammon

More recently, Gerald Tesauro applied temporal difference learning in self-play in the game
of backgammon [342, 343, 344]. As with Samuel’s checkers player, Tesauro’s program
(named TD-Gammon) has the two players playing each other using an evaluation func-
tion resulting from learning. The approaches differ in that, for TD-Gammon, both players
use the current evaluation function that has been learned. In addition, where Samuel con-
structed several abstract features for the terms in his scoring polynomial, Tesauro processes
raw state information.

In TD-Gammon, Tesauro constructed a feed-forward neural network with one
hidden layer which he trained using TD(A). For his experiments, he found little difference
in using various values for A (except for learning time), so he arbitrarily set A = 0.7. The
input layer of the network had 198 nodes. FEach of the 24 board positions had four nodes
for each player (indicating 1, 2, 3, or 44 pieces of a particular color) plus six additional
nodes were included to encode the number of pieces on the bar, the number of pieces off
the board, and which player moved next. The network had only one output node providing
a prediction of the probability White would win. At each stage of the game, the dice are
rolled and all legal moves from the dice roll are considered by evaluating the successor states
with the network. When White moves, the action maximizing the probability White wins is

selected. When Black moves, the action minimizing the probability White wins is selected.
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Training consisted of using the network for each player and using the sequence of
predictions in the TD(A) update equation. The actual payoff of one (for White winning)
or zero (for Black winning) was used at the end of the game. Because both players used
the same evaluation function during learning, we can claim that TD-Gammon provides a
rudimentary approach to co-learning among homogeneous players (i.e., players with identi-
cal, competing objectives and identical capabilities). This, of course, is the simplest form

of multi-agent learning.

3.3.3 Reinforcement Learning in Cognitive Game Theory

In the economics community, one of the communities responsible for considerable research
in game theory [49, 123, 130, 196, 286, 358, 360], limited work is being done in learning game
strategies. This work, however, is largely restricted to single-player games. One notable
exception is the work by Roth and Erev [123, 286] in what they call “cognitive game theory.”
Specifically, they distinguish between “low” game theory and “high” game theory, where
low game theory assumes players have limited rationality but adapt to experience playing
the game to derive rational strategies. Further, the players may not consider all strategies
available to them, and they may not be “subjective expected utility maximizers [123].”
High game theory assumes the players already have “full” rationality and can deduce the
rational strategy from the rules of the game.

Roth and Erev focus their research on low rationality game theory to facilitate

modeling the learning process. Their goal is to better understand the nature of different
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economic games and the limitations of learning rational (i.e., optimal) strategies to play
these games. The learning model used by Roth and Erev is relatively simple and applies to
both players in a two-person game. No requirement exists limiting the game to be zero-sum.

Specifically, if player p; plays strategy s;; and receives payoff p, then the propensity

for p; to play any s; is updated as
Gir = (1 — @)qix + E;(k, R(p))

where ¢ us a recency parameter (similar to the learning rate in @-learning), R is a mapping
of payoff into a non-negative reinforcement signal (in the simplest case, R(p) = p), and F
is an update value reflecting the experience gained from play. Erev and Roth define F to
be

Ej(k, R(p)) = { R(p)3, ifh=j+1

0, otherwise

where € is a small, positive, user-defined parameter. Note this model assumes neighboring
strategies are “similar” in some sense. When no such similarity exists, F is modified as

follows:

Rp)(1— o), ifk=j
R(p)=-=,  otherwise

Ej(k, R(p)) = {
where m is the number of available strategies.

Given the “propensities,” ¢;;, the probability of selecting strategy j (thus defining

a mixed strategy) is

.
P = S
= K3

Roth and Erev studied the performance of this approach on three simple economic games
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with pure strategy equilibria [286] and eleven simple economic games with mixed-strategy
equilibria [123]. They found their simulated results tracked well with several experiments in-
volving human subjects learning to play these same games. The intent of their experiments
did not include developing an algorithm for learning the equilibria in the games. Rather,
they attempted to model a “psychologically plausible” learning approach that could deter-
mine the ability of low rationality agents to learn game equilibria, given a variety of playing
conditions. They concluded that their model provided an extremely good approximation of
the biological learning process in a wide variety of contexts and believe such a simple model

motivates additional development of low rationality, cognitive game theory.

3.3.4 ()-Learning and Markov Games

In Sections 3.3.1 and 3.3.2, game learning was not set up within a multi-agent co-learning
framework; however, we saw that the results reported could be interpreted in the context of
co-learning among homogeneous competing players. In Section 3.3.3, we discussed several
experiments in game learning among heterogeneous competing players, but the intent was
in modeling the cognitive process of game learning rather than developing an algorithm
to actually learn the equilibrium of the games studied. Michael Littman explored the
possibility of using J-learning for co-learning among homogeneous players in the context
of Markov games [211, 213]. It appears his approach also applies to heterogeneous players,
but no such experiments were reported. Recall from Section 2.3 that a Markov game is

a special form of Markov decision process in which actions by two (or more) competing
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players jointly determine the next state of the game. Solving the Markov game consists of
developing a policy for play that maximizes the expected payofl to each player under the
assumption the other players are playing optimally.

Littman proposes the following approach to applying )-learning to solve two-
person Markov games. Assuming a lookup table exists mapping current state-action-action
triples to @)-values, play consists of selecting actions either at random (to promote explo-
ration) or according to the current policy. This policy is given by returning an action
according to mixed strategies derived for one player which is then fixed to permit selecting
the other player’s action through simple minimization [213]. The mixed strategy for the
first player is determined by solving the linear program described in Section 2.3. Obviously,
this approach is not guaranteed to be optimal because both the linear program and its dual
must be solved to determine appropriate strategies satisfying the constraints of the linear
program.

Learning the )-values in the lookup table is analogous to standard @-learning.

Specifically,

Qit1(s,a1,a2) = (1 — @)Q4(s, a1, a2) + afe(s,ar,a2) + ’VV(S/)]

where

V(s = max min (a ¢ ara
( ) 7TeH(J“l)ULzEszalze:Al (I)Q( A 2)

and II(.A;) is the set of probability distributions over A;. Finding V(') requires solving the

linear program associated with the next state. In actual play, this can be done by simply
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storing the value of the linear program solved in that state and then substituting during
learning.

Littman applied this strategy to a simple variation on the game of soccer. In
particular, he constructed a 4 x 5 playing grid where each player, designated A and B,
occupied distinct squares on the grid. At each step in the game, a player could choose
to move north, move south, move east, move west, or stand still. Players do not move
simultaneously. Rather, the player to move first is selected at random at each time step.
One of the players always has possession of the ball. Should players “collide,” possession of
the ball transfers to the stationary player, and the moving player returns to the previous
position. At each end of the playing field is a goal square. When a player possessing the
ball reaches the appropriate goal, that player receives one point. Each game lasts 100,000
steps.

The above algorithm was compared to simple @)-learning. Further, each learn-
ing player was matched against a random player, another player using the same learning
strategy, and a hand-built player. All learning cases performed extremely well ( 90% won)
against the random players. When training against another learning player, each approach
performed better against the hand-built player than following learning against the random
player. Further, in a surprising result, ¢)-learning performed better against the hand-built
player than minimax-@-learning did against the hand-built player following training with

other learning players.
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3.3.5 Advantage Updating and Differential Games

In independent research, Harmon, Baird, and Klopf investigated applying reinforcement
learning in function approximators (namely, artificial neural networks) to learning solutions
to differential games [29, 30, 31, 161, 162, 163]. For their research, they focused on a single
linear-quadratic differential game of pursuit in which a single missile (designated P) pursues
a single airplane (designated E'), which is similar to the problem studied by Grefenstette
et al. [149, 153, 163, 273]. As a linear-quadratic game, the kinematic equations are linear
functions of the current state and action, and the payoff function is a quadratic function of

acceleration and the distance between the players. Specifically, the kinematic equations are

wp(t) = wp(t — 1) + Atip(t — 1)

yp(t) = yp(t — 1)+ Atgp(t — 1)

xE(t) = xE(t — 1) + AtiE(t — 1)

yE(t) = yE(t — 1) + At@]E(t — 1)

where

ip(t) = ip(t — 1) + Atip(t — 1)
gp(t) = gp(t — 1)+ Atijp(t — 1)
xE(t) = iE(t — 1) + AtiE(t — 1)

yE(t) = yE(t — 1) + Até]E(t — 1)
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Actions consist of modifying the acceleration in the z and y directions, thus modifying &p,

ip, ¥g, and §g respectively. Payoff is defined as
p(s,a) = [d(P, E)* + accel(P)? — 2 accel( E)?*]|At

where d( P, E) is the distance between between P and F, accel(P)? is the dot product of P’s
acceleration vector with itself, and accel(F)? is the dot product of E’s acceleration vector
with itself.

To play this game, two values are computed using function approximators—
V(s,a), which is an estimate of the expected total discounted reward from state s, and
A(s,a), which is the advantage of applying action «a in state s over applying the estimated
optimal action is state s. In a given state, each player chooses an action which maximizes
their expected payoff given their opponent plays optimally.

In game playing, Harmon et al. recognize that optimal play may require appli-
cation of mixed strategies. To simplify their experiments, however, they chose to assume
pure-strategy equilibria existed for their game. As a result, they selected actions in each
state as follows. First, the pursuer selects an action that maximizes its payoff by selecting
the action maximizing advantage over all pairs of actions. Then the evader selects the action
that minimizes advantage to P, given the action P chose.

To learn V(s,a) and A(s,a), Harmon et al. take the following steps. First, they
compute the “minimax” for the current state using the strategy described above. Next they
calculate

Vi(s) = sI:QDPSP + sgDEsE
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where sp is the vector indicating P’s current position, sg is the vector indicating FE’s current
position, and Dp and Dg are weight matrices that are updated during learning. Then the

advantages are calculated using

A(s,a) = sI:QAPSP + sIZQBpCpap + a]:QCsP +

T T T
spApsp +spBpCpap + apCsp

where ap and ag are acceleration vectors for P and F respectively, and Ap, Ag, Bp, B,
Cp, and Cg are weight matrices updated during learning.

Because payoffl is received throughout play, the payofl is calculated next. Then the
actions are applied, and the state is updated. This leads to calculating V' (s,a) in the next
time step. Finally, all of the weights are updated by gradient descent using the equation

(letting mm() represent finding the minimax),

Aw= -o { [10(5157 ap,ag) + '}/AtV(St-l-At) - V(St)] é — A(st,ap,ap) + mm(A(St))}
OV (sipar)  OV(s)] 1 JA(s,ap,ag)  Omm(A(s))
X{[VA auj_A C ow ]E_ 8wP =+ ow }
—amm(A(st))w

which includes a procedure similar to ¢J-learning but based on the Bellman residual given,
in general, by

1
res(s¢, ap,ap) = [p(stvapvaE) + 72V (segal) - V(St)] N

— [Alss, ap, ap) — mm(A(s))]

Their experiments compared their residual advantage updating procedure to the optimal
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solution to the game (determined by numerically solving for the optimal weight matri-
ces). Performance of the algorithm was quite good, perhaps suggesting the game did have
pure strategy equilibria. It is unclear how well this procedure would perform, given their

simplifications, had mixed strategies been required.

3.3.6 Coevolution Methods

Recently, work in co-evolutionary algorithms has begun to suggest approaches to multi-agent
co-learning with some encouraging initial results [151, 152, 266, 323]. Extending his work on
SAMUEL, Grefenstette defines a uniform sensor architecture for multi-agent environments
[151]. He claims that modeling information about all agents in the environment would
be too complex, requiring significant computational resources. His approach models the
learning agent in three stages—sensors, conflict resolution, and actions. The sensors sense
each of the external agents (i.e., the agents other than the learning agent) and represent
their states as “tracks.” Fach track is simply the set of sensor readings for that agent. The
rules in the current plan are then matched against each track and bid to fire. For each track,
the recommended rule to fire is the rule with the highest bid. Once a rule is identified for
each track, the bids are combined over all of the tracks by multiplying the strengths for like
actions. The action taken corresponds to the actions with the highest bids.

For example, suppose the following actions are recommended for two separate

tracks:

(right(0.9),left(0.4))
(right(0.8), left(0.9))
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In this example, the action would be determined by multiplying the bids for “left” and

“right”. Thus the combined bid would be

(right(0.72), 1left(0.36))

and the action “right” would be selected. In addition, SAMUEL provides the option of
normalizing the combined bids and then selecting the action according to the resulting
probability distribution.

Grefenstette tests his multi-agent architecture on a pursuit game in which two
pursuers chase a single evader, and the evader is learning to evade. It is interesting to note
that the average performance achieved in this architecture was approximately 90% evasion
of both pursuers with the best performance being about 95%. This seems to track well with
our experiments (reported in Section 4.3.3).

Further extending saMUEL, Potter, DeJong, and Grefenstette developed an ap-
proach to coevolution in which an agent is decomposed into “subagents” each responsible
for learning an activity to be combined to solve a complex task [266]. They called this ex-
tension Cooperative Coevolutionary Genetic Algorithms. In this approach, multiple agents
operate on a single task in parallel. The agents are initialized with rules to bias their activity
toward some subset of the total problem. For example, an agent seeking food in a hostile
environment behaves differently when food is present and when it is absent. In the presence
of food, it may move directly toward the food in an attempt to beat its competitors from
reaching the food first. When food is absent, it may attempt to position itself such that it

avoids other agents but is still in a strong position to capture food when it appears. The
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multi-agent (or composite) plan then consists of the concatenation of the best plans learned
by the subagents.

Finally, Grefenstette and Daley consider a coevolutionary strategy for cooperative
and competitive multi-agent plans [152]. These are the first experiments by Grefenstette
et al. in which multiple competitive agents learn simultaneously. In these experiments,

Grefenstette and Daley consider four multi-agent scenarios:

A single genetic algorithm learns a plan that is used by both agents. This assumes

the agents are homogeneous and have common goals.

e Separate genetic algorithms for each agent are run simultaneously, and each agent is

tested against a single random opponent.

e Separate genetic algorithms for each agent are run simultaneously, and each agent is

tested against the best opponent from the previous generation.

e Separate genetic algorithms for each agent are run simultaneously, and each agent is

tested against a “best opponent” selected randomly from all previous generations

They tested the coevolutionary genetic algorithms on a food-gathering task in which the two
agents were competing against each other to obtain the most food. Their results indicated
little difference in the various approaches with the last approach performing the strongest.
Even then, it appeared none of the differences were statistically significant. Further, because
they did not compare the results of coevolution to any static strategy, it was difficult to

assess whether any improvement occurred at all.
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Smith and Gray describe an alternative approach to coevolution, which they call
a co-adaptive genetic algorithm, applied to the game of Othello [323]. Their approach
focuses on developing a fitness function that is derived from the ability of a member of the
population to compete against other members of the population. Thus, their co-adaptive
fitness function appears to be a variation on tournament selection, except that selection

takes place at the end of a complete round-robin tournament.

3.4 Related Work in Learning and Game Playing

In this last section, we briefly review some related work in machine learning and games.
The literature associated with machine learning and games is quite extensive, in spite of the
relatively small amount of work done in co-learning and games. Rather than providing a
comprehensive review of the field, this section highlights some recent work that is interesting

and may provide further insight into co-learning and games.

3.4.1 Opponent Modeling

In current research in learning and games, the focus of the research is on a player learning
a strong strategy against its opponent. Most of the research assumes a fixed opponent, but
some assumes all players are attempting to learn what amounts to an “optimal” strategy,
applicable to all players. Recent work by Carmel and Markovitch suggests that a more
realistic approach is for a player to adapt to the current opponent. This led them to develop

their M* algorithm in which a player learns its opponent’s strategy and adapts accordingly
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[68, 67, 69]. Others have provided similar strategies to modeling opponents, such as the
agent tracking methods of Tambe [336, 337, 338, 339, 340], and the equilibrium search
methods of Goldman and Rosenschein [144, 243] and of Koller [194, 195, 196, 197, 359].

For their approach, Carmel and Markovitch assume a two-player game where each
player has an evaluation function to be used in a minimax search of the game tree. Typically,
the same heuristic evaluation function is used in minimax search (or at least this is the
assumption by each player). In the M* algorithm, each player has a different heuristic
evaluation function. A player models its opponent by modeling the opponent’s heuristic
evaluation function and applying that function during minimax.

Learning takes place in two areas. First, the evaluation depth of the opponent’s
heuristic is learned (assuming no strategies such as selective deepening). The algorithm
assumes a particular evaluation function and then examines past choices by the opponent.
Given the evaluation function and the past choices, plausible choices for depth can be
deduced. As expected, as error in the evaluation function increases, so does error in the
depth.

Second, the evaluation function itself is learned. The algorithm assumes a linear
combination of features, and learning consists of determining these weights. The features
are known, and it is assumed the heuristic does not change during play (thus limiting the
problem to single-agent learning). Several of the approaches discussed earlier can be used
to learn these weights. Carmel and Markovitch applied a basic gradient-descent search

strategy for several depths to learn, and combine the results with the learned depth.
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3.4.2 Learning Chess-Like Games

Barney Pell developed an approach to deriving strategies from declarative specifications of
games is a system he calls METAGAMER [258, 259, 260, 261]. METAGAMER processes the
rules and constraints of “symmetric chess-like” games and derives the rules and evaluation
functions for these games. Pell’s approach has been applied to several symmetric chess-like
games including chess, checkers, Tic-Tac-Toe, Othello, and Go.

In his work on game learning, Pell assumes a fixed opponent.3 His approach is to
apply 1-ply search and delayed reinforcement. A set of features are provided to the learner,
and METAGAMER is used to determine the legal actions from a declarative description of
the game. At each stage of the game, the player evaluates all legal moves and computes
values w and [ for each of these actions. At the end of the game, moves associated with the
winner have their w scores incremented, and moves associated with the loser have their [
scores incremented [258, 259].

The learning problem is one of determining a function that takes the set of legal
moves, the w and [ statistics, and the features of the current state and returns an evaluation
of those moves. Where other researchers focus on learning the evaluation functions, Pell
provided a hand-crafted evaluation function and simply collected the w and [ statistics for
learning. When applied to the game of Go, the results of Pell’s approach were encouraging

for small games (e.g., 3 X 3 boards) in that his program always won. In an experiment

3 Because his class of games is symmetric, and each of the players has common goals, it should
be straightforward to extend his work similar to Samuel’s and Tesauro’s work in which learning
occurred during self-play.
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with a 9 X 9 board, the learning player was ability to match but not surpass a hand-crafted

player.

