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Abstract—Accounting for the effects of test uncertainty is a sig-
nificant problem in test and diagnosis, especially within the context
of built-in test. Of interest here, how does one assess the level of un-
certainty and then utilize that assessment to improve diagnostics?
One approach, based on measurement science, is to treat the prob-
ability of a false indication [e.g., built-in-test (BIT) false alarm or
missed detection] as the measure of uncertainty. Given the ability
to determine such probabilities, a Bayesian approach to diagnosis,
and by extension, prognosis suggests itself. In the following, we
present a mathematical derivation for false indication and apply
it to the specification of Bayesian diagnosis. We draw from mea-
surement science, reliability theory, signal detection theory, and
Bayesian decision theory to provide an end-to-end probabilistic
treatment of the fault diagnosis and prognosis problem.

Index Terms—Bayesian inference, built-in test (BIT), diagnosis,
false indication, measurement uncertainty, prognosis.

I. INTRODUCTION

T ESTING at any level (e.g., production, field, or on-board)
is about obtaining realistic results, or indications about a

unit under test (UUT). Courses of action are selected based on
test results. Ideally each test result would exactly reflect the con-
dition of the UUT. Given the fact that there is no such thing as an
ideal test, effective diagnosis requires understanding the relative
probability of a false indication. But what is a false indication?
How can false indications be predicted? How can one use such
prediction to aid diagnosis rather than hinder diagnosis? These
are the questions that concern us in this paper. Further, given
the focus of the IEEE to standardize metrics for testability and
diagnosability, answers to these questions are particularly rele-
vant [17].

The ability to predict and track false indications in test and
diagnosis is the long-time bane of embedded diagnostics (such
as built-in test (BIT). Unfortunately, it is generally accepted that,
even if we are able to predict false indications, verifying these
predictions with field data is problematic. At best, we might
be able to measure false-removal rates, cannot duplicate rates,
or retest-OK rates, but these rates can be attributed to multiple
causes that may or may not include false indications.

MIL-STD-2165 (now MIL-HDBK 2165A) [25] defines
a false alarm as “a fault indicated by built-in test (BIT) or
other monitoring circuitry where no fault exists.” The former
MIL-STD-1309C [24] defines false alarm the same way,
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limiting the definition to BIT. The IEEE standard dictionary
is in agreement, defining false alarm more generally as “an
indicated fault where no fault exists” [15]. A missed detection
can be defined similarly as “an indication of no fault where a
fault exists.” Combining, we can then define a false indication
simply as “an erroneous test result.” This definition applies to
all levels of test.

This paper does not segregate BIT from testing in general.
BIT, after all, is a test; however, BIT does have some unique
properties. Specifically, BIT is an intimate part of the UUT and
is subjected to the same environment. BIT and the UUT may
suffer degradation from the same causes. BIT is also toleranced
closer to operational requirements than other levels of test. How-
ever, BIT results are still used to determine a course of action.
These factors were considered during the development of the
approach of this paper, and it was decided that BIT fits within
the general model of test. In fact, we would further generalize
our definition of BIT to include any observation recorded by the
system about the performance of the system that can be used for
test and diagnosis.

Work from the measurement science community provides a
means for predicting uncertainty in measurement that can be
used as the basis of predicting false indications. As long as
we rely on calibration laboratories to validate these uncertain-
ties and we focus on applying the uncertainties to the test re-
sults, we can mitigate the impact of our limitations in verifying
false alarms. Specifically, we look to apply measurement un-
certainty combined with probability of failure and probability
of observing failure as components in an overall model for pre-
dicting false indications. We then use these probabilities in the
context of a Bayesian belief network to perform diagnosis and,
ultimately, prognosis. We recognize that there are other pos-
sible causes for false indications, including environmental fac-
tors, human error, and systems operating near their functional
limits; however, we limit the discussion to measurement uncer-
tainty as a starting point in our exploration.

The remainder of this paper is organized as follows. Section II
provides our assumptions in addressing the false indication
problem and Section III provides basic background material
from measurement science. Sections IV–VII provide the main
tools used in this paper—predicting probability of false indica-
tion, predicting probability of failure, and predicting instrument
uncertainty, respectively. In Section VIII, we provide the foun-
dations required for using a Bayesian approach by introducing
the fundamentals of Bayes decision theory and detection theory,
respectively. We then provide the main result in Section IX,
showing how to combine these predictions in Bayesian diag-
nosis, a numerical example illustrating the application of the
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Fig. 1. Notional test architecture.

approach in Section X, followed by an interesting extension
to handle prognosis in Section XI. We provide concluding
remarks in Section XII.

II. ASSUMPTIONS

As mentioned above, a false alarm has been defined tradi-
tionally as “an indication of a fault where no fault exists.” In-
terpreting this in the context of testing a UUT, this has typically
been limited to faults in the UUT alone. In the following, we
will argue that, to facilitate creating a predictive model for false
alarms, the definition must be applied to the entire test environ-
ment. Here, the test environment includes the test equipment,
the hardware or software required to support testing (including
switching matrices or interface devices as appropriate), as well
as the UUT (Fig. 1). Further, the treatment for the predictive
model will be extended to cover missed detection as well, thus,
providing a model for overall false indication.

In this paper, we will consider potential sources of error in the
test process. Under ideal conditions, with “accurate” measure-
ment devices and full information about the UUT, diagnostic
errors will still occur and cannot be eliminated completely. It is
important to understand that some complicated elements of di-
agnosis involve chasing these errors [44]. We assume that the
most likely sources of error are related to the following:

1) human error;
2) environmental conditions;
3) test equipment uncertainty;

a) instrument uncertainty;
b) power source uncertainty;

4) test design;
a) transient effects;
b) loading effects;
c) threshold settings.

Human error is not something that can be predicted since it is
tied to several factors including education level, training, fa-
tigue, and other “human limitations.” Therefore, we are not in-
corporating this factor into the proposed model. Further, while
environmental effects account for a large percentage of error

sources, we see no “generic” approach to modeling environ-
mental error. Rather, we note that such error sources are deter-
mined post facto, and the results of such post-mortem analysis
factored directly into test policies and procedures by incorpo-
rating additional environmental controls. We consider this issue
one worthy of further research.

Test equipment uncertainty is believed to be a significant pre-
dictable source of uncertainty in our model. Test equipment in
this case includes all of those elements required to perform a
test, including BIT. We differentiate between the power source
uncertainty (i.e., the probability that power levels applied as
input to the UUT are at the intended levels) and instrument
uncertainty (i.e., the probability that measurements and stimuli
are within some specified tolerance). When considering power
source uncertainty, we observe that most test procedures follow
a sequence of events such as the following.

