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Distributional Smoothing in Bayesian
Fault Diagnosis
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Abstract—Previously, we demonstrated the potential value of
constructing asset-specific models for fault diagnosis. We also
examined the effects of using split probabilities, where prior
probabilities come from asset-specific statistics and likelihoods
from fleet-wide statistics. In this paper, we build upon that work
to examine the efficacy of smoothing probability distributions
between asset-specific and fleet-wide distributions to further im-
prove diagnostic accuracy. In the current experiments, we also
add environmental differentiation to asset differentiation under
the assumption that data are acquired in the context of online
health monitoring. We hypothesize that the overall diagnostic
accuracy will be increased with the smoothing approach relative to
a fleet-wide model or a set of asset-specific models. The hypothesis
is largely supported by the results. Future work will concentrate
on improving the smoothing mechanism and in the context of small
data sets.

Index Terms—Bayesian classifier, diagnosis (fault), machine
learning, smoothing.

I. INTRODUCTION

R ECENT results exploring the merits of fleet-wide versus
asset-specific Bayesian diagnostic models suggest that

circumstances can exist where using fleet-wide data in asset-
specific models can yield significant improvements in overall
diagnostic accuracy. These circumstances largely hinge on data
heterogeneity, quantity, noisiness, and their effects on the esti-
mates of the models’ probability distributions [1], [2].

This paper reports on our most recent results applying distri-
butional smoothing to probability estimates in Bayesian diag-
nostic models seeking to combine fleet-wide and asset-specific
coverage. Other fields facing similar circumstances when using
Bayesian approaches, e.g., natural language processing (NLP),
apply smoothing to estimates of probability distributions. While
most of these smoothing methods are not directly applicable to
Bayesian diagnostic models, we present an alternative approach
to distributional smoothing that is directly applicable to them.
We have found that our models using smoothed probability
estimates can be more accurate over a wider variety of data
quality and quantity than any of our other models.
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Fig. 1. Simple SAS Bayesian Network.

The outline of this paper is as follows. Sections II and
III will describe the research problem and motivation as well
as an approach to address the problem. Section IV discusses
related work. In Section V, we explore the experimental design.
Sections VI and VII will present and discuss the experimental
results (including future work), respectively. We conclude in
Section VIII.

II. RESEARCH PROBLEM

Our research centers on learning Bayesian diagnostic models
from test and maintenance data for an entire fleet. As an
example of a diagnostic problem that uses a Bayesian network,
suppose that we are considering the built-in test from the stabil-
ity augmentation system (SAS) of a helicopter. SASs provide
stability control for the three axes of the aircraft, namely, roll,
pitch, and yaw. Without loss of generality, we will consider
just the roll axis. In evaluating the performance of roll stability
control in SAS, we might consider the health of at least three
components, i.e., the roll control unit, the roll gyro, and an
accelerometer. For our example, we assume that if the expected
output of the control unit agrees with the actual derived roll
outputs from the accelerometer and roll gyro, then the system
is functioning properly. On the other hand, if any two of these
three elements disagree, a fault exists in one of the two units
involved in the disagreement. This scenario can be represented
with the Bayesian network shown in Fig. 1.

To interpret the elements of this network, Accel, Gyro, and
Ctrl correspond to the diagnoses of whether the accelerometer,
gyro, or control unit are faulty, respectively. AG represents
the observation associated with comparing the accelerometer
output with the gyro output. AC compares the accelerometer
output with the control output, and GC compares the gyro out-
put with the control output.

Using this network, suppose we indicate that AC and AG
both fail, but GC passes. Logically, we would expect Accel to
be faulty. Given a set of probability distributions for each of
the nodes in the network, we might find posterior probabilities
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of {Accel: 0.539; Ctrl: 0.069, Gyro: 0.230; NF: 0.000}. Thus,
we would conclude from the tests that Accel is the most likely
to have failed.

