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Abstract

Using nearest neighbor classification with fault
dictionaries to resolve inexact signature matches in digital
circuit diagnosis is inadequate. Nearest neighbor focuses
on the possible diagnoses rather than on the fests. Our
alternative—the information flow model—focuses on test
information in the fault dictionary to provide more
accurate diagnostics.
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Introduction

Of the considerable work performed in the area of fault
diagnosis of electronic systems, diagnosis of complex
digital circuits continues to be a difficult problem because
of the large number of possible conditions under which a
circuit can operate and fail. Problems arising from state
dependence, timing and race conditions, circuit density,
design errors, manufacturing flaws, field failures, and other
sources result in the many failure modes that must be
considered in testing a circuit.

When fully automatic testing is required, test engineers
rely on the fault dictionary to provide the diagnostics. Test
engineering for digital electronics involves using digital
simulation to determine input and output vectors that detect
various faults within the circuit. Through a process of fault
insertion and pattern generation, input vectors and faulty
output vectors can be combined and associated with the
inserted faults that cause the changes in output to occur.
These vectors can be assembled into fault signatures that
form fault dictionarjes to use for circuit diagnosis. For
example, a full adder is simulated with its constituent gates,
and sample input vectors corresponding to integers to be
summed are provided to the adder to determine
functionality.

Because of the complexity associated with building
and running fault simulations, most digital simulations have
been limited to the “single stuck-at” fault model. This
assumes that most failures of a circuit can be detected (and
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isolated) using tests designed to look for single stuck-at
faults.

Under ideal circumstances, tests applied to digital
systems result in fault signatures that exactly match
signatures in the fault dictionary. These matches uniquely
identify the faults in the system. However, under many
conditions, errors may be introduced, resulting in no exact
match being found in the fault dictionary. This mismatch
may be due to errors in testing, noise present in the system,
modeling errors, violation of the analysis assumptions, the
presence of indeterminate states, and many other factors
that are not addressed here. Further, the approach fails
completely when faults that may be in the system are not
included in the fault dictionary.

Current techniques for resolving discrepancies between
test results and fault signatures stored in the fault dictionary
involve applying distance-based matching algorithms, such
as nearest neighbor classification. We claim that these
techniques are inappropriate because they assume that the
classification space (i.e., the diagnoses) provides
information about the actual diagnosis rather than the
information present in the tests. Using the fault dictionary
with distance-based matching algorithms can lead to
improper identification of failures in a system and
ineffective repair.

Diagnosis with fault dictionaries

Fault dictionaries define a mapping from combinations
of input vectors and output vectors to faults. Formally, this
is represented as FD:IxO-—> F where FD is the fault
dictionary, / is the space of input vectors, O is the space of
output vectors, and F is the space of faults. At a more basic
level, this can be represented as FD:{0,1}” x{0,1}}" — F .
This represents the fact that the vectors are binary. In the
simplest case, diagnosis can be performed with a fault
dictionary by finding a direct match between the
input/output vectors and a fault signature in the dictionary.
Indeed, with a proper model, high confidence tests, and a
reasonable fault universe, many faults will be identified in
this manner.

For illustration purposes, we use a simple digital circuit
[1]. This circuit is given in Figure 1. From this figure, and
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assuming a single stuck-at fault model, we can identify 26
possible stuck-at faults. Each stuck-at fault is denoted as x;
where x is a letter matching the line where the fault occurs,
and 7 is either 0 or 1 (denoting stuck-at-0 or stuck-at-1,
respectively). We close the fault universe by defining a
special “fault” in which no fault, #f, has been detected. The
fault dictionary would then include the input vectors (i.e.,
the patterns applied to lines a, b, and c¢) and the expected
response vector (in this case the value at m). Also
associated with that entry would be the list of faults
detected should the response be in error.

We see in this circuit (Figure 1) only three input lines
and, therefore, only eight possible input vectors
(disregarding timing and faults other than stuck-ats). For
our example, we can examine all eight input vectors;
however in general, enumerating all possible vectors would
be too costly. If the circuit were sequential, the three input
lines might require several additional tests because of the
sensitivity of the circuit to the previous state of the circuit.
Several tools such as [2,3] provide assistance to the
modeler in developing input vectors and detecting stuck-ats
and other faults at output vectors.

