INFORMATION EXCHANGE AND CONFLICT
RESOLUTION IN PARTICLE SWARM OPTIMIZATION

VARIANTS

by
Stephyn G. W. Butcher

A dissertation submitted to The Johns Hopkins University in conformity with the
requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland
April, 2018

(© 2018 Stephyn G. W. Butcher
All rights reserved

Abstract

Single population, biologically-inspired algorithms such as Genetic Algorithm and
Particle Swarm Optimization are effective tools for solving a variety of optimization
problems. Like many such algorithms, however, they fall victim to the curse of di-
mensionality. Additionally, these algorithms often suffer from a phenomenon known
as hitchhiking where improved solutions are not unequivocally better for all vari-
ables. Insofar as individuals within these populations are deemed to be competitive,
one solution to both the curse of dimensionality and the problem of hitchhiking has
been to introduce more cooperation. These multi-population algorithms cooperate
by decomposing a problem into parts and assigning a population to each part.

Factored Evolutionary Algorithms (FEA) generalize this decomposition and coop-
eration to any evolutionary algorithm. A key element of FEA is a global solution that
provides missing information to individual populations and coordinates them. This
dissertation extends FEA to the distributed case by having individual populations

maintain and coordinate local solutions that maintain consensus. This Distributed

i

ABSTRACT

FEA (DFEA) is demonstrated to perform well on a variety of problems and, some-
times, even if consensus is lost. However, DFEA fails to maintain the same semantics
as FEA.

To address this issue, we develop an alternative framework to the “cooperation
versus competition” dichotomy. In this framework, information flows are modeled as
a blackboard architecture. Changes in the blackboard are modeled as merge opera-
tions that require conflict resolution between existing and candidate values. Conflict
resolution is handled using Pareto efficiency, which avoids hitchhiking. We apply this
framework to FEA and DFEA and develop revised DFEA, which performs identically
to FEA.

We then apply our framework to a single population algorithm, Particle Swarm
Optimization (PSO), to create Pareto Improving PSO (PI-PSO). We demonstrate
that PI-PSO outperforms PSO and sometimes FEA-PSO, often with fewer individu-

als.

il

ABSTRACT

Finally, we extend our information based approach by implementing parallel, dis-
tributed versions of FEA and DFEA using the Actor model. The Actor model is
based on message passing, which accords well with our information-centric frame-
work. We use validation experiments to verify that we have successfully implemented

the semantics of the serial versions of FEA and DFEA.

Primary Reader: John Sheppard

Secondary Readers: Scott Smith, Brian Haberman

v

Acknowledgments

At this juncture, I am not sure I have seen further but I have certainly seen
different. A work of this magnitude is not possible without the help of many people
and fortuitous circumstances. As we all well know, there are many fits and starts
along the way and perhaps more so for me than for most.

My first round of thanks go to my advisor, John Sheppard. A dozen or so years
ago now, John asked if I would be interested in writing a paper with him and thus
started a multi-year adventure that continues to this day. I thank him for all he has
done. Hopefully we have at least another dozen or so years of teaching and research
in us!

I would like to thank Scott Smith who has also been with me on this lengthy
journey as well. I imagine he is rather happy to see me on my way at this point.

I would like to thank Brian Haberman for being on my committee and for starting
this research a decade ago.

[would like to thank the members of the Numerical Intelligent Systems Laboratory

ACKNOWLEDGMENTS

(NISL). The cast of characters has changed over the years but all have been great
lab mates. I am the latest to build on the research that has come out from or near
NISL and so I thank those who went before me: Brian Haberman, Karthik Ganesan
Pillai, and Nathan Fortier. And I would especially like to give a special shout out to
my immediate predecessor in this line of research, Shane Strasser, for being a great
friend and colleague over the years.

I would like to thank my parents: Judy & Stephen Stapleton and Bill & Jeannie
Butcher. Thanks go to my siblings: Benjamen, Ali, Christopher, Kimberly and
Laurie, as well. Thank you for the love and support over the years. And a special
shout out to Ed Tennant who at one point just started calling me “Doctor” because
he had more or less lost patience.

The work was made sweeter with the love and support of my husband, Michael
Kingan, who has had to put up with both a Master’s degree and then a Ph. D. This
endeavor has now spanned about 15 years of the 17 we have been together. My final
thanks go to our dog, Kieran, who has literally been by my side or at my feet the

entire time: man’s best friend indeed.

vi

Dedication

In honor of Alan Mathison Turing, for his wondrous but sometimes infuriating
machines.
For Michael John Kingan, because discovering how the world works has yet to

remove the mystery, humor and love.

vil

Contents

Abstract ii
Acknowledgments v
List of Tables xii
List of Figures Xiv
List of Algorithms xvii
1 Introduction 1
1.1 Contributions 6
1.2 Overview 8
2 Background 13
2.1 Stochastic Local Search, 13
2.2 Factored Evolutionary Algorithms 31

viii

CONTENTS

2.3 SUMMATYo e

3 Distributed Factored Evolutionary Algorithms
3.1 Generalizing DOSIto DFEA
3.2 DOSIL.
3.3 Background: NK Landscapes, Bayesian Networks, and DMVPSO
3.4 DFEA: Distributed FEA
3.5 Comparison of DFEA to FEA with Full and Relaxed Consensus . . .
3.6 Discussion of Experimental Results