The above-described Bayesian networks are either con-
structed from domain knowledge or learned from actual test
and maintenance data. In the latter case, one would accumulate
data recorded over the current life of the system and derive
the probability distributions from that data. Typically, such a
data-driven approach uses all of the data available to construct
a model for a particular system. That is, they use data about the
entire fleet of helicopters and construct fleet-wide models. As
a practical matter, however, such data may be sufficiently het-
erogeneous that relevant diagnostic information is lost through
aggregation. For example, specific helicopters may be from dif-
ferent production runs, they may have been exposed to different
usage profiles, or they may have used different replacement
parts. Similarly, the test equipment may have been operated in
different environments, or the test data may have been obtained
from online health monitors that themselves may be affected by
different usage profiles.

All of these circumstances may conspire to produce training
data that contain a degree of inconsistency when aggregated. To
the degree that these heterogeneities exist, a model learned from
aggregated data will be less accurate, and such a decrease in
accuracy is predicted by machine learning theory [3]. Because
a Bayesian diagnostic model is a type of classifier, the more
closely the distribution of the training data matches the distri-
bution of the target population, the more accurate the classifier
will be [4]. In diagnostic terms, the more the maintenance
and test data used to build the model reflect failure rates and
test/diagnosis relationships the model will actually encounter
when used in the field, the more accurate the diagnoses will be.

Thus, the alternative—at the other extreme—is to build a
model for each individual asset (a car, plane, or GPS unit with
a specific serial number) under the assumption that each asset
is sui generis rather than one of an entire fleet of such assets.
We realize that this assumption is equally unrealistic and that is
largely what motivates the research reported here.

We used the naive Bayesian classifier for our learned di-
agnostic model in the reported experiments [5]. We decided
on the naive Bayes classifier because of its robustness, low
computation complexity, and ease in learning. In addition, using
such a simple model permits us to focus our attention on the
affects of the smoothing approach without commingling with
learning an appropriate model structure. The naive Bayesian
classifier is represented by

D = arg max
Di∈D

P (Di)
n∏

j=1

P (o(Tj)|Di) (1)

where Di is some diagnosis, P (Di) is the prior probability esti-
mate of a particular diagnosis in the data set, and P (o(Tj)|Di)
is the frequency of some discrete test outcome o(Tj), e.g., Pass
or Fail, for some test Ti, considering only the particular diag-
nosis Di or the likelihood.1 Thus, the possible inconsistencies

1For a more in-depth discussion of Bayesian approaches to diagnostics, see
some of our previous papers [1], [2], [8].

created by aggregation show up in the estimates of the priors
P (Di) and likelihoods P (o(Tj)|Di).

Because of the possibility that some likelihood estimates may
be zero because of missing data, likelihood estimates are often
calculated using the m-estimate as [3]

P (o(Ti)|Dj) =
nc + mp

n + m
(2)

where nc is the number of instances in the data pairing particu-
lar values for o(Ti) and Dj , n is the total number of instances
in the data corresponding to diagnosis Dj , p is a prior estimate
for the probability, and m is the number of “virtual” examples
in the data. This prevents the equation for the naive Bayesian
classifier from degenerating if any likelihood estimate is zero.

Note that the m-estimate modifies the likelihood estimate by
adding in some fraction of a probability mass p. That fraction
is determined by some number of virtual examples m. In many
cases, p is simply chosen to be a small innocuous value that
is sufficient to prevent the formula from zeroing out, and m is
often set to 1. However, this need not be the case. If there is
knowledge of p, or if p can be learned, then using that p should
yield a more accurate estimate.

Based on the above observation on heterogeneous data, our
original experiments investigated whether a set of diagnos-
tic models, each built with asset-specific data, would have a
higher overall accuracy than a single diagnostic model built
with aggregate data for the entire fleet. Our experiments used
different quantities of synthesized data reflecting assets with
different failure rates and varying levels of measurement noise2

so that we could control the presence of heterogeneity. Our
results showed that a set of asset-specific models could be more
accurate than a single fleet-wide model but not always.

In our original experiments, we modeled asset differences
by using various failure rates for their respective components.
Usually, failure rates are used to estimate P (Di) in (1). The
current research adds the ability to capture usage patterns or
environmental effects. By including usage patterns or environ-
mental effects, we are able to capture different relationships
between test outcomes and diagnoses within the data. Even with
this change, the initial results were the same; a set of asset-
specific models could be more accurate than a single fleet-wide
model.