1) The UUT is evaluated to ensure it is safe to have power
applied (i.e., safe-to-turn-on test).1

2) A power system integrity check is performed to determine
if the power source indeed provides power at the required
levels.2

3) The UUT is then tested.
Utilizing this sequence, we see that, in step “2,” the power

system itself is treated as a UUT and must adhere to the same
type of prediction as we are proposing here. Given that, we can
assume that if the power system integrity check passes (with
some confidence level associated with it), then either we can
factor power uncertainty out of the model, or the resulting con-
fidence can be used as input to an overall probability of error.
We will assume power uncertainty is negligible due to the fact
the metrology process usually imposes a 4:1 accuracy ratio be-
tween the measurement device and the power source [3].

For instrument uncertainty, the calibration process is de-
signed to 1) minimize error in the instrument, as well as 2)
determine the level of uncertainty (by reading as opposed to
by scale) of the instrument.3 Thus, assuming the instrument
is calibrated, probability of error can be determined based on
this specified uncertainty. Assuming that the causes for power
source uncertainty and instrument uncertainty are independent
and the level of uncertainty due to power source integrity is not
negligible, the resulting probabilities can simply be multiplied
together.

The issue of test design (ignoring the effects of human error
due to inadequate documentation, faulty simulation, inappro-
priate assumptions, etc.) can be limited to considering the three
factors above—transient effects, loading effects, and threshold
settings. Transient effects correspond to external sources of de-
viation due to, for example, changes in mode settings or environ-
mental effects. As discussed earlier, we believe that the ability
to devise general models of environmental uncertainty is limited

1Of course, with BIT, power is already applied since BIT is an integral part
of the UUT.

2In the context of BIT, it is typical that power is assumed to be good; therefore,
it could be a potential source for BIT false indication. This is especially the case
given ac power, which is frequently “dirty” unless properly conditioned.

3BIT/BITE should also be regarded as “instrumentation” and should undergo
the same calibration as off-board instrumentation. Otherwise, error introduced
by BIT cannot be controlled or predicted.
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at this time; therefore, they will be deferred to a later point for
incorporation into the model.4

We also assume that, in the process of designing tests, set-
tling time corresponding to mode changes (e.g., in the UUT,
test set, or switching matrix) are set such that the corresponding
transient effects do not impact the final measurement. In other
words, we are assuming measurements are taken after the test
environment has reached a stable state.

When considering loading effects, we first partition the test
environment as in Fig. 1. As seen in the figure, embedded and
offboard (automatic and manual) test environments fit the same
general architecture. Specifically, the test set corresponds to
the collection of instruments and power sources/supplies used
to test the UUT. The switching matrix provides the means
for routing the signals between the UUT and the appropriate
instruments in the test set. The interface device (ID) provides
the mechanical means to connect the UUT to the switching
matrix. Finally, the UUT is what we are testing.

Each of the components in the test environment have their
respective loading effects on the entire test environment. We
are assuming that loading effects due to the test set and the
switching matrix, up to the connectors on the test set side of the
ID are factored out as result of metrology specifications relative
to the test equipment. Specifically, the measurement uncertainty
associated with a particular measurement devices, is specified at
the interface rather than at the device itself. Thus, we only need
to consider loading effects arising from the pathways between
the ID and the point of measurement on the UUT. BIT may have
a very short and simple connection to the UUT, but there is one
nonetheless.

Since transient effects were factored out of the model, we will
assume that any loading effects will result in a simple shift in
the measurement (i.e., they will provide an offset). As with any
other factor, there will be some level of uncertainty associated
with this offset. We assume that the resulting probability of error
is independent of error due to measurement, and that we can then
include probability of error due to loading as another multiplier
in the model.

Finally, and perhaps most significantly, we consider the ef-
fects on setting the PASS/FAIL threshold. The characteristics of
the underlying behavior distribution will have been fully deter-
mined by the previous factors. The effect of setting the threshold
is one of optimizing risk, where frequently this is further sub-
divided into consumer and producer risk. Consumer risk refers
to the potential loss to the consumer of a product due to error.
Thus, this corresponds to the effects of missed detection because
a consumer receiving and using a faulty item will have a direct
negative impact on the consumer’s ability to obtain full use of
the product. Producer risk refers to the potential loss to the pro-
ducer of a product due to error. This corresponds to the effects
of false alarm because a producer repairing a fault-free item in-
curs unnecessary cost (e.g., lower yield, higher manufacturing
cost, higher maintenance cost).

4It is also possible to regard human error and environmental effects as anoma-
lous inputs; therefore, under the assumption that we apply the definition of false
alarm to the entire test environment, one could argue that errors due to these
causes would not be false alarms but would be indicative of their cause.

To summarize, our model for predicting probability of false
indication depends upon the following factors:

1) instrument uncertainty following calibration;
2) loading effect offset and associated uncertainty;
3) threshold settings based on consumer-producer risk

tradeoff.

III. MEASUREMENT THEORY

A prominent issue in testing is the impact of precision and
accuracy of test resources on the certainty in the resulting test
outcome. Formalizing the impact of precision and accuracy on
test confidence comes from work in measurement theory. Given
the need to formalize these factors, we can consider each of
them in terms of probability distributions. The precision of a
resource characterizes the amount of “scatter” one can expect
when repeated measurements are made of the same signal. Typ-
ically, precision is applied to the measurement process or re-
source rather than the measurement itself. Thus, the precision
of a resource can be characterized by considering a probability
distribution of measurements. A precise resource would yield
a narrow distribution of measured values (i.e., a low variance),
while an imprecise resource would yield a wide distribution of
measured values (i.e., a high variance).

On the other hand, the accuracy of a measurement corre-
sponds to the level of deviation from some reference value. As
with precision, accuracy can be modeled as a probability dis-
tribution. Typically, accuracy is applied to the measured value
rather than the process or instrument used in taking the measure-
ment. Frequently, it is determined through taking several inde-
pendent measurements and taking the mean deviation from the
reference value.

Statistically, inaccuracy is evaluated in terms of two potential
sources—referred to as random error and systematic error. Sys-
tematic error is also called bias. Many consider accuracy only
in terms of random error in which bias is ignored or calibrated
out (in which case the estimate becomes an unbiased estimate of
error). Others consider total error in which the bias is included.

To determine the appropriate tolerances for a particular test,
and thereby determine relevant test outcomes, one must con-
sider the precision of the required resources. The precision will
be used to determine the associated bias of the instrument. To
determine the precision, typically, several independent measure-
ments are taken for that instrument under known conditions and
the resulting distribution determined. Then the width of the dis-
tribution is determined by using, for example, variance (a sta-
tistical measure defined as the average deviation from the mean
of the distribution).