Limiting ourselves to the combinational case (and the
example in Figure 1), we begin constructing the fault
dictionary by considering the possible input vectors. Each
input vector can be regarded as a test. For example, one test
might be the vector (0 1 1). Tracing through the circuit, we
would expect the output of the circuit to be (0). If the value
is (1), a fault must be present in the circuit. The question
then becomes, what failure modes (i.e., stuck-at faults) can
cause the erroneous output? Examining the circuit
identifies ay, b, g, dy, fo, i1, Po, ki 1), Or m; as possible
causes.

By examining all eight input vectors, we find that
several failure modes are “ambiguous,” meaning no test
vectors can differentiate them. These ambiguity groups,
which were taken from Abramovici ef al. [1] are listed in
Table 1. The approach used for determining these
ambiguous faults is called “fault collapsing” and consists of
identifying lines in the circuit that will have identical values
regardless of input or fault because of the logical nature of
the gates in the circuit. For example, if we examine the
initial AND gate with inputs b and ¢, we note by, ¢, and fy
are indistinguishable because either b, or ¢, (or both) will
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Figure 1. Sample combinational circuit.

181

force f to have a value of zero, whether or not f is faulty.
This approach to ambiguity analysis provides a first, but
incomplete, analysis of ambiguity in the fault dictionary.
An approach to representing the fault dictionary is to
construct a table, such as Table 2, in which each test (i.e.,
input vector) corresponds to a row in the table. For the fault
signatures in Table 2, the column headings correspond to
the first member of each ambiguity group in the circuit.
Each cell in the table contains the expected output from the
circuit. This dictionary assumes eight tests as follows:

t:011
£5:001

,:110
t,:000

:101
,:010

111
4:100

Diagnosis matches the results of running the tests with
the columns in the table. For example, suppose we run all
eight tests and get (1 00 1 1 1 1 0) as the set of responses.
This pattern would match both d; and i, indicating
ambiguity between the two associated groups. It is
significant that ambiguity is determined by the actual tests
used to test the circuit, and selecting a subset of possible
test vectors could result in different ambiguity groups. For
example, if we evaluated only ¢, ¢, #;, and #,, we would
find that @, with d; and 7, forms a new ambiguity group.

Diagnosis with nearest neighbor classification

Given the single stuck-at fault model, we assume that
the circuit simulation accurately reflects the performance of
the actual circuit. In other words, we assume that (1) the
only faults of interest to us are stuck-at faults, (2) these
faults are accurately represented in the circuit model, and
(3) only one of these faults will be encountered at a time.
Given these assurnptions and the fact that digital circuit
models are deterministic (i.e., the outputs are directly
determined by the inputs and, in the case of sequential
circuits, the internal state), whenever the fault signature
fails to match any signatures in the fault dictionary, the
circuit must be exhibiting behavior that was not represented
in the model (i.e., the problem lies in the model, not the test
results).

Table 1. Ambiguity groups for sample circuit.

Number | Ambiguity Group | Number | Ambiguity Group
1 ay 8 g1
2 a, 9 io, P> Loy Joo €1
3 b, 10 iy, By
4 cy 11 Ji €o
5 d; 12 ko, dy, 2o
6 Jo» bos Co 13 ky, 1, my
7 N 14 my




Table 2. Fault dictionary for sample circuit.

Test Fault Signatures
i a, by (! a4 Jo i 81 iy i Ji ko ky my nf
t 0 1 0 0 1 1 0 0 0 I 0 0 1 0 0
t, 1 0 0 1 0 0 1 1 0 0 1 0 1 0 0
t 1 0 1 0 0 0 1 1 0 0 1 0 1 0 0
1, 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1
ts 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1
1, 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1
t; 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1
t3 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0
Note: The signatures for 4, and j, are identical, as are the signatures for g, and j,. Thus, two ambiguities in addition
to those listed in Table 2 exist in this circuit.

Debaney and Unkle [4] assert, “In practice, it is very
seldom that an observed fault signature has an exact match
in the fault dictionary.” This assertion points to the need for
an “inexact” pattern matching algorithm when using a fault
dictionary. Inexact matches, caused either by submitting
noisy inputs to the circuit, infroducing noise in the output,
omitting an important signature from the dictionary, or
having to deal with multiple faults or indeterminate states,
invalidate the signatures.

The current practice for processing inexact matches in
fault dictionaries applies various distance measures to find
the column in the dictionary that most closely matches the
target vector. In the case where the single nearest vector is
used to identify the fault, we refer to the matching process
as single nearest neighbor classification (i.e., I-NN). In the
general case, nearest neighbor can be performed by
retrieving the k nearest neighbors (i.e., &~-NN) and voting
for one of the recommended diagnoses. The winner is
reported as the diagnosis.