Although the results were consistent, the fact that some of
the asset-specific models were less accurate than the fleet-wide
model was problematic. Specifically, for a given quantity of
data N , as noise increased, the accuracy of the asset-specific
models increased relative to the fleet-wide model. We attribute
this to better estimates of the prior probabilities in the asset-
specific models. Additionally, for a given level of noise in the
data, the larger the data set size, the more accurate the asset-
specific models were. We attribute this to better estimates of
different likelihoods for the asset-specific models.

While the patterns in these results are interesting, the mixed
results leave open the question of knowing when to use the fleet-
wide model and when to use the asset-specific model. However,

2Details of the type of noise used are discussed in Section V.
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the results did point to an approach to achieve our goal. In the
presence of noise, other things being equal, we need to use as
much data as possible to average out that noise. This supports
aggregating the data. However, in the presence of heterogeneity,
other things being equal, we need to use as specific data as
possible.

III. DISTRIBUTIONAL SMOOTHING

Based on these observations, we hypothesize that a new
model that uses smoothed distributional estimates for the like-
lihoods in the naive Bayesian classifier will be more accurate
than either model alone. The rationale for our smoothing ap-
proach is based on the analysis of our prior experiments [1], [2].
In those experiments, we observed that the accuracy of the
asset-specific versus fleet-wide classifier heavily depended on
the amount of noise in the data and the sample size, and
this dependence was nonlinear. We also observed a strong
dependence on the distribution of the priors from the asset-
specific data, regardless of noise and sample size. Therefore,
we decided to focus on smoothing the likelihoods alone.

The starting point for distributional smoothing is using (2) for
the m-estimate. When estimating the asset-specific likelihood,
we use asset-specific data to calculate nc and n and the fleet-
wide likelihood as the value for p. When we estimate the fleet-
wide likelihood, we use fleet-wide data to calculate nc and n
and a small value for p. We use a formula for m consistent
with the following form when determining the asset-specific
likelihood:

m =
k

f (o(Ti),Dj) g(n)
+ 1 (3)

where k is a user-defined parameter to control how much weight
goes toward the asset-specific estimate versus the fleet-wide es-
timate, f(o(Ti),Dj) is a function that relates the asset-specific
and aggregate distributions for the (Ti,Dj) pairs, and g(n) is
a function of the data set size for a particular diagnosis Dj .
The resulting function will cause m to decrease as the noise
and amount of data increases.

This formula represents a generalization of the result pro-
vided in [8]. Consequently, several options now exist for
f(o(Ti),Dj). If we observe that we are dealing with two
different probability distributions, where the asset-specific dis-
tribution tends to be the “preferred,” we can apply a function of
the divergence between the distributions for P (o(Ti)|Dj), such
as the Kullback–Leibler divergence

DKL(Passet‖Pagg)=
∑

i

Passet(o(Ti)|Dj)lg
Passet (o(Ti)|Dj)
Pagg (o(Ti)|Dj)

(4)

or the chi-squared statistic

χ2 =
∑

i

(Passet (o(Ti)|Dj) − Pagg (o(Ti)|Dj))
2

Pagg (o(Ti)|Dj)
(5)

where Pagg is the aggregate probability distribution, and Passet

is the asset-specific probability distribution. A simple measure

inspired by prior experiments was the conditional variance of
the aggregate distribution

Var (o(Ti)|Dj) = E
[
(o(Ti) − E [o(Ti)|Dj ])

2 |Dj

]
. (6)

Similarly, several options exist for g(n), ranging from g(n) = n
to some polynomial or exponential function of n. In our ex-
periments, we found that f(o(Ti),Dj) = Var(o(Ti)|Dj) and
g(n) = n1/q worked well.

Before we describe the experimental design used to test
our hypothesis, we will look at some of the related work in
Bayesian diagnosis and distributional smoothing.

IV. RELATED WORK

The idea of applying Bayesian methods, in general, and
Bayesian networks, in particular, to diagnosis is not new. Early
Bayesian methods involved manually constructing models as
an alternative to rule-based expert systems [9]. Perhaps the
best-known Bayesian network method is the “Quick Medical
Reference-Decision Theoretic” (QMR-DT) model [10]. The
QMR-DT model was a “bipartite” network, where the diag-
noses were root nodes, and the tests/observations were leaf
nodes. Diagnoses were directly connected to tests. This model
is similar to the naive Bayes model [see (1)] in that a naive
Bayes network is also bipartite. QMR-DT, however, does not
employ the conditional independence assumption.

