
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, NOVEMBER 2022 1

Dual Accuracy-Quality-Driven Neural Network for
Prediction Interval Generation

Giorgio Morales, Member, IEEE, and John W. Sheppard, Fellow, IEEE

Abstract—Accurate uncertainty quantification is necessary to
enhance the reliability of deep learning models in real-world
applications. In the case of regression tasks, prediction intervals
(PIs) should be provided along with the deterministic predictions
of deep learning models. Such PIs are useful or “high-quality”
as long as they are sufficiently narrow and capture most of
the probability density. In this paper, we present a method to
learn prediction intervals for regression-based neural networks
automatically in addition to the conventional target predictions.
In particular, we train two companion neural networks: one that
uses one output, the target estimate, and another that uses two
outputs, the upper and lower bounds of the corresponding PI.
Our main contribution is the design of a novel loss function for
the PI-generation network that takes into account the output
of the target-estimation network and has two optimization
objectives: minimizing the mean prediction interval width and
ensuring the PI integrity using constraints that maximize the pre-
diction interval probability coverage implicitly. Furthermore, we
introduce a self-adaptive coefficient that balances both objectives
within the loss function, which alleviates the task of fine-tuning.
Experiments using a synthetic dataset, eight benchmark datasets,
and a real-world crop yield prediction dataset showed that our
method was able to maintain a nominal probability coverage
and produce significantly narrower PIs without detriment to its
target estimation accuracy when compared to those PIs generated
by three state-of-the-art neural-network-based methods. In other
words, our method was shown to produce higher-quality PIs.

Index Terms—Prediction intervals, companion networks, un-
certainty quantification, deep regression.

I. INTRODUCTION

Deep learning has gained a great deal of attention due to
its ability to outperform alternative machine learning methods
in solving complex problems in a variety of domains. In
conjunction with the availability of large-scale datasets and
modern parallel hardware architectures (e.g., GPUs), convolu-
tional neural networks (CNNs), as one popular deep learning
technique, have attained unprecedented achievements in fields
such as computer vision, speech recognition, natural language
processing, medical diagnosis, and others [1].

While the undeniable success of deep learning (DL) has
impacted applications that are used on a daily basis, many
theoretical aspects remain unclear, which is why these models
are usually referred to as “black boxes” in the literature [2]. In

Manuscript received November 1, 2022; revised March 13, 2023; revised
August 3, 2023; accepted December 1, 2023. This research was supported
by a USDA-NIFA-AFRI Food Security Program Coordinated Agricultural
Project (Accession Number 2016-68004-24769), and also by the USDA-
NRCS Conservation Innovation Grant from the On-farm Trials Program
(Award Number NR213A7500013G021).

Giorgio Morales and John W. Sheppard are with the Gianforte School
of Computing, Montana State University, Bozeman, MT 59717, US (email:
giorgiol.moralesluna@student.montana.edu; john.sheppard@montana.edu).

addition, numerous reports suggest that current DL techniques
typically lead to unstable predictions that can occur randomly
and not only in worst-case scenarios [3]. As a consequence,
they are considered unreliable for applications that deal with
uncertainty in the data or in the underlying system, such
as weather forecasting [4], electronic manufacturing [5], or
precision agriculture [6]. Note that, in this context, reliability
is defined as the ability for a model to work consistently across
real-world settings [7].

One of the limitations of conventional neural networks is
that they only provide deterministic point estimates without
any additional indication of their approximate accuracy [8].
Reliability and accuracy of the generated point predictions
are affected by factors such as the sparsity of training data
or target variables affected by probabilistic events [9]. One
way to improve the reliability and credibility of such complex
models is to quantify the uncertainty in the predictions they
generate [10]. This uncertainty (σ2

y) can be quantified using
prediction intervals (PIs), which provide an estimate of the
upper and the lower bounds within which a prediction will
fall according to a certain probability [11]. Hence, the amount
of uncertainty for each prediction is provided by the width
of its corresponding PI. PIs account for two types of un-
certainty: model uncertainty (σ2

model) and data noise variance
(σ2

noise) [11], where σ2
y = σ2

model+σ2
noise. Model uncertainty

arises due to model selection, training data variance, and
parameter uncertainty [12]. Data noise variance measures the
variance of the error between observable target values and the
outputs produced by the learned models.

Recently, some NN-based methods have been proposed to
solve the PI generation problem [11]–[16]. These methods aim
to train NNs using loss functions that aim to balance at least
two of the following three objectives: minimizing mean PI
width, maximizing PI coverage probability, and minimizing
the mean error of the target predictions. Although the afore-
mentioned works have achieved promising results, there exist
some limitations that need to be addressed. For instance, they
rely on the use of deep ensembles; however, training several
models may become impractical when applied to complex
models and large datasets [17]. Furthermore, their performance
is sensitive to the selection of multiple tunable hyperparam-
eters whose values may differ substantially depending on the
application. Therefore, fine-tuning an ensemble of deep NNs
becomes a computationally expensive task. Finally, methods
that generate PI bounds and target estimations simultaneously
have to deal with a trade-off between the quality of generated
PIs and the accuracy of the target estimations.

Pearce et al. [12] coined the term High-quality (HQ)



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, NOVEMBER 2022 2

Fig. 1. An example of our PI-generation method on a synthetic dataset.

principle, which refers to the requirement that PIs be as narrow
as possible while capturing some specified proportion of the
predicted data points. Following this principle, we pose the PI
generation problem for regression as a multi-objective opti-
mization problem. In particular, our proposal involves training
two neural networks (NNs): one that generates accurate target
estimations and one that generates narrow PIs (see Fig. 1).

The first NN is trained to minimize the mean squared error
of the target estimations. Our main contribution is the design
of a loss function for the second NN that, besides the generated
PI bounds and the target, considers the output of the first
NN as an additional input. It minimizes the mean prediction
interval width and uses constraints to ensure the integrity of
the generated PIs while implicitly maximizing the probability
coverage (Sec. III-A). Our second contribution is a method
that updates the coefficient that balances the two optimization
objectives of our loss function automatically throughout train-
ing (Sec. III-C). Our method avoids generating unnecessarily
wide PIs by using a technique that sorts the mini-batches at the
beginning of each training epoch according to the width of the
generated PIs (Sec. III-B). Then we apply a Monte Carlo-based
approach to account for the uncertainty of the generated upper
and lower bounds (Sec. III-E). Finally, when compared to three
state-of-the-art NN-based methods, we show that our method
is able to produce PIs that maintain the target probability
coverage while yielding better mean width without detriment
to its target estimation accuracy (Sec. IV).

Our specific contributions are summarized as follows:

1) Our main contribution is a novel loss function called
Dual Accuracy-Quality-Driven (DualAQD) used to train
a PI-generation NN. It is designed to solve a multi-
objective optimization problem: minimizing the mean PI
width while ensuring PI integrity using constraints that
maximize the probability coverage implicitly.

2) We present a new PI-generation framework that consists
of two companion NNs: one that is trained to produce

accurate target estimations, and another that generates
high-quality PIs; thus, avoiding the common trade-off
between target estimation accuracy, and quality of PIs.

3) We introduce a self-adaptive coefficient that balances the
two objectives of our DualAQD loss function. This differs
from previous approaches that consider this balancing
coefficient as a tunable hyperparameter with a fixed value
throughout the training process.

4) We present a method called batch-sorting that sorts the
mini-batches according to their corresponding PI width
and, as such, avoids generating unnecessarily wide PIs.

5) Our method is shown to generate higher quality PIs and
better reflects varying levels of uncertainty within the data
than the compared methods.