3.7 Conclusions

4 Information Exchange and Conflict Resolution
4.1 Cooperation and Competition
4.2 Blackboard Architecture Lo
4.3 The Context over Time

4.4 Conclusions

5 DFEA Revisited
5.1 Discrepancies between FEA and DFEA
5.2 Revising DFEAo
5.3 Comparing FEA, Original DFEA and Revised DFEA

5.4 Relaxing Consensus

X

44

45

46

48

53

63

69

74

75

CONTENTS

5.5 Conclusions 116
6 Pareto Improving Particle Swarm Optimization 117
6.1 gbest and Blackboards 0L 118
6.2 PSO to PI-PSO 122
6.3 Comparing PSO, FEA-PSO, and PI-PSO 125
6.4 Conclusions 132
7 Comparative Scaling and Performance of PI-PSO 133
7.1 Introduction 133

7.2 PSO and PI-PSO with Different Population Sizes and Problem Dimen-
SIONS .« . . . e e 134
7.3 Conclusions 149
8 Actor Based (D)FEA 151
81 Actor Model 152
8.2 (D)FEA Actor Implementation, .. 156
8.3 Validating the Implementations 176
8.4 Discussion 179
8.5 Conclusions 180
9 Conclusions 182

CONTENTS

9.1 Contributions 183
9.2 Future Work 186
A Benchmark Optimization Functions 191
B Extended Chapter 7 Results 212
Bibliography 225
Vita 236

x1

List of Tables

2.1
2.2

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Hitchhiking in PSO 0 29
FEA-PSO Determination of C,, with Overlapping Factors 40
Bayesian Network Characteristics 66
Results from varying the amount of consensus between factors. 69
Benchmark Problem results for PSO, FEA, and DFEA 69
Benchmark problem results with varying degrees of DFEA consensus 70
Hitchhiking in PSO o 84
FEA-PSO Determination of C,, with Non-overlapping Factors . . . 85
FEA-PSO Determination of C,,, with Overlapping Factors 86
FEA Context C' over Time 93
Evolution of Context(s) in FEA and DFEA 98
Final Context(s) in FEA and Revised DFEA 104
Benchmark Optimization Functions by Category 107
Comparison of PSO, FEA-PSO and both variants of DFEA-PSO . . . 110
FEA-PSO, Old and New DFEA-PSO with Same Random Seeds . . . 112
Relaxing Consensus by Success Rates 115
Hitchhiking in PSOo 120
FEA-PSO Determination of C,, with Non-overlapping Factors . . . 121
Benchmark Optimization Functions by Category 126
“Bowl” Results - PSO, FEA-PSO, and PI-PSO 127
“Many Local Optima” Results - PSO, FEA-PSO, and PI-PSO 127
“Plate” Results - PSO, FEA-PSO, and PI-PSO 127
“Ridge” Results - PSO, FEA-PSO, and PI-PSO 128
“Valley” Results - PSO, FEA-PSO, and PI-PSO 128

xil

LIST OF TABLES

7.1 Benchmark Optimization Functions by Category 136
7.2 Ackley-1 Benchmark 32d Results for Different Particle Counts 139
7.3 Summary of Hypothesis I and II Results 140
7.4 Exponential Benchmark Results 32d Results for Different Particle Counts141
7.5 Schwefel-1.2 Benchmark 32d Results for Different Particle Counts . . 141
7.6 Sphere Benchmark 32d Results for Different Particle Counts 141
7.7 Zakharov Benchmark 32d Results for Different Particle Counts 142
7.8 Griewank Benchmark 32d Results for Different Particle Counts 142
7.9 Salomon Benchmark 32d Results for Different Particle Counts 143
8.1 Results for FEA Baseline and FEA and DFEA Actor Implementations 178
B.1 Ackley-1 Benchmark 32d Results for Different Particle Counts 212
B.2 Brown Benchmark 32d Results for Different Particle Counts 213
B.3 Dixon-Price Benchmark 32d Results for Different Particle Counts . . 214
B.4 Eggholder Benchmark Results 32d Results for Different Particle Counts 214

B.5

Exponential Benchmark Results 32d Results for Different Particle Counts215

B.6 Eggholder Benchmark Results 32d Results for Different Particle Counts 215
B.7 Griewank Benchmark 32d Results for Different Particle Counts 216
B.8 Michalewicz Benchmark 32d Results for Different Particle Counts . . 216
B.9 Rastrigin Benchmark 32d Results for Different Particle Counts 217
B.10 Rosenbrock Benchmark 32d Results for Different Particle Counts . . . 218
B.11 Salomon Benchmark 32d Results for Different Particle Counts .. 218
B.12 Sargan Benchmark 32d Results for Different Particle Counts 219
B.13 Schaffer-F6 Benchmark 32d Results for Different Particle Counts . . . 219
B.14 Schwefel-1.2 Benchmark 32d Results for Different Particle Counts . . 220
B.15 Schwefel-2.22 Benchmark 32d Results for Different Particle Counts . . 221
B.16 Schwefel-2.23 Benchmark 32d Results for Different Particle Counts . . 221
B.17 Sphere Benchmark 32d Results for Different Particle Counts 222
B.18 Stretched-V Benchmark 32d Results for Different Particle Counts 222
B.19 Whitley Benchmark 32d Results for Different Particle Counts .. 223
B.20 Zakharov Benchmark 32d Results for Different Particle Counts 224