More recently, Lerner et al. applied Bayesian networks to
perform fault diagnosis in dynamical systems [11]. Their ap-
proach made use of a hybrid dynamic Bayesian network (DBN)
[12] to represent the dynamics of the system. This approach is
similar to the factorial hidden Markov model (HMM) approach
used by Singh et al. [13]. In their approach, factorial HMMs
were used to incorporate historical information for the purposes
of multiple-fault diagnosis.

Although Bayesian techniques are used in many fields
of computer science, the N -gram models used in NLP use
smoothing techniques that bear some resemblance to the dis-
tributional smoothing technique for Bayesian diagnostics de-
scribed in this paper [14]. One use of the N -gram technique is
to classify text. For each type of text, a separate N -gram model
is trained on texts of that type, for example, astronomy articles
for one model and astrology articles for another. The typical
N -gram sets N = 3 and is called a “trigram.” A trigram is the
conditional probability of a third word given the first and second
words. The trigram model is built by calculating all of the
trigrams from the training texts P (w3|w1, w2), P (w4|w2, w3),
etc. It is, essentially, a second-order Markov chain. Using these
models, we can then find the product of those probabilities for a
text we want to classify and determine which one has the higher
probability. In this case, whether the new text is astronomy or
astrology. This simple approach uses unsmoothed maximum-
likelihood estimates for the trigrams.

The problem arises in NLP that no matter how many texts are
used in training, it is always possible that a new text will have
something slightly different than anything seen before. This is
the same problem that the m-estimate is designed to handle
in general Bayesian classification. The NLP response is to use
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smoothing or a related technique called backoff (and sometimes
both). A variety of smoothing methods have been introduced
for N -gram models over the years, including Add-λ (which is
similar to the m-estimate) [14], Witten–Bell discounting [15],
and Good–Turing discounting [16].

Essentially, backoff is a technique employing the strategy
that states if a trigram equals zero, use the bigram. If the
bigram equals zero, use the unigram. Finally, if the unigram
is zero, back off to a uniform probability [17]. While our ap-
proach has much more in common with smoothing, to a certain
degree, our proposed technique does “back off” from the asset-
specific estimate to the fleet-wide estimate during the smooth-
ing process. The similarity ends there, because it can also move
in the other direction as well (i.e., from fleet wide to asset
specific).

As an alternative to creating a single smoothed model,
many have suggested using ensembles of models or combining
models through averaging to improve the prediction accuracy.
Ensemble methods seek to improve accuracy by combining rec-
ommendations from multiple classifiers [18]. Ensemble meth-
ods widely vary and include, for example, bagging, boosting,
and mixtures of experts.

Bagging normally involves the creation a set of classifiers
by using bootstrapping to resample the available data. Boosting
involves creating successive classifiers trained on the mistakes
of the previous classifier. Both approaches have been used in
classifiers used for diagnostics [19], [20]. Mixtures of experts
create a meta-classifier that combines the results of simpler
classifiers and have been successfully used with Bayesian ap-
proaches to classification [21], [22].

An alternative ensemble-based approach involves generating
several models and combining their predictions through model
averaging. Madigan and York describe an approach to Bayesian
model averaging where they generate a baseline model and
then generate alternative models using a Markov chain Monte
Carlo approach [23]. Meila and Jaakola discuss approaches to
performing exact model averaging over tree-based Bayesian
networks [24], and Dash and Cooper showed how to perform
exact model averaging over naive Bayesian classifiers [25]. All
of the ensemble methods differ from ours in that they construct
multiple models and combine their predictions. Model averag-
ing specifically differs from our approach, not only in averaging
over multiple models but in training over the same data set as
well. We derive and smooth estimates of probabilities within a
single model using data drawn from different populations.