3.4.3 Competitive Learning

In an interesting alternative view to game learning, Rosin and Belew provide a general
framework for metalearning in games [285]. Their approach assumes a player is learning
to beat a fixed set of opponents and that each player is applying a different learning algo-
rithm. In the simplest case, there are only two players, each with its own strategy-learning
algorithm. The players use their strategy-learning algorithms to learn to play the game,
and “competitive learning” pits the results of these algorithms against each other to select
the “best” strategies to play.

In Rosin and Belew’s formulation, strategy learning does not take place simulta-
neously. Rather, each strategy is pitted against a fixed set of opponents and learns to play
against those opponents. The competitive learner then holds a tournament between the
results of these strategy learners to determine the current best strategy. This current best
strategy may then become the strategy for the fixed players used in learning.

Rosin and Belew point out that Samuel’s original work in learning to play checkers
was a form of competitive learning. In particular, the Beta player always played the current
best strategy. The Alpha player applied the strategy learning to derived evaluation functions
for playing checkers. When Alpha’s strategy succeeded in beating Beta, Beta was given

Alpha’s strategy.
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The work in competitive learning does not focus on developing competitive algo-
rithms. Instead, it provides a formal framework for analyzing learnability of game strategies
in a competitive learning environment. Rosin and Belew provide several theoretical results
characterizing learning under such conditions, including proofs that under the condition of
a single counter-example concept learner (corresponding to one player), perfect strategies
can be learned, but not in polynomial time. They then suggest that if both players provide
a counter-example learning strategy that covers previous opponents, perfect strategies can

be learned in time polynomial in the number of strategies considered.

3.4.4 Artificial Life and Repeated Games

Artificial life is concerned with developing or evolving populations of agents to simulate
behaviors of organisms at the population level. Research in this area focuses on population
and evolution dynamics; therefore, we should expect them to be concerned with competition
among multiple populations. This work, however, does not consider competition on an
individual basis. Robert Collins [83] explored issues of sexual selection and female choice in
a predatory environment, co-evolution of hosts and parasites, and foraging behavior among
artificial ants. Other investigations of host/parasite co-existence and co-evolution have
taken a game-theoretic view, but work by Bremermann and Pickering focuses on natural
evolution [62]. In another biological study, Hamilton considered the effects of competition
between hosts and parasites in the evolutionary process [160]. To promote distribution

of skills among populations, Davidor [102] studied the effects of niching and speciation in
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genetic algorithms, and Werner and Dyer focused on developing communication mechanisms
between organisms through artificial evolution [365].

Some work has been done in evolutionary computation, artificial life, and iterated
games. The most common game considered in this context is the iterated prisoner’s dilemma
[28, 223, 234, 299, 325]. The Prisoner’s Dilemma is a two-player non-zero-sum game in
which players must decide to cooperate or defect based on their expected payoffs. The
“best” strategy to play in this game is for both players to cooperate; however, under the
assumption of a Nash equilibrium point, such an equilibrium point is found to exist only
when both players defect. The iterated prisoner’s dilemma is a game in which players
repeatedly play the prisoner’s dilemma and choose their strategies based on previous plays
of the game. Axelrod held a tournament among players of various strategies and found that
the “Tit-for-Tat” strategy (where each player plays the other player’s previous strategy)
was the best [28].

The work by Stanley et al. focused on several agents with different strategies
evolving chocie and refusal mechanisms to determine when a game was played [325]. The
goal was not on learning strategies but on characterising choice and refusal in a competitive
environment. Sandholm and Crites applied @)-learning in the iterated prisoner’s dilemma in
which multiple learners faced each other and a fixed player using “Tit-for-Tat” [299]. They
explored methods involving lookup tables and recurrent networks. They found all learners
fared well against the fixed player but had difficulty when playing against other learners

(presumably because of the non-stationarity of the problem). Nevertheless, they found that
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the agents using lookup tables with long histories performed the best.

Results relevant to problems of multi-agent learning and learning with competition
can be found outside of the machine learning community. For example, in starting to
address issues of multi-agent interaction and planning, distributed artificial intelligence
has focused on developing intelligent agents under the condition that no single agent can
perform a particular task. The agents must then be constructed (or must learn) such that
they cooperate with one another to perform the task [122, 139]. Work by Genesereth and
Rosenschein considered cooperation among agents in which there are competing objectives
and where there is no communication between the agents [138, 283]. Although not focusing
on competitive situations, Conry et al. considered planning in distributed systems when
the task requires multiple, intermediate milestones to be reached, and resources are traded

between the agents [87].

3.5 Summary

Research in multi-agent learning is just recently receiving extensive attention in the ma-
chine learning community. Much of this research focuses on problems of collaboration and
cooperation; however, competitive problems (such as games) provide interesting challenges
that must be faced in the real world, even when cooperation is the ultimate goal.

In this chapter, we provided a summary of relevant research in single agent and
multi-agent reinforcement learning and game playing. The field of machine learning and

game playing is vast, and providing a comprehensive review of the field here is not practical.
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Therefore, we focused on work that was either directly related to multi-agent learning or

suggestive of ways to extend single agent learning into the multi-agent area.
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Chapter 4

Sequential Decision Making and
Pursuit Games

4.1 Learning Approaches in Game Playing

Reinforcement learning (RL) is challenging in part because of the delay between taking an
action and receiving a reward or penalty. Typically an agent takes a long series of actions
before the reward, so it is hard to decide which of the actions were responsible for the
eventual payoff. Both lazy and eager approaches to reinforcement learning can be found in
the literature. The most common eager approach is the use of temporal-difference learning
on neural networks [36, 37, 81, 342]. The advantages to a lazy approach are three-fold.
First, minimal computational time is required during training, because training consists
primarily of storing examples (in the most traditional lazy approach, k-nearest neighbor).
Second, lazy methods have been shown to be good function-approximators in continuous

state and action spaces [25]. This capability is important for our task of learning to play
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differential games. Third, traditional eager approaches to reinforcement learning assume
the tasks are Markov decision problems. When the tasks are non-Markovian (e.g., when
history is significant), information must be appended to the state to encapsulate some of
the prior state information, in order to approximate a Markov decision problem. Because
the lazy approach stores complete sequences, non-Markovian problems can be treated in a
similar fashion to Markovian problems.

The class of RL problems studied here has also been studied in the field of differ-
ential game theory. In differential games, differential equations model how actions taken by
the players in the game change the state of the game over time. The object of analyzing a
differential game is to determine the optimal strategies for each player of the game and to
determine the value of the game (i.e., the expected payoff to each player) assuming all of
players follow the optimal strategies.

A pursuit game is a special type of differential game that has two players, called
the pursuer (P) and the evader (F). The evader attempts to achieve an objective, frequently
to escape from a fixed playing arena, while the pursuer attempts to prevent the evader from
achieving that objective. Examples include such simple games as the children’s game called
“tag,” the popular video game PacMan, and much more complicated predator-prey interac-
tions in nature. These examples illustrate a common feature of pursuit games—the pursuer
and the evader have different abilities: different speeds, different defense mechanisms, and
different sensing abilities.

In this chapter, we apply two lazy learning algorithms and one eager learning algo-
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rithm to two differential games of pursuit, and we attempt to characterize the performance
of these algorithms on the games. Although these limited experiments do not afford us the
ability to draw general conclusions about lazy versus eager learning in game playing, we use
the results to motivate the research discussed in subsequent chapters on combining learning
approaches and developing a lazy and eager approach to co-learning. The specific games

used for the experiments in this chapter are two variations of the evasive maneuvers game

[153].

4.2 The Evasive Maneuvers Game

The evasive maneuvers task as a differential game is a variation on the Homicidal Chauffeur
game. Iven though the solution to the Homicidal Chauffeur game is intuitive, the actual
surface characterizing the solution is highly nonlinear. Thus we should reasonably expect
the surface for extensions to the problem (such as those discussed in this chapter) to be
more difficult to characterize. Grefenstette et al. [153] studied the evasive maneuvers task
to demonstrate the ability of genetic algorithms to solve complex sequential decision making
problems. In their two-dimensional simulation, a single aircraft attempts to evade a single
missile.

We initially implemented the same pursuit game as Grefenstette et al., and later
we extended it to make it substantially more difficult. In this game, play occurs in a relative
coordinate system centered on the evader, £. Because of the relative frame of reference,

the search space is reduced and games are determined by their starting positions. P uses a
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fixed control law to attempt to capture F, while £ must learn to evade P. Even the basic
game is more difficult than the Homicidal Chauffeur game, because the pursuer has variable
speed and the evader has a non-zero radius of curvature. Qur extended version includes a
second pursuer, which makes the problem much harder. Unlike the single-pursuer problems,
the two-pursuer problem has no known optimal strategy [175], and for some initial states,
there is no possibility of escape. Second, we gave the evader additional capabilities: in
the one-pursuer game, F only controls its turn angle at each time step. Thus E basically
zigzags back and forth or makes a series of sharp turns into the path of P to escape. In the
two-pursuer game, we gave I the ability to change its speed, and we also gave E a bag of
“smoke bombs,” which will for a limited time help to hide F from the pursuers.

In our definition of the two-pursuer task, both pursuers (P1 and P2) have identical
maneuvering and sensing abilities. Further, they use the same control strategy: they antic-
ipate the future location of F and aim for a location where they can capture in the fewest
time steps. They begin the game at random locations selected according to a uniform prob-
ability distribution on a fixed-radius circle centered on the evader, F/. The initial speeds of
P1 and P2 are much greater than the speed of F, but they lose speed as they maneuver, in
direct proportion to the sharpness of the turns they make. The maximum speed reduction
is 70%, scaled linearly from no turn (with no reduction in speed) to the maximum turn
angle allowed of 135°. They can regain speed by traveling straight ahead, but they have
limited fuel. If the speed of both P1 and P2 drops below a minimum threshold, then &

escapes and wins the game. F also wins by successfully evading the pursuers for 20 times



95

steps (i.e., both P1 and P2 run out of fuel). If the paths of either P1 or P2 ever pass
within a threshold range of E’s path during the game, then F loses (i.e., the pursuer will
“grab” E). We use the term “game” to include a complete simulation run, beginning with
the initial placements of all of the players, and ending when F either wins or loses, at most
20 time steps later.

Against one pursuer, F controls only its turn angle, which is sufficient to play
the game well. With two pursuers P1 and P2 in the game, I/ has additional information
about its opponents. This information includes 13 features describing the state of the game,
including E’s own speed, the angle of its previous turn, a game clock, the angle defined
by P1-E—-P2, and the range difference between P1 and P2. It also has eight features that
measure Pl and P2 individually: speed, bearing, heading, and distance. Bearing measures
the position of the pursuer relative to the direction that F is facing (e.g., if F is facing north
and P1 is due east, then the bearing would be 3 o’clock). Heading is the angle between E’s
direction and the pursuer’s direction. When fleeing two pursuers, F/ can adjust its speed
and turn angle at each time step, and it can also periodically release a smoke bomb, which
introduces noise into the sensor readings of P1 and P2. If smoke is released, the turn angle
of the pursuer is shifted by a random factor up to 50% of the current turn angle. As the
severity of the turn increases, so does the potential effect from smoke.

In our task, the missiles are launched simultaneously from locations chosen at
random according to a uniform probability distribution. The missiles are initially 1,500

units away from the aircraft. The missiles may come from different locations, but their
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initial speed is the same and is much greater than that of the aircraft. As the missiles
maneuver, they lose speed. If they drop below a minimum threshold, they are assumed to
be destroyed. The aircraft successfully evades the missiles by evading for 20 time steps or
until both missiles drop below a minimum speed threshold. To make the problem consistent
with the Homicidal Chauffeur, we also assume that if the paths of the missiles and the
aircraft ever pass within some “lethal envelope,” then the aircraft is destroyed; i.e., the
missiles need not collide with the aircraft. The missile positions are considered throughout
their flight path, not just at the end of a time step (Figure 4.1). In particular, for flight
paths for both the airplane and each missile, we compute the distance of the closest point to
each other during a time step. If that distance is less than the range of the lethal envelope
(which was set to 100), then the aircraft is destroyed. We use the term “engagement” to
include a complete simulation run, beginning with the launch of the two missiles and ending
either after destruction of the aircraft or successful evasion of the missiles. We demonstrate
one engagement with two missiles in which the airplane is destroyed in Figure 4.2.

When flying against one missile, the capabilities of the aircraft are identical to
the aircraft used by Grefenstette et al. [153]. As noted earlier, in the two missile task, the

aircraft has 13 sensors. The nine state variables measured by these sensors are:

o speed: Indicates the previous speed of the aircraft. The legal speeds for the aircraft

lie in the range [250,400].

o previous turn: Indicates the previous turn taken by the aircraft. The legal turns for

the aircraft lie in the range [—135°,135°].



Missile end

Missile start

Figure 4.1: Evaluating lethal envelope during flight.

Pursuer

Figure 4.2: An engagement where the aircraft is destroyed.
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clock: Indicates the current time step of an engagement. An engagement lasts no

more than 20 steps.

missile speed: Indicates the current speed of each missile. The missile speeds lie in
the range [0,1000]; however, a missile falls out of the sky when its speed drops below

250.

missile bearing: Indicates in clock coordinates the position of each missile relative to
the aircraft where 12 o’clock is directly ahead of the aircraft and 6 o’clock is directly

behind.

missile heading: Indicates the direction each missile is flying relative to the aircraft.
At each time step, the heading of the aircraft is normalized such that its “compass”
heading is reset to 0°. If a missile’s heading is 0°, then it is flying in the same direction
as the aircraft. If its heading is 180°, then it is travelling in the opposite direction as

the aircraft.

missile range: Indicates the distance from the aircraft to each missile in the engage-

ment. Initially, the aircraft has a range of 1500 to each missile.

bearing difference: Indicates the difference in bearing between the two missiles. This

is a derived value based on the two missile bearing sensor readings.

range difference: Indicates the difference in range between the two missiles. This is a

derived value based on the two missile range sensor readings.
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The goal of the learning algorithm is to build a strategy that uses these state variables to
decide the appropriate values for the control variables on the aircraft. When flying against

two missiles, the aircraft controls three variables:

e speed: Determines the speed of the aircraft on the next time step. As with the sensor

reading, the speed lies in the range [250,400].

e turn angle: Determines the maneuver made by the aircraft at the end of the the
current time step. We assume all turns are instantaneous. As with the “previous

turn” sensor reading, the turn lies in the range [—135°,135°].

o countermeasures: Determines whether a countermeasure device will be released.
Countermeasures are devices (e.g., smoke bombs, chaff, flares, or electromagnetic
interference) intended to confuse the sensors of the pursuer with the hopes of causing
the pursuer to lock onto a false target or lose track of the target altogether. In these
experiments, countermeasures introduce noise into the missile’s belief of where the
aircraft is (called the pursuit angle). Noise is introduced by making a random shift in

the pursuit angle of up to 50%.

When flying against one missile, the aircraft is able to control only the turn angle.

4.3 The Learning Algorithms

The following sections discuss the details of the experiments with the three learning algo-

rithms and motivate the need for a learning strategy combining eager learning (as a teacher)
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and lazy learning (as a performer). We explored several algorithms to determine the ap-
plicability of memory-based learning to control problems in general, and pursuit games
in particular. We began by examining the ability of {)-learning to learn to play the eva-
sive maneuvers game. We had to adapt (J-learning because of the large, continuous state
space, which resulted in a memory-based variant of standard ¢)-learning. We then tried a
traditional memory-based learning approach, nearest neighbor. Finally, we experimented
with an eager learning method, genetic algorithms, to compare with the two memory-based

methods.

4.3.1 ()-Learning for Evasive Maneuvers

)-learning solves delayed reinforcement learning problems by using a temporal difference
(TD) learning rule [363]. TD methods usually assume that both the feature space and the
variables being predicted are discrete [332, 342]. ()-learning typically represents a problem
using a lookup table that contains all states, which naturally causes problems with large,
continuous state spaces such as those encountered in differential games. We therefore had to
develop a method for predicting the rewards for some state-action pairs without explicitly
generating them. The resulting algorithm was a memory-based version of @)-learning.
Rather than constructing a complete lookup table, our implementation of Q-
learning stores examples similar to the set of instances produced for a method such as k-NN
(Figure 4.3). It begins by generating a set of actions at random for a particular game; these

actions do not have to result in successful evasion. Instead, the algorithm applies a payoff
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Figure 4.3: Architecture for Q learning.

function (defined below) to determine the reward for that sequence of state-action pairs.
Initially, it stores the actual payoff values with these pairs. After generating the first set of
pairs, learning proceeds as follows.

First, assuming that neighboring states will require similar actions, we specify two
distance parameters: one for the states and one for the actions (d; = 0.01 and d; = 0.005
respectively), noting that all distances are normalized. The purpose of these parameters is
to guide a search through the instance database. The system begins an evasive maneuvering
game by initializing the simulator. The simulator passes the first state to the state matcher

which locates all of the states in the database that are within d; of the current state. If the
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state matcher has failed to find any nearby states, the action comparator selects an action
at random. Otherwise, the action comparator examines the expected rewards associated
with each of these states and selects the action with the highest expected reward. The
resulting action is passed to the simulator, and the game continues until termination. It
also has a probability (0.3) of generating a random action regardless of what it finds in the
table. This permits it to fill in more of the database; i.e., it is exploring the state space
as it is learning. It passes the resulting action to the simulator, and the game continues
until termination, at which point the simulator determines the payoff. The @) function then
updates the database using the complete game.

At the end of a game, the system examines all of the state-action pairs in the
game. It stores in the database any state-action pair that is new, along with the reward

from the game. If the pair already exists, the predicted reward is updated as follows:

Q(s,a) = (1 =)Q(s,a) + nlp +7Q(s, 7(s))]

where ()(s,a) is the predicted reward for state  with corresponding action a, 7 is a learning
rate, p is the actual reward, v is a discount factor, and Q(s',7(s’)) is the maximum @ value
for all actions associated with state s’. State s’ is the state that follows when action « is

applied to state s. Reward is determined using the payoff function in [153], namely

_ ] 1000; if £ evades the pursuers
~ | 10¢; if E is captured at time ¢.

Each of the pairs in the game are then compared with all of the pairs in the database. If

the distance between a stored state and action are less than dy and ds respectively for some
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state-action pair in the game, then the stored state-action pair’s ¢} value is updated.

4.3.2 1-NN for Evasive Maneuvers

Memory-based learning is a classical approach to machine learning and pattern recognition,
most commonly in the form of the 1-nearest neighbor algorithm [3, 10, 90, 119, 292, 293, 366].
1-NN is rarely used for Markov decision problems, so we had to represent the pursuit game
in a format amenable to this algorithm. Further, to be successful, a memory-based approach
must have a database full of correctly labeled examples, because 1-NN expects each example
to be labeled with its class name. The difficulty here, then, is how to determine the correct
action to store with each state.

