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Abstract Sensor networks are traditionally built using battery-powered, collabora-

tive devices. These sensor nodes do not rely on dedicated infrastructure services (e.g.,

routers) to relay data. Rather, a communal effort is employed where the sensor nodes

both generate data as well as forward data for other nodes. A routing protocol is needed

in order for the sensors to determine viable paths through the network, but routing

protocols designed for wired networks and even ad hoc networks are not sufficient given

the energy overhead needed to operate them. We propose an energy-aware routing pro-

tocol, based on overlapping swarms of particles, that offers reliable path selection while

reducing the energy consumption for the route selection process. Our Particle-based

Routing with Overlapping Swarms for Energy-Efficiency (PROSE) algorithm shows

promise in extending the life of battery-powered networks while still providing robust

routing functionality to maintain network reliability.

Keywords Sensor Networks · Routing · Overlapping Swarms · Quality-of-Service

1 Introduction

One of the fundamental issues with wireless sensor networks is maintaining the in-

frastructure to move data from low-power sensors to data collection points. Unlike
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PC-based wireless networks (e.g., IEEE 802.11), sensor networks are composed of very

low-power (i.e., battery-based) devices designed to last for months or years. Typical

routing protocols designed for wired and wireless networks generally do not meet the

resource constraints imposed by these types of networks. The focus of the research re-

ported here is the development of a novel swarm intelligence (SI) algorithm [Kennedy

and Eberhart, 1995] to address the problem of routing in wireless sensor networks.

Rather than maintain a single swarm that encompasses the entire sensor network, our

approach is based on overlapping swarms that localize information dissemination.

The use of the SI approach in this environment provides two interesting advantages.

The first benefit is the ability to make path determinations through the network graph

based on a variety of parameters (e.g., power, hop count). This flexibility allows the

network to determine the least resource intensive path at any point in time. The second

benefit is the ability to localize the distribution of these parameters between nodes.

Localization reduces control traffic flooding throughout the network thus reducing en-

ergy consumption while still allowing nodes to make valid route selection decisions.

This paper presents the Particle-based Routing with Overlapping Swarms for Energy

Efficiency (PROSE) algorithm as a potential solution to conserving energy in sensor

networks.

2 Problem Statement

Wireless sensor networks (WSNs) have several unique properties that distinguish them

from other networks. Sensor nodes are battery-powered, small-scale (i.e., limited CPU

capacity) devices equipped with one or more sensors designed to collect targeted in-

formation. Unlike traditional wired (e.g., Ethernet) networks, typical sensor networks

do not have dedicated infrastructure for forwarding data, so each node participates in

data forwarding. A deployment of sensor nodes involves a large-scale placement over

some area of interest to collect data. That data is then sent to a data sink (referred

to as a gateway). The gateway node is usually a higher-powered processing machine

capable of storing larger amounts of data and/or transmitting the data over longer

distances.

With this deployment model in mind, several network-related issues arise. The

primary issue concerns path determination to the gateway node. Traditional network

routing protocols require regular data exchanges between peer nodes in the network to

maintain path information. However, with limited power budgets, sensor nodes need

alternative methods of path determination that do not consume precious energy with

routine routing traffic. On the other hand, sensor nodes in WSNs do not need to know

a path to all other nodes in the network, as is the case with traditional data networks.

Rather, sensor nodes only need to know the possible next-hop nodes leading to the

destination gateways. This reduces the path computation problem by pruning large

parts of the network from the set of potential data destinations.

Ideally, a sensor node’s selection of a path to the destination gateway will take

various critical variables into account. Rather than always choosing the “shortest” path

(e.g., fewest number of hops) as in traditional routing protocols, a node interested in

maximizing the global performance of the network will incorporate feedback from its

nearest neighbors when selecting a next-hop. Traditional routing protocols for both

wired and wireless networks typically require state messages to be flooded throughout

the network (global information) for each node to make informed and correct path
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selections that are optimal. However, we hypothesize that we can make decisions strictly

on local information that improve the global performance of the network, even if the

path selection is suboptimal based on traditional criteria such as hop count. The results

of our experiments show that the power consumption can be spread across the network,

enhancing the availability of the entire network.

3 Related Work

A variety of approaches have been proposed using traditional sensor network routing

protocols. In-depth surveys of these approaches are available in [Al-Karaki and Kamal,

2004] and [Akkaya and Younis, 2005]. Directed Diffusion uses a data-centric (pull vs.

push) approach rather than a network layer routing scheme [Intanagonwiwat et al.,

2003]. That is, the data is named using attribute/value pairs and the nodes interested

in the data (sinks) broadcast queries through the network searching for the data of

interest. Source nodes holding data matching the attribute/value pairs send responses

back to the sink. The sink then resends the original query at different time intervals to

reinforce the selected path(s).

Shah and Rabaey attempt to address the energy efficiency in sensor network rout-

ing by applying a load balancing technique [Shah and Rabaey, 2002]. Unlike other

approaches that simply use energy expenditure as a link metric in a shortest-hop

style protocol, their approach uses a flooding technique to discover multiple low-energy

routes from a source to a destination. When data begins to flow, it is routed over the

set of routes in a stochastic manner to load balance the traffic.

Several Ad hoc On-demand Distance Vector (AODV) [Perkins and Royer, 1999]

variations have been proposed that attempt to make AODV more energy efficient.