V. EXPERIMENTAL DESIGN

To test our hypothesis, we generated synthetic data that were
known to reflect asset-specific heterogeneity both in terms of
failure rates, test outcomes, and diagnoses. We started with
known and consistent diagnostic relationships modeled using a
D-Matrix [26]. The particular D-Matrix represented eight tests
over eight possible component failures. Because each row in
the D-Matrix represents a test signature or pattern of passing
and failing tests and a corresponding diagnosis, rows were
repeatedly extracted from the matrix in proportion to different
failure distributions to create the data. These different failure

Fig. 2. Sample logic model and D-Matrix for experimental evaluation.

distributions are one kind of asset-specific variation that may
be present in fleet-wide data and are eventually used in the
Bayesian diagnostic model to estimate the prior probability
distributions. The logic model and D-Matrix for this idealized
system used for data generation can be seen in Fig. 2.

On the other hand, the test signatures themselves end up rep-
resented in the Bayesian diagnostic model as estimates of the
likelihoods. These likelihoods have two important characteris-
tics. First, they represent a transformation of the test outcome
and diagnosis relationships in the D-Matrix rows to proba-
bilistic representations. This reduction is advantageous when
the relationships need to be learned from (possibly noisy) test
data. Second, the likelihoods in the naive Bayesian classifier
represent an assumption about the conditional independence
between tests given the diagnoses. Despite the assumption
not generally holding in practice, the naive Bayesian classifier
consistently performs well. In fact, a naive Bayesian classifier
can learn the diagnostic model represented by a D-Matrix with
100% accuracy, as long as no diagnosis is present more than
once in the D-Matrix [5], [27].

To introduce a degree of asset-specific variability in the fleet-
wide data with respect to the likelihoods, we must sample
from slightly different D-Matrices. We start with the baseline
D-Matrix and create small changes. For example, perhaps a
certain test always passes or always fails, or a certain test
always fails for a particular diagnosis. The rationale for these
changes is that usage profiles, extreme environmental effects,
or variations in online testing conditions may have caused the
real-world diagnostic relationships to diverge from the baseline.

To simulate the different conditions affecting diagnostic
performance, we used five different failure distributions and
five different D-Matrices, creating a total of 25 different com-
binations of specific assets. Examples of failure distributions
include uniform probability and “one bad actor” distributions,
where one component was significantly more likely to fail than
the others. Examples of the different D-Matrices—reflecting
different usage profiles or environmental conditions—included
the baseline D-Matrix and D-Matrices, where one test always
failed and another where one test always passed. All variations
are fully described in [8].

As previously noted, a naive Bayesian classifier can learn
training data directly derived from a D-Matrix with 100%
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accuracy. Therefore, to introduce a degree of realism into the
data, various levels of noise were added. This was accomplished
by converting an expected pass or fail result of each test from
the test signature into two real values: one for pass and one
for fail. Each real value was then perturbed by independently
and identically distributed Gaussian white noise with zero mean
of different variances. If a passing value fell below a certain
threshold, it was converted into a false positive or failure;
otherwise, it was kept as a pass. Similarly, if a failing value
fell above that threshold, it was converted into a false negative
or pass; otherwise, it was kept as a failure.

When generating the data, noise was introduced by varying
the standard deviation of the real values from 0.0 to 0.1 in
0.01 increments. Different data set sizes for each asset were
also generated, ranging from 25 to 5000 observations. For each
noise level and data set size, three naive Bayesian diagnostic
models were constructed: a fleet-wide model, a set of asset-
specific models, and a set of combined models using distrib-
utional smoothing. Because the fleet-wide model aggregates all
of the available data, each fleet-wide model is trained using data
sets with size MN , where M = 25 is the number of assets.

We ran 30 trials for each experiment (N and noise level
combination). Each trial used 66% of the data to train and 34%
of the data to test the model. New data were generated for each
trial. Results were averaged over the trials, and a two-tailed
difference of means test (t-test) was used for all comparisons
with a significance level of 0.05. All random selection was
stratified first by asset (if necessary) and then by diagnosis. The
m-estimate was set with p = 0.001% and m = 1 in all cases,
except in the combined model, where distributional smoothing
was used to estimate the likelihoods. In that case, the special m
and p were used from (3). For the combined model’s estimate
of the smoothed likelihoods, the user-defined parameters k and
q were set to 100 and 1.2, respectively. Choosing a diagnosis
at random broke all classification ties. For a more in-depth
explanation of the experimental design, see our previous papers
[1], [2], [8].