Assuming the data stored in the fault dictionary are
correct,” nearest neighbor classification is appropriate
when the signatures in the dictionary are representative of
the possible faults to be isolated, and the set of signatures
must model the underlying distributions of the
classification space. Cover and Hart [5] assert, “If it is
assumed that the classified samples (x;, 0;) [fault signatures
and associated fault] are independently identically
distributed according to the distribution of (x, 6), certain
heuristic arguments may be made about good decision
procedures. For example, it is reasonable to assume that
observations that are close together (in some appropriate
metric) will have the same classification, or at least will
have almost the same posterior probability distributions on
their respective classifications.”

* We will not consider here the case where erroneous data may have
been introduced into the fault dictionary. Nevertheless, it should be clear
that the ability to classify is limited by the quality of the fault signatures.
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Sources of error using nearest neighbor

We claim that applying the nearest neighbor
classification method to diagnosis of digital circuits with
fault dictionaries leads to ineffective diagnostics and,
thereby, ineffective repair. First, the computational
requirements for computing fault dictionaries are quite
high, making generating a dictionary for a large circuit with
long test sequences expensive. Thus, dictionary
compression is required. Second, fault dictionaries depend
on a predefined “fault universe” and “test universe.” In
other words, the fault dictionary will find only the faults
specified in the dictionary, and those faults can be found
only with the specified set of tests. The primary assumption
here is that the fault is a member of the set of faults defined
in the fault dictionary, and the output vector of tests is in
error in one or more bits. Nearest neighbor would treat this
like a noisy signal problem, finding the existing candidate
with the closest match of attributes. Finally, Abramovici et
al. [1] note that the nearest neighbor approach to matching
inexact patterns in the dictionary, while effective in many
cases, “is not guaranteed to produce the correct diagnosis.”

For the fault dictionary to be effective, it must be
representative of the underlying probability distributions of
the diagnoses. This assumes sufficient sample size for each
of the classes (i.e., faults) in the fault dictionary. Many
tools apply a “detect limit,” », which results in signatures
that correspond to some fault being discarded when other
signatures detect that fault at least » times. This approach
forces underrepresentation of the classification space by
compressing the fault dictionary, thus violating the
assumption that the signatures represent the underlying
distribution.

In addition, the set of signatures defined by a fault
dictionary are not independently identically distributed
according to the distribution of possible points. This is
because most fault dictionaries are constructed to



maximize detection, and the concern is only to provide at
least one input vector to detect each fault. Further, faults
within the system affect more than one test indicating some
form of dependence among the test outcomes.

Additional research in using fault dictionaries for
diagnosis has attempted to improve the performance of the
matching algorithms. This research focuses on issues such
as fault dictionary compression [6], probabilistic matching
[7], and error bounding [8]. Unfortunately, none of these
approaches satisfy the requirements of Cover and Hart [5].
Additional details on nearest neighbor error sources and
the problems with the approaches described can be found
in Sheppard and Simpson [9].

Diagnosis with information flow models

Caution is required when diagnosing digital electronic
faults with a fault dictionary. Because of the inherent
difficulties in processing erroneous test data in fault
dictionaries, we present an alternative approach—the
information flow model—for processing these data [10].
This alternative considers test results as evidence for or
against the presence of a fault in the system. Test results are
processed sequentially, and the evidence supporting or
denying the presence of a failure mode is attributed to the
set of failure modes in the system.

This model-based approach incorporates techniques
from information fusion and propositional logic to guide
analysis. The model represents the problem to be solved as
information flow. Tests provide information, and diagnostic
inference combines information from multiple tests using
logical inference and statistical inference.

The structure of the information flow model facilitates
our ability to derive diagnostic strategies. An information
flow model has two primitive elements: fests and fault-
isolation conclusions. Tests include any source of
information that can be used to determine the health state of a
system. Fault-isolation conclusions include failures of
functionality, specific nonhardware failures (such as bus
timing), specific multiple failures, and the absence of a
failure indication. The information obtained for diagnosis
may be a consequence of the system operation or a response
to a test stimulus. We include observable symptoms of faults
in the information flow model as tests, thus allowing analyses
that involve information sources other than formally defined
tests. The purpose of the model is to combine these
information sources (tests) to derive conclusions about the
system being diagnosed.