We formulate Markov decision problems as classification problems by letting the
state variables correspond to features of the examples, and the actions correspond to classes.
Typically, classification tasks assume a small set of discrete classes to be assigned. We do
not require quantization of the state space or the action space, but instead use interpolation
so that any action can be produced by the 1-NN classifier.

In order to know the correct action to store with each state, we must at least wait
until we have determined the outcome of a game before deciding how to label each step.
(One example can be added at each time step). However, even after a successful game
where F evades P, we cannot be sure that the actions at every time step were the correct
ones; in general, they were not. The architecture for our nearest-neighbor system is shown

in Figure 4.4.
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Figure 4.4: Architecture for memory based learning.

To construct an initial database of instances, the simulator generated actions ran-
domly until F evaded P for a complete game. The corresponding state-action pairs for
that engagement were then stored. At that point, 1-NN was used for future games. States
were passed by the simulator to a classifier which searched the database for the nearest
neighbor and selected an action by averaging the associated actions. If 1-NN failed to pro-
duce a game that ended in successful evasion, the game was replayed with the example
generator randomly selecting actions until play ended in evasion. Once evasion occurred,
the corresponding sequence of states and actions (i.e., the complete game) was stored in
the database.

Evasion usually occurred after 20 time steps since it was rare in the memory-
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based learner that the pursuers’ speeds dropped below the threshold. Thus a stored game
typically consisted of 20 state-action pairs. Our implementation uses Fuclidean distance to
find the nearest neighbor and the arithmetic mean of their control values to determine the

appropriate actions. Distance is computed as follows:

dist( state, instance) = Z (Stateasers — INSLANCEL 1, )?
Yattrib

Then the nearest neighbor is determined simply as

nn = arg min {dist(state, instance)}

instance

If F fails to evade when using the stored instances, we reset the game to the starting position
and generate actions randomly until F succeeds. We also generate random actions with
probability 0.01 regardless of performance. The resulting set of examples is added to the
database.

For the initial experiments using k-nearest neighbor, we varied £ between 1 and
5 and determined that & = 1 yielded the best performance. (This was not completely
surprising in that averaging control values with £ > 1 tended to “cancel out” values that
were extreme. For example, if three instances indicated turns of 90 degrees left, 5 degrees
right, and 85 degrees right, the selected action would have been no turn. Of course, we are
averaging “cyclic” values where, for example, 359 degrees is close to 1 degree. Improving
the averaging process might enable £ > 1 to perform better.) Examples consisted of games
generated with random actions that resulted in success for F; thus we could assume that

at least some of E’s actions were correct. (In random games, every action taken by F
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is selected at random according to a uniform probability distribution; the database is not

checked for nearby neighbors.)

4.3.3 GA for Evasive Maneuvers

Grefenstette et al. demonstrated that genetic algorithms perform well in solving the single
pursuer game. Typically, GAs use rules called classifiers, which are simple structures in
which terms in the antecedent and the consequent are represented as binary attributes
[50, 167]. The knowledge for the evasive maneuvers problem requires rules in which the
terms have numeric values; we therefore modified the standard GA representation and
operators for this problem, using a formulation similar to [153].

We call a set of rules a plan. For the GA, each plan consists of 20 rules with the

general form:

IF low; < state; < highy A ... Alow, < state, < high,,

THEN actionq,...,action,,

Each clause in the antecedent compares a state variable to a lower and upper bound. “Don’t
care” conditions can be generated by setting the corresponding range to be maximally
general. To map this rule form into a chromosome for the GA, we store each of the attribute
bounds followed by each action. For example, suppose we have the following rule (for the

single pursuer problem):

IF 300 < speed < 350 A
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25 < previous turn < 90 A

3 < clock <10 A

875 < pursuer speed < 950 A

8 < pursuer bearing < 10 A
180 < pursuer heading < 270 A
300 < pursuer range < 400

THEN  turn = 45

The chromosome corresponding to this rule would be:

[300 350 25 90 3 10 875 950 8 10 180 270 300 400 45]

Associated with each rule is a rule strength, and associated with each plan is a plan
fitness. A population may contain up to 50 plans, all of which compete against each other
in the GA system. Strength and fitness values, described below, determine the winners of
the competition.

The genetic system consists of two major components: an inference system and a
learning system (Figure 4.5). The inference system consists of a rule matcher and a rule
specializer. The rule matcher examines the set of rules in the current plan to determine
which rule to fire, and it selects the rule or rules with the most matches. In the event of a
tie, it selects one of the tied rules using a random selection scheme based on the strengths
of the rules.

Initially, all rules are maximally general. As a result, all rules will match all states,
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and one rule will be selected with uniform probability. Following each training game, the
rules that fired are generalized or specialized by the GA, using hill-climbing to modify the

upper and lower limits of the tests for each state variable as follows:

LB, = LB; + ﬁ(statei — LBZ')

UB; = UB; — ﬁ( UB; — statei)

where L B; and U B; are the lower and upper bounds, respectively, of the rule that fired for
state; and 3 is the learning rate. If the current state is within the bounds of the predicate,
the bounds shift closer to the state based on the learning rate (§ = 0.1 for this study). On
the other hand, if the state is outside the bounds, only the nearer bound is adjusted by
shifting it toward the value state;. Following a game the strengths of the rules that fired are
updated based on the payoff received from the game (the same payoff used in @-learning).

Given the payoff function, the strength for each rule that fired in a game is updated

using the profit sharing plan [149] as follows:

p(t) = (I—cut—1)+cp
ot) = (1=-c)o(t=1)+c(p(t) - p)?

strength(t)

pt) = a(t)

where ¢ is the profit sharing rate (¢ = 0.01 for our experiments), p is the payoff received, u
is an estimate of the mean strength of a rule, and o is an estimate of the variance of rule

strength. Plan fitness is calculated by running each plan against a set of games generated
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at random according to a uniform probability distribution, and computing the mean payoff

for the set of tests. During testing, the plan with the highest fitness is used to control F.
The heart of the learning algorithm lies in the application of two genetic opera-

tors: mutation and crossover. Rules within a plan are selected for mutation using fitness

proportional selection [143]. Namely, probability of selection is determined as

strength, (t)

Z strengthg(t)

vserules

Pr(r) =

where rules is the set of rules in a plan and r is the rule of interest. Probability of selection
for plans is determined similarly using plan fitness rather than rule strength.

After selection, each clause on the left hand side of a rule is mutated according to
a fixed mutation probability. Clause mutation results in one of the bounds being changed
at random, keeping the ranges consistent (i.e., if the lower bound is changed to be greater
than the upper bound, then the bounds are swapped). The mutated rule then replaces the
rule with the lowest strength in the same plan. We selected a mutation probability of 0.01.

Crossover operates between plans. After each engagement, two plans are se-
lected for crossover using fitness proportional selection, with a likelihood determined by
the crossover rate. The rules in these plans are sorted by strength, and a new plan is gen-
erated by selecting m rules from one plan and (20 — m) rules from the other plan. The new
plan replaces the least fit plan in the population. Our crossover probability was 0.8.

In implementing a GA for sequential decision problems, many interesting open

problems remain. First, several hill-climbing operators are available for supplementing
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the search process. Our algorithm only modified the bounds on the state variables, but
other options include rule merging, rule splitting, rule deletion, and rule insertion. Second,
the credit assignment problem remains a significant problem. We chose to use the profit
sharing plan, but other methods such as bucket brigade and combined methods could be
used instead. In one combined approach, “bridges” may be constructed between distance
points in a chain of rules that fire. Normal bucket-brigade is used through the complete
chain and across the bridges, which results in more rapid reinforcement of rules that fired

early in the process.

4.4 Results

For each of the algorithms and for both variations of the evasive maneuvers game, we ran ten
experiments. To produce learning curves, we combined the results of the ten experiments
by averaging the algorithm’s performance at regular intervals. We estimated the accuracy
of each algorithm by testing the results of training on 100 uniformly distributed, randomly
generated games.

Uniform sampling of the perimeter for starting the game was selected to provide
good coverage of possible games. In the single pursuer game, if we had partitioned the
starting positions into 100 evenly spaced positions, these positions would have only differed
by 3.6°. In the two pursuer game, using the same resolution would require 4,950 starting
configurations. Using 100 random configurations sampled 2% of the space which may raise

a concern that failed configurations (i.e., configurations where F is not able to evade) may
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not have been sufficiently sampled. We believe this is not the case for the following reason.

When a game is started, P1 and P2 head directly at E. Given the size of the
airspace and the speed of the players, the only way for ¥ to be captured on the first move is
if £ heads directly at one of the pursuers at full speed. Selecting a heading, initially, away
from both pursuers (i.e., at an angle that bisects the angle between the pursuers) will force
the paths of the pursuers to begin to converge. In the worst case, the initial positions of
the pursuers will be at 180° angles. If F moves at a 90° angle to both pursuers, then both
pursuers will fall behind F. Since the pursuit strategy is to anticipate a future position of
FE and aim there, the relative angle of attack for the two pursuers will be even less than
if they aimed directly at the current position of E. This actually gives F/ an advantage
and enables F to further reduce the angles of attack until the problem reduces to a single
pursuer game which, as we will see below, can always be won by F 1,

The results of the ¢)-learning experiments were encouraging and led to the next
phase of our study in which we applied a traditional memory-based learning method, 1-
nearest neighbor (1-NN), to the evasive maneuvers task. When we found that 1-NN did not
work well, we considered an eager learning algorithm, the genetic algorithm. This choice
was motivated by the previous work by Grefenstette et al. which indicated the GA was
capable of solving this type of task [153]. In fact, we were able to replicate those results

for the one-pursuer problem and scale up the GA so that it still worked quite well for the

4 We will see in Chapter 5 that, in fact, we are able to learn strategies for F that result in 99%
to 100% evasion when tested against 10,000 random games. Given starting configurations at 3.6°
intervals, 10,000 games provides a good sampling of these initial configurations.
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Figure 4.6: Performance of (J-learning on one- and two-player pursuit games.

two-pursuer game.

4.4.1 Performance of ()-Learning

In the one-pursuer task, Q-learning did extremely well initially (Figure 4.6), reaching 80%
evasion within the first 250 games (i.e., approximately 5000 examples, given up to 20 exam-
ples per game), but then performance flattened out. Peak performance (when the experi-
ments were stopped) was about 90%. There was an apparent plateau between 250 games
and 1500 games where performance remained in the range 80%—-85%. Then performance

jumped to another plateau at 90% for the remainder of the experiment.
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)-learning’s performance on the two-pursuer task was also encouraging. It reached
60% evasion within 250 games and continued to improve until reaching a plateau at 80%.
This plateau was maintained throughout the remainder of the experiment. Because our
implementation of @)-learning uses a form of memory-based learning, these results led us to
believe it might be possible to design a more traditional memory-based method (i.e., k-NN)
to solve the evasion task. At first, however, our hypothesis was not supported, as we see in

the next section.

4.4.2 Performance of 1-NN

Figure 4.7 shows how well 1-NN performed on the two versions of the evasive maneuvers
game as the number of training examples (and games) increased. This figure compares the
performance on the two problems with respect to the number of games stored, where a
game contains up to 20 state-action pairs as examples. These experiments indicate that
the problem of escaping from a single pursuer is relatively easy to solve. Nearest neighbor
developed a set of examples that was 95% successful after storing approximately 1,500
games, and it eventually reached almost perfect performance. The distance between P and
FE at the start of the game guarantees that escape is always possible. However, the results
were disappointing when F was given the task of learning how to escape from two pursuers.
In fact, the memory-based learning approach had difficulty achieving a level of performance
above 45%. This demonstrates that the two-pursuer problem is significantly more difficult

for 1-NN.
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One possible reason for 1-NN’s poor performance on the two-pursuer task is pres-
ence of irrelevant attributes, which is known to cause problems for nearest neighbor algo-
rithms [5, 293]. We experimented with a method similar to stepwise forward selection [112]
to determine the set of relevant attributes. However, determining relevant attributes in a
dynamic environment is difficult for the same reason that determining good examples is
difficult: we do not know which attributes to use until many successful examples have been
generated.

Another possible reason for the poor performance of 1-NN on the two pursuer
task is the size of the search space. For the one-pursuer problem, the state space contains
~ 7.5 x 10'° points, whereas for two-pursuer evasion, the state space has ~ 2.9 x 10
points. The one-pursuer game showed good performance after 235 games; to achieve similar
coverage of the state space in the two-pursuer game would require roughly 5.4 x 10%? games
(assuming similar distributions of games in the training data).

But the most likely reason for 1-NN’s troubles, we concluded, was that we were
generating bad examples in the early phases of the game. As stated above, a memory-based
learner needs to have the “correct” action, or something close to it, stored with almost every
state in memory. OQur strategy for collecting examples was to play random games at first,
and to store games in which F succeeded in escaping. However, many of the actions taken
in these random games will be incorrect. F might escape because of one or two particularly
good actions, but a game lasts for 20 time steps, and all 20 state-action pairs are stored.

Our memory-based learning approach had no way (at first—see Section 5.4) to throw away
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examples; therefore, collecting too many bad examples could have resulted in it getting

stuck forever at the low level of performance.

4.4.3 Performance of the GA

We show the results of the GA experiments in Figure 4.8. As with 1-NN, the GA performs
well when faced with one pursuer. In fact, it achieves near perfect performance after 15,000
games and very good performance (above 90%) after only 5,000 games. The number of
games is somewhat inflated for the GA because it evaluates 50 plans during each generation,
thus we counted one generation as 50 games. In fact, the simulation ran for only 500
generations (i.e., 25,000 games) in these experiments.

The most striking difference in performance between 1-NN and the genetic algo-
rithm is that the GA learned excellent strategies for the two-pursuer problem, but nearest
neighbor did not. ¢J-learning’s performance, though much better than 1-NN. is still inferior
to the GA. Indeed, the GA achieved above 90% success after 16,000 games (320 generations)

and its success rate continued to improve until it reached approximately 95%.

4.4.4 Comparing One- and Two-Pursuer Evasion

Figure 4.9 shows a sample game in which F evades a single pursuer, which gives some
intuition of the strategy that F had to learn. Essentially, £ just keeps turning sharply so
that P will be unable to match its changes of direction. Figure 4.10 then shows a sample

game in which I evades two pursuers. Intuitively, the strategy by F is the same except
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vader

Pursuer

Figure 4.9: Sample game where F successfully evades one pursuer.

the goal for F is to have the trajectories of both P1 and P2 collapse to a single trajectory.
At that point, the problem reduces to a single-pursuer game. This collapse, in fact, is
experienced in this game.

Although all three algorithms did well on the single-pursuer task, a closer examina-
tion of the results reveals some interesting differences. Nearest neighbor eventually reached
a successful evasion rate of 97%—-98%, and it reached 93% evasion after only 10,000 games.
This was superior to ¢)-learning’s asymptotic performance, and 1-NN performed better
than the GA through 5,000 games. Of course, the GA eventually achieved near perfect
performance. )-learning also learned rapidly in the beginning, exceeding the GA’s ability

through the first 3,000 games, but then its learning slowed considerably. In fact, at the
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Figure 4.10: Sample game where F successfully evades two pursuers.

Table 4.1: Comparing learning for the evasive maneuvers task at convergence.

Algorithm | One Pursuer | Two Pursuers
1-NN 96.9% 42.3%
()-learning 93.3% 81.7%
GA 99.6% 94.5%

point the GA was performing nearly perfectly, J-learning’s performance was only around
85%. After twice as many games as the GA, @-learning (now achieving 91% evasion) was
still performing considerably poorer than both the GA and 1-NN.

Table 4.1 shows the results of comparing the three algorithms on the two evasion
tasks at convergence. We considered the algorithms to have converged when they showed

no improvement through 500 games (for 1-NN and @-learning) or through 100 generations
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(for the GA). Recognizing the difficulty of the two-pursuer task (relative to the one-pursuer
task), we now see profound differences in the performance of the three approaches. (See
Figure 4.10 for a sample game where E evades two pursuers.) As before, the GA started
slowly, being outperformed by both I-NN and @-learning. After about 3,000 games, the
GA began to improve rapidly, passing 1-NN almost immediately, and catching @-learning
after an additional 5,000 games. The end results show the GA surpassing both J-learning
(by a margin of 11%) and 1-NN (by a margin of 52%). The more striking result, though, is
the poor performance of 1-NN for the two-pursuer game. In the next chapter, we set out

to improve this figure.

4.5 Summary

In this chapter, we compared three distinct learning algorithms on two pursuit games.
The purpose of this study was to explore the applicability of different types of learning
approaches to a difficult problem of sequential decision making. Although it is difficult to
provide a fair comparison between such diverse algorithms, we believe that the results are
suggestive of likely advantages and disadvantages for each algorithm on this type of task.
We note that the types of games studied in this experiment are somewhat limited.
Specifically, we defined all starting configurations of the games to place the pursuers at
equal distances from the evader. While it is reasonable to expect F to detect P at the
same distance, a more realistic game would have the pursuers approaching in a staggered

configuration. In addition, except in a dogfight against multiple pursuers, the missiles
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can usually be expected to originate from the same launch site. Finally, the dynamics
of the players were not realistically modeled. In particular, we permitted instantaneous
turns (within the turn limitations) rather than modeling angular acceleration and physical
limitations of the players.

The most prominent result of the experiments reported in this chapter is that
simple memory-based approaches such as nearest neighbor and traditional @-learning ap-
proaches require some modification to work well in a difficult domain such as differential
game playing. Specifically, problems with large state and action spaces had to be addressed
for both algorithms. For nearest neighbor, the definition of a class had to be modified to
include a near match and to permit multiple dimensions of the class (e.g., speed, angle, and
countermeasures). For Q-learning, the traditional lookup table was not capable of model-
ing the state and action space; therefore, a function approximator (i.e., a memory-based
method) was required to cover the space. In spite of problems anticipated in using memory
based approaches to approximate value functions with @-learning [53], strong performance
was still demonstrated.

In the next chapter, we discuss an additional modification in which we couple a
second learning algorithm—the genetic algorithm—to 1-NN as a teacher. Because the GA,
when run on two difficult problems, consistently performs well on these problems, we expect
the rules generated by the GA to be useful in filtering out the effects of irrelevant attributes
and in generating strong positive examples. In Chapter 6, we provide another variation of

nearest neighbor in which we associate @) values with each of the examples (similar to the
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implementation of @-learning described in this chapter); however, we focus on co-learning

to approximate solutions to differential games.
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Chapter 5

A Teaching Method for
Memory-Based Control

5.1 Using a Teacher in Reinforcement Learning

When two people learn a task together, they can both benefit from the different skills that
each brings to the table. The result is that both will learn better than they would have on
their own. Likewise, machine learning methods should be able to work together to learn how
to solve difficult problems. This chapter describes how a memory-based learning algorithm
and a genetic algorithm can work together to produce better solutions than either method
could produce by itself.