VI. RESULTS

Our experimental results are presented in Table I. We com-
pare the differential performance of asset-specific models or
smoothed models with the fleet-wide model. We look at the
case where the set of models is “just as good as” the fleet-
wide model (t-statistic ≥ −1.96) and when the set of models
is “better than” the fleet-wide model (t-statistic > 1.96). With
five failure distributions and five usage profiles, there are 25
different possible models.

Table I shows the results for the asset-specific model com-
pared with the fleet-wide model. This pattern is what originally
inspired this research when we were investigating the accuracy
of asset-specific models. When the noise level is zero, all of
the asset-specific models are at least as good as the fleet-wide
model (with a few random hits here and there). This trend
continues until about noise level 0.04, when some of the asset-
specific models begin to lose accuracy relative to the fleet-wide
model. As noise increases, the drop off in accuracy occurs at in-
creasingly smaller N but also returns with increasingly smaller

TABLE I
NUMBER OF ASSET-SPECIFIC MODELS AS GOOD AS THE

FLEET-WIDE MODEL (OUT OF 25)

TABLE II
NUMBER OF SMOOTHED MODELS AS GOOD AS THE

FLEET-WIDE MODEL (OUT OF 25)

N . For example, at noise level 0.05, the accuracy steadily
drops off from an initial value of 20 but begins to rebound at
N = 1000. On the other hand, with noise level 0.08, the drop
off starts after N = 25 but begins to rebound with N = 250.

The results in Table I are the frame of reference for the
remainder of the experiments. Ideally, we want all of the
cells with values less than 25 to be 25 when using the fleet-
wide model. However, rather than actually using the fleet-wide
model, we performed distributional smoothing by including the
fleet-wide data in the estimate of the likelihoods for the asset-
specific models, resulting in a set of smoothed models.

As shown in Table II, the set of smoothed models was able
to achieve the desired result. Except for a run at N = 50, all
25 of the smoothed models are at least as good as the fleet-
wide model. While these results are encouraging, they must
be tempered with the realization that, ultimately, we want the
emphasis to be on the “or better” part of the “as good or
better.” After all, the fleet-wide model is always as good as
itself. Table III shows the results of comparing the accuracy of
asset-specific models against the fleet-wide model.
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TABLE III
NUMBER OF ASSET-SPECIFIC MODELS BETTER THAN

THE FLEET-WIDE MODEL (OUT OF 25)

These results are typical of those we have found in previous
research. Just as Table I shows that there are some asset-specific
models that are less accurate than the fleet-wide model, there
are some asset-specific models that are better. For example,
at N = 250 and noise level 0.07, Table III shows that four of
the asset-specific models are better than the fleet-wide model.
Referring back to the same cell in Table I, we can see that ten
were “as good or better.” Thus, overall, for that cell, four asset-
specific models were better, six were the same, and a full 15
were worse than the fleet-wide model in terms of accuracy.
Note, however, that when N is large and the data are noisy,
the asset-specific models are not just as good as the fleet-wide
model; they are all generally better.

There is also another surprising and subtle result shown in
Table III. Even when there is little or no noise, there are asset-
specific models that do better than the fleet-wide model. This
is not usually the case if the asset data are homogeneous. We,
therefore, believe that the heterogeneities we introduced into
the data and that may exist in actual test data can lead to the
learning of inconsistent models.

The results for the smoothed models versus the fleet-wide
model are shown in Table IV. Compared with the asset-specific
models, there are some substantial gains over the fleet-wide
model in terms of accuracy. This is particularly true once the
noise level reaches 0.04 and beyond. It should be noted that
where the gains are similar, such as the case with large N in
the high noise area of the table, the asset-specific models also
have some individuals that are worse than the fleet-wide model,
whereas this is not the case for the smoothed models.

Table V shows our measure of the gains to be had from
creating a set of smoothed probability models. Specifically,
Table V shows the percent increase in accuracy, on average,
over the fleet-wide classifier for the set of smoothed probability
models. The gains are modest at low noise levels, which is to
be expected. However, they are nearly 10% at the highest noise
levels.