xiil

List of Figures

2.1
2.2
2.3
2.4

3.1

3.2

3.3

3.4

6.1
6.2
6.3

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

8.1

Example Optimization Problem with Multiple Optima 17
Optimization Problem with Multiple Optima and Plateaus 18
Selecting gbest in PSO (Sphere) and Hitchhiking 30
Example Optimization Problem under Different x5 values 34
Average consensus between factors over time of DFEA performing ab-

ductive inference on the Hailfinder Network. 70
Fitness over time of DFEA performing abductive inference on Hail-

finder Network. 71
Average consensus between factors in DFEA on maximizing NK Land-

scapes N =25and K =10. 72
Fitness of DFEA on maximizing NK Landscapes N = 25 and K = 10. 73
Selecting gbest in PSO (Sphere) - No Hitchhiking 119
Selecting gbest in PSO (Sphere) - Hitchhiking 119
Selecting gbest in PSO with new Merge operation 122
Ackley-1 Benchmark L. 144
Sphere Benchmark oo 144
Schwefel-2.23 Benchmark 145
Dixon-Price Benchmark 145
Stretched-V Benchmark 146
Griewank Benchmark 146
Salomon Benchmark 147
Zakharov Benchmark 147
Whitley Benchmarko 147
Sequence Diagram for DFEA and DFEA Factor Actors 171

Xiv

LIST OF FIGURES

A.1 Ackley-1in 2 dimensions 192
A.2 Brown in 2 dimensions 193
A.3 Dixon-Price in 2 dimensions 194
A.4 Eggholder in 2 dimensions 195
A.5 Exponential in 2 dimensions 196
A.6 Griewank in 2 dimensions 197
A.7 Michalewicz in 2 dimensions 198
A.8 Rastrigin in 2 dimensions 199
A.9 Rosenbrock in 2 dimensions 200
A.10 Salomon in 2 dimensions Lo 201
A.11 Sargan in 2 dimensions 202
A.12 Schaffer-F6 in 2 dimensions 203
A.13 Schwefel in 2 dimensions L. 204
A.14 Schwefel-1.2 in 2 dimensions 205
A.15 Schwefel-2.22 in 2 dimensions 206
A.16 Schwefel-2.23 in 2 dimensions 207
A.17 Sphere in 2 dimensions 208
A.18 Stretched-V in 2 dimensionso 209
A.19 Whitley in 2 dimensions 210
A.20 Zakharov in 2 dimensions 211
B.1 Ackley-1 Benchmark: PSO v. PI-PSO Scaling 213
B.2 Brown Benchmark: PSO v. PI-PSO Scaling 213
B.3 Dixon-Price Benchmark: PSO v. PI-PSO Scaling 213
B.4 Eggholder Benchmark: PSO v. PI-PSO Scaling 214
B.5 Exponential Benchmark: PSO v. PI-PSO Scaling 215
B.6 Eggholder Benchmark: PSO v. PI-PSO Scaling 215
B.7 Griewank Benchmark: PSO v. PI-PSO Scaling 216
B.8 Michalewicz Benchmark: PSO v. PI-PSO Scaling 217
B.9 Rastrigin Benchmark: PSO v. PI-PSO Scaling 217
B.10 Rosenbrock Benchmark: PSO v. PI-PSO Scaling 217
B.11 Salomon Benchmark: PSO v. PI-PSO Scaling 218
B.12 Sargan Benchmark: PSO v. PI-PSO Scaling 219
B.13 Schaffer-F6 Benchmark: PSO v. PI-PSO Scaling 220
B.14 Schwefel 1.2 Benchmark: PSO v. PI-PSO Scaling 220
B.15 Schwefel 2.22 Benchmark: PSO v. PI-PSO Scaling 220
B.16 Schwefel 2.23 Benchmark: PSO v. PI-PSO Scaling 221
B.17 Sphere Benchmark: PSO v. PI-PSO Scaling 222
B.18 Stretched-V Benchmark: PSO v. PI-PSO Scaling 223
B.19 Whitley Benchmark: PSO v. PI-PSO Scaling 223

XV

LIST OF FIGURES

B.20 Zakharov Benchmark: PSO v. PI-PSO Scaling

XVl

List of Algorithms

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
3.9
3.10
3.11
3.12
4.13
5.14
5.15
5.16
6.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28

Simple Hill Climbing 19
Simulated Annealing 21
Genetic Algorithmo o 23
Particle Swarm Optimization 26
PSO find-global-best 28
Factored Evolutionary Algorithms 37
FEA Compete 39
FEA Share. 40
Distributed Factored Evolutionary Algorithm 55
DFEA Compete o7
DFEA Share 58
DFEA Exchange 59
FEA Compete 91
DFEA Compete 97
Distributed Factored Evolutionary Algorithm 102
DFEA Reconcile 103
PI-PSO Select Global Best 124
Actor A -receive 155
Main 156
Factored Evolutionary Algorithms 158
FEA Compete 158
FEA Share. 159
FEA Actor - receive 160
FEA Factor Actor - receive. L. 161
Broadcast Helper Function 162
Distributed Factored Evolutionary Algorithm 164
DFEA Reconcile 165
DFEA Actor -receive. 166

LIST OF ALGORITHMS

8.29
8.30
8.31
8.32
8.33
8.34
8.3
8.36

InitFactor Message Handler 166
ArbiterOf Message Handler 167
Update Message Handler 167
NewValue Message Handler 168
ReadyToArbitrate Message Handler 168
StartArbitration Message Handler 169
ArbitedV alue Message Handler 169
ArbitrationComplete Message Handler 169

Xviil

Chapter 1

Introduction

There are many complex optimization problems that cannot be solved using exact
methods. Inference in Bayesian networks, learning the weights of artificial neural
networks [1], determining efficient power usage in a sensor network [2] or finding
the best configuration for a satellite antenna [3] are all examples of such problems.
Because we cannot use exact methods, we turn to approximation methods and must
make do with approximate answers.