II. RELATED WORK

One of the more common approaches to uncertainty quan-
tification for regression tasks is via Bayesian approaches, such
as those represented by Bayesian neural networks (BNNs),
which model the NN parameters as distributions. As such,
they have the advantage that they allow for a natural quantifi-
cation of uncertainty. In particular, uncertainty is quantified
by learning a posterior weight distribution [18], [19]. The
inference process involves marginalization over the weights,
which in general is intractable, and sampling processes such as
Markov chain Monte Carlo (MCMC) can be computationally
prohibitive. Thus, approximate solutions have been formulated
using variational inference (VI) [20]. However, Wu et al. [21]
argued that VI approaches are fragile since they require careful
initialization and tuning. To overcome these issues, they pro-
posed approximating moments in NNs to eliminate gradient
variance. They also presented an empirical Bayes procedure
for selecting prior variances automatically. Moreover, Izmailov
et al. [22] discussed scaling BNNs to deep neural networks
by constructing low-dimensional subspaces of the parameter
space. By doing so, they were able to apply elliptical slice
sampling and VI, which struggle in the full parameter space.
In addition, Lut et al. [23] presented a Bayesian-learning-
based sparse stochastic configuration network that replaces
the Gaussian distribution with a Laplace one as the prior
distribution for output weights.

Despite the aforementioned improvements in Bayesian ap-
proaches, they still suffer from various limitations. Namely,
the high dimensionality of the parameter space of deep NNs,
including complex models such as CNNs, makes the cost of
characterizing uncertainty over the parameters prohibitive [24].
Attempts to scale BNNs to deep NNs are considerably more
expensive computationally than VI-based methods and have
been scaled up to low-complexity problems only, such as
MNIST [25]. Conversely, non-Bayesian methods do not re-
quire the use of initial prior distributions and biases to train
the models [11]. Recent works have demonstrated that non-
Bayesian approaches provide better or competitive uncertainty
estimates than their Bayesian counterparts [11], [12], [26]. In
addition, they are scalable to complex problems and can handle
millions of parameters.

MC-Dropout was proposed by Gal and Ghahramani [8]
to quantify model uncertainty in NNs. They cast dropout



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, NOVEMBER 2022 3

training in deep NNs as approximate Bayesian inference in
deep Gaussian processes. The method uses dropout repeatedly
to select subsamples of active nodes in the network, turning a
single network into an ensemble. Hence, model uncertainty is
estimated by the sample variance of the ensemble predictions.
MC-Dropout is not able to estimate PIs themselves, as it
does not account for data noise variance. Therefore, Zhu and
Laptev [27] proposed estimating PIs by quantifying the model
uncertainty through MC-Dropout, coupled with estimating
the data noise variance as the mean squared error (MSE)
calculated over an independent held-out validation set.

Recently, several non-Bayesian approaches have been pro-
posed for approximate uncertainty quantification. Such ap-
proaches use models whose outputs provide estimations of
the predictive uncertainty directly. For instance, Schupbach et
al. [28] proposed a method that estimates confidence intervals
in NN ensembles based on the use of U-statistics. Other
techniques estimate PIs by using ensembles of feedforward
networks [29] or stochastic configuration networks [30] and
bootstrapping. Lakshminarayanan et al. [26] presented an
ensemble approach based on the Mean-Variance Estimation
(MVE) method introduced by Nix and Weigend [31]. Here,
each NN has two outputs: one that represents the mean (or
target estimation) and the other that represents the variance of
a normal distribution, which is used to quantify the data noise
variance. Other approaches use models that generate PI bounds
explicitly. Khrosavi et al. [11] proposed a Lower Upper Bound
Estimation (LUBE) method that uses a NN and a loss function
to minimize the PI width while maximizing the probability
coverage using simulated annealing.

Similar approaches have attempted to optimize the LUBE
loss function using methods such as genetic algorithms [13]
and particle swarm optimization [14]. Pearce et al. [12] pro-
posed a method called QD-Ens that consists of a quality-driven
loss function similar to LUBE but that is compatible with
gradient descent. Then Salem et al. [16] proposed QD+ which
is based on QD-Ens, which uses exactly the same two penalty
functions to reduce the PI width and maximize the probability
coverage. They used three-output NNs and included a third
penalty term that aims to decrease the mean squared error
of the target predictions and a fourth penalty term to enforce
the point predictions to lay inside the generated PIs. In our
work, we use only three penalty terms; the differences are
explained in Sec. III-F. Finally, both QD-Ens and QD+ used
an ensemble approach to estimate the model uncertainty while
we use a Monte Carlo approach on a single network.

III. PROPOSED METHODOLOGY

A. Dual Accuracy-Quality-Driven Loss Function

Let Xb = {x1, . . . , xN} be a training batch with N samples
where each sample xi ∈ Rz consists of z covariates. Fur-
thermore, let yb = {y1, . . . , yN} be a set of corresponding
target observations where yi ∈ R. We construct a NN re-
gression model that captures the association between Xb and
yb. More specifically, f(·) denotes the function computed by
the NN, and θf denotes its weights. Hence, given an input
xi, f(xi,θf ) computes the target estimate ŷi. This network is

trained to generate accurate estimates ŷi with respect to yi. We
quantify this accuracy by calculating the mean squared error
of the estimation MSEest = 1

N

∑N
i=1(ŷi − yi)

2. Thus, f is
conventionally optimized as follows:

θf = argmin
θf

MSEest.

Once network f(·) is trained, we use a separate NN whose
goal is to generate prediction intervals for yb given data Xb.
Let g(·) denote the function computed by this PI-generation
NN, and θg denotes its weights. Given an input xi, g(xi,θg)
generates its corresponding upper and lower bounds, ŷui and
ŷℓi , such that [ŷℓi , ŷ

u
i ] = g(xi,θg). Note that there is no

assumption of ŷℓi and ŷui being symmetric with respect to the
target estimate ŷi produced by network f(·). We describe its
optimization procedure below.

We say that a training sample xi ∈ Xb is covered (i.e.,
we set ki = 1) if both the predicted value ŷi and the target
observation yi fall within the estimated PI:

ki =

{
1, if ŷℓi < ŷi < ŷui and ŷℓi < yi < ŷui
0, otherwise.

(1)

Then, using ki, we define the prediction interval coverage
probability (PICP ) for Xb as the percent of covered samples
with respect to the batch size N : PICP =

∑N
i=1 ki/N .

The HQ principle suggests that the width of the prediction
intervals should be minimized as long as they capture the target
observation value. Thus, Pearce et al. [12] considered the mean
prediction interval width of captured points (MPIWcapt) as
part of their loss function:

MPIWcapt =
1

ϵ+
∑

i ki

N∑
i=1

(ŷui − ŷℓi ) ki, (2)

where ϵ is a small number used to avoid dividing by zero.
However, we argue that minimizing MPIWcapt does not
imply that the width of the PIs generated for the non-captured
samples will not decrease along with the width of the PIs
generated for the captured samples1.

Furthermore, consider the case where none of the samples
are captured by the PIs, as likely happens at the beginning of
the training. Then, the penalty is minimum (i.e., MPIWcapt =
0). Hence, the calculated gradients of the loss function will
force the weights of the NN to remain in the state where
∀i, ki = 0, which contradicts the goal of maximizing PICP .