Pappa et al. replace the traditional AODV route metric (hop count) with a ratio of

each node’s remaining energy level [Pappa et al., 2007]. As the route request transits the

network, it accumulates the amount of energy remaining at the nodes along its path.

When the request reaches the intended target, the destination selects the request with

the lowest cost, which equates to the path with the lowest energy consumption. Nie

and Comaniciu propose an AODV variant designed to save energy in CDMA networks

[Nie and Comaniciu, 2006]. Their approach leverages two primary changes. First, they

replace the AODV route metric with a power metric that takes the transmission energy

per packet into account. This is accomplished by computing the transmission power

needed for the initial packet’s size. Secondly, they leverage a cross-layer design to allow

the network layer routing to influence the directional antennas (beamforming) used

within the CDMA network. Both approaches retain the route discovery and response

paradigm of traditional AODV.

Several AI-based approaches for network routing utilize the Q-learning algorithm

[Watkins, 1989]. Littman and Boyan [Littman and Boyan, 1993] describe a distributed

reinforcement learning approach to network routing where each node maintains statis-

tics on the delivery time of data packets flowing through the network. Using this in-

formation, the algorithm applies a variation to the Q-learning algorithm to generate a

policy that routes data traffic over the minimum number of hops. Peshkin and Savova

propose a modification to this approach incorporating a Gradient Ascent Policy Search

(GAPS) [Peshkin and Savova, 2002]. The GAPS approach forwards data packets in a

stochastic fashion based on a learned policy reinforced by rewards provided by the net-

work. Packets in transit carry information such as source, destination, routing history,
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and origination time, which are used by intermediate nodes to either forward (based

on hop count) or discard it. The rewards are used in a gradient ascent search to find

the locally optimum policy.

Wang and Wang developed a variation of the Q-learning approach applying a Q-

value parametric approximator rather than evaluating the optimal action/value func-

tion [Wang and Wang, 2006]. By approximating the value function using Least Squares

Policy Iteration (LSPI), Wang and Wang argue that they can learn the set of actions

directly from the environment (model-free), independent of initial parameter settings

(e.g., learning rate) that will allow packet forwarding to follow the shortest hop path.

Brown applies Q-learning in an approach that reduces power consumption and in-

creases wireless channel utilization by replacing the number of hops metric with an

energy-based metric [Brown, 2000]. This approach focuses on learning a policy for ac-

tivating a radio interface and scheduling packet transmissions to increase wireless link

utilization. Beyens et al. leverage data compression in their Q-learning based routing

protocol [Beyens et al., 2005]. By combining data from multiple sensors they reduce

the overhead associated with the data transmission. This approach provides locally

optimal performance but does not increase the global performance of the network.

An approach to packet scheduling is proposed in [Melo and Coello, 2000] that

applies fuzzy logic to the classification of traffic flows to meet Quality-of-Service (QoS)

constraints. The classification serves as the basis for packet scheduling as data flows

fill output queues and the router must determine a schedule for packet transmission

that meets the QoS requirements. Their approach focuses on the classification and

scheduling aspects of packet forwarding, but does not address actual route discovery.

The concept of COllective INtelligence (COIN), described in [Tumer and Wolpert,

2000], uses multi-agent systems to determine path selection through a network. In a

COIN network, each agent employs a local utility function with a goal of increasing

global reward. Path selection is derived from a nearest neighbor algorithm where the

neighbor of interest is the one with the best global cost to the final destination. As

with previously cited work, this approach focuses on selecting a single best path but

does have the ability to select different paths to the same destination as long as that

alternative selection benefits the collection of agents. The COIN approach comes clos-

est to satisfying the constraints focused on in our project, albeit without specifically

incorporating multiple objectives into their utility function.

A biologically inspired reinforcement learning approach to sensor network routing,

called Ant Colony Routing, is described by GhasemAghaei et al. [GhasemAghaei et al.,

2007] The Ant Colony approach relies on the flow of artificial ants through the network

to discover paths [Dorigo and Stützle, 2004]. Sources originate forward ants to discover

the destination, which in turn generate backwards ants to optimize the path. As with

most other approaches described here, Ant Colony Routing relies on the discovery of

the minimum-hop path from a source to a destination and does not optimize global

resource consumption (e.g., energy). A similar approach by Di Caro et al., however,

utilizes Swarm Intelligence, based on Ant Colony Optimization, for mobile ad hoc net-

works [Di Caro and Dorigo, 1998][Di Caro et al., 2005]. Using a Monte Carlo learning

process, AntHocNet leverages forward ants to explore complete paths from a source to

a destination and backwards ants to reinforce the pheromone table entry for the desti-

nation at the intermediate nodes. Their approach focuses more on finding single best

paths (based on hop count and path delay) between pairs of nodes. A variation of An-

tHocNet based on Particle Swarm Optimization (PSO) is described in [Zhang and Xu,

2006]. Their approach utilizes a swarm updating forward and backward agent/particles
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similar to the AntHocNet approach. The distinction occurs in the particle state update

function where a variety of QoS metrics are incorporated.

A variety of geographic routing solutions have been developed to conserve energy in

battery-based networks. Traditional routing protocols require periodic hello (or beacon)

messages to determine adjacent neighbors. Heissenbüttel et al. developed beacon-less

routing (BLR) algorithm in which each node is unaware of its neighbors [Heissenbüttel

et al., 2004]. In BLR, a node simply broadcasts any data packets it has enqueued.