Nevertheless, we are always looking for ways to improve the performance of these
algorithms so that they find better approximations. Additionally, the No Free Lunch
Theorem (NFLT) [4], proves no single algorithm will outperform random search across
all optimization problems. So we will need many good (and sometimes just “good

enough”) algorithms.

CHAPTER 1. INTRODUCTION

There are whole host of these approximation methods including gradient descent,
methods inspired by physics (Simulated Annealing), and methods inspired by biology
(Genetic Algorithm, GA; [5]. Particle Swarm Optimization, PSO; [6]). Most of the
biologically-based algorithms are based on single populations of competing individuals
representing full candidate solutions. As the algorithms manipulate these individuals
to search the solution-space, the best of them emerges as the approximate solution
to our problem.

Research has shown that one way to improve our approximations is to decompose
the problem into sub-problems. These algorithms, such as Cooperative Coevolution-
ary Genetic Algorithm (CCGA) [7] and Cooperative Particle Swarm Optimization
(CPSO) [8], decompose a problem into disjoint subproblems and assign a GA or PSO
to each subproblem. The partial solutions are then recombined into a solution to the
full problem. This cooperative approach helps fight against the curse of dimension-
ality.

The curse of dimensionality describes the phenomenon where, as the dimensional-
ity of a problem increases, we must increase the number of particles we use exponen-
tially, if we are to search the space with the same density. Breaking a problem into
sub-problems helps tackle the curse of dimensionality without completely solving it.
Unfortunately, breaking a problem into sub-problems creates issues of its own, includ-

ing the issue of pseudo-optima. A pseudo-minimum, for example, exists if the global

CHAPTER 1. INTRODUCTION

minimum in the sub-problem is not also the global minimum in the full problem.

Factored Evolutionary Algorithms (FEA) [9] are a multi-population variant of sin-
gle population-based algorithms such as Particle Swarm Optimization and Genetic
Algorithm. FEA is also very much like CCGA and CPSO but expands on those
algorithms in important ways. First, FEA can use any many different optimization
algorithms as the actual sub-problem optimizer. Second, FEA decomposes the prob-
lem into factors of possibly differing sizes with overlap—they are no longer disjoint
but can have variables in common. And like CCGA and CPSO, this permits FEA
tackle the curse of dimensionality. However, with the proper overlap, FEA can also
prevent pseudo-optima.

Another issue arises in many of these single population algorithms such as GA
and PSO called hitchhiking. These algorithms work by manipulating the individuals
that represent full solutions towards better and better values. Hitchhiking occurs
when the replacement solution is better overall than the current solution but some
individual variables end up with worse values than those in the solution that was
replaced. Because CCGA, CPSO and FEA decompose the problem, they all mitigate
against hitchhiking although in slightly different ways.

If FEA decomposes a problem into subproblems and a “subpopulation” is assigned
to each subproblem, which contains a subset of variables needed for a full solution,

how are individuals in these subpopulations evaluated? FEA maintains a global

CHAPTER 1. INTRODUCTION

context that can be used by an subpopulation to fill in the missing values—values
in the problem but not in the subpopulation. The challenge for this approach is
that the global context is not effective in a distributed setting. Many optimization
problems are computationally intensive. In an age of multi-core, networked machines,
a distributed version of the algorithm would allow us to harness those machines.
The first problem this dissertation seeks to address is FEA’s centralized context.
We solve this problem by introducing Distributed Factored Evolutionary Algorithms
(DFEA), which assigns a local context to each subpopulation. We will show that
DFEA often performs nearly as well as FEA and still better than the corresponding
single population EA. This success is limited, however.

The problem is that FEA and DFEA should, theoretically, perform equally as
well given the same starting conditions and we can demonstrate that they do not. In
order to determine why the performance of FEA and DFEA diverge, we look at the
dichotomy of cooperation versus competition that is often invoked as the reason multi-
population algorithms are more successful than their single-population counterparts.
Although this framework is evocative, it does not help us when both the algorithms
are multi-population algorithms that appear to be cooperating to the same degree.
The problem is that we need a different framework for analyzing these algorithms.

To solve that problem, we develop a new framework that describes the information

flows and conflict resolution mechanism that are central to these algorithms. We

CHAPTER 1. INTRODUCTION

model information flows as a blackboard architecture [10] where subpopulations are
communicating through the blackboard to suggest their best values for the parameters
in the problem. The subpopulations also read the blackboard to obtain values that
they need in order to optimize the subset of parameters assigned to them. Because
subproblems overlap, there must be a conflict resolution mechanism when more than
one subpopulation is suggesting a new value for a parameter. Looking at FEA and the
algorithms that preceded it, we identified that the conflict resolution mechanism is
guided by Pareto efficiency [11]. The conflict resolution process only accepts values for
individual variables that are Pareto improvements; the new value replaces an existing
value in the global context only if it improves the overall solution. This variable-by-
variable approach to determining better solutions is what eliminates hitchhiking. By
using the framework on FEA, we are better able to understand how the algorithm
works. The new framework enables us to better understand these algorithms whereas
the framework of cooperation and competition did not.