Next, measurement error is considered by examining the
distribution characterizing accuracy. Given the system to be
tested and a measurement to be made, a distribution of “nom-
inal values” for that measurement can be determined. From this
distribution, PASS/FAIL criteria are established (in the simplest
case) based on the probability of a measurement occurring
within some set of defined limits applied to that measurement.

Generally the PASS/FAIL criteria are determined by consid-
ering expected values for a fault-free unit. “Significant” devi-
ation from these expected values results in the FAIL outcome for
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Fig. 2. Distributional sources of Type I and Type II errors, respectively.

that test. The limits define what is meant by “significant.” Ide-
ally, conditions are considered in which a similar distribution is
determined in the presence of faulty conditions, and the limits
are set such that maximum separation between the distributions
(in terms of probability density) is obtained. During testing, a
measurement value is typically mapped into a discrete outcome
determined based upon which side of these limits the measure-
ment falls.

Once the measured value is mapped into a discrete outcome,
interpreting the test results becomes problematic. Specifically,
when considering a single measurement, the probability of that
measurement being within the set limits will be , and the
probability of it being out of the limits will be . (Ac-
tually, these are conditional probabilities since the actual prob-
ability depends on whether or not the unit has failed, as we will
see below.)

In determining the base confidence (e.g., either the expected
confidence or the maximum confidence) in the outcome, we
want to consider both the probability of observing a PASS out-
come given the test should pass and the probability of observing
a FAIL outcome given the test should fail, i.e., and

respectively. Problems occur when a measurement
for a good unit is out of tolerance (referred to as a “Type I error”)
or a measurement for a bad unit is in tolerance (referred to as a
“Type II error”). Given that we consider a test outcome of FAIL to
be a “positive” indication of a problem, Type I errors correspond
to false positives (i.e., false alarms) while Type II errors cor-
respond to false negatives (i.e., missed detections). These two
types of errors are depicted in Fig. 2.

Current BIT captures performance data about a particular
subsystem or unit but frequently makes crisp decisions in terms
of the expected cause (i.e., fault) generating the BIT indication.
Given current trends for BIT to have high false alarm rates, it is
particularly important that both Type I and Type II errors be ac-
counted for within the underlying diagnostics. Specifically, ig-
noring these types of errors has the potential to generate inaccu-
rate diagnosis with no guidance for how to detect or compensate
for such inaccuracies. By directly modeling BIT uncertainty, the
approach proposed in this paper propagates the BIT uncertainty

during diagnostic inference to provide a more accurate predic-
tion of the system or unit state of health.

IV. DETERMINING PROBABILITY OF FALSE INDICATION

Based on the fact Type I and Type II errors occur in practice,
we want to know the rate at which we will be faced with such
errors. Formally, a false indication occurs whenever a test result
is inconsistent with the underlying state of the unit being tested.
When determining the probability of a false indication occur-
ring, we must consider these joint effects. Consider the situation
where we only have a single test, and it is possible for that test
to either PASS or FAIL. Further, assume that we consider the pos-
sibility of a fault truly being present or not being present. Thus
we need to consider four combinations as follows.

1) True pass: We observe the test passing and there
is no fault .

2) Missed detection: We observe the test passing and
there is a fault .

3) False alarm: We observe the test failing and there
is no fault .

4) True fail: We observe the test failing and there is
a fault .

Now we want to consider the probabilities of these joint events
occurring, namely , , ,
and , respectively. Note that these four situations
cover all possible combinations, so we can define the proba-
bility of false indication, , as follows:

(1)

Here, denotes fault indication in an “unconditional sense”
where we consider only unconditional probabilities.

Note that, from a diagnostic perspective, this definition is not
particularly useful. This is because the process of performing
diagnosis corresponds to observing test results and then infer-
ring diagnoses (i.e., possible faults) within the system. Thus, in
reality, we are interested in the conditional probabilities of the
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state of the unit given the test results. Recall the definition of
conditional probability that says

Using this definition, we can rewrite (1) as shown in (2) at the
bottom of the page. So

(3)

This form will be more useful in diagnosis in that
is derivable directly from the failure rate of the unit, and

is a measure of the ability of a
test to detect the associated failure which we will derive below.

Now we will consider these alternative conditional probabil-
ities. Specifically:

1 ) is the probability we observe a failure, given
the unit is faulty;

2 ) is the probability we do not observe a failure,
given the unit is not faulty;

3 ) is the probability we observe a failure, given
the unit is not faulty;

4 ) is the probability we do not observe a failure,
given the unit is faulty.

In considering test confidence alone, we can assume we do
not know the failure probability of the UUT, i.e., in the worst
case, that . This leads to the and
terms in (2) canceling out, so we can consider the lack of confi-
dence (which we call suspicion) in our test, independent of the
failure rate of the unit tested, to be the following:

(4)

Here, denotes fault indication in a “conditional sense”
where we consider only conditional probabilities. Equation
(6) can be simplified further by observing that the sum of the
conditional probabilities and

. Thus

(5)

To make sure that we have not violated the axioms of prob-
ability (specifically, the axiom that states that the sum of the
probabilities over a domain must be 1), we note the following.
First, and

. So, the probability of a true indication ,
which reflects test confidence, can be computed similarly

(6)

Observe that, given the above axiom of probability, we must
have . Using the complementary of
probabilities defined above we have

So, we see that the axioms of probability hold as desired.
Thus, assuming independence in testing, we can derive cor-

responding false indication probabilities from instrument accu-
racy and reliability measures. Assuming independent tests,
this can be given as

(7)
When wanting to predict , we can apply Baye’s Rule
to each of the respective terms where

(8)

Notice that the probabilities are simply failure prob-
abilities, which can be derived from reliability models. Further,

can be derived from the instrument uncertainty, and
corresponds to the prior probability of observing no

fault (i.e., ). As we will see, we will never have
to actually provide or compute or . This is
significant in that our model provides a formal approach to spec-
ifying all of the numerical components of a Bayesian model for
fault diagnosis and prognosis. In the end, we argue that these
models more accurately represent available diagnostic informa-
tion by incorporating better understanding of test measurement
uncertainty. Thus, the models can be expected to yield better di-
agnostic results over models that do not capture sources of un-
certainty in a formal way.