When a neighboring node receives the packet, it computes a timeout value based on

its position relative to the transmitting node and the destination node. The node with

the best location will have the smallest timeout value and will transmit the packet

first. Other approaches, such as EBGR [Zhang and Shen, 2010] and IGF [Blum et al.,

2003], implement the same idea within the IEEE 802.11 Media Access Control (MAC)

layer. Many of these approaches integrate their energy conservation mechanisms within

the lower layers of the protocol stack in order to ensure tight control over power con-

sumption. Another limitation of these approaches is the need for some type of location

information. In order to determine the proximity of other nodes, each device must have

a GPS, location database, or some other localization service.

Within the PSO literature, several applications of multiple swarms have been pro-

posed. In [Brits et al., 2007], a global swarm is fragmented into niche swarms to find

multiple optimal solutions. The niches fragment from the original swarm based on the

discovery of a candidate solution, fragmenting the global population. Each niche is

said to converge once it finds a solution and maintains the solution through a sufficient

number of training iterations. A key difference between nichePSO and PROSE is the

level of interaction between swarms. Within nichePSO, sub-swarms do not share in-

formation whereas PROSE is predicated on information sharing between overlapping

swarms. Wang et al. propose the use of multiple, non-overlapping particle swarms to

optimize the coverage area of a sensor network [Wang et al., 2007]. The algorithm

focuses on optimal placement of sensors (both stationary and mobile) to find the maxi-

mal coverage area. Given the high dimensionality of the n-dimensional particle vectors,

their algorithm splits the swarm into n swarms, each focused on finding a solution to

a single component of the solution vector. While their approach focuses on sensor net-

works, it does not address the routing of data within the sensor network. It strictly

solves the sensor coverage aspect of deployment.

4 Particle-Based Route Selection

The primary focus of our research is the development of a SI-based, layer-3 approach

to network routing for wireless sensor networks that spreads the traffic load across

distinct paths in the network to conserve critical battery life irrespective of the un-

derlying transmission media. Specifically, an SI algorithm using overlapping swarms

is developed and applied, optimizing a local route cost function for each node in the

network. This cost function captures information about the number of hops from the

node to the gateway and the residual energy of the nodes along a path to the gateway.

This problem can be viewed as a multi-objective optimization problem in that the

path selection mechanism considers: 1) local battery level, 2) neighbor battery level,

and 3) hop count to the destination when the network path is selected at the time

of data transmission. The goal is to maximize aggregate throughput by extending the

lifetime of the entire network while keeping battery consumption minimal; however,
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we also expect our approach to be applicable to more general Quality-of-Service (QoS)

parameters.

The SI model is similar to the PSO method [Kennedy and Eberhart, 1995] based

on the notion of individuals or agents collaborating as members of a social unit where

the dynamics of that social unit have the appearance of a “swarm.” PSO operates

by creating “particles” with states that represent solutions, strategies, or attributes of

a function to be optimized. In the context of WSN routing, PROSE implements one

particle in each node of the network, and defines a swarm to be relative to each node.

Each swarm consists of the particle for that node and the particles for all of the node’s

immediate neighbors. Thus, a set of overlapping swarms is defined.

By using overlapping swarms, we distinguish between PROSE and traditional PSO

algorithms. In traditional PSO algorithms, the position of each particle in a swarm

encodes a complete solution to the associated optimization problem. In PROSE, the

swarms overlap to account for the fact local decisions are being made at each node,

thus requiring each node to solve its own optimization problem. Each particle encodes

a solution to an optimization problem local to the node at the center of the swarm.

More formally, PROSE is predicated on the following. Let W = (N, E) represent

a WSN where N corresponds to the nodes of the network and E corresponds to edges

between nodes (i.e., nodes able to communicate directly with each other). Additionally,

there exists at least one node s ∈ N that is a source and a node d ∈ N that is the

destination for all sensor data collected. Each sensor node ni ∈ N must select a next-

hop node nj ∈ N , where (ni, nj) ∈ E and the objective is for (ni, nj) to be on a path

from s to d (i.e., the gateway). For each ni ∈ N , define a swarm Sni
= {ni}

⋃
{nj |

(ni, nj) ∈ E}. Let pi represent the particle associated with node ni. Each pi consists of

a vector of information incorporated in to the route selection process. The state of pi is

its current selection of a ”best” next-hop node to reach the sink node. As an example,

consider the scenario where nx has three neighboring nodes (na, nb, and nc). The

particles for those nodes can be represented as i:(4, 0.5), a:(3, 0.6), b:(4,0.3), c:(5,0.6).

Each term in the vector is a tuple of hop count and energy for the node. The vector

is then incorporated into a probabilistic decision process based on the SI model. Each

particle pi knows its current state (denoted presenti), remembers its best state seen

so far (denoted pbesti), and is aware of the best state for all of the particles in the

local swarm (denoted lbesti). These best states represent the best solutions selected

for the local particle and the particles within its swarm. Each node signals its best state

to the other members of its swarms. It should be noted that, over time, pbesti and

lbesti, which are local measures, may become suboptimal. However, this is acceptable

since PROSE is attempting to optimize global, rather than local, performance. For

our sensor network environment, these states represent the current power level of each

neighbor’s battery and the hop count to the destination through each neighbor as a

single objective measure (discussed in Section 5.3). The results shown in Section 6

indicate that PROSE improves global residual energy levels using local information.