As our experiments show, we were successful at developing a method to solve the
difficult reinforcement learning task of one airplane attempting to evade two missiles. The
key idea behind our success was the combined use of both memory-based learning and

GAs. We observed after comparing two memory-based methods (1-NN and an adaptation
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of ()-learning) with genetic algorithms that memory-based methods can learn to solve the
task, but were dependent on having good examples in the memory base. In this chapter,
we demonstrate an improved learning agent that first uses a GA to generate examples, and
then switches to 1-NN after reaching a certain performance threshold. Our experiments
demonstrate significant improvement in the performance of memory-based learning, both
in overall accuracy and in memory requirements, as a result of using these techniques. The
combined system also performs better than the GA alone, demonstrating how two learning
algorithms working together can outperform either method when used alone.

Initially, we were surprised with 1-NN’s poor performance on the two-pursuer task.
In an attempt to improve its performance, we considered how to provide “good” examples
to 1-NN, based on our hypothesis that the primary cause of its poor performance is the
poor quality of its training experiences. For memory-based learning to work effectively on
control tasks, the stored examples must have a high probability of being good ones; i.e.,
the action associated with a stored state should be correct or nearly correct. Determining
the value or worth of examples is an instance of the credit assignment problem. Because of
this credit assignment problem, and because of the difficulty of the tasks we studied, initial
training is difficult for a memory-based learner. In contrast, a GA initially searches a wide
variety of solutions, and for the problems we studied tends to learn rapidly in the early
stages. These observations suggested the two-phase approach that we adopted, in which we
first train a GA and then use the trained GA to provide examples to bootstrap 1-NN.

It is reasonable to question whether it is possible to exceed the capabilities of the
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GA on this task. Specifically, Chapter 4 demonstrated that the GA was capable of reaching
approximatly 94.5% evasion against two pursuers, but is it even possible for the aircraft to
evade the missiles the other 5.5% of the time? We will demonstrate in this chapter that it

is possible to evade nearly 100% of the time.

5.2 Methods in Learning with a Teacher

Before discussing our approach to bootstrapping the learning process in 1-NN, we consider
other work that has been done in the area of training and machine learning. We focus on
work related specifically to reinforcement learning, recognizing that the concept of using a

teacher is applicable in other teaching domains as well.

5.2.1 ACE/ASE

Early work in reinforcement learning focused on developing simple neural networks and
linear evaluation functions to solve control problems. One of the most successful approaches
incorporated two separate neuro-controllers coupled together. Barto, Sutton, and Anderson
described an adaptive critic element that provides a predicted reinforcement signal to a
separate associative search element responsible for determining appropriate actions in a
control problem [36].

The associative search element (AsE) mapped state information into an appropriate
control signal to maximize expected reinforcement. The reinforcement signal is used with

information from previous actions to modify weights in a linear threshold unit. Specifically,
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the output signal is determined as follows:

y(t)=f [Zj: w;(t)a;(t) + noise(t)

Generally, the function f() implements a simple threshold function.

)+, it >0
f(x)—{ 1, ifz<0

Learning consists of updating the weights, w;,
wi(t+ 1) = wi(t) + ar(t)e;(t)

where « is a learning rate, r(¢) is the reinforcement received at time ¢, and e;(¢) is the

eligibility at time t defined by
ei(t) =de;(t—1)+ (1 = 0)y(t — Day(t — 1)

where ¢ is a decay rate. The eligibility is analogous to a momentum term which tends to
smooth learning and continue the learning progress in a particular direction.

Barto et al. argue that, in a delayed reinforcement task, intermediate reinforce-
ment signals stabilize the learning process. Such intermediate signals are provided by the
second element—the adaptive critic element (ACE). ACE begins by computing a prediction

of future reinforcement, given as

where v; are updatable weights, similar to AsE. These weights are updated using the

following:

vi(l 4 1) = vi(t) + Blr(1) +yp(1) — p(t = D)]zi(1)
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where 3 is a learning rate, v is a discount factor, and r(?) is the current reinforcement

signal. Similar to ASE, ACE also has an eligibility trace, this one given by
()= Az (t—1)+ (1 = Nay(t = 1)

where A is a decay rate. Given the prediction of future reinforcement, ACE then calculates an
estimate of current (i.e., intermediate) reinforcement that replaces r(¢) is the ASE equations.
This estimate is given by

() = r(t) +yp(t) = p(t — 1)

This method was one of the first reinforcement learning methods that used two
separate learning structures to complement one another. Although not traditionally re-
garded as a teaching architecture, this method suggests that one learning method can be
used to “bootstrap” another learning method. We describe such an approach in Section

5.3.

5.2.2 Adding a Teacher in Reinforcement Learning

Extending the work of Barto et al. on AcCE/AsE, Clouse and Utgoff provided a method
for incorporating a separate teacher to guide the learning process [81]. They also explored
a modification to ¢J-learning using a similar teacher. In both cases, eligibility traces were
used to smooth the learning process. A separate teacher monitored the performance of
the learner, and when it felt intervention was necessary, the control signal provided by the
learner was replaced with the control signal from the teacher. At that point, the eligibility

traces were restarted using the teacher’s control signal.
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Specifically, the ASE/ACE weight update equations are modified such that, when

the teacher’s signal is used, the eligibilities are reset using the teacher’s signal as follows:

vi(t + 1) = vi(t) + Br(t)z(1)

and

wi(t + 1) = wi(t) + af(t)y(t)zi(t)
The current value of 2;(¢) also becomes the starting value for z;(¢), and y(t)x;(t) becomes
the starting value for e;(?).

Their implementation of ¢)-learning uses several linear threshold units with update
equations similar to the ACE equations given above. As with ACE, their implementation
of ¢)-learning includes an eligibility trace which is reset by the teacher. The reinforcement
learning with a teacher was applied to two control problems—the cart and pole problem and
a race track navigation problem. In both cases, significant speedup over using reinforcement

learning without a teacher was demonstrated.

5.2.3 Phases of Learning

Research by Dorigo and Colombetti focused on what they call the “three stages of develop-
ment” consisting of a baby phase, a young phase, and an adult phase [84, 85, 115]. During
the baby phase, immediate reinforcement is provided by a trainer after every action. This
continues until the learner reaches some performance threshold. At that point, the learner
passes into the young phase. In this phase, reinforcement is provided only by the environ-

ment and is generally delayed. After a second performance threshold is passed, the agent
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passes into the adult phase in which no learning takes place—only the learned strategies are
applied.

Dorigo and Colombetti applied a distributed classifier architecture, which they
call ALECSYS, to demonstrate this approach to learning. They implemented ALECSYS in a
simulated and a real robot, which they call AutonoMouse. Due to training limitations in the
real robot, they applied two approaches to reinforcement—reward-the-intent and reward-
the-result. The former method compares actions to an ideal environment, thus relying on an
external oracle to evaluate performance. The latter method takes the actual reinforcement
taken from the environment. These methods were tested on several navigational experiments
in which the robot attempt to approach a light or, depending on a noise signal, decide to
either approach a light or flee from the light. The most interesting result from this work is
that they succeeded in training an actual robot using both approaches rather than limiting

their experiments to a simulated environment.

5.2.4 Incorporating Advice Into Reinforcement Learners

Other work in teaching and reinforcement learning has been focusing on coupling external
advice into the learning process as a way of speeding up learning. One approach studied
by Gordon and Subramanian uses explanation based learning to devise a set of operational
rules for obstacle avoidance in a noisy environment [146, 147]. In this approach, high-level
domain-specific and spatial knowledge is coded into rules and then operationalized into

low-level reactive rules based on the stated goals of the problem. These rules generally are
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not sufficient to solve the problem but provides useful rules in various situations. Gordon
and Subramanian use these initial rules to seed a genetic algorithm which then refines the
rules to solve the specific problem.

Note this approach differs from previous teaching approaches in that only high-
level advice is provided rather than specific instructions to be carried out during the task.
Maclin and Shavlik also provide an advice-taking reinforcement learner [218]. In their
system, they use a connectionist (J-learner that interacts with an external advisor in five

steps:

1. The agent requests and receives advice from the advisor.

2. The advice is converted into an internal representation.

3. The advice is converted into a usable form.

4. The reformulated advice is integrated into the agent’s knowledge.

5. The value of the advice is evaluated.

Maclin and Shavlik’s connectionist )-learner uses the notion of a “knowledge-
based neural network” KBANN. In a KBANN network, each node of the network represents
a Boolean concept or proposition. Connections of the network emulate AND and ORrR con-
nectives by assigning weights and biases to yield the desired effect. Hidden nodes are
incorporated to capture information on state. Thus, as advice is received, that advice is
encoded as a KBANN network and attached to the current network. Weights are modified

from there using the ¢)-update procedure.
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The KBANN advice-taker was tested on the Pengo task as studied by Chapman
and Agre (called Pengi in their work) [75]. Pengo involves an agent moving obstacles in a
field with food and enemies. The object is to collect the most food. Obstacles hitting food
destroys food, and enemies can capture food as well. Typically, the enemies follow a fixed
strategy. When evaluated on the ability to collect food, eliminate enemies, and avoiding
enemies, Maclin and Shavlik found the advice-taker able to survive longer and to collect

more food than when advice was not used.

5.2.5 Learning with a Helpful Teacher

Given that approaches can be devised in which a teacher can be coupled with a machine
learning algorithm to learn a set of concepts or to learn a task, an interesting question
arises as to how effective the teacher must be for the learner to learn that task. Much work
in the area of computational learning theory has focused on the problem of assessing the
complexity of a learning task in terms of the samples required to learn that task (called the
sample complexity).

Salzberg et al. and Heath [296, 166] considered an alternative to the Probably Ap-
proximately Correct ( PAC) learning model [353, 354] in which a Helpful Teacheris providing

good examples to the learning. Their research focused on answering four questions:

1. What is the minimum number of examples needed to learn a concept?

2. What is the minimal representation for a given concept?

3. What is the most effective way to teach a concept?
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4. What is the effect of providing additional examples to a partially constructed repre-

sentation?

The Helpful Teacher knows the algorithm to be used by the learning and provides examples
to the learning in the best way possible for learning the task. In this model, “best” is
defined to be the minimal set of examples represented in an appropriate fashion for the
learner to learn the task.

Salzberg et al. and Heath apply this model to determining best case sample sizes
for nearest neighbor classification when learning several geometric concept classes. For
example, they prove that only two examples are required for nearest neighbor to learn a
concept exactly defined by a single hyperplane in any number of dimensions. They also
prove that, given a convex polytope with n faces, only n + 1 examples are required to
learn the concept exactly. They also apply the approach to approximate learning in general
function approximation and demonstrate the approach with nearest neighbor applied to
learning a parabola.

The significance of this research lies, not with the definition of a new approach
to teaching in machine learning, but in characterizing the benefits of teaching in terms of
the complexity of the underlying task. The approach was motivated by the fact that many
results based on PAC-learning provided sample complexities that were significantly higher
than experimental results. This is because PA(C-learning provides a worst-case analysis. The
Helpful Teacher model, on the other hand, provides a best-case analysis and helps bound

the complexity of the learning task. In fact, Salzberg and Heath have demonstrated that
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many experimental results tend to more closely follow Helpful Teacher complexity bounds

than PAC complexity bounds [166].

5.3 Bootstrapping Nearest Neighbor

Given the potential benefit of using a teacher in learning tasks, we sought to provide a
teacher to 1-NN to improve 1-NN’s performance. We did not have a priori knowledge of
the correct actions for the evasive maneuvers task with two pursuers, therefore, we decided
to use a second learning algorithm to bootstrap 1-NN. Our bootstrapping idea requires
that one algorithm train on its own for a time, and then communicate what it has learned
to the second algorithm. At that point, the second algorithm takes over. Later, the first
algorithm adds additional examples. This alternation continues until the combined system
reaches some asymptotic limit. Because the GA learned much better for the two-pursuer
game, we selected it as the first learner, with 1-NN second. Details of the communication
or “teaching” phase are given in Figure 5.1. Using this approach, the examples continue to
accumulate as the genetic algorithm learns the task.

The results of training 1-NN using the GA as the teacher are shown in Figure
5.2. We call this system GAMB because it first uses a GA and then uses a memory-based
learning algorithm (i.e., 1-NN). All points shown in the graph are the averages of 10 trials.
The first threshold was set to 0%, which meant that the GA provided examples to 1-NN
from the beginning of its own training. The second threshold was set to 50% to permit

the GA to achieve a level of success approximately equal to the best performance of 1-NN
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algorithm GAMB;
init population;

do
run genetic algorithm; /* Run the GA for one generation */
perf = select best plan; /* Determine performance of GA */
if perf > 0 then /* Evaluate performance against 6 */
doi=1,n /* For our experiments n = 100 */
evade = evaluate best; /* Determine if best plan evades */
if evade then
store examples; [* Stores up to 20 examples */
endif;
enddo;
endif;
enddo;
evaluate memory-base; /* Test on 100 games */

end;

Figure 5.1: Pseudocode for GAMB.

on its own. Thus only plans that achieved at least 50% evasion were allowed to transmit
examples to 1-NN. Finally, the threshold was set at 90% to limit examples for 1-NN to
games in which a highly trained GA made the decisions about which examples to store.
When 6 = 0%, GAMB almost immediately reaches a level equal to the best perfor-
mance of 1-NN on its own (around 45%). From there, it improves somewhat erratically but
steadily until it reaches a performance of approximately 97% success. The figure shows per-
formance plotted against the number of examples stored. The number of examples stored
here is higher than the number of examples stored for 1-NN alone. If we halt learning
after 50,000 examples (which is consistent with the earlier 1-NN experiments), performance
would be in the 85% range, still an enormous improvement over 1-NN’s performance, but

not better than the GA on its own.
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When 6 = 50%, GAMB starts performing at a high level (above 70%) and quickly
exceeds 90% success. After 50,000 examples, GAMB obtained a success rate above 95%,
with some individual trials (on sets of 100 games generated according to a uniform distribu-
tion) achieving 100% success. In addition, the learning curve is much smoother, indicating
that 1-NN is probably not storing many “bad” examples. This confirms, in part, our earlier
hypothesis that 1-NN’s fundamental problem was the storage of bad examples. If it stores
examples with bad actions, it will take bad actions later, and its performance will continue
to be poor whenever a new state is similar to one of those bad examples.

Finally, with 8 = 90%, GAMB’s performance was always superb, exceeding the
GA’s 90% success rate on its first set of examples. GAMB converged to near-perfect per-
formance with only 10,000 examples. One striking observation was that GAMB performed
better than the GA throughout its learning. For example, when 8 = 0%, GAMB achieved
50-80% success while the GA was still only achieving 2-10% success. Further, GAMB
remained ahead of the GA throughout training. Even when 6 = 90%, GAMB achieved
98-100% evasion while the GA was still only achieving around 95% evasion. Neither the
GA nor 1-NN were able to obtain such a high success rate on their own, after any number

of trials.

5.4 Reducing Memory Size

Our bootstrapping algorithm, GAMB, performs well even when only a small number of

examples are provided by the GA, and it even outperforms its own teacher (the GA) during
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training. But the amount of knowledge required for the GA to perform well on the task
was quite small—only 20 rules are stored as a single plan. The number of examples used
by GAMB, though small in comparison with 1-NN, still requires significantly more space
and time than the rules in the GA. Consequently, we decided to take this study one step
further, and attempted to reduce the size of the memory store during the memory-based
learning phase of GAMB [321, 377].

In the pattern recognition literature, e.g., in [98], algorithms for reducing memory
size are known as editing methods. However, because memory-based learning is not usually
applied to control tasks, we were not able to find any editing methods specifically tied to
our type of problem. GAMB performs quite well as described above, and we would like to
reduce its memory requirements without significantly affecting performance. We therefore
modified a known editing algorithm for our problem, and call the resulting system GAME

(GA plus memory plus editing).

5.4.1 Editing Methods for Nearest Neighbor

Early work by Wilson [373] showed that examples could be removed from a set used for
classification, and suggested that simply editing would frequently improve classification
accuracy (in the same way that pruning improves decision trees [235]). Wilson’s algorithm
classifies each example in a data set with its own k nearest neighbors. Those points that
are incorrectly classified are deleted from the example set, the idea being that such points

probably represent noise.
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algorithm Fdit-Incorrect;
Vi € memory-base do;
if class(i) # class(k-NN(7)) then
delete(i,memory-base);
endif;

end;

Figure 5.3: High-level pseudocode of Wilson editing algorithm.

Procedurally, Wilson’s algorithm worked as follows. Editing could proceed fol-
lowing storage of all examples or at periodic intervals. Wilson considered the case where
all of the training examples had been stored. Then each example was classified using k-
nearest neighbor as if the example did not exist in the database. Let class(¢) return the
class associated with instance i. Let class(k-NN(7)) return the class associated with the &
nearest neighbors of instance . If class(i) # class(k-NN(i)), then delete instance ¢ from the
database. This is shown procedurally in Figure 5.3.

Tomek [349] modified this approach by taking a sample (> 1) of the data and
classifying the sample with the remaining examples. Iditing then proceeds using Wilson’s
approach. Specifically, Wilson’s approach is modified as in Figure 5.4.

Ritter et al. [281] described another editing method, which differs from Wilson in
that points that are correctly classified are discarded. The Ritter method, which is similar to
Hart’s [164], basically keeps only points near the boundaries between classes, and eliminates
examples that are in the midst of a homogeneous region. Procedurally, this method is shown
in Figure 5.5.

Finally, Aha et al. evaluate the differences between several instance filtering (i.e.,
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algorithm Fdit-Incorrect-Sample;
sample = select(n,instance-base);
memory-base = memory-base - sample;
Vi € sample do;
if class(i) # class(k-NN(7)) then
delete(i,sample);
endif;
enddo;
memory-base = memory-base + sample;
end;

Figure 5.4: High-level pseudocode of Tomek editing algorithm.

algorithm Fdit-Correct;
Vi € memory-base do;
if class(i) = class(k-NN(7)) then
delete(i);
endif;
enddo;

end;

Figure 5.5: High-level pseudocode of Ritter editing algorithm.
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editing) and instance averaging algorithms in instance-based learning [3, 5, 7, 6, 189, 190].
Aha’s IB2 and IB3 algorithms apply a standard nearest-neighbor rule for classification, but
then proceed to edit examples based on Ritter’s approach. For Aha et al., the assumption
is that misclassification comes from noisy attributes in the data. Rather than focusing on
the attributes themselves (for these studies), they attempted to retain examples with noise
and discard examples without noise. In later studies, they provided several approaches to
weighting the features as well [367].