Instead of minimizing MPIWcapt directly, we let

PIpen =
1

N

N∑
i=1

(|ŷui − yi|+ |yi − ŷℓi |), (3)

which we minimize instead. This function quantifies the width
of the PI as the sum of the distance between the upper bound
and the target and the distance between the lower bound
and the target. We argue that PIpen is more suitable than
MPIWcapt given that it forces ŷui , yi, and ŷℓi to be closer
together. For example, suppose that the following case is

1We provide a toy example demonstrating this behavior in the follow-
ing link https://github.com/GiorgioMorales/PredictionIntervals/blob/master/
models/QD toy example.ipynb

https://github.com/GiorgioMorales/PredictionIntervals/blob/master/models/QD_toy_example.ipynb
https://github.com/GiorgioMorales/PredictionIntervals/blob/master/models/QD_toy_example.ipynb


IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, NOVEMBER 2022 4

observed during the first training epoch: yi = 24, ŷi = 25,
ŷui = 0.2, and ŷℓi = 0.1. Then MPIWcapt = 0 given that
the target is not covered by the PI, while PIpen = 47.7. As
a result, PIpen will penalize this state while MPIWcapt will
not. Thus, we define our first optimization objective as:

min
θg

L1 = min
θg

PIpen.

However, minimizing L1 is not enough to ensure the in-
tegrity of the PIs. Their integrity is given by the conditions that
the upper bound must be greater than the target and the target
estimate (ŷui > yi and ŷui > ŷi) and that the target and the
target estimate, in turn, must be greater than the lower bound
(yi > ŷℓi and ŷi > ŷℓi ). Note that if the differences (ŷui − yi)
and (yi − ŷℓi ) are greater than the maximum estimation error
within the training batch Xb (i.e., (ŷui − yi) > maxi |ŷi − yi|
and (ŷui − yi) > maxi |ŷi− yi|, ∀i ∈ [1, . . . , N ]), it is implied
that all samples are covered (ki = 1, ∀i ∈ [1, . . . , N ]).

Motivated by this, we include an additional penalty function
to ensure PI integrity and maximize the number of covered
samples within the batch simultaneously. Let us denote the
mean differences between the PI bounds and the target esti-
mates as du =

∑N
i=1(ŷ

u
i −yi)/N and dℓ =

∑N
i=1(yi− ŷℓi )/N .

Let ξ = maxi |ŷi− yi| denote the maximum distance between
a target estimate and its corresponding target value within the
batch (ξ > 0). From this, our penalty function is defined as:

P = eξ−du + eξ−dℓ , (4)

Here, if the PI integrity is not met (i.e., du < 0 or dℓ < 0) then
their exponent magnitude becomes larger than ξ, producing a
large penalty value. Moreover, these terms encourage both du
and dℓ not only to be positive but also to be greater than ξ.
This implies that the distance between the target yi and any of
its bounds will be larger than the maximum error within the
batch, ξ, thus the target yi will lie within the PI. From this,
we define our second optimization objective as:

min
θg

L2 = min
θg

P.

Then our proposed dual accuracy-quality-driven loss function
is given by

LossDualAQD = L1 + λL2, (5)

where λ is a self-adaptive coefficient that controls the relative
importance of L1 and L2. Hence, our multi-objective opti-
mization problem can be expressed as:

θg = argmin
θg

LossDualAQD.

For simplicity, we assume that f(·) and g(·) have L layers
and the same network architecture except for the output layer.
Network f(·) is trained first. Then, weights θg are initialized
using weights θf except for those of the last layer: θ(0)

g [1 :
L− 1] = θf [1 : L− 1]. Note, that, in general, DualAQD can
use different network architectures for f(·) and g(·).

Fig. 2. L3 penalty calculation, (a) without batch sorting; (b) with batch
sorting.

B. Batch Sorting

The objective function L2 minimizes the term P (Eq. 4),
forcing the distance between the target estimate of a sample
and its PI bounds to be larger than the maximum absolute
error within its corresponding batch. This term assumes there
exists a similarity among the samples within a batch. However,
consider the case depicted in Fig. 2 where we show four
samples that have been split randomly into two batches. In
Fig. 2a, the PIs of the second and third samples already
cover their observed targets. Nevertheless, according to L2,
these samples will yield high penalties because the distances
between their target estimates and their PI bounds are less
than ξ(1) and ξ(2), respectively, forcing their widths to increase
unnecessarily.

For this reason, we propose a method called “batch sorting”,
which consists of sorting the training samples with respect to
their corresponding generated PI widths after each epoch. By
doing so, the batches will process samples with similar widths,
avoiding unnecessary widening. For example, in Fig. 2b,
the penalty terms are low given that d

(1)
u , d

(1)
ℓ > ξ(1) and

d
(2)
u , d

(2)
ℓ > ξ(2). Note that, during testing, the PI generated

for a given sample is independent of other samples and, as
such, batch sorting becomes unnecessary during inference.

C. Self-adaptive Coefficient λ

The coefficient λ of Eq. 5 balances the two optimization
objectives L1 and L2. In this section, we propose that,
instead of λ being a tunable hyperparameter with a fixed
value throughout training, it should be adapted throughout the
learning process automatically.

Typically, the PICP value improves as long as the MPIW
value increases; however, extremely wide PIs are not useful.
We usually aim to obtain PIs with a nominal probability
coverage no greater than (1 − α). A common value for the
significance level α is 0.05, in which case we say that we are
95% confident that the target value will fall within the PI.

Let PICP
(t)
train denote the PICP value calculated on the

training set Xtrain after the t-th training epoch. If PICP
(t)
train

is below the confidence target (1 − α), more relative impor-
tance should be given to the objective L2 that enforces PI
integrity (i.e., λ should increase). Likewise, if PICP

(t)
train is

higher than (1−α), more relative importance should be given
to the objective L1 that minimizes MPIW (i.e., λ should
decrease).

We formalize this intuition by defining the cost C that
quantifies the distance from PICP

(t)
train to the confidence



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, NOVEMBER 2022 5

Algorithm 1 DualAQD method
1: function TRAINNNWITHDUALAQD(Xtrain, Ytrain, f, g, α, η)
2: λ← 1
3: for each t ∈ range(1, maxEpochs) do
4: if t > 1 then
5: Batches← batchSorting(Xtrain, Ytrain, widths)
6: else
7: Batches← shuffle(Xtrain, Ytrain)

8: for each batch ∈ Batches do
9: x, y ← batch

10: ŷ ← f(x)
11: ŷu, ŷℓ ← g(x)
12: loss← DualAQD(λ, y, ŷ, ŷu, ŷℓ)
13: update(g, loss)

14: PICP
(t)
train, widths(t) ← metrics(Xtrain, Ytrain)

15: // Update coefficient λ
16: C ← ((1− α)− PICP

(t)
train)

17: λ = λ + η · C
18: return g

target (1− α): C = (1− α)− PICP
(t)
train. Then, we propose

to increase or decrease λ proportionally to the cost function
C after each training epoch as follows (see Algorithm 1):

λ(t) = λ(t−1) + η · C, (6)

where λ(t) is the value of the coefficient λ at the t-th iteration
(we consider that λ(0) = 1), and η is a tunable scale factor.

Note that Algorithm 1 takes as inputs the data Xtrain

and corresponding targets Ytrain as well as the trained
prediction network f , the untrained network g, the sig-
nificance level α, and the scale factor η. Function
batchSorting(Xtrain, Ytrain, widths

(t−1)) returns a list
of batches sorted according to the PI widths generated dur-
ing the previous training epoch (see Sec.III-B). Function
DualAQD(λ, y, ŷ, ŷu, ŷℓ) represents the DualAQD loss func-
tion (Eq.5) while update(g, loss) encompasses the conven-
tional backpropagation and gradient descent processes used
to update the weights of network g. Furthermore, function
metrics(Xtrain, Ytrain) passes Xtrain through g to generate
the corresponding PIs and their widths, and to calculate
compares the output to Ytrain to calculate the PICP

(t)
train

value using Ytrain.