The concept of swarms within a network routing paradigm shares many character-

istics with network neighborhoods described in other WSN literature. Both approaches

attempt to leverage localized interactions in order to minimize their impact on the net-

work as a whole. Additionally, both techniques try to utilize superior peers to route

traffic to the intended destination. However, the SI-based swarm approach differs from

traditional neighborhood-based approaches by incorporating stochastic decision mak-

ing rather than deterministic logic. The use of randomness within swarms allows them
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function initP rose()
initializeDataStructures()
start proseRcvThread()
WHILE (TRUE)

sendPSAMessage()
sleep(msgInterval)

ENDWHILE

Fig. 1 PROSE Initialization (leveraging the PSA message sending function defined in Fig-
ure 3.

to recover from local optima and incorporate a measure of exploration in the route

selection process.

Similar to PSO, each particle also has a velocity vector (denoted vi) associated

with it to determine how the state will change from one step to the next. The velocity

vector is used to update the underlying state. The velocity is adjusted based on the

communal experience of the swarm using:

vi = ω × vi

+ d1 × rand() × (pbesti − presenti) (1)

+ d2 × rand() × (lbesti − presenti)

where rand() represents the generation of two independent uniform random numbers

in the range (0..1) that prevents particles from settling into a local optimum, d1 and d2

are constants used to tune performance, ω is an inertia weight to manage stability, and

vector operations are component-wise. Once the particle’s velocity has been updated,

it then updates its present state (presenti). When a particle updates its velocity

using Equation 1, it includes lbesti as a component. Since each particle ni is both

the centroid of the swarm Sni
and a member of |nbr(ni)| − 1 other swarms, we define

lbesti to be the best state (minimum objective value) the particle has seen in all of

its swarms (i.e., the best of the best). More formally,

lbesti = arg min
ni∈Sni

f(lbestni
) (2)

5 The PROSE Algorithm

The PROSE algorithm is composed of four high-level operations. These operations

interact at each node to learn, disseminate, and use the available paths through the

network. These components are:

1. Particle State Advertisement

2. Particle State Update

3. Best Neighbor Selection

4. Route Selection

While these operations are described in the following sub-sections, the general setup

and logic flows for PROSE are shown in Figures 1, 2, and 3.
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function proseRcvThread()
initializeRcvSocket()
WHILE (TRUE)

msgPSA← receiveMessage()
particleStateUpdate(msgPSA)
updateV elocity() // Equation 4
IF (local state changed)

computeLBest()
sendPSAMessage()

ENDIF

ENDWHILE

Fig. 2 PROSE Receive Thread.

function sendPSAMessage()
neighbor← findBestNeighbor()
new(PSAMessage) // Allocate memory for PSAMessage
PSAMessage.batteryLevel← Current battery level
PSAMessage.hopCount← getHopCount(neighbor)
PSAMessage.nextHop← neighbor

sendMessage(PSAMessage)

Fig. 3 Algorithm for sending PSA messages.

5.1 Particle State Advertisement

To create and maintain its local swarm, each particle must advertise its current state

periodically to the other members of the swarm. A node’s local swarm is comprised

of all of its direct neighbors learned through the periodic PSA message exchange. The

periodic state advertisements provide updates to the other particles in the swarm on

the best path available through the advertising particle. Additionally, if a particle

undergoes a significant change in its state, it will advertise its new state on demand to

expedite changes in its swarm (e.g., if a node’s energy level dropped 10% since the last

periodic PSA message). This dampening reduces the chance of route oscillations since

the information being exchanged only changes when a particle’s best state changes. The

PSA message informs neighboring particles of the components that comprise the state

of the particle, namely its battery level and current hop count to the data sink. The

receiver of the PSA will compute the scalar state based on the advertised information

(Figure 3).

The PSA message is the key component in reducing the amount of control traffic

sent over the entire network. As each particle’s state changes, the PSA message only

advertises the particle’s best information from one swarm to another. This reduces the

amount of overhead messaging that is normally transmitted to affect route selection.

The function call to findBestNeighbor() returns information on the particle seen as be-

ing the current best choice to reach the destination. Further description of the selection

process occurs in Section 5.3.
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function particleStateUpdate(PSAMessage)
sender← source of PSAMessage
IF (sender not in Neighbor Table)

addNeighbor(sender)
ENDIF

batteryLevel(sender)← PSAMessage.batteryLevel

hopCount(sender)← PSAMessage.hopCount + 1
nextHop(sender)← PSAMessage.nextHop

vi ← vi + d1 × rand() × (pbesti − presenti)
+d2 × rand() × (lbesti − presenti)

Fig. 4 Algorithm for updating particle state.

5.2 Particle State Update

The central component of our PROSE algorithm is the particle state update process.

Particle state update occurs in two steps—incorporating information from neighboring

states into its own state, and adjusting the state based on the particle update equation

shown in Equation 1. We describe the first here and discuss the second in the context of

neighbor selection in Section 5.3 below. Each PROSE particle in a swarm maintains a

swarm neighbor table that tracks the state of its neighboring particles. Upon reception

of a PSA message, a particle parses the message and updates/adds the sending particle’s

information in its state table (shown in Figure 4). In addition, Equation 2 is invoked

to update lbesti.