(2)



1008 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 54, NO. 3, JUNE 2005

V. TESTING AND DETECTION THEORY

If we regard the source of error in testing to be the uncertainty
inherent in the test environment, and we assume that this uncer-
tainty arises from several independent random sources, then by
the Central Limit Theorem, the combined uncertainty tends to
be distributed according to a Gaussian distribution. Under this
assumption, we can model both nominal behavior and anoma-
lous behavior with respect to the measurement as a Gaussian
distribution, where the only difference between the two distri-
butions is that the mean is shifted by some offset.

Without loss of generality, suppose we focus on false alarms.
In particular, given the underlying behavior distribution of the
UUT while faulty and fault free, we can evaluate various de-
cision thresholds for a test by plotting the probability of false
alarm against the probability of true alarm for each of these
thresholds. The resulting curve is the so-called receiver oper-
ating characteristic or ROC curve (Fig. 3).

We would like to be able to characterize the ability of a test to
discriminate noise from signal. Signal detection theory applies
a measure called the “discriminability” of a detector5 (i.e., test)
and defines it as

(9)

where and are the means of the two distributions and is
the standard deviation. A different ROC curve can be plotted for
every . As the distributions are more discriminable, then the
more the bend in the curve will move to the upper left corner, as
shown in the figure. If the curves are completely indiscriminable
(i.e., signal cannot be separated from noise), then the curve will
correspond to a 45 line from (0, 0) to (1, 1). Thus, this line
represents a “worst case” for a test.

From the standpoint of test design or test selection, the dis-
criminability of the test is an essential feature that should be
evaluated. Specifically, highly discriminable tests will be better
suited for managing decision risk (Section VIII) through the
identification of clear decision thresholds with tighter associ-
ated tolerances. However, less discriminable tests will tend to
require wider tolerances associated with those decision thresh-
olds, thus, making the choice of thresholds to control risk more
difficult.

VI. DETERMINING PROBABILITY OF FAILURE

Traditional reliability theory determines probability of failure
based on the projected failure rate of an item. Failure rates are
determined using combinations of historical data and physical
models and are typically expressed in terms of numbers of fail-
ures per million hours (or some other unit). Traditionally, the
failure rate is denoted , and the mean time between failures
(MTBF) is .

Usually, failure probability is computed under the assump-
tion of an exponential failure distribution, based on a further

5The discriminability of a test corresponds to the ability of the test to discern
faulty states from fault-free states based on the underlying distribution of mea-
surement uncertainty.

Fig. 3. Sample ROC curves.

assumption of constant failure rate [22].6 In other words, if we
let denote failure (or diagnosis) , the probability of failure

is computed as

(10)

In performing diagnosis under uncertainty, it is common to com-
pute probability of failure as a relative measure over members
of an ambiguity group directly from the failure rates.

Specifically, we define an ambiguity group to be a set of di-
agnoses for which no tests have been performed that differen-
tiate the set (perhaps because they do not exist). Assume (for
simplicity) that a diagnosis corresponds to a single fault mode.
Assume also that each fault mode has an associated failure rate.
Then, given a set of diagnoses in an ambiguity group

(11)

Thus, for a given diagnosis , determining (i.e.,
) for that diagnosis prior to testing (in which the initial

ambiguity group is the entire set of possible diagnoses ) is
simply

(12)

However, note that the failure probability is time-dependent and
Markov in nature. In other words, the actual probability of a
fault, in addition to depending on its likelihood relative to the
other members of an ambiguity group, also depends upon the
time since the last evaluation of that unit. Since ambiguity group

6Note that, when the failure rate is not constant, it is common for the Weibull
distribution to be used instead. It is relevant to observe that, for the Weibull
distribution, when the shape parameter � is set to 0, the distribution reduces to
exponential.
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Fig. 4. Progression of relative probabilities with time.

corresponds (as defined above) to a group of possible diag-
noses that have not been differentiated, they have not yet been
evaluated; therefore, the more accurate method for computing
the relative probabilities of the diagnoses in (given a speci-
fied time since last testing) is

(13)

Suppose we have three possible diagnoses with failure rates
(assuming common units such as per million hours) set at 0.001,
0.005, 0.01, 0.05, and 0.1, respectively. Using (12), we find the
relative failure probabilities for these are approximately 0.006,
0.03, 0.06, 0.3, and 0.6, respectively. However, if we use (13),
we find that, due to the dependence on time, these relative prob-
abilities drastically change, eventually converging with time to
a uniform distribution (Fig. 4). We can then use this time-depen-
dent view in the calculation of probability of false indication, as
defined above.

VII. DETERMINING INSTRUMENT UNCERTAINTY

Consider now the task of determining uncertainty in a mea-
surement from some instrument or built-in test circuitry. Typ-
ically, a measurement is mapped to a PASS or FAIL outcome
when testing; however, based on the uncertainty of the measure-
ment, , the probability of observing the PASS or FAIL outcome
can be determined.

Note that when measuring the state of a UUT, we are not
measuring that state directly but are measuring some signal that
depends on a number of independent variables (inputs, internal
state, fault conditions, environmental conditions, etc.). Thus, we
can consider the measurement process as one of estimating a
function . Uncertainty in the dependent vari-
able ultimately depends on the uncertainty in the independent
variables , (denoted , respectively).

In the metrology and calibration community, the uncertainty
of an instrument is determined through one of two methods:
Type A uncertainty is determined based on statistical sampling,
and Type B uncertainty is determined based on the assumption
of some underlying distribution [48]. If we assume a Gaussian
distribution, we find that, frequently, the Type A and Type B un-
certainties are approximately the same. Either way, our objec-
tive is to identify standard uncertainty, which is typically treated
as the standard deviation of the underlying distribution.

More precisely, consider some measurement, that is
intended to observe some “true value” . The uncertainty
associated with this measurement is then , and we say
that . Recognizing that the estimation process
involves combining multiple measurements, we are seeking
some . Given that the uncertainty of
independent variable can be determined either statistically
or analytically, the goal is to determine the uncertainty in the
dependent variable . The “combined” standard uncertainty of

, denoted , represents the estimated standard deviation
(or standard error) in the result, and is computed as

(14)

Note that this assumes independence among the variables . If
we wish to consider correlated effects among the variables [1],
then our estimate (based on the law of uncertainty propagation
[50]) becomes

(15)
Here, denotes the estimated variance of , and
denotes the estimated covariance associated with and . This
law is derived from a first-order Taylor series approximation of
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the function . For many functional forms,
(15) reduces to simple linear forms. For complex cases where
there is significant nonlinearity, higher order approximations are
required.

Interpreting the result of (15), since we are assuming a
Gaussian (i.e., normal) distribution and treating standard uncer-
tainty as the standard error of the estimate , we note that the
actual value approximately 68% of the time and

approximately 95% of the time. Consider now a
test that has been “normalized” such that its distribution is cen-
tered on zero with a nominal range of . This distribution has
particular standard deviation, , which is determined through
the process of designing the test.