However, we still have the problem of dissimilar performance for FEA and DFEA.
We are able to further validate the usefulness of our framework by applying it to
DFEA and determining where the information exchange differs from FEA. After
determining these differences, we develop a revised DFEA that solves the problem of
divergent performance between the two algorithms.

Based on the insights gained from applying the new blackboard and Pareto-based

CHAPTER 1. INTRODUCTION

framework to FEA and DFEA, we return to the original problems that FEA and
DFEA were meant to solve: curse of dimensionality and hitchhiking. We model the
information exchange and conflict resolution in PSO exactly the same way we did in
FEA and DFEA. The result is a new algorithm, Pareto Improving Particle Swarm
Optimization (PI-PSO), that does not exhibit hitchhiking. As “solving’ the curse
of dimensionality is relative, PI-PSO solves that problem by outperforming PSO on
most experiments and performing as well as FEA.

Finally, we return to our original problem of creating a distributed version of FEA.
To solve this problem we implement both FEA and DFEA using the Actor model
[12]. We are able to validate that the Actor model implementations preserve the

information exchange and conflict resolution semantics as the original algorithms.

1.1 Contributions

Science is itself subject to a kind of Linnaean classification system with its own
domains, kingdoms, phyla, classes, orders, families, genera, and species. Although our
results ultimately reside in the domain of Computer Science and, within Computer
Science, Artificial Intelligence, the problems we address lie on the outer limbs of that
family tree, among the genera and species as do our contributions.

In this dissertation, we make several significant contributions to the families of

CHAPTER 1. INTRODUCTION

algorithms generally classified as Evolutionary Computation and Swarm Intelligence.
These algorithms are used to solve complex optimization problems. The contributions

are:

e Distributed Factored Evolutionary Algorithms: We develop the Dis-
tributed Factored Evolutionary Algorithms. DFEA is a extension of Factored
Evolutionary Algorithms [9] in the same way that Distributed Overlapping
Swarm Intelligence (DOSI) [13] extended Overlapping Swarm Intelligence (OSI)
[14] to the distributed case. Like FEA, DFEA can be used with any “evolu-
tionary algorithm” (for example, Genetic Algorithm and Particle Swarm Opti-

mization).

e Information Exchange and Conflict Resolution Framework: FEA and
DFEA are both the latest in a long line of multi-population algorithms that have
emphasized the conflicting roles of cooperation and competition in biologically-
inspired algorithms. As an alternative we develop a framework based on in-
formation exchange via a blackboard architecture and conflict resolution using

Pareto efficiency.

e Revised DFEA: FEA and DFEA (as well as OSI and DOSI) have always had
inconsistent performance when, at least on the surface, it had seemed like the

distributed versions should perform equally as well as the centralized versions.

CHAPTER 1. INTRODUCTION

By applying the Information Exchange and Conflict Resolution Framework to
DFEA, we identify differences in information flows between FEA and DFEA.
This enables us to revise DFEA to match the information semantics of FEA. As

a result, FEA and DFEA perform identically under identical initial conditions.

e Pareto Improving Particle Swarm Optimization: We apply our Informa-
tion Exchange and Conflict Resolution framework to the selection of the gbest
in the gbest Particle Swarm Optimization algorithm. By making the gbest a
blackboard architecture rather than a simple cache, and extending variable by
variable conflict resolution to particles, we create a single population algorithm
that performs on a par with FEA. We also examine the comparative perfor-

mance and scaling characteristics of the this PI-PSO as compared to PSO.

e Actor-Based DFEA: As developed, DFEA is distributed only in terms of state
but leaves open questions of concurrency, parallelism, and distributed execution.
We provide an implementation based on the Actor model that explores the

implications of parallelism and asynchrony for our blackboard architecture.

1.2 Overview

One of the primary contributions of this dissertation focuses on the development

of a framework for thinking about and analyzing a certain class of multi-population

CHAPTER 1. INTRODUCTION

evolutionary algorithms used for optimization.

In Chapter 2 we discuss the relevant background in stochastic local optimization.
This includes the problems these algorithms encounter such as the curse of dimension-
ality and “hitchhiking” as well as unsurmountable obstacles such as the conclusions
of the No Free Lunch Theorem. We review the major stochastic local search algo-
rithms such as Hill Climbing and Simulated Annealing, as well as the biologically
inspired, population-based algorithms such as the Genetic Algorithm and Particle
Swarm Optimization. We conclude with a detailed review of the multi-population
Factored Evolutionary Algorithms which are the starting point for the dissertation.

In Chapter 3, we develop a distributed version of FEA called Distributed Factored
Evolutionary Algorithms. Just as FEA generalized OSI [2] from swarm intelligence to
any evolutionary algorithm, DFEA generalizes DOSI [13] to the distributed case. In
FEA, the various populations must share a global context. In DFEA, each population
has its own context that must be coordinated with the other populations. For best
performance, they must maintain identical values for those local solutions or full con-
sensus. Our hypothesis is that, under full consensus, DFEA will perform equivalently
to FEA and better than the single population version of the particular evolutionary
algorithm. For these experiments we concentrate on Particle Swarm Optimization as
the evolutionary algorithm in FFEA.