D. Parameter and Hyperparameter Selection

We train a neural network on the training set Xtrain during
T epochs using LossDualAQD as the loss function. After the
t-th training epoch, we calculate the performance metrics zt =
{PICP

(t)
val,MPIW

(t)
val} on the validation set Xval. Thus, we

consider that the set of optimal weights of the network, θg ,
will be those that maximize performance on the validation set.
The remaining question is what are the criteria to compare two
solutions zi and zj .

Taking this criterion into account, we consider that a solu-
tion zi dominates another solution zj (zi ⪯ zj) if:

• PICP
(i)
val > PICP

(j)
val and PICP

(i)
val ≤ (1− α).

• PICP
(i)
val == PICP

(j)
val < (1 − α) and MPIW

(i)
val <

MPIW
(j)
val

• PICP
(i)
val ≥ (1− α) and MPIW

(i)
val < MPIW

(j)
val

In other words, if α = 0.05, we seek a solution whose
PICPval value is at least 95%. After exceeding this value,

a solution zi is said to dominate another solution zj only if it
produces narrower PIs.

We use a grid search to tune the hyperparameter η for
training (Eq. 6). For each value, we train a NN using 10-fold
cross-validation and calculate the average performance metrics
on the validation sets. Then, the hyperparameters are selected
using the dominance criteria explained above.

E. PI Aggregation Using MC-Dropout

In Sec. I, we explained that both the model uncertainty
(σ2

model) and the data noise variance (σ2
noise) have to be taken

into account when generating PIs. A model trained using
LossDualAQD generates PI estimates based on the training
data; that is, it accounts for σ2

noise. However, we still need to
quantify the uncertainty of those estimates due to σ2

model.
Unlike previous work that used explicit NN ensembles to

quantify σ2
model [12], [26], we propose to use a Monte Carlo-

based approach. Specifically, we use MC-Dropout [32], which
consists of using dropout layers that ignore each neuron of
the network according to some probability or dropout rate.
Then, during each forward pass with active dropout layers, a
slightly different network architecture is used and, as a result, a
slightly different prediction is obtained. According to Gal and
Ghahramani [8], this process can be interpreted as a Bayesian
approximation of the Gaussian process.

Our approach consists of using M forward passes through
the network with active dropout layers. Given an input xi,
the estimates ŷ

(m)
i , ŷu(m)

i , and ŷ
ℓ(m)
i are obtained at the m-th

iteration. Hence, the expected target estimate ȳi, the expected
upper bound ȳui , and the expected lower bound ȳℓi are cal-
culated as: ȳi = 1

M

∑M
m=1 ŷ

(m)
i , ȳui = 1

M

∑M
m=1 ŷ

u(m)
i , ȳℓi =

1
M

∑M
m=1 ŷ

ℓ(m)
i .

F. Comparison to QD-Ens and QD+

Here we consider the differences between our method
(DualAQD) and the two methods QD-Ens [12] and QD+ [16].
For reference, we include the loss functions used by QD-Ens
and QD+:

LossQD =MPIWcapt+

δ
N

α(1− α)
max(0, (1− α)− PICP )2.

LossQD+ =(1− λ1)(1− λ2)MPIWcapt+

λ1(1− λ2)max(0, (1− α)− PICP )2+

λ2 MSEest+

ξ

N

N∑
i=1

[
max(0, (ŷui − ŷi) + max(0, (ŷi − ŷℓi )

]
,

where δ, λ1, λ2, and ξ are hyperparameters used by QD-Ens
and QD+ to balance the learning objectives. The differences
compared to our method are listed in order of importance from
highest to lowest as follows:
• QD-Ens and QD+ use objective functions that maximize
PICP directly aiming to a goal of (1 − α) at the batch
level. We maximize PICP indirectly through L2, which



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, NOVEMBER 2022 6

encourages the model to produce PIs that cover as many
training points as possible. This is achieved by producing
PIs whose widths are larger than the maximum absolute
error within each training batch. Then the optimal weights
of the network are selected as those that produce a coverage
probability on the validation set of at least (1− α).

• Note that PICP is not directly differentiable as it involves
counting the number of samples that lay within the predicted
PIs. However, QD-Ens and QD+ force its differentiation by
including a sigmoid operation and a softening factor (i.e.,
an additional hyperparameter). On the other hand, the loss
functions of DualAQD are already differentiable.

• Our objective L1 minimizes PIpen, which is a more suitable
penalty function than MPIWcapt (cf. Sec III-A).

• Our objective L2 maximizes PICP and ensures PI integrity
simultaneously. QD+ uses a truncated linear constraint and
a separate function to maximize PICP .

• NN-based PI generation methods aim to balance three
objectives: (1) accurate target prediction, (2) generation of
narrow PIs, and (3) high coverage probability. QD-Ens uses
a single coefficient δ within its loss function that balances
objectives (2) and (3) and does not optimize objective (1)
explicitly, while QD+ uses three coefficients λ1, λ2, and ξ
to balance the three objectives. All of the coefficients are
tunable hyperparameters. Our loss function, LossDualAQD,
uses a balancing coefficient whose value is not fixed but
is adapted throughout the training process using a single
hyperparameter (i.e., the scale factor η).

• Our approach uses two companion NNs f(·) and g(·) that
optimize objective (1) and objectives (2) and (3), respec-
tively, to avoid the trade-off between them. Conversely, the
other approaches optimize a single NN architecture.

• We use MC-Dropout to estimate the model uncertainty. By
doing so, we need to train only a single model instead of
using an explicit ensemble of models, as in QD-Ens and
QD+. Also, QD+ requires fitting a split normal density
function [33] for each data point to aggregate the PIs
produced by the ensemble, thus increasing the complexity
of the learning process.

IV. EXPERIMENTS

A. Experiments with Synthetic Data
Previous approaches have been tested on datasets with sim-

ilar uncertainty levels across all their samples, or on synthetic
datasets with a single region of low uncertainty surrounded by
a gradual increase of noise. This is a limitation as it does not
allow testing the ability of the PI’s to adapt to rapid changes of
uncertainty within the data. Therefore, we test all of the meth-
ods on a more challenging synthetic dataset with more fluctu-
ations and extreme levels of uncertainty. The code is available
at https://github.com/GiorgioMorales/PredictionIntervals.

We created a synthetic dataset with varying PI widths that
consists of a sinusoid with Gaussian noise. Specifically, the
dataset contains 1000 points generated using the equation
y(x) = 5 cos(x)+10+ϵ, where x ∈ [−5, 5] and ϵ is Gaussian
noise whose magnitude depends on x: ϵ = (2 cos(1.2x)+2) v
where v ∼ N (0, 1). For these experiments, we trained a feed-
forward neural network with two hidden layers, each with 100

TABLE I
PI METRICS MSEval , MPIWval , PICPval , AND PIδval EVALUATED

ON THE SYNTHETIC DATASET USING 5× 2 CROSS-VALIDATION.

Method MSEval MPIWval PICPval(%) PIδval
DualAQD 5.27 ± 0.27 7.30 ± 0.29 95.5 ± 0.48 1.52 ± 0.13

DualAQD noBS 5.27 ± 0.27 9.16 ± 0.35 96.3 ± 0.77 3.08 ± 0.19
QD+ 5.28 ± 0.29 8.56 ± 0.14 95.5 ± 0.31 3.12 ± 0.24

QD-Ens 5.31 ± 0.26 10.17 ± 0.79 94.0 ± 1.57 4.88 ± 0.17
MC-Dropout-PI 5.22 ± 0.30 9.31 ± 0.27 93.3 ± 0.63 5.04 ± 0.08

nodes with ReLU activation. A 5 × 2-fold cross-validation
design was used to train and evaluate all networks.