Our interest is in determining the probability of some obser-
vation, given the underlying state of the system. For example,

and would tell us the probability of
observing PASS given the unit is fault free and the probability
of observing a FAIL given the unit is faulty, respectively. Note
that these probabilities work from the discrete random variables
of unit state and test outcome; however, the test outcome, ul-
timately, depends on the underlying measurement. So consider
the case where a measurement is taken and (i.e., the
measurement indicates a PASS observation). The probability of
the test actually PASSing given the measurement is given as

(16)
However, when conditioning on observing a PASS, we note that
the second term drops out since . Also, since

, we have

(17)

Similarly

(18)
So, by the same argument, when conditioning only on observing
a FAIL, we find that

(19)

Continuing in this line of reasoning, observe that the probability
of taking a particular measurement given the unit passes can
be computed by considering the distribution around limited to
the nominal range.7 In other words

(20)

7Usually, this would be restricted to the dynamic range of the instrument;
however, we assume the tests have been defined properly such that the mea-
surements of a particular test are of consistent accuracy. Therefore, the number
of in-tolerance measurements having different accuracy would be insignificant.
This allows us it “ignore” the tails of the distribution as being negligible in cu-
mulative probability.

Similarly, consider the case where a measurement is taken and
the system is faulty. The probability of receiving the actual mea-
surement conditioned on this faulty state is then given as

(21)

Thus, observing that the limits of integration between (20) and
(21) cover the entire possible range and that the integral over
this range must equal 1, we see that .

Without loss of generality, focus on
[from (17)]. If we apply Bayes rule, we get

Substituting the various integrals, we get

(22)
Observe that the denominator reduces to 1.0 and that the second
term in the numerator is a constant defined by the failure prob-
ability of the unit tested (i.e., ). Thus

(23)

Following a similar line of reasoning, we can then derive
as

(24)

Note that these equations assume the availability of a specific
measured value (i.e., ). In a dynamic diagnostic environment,
this may be interesting; however, fixed probabilities are usually
required for a Bayesian model. One approach is to use the ex-
pected value for the appropriate range. Another (and the one
we adopt) is to select a “worst case” value. In this case, such a
value would correspond to one that is coincident with one of the
limits,8 (since this would maximize probability of false alarm
or nondetection).9 Given this, we now have all of the pieces re-
quired to determine test confidence for Bayesian diagnosis.

8Technically, since we do not know a priori which limit would be exceeded,
we should take the expected value, i.e., the average in this case, of the two limit
values. With symmetric distributions, however, this is not necessary, and we can
work with one of the limits chosen without loss of generality.

9Should historical data be available, it might be possible to refine these prob-
abilities based on that history, but such issues of diagnostic “maturation” are
beyond the scope of this paper.



SHEPPARD AND KAUFMAN: A BAYESIAN APPROACH TO DIAGNOSIS AND PROGNOSIS USING BUILT-IN TEST 1011

Assume, without loss of generality, that we use a worst case of
for our measurement value. Then, (23) and (24) reduce

to

(25)

(26)

An alternative approach to deriving these probabilities is to
note that the probabilities of the state of the UUT and the mea-
surement of the test both follow normal distributions that can
be modeled jointly using the bivariate normal distribution [20].
Specifically, the bivariate normal distributed is defined as

where

Here, is the correlation coefficient .
If we consider the distribution around to be the expected

value of the state of the UUT under nominal conditions, and the
distribution around to be the expected value of the instrument
regardless of which UUT is being measured, then we note that
these distributions are independent. Thus, we can argue that they
should not be correlated and set . In this case, the bivariate
normal distribution reduces to

Note that marginalizing out or yield the corresponding
univariate normal distributions.

This makes sense, because if and are independent, we
have , giving us

Consider now the corresponding cumulative probabilities, de-
fined as

Notice that each of the terms in the integrand are independent of
each other (from the standpoint of the variables of integration),
which allows us to rewrite the integral as follows:

Finally, observe that this is exactly the form of (25) and (26).
It is interesting to note that repeated measurements enable

revision of uncertainty and can tend to reduce uncertainty.
The idea of “repeat polling” has been proposed as a technique
for reducing the probability of a false indication by allowing
transient signals and other sources of measurement uncertainty
to “dampen out” [36]. Specifically, using this idea of repeat
polling, Phillips et al. show that uncertainty can be revised as

(27)

Given constant uncertainty (for a particular measurement type),
we see that

(28)

Further, the best estimate of the measurand based on repeated
measurements can be determined by computing the weighted
sum

(29)

where is the current measurement, is the best es-
timate through measurements, and
represents the ratio between uncertainty at the previous time step
and initial uncertainty (thus showing the amount of relative re-
duction at this time step).

VIII. APPLYING BAYES DECISION THEORY

Assuming we are able to generate the probability distributions
for nominal and faulty behavior, we return to the diagram pro-
vided in Fig. 2 to consider the effects of locating the decision
boundaries. For this discussion, we will draw on results from
Bayes decision theory and its derivative, signal detection theory
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[11]. For this discussion, we will assume we are performing a
two-category classification problem where, given a test result,
we want to find a decision threshold such that if the value is less
than or equal to that threshold, we assign a PASS outcome; oth-
erwise, we assign a FAIL outcome. Further, given that we assign
this outcome based on an observation of the measured signal
with some level of uncertainty, we want to select the threshold
that minimizes misclassification error.

For now, to keep things simple, assume that the UUT can
only fail one way, and we have a single test designed to detect
that failure. Let represent the “actual state” of the unit being
tested, where corresponds to a nominal unit, and corre-
sponds to a faulty unit. Further, let represent the measured
value of the test performed on the UUT. Finally, assume the ac-
tion of deciding on a test outcome is designated by , where

corresponds to deciding to assign a PASS outcome and
corresponds to deciding to assign a FAIL outcome.

As mentioned above, the concepts of consumer risk and pro-
ducer risk are fundamental drivers for determining where to set
the decision threshold. To make this more formal, we will define
a “risk” function as follows. Let be the conditional risk
associated with deciding on given the measurement is . We
will determine this risk as an expected value of “loss” computed
over the set of all decisions. Specifically

(30)

where is the “loss” associated with choosing when
the true state was and is the number of categories (in this
case two). From this, we can compute the overall risk associated
with a decision rule as

(31)

Recall that we are focusing on the two-category case. To do this,
we will apply some shorthand. Namely, let denote the loss
of deciding when the true state is .10 Then we can rewrite
the conditional risk equation (30) as

(32)

Expanding, we get the two equations that provide the risk for
each of the decision categories

In this case, the “rational” decision is to select a choice that min-
imizes conditional risk. In other words, decide if

. We can represent this in a way that determines the de-
cision in terms of probabilities. Specifically

10Note that � is distinct from the failure rate. The overloading of symbols
comes from the fact different communities have defined these concepts. We will
continue to use the traditional symbols since their interpretation should be clear
based on context.