5.3 Best Neighbor Selection

In the PROSE algorithm, each node in the network optimizes a local function represent-

ing the anticipated impact traffic will have on global network availability to determine

where to forward packets it has received. The state of each particle i in each swarm

contains two attributes—Hopcounti and ConsumedBatteryi. The objective function

optimized is simply:

f(i) = C1 × Hopcounti + C2 × ConsumedBatteryi (3)

As the objective function, Equation 3 is used to determine which neighbor currently

represents the best next-hop towards the sink. The weighted aggregation approach is

employed over other approaches (e.g., dominance-based) in order to avoid expensive

processing in the sensor nodes. Since we are trying to reduce both energy consumption

and the hop count of the path, the best neighbor will have the minimum objective

value of all known neighbors. This process is represented in Figure 5.

Once the best neighbor is found, the current node updates its velocity using Equa-

tion 1. With the new velocity, the particle then updates its state presenti as follows:

presenti = presenti + vi (4)
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function findBestNeighbor()
objectiveLevel←MAXINT

FORALL (neighbor in neighborTable)
currObj ← C1 × hopCount(neighbor)

+ C2 × ConsumedBattery(neighbor)
IF (currObj < objectiveLevel)

bestNeighbor← neighbor

objectiveLevel← currObj

ENDIF

ENDFOR

Fig. 5 Algorithm for finding the best neighboring node.

function findBestRoute()
continue← TRUE

WHILE (continue)
bestNeighbor← findBestNeighbor(present

i
)

IF (nextHop(bestNeighbor) 6= self)
continue← FALSE

ELSE

mark bestNeighbor unusable
ENDIF

ENDWHILE

Fig. 6 Algorithm for deciding the next best hop along the route.

5.4 Route Selection

In PROSE, a reactive model is used where route entry creation is under the control

of the particle’s current state (presenti), which represents where the particle resides

in a state space. It does not represent which node in the neighbor table is the current

best selection. Rather it represents the particle’s vector through state space trying to

reach lbest and pbesti. The combination of the random component in Equation 1 and

the overlapping swarms allows energy levels to be propagated through the network so

that the reactive route selection is not entirely local, even though the PROSE message

exchanges are completely local.

With PROSE, the route selection mechanism chooses a next-hop based on the

particle’s current state, whenever a data packet needs forwarding and a route entry

does not already exist. Our approach relies on the current state (presenti) of the

particle and the information in the neighbor table to select a next-hop for packet

forwarding. The findBestNeighbor() function call (Figure 5) searches the neighbor

table for the best objective value relative to presenti. This neighbor is selected as the

next-hop for the pending data packet. A neighbor is excluded (marked as unusable)

from use if it has indicated that its next-hop to the sink is the node performing the

route lookup, thus preventing local (tight) loops from forming. The route selection

mechanism is outlined in Figure 6. The route entry remains in the route table as long

as there is data flowing through the node to the destination. The route entry times out

after a period of inactivity or the residual energy of the current next-hop in the route

entry drops below a threshold value.
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This approach reduces the amount of routing state maintained across the entire

network. This reduction occurs not only for the forwarding state maintained in each

node, but also in the amount of control traffic generated within the network. Typi-

cal reactive routing protocols, like AODV, generate localized messages (i.e., HELLO

messages) that facilitate localized neighbor discovery as well as flooded route discov-

ery messages to find paths through the network. PROSE does not need network-wide

discovery messages since the overlapping swarms propagate the information needed to

find a path.

6 Experimentation

Given the differences mentioned between traditional routing protocols and a swarm-

based approach, we divided our experimentation into three phases. The first phase

of testing focused on testing the capability of PROSE to make sound route selection

decisions. This was accomplished by focusing on finding the minimum hop count path

to the destination. For this first phase, the user-defined variables in Equations 1 and 3

are set as follows: d1 = 0.33, d2 = 0.67, ω = 1, C1 = 1.00, and C2 = 0.00. The second

and third phases tested the capability of PROSE to reduce overall energy consumption

across the network by incorporating energy and hop count in the objective function.

The user-defined variables in Equations 1 and 3 for the last two phases are set to:

d1 = 0.33, d2 = 0.67, ω = 1, C1 = 0.99, and C2 = 0.01. The following sections describe

the setup and simulation environment for each experimentation phase.

6.1 Simulation Environment

All of the simulation results presented here were collected using the Network Simulator-

2 (ns-2) [USC/ISI, 2007], version 2.32. The PROSE algorithm was tested against the

Ad hoc, On-Demand Distance Vector (AODV) routing protocol [Perkins and Royer,

1999] included in the ns-2 distribution, the Directed Diffusion routing protocol [In-

tanagonwiwat et al., 2003] also included in the ns-2 distribution, and the energy-aware

AODV variant described in [Pappa et al., 2007]. All nodes used in the simulation en-

vironment operated a single IEEE 802.15.4 radio interface with an omni-directional

antenna. The traffic sources generated a Constant Bit Rate (CBR) traffic stream to

simulate sensor data collected at set intervals for PROSE, AODV, and the energy-

aware AODV while the data sink queried sensors on the same intervals for Directed

Diffusion. For the energy-based routing, the standard ns-2 energy model was utilized

to simulate the energy consumption in each node with each node being initialized with

10 Joules of energy.

6.2 NS-2 Energy Model

The energy model in ns-2 provides an abstract mechanism for simulating energy con-

sumption within a node. It maintains the total energy level of the node based on an

initial energy level and a discrete set of user-configurable, action/energy settings. The

action/energy variables allow a simulation to control the energy expended per action.