Instance averaging algorithms provide techniques for replacing actual instances
with “prototypical” instances derived from the data. In this approach, an initial instance
for a concept receives a weight of 1.0. When a new instance for the concept is encountered,
the both instances are replaced by a new instance determined by taking the weighted average
of the attributes in the two instances. The weight of the prototype instance is simply the
sum of the weights of ¢, the new instance, and nn, the previously stored instance. The weight
for t is determined based on its distance from nn and frequently decreases exponentially as

distance increases.

5.4.2 An Editing Algorithm for Evasive Maneuvers

The editing approach we took combined the editing procedure of Ritter et al. and a variation
on the sampling idea of Tomek [111]. We began by generating ten example sets with 8 = 90
where each set consisted of a single set of examples from the GA. We then selected the set

with the best performance on 10,000 test games, which in this case obtained nearly perfect
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accuracy with 1,700 examples. Next we edited the memory base by classifying each example
using all other examples in the set. For this phase, we used the five nearest neighbors. If
a point was correctly classified, we deleted it with probability 0.25. (This probability was
selected arbitrarily, and was used to show how performance changed as editing occurred.)
Prior to editing and after each pass through the data, the example set was tested using
1-NN on 10,000 uniformly distributed random games.

To determine if a point was correctly classified, we found the k nearest neighbors
for that point and examined the associated actions. Omne complication in “classifying”
the points for editing was that the class was actually a three-dimensional vector of three
different actions, two of which were real-valued (turn angle and speed) and one of which
was binary (emitting smoke). It was clear that an exact match would be too strict a
constraint. Therefore, the approach we took was to normalize the actions and determine
the Fuclidean distance between the target action and the neighboring actions. We said the
actions “matched” if the Euclidean distance was less than a pre-specified threshold, ¢. In
these experiments, we set ¢ = 0.05. If the point “matched” a majority of the neighbors, we

considered that point to have been classified correctly.

5.4.3 Experimental Results

The results of running GAMFE on the 1,700 examples are shown in Figures 5.6 and 5.7.
We used a logarithmic scale on the z-axis to highlight the fact that accuracy decreased

slowly until almost all the examples were edited. When read from right to left, the graph
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Figure 5.6: Results of editing examples provided by the genetic algorithm for 1-NN.
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in Figure 5.7 shows how accuracy decreases as the number of examples decreases. With as
few as 11 examples, GAMFE achieved better than 80% evasion, which is substantially better
than the best ever achieved by 1-NN alone. With 21 examples (comparable in size to a plan
in the GA), GAME achieved 86% evasion. Performance remained at a high level (greater
than 90% success) with only 66 examples. Thus it is clear that a small, well chosen set of
examples can yield excellent performance on this difficult task. Furthermore, such a small
memory base guarantees that the on-line performance of nearest neighbor will be quite fast.

The strong performance by GAME provides strong empirical evidence that it is
possible for the aircraft to evade both missiles in all cases. In specific trials, GAMF was
able to evade 100% of the test games. Recall that the test games are generated at random
according to a uniform probability distribution and that 10,000 were generated for the test
trials. If we consider selecting a starting position every 3.6° around the perimeter of the
starting circle, and we consider these positions for two pursuers, we have 10,000 possible
positions. Given this partitioning, we can determine further that there are only 4,950
unique pairs of starting positions. Further, if we consider the symmetry of the game field,
we can further reduce the number of starting configurations to 2,475. Thus we claim that
the 10,000 test games is actually more than enough to sample the starting configurations.
Thus, with 100% evasion, it must be possible to evade in all possible starting configurations

of this game.
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5.5 Summary

The experiments reported here show that it is possible to use a second learning algorithm
in conjunction with memory based learning to produce agents that perform well on difficult
delayed reinforcement learning problems. The experiments demonstrate clearly the power of
having a teacher or other source of good examples for memory-based learning methods. For
complex control tasks, such a teacher is probably a necessary component of any memory-
based method. Our experiments demonstrated this power by using a genetic algorithm to
learn plans or control laws in complex domains, which then trained a memory-based learner
by using its learned rules to generate good examples. The result was a hybrid system
that outperformed both of its “parent” systems. This hybrid approach can of course be
applied in many ways; for example, standard )-learning is notoriously slow to converge,
and approaches such as ours could be used to accelerate it.

One surprising result was that the performance of GAMB outperformed the GA
at the same point in training. We hypothesize this was because only the best examples of a
given generation were passed to 1-NN, rather than all of the experiences of the GA during
that generation. The fact that GAMB outperformed GA right away indicates that perhaps
it could have been used to teach the GA, instead of the other way around. Taken further,
perhaps a system in which the GA and 1-NN alternated in its role as teacher could yield
superior performance yet.

In addition, we found that editing the example set produced a relatively small

set of examples that still play the game extremely well. Again, this makes sense because
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editing serves to identify the strongest examples in the database, given that poor examples
were still likely to be included in the early stages of learning. It might be possible with
careful editing to reduce the size of memory even further. This question is related to the
theoretical work by Salzberg and Heath [166, 296] that studies the question of how to find
a minimal-size training set through the use of a Helpful Teacher, which explicitly provides
good examples (see Section 5.2.5). Such a Helpful Teacher is similar to the oracle used by
Clouse and Utgoff [81] except that it provides the theoretically minimal number of examples

required for learning.



149

Chapter 6

Memory-Based Co-Learning

6.1 Learning “Solutions” to Differential Games

In static games, the strategies of all players are generally known. Further, in solving static
games, payoffs assigned to selected strategy combinations are also known. If the players
do not know the payoffs, then learning these payoffs is a variation of the k-armed bandit
problem in which all players are trading exploration (determining expected payoffs for each
strategy combination) with exploitation (playing the optimal mixture of strategies based
on current knowledge about expected payoffs).

In dynamic games, the strategies of all the players are not necessarily known. Thus
it is impossible to assign payoffs to strategy combinations because the combinations are not
known. Even though the players do not necessarily know the strategies of their opponents,
generally they do know the dynamics of their opponents (i.e., they know the differential

equations that characterize the performance of all of the players). As described above, this
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leads to a solution concept in which the players attempt to characterize their strategies in
terms of regions in strategy space based on the dynamics of the game and assign payoff to
those regions.

Because the definition of a solution to any game (whether static or dynamic) in-
volves determining strategies and expected payoffs for all players of the game, we wish to
explore methods for the competing players to learn their optimal strategies on line. Fix-
ing the strategy of one player while the other learns, is interesting from a control theory
perspective. It is uninteresting from a game theory perspective, however, because the learn-
ing agent is focusing on a single competing strategy. As just described, usually competing
strategies are unknown, and players must learn to maximize their expected payoff in the
presence of this unknown. Also, in the case of learning strategies, the dynamics of the play-
ers are also unknown (i.e., the players do not know the differential equations characterizing

performance).

6.2 A Memory-Based Co-Learning Algorithm

Traditionally, memory-based learning consists of storing examples of classification instances
or previous experiences in a memory base (i.e., the memory) and searching the data base
for “similar” examples when presented with a new problem. The action taken corresponds
to the action associated with the closest example (or some combination of examples) in the
data base. Other variants on the memory-based approach consist of constructing tables of

state-action combinations and storing expected payoff with these table entries. Learning
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algorithm MBCL;
seed(memory);
do
game = play-game( memory);
store-game( game,memory);
update-Q-values( memory);
enddo;

end;

Figure 6.1: High-level pseudocode of memory-based co-learning algorithm.

consists of updating the expected payoffs over time.

Our memory-based approach is based on a combination of these two variants. In
particular, we use k-nearest neighbor to identify the examples that most closely match the
current state of the game. We also use (J-learning to update expected payoff associated with
each of the examples in the data base. A high-level description of the learning algorithm is
shown in Figure 6.1.

The first step in the algorithm involves seeding the population with an initial set
of games (seed). This step is needed because MBR cannot function without a pre-existing
memory base. Seeding consists of generating several random games. Specifically, games are
generated where one-third of the games apply random actions for both players, one-third
of the games fix P on a single random move per game and generate random actions for F,
and one-third of the games fix F on a single random move per game and generate random
actions for P. In all cases, a uniform probability distribution was used for the random
number generator. The initial () values associated with each of the examples are largely

irrelevant, so we assign the value of zero to all non-terminating moves and the actual payofl



152

algorithm play-game(memory);
neighbors = find-neighbors(state,memory,k,);
maz-F-move = find-maz-move(neighbors,E);
min-FE-move = find-min-move(neighbors,E);
maz-P-move = find-maz-move( neighbors,P);
min-P-move = find-min-move(neighbors,P);
moves-F = partition( min-E-move,maz-E-move,n );
moves-P = partition( min-P-move,maz- P-move,n);
fori=1ton
forj=1ton
move-neighbors = find-neighbors(moves-E[i],moves-P[j|, k., );
expected-payoffli][j] = Zgzl wymove-neighbors.p,
endfor
endfor
FE-move = linear-program( expected-payoff);
P-move = dual-linear-program( expected-payoff);
gamelstate] = update-state( F-move, P-move,state);
return(game);
end;

Figure 6.2: Pseudocode for playing the differential game.

of the game to the terminating moves.

When playing the game, the moves for both players are determined by examining
the memory base. This process occurs in three steps which are illustrated by the pseudocode
in Figure 6.2. Following this procedure, in each state of the game, the k; neighbors to the
current state in the memory base are found. Next only the range of moves found among
the neighbors are considered, and the moves are partitioned into n representative moves for
each player. These moves are used to determine the k,, nearest neighbors based on stored
moves from among the k; neighbors found previously.

Because n moves are considered for each player, and we wish to compare the
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performance of the two players on each of the pairs of moves, we can construct a payoff

matrix of the form

Elpi1a] Elp12] Elp1,n]
Elp2a] Elp22] Elp2.n]
Elpna] Elpns] - Elpns]

where E[p; ;] represents the expected payoff when pairing moves ¢ and j. This matrix is the
basis for the tableau used to solve the corresponding linear program (and its dual). The
moves for the two players are then selected from the resulting mixed strategies. Specifically,
because we quantize the possible actions to construct a tableau for linear programming,
when one of these discrete actions is selected, an actual action is generated uniformly at
random from the interval [action — 6, action + 6], where 6 is equal to one-half of the size of
a partition.

For each entry in the matrix, we compute the expected payoff as Elp;;] =

Zgzl wppp. The weights w, can be computed as,

—fdmaqu)?)

wy, = e( 2K,

or
_ 1
14 20 (Lalgal )

where K, is a smoothing kernel width that determines the distance over which the weight is

Wp

significant, and f; is a distance function (usually based on normalized Euclidean distance).
In our experiments, we used the exponential form.
When learning, we update the associated payoffs with the stored points using Q-

learning. The points actually updated consist of the k; nearest neighbors identified in each
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state. As indicated above, the initial payoff stored with the points will be the actual payoff
received from the first play. Subsequent updates will only occur if the point is one of the

k-nearest neighbors in some state. In this case, the ¢J-learning update rule is applied.

Q(Siv ap, ae) = (1 - aj)Q(Siv ap, ae) + Oé]‘(,O + 7@(5/7 ﬂ-(sl)))

where Q(s;, a,,a.) is the current () value associated with applying the pair of actions (a,, a.)
in state s;, 7; is a learning rate determined by the distance between the point being updated
and the actual point encountered, 7 is a discount factor, Q(s', 7(s’)) is the maximum @) value
in state s, and s’ is the state resulting from applying actions (a,, a.).

It might appear that an additional pair of linear programs need to be solved to
determine Q(s',7(s')). In fact, we know this value from playing the game. At each step,
we need to store f7(s;), the result of solving the linear programs, since this will be used in
subsequent updates to the ) values.

Another interesting benefit of applying this approach to learning is that the k-
armed bandit problem is potentially “solved.” In particular, because mixed strategies are
generated at each point in playing a game, we apply the probability mixtures to determine
actions to be taken. This automatically forces a level of exploration in the space without
explicitly coding an exploration strategy. Of course, one possible drawback with relying
on the mixed strategies for exploration is that, should estimates yield a pure strategy, no
exploration will occur unless the reward estimates are modified to later produce a mixed
strategy. For this reason, we still incorporate explicit exploration by permitting the players

to select actions at random.
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6.3 Experiments

To evaluate MBCL, we ran several experiments using four different differential games. These
games include the simple game of force described in Section 2.7, the simple pursuit game
described in Section 2.8, the extension to the simple pursuit game in which a boundary
is placed at @ = 0 (also described in Section 2.8), and a pursuit game in which both the
pursuer (P) and the evader (£) have limited mobility. This latter game is an extension of
the traditional Homicidal Chauffeur game which limits the mobility of P but not £. To
reduce the size of the state space, all games are played with state variables relative to P.

Further, all game matrices are constructed such that each player has n = 10 strategies.

6.3.1 A Game of Force

In Section 2.7, we described a differential game in which two players are applying a force
to a falling object in an attempt to make the object land at a certain point. For player P,
the objective is to push the object as far to the left as possible; player F is attempting to
push the object as far to the right as possible. Each player is constrained differently, thus
requiring different strategies. This means that a single strategy cannot be learned through
self-play and given to both players. For P, the magnitude of the force is fixed and P must
determine the appropriate angle with which to apply the force. For F, the angle is fixed
and F must determine the appropriate magnitude of force to apply.

This simple game of force is derived from the dolichobrachistochrone game—one of
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the classic games studied in differential game theory [177, 205]. 5 In this game, play takes
place in the quadrant of a plane where 2 > 0 and y > 0. The objective is for P to drive an
object into the y axis. I attempts to keep P from succeeding. Thus this game can also be
posed as a pursuit game in which P is attempting to force F into a barrier.

Our game of force is much simpler than the dolichobrachistochrone game in that
the optimal solution for each player is constant (but different). Thus we use this game as
a “proof-of-concept” to demonstrate that MBCL is capable of learning strategies for each

player. Recall that the dynamics of the game are given by

z = Av 4+ Bsinu

y = —14+ Bcosu
v < 1
u € [0,27)

where A and B are parameters defining the dynamics of the game, and u and » are the
controls set by P and F respectively. The payoff function is defined to be the z value at
the point the object lands. For this game, with A = B = 1, we expect optimal solutions
when u = 37” and v = 1.

Prior to running these experiments, we also considered a one-step version of the

game in which we applied an immediate payoff. We evaluated 50 possible moves for each

player and constructed a 50 x 50 payoff matrix. Fach entry in the matrix was determined

5 The word dolichobrachistochrone is derived from the Greek dolichos meaning long, brachys mean-
ing short, and chronos meaning time. It attempts to capture the opposing objective in time of
lengthening and shortening distance to the terminal state.
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as the change in z position following application of the corresponding two moves. The
resulting payoff matrix was then used in the tableau to solve a linear program. The results
of applying linear programming to the this payoff matrix yielded results consistent with the
optimal solution.

For these experiments, several parameters needed to be set. In particular, we ran
each simulation for 10,000 games and tested the results of learning after every 250 games.
For each test, we played 50 games and averaged the “payoff” received after each game.
For each of the 50 test cases, we used a uniform probability distribution and randomly
generated a new starting position such that z¢ € [—0.25,0.25] and yo € [0.85,1.0]. For the
game parameters themselves, we set A = 1 and B = 1. For the learning algorithm, we fixed
the learning rate at o = 0.15 and set v = 0.95, k;, = 30, and k,, = 5. We also defined the
kernel, K., = 4.

The results of this experiment are shown in Figure 6.3 with a comparison to
optimal play shown in Figure 6.4. These graphs were produced by running the experiment
10 times and averaging the results at 250 game intervals. The track at the center of Figure
6.3 marked with an ‘x’ shows optimal play throughout the experiment. The track marked
with diamonds indicates performance of both P and F as they learn. In addition, through
the course of learning, P and F played against an optimal opponent to demonstrate their
personal progress. The track marked with a square indicates P’s performance against an
optimal F, and the track marked with a plus indicates E’s performance against an optimal

P.
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Figure 6.3: Learning performance for game of force.
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It is interesting to note that P learns to play optimally relatively quickly, achiev-
ing near-optimal performance after only 1250 games. P seems to converge to optimal
performance after 2000 games, and I is still struggling. Finally, it seems F gains sufficient
experience, playing against what is essentially a fixed opponent, and learns to play optimally
after 4000 games.

One possible explanation for this difference in performance may arise by examining

the landscape of the payoff function for each player. P is permitted to select any angle in the

37
20

range [0,27). The optimal move comes at u = and sampling the action space provides a
smooth slope on either side of optimal. For F, on the other hand, the optimal move (v = 1),
arises at the boundary of legal moves (v € [0,1]). Sampling only has benefit on one side of
optimal side (because the other side is infeasible). When compared to P which is able to

sample on both sides, it is possible that F obtains half the benefit of exploration that P

receives.

6.3.2 Pursuit with Simple Motion

In Section 2.8, we described a differential game in which one player is pursuing another
player in a two-dimensional playing field. For player P, the objective is to capture F/ within
some time limit (unknown to either player). For player F, the objective is to evade P for
that period of time. Neither player has any constraints on its mobility, meaning each player
can turn instantaneously in any direction. FEach player moves at a fixed speed, and P is

twice as fast as F.
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Once again, we see that the two players cannot be modeled as one to allow “self-
play” learning. In other words, each player has different objectives and capabilities and
must learn appropriate strategies on their own. Thus they are heterogeneous agents [329].
Further, this game is more difficult than the game of force in that a separate action must
be taken depending on the position of the opponent—mno single fixed action applies.

Recall that the dynamics of the game are given by

Tp = —vpsin ¢op

yp = vp cos op
Tp = —vgsin ¢of
YE = Vg COs ¢

where (zp,yp) and (zg,ygr) are instantaneous positions of P and E respectively. Also,

assume that P has a lethal envelope, [ > 0, such that P captures F if

\/(QCP —op)*+(yp —yp)* <1

We specify [ = 0.05 for these experiments. As described earlier, optimal solutions for the

game exist for both players at
¢p = ¢p = arctan d
C)

in coordinates relative to P. Payofl was defined to be the change in distance between P

and F from the start of the game to the end of the game.
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Once again, several parameters needed to be set for the experiments. We ran each
simulation for 5000 games and tests the results of learning after every 250 games. For each
test, we played 50 games and averaged the payoff received after each game. For each of
the 50 games, we used a uniform probability distribution and randomly generated a new
starting position such that zp € [-1,1], yp € [-1,1], 25 € [-1,1], and yg € [-1,1].