After specifying the primitive elements of the model, we
determine the logical relationships among the tests and
between the tests and the conclusions. The basic
representation of the information flow model is a logical
representation of the system being analyzed. In this
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representation, we define logical values for tests and fault-
isolation conclusions. Specifically, if a test fails, it has a logic
value of frue; if a test passes, it is false. An asserted
conclusion is frue; a conclusion eliminated from
consideration is false. To determine the logical relationships,
an analyst will consider the following for each test:

e What can be inferred from observing a test failing?
o  What can be inferred from observing a test passing?

In the initial stages of modeling, the first issue is more
important. The modeler is interested in listing conclusions
that, corresponding to a failure, would explain the test failure.
The second question is important in determining the type of
test. It also points out the dependence relations in the test
system, so that independence is not a necessary assumption.

The assumption that test quality is the same for all tests
in the system is restrictive and sometimes limits our ability to
deal with real test situations. Therefore, in addition to the
inference process described above (i.e., the set partitioning
process), we use a modification of Dempster-Shafer
statistical inference which has its root in Bayesian inference
[11]. Shafer [12] added the concept of uncertainty to the
Bayesian approach (of applying Baye’s rule) which resulted
in two measures being applied to a conclusion. Using this
approach, we compute values for two extremes of a
credibility interval for every conclusion in the model. These
extremes are called support, s(c;), and plausibility, p(c;), and
for a given conclusion, ¢, s(c) < Pr(c) < p(c). An
intermediate measure called denial, d(c;), is computed as the
complement of plausibility. Dempster-Shafer theory then
combines information from multiple tests using Dempster’s
rule of combinations [13]. As fests are performed,
Dempster’s rule is applied iteratively to allow test
information to be accumulated and the diagnostic process to
be optimized.

Converting the fault dictionary

The information flow model specifies the inferences
that can be drawn given each test outcome. The fault
dictionary maps directly into the information flow model.
Using the information in Table 2, we convert the fault
dictionary into an information flow model by comparing
test results in the presence of a fault to expected test results
when the circuit is not faulty. We place a 1 in the
corresponding cell of the matrix if these values are different
and a 0 in the cell if they are the same. If the value in the
cell is 1, we claim the associated failure mode “causes” the
given test to fail. If the value is 0, the presence of the
associated failure mode will not be detected by the given
test.

Given a complete row in the matrix, we say that if the
associated failure mode is present, then all of the tests



associated with the failure mode (i.e., whose cells have a
value of one) must fail. Conversely, if any of those tests
pass, then the failure mode must not be present. Converting
fault dictionaries to information flow models is easily
achieved by interpreting these representations as “attribute
maps” which have been discussed at [11].

As with the fault dictionary, the information flow
model closes the fault universe by defining the special
conclusion no fault. The no fault conclusion has no
specified inference relationships with any tests because a
failed rno fault cannot imply the failure of any test. To do so
would be a contradiction in terms.

Diagnosing a sample circuit
Accuracy using nearest neighbor

To assess ability of nearest neighbor to process
erroneous fault signatures in a fault dictionary, we
considered only the sample circuit and used both Hamming
distance (8(s;,s;)= Zb|sf —sjl?|) and the overlap metric
(8(s;»5;) =|s; Ns;l/ls; Us;|) as distance measures [4]. The
matching procedure was limited to 1-NN; we would expect
worse results for &-NN with £ > 1 because faults are only
represented by a small number (e.g., one) of signatures. For
each fault, we considered all possible fault signatures that
can be generated with one through eight bits in error. We
then compared the results of using 1-NN with the expected
fault and recorded the number of correct diagnoses.
Because we limited the number of neighbors to one, if a tie

occurred, we picked one of the neighbors at random. The
results of these experiments are given in Table 3.

In the top part of Table 3, we see some characteristics
of introducing error into the fault signature to be matched.
First, we see that the higher the number of bits in error, the
lower the accuracy in matching, down to a limit of 0%
accuracy. Second, the performance of Hamming distance
compared with the overlap metric is very close. In fact, we
conjecture that the differences would not be statistically
significant; however, we do not have sufficient data to
perform a significance test. Third, the lowest error rate (i.e.,
1 bit error) yielded very poor performance on this circuit
(between 21% and 27% error). This follows the conclusion
of the previous discussion on the appropriateness of nearest
neighbor.