One of the areas we left for future research in our previous
paper [8] was a sensitivity analysis of our results for different
values of the user-defined parameters k and q in our implemen-

TABLE IV
NUMBER OF SMOOTHED MODELS BETTER THAN

THE FLEET-WIDE MODEL (OUT OF 25)

TABLE V
AVERAGE PERCENT INCREASE IN ACCURACY BETWEEN THE SET

OF SMOOTHED MODELS AND THE FLEET-WIDE MODEL

tation of (3). In the results just presented, we used k = 100
and q = 1.2. An initial sensitivity analysis examined the values
that were 50% smaller and 50% larger while keeping the other
parameter constant at the value used. In all cases, we looked
to see how varying k and q affected the number of smoothed
models better than the fleet-wide model.

The results showed that when we lowered k to 50, the total
number of smoothed models better than the fleet-wide model
dropped by four out of 660. Increasing k to 150 led to a net gain
of only 18 out of 660. On the other hand, when q was decreased
to 0.6, the net loss was 104 out of 660, but when q was increased
to 1.8, the net gain was only 18 out of 660. This suggests that
the parameter influencing the contribution of N to m (i.e., q)
is very important to the overall accuracy. Even so, our settings
still demonstrated strong performance, even without the more
exhaustive evaluation of parameter values.

VII. DISCUSSION

In prior research, we examined the role of asset-specific
models in improving the diagnostic accuracy for a fleet of
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assets. While we found that asset-specific models could im-
prove diagnostic accuracy, this was not always the case. Sub-
sequently, we started to investigate ways that we might achieve
the accuracy of both approaches in a single model. We realized
that this would involve boosting the accuracy of the asset-
specific model when the fleet-wide model was more accurate
and boosting the accuracy of the fleet-wide model when the
asset-specific model was more accurate. This investigation led
to the idea of smoothing the distribution estimates using both
fleet-wide and asset-specific data. Furthermore, we sought to
make the smoothing endogenous by making the weighting
factor a function of the characteristics, data quantity, and noise
that we observed to affect the model accuracy.

The results in Table II support our hypothesis. We were
able to get the desired effect by using distributional smoothing.
With the results in Table II, we showed that the smoothed
models were not worse than the fleet-wide model—unlike the
unsmoothed asset-specific models. In the table, we showed
that there were generally more smoothed models that were
better than the fleet-wide model than asset-specific models that
were better. Even when this was not the case, the number
of smoothed models that were better was supported by the
fact that none were worse. Finally, the table showed that the
actual increase in accuracy, although data set and noise level
dependent, could be substantial.

We plan to concentrate future research on four areas. First,
the impact of the user-defined parameters on the formula for
m should further be examined. This might improve not only
the overall accuracy but also accuracy in cases of smaller N .
In addition, examining various values of k and q on alternative
data sets and models might provide more general insight into
the range of their impact on model accuracy.

Second, our version of (3) was derived from empirical ob-
servation. In this paper, we generalized the equation to use
a generic measure of distributional variation and suggested a
couple of alternative specific measures. In future research, we
would like to examine the effects of those specific measures on
accuracy.

Third, smaller values of N may be a special case, warranting
additional study. Specifically, we believe we need to investigate
methods of leveraging small data sets to extract more infor-
mation from them since, for many real-world systems, large
amounts of training data may not be available.

Finally, since real systems are more complex than the arti-
ficial system studied here, we expect the test and maintenance
data to contain nonlinearities. As we previously pointed out,
the naive Bayes classifier is a linear discriminant. This would
suggest abandoning naive Bayes in favor of learning more
complicated network structures. In a previous work [7], we
investigated the use of tree-augmented naive Bayes (TAN) in
diagnostics [26]. This would be a good starting point.

VIII. SUMMARY

Based on our research on asset-specific models for Bayesian
diagnostics, we discovered that while heterogeneities in the data
might support the use of asset-specific models, they were not
always more accurate than a fleet-wide model. As a result, we

have introduced a technique for distributional smoothing that
used both asset-specific and fleet-wide data. We hypothesized
that this technique could achieve the best accuracies of both
models. To test the hypothesis, we constructed a data set that
emphasized the types of data heterogeneities (namely, different
failure distribution rates and test signatures) that could exist in
a fleet-wide test and maintenance data set and would warrant
asset-specific models. Our results showed that we could indeed
improve accuracy by using the smoothing technique in a com-
bined model.
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