For networking nodes, a simulation can assign an energy expenditure level for packet
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transmission, packet reception, active/sleep transition, and operating in an idle mode.

For the simulations discussed here, the default values provided for the IEEE 802.15.4

MAC layer were used for packet transmission and reception (281.8 mWatts).

It should be noted that this energy model is simplistic in nature. It does not sup-

port parameterization on operations such as variable packet transmission power. Such

flexibility would allow for a higher fidelity model of wireless networks [Xue et al., 2007].

However, given the simplicity of the energy model, it provides a consistent model that

allows for direct comparisons of resource consumption between multiple protocols op-

erating under the same conditions.

6.3 Shortest Hop Emulation

The first step in evaluating PROSE focused on emulating a traditional minimum-hop

metric. That is, the objective function selected next-hop neighbors to minimize the

number of nodes a message traversed to reach the destination. This was accomplished

by setting C1 to 1 and C2 to 0 in Equation 3. This test provides insight into the route

selection capabilities of PROSE in comparison to a baseline routing protocol.

This minimum-hop variation of PROSE was first tested against AODV in a 100

node (arranged in a 10 × 10 grid) sensor network illustrated in Figure 7. Within this

network, one node acted as the destination gateway and three nodes acted as sources.

The topology of the network is representative of a sensor deployment that would be

found in warehouse environments, albeit with fewer data transmitters. Each of the

sensors (shaded nodes in the figure) generated CBR traffic destined for the destination

gateway node (labeled 0). The simulation was run 100 times for each routing protocol

(PROSE and AODV). During each simulation run (lasting 90 seconds), the routing

tables of each node were tracked to determine the paths selected. The energy level of

each node was also collected at the end of each simulation run even though energy

utilization was not the focus of this initial test.

The AODV simulation runs focused all the traffic along a common path (Figure

7). Such traffic localization leads to increased energy expenditure along the popular

path (i.e., under PROSE, these nodes had a significantly higher residual energy level

than under AODV). The PROSE simulation runs demonstrated better path diversity

(Figure 8) through the network while only using hop-count as the objective metric.

The selection of parallel paths through the dense network distributed the workload

among a larger population of nodes while still selecting minimum hop paths. These

results demonstrate that PROSE is capable of making good routing decisions using a

standard routing metric while still distributing the work across more of the network.

Additional minimum-hop tests were carried out with two smaller networks using the

same number of sources/sinks, CBR traffic pattern, simulation runs, and run duration.

In an 11-node network there was not a statistically significant difference in residual

energy between AODV and PROSE. In a 21-node network, AODV had a statistically

significant higher residual energy level.

6.4 Energy-based Routing

Given the capability demonstrated by PROSE in selecting minimum-hop paths, the

second phase of experimentation focused on incorporating energy levels into the objec-
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Fig. 7 100-node sensor network

Fig. 8 100-node PROSE path selection

tive function. For the following simulation runs, the variables C1 and C2 are set to 0.99

and 0.01, respectively. These values for C1 and C2 were selected by a parametric anal-

ysis designed to evaluate the influence of individual variables and their interactions.

The selected values provided sufficient weight to both the hop count and consumed en-

ergy levels while still resulting in distinct values. Intuitively, the higher weight for the

hop count (C1 >> C2) aided in the prevention of loops while still providing sufficient

weight to the energy level. The hypothesis is that we will see statistically significant

improvement in the difference between average residual energy with the sensor net-

work operating with the PROSE algorithm versus the AODV, energy-aware AODV

(EA-AODV), and Directed Diffusion algorithms.

The experimentation with the energy-based objective function primarily utilized

the network illustrated in Figure 7. Three sets of 100 simulation runs were carried out

where the only difference between the sets was the duration of a simulation run. The

simulation run times were 90, 900, and 6000 seconds. These time values were chosen

by iteratively running simulations and examining the resulting trace files for energy

depleted nodes. As with the hop-count experiment, each node is initialized with 10 J

of energy.

The first set of simulation runs lasted 90 seconds each. As with the hop-count

experimentation on this network size, AODV routed all of the sensor data traffic along
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Table 1 Residual energy analysis

Node Count Duration Protocol Ave. Res. Energy St. Dev. Two-tailed t-test p-value
100 90 sec PROSE 9.76 J 0.114
100 90 sec AODV 8.93 J 0.996 2.89E-13
100 90 sec EA-AODV 9.64 J 0.278 0.0001
100 90 sec Dir. Diff. 9.78 0.039 0.51

100 900 sec PROSE 9.39 J 0.29
100 900 sec AODV 6.01 J 3.29 7.9E-18
100 900 sec EA-AODV 7.64 J 2.28 1.39E-12
100 900 sec Dir. Diff. 9.20 J 0.48 0.00018

100 6000 sec PROSE 7.78 J 1.760
100 6000 sec AODV 5.94 J 2.795 2.12E-11
100 6000 sec EA-AODV 6.82 J 2.285 5.52E-08
100 6000 sec Dir. Diff. 7.21 J 2.092 0.0002

76 6000 sec PROSE 7.32 J 1.174
76 6000 sec EA-AODV 6.24 J 1.944 1.85E-09
76 6000 sec Dir. Diff. 6.51 J 1.884 1.08E-06

the same path. On the other hand, PROSE varied the paths it selected based on energy

consumption utilizing a diverse set of nodes to conserve energy.