Knowing the probability distribution of the noise at each
position x allows us to calculate the ideal 95% PIs (α = 0.05),
[yu, yℓ], as follows:

yu(x) = y(x) + 1.96 ϵ, and yℓ(x) = y(x)− 1.96 ϵ,

where 1.96 is the approximate value of the 95% confidence
interval of the normal distribution. Therefore, we define a
new metric we called PIδ that sums the absolute differences
between the estimated bounds and the ideal 95% bounds for
all the samples within a set X:

PIδ =
1

|X|
∑
x∈X

(
|yu(x)− ŷu(x)|+ |yℓ(x)− ŷℓ(x)|

)
.

We compared the performance of DualAQD using batch
sorting and without using batch sorting (denoted as “Du-
alAQD noBS” in Table I). All networks were trained using a
fixed mini-batch size of 16 and the Adadelta optimizer. Table I
gives the average performance for the metrics calculated on the
validation sets, MSEval, MPIWval, PICPval, and PIδval,
and corresponding standard deviations.

We also compared our DualAQD PI generation method-
ology to three other NN-based methods: QD+ [16], QD-
Ens [12], and a PI generation method based on MC-Dropout
alone [27] (denoted MC-Dropout-PI). For the sake of con-
sistency and fairness, we used the same configuration (i.e.,
network architecture, optimizer, and batch size) for all the
networks trained in our experiments. In our preliminary ex-
periments, for the case of QD+, QD-Ens, and MC-Dropout-
PI, we found that batch sorting either helped to improve
their performance or there was no significant change. Thus,
for the sake of fairness and consistency, we decided to use
batch sorting for all compared methods. In addition, we tested
Dropout rates between 0.1 and 0.5. The obtained results did
not indicate a statistically significant difference; thus, we used
a Dropout rate of 0.1 for all networks and datasets.

Note that the only difference between the network ar-
chitecture used by the four methods is that QD+ requires
three outputs, QD-Ens requires two (i.e., the lower and upper
bounds), and MC-Dropout-PI requires one. For DualAQD and
MC-Dropout-PI, we used F = 100 forward passes with active
dropout layers. For QD+ and QD-Ens, we used an ensemble of
five networks and a grid search to choose the hyperparameter
values. Fig. 3 shows the PIs generated by the four methods
from the first validation set together with the ideal 95% PIs.

https://github.com/GiorgioMorales/PredictionIntervals


IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, NOVEMBER 2022 7

Fig. 3. Performance of PI generation methods on the synthetic dataset.

B. Benchmarking Experiments

We experimented with eight open-access datasets from the
UC Irvine Machine Learning Repository [34]. Note that even
though our experiments use scalar and 2-D regression tasks
(Sec. IV-C), our proposed method can be extended to other
tasks such as classification. For each dataset, we used a feed-
forward neural network whose architecture was the same as
that described in Sec. IV-A. We used 10-fold cross-validation
to train and evaluate all networks. Table II gives the aver-
age performance for the metrics calculated on the validation
sets, MSEval, MPIWval, and PICPval, and corresponding
standard deviations. We applied z-score normalization (mean
equal to 0 and standard deviation equal to 1) to each feature
in the training set while the exact same scaling was applied to
the features in the validation and test sets. Likewise, min-max
normalization was applied to the response variable; however,
Table II shows the results after re-scaling to the original scale.
Similar to Sec. IV-A, all networks were trained using a fixed
mini-batch size of 16, except for the Protein and Year datasets
that used a mini-batch size of 512 due to their large size.

The bold entries in Table II indicate the method that
achieved the lowest average MPIWval value and that its
difference with respect to the values obtained by the other
methods is statistically significant according to a paired t-test
performed at the 0.05 significance level. The results obtained
by DualAQD were significantly narrower than the compared
methods while having similar MSEval and PICPval of at
least 95%. Furthermore, Fig. 4 depicts the distribution of
the scores achieved by all the compared methods on all
the datasets, where the line through the center of each box
indicates the median F1 score, the edges of the boxes are the

TABLE II
PI METRICS MSEval , MPIWval , AND PICPval EVALUATED ON THE

BENCHMARK DATASETS USING 10-FOLD CROSS-VALIDATION.

Dataset Metric DualAQD QD+ QD-Ens
MC-

Dropout-PI

Boston
MPIWval 9.99±2.26 12.14±2.05 16.13±0.67 12.52±2.28
MSEval 8.91±3.90 11.91±5.24 15.29±5.07 8.94±3.87

PICPval(%) 95.0±1.6 95.6±1.9 97.2±1.3 96.0±0.9

Concrete
MPIWval 15.72±1.42 18.57±2.06 25.42±1.30 20.52±1.74
MSEval 22.45±4.79 26.65±8.02 29.30±5.25 22.71±4.96

PICPval(%) 95.2±0.5 95.2±1.3 97.9±1.6 95.7±1.2

Energy
MPIWval 1.41±0.12 2.94±0.05 10.99±1.47 3.81±0.21
MSEval 0.25±0.05 0.31±0.08 0.35±0.25 0.26±0.05

PICPval(%) 96.5±0.6 99.0±1.0 100.0±0.0 99.5±0.6

Kin8nm
MPIWval 0.280±0.01 0.311±0.01 0.502±0.01 0.336±0.01
MSEval 0.005±0.00 0.007±0.00 0.009±0.00 0.005±0.00

PICPval(%) 95.1±0.1 96.6±0.4 98.5±0.3 97.5±0.4

Power
MPIWval 14.60±0.35 15.31±0.44 27.57±1.54 16.08±0.63
MSEval 15.23±1.34 16.43±1.34 17.14±1.11 15.26±1.31

PICPval(%) 95.2±0.1 95.7±0.3 99.6±0.2 96.4±0.5

Protein
MPIWval 13.02±0.26 13.05±0.14 15.79±0.24 15.95±0.20
MSEval 14.79±0.40 17.51±0.59 18.35±0.87 15.05±0.42

PICPval(%) 95.0±0.1 95.4±0.4 95.1±0.5 94.8±0.1

Yacht
MPIWval 1.56±0.42 4.10±0.17 10.99±1.47 4.74±1.20
MSEval 0.51±0.53 0.72±0.70 0.35±0.25 0.53±0.54

PICPval(%) 97.1±0.9 98.4±2.2 100.0±0.0 100.0±0.0

Year
MPIWval 29.68±0.29 32.68±0.25 37.03±0.13 34.25±0.16
MSEval 73.26±0.76 104.8±8.1 78.12±0.87 73.13±0.69

PICPval(%) 95.1±0.1 95.4±0.9 37.03±0.1 93.82±0.0

25th and 75th percentiles, whiskers extend to the maximum
and minimum points (not counting outliers), and outlier points
are those past the end of the whiskers (i.e., those points greater
than 1.5× IQR plus the third quartile or less than 1.5× IQR
minus the first quartile, where IQR is the inter-quartile range).

Note that even though QD-Ens uses only one hyperparam-
eter (see Sec. III-F), it is more sensitive to small changes.
For example, a hyperparameter value of δ = 0.021 yielded
poor PIs with PICPval < 40% while a value of δ = 0.02105
yielded too wide PIs with PICPval < 100%. For this reason,
the hyperparameter δ of the QD-Ens approach was chosen
manually while the scale factor η of DualAQD was chosen
using a grid search with values {0.001, 0.005, 0.01, 0.05, 0.1}.
Fig. 5 shows the difference between the learning curves
obtained during one iteration of the cross-validation for the
Power dataset using two different η values (i.e., η = 0.01
and η = 0.1). The dashed lines indicate the training epoch at
which the optimal weights θg were selected according to the
dominance criteria explained in Sec. III-D. On the other hand,
the hyperparameters λ1 and λ2 of QD+ were chosen using a
random search since it requires significantly higher training
and execution time.