For these and all subsequent experiments, we used a variable learning rate. Specifi-
cally, a learning rate was associated with each example stored in the memory base. Initially,
the learning rate was set to 1.0 meaning that the first update of the associated ¢} value re-
sults in the actual payoff being assigned. Fach time an instance is updated, the learning
rate is changed according to the following schedule:

1
o = —
Xi

where y; is a count of the number of times instance ¢ has been updated, including the
current time. Thus, initially, xy; = 1. In addition to the learning rates, we preset v = 0.95,
ks =30, k,, =5, and K,, = 4.

The results of this experiment are shown in Figure 6.5 with a comparison to optimal
play shown in Figure 6.6. These graphs were also produced by running the experiment ten
times and averaging the results at 250 game intervals. As before, the track marked with
an ‘x’ indicates optimal play by both players, the track marked with a diamond indicates
both players using their currently learned strategies, the track with a square indicates
P’s performance against an optimal F, and the track marked with a plus indicates E’s

performance against an optimal P.
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Examining these figures, we note that F is able to perform well throughout. It
appears as if no learning is required for F to maximize its ability to evade. We know, in
general, this is not true. If F does not proceed directly away from P and P aims directly
at F, then P must capture £ more quickly.

We believe this surprise performance arises from an interesting artifact of the
simulation. The simulation quantizes the game (i.e., plays the game in discrete steps as
an approximation of the differential game); therefore, it appears E’s performance can be
attributed to a time-lag (similar to reaction time) in P’s ability to aim at £. Because P
must aim at the current position of F, a random move by F could have P aiming at the
wrong position in the current time step.

When examining P’s performance, we see that random motion is clearly not pre-
ferred for pursuit. In fact, initially, F is always able to get away from P. However, after
only 1000 games, P has been able to direct its movements at £ and brings its performance
to a level comparable to optimal.

One additional curious result arises from examining these figures. If the simulation
truly implements an optimal strategy for comparison, we would expect the optimal track
to lie between the two tracks when each player is being tested against optimal players. In
other words, when P and F both play optimally, the resulting performance should always
be equal to or better than when one of the players is using the learned strategy. In Figure,
6.5, however, we find that this is not the case. Specifically, E’s learned strategy appears

to always beat the case where E plays optimally. Further, we find that all three tracks
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(excluding the case where both players play optimally) converge to approximately the same
performance after about 1750 games. We claim this performance is also a result of the
artifact described earlier, but note that the players were still able to learn the appropriate
“optimal” strategies for this revised game.

To characterize this artifact, we ran two simple experiments in which we varied
the step size (i.e., At) in the kinematic equations of the simulation. In the first experiment,
we considered average initial performance over 25 trials for step sizes of 0.05, 0.1, 0.25, and
0.5. Because each step size specifies the “distance” traveled in a single time step, cutting
the step size in half necessitated doubling the number of steps in a simulation to make the
comparison fair. The results of this experiment are shown in Figure 6.7.

In the second experiment, we considered average initial performance over 25 trials
for step sizes of 0.001, 0.005, 0.01, 0.05, 0.15, 0.25, and 0.5. In this experiment, we kept
the number of steps the same throughout all experiments. This was necessitated by the
exponential growth in simulation time from the previous experiment. The results of this
experiment are shown in Figure 6.8.

From these two figures, we see that increasing the resolution of the game (i.e.,
decreasing the step size) results in a closer approximation of the actual dynamics of the
game. This is not surprising. In fact, we see that as the game becomes coarser, the
“optimal” performance no longer appears optimal. This trend is demonstrated in both
variations of the experiments (i.e., Figure 6.7 and Figure 6.8).

Returning to the results of the learning experiment, we claim learning resulted in
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convergence that, although sub-optimal for the original differential game, may be optimal
for our discrete implementation of the game. We also note from Figure 6.6 that F/ did learn a
strategy other than random play as indicated by its relative improvement after 3500 games.
For the first 3500 games, F’s payoff deviated by approximately 0.02 from optimal. After
3500 games, the deviation dropped to approximately 0.01 with a trend toward continuing

this reduction over the last 1000 games of the experiment.

6.3.3 Pursuit with Simple Motion in a Half Plane

At the end of Section 2.8, we described a variation of the pursuit game with simple motion
in which a boundary exists at @ = 0 thus forcing the game to take place in the half plane.
On the surface, this game appears to be, essentially, the same as the previous game. In fact,
this is true when the players are not near the boundary. However, repeating a figure from
Chapter 2, we see that the boundary introduces a sharp change in the optimal strategy for
E (Figure 6.9).

In the previous section, we noted that P and F are heterogeneous players, but we
also saw that the optimal strategies were essentially the same. This game further extends
the difficulty in learning optimal strategies in three ways. First, the strategies for both
players still depend on the position of the other player, but there is a new factor affecting
the strategies—the boundary. Second, because of this boundary, when play occurs in close
proximity to the boundary, the strategies for the two players become different. Third, the

transition between the two strategies for F is not smooth, indicating a discontinuity in the
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Figure 6.9: Optimal strategy for simple pursuit in the half plane.

optimal strategy for F arising from the boundary.

The dynamics of this game are identical to the previous game. Further, both
players continue to be able to move with no limitation on mobility (except for that arising
from the boundary) and with fixed speeds. All of the parameters from the previous game
were used for this game as well. If either F or P collide with the boundary during play, they
do not pass through the boundary but skid along the boundary a distance proportional to
the y component of their force vector.

The results of this experiment are shown in Figure 6.10 with a comparison to
optimal play shown in Figure 6.11. These graphs were produced by running the experiment
ten times and averaging the results at 250 game intervals. Once again, the track marked with
an ‘x’ indicates optimal play by both players, the track marked with a diamond indicates

both players using their currently learned strategies, the track with a square indicates
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Figure 6.10: Learning performance for pursuit game in half plane.
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performance against an optimal P.

The first observation we make from these experiments is that the same artifact ob-
served in the previous experiments appears to be present here as well. This is not surprising
given we used the same simulator, adapted to include the boundary. It is also interesting
to note that the average performance for optimal play is slightly lower (i.e., more in favor
of P) than in the previous experiments. This can be explained through the presence of
the boundary. P’s optimal strategy has not changed, but F’s has. Further, the boundary

forces F to move in such a way that would be suboptimal given the boundary did not exist.
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Therefore, it is reasonable to expect the boundary to favor P.

As with the previous experiment, we note that I appears to perform well using
the strategy implicit when the memory base was seeded (i.e., random motion). This time,
however, there appears to be no convergence toward optimal. As we saw in the last section,
when the boundary was absent, some convergence did occur. It is possible that the boundary
can serve as an advantage to  under the condition P’s reaction to F’s action is delayed.

We also note that P’s performance does improve relative to F/, but the level and
rate of improvement has degraded. This would arise from the difficulties P would have
when colliding with the barrier, thus slowing its advance towards F. FEven though P’s
optimal action need not consider the boundary, the additional state variables in the examples
increase the search space, making it more difficult for P to learn this fact. Indeed, the
additional state information for P is “irrelevant,” and irrelevant attributes are known to

degrade performance in instance-based and memory-based learning [5, 293].

6.3.4 Pursuit with Limited Mobility

The final game we studied with MBCL further extends the pursuit game by limiting the
mobility of both players. For this experiment, we remove the boundary, but we limit each

player such that they can only make turns within a constrained range of possible turns.

s

7, and we

Specifically, we limited P’s mobility such that it can turn only in the range +
limited F’s mobility such that it can turn only in the range £7. In other words, P can

make instantaneous turns between —45° and +45° while £ can make instantaneous turns
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between —90° and +90°.

This game is a generalization of the Homicidal Chauffeur game [39, 177, 205]. In
the Homicidal Chauffeur, only the mobility of P is limited. Given the added complexity
of the game, no optimal solution was available; however, we were able to define a heuris-
tic based on the optimal solution for the Homicidal Chauffeur. Specifically, the heuristic
strategy for P was to aim, as closely as possible, at F. If turning towards F required an
angle exceeding P’s limits, P turned as sharply toward F as possible. F’s heuristic strat-
egy, again based on the optimal strategy for the Homicidal Chauffeur was to turn sharply
in the direction of P, attempting to get inside P’s radius of curvature. This strategy was
demonstrated in Chapter 4.

The dynamics of this game are identical to the original pursuit game with simple
motion, except for the limitations on mobility. In addition, all of the experimental param-
eters are the same, except that we permitted learning to occur over 10,000 games rather
than limiting to 5000 games.

The results of this experiment are shown in Figure 6.12 with a comparison to
heuristic play shown in Figure 6.13. These graphs were produced by running the experiment
ten times and averaging the results at 250 game intervals. This time, the track marked with
an ‘x’ indicates heuristic play by both players, the track marked with a diamond indicates
both players using their currently learned strategies, the track with a square indicates
P’s performance against a heuristic F, and the track marked with a plus indicates E’s

performance against a heuristic P.
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Figure 6.12: Learning performance for pursuit game with limited mobility.
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Figure 6.12 appears to show little, if any, learning by the two players. However,
if we examine Figure 6.13, we find that learning does, indeed, occur. In all cases, F was
able to evade P, which is also consistent with the results in Chapter 4. When examining
FE’s ability to play against the heuristic P, we find P losing a little ground at the start
(demonstrating the power of random motions by £ when P’s mobility is limited) but losing
about 30% more ground (relative to the heuristic) at the end of the experiment. Further,
F was still improving when the experiment was terminated, albeit slowly.

When examining P’s ability to play against the heuristic F, we find P losing
considerable ground at the start but reducing its losses by approximately 40% (relative to
the heuristic) by the end of the experiment. As with F, P was still improving when the

experiment was terminated.

6.4 Discussion

The results of applying MBCL to solving differential games are quite encouraging. In all
cases, learning was demonstrated, and in the simplest cases, near optimal performance was
achieved. Unfortunately, the computational burdens for learning these games was quite
extensive.

As mentioned in Section 6.2, the process MBCL follows requires seeding the mem-
ory base with several examples. The current version of MBCL does not modify the memory
base at all, except to update the () values associated with each example. All of the ex-

periments were run on either Sun Sparc 2 or Sun Sparc 10 processors. To give an idea of
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Table 6.1: Relative computational burdens for solving games with MBCL.

Game | Games Stored | Examples Stored | Minutes
Force 7500 50,000 96
Simple 2000 400,000 1376
Half 2000 400,000 1372
Limit 2800 560,000 3193

the computational burden, Table 6.1 shows the number of examples in each of the memory
bases and the clock time required, in the best case, to complete the experiment.

Clearly, the time required to learn solutions to these games is excessive. Of course,
our method of searching for neighbors did not use efficient structures to reduce search time,
such as kd-trees. The simplest game, in which only a single action needed to be found,
required an hour and a half (actually less, given it converged in less than half of this time).
When we considered only the one-step game of force, we found the solution immediately.
The other games required approximately a day to run, and convergence only occurred with
one game.

This observation points out the advantage of a proper representation for the prob-
lem to be solved. When we posed the problem as a delayed reinforcement task, we found
the task learnable, but only after a large amount of simulation. On the other hand, posing
the problem as an immediate reinforcement learning problem yielded a solution in one step.
Considering the pursuit games, we could have represented them as immediate reinforce-
ment learning problems as well, using the change in distance between the players as the

immediate payoff. But in preliminary experiments doing just that, we found no difference
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in performance from using delayed reinforcement.

As can be seen, the number of examples required to learn the game of force was
relatively small. The pursuit games required approximately an order of magnitude more
examples and were not able to learn as well. This provides an indication of the difficulty of
these tasks.

What is not shown in either the graphs or the table above is that the examples
for the pursuit games were probably not chosen intelligently. For seeding the memory
base, initial states for games were chosen at random according to a uniform probability
distribution. One third of the games were played with random strategies for both players,
one third with P playing a single, fixed random strategy, and one third with F playing a
single, fixed random strategy.

This approach to seeding was chosen to provide a wide sample of state-action
combinations. Initial ¢) values did not matter since they would be learned over time.
Nevertheless, a uniform random sampling of the space was, apparently, not sufficient to
approximate some of the surfaces encountered in these games. Applications of variable
resolution techniques [16, 110, 240, 312] may be more appropriate for problems such as
these.

In some ways, the results from MBCL are highly encouraging. They indicate
co-learning can occur and suggest it is possible to learn optimal solutions to two-player
differential games. Unfortunately, the computational resources required to learn these solu-

tions are too excessive. In the next chapter, we explore an alternative strategy to co-learning
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with the focus being on reducing the required computational resources while maintaining or
improving learning performance. We find several encouraging results improving the compu-
tational requirements and also find that the two algorithms are comparable in their ability

to learn to play differential games.

6.5 Summary

In this chapter, we provided a new algorithm for memory-based co-learning in which two
opposing agents learn control strategies simultaneously. These results (and the results of
the next chapter) can be extended to alternating Markov games (in which players take
turns) [213], team games (in which teams of players cooperate to devise mutual strategies)
[337, 338], and community games (in which players choose opponents to maximize their
personal payoff) [325]. They can also be applied to more traditional games with homogenous
agents such as backgammon [342], checkers [297, 298], and othello [323]. The strengths of the
approach include the relative simplicity in storing examples and updating value estimates
for game play. Unfortunately, the approach is both memory and computation intensive.

The next chapter specifically addresses these concerns.
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Chapter 7

Tree-Based Co-Learning

7.1 Coping with Limitations in Time and Memory

In the previous chapter we present an algorithm for co-learning in differential games that,
although providing promising results, had large computational and memory requirements.
In this chapter, we consider an alternative algorithm that, although not memory-based, is
inspired by the results of applying kd-trees in memory-based learning [46, 110, 128, 129, 237].

A kd-tree is a data structure used to store a set of examples in a memory base such
that nearest neighbors can be found in logarithmic expected time. Specifically, a kd-tree is
a binary tree where each interior node of the tree tests the values of one of the attributes in
the k-dimensional attribute space. In addition, each node corresponds to a single instance
in the memory base [237]. Nodes are selected for splitting until no further splits are required
(i.e., until all points are represented in the tree).

In memory-based learning, the kd-tree can provide significant speed-up in search-
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ing for nearest neighbors; however, the size of the memory based does not change. Actually,
the resulting memory base will be larger than a “monolithic” memory base because of the
overhead associated with storing the tree.

To address the problem of storing all examples, alternatives such as editing have
been offered to reduce the size of the memory base (see Section 5.4). However, striking a
balance between sufficient coverage of the problem space and small size of the memory base
is tricky at best. Methods for variable resolution memory-based learning are discussed in
Section 3.2.2 as possible approaches to provide this balance.

Our approach applies the speed advantage of the kd-tree with the space advantage
of variable resolution memory-based learning without the need to store explicit examples.
Instead, we incrementally construct a “decision” tree that partitions the state space and
strives to maintain balance to minimize search. Rather than storing examples at interior
nodes of the tree, we store a game matrix at the leaves that represent behavioral strategies
for playing the game. When performance converges, the game matrix can be discarded, and
the mixed strategies associated with the game matrix retained. Further, if any of the pure

strategies have an associated probability of zero, these can be dropped as well.

7.2 A Tree-Based Co-Learning Algorithm

To describe the tree-based algorithm (which we call TBCL), we begin by considering the
degenerate case where the tree consists of a single node. In this case, the node covers the

entire state space of the game. Associated with this node is a single game matrix, pairing



183

expected payoffs for the strategies of the two players. Mixed strategies are computed by
solving the linear program defined by the game matrix. Learning consists of updating the
entries in the game matrix based on actual play and resolving the linear program.

Because most games will require different actions in different states, a single node
with a single game tree will not be adequate. When learning converges, if the performance
is not adequate, the node can be split into two additional nodes and learning restarted.
Splitting consists of selecting one of the state variables and dividing the state space along
(in the simplest case) the midpoint of the dimension defined by that variable. The game tree
of the parent is then copied to each of the children, the learning rates reset, and learning
proceeds as before. A high-level description of the learning algorithm is shown in Figure
7.1.

The first step in the algorithm is to create the tree. This consists of creating
a single node, covering the entire state space. A single game matrix is constructed with
uniformly distributed random values. Then the corresponding linear program is solved to
provide an initial set of mixed strategies for the two players to follow. This initial set
of strategies is tested against 50 uniformly distributed random games, and the result is
compared to a performance goal (either in terms of convergence or number of iterations).

If the performance goal is not met, TBCL passes into a two-part learning loop.
The first part consists of performing ¢)-learning on the current game structure. The second
part consists of selecting a node in the tree to split should the performance goal not be

obtained.
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algorithm TBCI;
tree = create-iree;
initialize-game-matria( tree);
update-strategies(tree);
performance = test(tree);
do-until (performance > goal)
do-until converged
game = play-game(tree);
update-Q-values(tree,game);
update-strategies(tree);
enddo;
performance = test(tree);
if (performance < goal) then
node = select-leaf( tree);
split-node( node);
update-strategies(node— left-child);
update-strategies( node— right-child);
endif;
enddo;

end;

Figure 7.1: High-level pseudocode of tree-based co-learning algorithm.



185

In the @-learning portion of the algorithm, a game is played and evaluated. In
MBCL, the history of the game was stored to permit evaluation of the ¢) values associated
with the instances in the memory base. (Alternatively, the game itself could have provided
additional examples to be added to the memory base, but we did not use this alternative).
In TBCL, the sequence of the game is traversed to determine which node in the tree was
used at each step and what actions were taken at that step. The corresponding cell in the
game matrix at that node is then updated using -learning. Once the game is finished, all
game matrices that were changed are solved using linear programming to find new strategies
for the associated nodes.

The Q-learning loop continues until some convergence criterion is satisfied. Again,
this criterion could be a measure of the change in performance of the players, or it could
be a fixed number of iterations. We chose the latter for our experiments. Once the loop
finishes, performance is measured and compared against the performance goal. If the goal
is satisfied, the algorithm terminates. Otherwise, a node is selected and split. Nodes are
selected by considering the number of updates. The node receiving the most updates in a ¢)-
learning loop is split because this indicates a large number of visits to the states represented
by that node. Splitting takes place according to the algorithm given in Figure 7.2. Once
the node has been split and new game matrices generated for the children, these matrices
are also solved, and @)-learning continues.

If we consider the algorithm in Figure 7.2, we see that the attribute is selected

that maximizes the difference in the game matrices following the split. Specifically, each
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algorithm split-node( node);
for-every attrib do
split = % node.attrib.low + node.attrib.hi
for-every P-strat do
for-every FE-strat do
init-game( attrib,split, LEFT);
matriz 1] P-strat][ E-strat] = play-from( P-strat, E-strat);
init-game( attrib,split, RIGHT);
matriz2] P-strat|[ E-strat] = play-from( P-strat, E-strat);
enddo;
enddo;
difflattrib] = distance(matriz1,matriz2);
enddo;
split-attrib = argmax(diff);
split-along(node,split-attrib);
end;

Figure 7.2: Pseudocode for splitting algorithm.

attribute is considered by assuming the split is made along the attribute. Two game matrices
are generated for each split. A game matrix is constructed by initializing a game from
the midpoint of the partition and playing a game. The game is played according to the
strategies stored in the tree, except for the first move. All pair-wise combinations of moves
are considered for this first move, and the results of the game are stored in the matrix cell
indicated by the initial pair of moves.