Rearranging terms, we get

and simplifying, we find

Suppose, for the sake of discussion, that (i.e.,
there is no loss associated with a correct classification), and

. Then the decision rule reduces to deciding
if , which once again appears to be

“rational.”
Now assume the more general case where , but

. If we define category 1 to be PASS and cate-
gory 2 to be FAIL, then represents the producer risk and
represents the consumer risk. Then the decision rule becomes
deciding if . Applying Bayes’
Rule, this can be expanded to deciding if

Observe that we can rewrite the decision rule using the “likeli-
hood ratio” as follows. Decide if

(33)

Given this rule, let denote the region over where we decide
and denote the region over where we decide . Recall

that our goal is to minimize overall risk . Let

Then we can redefine risk as . In other
words, we find that risk is linear in . We would like to
find a boundary that makes independent of the prior ,
but that only occurs if . If we treat as if it was the
“slope” of the risk line, then we would be looking for regions
that set the slope to zero. Then risk reduces to , which is
referred to as the minimax risk. This occurs when

(34)

In other words, recalling the likelihood ratio, we can set the
decision boundary independent of the priors such that

(35)

Note that we can extend this idea to the full diagnostic
problem where, rather than deciding between two categories
corresponding to PASS and FAIL, we consider each diagnosis
to be a separate category. In this case, the above result can be
extended such that the classification assigned corresponds to
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the category with the maximum a posteriori probability. More
formally

(36)

where is a normalizer, and is the loss associated with
being the incorrect classification. The resulting classification is
referred to as the maximum a posteriori hypothesis. In other
words, the diagnosis yielding the highest posterior probability
is proposed as the most probable fault.

IX. DIAGNOSIS WITH BAYESIAN NETWORKS

Given the previous discussion, we see a direct application of
Bayesian decision theory to diagnosis with BIT under the as-
sumption we can estimate BIT uncertainty (see Section VII).
From these estimates, it can be proven [11] that the MAP hy-
pothesis, in fact, minimizes overall risk as defined in (30). In
other words, diagnosis is improved over traditional diagnosis
that ignores measurement uncertainty by the fact that overall
risk associated with the resultant diagnosis has been minimized.

Recall that . We will use this as a mea-
sure of confidence in our test results. Note that, if we have mea-
sures for and for each of the measured
tests, then we can use Bayes Rule and break the confidence into
its respective parts for PASS or FAIL. Specifically, our confidence
in a PASS result becomes . Sim-
ilarly, our confidence in a FAIL result becomes

.
Once we have formulated probabilities such as these, we are

in a position to use these probabilities as confidence values in
a diagnostic system. There are many diagnostic systems that
allow for reasoning under uncertainty; however, the natural ap-
proach that uses probabilities directly is the Bayesian belief net-
work (BBN) [35]. Formally, a is a Bayesian
Belief Network, where

1) is a set of vertices corresponding to random variables
;

2) is a set of directed edges where the source
of the edge corresponds to , the destination of the edge
corresponds to , and the edge represents a conditional
dependence relationship of on ;

3) is a set of conditional probability tables ,
where each entry provides the probability of given the
set of parents of .

The structure of the BBN depends on the concept of condi-
tional independence. Given two random variables, and ,

is conditionally independent of iff .
Further, given random variables , , and , is condition-
ally independent of given iff
and . Within the BBN, we say that
a random variable is conditionally independent of all other
variables not connected to it given its parents .

Fig. 5. Diagnostic Bayesian network structure.

If we continue to assume that tests are performed indepen-
dently from one another, then we connect tests (as random vari-
ables) to possible diagnoses (as random variables). Usually, we
can also assume that the diagnoses are independent from one an-
other (i.e., the existence of one fault does not cause another fault
to occur). Thus, the only dependence relationships modeled are
between tests and diagnoses. Note that these two assumptions
are not necessarily true, and in general such dependence rela-
tionships, when known, can be modeled directly by the BBN by
inserting appropriate edges between pairs of tests or between
pairs of diagnoses. In addition, we must find a way to handle
the relationships between the intended states of the tests and the
observations of those tests. Thus, we can define a causal model
such as the one illustrated in Fig. 5.

The diagnostic problem consists of inferring the probability
of each of the diagnoses in the BBN given the test results. Note
that the joint probability distribution over all of the variables
in the BBN is given as the product of the probability
distributions of each over each of the vertices (random variables)
conditioned on their parents, i.e.,

(37)

Assume we subdivide the set of random variables into two
subsets, and corresponding to tests (e.g., BIT indications)
and diagnoses, respectively, as discussed previously. Further, as-
sume that and (i.e., and are dis-
joint but define the entire set of random variables ). Finally,
assume contains the set of observations (e.g., the evidence
from BIT) and contains everything else (including, if needed,
random variables representing the “true” states of the tests as if
we were able to know the underlying state perfectly). Given a
target set of test results, , we calculate (where

) by marginalizing out the remaining variables given
by . Marginalization is carried out by summing over all

, where “ ” denotes set difference

(38)

In the case of Fig. 5, we note the prior probabilities for the
diagnoses , are given by the probabilities derived from (13).
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Fig. 6. Simplified diagnostic Bayesian network.

The probabilities for arise from constructing the ap-
propriate diagnostic model and reflect the causal nature of the
faults. The probabilities of observing the appropriate state corre-
sponds to the conditional probabilities defined in (23) and (24).
Note that, if one can assume the probabilities are ei-
ther 1 or 0 (i.e., there is no uncertainty), then the network can
be simplified to take the form in Fig. 6 with the associated con-
ditional probability tables being derived as follows:

(39)
where is the specific set of diagnoses (i.e., a subset of all
diagnoses in the model), all of which must “pass” to observe the
dependent test passing (i.e., ).

When evaluating BBNs, there are several techniques for de-
riving probabilities based on evidence values. For the restricted
set of BBNs corresponding to polytrees, exact solutions exist.
For general BBNs, computing the joint probability distribution
is -hard; therefore, a variety of techniques exist ranging
from constructing join-trees to applying various Monte Carlo
sampling techniques [42].