In Figure 9, the non-shaded nodes had higher residual energy levels when operat-

ing with the AODV protocol. The shaded nodes had higher residual energy levels with

our PROSE algorithm. The energy analysis for this simulation is shown in Table 1.

The paired, two-tailed t-test p-value of 2.89E-13 indicates a high statistically signifi-

cant difference between PROSE and AODV. Also of note is the low (0.114) value of

the standard deviations within the PROSE samples. The residual energy level is also

significantly higher for PROSE than it is for the energy-aware AODV (t-test p-value

of 0.0001). This indicates that PROSE is outperforming AODV even when the routing

metric in EA-AODV incorporates energy expenditure.

The comparison of PROSE to Directed Diffusion shows that the average residual

energy levels are not significantly different. In these shorter-term experiments PROSE

is providing essentially the same energy savings as Directed Diffusion.

While the energy conservation of all the protocols differed, the packet delivery ratio

(number of packets transmitted by the sources / number of packets received by the

sink) for all protocols was over 94%. This shows that all approaches are providing

reliable transport across the sensor network.

This first simulation run shows promising initial results, but does not demonstrate

behavior of the protocols once nodes begin depleting their batteries. To observe the

protocols behaviors under these conditions, the next set of simulation runs increased the

simulation run time to 900 seconds. The ten-fold increase in simulation run time shows

PROSE has a dramatic increase in performance over AODV, a significant difference

with the energy-aware AODV, and an increasing advantage over Directed Diffusion

(t-test p-value of 0.00018) with respect to average residual energy (Table 1).

Given the superiority of PROSE over the two AODV protocols in the 90-second

experiments, the increased performance in the 900-second experiments were expected.

The encouraging result for PROSE is its ability to outperform Directed Diffusion. The

statistically significant difference in residual energy can be attributed to the larger

amount of network-wide control traffic needed by Directed Diffusion to establish a

route from source to destination.
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Fig. 9 AODV Energy levels in 100-node, 90-second test

Fig. 10 AODV energy loss pattern in 100-node, 900-second simulation runs

Another observation made during the 900-second simulation run was the distinct

pattern of energy loss under AODV. In Figure 10, the shaded nodes all exhibited

an average residual energy level at least 2 Joules less than the average for AODV.

This energy loss pattern can be attributed to the AODV approach to overloading the

“popular” path. The single non-shaded node surrounded by shaded nodes in Figure 10

is an interesting case. This node, while falling along the shortest-hop path, appears to

have been bypassed by AODV once surrounding nodes began failing. The ns-2 traces

indicate this node fell out of RF transmission range once its adjacent nodes began to

fail. Since it did not have to route traffic under AODV, it conserved its energy levels.

All the other protocols exhibited a more evenly dispersed loss of energy.

The final energy-based simulation run increased the simulation time to 6,000 sec-

onds. These simulation runs allowed for a sufficient number of node failures leading

to network fragmentation under AODV. That is, no usable path existed from the

sources to the destination by the end of the simulation run. As nodes fail, the routing

protocols must discover alternate paths to the destination (since they are all reactive

protocols). Under AODV, these alternate paths are discovered once a failure is detected

on the previously chosen path. Upon this discovery, the AODV protocol re-performs

the route discovery mechanism based only on the hop-count metric. PROSE, on the

other hand, dynamically changes routes throughout the simulation run based on the

objective function calculation, spreading the depletion of energy evenly across a more
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Fig. 11 AODV nodes failing in 100-node, 6000-second simulation runs

diverse set of nodes. Directed Diffusion and the energy-aware AODV also spread the

depletion across a wider variety of nodes. However, their routes are only changed when

the route discovery process is invoked.

The primary observation for this third set of simulations is the average residual

energy level shown in Table 1. The average residual energy level for AODV is a mis-

leading indicator of the protocol’s behavior with respect to energy. The average over

the whole network does not reflect the points of failure within the simulation runs.

The shaded nodes in Figure 11 indicate those nodes that consistently exhausted their

batteries, leading to network fragmentation. The pattern of nodes indicates the frag-

mentation that can occur within the network leading to AODV being unable to route

data traffic to the destination node. The loss of viable paths between the sources and

destination led to AODV having a packet delivery ratio under 75%. PROSE, on the

other hand, exhibited no complete battery drain and was able to retain a high (>95%)

packet delivery ratio.

PROSE, Directed Diffusion, and EA-AODV did not encounter any complete failure

of nodes in this experiment. For each of these protocols, the energy expenditure was

more evenly distributed across the network. But, while Directed Diffusion and the EA-

AODV maintained a >95% packet delivery ratio, there was significantly less residual

energy (t-test p-values of 0.0002 and 5.52E-08 respectively). The energy consumption

differences between PROSE, Directed Diffusion, and the EA-AODV can be traced

to the amount of control traffic needed to establish and maintain routes through the

network and the dynamic re-routing when a node’s energy level drops below a threshold.