We also perform experiments where full consensus between the individual contexts

CHAPTER 1. INTRODUCTION

is relaxed. Our hypothesis here is that the performance of DFEA will degrade when
we relax consensus but only to the extent that variables in the optimization problem
are interdependent.

In Chapter 4, we develop a different framework for thinking about multi-population
algorithms such as FEA and DFEA. The line of research of which FEA and DFEA
are a part often puts these algorithms within a spectrum of cooperation and com-
petition. As an alternative, we develop a framework based on information exchange
via a blackboard architecture and conflict resolution based on Pareto efficiency. We
apply this framework to FEA to better understand how FEA is able to improve over
single population algorithms and the evolution of FEA’s blackboard over time.

In Chapter 5 we use the framework developed previously to examine the DFEA
version developed in Chapter 3. By applying the framework to DFEA, we are able
to determine how the information flows for DFEA and FEA differ over time, which
explains the divergent performance of the two algorithms. We then use the framework
to revise DFEA. We argue that previously observed divergence in performance of
DFEA and FEA will be eliminated.

We also examine relaxed consensus with this revised DFEA. As before, we hy-
pothesize that as consensus is relaxed, the DFEA’s performance will degrade.

In Chapter 6, we use our framework from Chapter 4 again and apply it to Particle

Swarm Optimization. We consider a single population PSO as having the same

10

CHAPTER 1. INTRODUCTION

kinds of information flows as FEA and apply a blackboard architecture and conflict
resolution to the maintenance of the gbest rather than the selection of the gbest.
We hypothesize that this Pareto Improving Particle Swarm Optimization (PI-PSO)
algorithm will perform better than the standard gbest PSO and equivalently with
FEA-PSO.

In Chapter 7 we examine the relative performance and scaling characteristics of PI-
PSO as compared to PSO. Most experiments in evolutionary computation are carried
out on a variety of problems of a single dimension with the same number of candidate
solutions. We hypothesize, however, that many algorithms might have a certain
amount of overhead; a more complicated or larger problem is required before their
performance exceeds the performance of simpler algorithms. Additionally, while it is
generally fair to keep as many parameters the same when comparing algorithms, once
it has been demonstrated that one algorithm is better than another, it is instructive
to see just how much better it is.

In order to test these hypotheses we perform a number of experiments between
PI-PSO and PSO with varying number of candidates and varying dimensions. The
general hypothesis is that when PI-PSO performs worse than PSO, it will perform
better on a problem of higher dimension. Additionally, we hypothesize that when
PI-PSO does perform better than PSO, it will do so with fewer particles.

DFEA is distributed in the sense of having a distributed state that must be kept in

11

CHAPTER 1. INTRODUCTION

sync to some degree. In Chapter 8 we implement a parallel, distributed version of FEA
and DFEA using the Actor model. Using validation experiments, we demonstrate that

the Actor implementations preserve the performance of FEA and DFEA.

12

Chapter 2

Background

In this chapter we discuss Factored Evolutionary Algorithms (FEA) [9] and their
origins in the larger context of stochastic local search. This background informs
discussions in the chapters that follow where we will extend FEAs to the distributed
case (DFEAs), develop an alternative framework for analyzing these multi-population
algorithms, revise DFEA, and devise variant of the canonical gbest Particle Swarm

Optimization Algorithm.

2.1 Stochastic Local Search

The No Free Lunch Theorem for Optimization (NFLT) [4] proves that no al-

gorithm can outperform random search averaged across all optimization problems.

13

CHAPTER 2. BACKGROUND

Aside from the obvious implication that we need more than one search algorithm, the
emphasis on random search is interesting because we can view random search as pure
exploration. If we look at search algorithms in terms of balancing exploration and
exploitation, we can interpret at least part of the NFLT result to mean that there will
always be some problem for which our exploitation mechanism is a poor match. For
example, our algorithm might rely on exploring and exploiting a local gradient in a
continuously valued function that simply does not exist in an problem with variables
that take on categorical values. So a broad array of algorithms and techniques will be
required to solve all of our potential optimization problems. This may be analogous
to inductive and representational bias in Machine Learning [15]. Additionally, the
“solutions” in many cases will be approximate and even then we may have to accept
solutions that are good enough.

One such category of algorithms is called local search. While not all such algo-
rithms have a well-developed stochastic component, enough of them do that we will
refer to them collectively as stochastic local search [16]. In stochastic local search
this randomness is the central engine of both exploration and exploitation. The al-
gorithms mainly differ in how they harness the information they obtain as they face
the Multi-Armed Bandit problem [17]. At least for optimization, the Multi-Armed
Bandit problem presents itself as a dilemma between exploiting a current solution

which may turn out to be a dead-end or exploring new vistas that may not pay off

14

CHAPTER 2. BACKGROUND

better than the current solution. As we will see, not all algorithms neatly separate
their exploration and exploitation so they can be difficult to identify and separate out

the various ways balance they balance these competing aims.

2.1.1 Notation

Throughout this dissertation, unless otherwise specified, lowercase and uppercase
Latin characters like x, x;, ¢ refer to scalar values. They may also refer to functions
as in g() and f() and records or objects such as p.x and S.best. The only exceptions
are in the case of X and R which refer to variables. Thus X; is the variable X for
the i-th dimension and z; is the value of that variable.