Applying the method described above for determining prob-
ability of false alarm or probability of missed detection, we
can use these probabilities directly without the need for sto-
chastic sampling methods. By assuming independence among
the random variables in (i.e., the diagnoses) as well as inde-
pendence among the random variables in (i.e., the tests), the
characteristics of direction-dependent separation (i.e., -sepa-
ration) allow for simple propagation of the probabilities from
the tests to the diagnoses.11 Specifically, we say that a set of
evidence nodes in a BBN (i.e., nodes that can be observed)

-separates two sets of nodes and if every undirected path
from a node to a node is “blocked” given [42].
A path is blocked given if there exists some node on the
path for which one of the following three conditions holds:

1) if , has one parent that is on the path, and has
one child that is also on the path;

2) if and has two children, both of which are on the
path;

3) if , , and has two parents, both
of which are on the path.

11In the event additional dependence relationships need to be defined,
then propagation of probabilities along these dependence links must also be
accounted for. The theory of Bayesian networks allows for this; however, such
additional dependencies may lead to large internal cycles, which are conditions
under which the NP-hardness of Bayesian inference becomes problematic.

Now, we can assert the diagnoses are conditionally independent
of each other given the test results because of the third case, even
though the diagnoses have no parents. Specifically, taking the
graph transpose of the network (i.e., reversing the directions of
the arcs) results in the evidence variables being the parents of the
diagnoses, and none of the diagnoses being evidence variables.

Given the conditional independence of the diagnoses, we can
then compute the posterior probabilities of each of the diagnoses
given the test results as follows. First, we will assume that we
are using the network form presented in Fig. 5 and partition the
random variables into three sets: (the diagnoses), (the true
test states), and (the test observations). The evidence variables
will be restricted to .

(40)

Here, is a normalizer over the set , equal to

Observe that as described earlier, so the
members of the sum are restricted only to those tests that ob-
serve . Then we only need to consider , which corre-
sponds to the prior probability for based on failure rate, and

, which corresponds to the confidence value as-
signed to the observed test result. Using the Baye’s maximum
a posteriori hypothesis from (36), we determine the most likely
diagnosis simply as

(41)

In other words, we provide the most probable diagnosis as a
means of minimizing expected error (i.e., risk) in the diagnostic
process.

X. NUMERICAL EXAMPLE

To illustrate the concepts described in the previous sections,
we present a small numerical example. Suppose, for the sake of
discussion, that we are considering the BIT from the stability
augmentation system (SAS) of a helicopter. Stability augmen-
tation systems provide stability control for the three axes of the
aircraft, namely roll, pitch, and yaw. Without loss of generality,
we will consider just the roll axis. In evaluating the performance
of the roll stability control in the SAS, we consider the health
of at least three components: the roll control unit, the roll gyro,
and an accelerometer. For our test scenario, we note that if the
expected output of the control unit agrees with the actual, de-
rived roll outputs from the accelerometer and roll gyro, then the
system is functioning properly. On the other hand, if any two
of these three elements disagree, a fault exists in one of the two
units involved in the disagreement. This scenario can be repre-
sented with the Bayesian network shown in Fig. 7. Note that we
are using the simplified form of the network (Fig. 6) based on
the assumption the tests are designed correctly to evaluate the
indicated faults.
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TABLE I
SAS CONDITIONAL PROBABILITY TABLE

Fig. 7. Simple stability augmentation system BBN.

To interpret the elements of this network, Accel, Gyro, and
Ctrl correspond to the diagnoses of whether the accelerometer,
gyro, or control unit are faulty respectively. AG represents the
observation associated with comparing the accelerometer output
with the gyro output. AC compares the accelerometer output
with the control output, and GC compares the gyro output with
the control output.

Given this network structure, the next step is to define the
conditional probability tables on the dependence links and the
prior probabilities on the diagnoses. The prior probabilities are
based upon the failure probabilities of the corresponding units.
Suppose the SAS has been operating without failure for 250 h
and the failure rates (assuming per thousand hours) for the ac-
celerometer, gyro, and control unit are 30, 10, and 2, respec-
tively. Since we must also include the absence of a fault in our
probability calculations, we assign a "failure rate" of no-fault to
be 958. Then, at this particular time, the relative failure proba-
bilities (from (13) would be 0.301872, 0.277246, 0.118843, and
0.302039, respectively.12

To determine the conditional probabilities, we must first
consider the instrument uncertainty. For the sake of simplicity,
we will only derive the conditional probability table for AG.
Without loss of generality, let AG represent an observation
that AG fails and AG represent an observation that AG
passes. Similarly, let Accel and Gyro represent the logic states
that the accelerometer or gyro have failed, respectively. Thus,

Accel would correspond to the accelerometer being fault free
(likewise for Gyro).

Given the absence of a measurement when first constructing
the model, we might consider assuming the expected measure-
ment [nom( )] occurs at a decision limit for the test (i.e., ).

12The high number of significant digits is provided to demonstrate the subtle
differences in probabilities at this point in the analysis.

Thus, we might set (since we "normalized" the distribu-
tion to have zero-mean). What is interesting about this assump-
tion, however, is that the mean of the distribution is shifted to
the limit, so all probabilities of failure given the corresponding
single faults reduce to 0.5. As mentioned, this is not meaningful
for diagnosis because the test now has no discriminability. In-
stead, we will shift into the appropriate range for each of the
outcomes considered. For example, for the test, AG, let’s as-
sume that the expected faulty measurement is at 0.1. Then,
when considering the combined fault, we have

AG Accel AG Gyro

AG Accel, Gyro AG Accel

AG Gyro

These probabilities would need to be adjusted based on the mea-
surement uncertainty (defining the shape of the distribution)
if assumptions other than the limits were chosen. Using the
above approach, we can construct the conditional probability
table given in Table I.

Using this approach of setting an expected measured value on
the relevant side of the test limit, it is interesting to note that the
probabilities of failure for each of the units (given no evidence)
is {Accel: 0.302; Ctrl: 0.277, Gyro: 0.119; NF: 0.216}, which
correspond to the failure probabilities (except for No Fault-for
the Bayesian network, the probability for No Fault is given as

NF Accel, Ctrl, Gyro and is derived from the fact that this
probability is zero if any fault exists. Thus, the probability de-
rived from the "failure rate" for No Fault is not required, except
to determine the prior probabilities for the faults in the system.
Suppose, we indicate that AC and AG both fail but CG passes.
Logically, we would expect Accel to be faulty, and indeed, we
find revised probabilities of {Accel: 0.539; Ctrl: 0.069, Gyro:
0.230; NF: 0.000}. Thus, we would conclude from the tests that
Accel is the most likely to have failed.