Each pair of matrices is compared by computing the Fuclidean distance between
the matrices. The attribute whose pair of matrices is maximally distance is selected for
splitting. When the node is split, the limits for that attribute are updated within the node,

and the game matrix from the parent node is copied into each child. All of the counts used
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to update the learning rate for ¢J-learning are reset to zero to restart the learning process
for that partition.

When playing the game, the moves for both players are determined by traversing
the tree to find the partition that covers the current state. When the partition is found,
the mixed strategies associated with each player are used directly to pick their respective
moves. Because the strategies are updated at the end of each learning game, there is no
need to solve the linear programs online as in the memory-based approach. The result is
fast search through the state space and fast determination of the actions.

As an example, a decision tree for the pursuit game with simple motion is shown
in Figure 7.3. The mixed strategies stored at each of the tree’s leaves is shown in Table 7.1.
Note the splits occur along a single attribute, thus the corresponding tree is analogous to the
axis-parallel decision trees generated by approaches such as ID3 and C4.5 [270, 271, 272].
When limited to two dimensions, axis-parallel trees can be shown as a partitioning of the
attribute space. We provide a similar representation for the game decision tree in Figure

7.4.

7.3 Experiments

We evaluated the performance of TBCL using the same games and same procedures as for
the evaluation of MBCL. As before, we applied TBCL to four games, including the simple
game of force, the pursuit game with simple motion, the pursuit game in a half plane, and

the pursuit game with limited mobility. Once again, we assume all states are represented
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Figure 7.3: Sample tree derived for pursuit game of simple motion.



Table 7.1: Mixed strategies at leaves of learned tree.
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H Node ‘ Player H _1—%7T ‘

=7
10

—bhT
10

—37
10

-

10

I
10

37
10

57
10

T
10

o7
10

16 E 0.000 | 0.514 | 0.486 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
P 0.000 | 0.364 | 0.636 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
17 E 0.000 | 0.000 | 0.640 | 0.000 | 0.360 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
P 0.000 | 0.000 | 0.931 | 0.069 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
18 E 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
P 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
38 E 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
P 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
39 E 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
P 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
20 E 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000
P 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000
21 E 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.295 | 0.705
P 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.429 | 0.571
44 E 0.000 | 0.796 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.204 | 0.000 | 0.000
P 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.669 | 0.331
45 E 0.000 | 0.078 | 0.742 | 0.000 | 0.084 | 0.016 | 0.000 | 0.000 | 0.080 | 0.000
P 0.073 | 0.078 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.133 | 0.716 | 0.000
23 E 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000
P 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000
24 E 0.000 | 0.000 | 0.553 | 0.447 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
P 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
25 E 0.000 | 0.000 | 0.342 | 0.480 | 0.000 | 0.178 | 0.000 | 0.000 | 0.000 | 0.000
P 0.000 | 0.000 | 0.550 | 0.268 | 0.182 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
26 E 0.000 | 0.000 | 0.000 | 0.000 | 0.358 | 0.642 | 0.000 | 0.000 | 0.000 | 0.000
P 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
54 E 0.000 | 0.283 | 0.000 | 0.000 | 0.000 | 0.717 | 0.000 | 0.000 | 0.000 | 0.000
P 0.000 | 0.000 | 0.041 | 0.959 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
55 E 0.000 | 0.000 | 0.000 | 0.000 | 0.053 | 0.947 | 0.000 | 0.000 | 0.000 | 0.000
P 0.000 | 0.000 | 0.000 | 0.000 | 0.355 | 0.645 | 0.000 | 0.000 | 0.000 | 0.000
56 E 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.698 | 0.000 | 0.000 | 0.000 | 0.302
P 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.512 | 0.488 | 0.000 | 0.000 | 0.000
57 E 0.000 | 0.375 | 0.000 | 0.000 | 0.000 | 0.625 | 0.000 | 0.000 | 0.000 | 0.000
P 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.906 | 0.094 | 0.000 | 0.000 | 0.000
29 E 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000
P 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000
30 E 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.893 | 0.000 | 0.107 | 0.000
P 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.007 | 0.993 | 0.000 | 0.000
31 E 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.156 | 0.884 | 0.000 | 0.000 | 0.000
P 0.000 | 0.000 | 0.000 | 0.480 | 0.000 | 0.520 | 0.000 | 0.000 | 0.000 | 0.000
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Figure 7.4: Sample partitioning derived for pursuit game of simple motion.
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relative to P, and the game matrices are constructed with » = 10 for each player.

7.3.1 A Game of Force

For the simple game of force, we used the same kinematic equations as in Section 6.3.1.
Because of the nature of the algorithm several different parameters were set. For this game,
we trained for 100,000 games and only generated one node in the tree. We decided not to
subdivide the space given the simplicity of the game. As with MBCL, this game served
as a “proof-of-concept” for the algorithm. We tested the algorithm after ever 1000 games
and averaged the “payoft” received after each game. For each of the 50 test cases, using a
uniform probability distribution, we randomly generated a new starting position such that
zo € [—0.25,0.25] and yo € [0.85,1.0]. For the game parameters themselves, we once again
set A=1and B = 1. For the learning algorithm, we allowed the learning rate to vary and
set v = 0.95.

The results of this experiment in shown in Figure 7.5 with a comparison to optimal
play shown in Figure 7.6. As before, these graphs were generated by running the experiment
ten times and averaging the results at 1000 game intervals. The track at the center of Figure
7.5 marked with an ‘x’ shows optimal play throughout the experiment. The track marked
with diamonds indicated performance of both P and F as they learn. The track marked
with a square indicates P’s performance against an optimal F, and the track marked with
a plus indicates P’s performance against an optimal P.

In these experiments, we find convergence occurs relatively quickly with perfor-
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Figure 7.5: Learning performance for game of force.
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mance settling after approximately 20,000 games. Performance seems to improve some
through 60,000 games, but then there is a small jump causing performance to degrade fol-
lowed by a return to the previous level of performance. It is also interesting to note that
when P and F play each other, performance is fairly constant throughout and is degraded
from optimal in favor of E. Further, performance seems to converge to this level rather
than to the optimal level. We suspect this is due to quantizing and interpolating between
strategies; although, no experiments were run to verify this hypothesis. Another possibility
is that performance converged based on the simulation artifact described in Section 6.3.2,

but this is unlikely given the constant optimal strategies for this game.

7.3.2 Pursuit with Simple Motion

For the game of pursuit with simple motion, we again used the same kinematic equations
as in Section 6.3.2. Once again, we trained for a period of 100,000 games, but this time we
split a node in the tree after every 5000 games. This resulted in a tree with 20 leaf nodes.
We tested the results of learning after every 1000 games to monitor the level of convergence
while a tree’s structure was fixed and to observe the effects of adding a new node to the
tree. Whenever we tested the performance of the algorithm we played 50 games generated
at random according to a uniform probability distribution and averaged the payoff received
after each game. For each of the 50 games, we generated starting positions such that
zp € [-1,1], yp € [-1,1], g € [-1,1], and yg € [-1,1]. Once again, we permitted the

learning rate to vary and set v = 0.95.
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Figure 7.7: Learning performance for pursuit game with simple motion.

The results of this experiment are shown in Figure 7.7 with a comparison to
optimal performance shown in Figure 7.8. These graphs were also produced by running
the experiment ten times and averaging the results at 1000 game intervals. As before, the
track marked with an ‘x’ indicates optimal play by both players, the track marked with a
diamond indicates both players using their currently learned strategies, the track with a
square indicates P’s performance against an optimal F, and the track marked with a plus
indicates E’s performance against an optimal P.

Examining these figures, several interesting results can be observed. First, similar

to MBCL, performance by F appears to be good without any learning, thus indicating the
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Figure 7.8: Deviation from optimal for pursuit game with simple motion.
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power of random moves in our simulation. In fact, we find when F applies its initial strategy
against an optimal P, it is able to do nearly as well as an optimal F. We do note some
movement toward optimal through 40,000 games, however.

When examining P’s performance, we find it starts out performing poorly, never
capturing F (as shown by a positive payoff). However, after 5000 games, P has been
able to improve to at least prevent E from gaining any additional ground. By the time
40,000 games have been played, P is able to advance on F fairly consistently. When the
experiment was terminated at 100,000 games, the slope of P’s learning curve indicated it
was still improving.

Taking a closer look at these learning curves reveals an interesting, but not surpris-
ing, behavior of TBCL—especially when examining the performance of F playing against
P rather than their optimal counterparts. Notice that performance is fairly steady through
the first 5000 games. At 5000 games, the first split occurs and average payoff drops from
0.1 to about 0.0. This suggests a single node was not sufficient for improving the perfor-
mance of either player. In fact, if we examining the performance of each player against
the optimal counterpart, we find similar flat performance. Examining performance between
5000 and 10,000 games, we find a similar flat trend. When the tree splits again at 10,000
games, a similar change in payoff is experienced with average payoff dropping from 0.0 to
about -0.075. We find yet another drop at 15,000 games. From approximately 20,000 games
onward, we do not see any additional sudden changes but note a relatively steady improve-

ment when examining P’s performance. It is possible the performance change should still
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be attributed to the tree splitting, but by this time the impact of splitting on the total tree

is so small, it is difficult to discern the reason for improvement.

7.3.3 Pursuit with Simple Motion in a Half Plane

Continuing with the experiments, we next added the barrier at # = 0 to play the pursuit
game in the half plane (see Section 6.3.3). All of the parameters used in this experiment were
identical to the parameters in Section 7.3.2. The dynamics of the game are identical to the
previous game, and each player still has the ability to turn instantaneously in any direction
(except when constrained by the boundary). Once again, if either P or E collide with the
boundary, they skid along the boundary a distance proportional to the y component of their
force vector.

The results of this experiment are shown in Figure 7.9 with a comparison to optimal
play shown in Figure 7.10. These graphs were produced by running the experiment ten
times and averaging the results at 1000 game intervals. Once again, the track marked with
an ‘x’ indicates optimal play by both players, the track marked with a diamond indicates
both players using their currently learned strategies, the track with a square indicates
P’s performance against an optimal F, and the track marked with a plus indicates E’s
performance against an optimal P.

We find that the performance of each player is similar to performance without the
barrier, except that the barrier apparently causes some difficulties that need adaptation.

In particular, we note that F does not start performing “optimally” as before, but its
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performance is still relative good. Further, as learning proceeds, F clearly changes its
strategy and approaches optimal. After 100,000 games, F’s performance appears to have
flattened out

For the pursuer, performance is also similar to no boundary. Once again, we
find that performance still seems to be improving through 100,000 games. This trend is
especially visible when examining Figure 7.10. We also see the trend moving from F always
getting away to IV losing ground. Nevertheless, the performance compared to Section 7.3.2
is degraded as well.

These degradations in performance are not surprising for several reasons. First,
we introduced an “obstacle” that increases the state space (we must now keep track of
our distance to the boundary). Second, this boundary complicates E’s strategy due to the
sudden shift in performance when F approaches the boundary.

We also note that the impact of node splitting is visible again. This time, however,
there appears to be a slight improvement for both I and P during the first 5000 games.
As before, a sudden change in performance occurs when the first split is made. This
time, however, the second split (at 10,000 games) has no noticeable effect. This suggests
the possibility of TBCL periodically choosing an inappropriate node to split. However,
at 15,000 games, we see another sudden change, indicating TBCL found a node to split
that would help. This suggests further study in selecting a node for splitting would be

appropriate and beneficial.
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7.3.4 Pursuit with Limited Mobility

Finally, we apply TBCL to the pursuit game with limited mobility. This game is identical
to the game described in Section 6.3.4. Once again, we removed the boundary, but we also
limited the mobility of both players to permit them to make instantaneous turns within a
constrained range of possible turns.

We do make one change in the experiments. Specifically, we only permit training
to take place through 20,000 games. We test after 250 games, as before, but this time we
also split after 1000 games. This change was justified by the fact there was little evidence
of change between splits. Consequently, we reduced the number of games played before
splitting. We still wanted to monitor the progress between splits, so we increased the
frequency of testing accordingly.

The results of these experiments were both encouraging and surprising. The per-
formance learning curves are shown in Figure 7.11 with a comparison to heuristic play
shown in Figure 7.12. These graphs were produced by running the experiment ten times
and averaging the results at 250 game intervals. This time, the track marked with an ‘x’
indicates heuristic play by both players, the track marked with a diamond indicates both
players using their currently learned strategies, the track with a square indicates P’s perfor-
mance against a heuristic F/, and the track marked with a plus indicates E’s performance
against a heuristic P.

The results of this experiments, especially when compared to MBCL (see Section

7.4) were quite encouraging but with a surprise. First, it was clear that £’s random strategy
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was not satisfactory against an optimal P, and F learned a strategy that became competitive
(although still somewhat inferior). Improvement by P relative to an optimal opponent was
similar.

The surprising result concerns comparing F versus P to optimal £ versus optimal
P. As we see, optimal performance is fairly constant throughout (which it should be). The
performance of F versus P; however, was not constant. Of course, this is what we would
like, except that we found the performance to diverge from optimal. Even though optimal
performance appears to yield an average payoff of approximately 1.9, we found the average
payoff for F versus P to drop from around 1.7 (at 10,000 games) to about 1.5 (at 20,000)
games.

Once again, we believe the reason for this unpredicted behavior is associated to
the algorithm for selecting a node to split. As shown in Section 2.5, evasion depends on F
getting inside P’s radius of curvature. According to Basar and Olsder [39], this requirement
is further complicated by a fact the BUP (boundary of the usable part) of the Homicidal
Chauffeur game has a “leaky corner.” A leaky corner is a characteristic in the surface
between terminal conditions of the game in which performance cannot be forced by either
player. The leaky corner is even more problematic in our game in which both P and F have
limited mobility (rather than just P).

To be able to learn this surface may require many more splits in the decision tree.
Further, because our method for selecting a node to split is biased towards nodes that are

frequently updated, and we hope that we are in the region with the leaky corner relatively
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infrequently, our method is probably not well suited for learning these characteristics. Thus,

a substantially larger number of node splits may be required with our method.

7.4 Comparing MBCL and TBCL

The results of both MBCL and TBCL are both interesting and encouraging. Nevertheless,
their respective performances are (not surprisingly) different. In this section, we attempt
to capture the similarities and differences in the performance of these two algorithms on
the fours games and attempt to explain the reasons for these differences.

To facilitate such a comparison, we need to make the comparison as fair as possible.
Specifically, we would like to compare based on similar knowledge complexity and similar
learning complexity. We are faced, immediately, with an issue to be resolved. For MBCL,
the knowledge is captured in a fixed-size memory base, and learning consists of modifying
() values associated with the examples in the memory base. For TBCL, on the other hand,
the knowledge is captured in a decision tree that partitions the space. The partitioning is
representative of the examples in MBCL’s memory base, except that each partition contains
a complete game matrix, and an instance in the memory base only contains a single action.
Thus, given ten strategies per player, one partition in TBCL is comparable to 100 examples,
all centered in the middle of the partition, for MBCL.

Comparing the learning complexity is a bit tricky. In MBCL, ¢)-learning is associ-
ated with the nearest neighbors used to generating the game matrices in each state of play.

Assume a game lasts 10 steps. Because all experiments set k, = 30, a single game would
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result in 300 @Q-updates. In TBCL, ()-learning is associated with the cells in the game
matrix used to select the actions for the two players. Thus, for that game with 10 steps,
there would only be 10 @)-updates in a single game. The comparison is further complicated

by the fact the tree is not fixed in size but grows throughout learning.

7.4.1 A Game of Force

We begin by considering the relative performance of the two algorithms on our simple game
of force. Recall that the optimal strategy for this game was independent of state and was
constant. Given the issues presented above, we would like to consider the two algorithms
at comparable points. The size of MBCL’s memory base is fixed and has 50,000 points.
For a comparable point in TBCL, we need a tree with 500 leaves. None of our experiments
permitted the trees to grow this large. In fact, we limited this game such that only one
node existed in the tree.

In comparing the number of updates, we find that in the worst case, MBCL would
update 750 examples per game. Thus, after 10,000 games, at most 7,500,000 updates would
have been made. Few games required 25 steps, so the actual number is much lower than
this. For TBCL, after 100,000 games, we would have at most 2,500,000 updates. Of course,
this would be over a significantly smaller number of possible stored examples.

Clearly, we cannot make a direct comparison between these two algorithms under
the current conditions and be fair. Even so, we can point out some interesting differences.

First, we would expect the state of convergence for TBCL to be beyond the corresponding
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state for MBCL because TBCL averaged the equivalent of 25,000 updates per cell and
MBCL averaged 750 updates per example. This implies TBCL should perform closer to
optimal that MBCL. This was not the case. One possible reason for this is that MBCL
updates a set of points associated with each stage of the game, thus the effects of updating
are “smoothed” over a region in the state-action space. TBCL, on the other hand, updates
only a single cell with each stage of the game; such smoothing is not experienced.

In spite of such difference in playing ability, it is significant to note that TBCL
reached its level of performance in one-third of the time as MBCL. This is a graphic illus-
tration of the computational burden associated with the memory-based approach when no

optimization of the memory based has been done.

7.4.2 Pursuit with Simple Motion

In considering the pursuit game with simple motion, we also compare the relative complexity
of the knowledge and the @-update process. Once again, the size of the MBCL memory
base was fixed. This time it had 400,000 points which was significantly larger than the
memory base in the game of force. To be comparable, we would expect the corresponding
tree in TBCL to have 4,000 leaves. Recall we limited the size of the trees to 20 leaves, so
again we are not able to provide a fair comparison based on size.

Considering the number of updates, we find that in the worst case, MBCL would
update 750 examples per game. After 5000 games, at most 3,750,000 updates would have

been made. For TBCL, after 100,000 games, we would have at most 2,500,000 updates.
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Once again, this is over a significantly smaller number of possible stored examples. This
time, updating amounts to 25,000 updates per cell for TBCL and less than 10 updates per
example for MBCI)!

Given the diverse results with the simple game of force, we might be surprised
to see any improvement at all in MBCL. Further, we would expect TBCL to far surpass
the performance of MBCL. In fact, MBCL still performed better, coming to within 0.02 of
optimal for both players while TBCL only came within 0.1 of optimal for P and within 0.02
of optimal with F.