In mathematics, we often only have vectors and matrices. In algorithms, we have
collections: lists, vectors, arrays, sets, and hashmaps, to name but a few. In general,
X refers to a collection. The type of collection may not matter although sometimes it
does. If we use ¢; to refer to a single value in ¢ then it is an ordered collection and if
we use an iterator of some kind as in x € x, it is an unordered collection. However, we
will often use c[j] in algorithms during assignment as c; < 2 does not quite capture
what is meant in programming in this case. Finally, we can have nested collections
which are indicated by a bold, script: X or A. Again, the context will indicate if
they are ordered or unordered collections.

No notation is completely airtight so any exceptions will be noted.

15

CHAPTER 2. BACKGROUND

2.1.2 Challenges for Optimization

Consider a continuous real-valued function f() of d variables, X € R?. We want
to find an optimal value, x*, for X, either as a global minimum or a global maximum.
Without loss of generality, we will consider the case of a global minimum.

As an illustration of such a function, we will take the Eggholder benchmark opti-

mization function [18].

FX) =Y [=(Xig1 4+ 47) sin /| Xig1 + Xi/2 +47) — Xisin /| X; — (Xiy1 + 47)]

=1

Figure 2.1 shows a cross section of a two dimensional (2d) version of the Eggholder
function plotted over the open interval (—512,512). We have set X5 to —400 for the
purposes of discussion.

The general challenge for any optimization algorithm is to find the global minimum
when there are many local minina. The Eggholder function is a good example of
this challenge; one that often increases as the number of dimensions in the problem
increase. A perhaps less obvious challenge is existence of plateaus.

To illustrate that particular challenge for optimization algorithms, let us consider
the Michalewicz benchmark optimization function [8].

iX?

F(X) = =%, sin(X;)[sin(—)]*"

T

16

CHAPTER 2. BACKGROUND

Figure 2.1: Example Optimization Problem with Multiple Optima

Eggholder function at x, = — 400
400

200

fiX)

-200
-400
-600

-800
-400 -200 0 200 400

with m = 10. We have plotted a cross-section of the 2d version of the Michalewicz
function on the open interval (—10,10) with X, = 0 (Figure 2.2). As we can see,
there is a large plateau around X; = 0 and the smaller plateaus throughout the entire

interval.

2.1.3 Hill climbing

As with all such algorithms, there are many variants of Hill Climbing (HC) [19].
Because we are only interested in the broad conceptual themes at this juncture, we
will concentrate on the simplest one.

We begin with a candidate solution, x, generated at random. We generate po-

tentially better candidates by using the notion of a neighborhood whereby we take x

17

CHAPTER 2. BACKGROUND

Figure 2.2: Optimization Problem with Multiple Optima and Plateaus

Michalewicz function at x, =0

0.75
0.50

0.25

f(X)
o
8

-0.25
-0.50

-0.75

X1

and use the neighborhood function to calculate possibly better candidate solutions
“near” x. One way to generate x’ is by looking in some A-neighborhood of x so that
x =x+ Ax.

If f(x') < f(x) then we will take x’ as the new candidate solution; otherwise,
we keep x. The “less than or equals” allows the algorithm to traverse plateaus to
some degree. More generally, for d > 1, we will examine each z; in turn and pick
the first change with an improvement (“Simple Hill Climbing”). Alternatives include
picking the change with the most improvement (“Steepest Ascent Hill Climbing”)
and generating x; at random (“Stochastic Hill Climbing”). The algorithm continues
until one more more stopping criteria are met as shown in Algorithm 2.1 and the

candidate solution is returned. Throughout this dissertation we refer to the result as

18

CHAPTER 2. BACKGROUND

Algorithm 2.1 Simple Hill Climbing
Input: Objective function f
Output: Candidate Solution x

x < initialize()
repeat

x' < neighbor(x)

if f(x') < f(x) then

X ¢ X/

end if
until stopping criteria
return x

the “candidate solution” because we are never guaranteed that the solution that was
found was actually the global minimum.

As a side note, we may sometimes use multiple stopping criteria (Line 7) because
we may want to stop if one of any number of criteria are met. For example, we could
stop if we have run some fixed number of iterations or the candidate has stopped
improving. This will be true of all algorithms in this dissertation where stopping
criteria are referenced even though we will always use a single criterion, a fixed
number of iterations, for our experiments.

Considering Algorithm 2.1 applied to the function in Figure 2.2, the most obvious
problem is that Simple Hill Climbing will get stuck in local minima. Although this
depends a bit on the definition of the neighbor function, if the neighbood delta is too
large, Hill Climbing becomes random search. For example, if we start at z; = 0, we

are likely to move in the direction of the local minimum at about x; = —2.4 never

19

CHAPTER 2. BACKGROUND

getting to either z; = —8.0 or x; = 5.0. There are several alternatives to Simple Hill
Climbing that attempt to solve this problem.

One alternative is simply to run the algorithm multiple times. With Random
Restart Hill Climbing, a Simple Hill Climbing algorithm is executed n times from a

new starting point and the best X found is kept.

2.1.4 Simulated Annealing

Simulated Annealing (SA) [20] is an algorithm related to Hill Climbing with a
critical difference. It sometimes accepts an inferior successor candidate. The basic
algorithm is shown in Algorithm 2.2.

The main difference between the Hill Climbing and Simulated Annealing is in Line
7. Unlike Simple Hill Climbing, Simulated Annealing adds an else branch that enter-
tains the possibility of accepting an x’ that is actually inferior to x. The probability
of inferior exchanges is controlled by the annealing schedule for T (Line 13). Based on
this schedule, p slowly decreases over time making inferior changes less likely (Line
8).