XI. PROGNOSIS WITH DYNAMIC BAYESIAN NETWORKS

The traditional approach to fault diagnosis assumes tests are
applied at a specific point in time from which one can infer the
condition of the system under test and make a diagnosis. The
problem of prognosis, while essentially an extension of diag-
nosis, is complicated by the fact that time becomes a significant
factor in the analysis. In fact, one can represent the prognosis
problem as a time series prediction problem in which one at-
tempts to infer a future state from some sequence of past states.

It turns out that the Bayesian approach to diagnosis discussed
in Section IX can be generalized in a straightforward way to
address prognosis as well. In the most basic case, consider the
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state of the system as if it can be represented at some time
as a single random variable . Assume, further, that the state at
time depends only upon the system state at time . Then we
can represent the time series corresponding to the system state
progression as a first-order Markov chain.

Several techniques exist for solving Markov chains (i.e.,
determining the probability vectors for being in the various
states after some number of iterations) and can be classi-
fied as “steady-state” methods and “transient” methods. For
steady-state methods, it is assumed that the underlying Markov
chains are ergodic (i.e., for discrete-time Markov chains they
are irreducible and aperiodic; for continuous-time Markov
chains they are irreducible and a steady-state probability vector

exists). In the case of prognosis, ergodicity is a reasonable
assumption. Steady-state methods can be classified further
as direct or iterative. Examples of direct methods include
Gaussian elimination and the Grassman algorithm, while itera-
tive methods include the power method, Jacobi’s method, and
the Gauss–Seidel method [2].

Missing in our model is the fact that we do not have di-
rect knowledge of the underlying state of the system. Specif-
ically, we perform tests to observe conditions of the system,
from which we infer the system state. Consequently, the basic
Markov chain is not sufficient for our purpose—we need to dif-
ferentiate between observable random variables and “hidden”
(or unobservable) random variables. This leads to the concept
of a hidden Markov model (HMM) [38].

Formally, an HMM , where
is the number of states in the model (denote the states
as ), is the number of distinct
observation symbols per state (denote the symbols as

), is the state transition probability
distribution ,

is the observation probability distribution in state ,
, and is the initial state

distribution, [38].
Several tools and algorithms exist for building and processing

HMMs [38]. Even with the tools available for processing
HMMs, we are still faced with a problem when focusing on
prognosis. Specifically, HMMs assume a progression of single
random variables (just like a Markov chain). One approach to
handling this problem is to create separate HMMs for each test
and couple the set of HMMs to a diagnostic model (such as the
Bayesian network) to infer underlying state. There is, however,
a better way.

The Markov chain and the HMM can be formulated as spe-
cial cases of a graphical model first formalized by Dean and
Kanazawa called the “dynamic Bayesian network” (DBN) [10].
DBNs have been studied further by Murphy who provided al-
ternatives for representation, inference, and learning [27]. The
purpose of a DBN is to model probability distributions over
semi-infinite collections of random variables, , that progress
according to some temporal model. Typically, the random vari-
ables are partitioned into three subsets indexed by time—

where is the set of inputs at time , is the set
of hidden (i.e., unobservable) variables at time , and is the
set of outputs at time . Then, given the set , a DBN is defined
to be a pair , where is a Bayesian network defining

Fig. 8. Dynamic Bayesian network for prognosis.

the prior distribution , and is a “two-slice” temporal
Bayesian network defining the distribution such
that

(42)

where is the th node at time , which could be a component
of any of the partitions, and are the parents of in the
network. Of interest is the fact that the parents of a node
can either be from the same time slice or from the previous time
slice (i.e., the resulting model is restricted to being a first-order
Markov model). Of course, the general formulation of DBNs al-
lows for higher order models simply by expanding the allowable
set of parents to previous time slices.

To put this definition in the context of prognosis, we can con-
struct a DBN for prognosis by “chaining” successive BBNs to-
gether. Under the first-order Markov assumption, we only need
to represent two slices of the DBN and then “unroll” as neces-
sary in processing the model. For example, Fig. 8 shows how
to link the BBNs in sequence. Note that only the diagnoses are
linked through time since they change state directly. Changes in
observation state are derived from the underlying state changes
in the system. This approach is distinct from the HMM that
links observations together. Further, the DBN supports multiple
random variables, so it can represent the different diagnoses,
tests, and observations directly.

To perform inference with the DBN (and thereby predict
future states), one approach is fairly straightforward. First,
infer the current state (i.e., the state in the current time slice)
from the test observations using the algorithm described in
Section IX. Next, “unroll” the DBN to the desired number of
time slices (assuming the state progressions occur in discrete
time steps—DBNs can handle continuous time, but the compu-
tation is more complex). Then, propagate beliefs through time
by observing that

(43)
In fact, given the assumption that only diagnoses progress in
state through time and that a diagnosis only depends upon it-
self in the previous time step, this part of the model reduces to a
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simple Markov chain, which can be either discrete time or con-
tinuous time.

Key to constructing the DBN is defining the temporal tran-
sition probabilities. In the simplest case, failure probabilities
based on (9) can be used. When better information is available
(e.g,. based on historical data), probabilities derived from this
information can be used. The point is that the DBN is fully
general and can be adapted to available knowledge about the
system being analyzed. Theoretically, causal relationships be-
tween faults (i.e., a fault at time step causes another fault to
occur at time step ) can be represented directly with the
DBN as well (even though such models are rarely useful).

XII. SUMMARY

In this paper, we discussed a formal approach to predicting
probability of false indication based on instrument uncertainty
and using this information as a means of setting test uncertainty
in diagnosis and prognosis with BIT. The diagnostic approach
is based on Bayesian belief networks and incorporates infor-
mation on failure probability, instrument uncertainty, and the
predictions for false indication. Prognosis is performed using
an extension of the Bayesian belief network, called a dynamic
Bayesian network to model changes over time. This is the first
time such a unified Bayesian view of the test, diagnosis, and
prognosis has been presented, especially in the context of BIT.
The advantage to the discussed method is that it provides a for-
mally consistent and theoretically sound approach to diagnosis
and prognosis that can be adapted and matured as better esti-
mates of the associated probabilities become available.

By applying Bayesian inference and estimating probabil-
ities from estimated or predicted reliability information and
expected instrument uncertainty, resulting diagnoses accurately
reflect the current understanding of test and failure uncertainty,
thereby providing a more accurate picture of the state of the
underlying system. Recalling our assertion that BIT is just a set
of tests that happen to be embedded in the system, improving
the accuracy of BIT diagnostics is particularly important given
the history of BIT systems for having high false alarm rates.
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