PROSE is able to establish a route without any end-to-end route discovery exchange

(e.g., AODV RREQs and RRSPs). This reduces the amount of additional traffic needed

to establish routes and conserve the battery level. Additionally, the ability to re-route a

packet when a node’s energy level drops below a threshold allows PROSE to distribute

the routing workload more evenly.

The application of an energy-based objective measure shows promise across all the

test topologies employed so far. The first node failure under PROSE did not occur

until the simulation was allowed to run for over 11000 seconds and that failure only

occurred in a single simulation run.
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Fig. 12 Two-quadrant grid topology (reproduced from [Shah and Rabaey, 2002])

6.5 Alternative Grid Topology

Performance results in [Shah and Rabaey, 2002] are based on an alternative grid-

like topology where the nodes are clustered into two quadrants with a small number

of intermediate nodes that link them together. The last set of experiments reported

here are based on a reproduction of that topology (Figure 12), without any nodes

being mobile. The reader is directed to [Shah and Rabaey, 2002] for a more complete

description of the physical topology. Due to time constraints, the average results are

based on 10 simulation runs for each protocol where each run lasts for 6000 seconds.

Given the performance of baseline AODV in the previous experimental phase, it was

not included in this set of experiments.

Table 1 shows that PROSE has statistically significant higher residual energy than

Directed Diffusion and the energy-aware AODV algorithms. As with the previous ex-

periments, these results show that PROSE not only has a higher average residual

energy, the standard deviation indicates that the residual energy is more evenly dis-

persed across the nodes in the network. While the averages for EA-AODV and Directed

Diffusion appear to be similar and much closer than their results shown in the previous

section, the difference is statistically significant (t-test p-value of 0.00026).

Given the relatively few paths available between the two quadrants of the network,

it is particularly encouraging that PROSE outperformed Directed Diffusion by a sub-

stantial margin in this particular topology and continued to maintain its considerable

margin over EA-AODV. As noted before, this is due to the elimination of any end-to-

end route discovery messages in PROSE. This reduces the load on nodes that are not

in the path between the source and destination nodes. In the more restrictive topology

used in this phase, the elimination of this control traffic precludes nodes on the fringes

of the network from having to process route discovery messages. This is borne out by

analyzing the average residual energy for the eight nodes that join the two quadrants.

In these eight nodes, the average residual energy favors PROSE by only 0.074 Joules

and is not statistically significant (i.e., the t-test p-value is 0.733). Thus the bulk of

the energy savings must have been garnered in the nodes not directly involved in the

packet forwarding between quadrants. This indicates PROSE takes better advantage of

having more options for routing than the other protocols, even when such a bottleneck

exists.
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7 Future Work

These initial experiments show promise in the use of Particle Swarm Optimization

techniques leveraging overlapping swarms in network routing. Going forward there are

several areas of continued research that should be explored.

1. The operation of PROSE will be examined under a wider variety of topologies.

Variations will include factors such as network density, inter-node distances, mul-

tiple destinations, increased number of sources, mobility, multi-hop loop detection,

and dynamic power adjustment.

2. The current PROSE algorithm uses a swarm size defined as all nodes in direct RF

contact with the root of the swarm (also called one-hop neighbors). Future studies

will measure protocol performance with other swarm sizes to determine an optimal

swarm size (e.g., all two-hop neighbors).

3. PROSE experiments were not run to complete network disconnection. We will

explore the time to network failure while using PROSE, similar to results reported

in [Shah and Rabaey, 2002].

4. The simulations reported here do not incorporate mobile nodes. Future work will

incorporate mobile nodes within the simulation to determine the impact of node

movement on the PROSE algorithm.

5. Other statistics, such as RF parameters, will be incorporated into the objective

function to offer a finer granularity of control over a particle’s state, thus providing

a generalized framework for QoS-based routing.

8 Conclusion

Our research shows promise in the application of Swarm Intelligence to the problem

of routing in sensor networks. Of key interest is the reduction of the routing control

traffic while still maintaining a high packet delivery ratio. The energy savings garnered

with this reduction increases the useful lifetime of the sensor network. PROSE also

shows significant performance improvements over two representative energy-conserving

routing protocols.

The results measuring residual energy on the 10 × 10 grid, where there is a large

number of available paths, show that PROSE outperforms EA-AODV by a substantial

margin but has a similar performance to Directed Diffusion. Even so, in both cases,

the advantage held by PROSE over the other two protocols is statistically signifi-

cant. With the more restrictive 76-node, two-quadrant topology, fewer alternate paths

are provided. In this case, PROSE still provides a substantial, statistically significant

improvement in residual energy over both protocols. While the two topologies have

similarities, they provide vastly different challenges in route selection due to a bottle-

neck existing in one but not the other. In both scenarios, PROSE outperforms Directed

Diffusion and EA-AODV, thus suggesting its potential for superior performance in a

wide variety of contexts.

The application of overlapping swarms for sensor network routing allows particles

to optimize routes based on energy levels to extend the lifetime of the network. The

results of our work indicate that the PROSE approach may provide a generalized QoS-

routing framework for sensor and other types of networks. This is supported by the

ability to replace the objective function based on parameters of interest (e.g., hop
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count versus hop count and energy) without changing any other aspect of the protocol.

By extending network lifetime, sensor network users are subject to less administrative

overhead such as replacing depleted nodes. Our PROSE approach is just a first step in

investigating PSO-based solutions to hard networking problems.
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