C. Prediction Intervals for Crop Yield Prediction

We assert our approach is general in applicability. To test
this assertion, we decided to experiment with a difficult, real-
world application of 2D regression using spatially correlated
data to convey the usefulness of our method. Specifically, we
focused on the crop yield prediction problem, which has an
important impact on society and is one of the main tasks of
precision agriculture. Accurate and reliable crop yield predic-
tion, along with careful uncertainty management strategies,
enables farmers to make informed management decisions, such



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, NOVEMBER 2022 8

Fig. 4. Box plots of the MPIWval and MSEval scores of DualAQD, QD+, QD-Ens, and MC-Dropout-PI PI generation methods on the synthetic and
benchmarking datasets: (a) Synthetic. (b) Boston. (c) Concrete. (d) Energy. (e) Kin8nm. (f) Power. (g) Protein. (h) Yacht. (i) Year.

Fig. 5. MPIW and PICP learning curves obtained for the Power dataset
using DualAQD. (a) η = 0.01. (b) η = 0.1.

as determining the nitrogen fertilizer rates needed in specific
regions of their fields to maximize profit while minimizing
environmental impact [35].

We use an early-yield prediction dataset of winter wheat
we curated and presented in a previous work [36]. The early-
yield prediction is posed as a regression problem where
the explanatory variables are represented by a set of eight
features obtained during the growing season (March). These
features consist of nitrogen rate applied, precipitation, slope,
elevation, topographic position index (TPI), aspect, and two

backscattering coefficients obtained from synthetic aperture
radar (SAR) images from Sentinel-I. The response variable
corresponds to the yield value in bushels per acre (bu/ac),
measured during the harvest season (August). In other words,
the data acquired in March is used to predict crop yield values
in August of the same year.

The yield prediction problem requires two-dimensional (2D)
inputs and 2D outputs. As such, it can be viewed as a 2D
regression task. To tackle this problem, we trained a CNN
using the Hyper3DNetReg 3D-2D network, architecture we
presented in [36], which was specifically designed to predict
the yield values of small spatial neighborhoods of a field
simultaneously. We then modified this architecture to produce
three output patches of 5 × 5 pixels (i.e., the estimated yield
patch and two patches containing the upper and lower bounds
of each pixel, respectively) instead of one.

For our experiments, we used data collected from three
winter wheat fields, which we refer to as “A,” “B,” and “C”,
respectively. Three crop years of data were collected for each
field. The information from the first two years was used to
create the training and validation sets (90% of the data is used
for training and 10% for validation). The four methods, AQD,
QD+, QD-Ens, and MC-Dropout-PI, were compared using the
results from the test set of each field, which consists of data
from the last observed year and whose ground-truth yield map
is denoted as Y . The test set was used to generate a predicted
yield map of the entire field, Ŷ , and its corresponding lower
and upper bounds, ŶL and ŶU , respectively.

Fig. 6 shows the ground-truth yield map for field “A”
(darker colors represent lower yield values) along with the
uncertainty maps obtained by the four compared methods and
their corresponding PICP and MPIW values. Field “A” is



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, NOVEMBER 2022 9

Fig. 6. Uncertainty maps comparison for field A.

used as a representative field for presenting our results, since
we obtained similar results on the other fields. Here, we define
the uncertainty map U = Ŷ u − Ŷ ℓ as a map that contains the
PI width of each point of the field (darker colors represent
lower PI width and thus lower uncertainty). That is, the wider
the PI of a given point, the more uncertain its yield prediction.

We used four metrics to assess the behavior of the four
methods (Table III). First, we calculated the root mean square
error (RMSEtest) between the ground-truth yield map Y and
the estimated yield map Ŷ . Then, we considered the mean
prediction interval width (MPIWtest) and prediction interval
probability coverage (PICPtest). Note that k-fold or k × 2
cross-validation cannot be used in this experimental setting.
Thus, to help us explain the advantages of our method over the
others in the context of the HQ principle, we introduce a new
metric that summarizes the MPIWtest and PICPtest metrics
shown in Table III. Let MPIW test represent the mean PI
width after min-max normalization using as upper bound the
maximum MPIWtest value among the four methods in each
field. Let µω denote the weighted geometric mean between
MPIW test and (1−PICPtest) (i.e., the complement of the
PI coverage probability) with ω ∈ [0, 1] being the relative
importance between both terms. Then

µω = (MPIW test)
ω(1− PICPtest)

(1−ω).

According to the HQ principle that aims to obtain nar-
row PIs and high probability coverage, low µω values are
preferable when comparing the performance of different PI-
generation methods. Fig. 7 shows the comparison of the µω

metric obtained for each method on the three tested fields
for different ω values. In order to summarize the behavior
shown in Fig. 7 into a single metric, we calculated the integral
µ =

∫ 1

0
µω dω. Since we seek to obtain low µω values for

various ω, low µ values are preferable. Bold entries in Table III
indicate the method with the lowest µ.

V. DISCUSSION

Our loss function LossDualAQD was designed to minimize
the estimation error and produce narrow PIs simultaneously
while using constraints that maximize the coverage probability
inherently. From Tables I and II, we note that DualAQD
consistently produced significantly narrower PIs than the com-
pared methods, according to the paired t-test performed at
the 0.05 significance level, except for the Protein dataset,
where QD+ obtained comparable PI widths. Simultaneously,

TABLE III
PI METRICS RMSEtest , MPIWtest , PICPtest , AND µ EVALUATED ON

THE YIELD PREDICTION DATASETS.

Field Method RMSEtest MPIWtest
PICPtest

(%) µ

A

DualAQD 15.44 53.75 92.8 .350
QD+ 17.73 54.27 89.5 .397

QD-Ens 15.55 53.99 92.3 .359
MC-Dropout-PI 15.27 51.68 91.8 .355

B

DualAQD 11.16 43.45 94.9 .221
QD+ 11.83 50.17 93.7 .261

QD-Ens 12.95 73.09 95.6 .306
MC-Dropout-PI 10.83 47.18 94.4 .241

C

DualAQD 18.48 59.96 96.6 .279
QD+ 22.27 62.02 93.9 .336

QD-Ens 17.75 39.93 63.8 .490
MC-Dropout-PI 17.15 50.61 89.3 .349

Fig. 7. µω vs. ω comparison on yield prediction datasets.

we yielded PICPval values of at least 95% and better or
comparable MSEval values. In addition, the PIδval values
reported in Table I demonstrate that DualAQD is the method
that best adapted to the highly varying uncertainty levels of our
synthetic dataset. Thus, the PI bounds generated by DualAQD
were the closest to the ideal 95% PIs.

Notice that DualAQD obtains lower MSEval values than
QD+ consistently despite the fact that QD+ also includes
an objective function that minimizes the error of the target
predictions. The reason is that our method uses a NN (i.e.,
f(·)) that is specialized in generating accurate target predic-
tions, and its optimization objective does not compete with
others. Conversely, QD+ uses a loss function that balances four
objective functions: minimizing the PI widths, maximizing PI
coverage probability, minimizing the target prediction errors,
and ensuring PI integrity. The NN used by QD-Ens, on the
other hand, only generates the upper and lower bounds of the
PIs. The target estimate is then calculated as the central point
between the PI bounds. As a consequence of not using a NN
specialized in minimizing the target prediction error, QD-Ens
achieved the worst MSEval values of the compared methods,
except for the Year dataset.