Accuracy of Dempster-Shafer compared with nearest
neighbor

To compare the differences between the Dempster-
Shafer approach and nearest neighbor classification, we
computed the accuracy for all bit-error combinations using
Dempster-Shafer as we did for nearest neighbor. The
diagnosis returned corresponded to the failure mode with
the highest evidential probability. Ties were broken at
random. These results are shown in the bottom part of
Table 3. In interpreting this table, we can consider the bit
errors as corresponding to some amount of lost
information. For example, in the two-bit error case, we
assume 25% information loss. From this we can see that
even one bit in error is significant in that it corresponds to

Table 3. Accuracies of nearest neighbor and Dempster-Shafer.

Number of Bits in Error
1L [ 2 [T 3 [ 4 T 5 T 6 [ 7 T s

Accuracy Using Nearest Neighbor on a Fault Dictionary
Hamming Distance 82 110 42 9 0 0 0 0
Correct Diagnosis 79% 30% 6% 1% 0% 0% 0% 0%
Incorrect Diagnosis 21% 70% 94% 99% 100% 100% 100% 100%
Overlap Metric 76 91 57 19 0 0 0 0
Correct Diagnosis 73% 25% 8% 2% 0% 0% 0% 0%
Incorrect Diagnosis 27% 75% 92% 98% 100% 100% 100% 100%
Total Cases Examined 104 364 728 910 728 364 104 13

Accuracy Using Dempster-Shafer on a Fault Dictionary
Correct = 1™ 89 174 150 62 0 0 0 0
Correct Diagnosis 86% 48% 21% 7% 0% 0% 0% 0%
Incorrect Diagnosis 14% 52% 79% 93% 100% 100% 100% 100%
Correct= 1" or 2™ 104 331 336 66 0 0 0 0
Correct Diagnosis 100% 91% 46% 7% 0% 0% 0% 0%
Incorrect Diagnosis 0% 9% 54% 93% 100% 100% 100% 100%
Total Cases Examined 104 364 728 910 728 364 104 13
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12.5% information loss.

Consider the rows associated with Correct = 1*. These
rows correspond to the analysis when we consider the
conclusion assigned the highest probability of being
correct. This is analogous to the nearest neighbor case in
which we select the fault whose signature is closest to the
test signature as the most likely diagnosis (rows Hamming
Distance and Overlap Metric). Comparing these rows with
the Correct = 1™ rows, note that Dempster-Shafer outper-
forms both Hamming distance-based and Overlap metric-
based nearest neighbor. In fact, we see that with 37.5%
information loss, nearest neighbor performs randomly (i.e.,
if we randomly select from the 13 possible failure modes,
meaning any failure mode might be selected with prob-
ability 7.7%, we will be correct approximately the same
number of times as when applying nearest neighbor with
three bits in error). On the other hand, Dempster-Shafer
does not reduce to “random” performance until we have
50% information loss. When this loss exceeds 50%, both
techniques fail to find the correct diagnosis, as expected.

An interesting result with Dempster-Shafer involves
examining the number of times the correct answer is either
the first or second most likely conclusion identified (shown
Table 3b in the rows associated with “Correct = 1* or 2"%).
Here we find the correct fault a very high percentage of the
time, indicating that an alternative answer in the event
repair based on the first choice is ineffective. In fact, in all
cases where the answer was ranked either first or second,
Dempster-Shafer still considered it to be a member of the
hypothesis set.

Conclusion

With the current practice of using fault dictionaries to
diagnose digital circuits, test outcomes can fail to match
entries in the fault dictionary, resulting in improper fault
identification and ineffective system repair. In addition to
assuming erroneous test outcomes, a number of
possibilities exist, including modeling error, incomplete
fault universes, and improper test development. Current
diagnostic practice assumes that the fault dictionary
provides adequate representation of the diagnosis space,
permitting applying nearest neighbor classification for
matching fault signatures. This does not adequately address
the problem of inexact matching in fault dictionaries
because current practices for generating fault dictionaries
force under-representation of the diagnosis space.

After quantifying the difficulty nearest neighbor has
with fault dictionaries to diagnose faults in our test circuit,
we demonstrated that an alternative approach to
diagnosis—using Dempster-Shafer statistical inference and
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logic modeling—provides more accurate diagnostics with
fault dictionary data when dealing with uncertain test
outcomes. This approach focuses on analyzing test
information rather than examining alternative diagnoses to
resolve uncertainty.
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