In spite of the apparent superior performance of MBCL over TBCL, we need to
consider the relative difference in computational burden. The 100,000 games of TBCL
required approximately ;—Oth of the time for the 5000 games of MBCL. Given TBCL still
showed signs of improving, it is possible that making the learning times equivalent and
equalizing the complexity of the stored knowledge would lead to comparable playing ability.
Unfortunately, preliminary experiments expanding the tree to 250 leaves did not support

this hypothesis, further indicating problems in the node splitting and node selection process.

7.4.3 Pursuit with Simple Motion in a Half Plane

Recall that the pursuit game in the half plane was a simple extension of the pursuit game
with simple motion. In fact, all of the parameters relative to the two pursuit games are
identical, except for the size of the state space. Therefore, we can conclude, once again,

that the two algorithms cannot be consistently compared. Nevertheless, we can make some
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interesting observations.

First, we find that MBCL apparently continues to surpass TBCL in play. However,
it is interesting that both this and the previous game show a greater improvement in perfor-
mance in TBCL than in MBCL. Specifically, when learning began, MBCL’s deviation from
optimal for the simple pursuit game was limited to 0.2 and 0.02 for P and F respectively.
TBCL’s deviation from optimal, on the other hand, was at 0.45 and 0.025 respectively. For
the pursuit game in the half plane, MBCL’s initial deviation from optimal was 0.14 and
0.015 for P and F respectively where TBCL’s initial deviation from optimal was 0.43 and
0.05 for P and F respectively. The performance for F was comparable for both algorithms,
but TBCL played twice as “badly” as MBCL before any learning occurred. This shows the
advantage of the memory-based approach in having information about the problem from

the initial experiences that seeded the memory base.

7.4.4 Pursuit with Limited Mobility

It is with the pursuit game with limited mobility where we see comparable, if not superior,
performance by TBCL. As in the previous experiments, the memory and update burdens
are not comparable because MBCL has 560,000 examples and requires 7,500,000 updates
through 10,000 games. TBCL, on the other hand only has 20 leaves and only makes 500,000
updates over 20,000 games. But with significantly fewer possible examples and significantly
fewer updates, we find TBCL yields performance within 0.6 and 0.4 of the heuristic for P and

FE respectively. MBCL, on the other hand, yields performance of 0.9 and 0.3 of the heuristic
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for P and F respectively. Further, we note that, at one point, F is performing within 0.2
of optimal for TBCL but then degrades. We conjecture that an improved algorithm for
selecting a node to split could enable TBCL to maintain E’s performance or even surpass

it. In addition, making the computation times and structures comparable in size could also

enable TBCL to further surpass MBCL.

7.5 Discussion

We were pleased with the results of TBCL, especially when compared to the performance
of MBCL. First, we found the overall learning performance to be quite good. In fact,
we feel the performance was clearly “comparable” to the performance of MBCL—even
with several known deficiencies in TBCL. Further, as the games became more complex,
the experimental results seemed to indicate that the tree-based approach could ultimately
adapt better to the underlying state-action space; however, we did not try any variable-
resolution memory-based strategies to compare. It is possible that the advantages of the
tree-based strategy can be attributed to the variable resolution which can be replicated in
memory-based approaches.

In addition to the comparable performance of TBCL relative to MBCL, we also
found a substantial improvement in computational and memory burden. As before, all of
the experiments for TBCL were run on either Sun Sparc 2 or Sun Sparc 10 processors. To
give an idea of the improvement in computational burden, Table 7.2 shows the time required

for playing the large number of games (in the best case) and the size of the associated trees
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Table 7.2: Relative computational burdens for solving games with TBCL.

Game | Games Played | Leaves | Minutes
Force 100,000 1 31
Simple 100,000 20 49
Half 100,000 20 43
Limit 20,000 20 22

Table 7.3: Relative computational burdens for solving games with MBCL.

Game | Games Stored | Examples Stored | Minutes
Force 7500 50,000 96
Simple 2000 400,000 1376
Half 2000 400,000 1372
Limit 2800 560,000 3193

(in number of leaves—because all of the trees are binary, we know the number of nodes in
the tree is twice the number of leaves minus 1).

As we see, the times required to learn these games were substantially less than the
times required for MBCL (Table 7.3). Given a more clever approach to splitting nodes, we
may have been able to yield even stronger performance with the same, or possibly fewer,
numbers of nodes. Further, we could have increased the search space by providing a finer

resolution on the strategy space and still been able to learn in a reasonable period of time.

7.6 Summary

In this chapter, we provided a second novel algorithm for co-learning based on dynamically
partitioning the state space of the game. The focus of the approach was on reducing mem-

ory and computation requirements while maintaining or improving upon the performance
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obtained by MBCL. The resulting algorithm, TBCL, accomplished these goals by not re-
quiring explicit storage of examples in a memory base and by keeping game matrices at
each of the leaves of the tree. Examples were replaced by state space partitions covering
a region of the space. Since the regions can be partitioned to any required resolution, this
approach can maintain the level of performance of the memory-based approach without
explicitly storing examples.

In addition, since game matrices are kept with each partition, several computa-
tional advantages are obtained. First, the game matrix does not need to be regenerated at
every step of the game. Second, if multiple steps in the game take place within the same
partition of the state space, only one linear program needs to be solved (rather than one
for each visit to the partition). Finally, following learning, the game matrix can be thrown
away (thus further reducing memory requirements), and the current strategies stored with
the partition used for play—there is no need to solve any linear programs during actual use.
The result is an approach to co-learning that is faster than memory-based learning during

both training and actual use.
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Chapter 8

Conclusions

8.1 Summarizing the Results

In this dissertation, we provide a new focus for research in multi-agent reinforcement learn-
ing. Our focus on problems of game playing is from two perspectives. First, we focused on
problems of differential games in which games take place through continuous time and have
continuous state spaces and continuous action spaces. Second, our two novel approaches
involved multi-agent learning in which both players in a two-player game are learning to-
gether.

This dissertation provides a coordinated view of the problem of learning solutions
to differential games. Our introduction to the field of differential game theory (Chapter 2)
includes some basic definitions from game theory, properties of the most commonly studied
games, and a solution concept for games based on Nash equilibria.

We next introduce Markov decision processes and Markov games. Because our
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experiments focus on discrete simulations of differential games, we can approximate the
games by implementing them as comparable Markov games. We discuss two standard
algorithms for solving Markov decision process—value iteration and policy iteration—and
explain how these can be applied to solve Markov games.

Next we focus on differential games themselves. We introduce the basic parts of
a differential game, including the kinematic equations that describe the dynamics of the
game, the termination criteria (also called the target set) for the game, and different types
of payoff functions. We highlight the pursuit game as an interesting class of differential
game and introduce the most famous pursuit game in the field—the Homicidal Chauffeur.

Finally, we introduce two relatively simple differential games and provide closed
formed solutions for each. These games, the simple game of force and the pursuit game with
simple motion, are simplified forms of two classic games in differential game theory—the
dolichobrachistochrone game and the Homicidal Chauffeur game. These games are then
used in experiments testing two new algorithms for co-learning.

After introducing the field of differential game theory and solving two simple
games, we provide a review of recent research in reinforcement learning and game play-
ing. The literature on machine learning and game playing is extensive, and with recent
interest in reinforcement learning, the literature describing applications of reinforcement
learning to game playing is growing at a rapid rate. Consequently, we concentrate on a
few representative approaches and highlight the results and applications to co-learning in

games.
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In spite of the growing literature in reinforcement learning and game playing,
relatively little work exists in co-learning and game playing. With the exception of some
work in artificial life, results in co-learning have been limited to relatively simple games,
often with the intent to provide an interesting diversion rather than to focus on the problem
of co-learning. In fact, only one instance of co-learning and differential games was found.
This work involved using temporal difference learning coupled with residual, advantage
updating in a neural network to learn a single linear-quadratic differential game. The work
yielded interesting results but was limited to providing pure-strategy results rather than
the more general mixed-strategy results.

Following these reviews, we focus on the experimental work of this dissertation.
The experiments focus on four areas to further develop a coordinated view of research in
learning solutions to differential games. We compare three distinct learning algorithms in
solving strategies for one player in two different differential games of pursuit. The three
algorithms studied include a genetic algorithm based on the Navy’s SAMUEL architecture,
nearest neighbor classification, and ¢-learning on a simple memory base. The two differen-
tial games include a two-player game in which a single pursuer attempts to capture a single
evader and a three-player game in which two pursuers attempt to capture a single evader.
Learning focuses on identifying strategies for the evader in the presence of fixed pursuers.
In the two-player game, the evader was able to control only the direction in which it turned.
In the three-player game, the evader was able to control the turn angle, the speed, and the

release of countermeasures.
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The results of these experiments demonstrate superior performance for the genetic
algorithm, strong performance for ¢J-learning, and mixed performance for 1-NN. In partic-
ular, I-NN was able to learn quite well in the two-player game but quickly got bogged down
with bad examples in the three-player game. These results motivated the experiments that
followed.

Given the strong performance of the GA on the three-player game and the weak
performance of 1-NN on the three-player game, an experiment was performed in which the
GA acted as a teacher to 1-NN. This experiment was also motivated by recent work in
creating teachers and advisors in machine learning. Most of the results in teaching either
focus on external oracles or focus on using one learning algorithm to encode knowledge
for another learning algorithm to use. In this experiment, we provided a method whereby
one learning algorithm was coupled with a second learning algorithm, and the resulting
performance of the combined strategy exceeded the performance of either strategy alone.

These experiments combining several algorithms and coupling two algorithms to-
gether set the stage for the final and most significant part of the dissertation. First, we
introduce a new memory-based reinforcement learning algorithm, called MBCL (Memory-
Based Co-Learning), which provides a strategy to learn solutions to differential games from
examples. Examples are stored in the memory base with associated ¢)-values predicting fu-
ture discounted reward. Based on these predictions, game matrices are constructed on the
fly and solved to provide optimized behavioral strategies based on the current experience.

The @-values are updated using ¢)-learning with the experience playing games.
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MBCL was applied to four differential games that gradually increased in com-
plexity. The first two games were the simple game of force and the simple pursuit game
introduced earlier. The third game extended the pursuit game by introducing a barrier
in the playing field. This barrier caused an interesting discontinuity in the strategy for
the evader which complicated learning. The fourth game also extended the simple pursuit
game by limiting the mobility of the two players. The result was that a singularity was
introduced into the surface that characterized the termination conditions called a “leaky
corner.” Although requiring a large amount of training time and a large amount of memory
for the memory base, MBCL was able to learn reasonable strategies for all four games.

Finally, we introduce a new tree-based reinforcement learning algorithm, called
TBCL (Tree-Based Co-Learning). This learning algorithm also learns to solve differential
games from examples but does not explicitly store examples in a memory base. Instead,
TBCL constructs a decision tree that partitions that state space for the game. Associated
with each partition in the state space is a game matrix that can be used to derive behavioral
strategies for the game. Learning takes place in two parts. First the cells in the game
matrix are updated through @)-learning whenever a partition is visited and a pair of actions
is selected. Second, the tree is grown by further partitioning the space to better sample the
state space.

TBCL was applied to the same four games as was MBCL. Playing ability following
learning was comparable between the two strategies. More significant, TBCL was able to

obtain this comparable level of performance with a significantly smaller knowledge base and
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in significantly less time.

8.2 Contributions of this Dissertation

This dissertation reports on several major contributions to the field of multi-agent reinforce-
ment learning and learning in game playing. Two different views of multi-agent reinforce-
ment learning where considered. The first assumed a single agent learning but performing
in an environment with other, fixed agents. The second assumed two agents interacting in
the same environment and both agents learning simultaneously.

The specific contributions of this dissertation include the following. First, we pro-
vide a detailed review of the field of machine learning and game playing, with an emphasis
on co-learning, reinforcement learning, and Markov games. We discuss the results and rela-
tive merits of several approaches to game learning and suggested approaches for extending
work in single-agent learning to the multi-agent, co-learning problem.

Second, we provide a direct comparison of three distinct learning algorithms on
two difficult reinforcement learning tasks. These tasks are single-agent pursuit games in
which one player applies a fixed strategy and the other player attempts to learn a strong
opposing strategy. The process of performing this comparison resulted in adapting two
traditional learning algorithms—nearest neigbor classification and @-learning—to work on
tasks with large state and action spaces.

The results of these experiments motivated the third significant contribution: a

novel bootstrapping algorithm in which one learning algorithm learns a task and provides
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the results of its experience to a memory-based learning algorithm (i.e., 1-NN) on a difficult
pursuit game. This experiment also focused on a single player learning against a fixed
opponent but focused on applying the experience from the “best” algorithm in the previous
comparison to the “worst” algorithm. The result was a team approach to learning in which
the final results exceeded the results of either algorithm alone. In addition, an editing
algorithm was applied to the learned memory base to determine the robustness of the
examples. For this experiment, we used the genetic algorithm to provide the examples and
found that with a memory base comparable in size to a rule base generated by the GA,
similar performance could be obtained, thus graphically illustrating the ability to effectively
transfer knowledge between the two algorithms.

Fourth, we introduce a novel memory-based learning algorithm to find approximate
solutions to differential games. This algorithm permits the opposing players in a two-player
game to learn together. The algorithm assumes a shared memory base and applies Q-
learning to the memory base to learn expected discounted rewards. During play, game
matrices that characterize behavioral strategies are constructed and solved using linear
programming to determine optimal mixed strategies for each player.

Finally, we introduce a novel tree-based learning algorithm to find approximate
solutions to differential games. As with the memory-based algorithm, this algorithm permits
the opposing players in a two-player differential game to learn together. This algorithm
also assumes a shared knowledge base, but the knowledge base consists of a decision tree

that partitions the state space. Associated with each partition is a game matrix that is
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modified through @-learning and solved through linear programming. This algorithm offers
tremendous promise over the memory-based approach in that learning requires significantly
less time and game matrices need not be evaluated during play. In addition, the size of the

decision tree is significantly smaller than the size of the memory base.

8.3 Areas for Future Research

This dissertation represents the beginning of the work to be done in the area of reinforcement
learning and differential games. Several areas of future research can be pursued to expand
upon the results reported here.

Because the games reported in this dissertation are limited to two dimensions,
work exploring games of higher dimensionality (e.g., ,y, z) is necessary. Further, in many
ways, the games described do not correspond to similar games in the real world; therefore,
games characterizing more realistic capabilities (e.g., noisy sensors, imperfect controllers)
should be encouraged.

Comparative research is an important component of machine learning studies. The
task of comparing algorithms on problems such that the comparisons are fair and meaningful
is difficult. In this dissertation, we compared three single-agent learning algorithms on two
single-agent learning tasks, and we compared two multi-agent learning algorithms on four
multi-agent learning tasks. Although the results suggest likely differences in the algorithms’
performance, they were in no way conclusive. In fact, we explaining why the comparisons

in the multi-agent case were not completely fair.
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We note that all the algorithms discussed in this dissertation are limited to sym-
bolic reasoning systems. Specifically lacking are any algorithms derived from the connec-
tionist (i.e., neural network) community, despite the fact that much of the successful research
in reinforcement learning has been applied to connectionist systems, with symbolic systems
largely limited to lookup tables. Additional work that applies the ideas in this disserta-
tion to connectionist systems would be warranted. Of particular interest would be work
integrating connectionist and symbolic systems into a cohesive multi-agent learner. For
example, an interesting architecture might include an artificial neural network to provide a
fitness function for filling out a game matrix. Harmon and Baird’s approach [161] to using
a neural network could easily be extended to include a full evaluation of the linear program
and its dual.

Several variations of MBCL should be considered. For example, limited seeding
followed by variable resolution memory-based learning (such as the parti-game algorithm)
would provide a potential solution to the problem of appropriate sampling and excessive
memory-base size. In addition, using a data structure such as the kd-tree to store the
memory-base could significant speed up learning and testing.

Throughout this dissertation, no concerted effort was made to identify “optimal”
parameters for the learning algorithms. Both MBCL and TBCL have a relatively large
number of parameters that need to be set. FEvaluating the effects of various parameter
settings, for example through a factorial study, would provide considerable insight into the

power of the algorithms and their ability to find reasonable parameters in other games.
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In a similar issue, more work is needed in providing exploration strategies during
learning. In Chapter 6, we point out that the mixed strategies resulting from evaluating
game matrices provide an implicit approach to handling the k-armed bandit problem. This
is only true if the resulting mixed strategies provide non-zero probabilities on all of the pure
strategies. To address this problem during learning, we assigned a minimal probability to
all strategies to ensure exploration. Other exploration strategies should be considered to
further address the problem.

As with MBCL, several variations on TBCL could be explored. For example, we
discuss at length in Chapter 7 that the method for selecting a node to split is naive at
best. It may be possible to apply selection techniques such as those used in traditional
classification decision trees to characterize potential improvement (e.g. entropy reduction,
minimum description length, minority measures). As an alternative, it may be worthwhile
to explore techniques of k-step look-ahead to evaluate a node for splitting. Under such a
method, a small number of splits are selected and evaluated. The best split is then selected,
and learning continues from that point.

Related to the problem of selecting a node for splitting is the problem of select-
ing an attribute and associated value for splitting. In selecting an attribute, we selected
the attribute that maximized the difference between resultant submatrices. Once again,
principles such as entropy reduction or minimum description length may be appropriate.

In all cases, we assumed that the split value would be the midpoint of the region.

Again, this may not be appropriate. Because we are not splitting examples, we cannot select



225

regions between neighboring examples; however, a similar quantization of the attribute space
may be appropriate.

Finally, it may be appropriate to consider non-axis-parallel trees in growing trees
for TBCL. Work by Heath and Murthy has pointed out several issues and offered several
suggestions for constructing oblique decision trees and addressing concerns such as look-
ahead and splitting criteria [166, 247].

In Section 7.4 we point out that one of the significant differences between MBCL
and TBCL is that Q-updates in MBCL occur over a region in the instance space where -
updates in TBCL apply only to individual cells in the game matrix. An interesting variation

to TBCL would apply a weighted update, such as

Q(Sv ap, ae) = (1 - wm)@(sv ap, ae) + wm[P + 7@(5/7 F(S/))]

where w is a weight based on proximity to the target cell. Thus, cells in a region around
the target cell to be updated could also be updated. This approach is motivated by the fact
that the game matrix for a differential game would, frequently, be smooth.

It should be evident from this discussion that considerable work can be done to
advance the results reported in this dissertation. We believe that the area of reinforcement
learning is exciting and that considerable promise exists in the approach to solving several
significant problems in multi-agent learning. It is our hope that the work reported here will
motivate others to take the next step and provide even better algorithms to solve complex

problems such as differential games.
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