It is worth mentioning that one of the advantages of using



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, NOVEMBER 2022 10

DualAQD over QD+ and QD-Ens is that we achieved better
PIs while requiring less computational complexity. That is,
our method requires training only two NNs and uses MC-
Dropout to account for the model uncertainty while QD+ and
QD-Ens require training ensembles of five NNs. In addition,
QD+ requires extra complexity given that it uses a split
normal aggregation method that involves an additional fitting
process for each data point during testing. Note that using
deep ensembles of M models is expected to perform better or
similar to MC-Dropout when using M forward passes [37].
In other words, using an ensemble of five NNs, as QD
and QD+ do, is expected to perform better than using five
forward passes through the NN using MC-Dropout. Neverthe-
less, during inference, we are able to perform not only five
but 100 passes through the NN without significantly adding
computationally cost. Our method becomes more practical in
the sense that, even when it uses the rough estimates of model
uncertainty provided by MC-Dropout, it is still able to generate
significantly higher-quality PIs.

In Fig. 5, we see the effect of using different scale factors
η to update the balancing coefficient λ of LossDualAQD.
Notice that DualAQD produced wide PIs at the beginning
of the training process in order to ensure PI integrity; as a
consequence, the PICPtrain and PICPval values improved
drastically. Once the generated PIs were wide enough to cover
most of the samples in the training set (i.e., PICPtrain ≈ 1),
DualAQD focused on reducing the PI widths until PICPtrain

reached the nominal probability coverage α. The rate at which
PICP and MPIW were reduced was determined by the
scale factor η.

Furthermore, Fig. 5a (η = 0.01) and Fig. 5b (η = 0.1)
show that both models converged to a similar MPIWval value
(∼ 15) despite having improved at different rates. It is worth
noting that we did not find a statistical difference between
the results produced by the different η values that were tested
on all the datasets (i.e., η ∈ [0.001, 0.1]), except for the case
of Kin8nm. When various η values were considered equally
as good for a given dataset, we selected the η value that
yielded the lowest average MPIWval, which was η = 0.01
for Boston, Concrete, and Yacht, η = 0.005 for Kin8nm, and
η = 0.05 for the rest of the datasets. This is significant because
it shows that the sensitivity of our method to the scale factor
η is low, unlike the hyperparameters required by QD-Ens, as
explained in detail in Sec. IV-B. What is more, our method
requires a single hyperparameter, η, while QD-Ens requires
two: λ and a softening factor used to enforce differentiability
of its loss function; and QD+ requires four: λ1, λ2, and λ3,
and the same softening factor used by QD-Ens. Note that our
method does not need an additional softening factor given that
the functions of DualAQD are already differentiable.

We see in Table III that DualAQD yielded better PICPtest

values than the other methods, except for field “B” where QD-
Ens had the highest PICPtest value, albeit at the expense of
generating excessively wide PIs. What is more, Fig. 7 shows
that, in general, DualAQD obtained lower µω values; as a
consequence, it achieved the lowest µ value in each of the three
fields (Table III), which implies that it offers a better width-
coverage trade-off in comparison to the other methods. Notice

that Table III shows PICPtest values lower than 95% for field
A. During training and validation, the coverage probability
did reach the nominal value of 95%. Note that, since the
distribution of the test set (2020) differs from the one seen
during training (2016 and 2018), the PICPtest values may
not be equal to those obtained during training. This illustrates
the ability to show increased uncertainty when insufficient data
is available for making reliable predictions.

Fig. 6 shows that DualAQD was able to produce better
distributed PIs for field “A” (i.e., with a wider range of values)
while achieving slightly better PICPtest and MPIWtest val-
ues than QD-Ens. This means that DualAQD is more dynamic
in the sense that it outputs narrower PIs when it considers there
is more certainty and wider PIs when there is more uncertainty
(recall the behavior in Fig. 3). As a consequence, 54.4%,
44.3%, and 40.3% of the points processed by DualAQD on
field “A” have smaller PI width than QD+, QD, and MC-
Dropout, respectively, while still being able to cover the
observed target values. Similarly, 88.7%, 65.3%, and 49.9% of
the points processed by DualAQD on field “B” have smaller
PI width than QD+, QD, and MC-Dropout while still covering
the observed target values; and 62.5%, 6.0%, and 8.8% of the
points processed by DualAQD on field “C” have smaller PI
width than QD+, QD, and MC-Dropout while still covering
the observed target values.

Finally, Fig. 6 shows that DualAQD indicates higher un-
certainty in the lower (southern) region of the field, which
received a nitrogen rate value that was not used in previous
years (i.e., it was not available for training). Similarly, regions
of high yield values are related to high nitrogen rate values;
however, there exist considerably fewer training samples of
this type, which logically would lead to greater uncertainty.
Thus, there is more uncertainty when predicting regions that
received high nitrogen rate values, and this is represented
effectively by the uncertainty map generated by DualAQD but
not the compared methods. It is worth mentioning that even
though DualAQD showed some degree of robustness empiri-
cally when given previously unseen samples, neural network-
based PI generation methods do not offer any guarantee for
the behavior of the model for out-of-distribution samples.

VI. CONCLUSION

Accurate uncertainty quantification is important to increase
the reliability of deep learning models in real-world applica-
tions that require uncertainty to be addressed. In this work,
we focus on methods that generate prediction intervals using
conventional deep neural networks for regression tasks. As
such, we presented a method that uses two companion NNs:
one that specializes in generating accurate target estimations
and another that has two outputs and is trained using a novel
loss function designed to generate accurate and narrow PIs.

We tested our method, DualAQD, with a challenging syn-
thetic dataset and seven benchmark datasets using feedforward
neural networks. We also experimented with a real-world
application of 2D regression using spatially correlated data to
convey the usefulness and applicability of our PI generation
method. Therefore, we conclude that by using our loss function



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, NOVEMBER 2022 11

LossDualAQD, we were able to produce higher-quality PIs in
comparison to QD+, QD-Ens, and MC-Dropout-PI; that is, our
method generated significantly narrower PIs while maintaining
a nominal probability coverage without detriment to its target
estimation accuracy. DualAQD was also shown to be more
dynamic in the sense that it better reflects varying levels of
uncertainty within the data. It is important to point out that
we achieved better performance metrics than the competing
algorithms using less computational complexity and fewer
tunable hyperparameters. In the future, we plan to adapt our
loss function for its use in Bayesian neural networks.

ACKNOWLEDGMENTS

The authors wish to thank the members of the Data Intensive
Farm Management project (USDA-NIFA-AFRI 2016-68004-
24769 and USDA-NRCS NR213A7500013G021) for their
comments through the development of this work, especially
Dr. Paul Hegedus for collecting and curating the site-specific
data. We thank Jordan Schupbach for providing advice on the
experimental design.

REFERENCES

[1] D. Ghimire, D. Kil, and S.-H. Kim, “A survey on efficient convolutional
neural networks and hardware acceleration,” Electronics, vol. 11, no. 6,
2022.

[2] V. Buhrmester, D. Münch, and M. Arens, “Analysis of explainers of
black box deep neural networks for computer vision: A survey,” Machine
Learning and Knowledge Extraction, vol. 3, no. 4, pp. 966–989, 2021.

[3] M. J. Colbrook, V. Antun, and A. C. Hansen, “The difficulty of
computing stable and accurate neural networks: On the barriers of
deep learning and smale&#x2019;s 18th problem,” National Academy
of Sciences, vol. 119, no. 12, p. e2107151119, 2022.

[4] A. Zarnani, S. Karimi, and P. Musilek, “Quantile regression and cluster-
ing models of prediction intervals for weather forecasts: A comparative
study,” Forecasting, vol. 1, no. 1, pp. 169–188, 2019.

[5] A. Ruospo and E. Sanchez, “On the reliability assessment of artificial
neural networks running on AI-oriented MPSoCs,” Applied Sciences,
vol. 11, no. 14, 2021.

[6] E. D. Meenken, C. M. Triggs, H. E. Brown, S. Sinton, J. Bryant, A. D.
Noble, M. Espig, M. Sharifi, and D. M. Wheeler, “Bayesian hybrid
analytics for uncertainty analysis and real-time crop management,”
Agronomy Journal, vol. 113, no. 3, pp. 2491–2505, 2021.

[7] D. Tran, J. Liu, M. W. Dusenberry, D. Phan, M. Collier, J. Ren,
K. Han, Z. Wang, Z. Mariet, H. Hu et al., “Plex: Towards reliability
using pretrained large model extensions,” CoRR, vol. abs/2207.07411,
2022. [Online]. Available: arxiv.org/abs/2207.07411

[8] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning,” in 33rd Int. Conf.
on Machine Learning, 20–22 Jun 2016, pp. 1050–1059.

[9] A. Khosravi, S. Nahavandi, D. Creighton, and A. F. Atiya, “Comprehen-
sive review of NN-based prediction intervals and new advances,” IEEE
Trans. Neural Networks, vol. 22, no. 9, pp. 1341–1356, 2011.

[10] D. L. Shrestha and D. P. Solomatine, “Machine learning approaches for
estimation of prediction interval for the model output,” Neural Networks,
vol. 19, no. 2, pp. 225–235, 2006.

[11] A. Khosravi, S. Nahavandi, D. C. Creighton, and A. F. Atiya, “Lower
upper bound estimation method for construction of neural network-based
prediction intervals,” IEEE Trans. Neural Networks, vol. 22, no. 3, pp.
337–346, 2011.

[12] T. Pearce, A. Brintrup, M. Zaki, and A. Neely, “High-quality prediction
intervals for deep learning: A distribution-free, ensembled approach,” in
35th Int. Conf. on Machine Learning, 2018, pp. 4072–4081.

[13] X. Zhang, Z. Shu, R. Wang, T. Zhang, and Y. Zha, “Short-term load
interval prediction using a deep belief network,” Energies, vol. 11,
no. 10, 10 2018.

[14] I. M. Galván, J. M. Valls, A. Cervantes, and R. Aler, “Multi-objective
evolutionary optimization of prediction intervals for solar energy fore-
casting with neural networks,” Information Sciences, vol. 418-419, pp.
363–382, 2017.

[15] E. Simhayev, G. Katz, and L. Rokach, “Piven: A deep neural network
for prediction intervals with specific value prediction,” cs.LG, vol.
abs/2006.05139, 2020. [Online]. Available: arxiv.org/abs/2006.05139

[16] T. Salem, H. Langseth, and H. Ramampiaro, “Prediction intervals: Split
normal mixture from quality-driven deep ensembles,” in 36th Conf. on
Uncertainty in Artificial Intelligence, J. Peters and D. Sontag, Eds., vol.
124, 03–06 Aug 2020, pp. 1179–1187.

[17] M. Ganaie, M. Hu, A. Malik, M. Tanveer, and P. Suganthan, “Ensemble
deep learning: A review,” Engineering Applications of Artificial Intelli-
gence, vol. 115, p. 105151, 2022.

[18] R. M. Neal, Bayesian learning for neural networks. Springer Science
& Business Media, 2012, vol. 118.

[19] L. R. Chai, “Uncertainty estimation in bayesian neural networks and
links to interpretability,” Master’s thesis, Department of Engineering,
University of Cambridge, 2018.

[20] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational Inference:
A review for statisticians,” Journal of the American Statistical Associa-
tion, vol. 112, no. 518, pp. 859–877, 2017.

[21] A. Wu, S. Nowozin, E. Meeds, R. Turner, J. Hernández-Lobato, and
A. Gaunt, “Deterministic variational inference for robust Bayesian neural
networks,” in 7th Int. Conf. on Learning Representations, 2019.

[22] P. Izmailov, W. Maddox, P. Kirichenko, T. Garipov, D. Vetrov, and
A. Wilson, “Subspace inference for bayesian deep learning,” in 35th
Uncertainty in Artificial Intelligence Conf., Jul 2020, pp. 1169–1179.

[23] J. Lu, J. Ding, C. Liu, and T. Chai, “Hierarchical-bayesian-based
sparse stochastic configuration networks for construction of prediction
intervals,” IEEE Trans. Neural Networks and Learning Systems, vol. 33,
no. 8, pp. 3560–3571, 2022.

[24] J. Yao, W. Pan, S. Ghosh, and F. Doshi-Velez, “Quality of uncertainty
quantification for bayesian neural network inference,” 2019.

[25] S. Farquhar, M. A. Osborne, and Y. Gal, “Radial bayesian neural net-
works: Beyond discrete support in large-scale bayesian deep learning,”
in Twenty Third Int. Conf. on Artificial Intelligence and Statistics, ser.
Proceedings of Machine Learning Research, S. Chiappa and R. Calandra,
Eds., vol. 108, 26–28 Aug 2020, pp. 1352–1362.

[26] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Advances in
Neural Information Processing Systems, vol. 30, 2017.

[27] L. Zhu and N. Laptev, “Deep and confident prediction for time series at
Uber,” in IEEE Int. Conf. on Data Mining Workshops (ICDMW), 2017,
pp. 103–110.

[28] J. Schupbach, J. W. Sheppard, and T. Forrester, “Quantifying uncertainty
in neural network ensembles using u-statistics,” in 2020 Int. Joint Conf.
on Neural Networks, 2020, pp. 1–8.

[29] A. Khosravi, S. Nahavandi, D. Srinivasan, and R. Khosravi, “Con-
structing optimal prediction intervals by using neural networks and
bootstrap method,” IEEE Trans. on Neural Networks and Learning
Systems, vol. 26, no. 8, pp. 1810–1815, 2015.

[30] J. Lu, J. Ding, X. Dai, and T. Chai, “Ensemble stochastic configuration
networks for estimating prediction intervals: A simultaneous robust
training algorithm and its application,” IEEE Trans. Neural Networks
and Learning Systems, vol. 31, no. 12, pp. 5426–5440, 2020.

[31] D. Nix and A. Weigend, “Estimating the mean and variance of the target
probability distribution,” in Proceedings of IEEE Int. Conf. on Neural
Networks, vol. 1, 1994, pp. 55–60.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” Journal of Machine Learning Research, vol. 15, no. 56, pp.
1929–1958, 2014.

[33] K. F. Wallis, “The two-piece normal, binormal, or double gaussian
distribution: Its origin and rediscoveries,” Statistical Science, vol. 29,
pp. 106–112, 2014.

[34] D. Dua and C. Graff, “UCI machine learning repository,” 2019,
https://archive.ics.uci.edu/ml/index.php.

[35] P. B. Hegedus, B. Maxwell, J. Sheppard, S. Loewen, H. Duff,
G. Morales, and A. Peerlinck, “Towards a low-cost comprehensive pro-
cess for on-farm precision experimentation and analysis,” Agriculture,
vol. 13, no. 3, 2023.

[36] G. Morales, J. W. Sheppard, P. B. Hegedus, and B. D. Maxwell, “Im-
proved yield prediction of winter wheat using a novel two-dimensional
deep regression neural network trained via remote sensing,” Sensors,
vol. 23, no. 1, p. 489, jan 2023.

[37] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in 31st Int.
Conf. on Neural Information Processing Systems, 2017, p. 6405–6416.

arxiv.org/abs/2207.07411
arxiv.org/abs/2006.05139

	Introduction
	Related Work
	Proposed Methodology
	Dual Accuracy-Quality-Driven Loss Function
	Batch Sorting
	Self-adaptive Coefficient 
	Parameter and Hyperparameter Selection
	PI Aggregation Using MC-Dropout
	Comparison to QD-Ens and QD+

	Experiments
	Experiments with Synthetic Data
	Benchmarking Experiments
	Prediction Intervals for Crop Yield Prediction

	Discussion
	Conclusion
	References