This particular version of Simulated Annealing is called Boltzmann annealing and
has been proven to converge to the global optimum if 7 is decreased logarithmically
with time, ¢ [21]. In practical applications, many more iterations may be required

because of the stochastic nature of the algorithm. Both Hill Climbing and Simulated

20

CHAPTER 2. BACKGROUND

Algorithm 2.2 Simulated Annealing
Input: Objective function f
Output: Candidate solution x

T < large value
X < initialize()
repeat
x' < neighbor(x)
if f(x') < f(x) then
X ¢+ X
else
_ D)
pe T
if rand() < p then
X ¢ X/
end if
end if
13: T4 T—AT
14: until stopping criteria
15: return x

— = =
T

Annealing harness a random component for exploration. In Hill Climbing, there
is a strong exploitation strategy in accepting only successors that do not make the
objective function worse. In Simulated Annealing, this same strategy exists along with
an augmenting exploration strategy that sometimes accepts transitions to inferior
solutions. This is what permits SA to escape local minima. However, as we move to
more complicated algorithms, the “split” between exploration and exploitation can
get less clear.

In many ways, some of the key differences between the stochastic local search
algorithms reside exactly in how they balance exploration and exploitation. Another

key difference is how many candidate solutions they work with at once.

21

CHAPTER 2. BACKGROUND

Both Hill Climbing and Simulated Annealing have variants that keep track of
multiple candidate solutions and thus can be thought of running many restarts in
parallel. If we think of these multiple candidates as individuals in a population, then
it becomes easy to entertain the idea of using drawing inspiration from biological

processes to design new, different and, hopefully, better algorithms.

2.1.5 Biologically Inspired Algorithms

There are many search and optimization algorithms inspired by nature and nat-
ural processes [22]. Simulated Annealing itself is inspired by the controlled cooling
of metals and the properties of the resulting crystalline structures. Other algorithms
are inspired by biological processes. In many of the biologically-inspired algorithms,
individuals in populations interact in more direct ways as part of the combined ex-
ploration and exploitation strategy. While there are many such algorithms, we will

focus on two of them: Genetic Algorithm and Particle Swarm Optimization.

2.1.5.1 Genetic Algorithm

The Genetic Algorithm (GA) is attributed to Holland [5]. The canonical version
(Algorithm 2.3) follows the general outlines of most population-based algorithms for
stochastic local search. We can think of each individual as a record, individual,

with fields genes and fitness. The algorithm starts out with a randomly initialized

22

CHAPTER 2. BACKGROUND

Algorithm 2.3 Genetic Algorithm

Input: Objective function f, probability of crossover p.rossover, probability of
mutation Pmutation

Output: Candidate solution x

1. P <« initialize()
2: P < evaluate(P)
3: repeat

4: P« List()

5: for i in len(P)/2 do

6: parenty, parenty < select(P)

7: if rand() < Perossover then

8: i < randint(len(parent;.x))

9: childy.genes < parent;.genes|0 : i| + parenty.genes|i]
10: childy.genes < parents.genes|0 : i] + parent;.genesli :]
11: parenty, parenty < childy, childs
12: end if
13: parenty < mutate(Dmutation, PaTeNty)

14: parenty < mutate(Dmutation, Parents)
15: P’.append(parent;)
16: P’ .append(parent,)

17: end for

18: P «+ evaluate(P’)

19: until stopping criteria met
20: x <— decode(best(P).genes)
21: return x

population of candidate solutions (Line 1), which is then evaluated (Line 2), filling in
the fitness fields. The algorithm then proceeds to generate a successor population
(Lines 5-17).

In the canonical GA, even if the underlying optimization problem is a contin-
uous numerical function, the candidate solutions are represented as strings of bits

(“bit-strings”). These bit-strings are interpreted to be a genotypic representation of

23

CHAPTER 2. BACKGROUND

a candidate solution with the real valued decoding interpreted as a phenotypic ex-
pression of those genes. The new population is created by manipulating the genomic
representation of individuals in each generation to produce a new one.

First, a set of parents is selected to generate offspring. The selection was originally
through Weighted Roulette Wheel selection where individuals were chosen (with re-
placement) probabilistically proportionate to their fitness (Line 6). The pair selected
then probabilistically generate offspring according to the probability of crossover,
Perossover (Line 7). If the test fails, the pair are passed to the next step. If crossover
does occur, a locus is chosen randomly on the parents separating each into two sub-
strings: A = parent;.genes|0 : i] and B = parent;.genes[i :]. The children are
assembled by concatenating the substrings from different parents: A,qrent; + Bparent,
and Aparent, + Bparent; (Lines 8 - 11).

In the canonical GA, the mutate operator does a bit-by-bit test with pp,utation tO
see if the bit is flipped. In other formulations, we can do one test to see if a child is
mutated and then pick a random location to flip the bit. After the algorithm runs for
a specified number of generations (Line 19), the algorithm returns the decoded genes
for the best of the final population as the candidate solution (Line 21).

One peculiarity of GA is that it may stumble upon a great solution in Generation
257 and then lose that solution in the next generation, never to recover it. In order

to combat this problem, elitism is sometimes introduced into the algorithm [23].

24

CHAPTER 2. BACKGROUND

The elitism “operator” always copies the best individual of a generation into the next
generation. Unfortunately, elitism can exacerbate a different problem in GA known as
“premature convergence” [24]. Premature convergence happens when the population
has become homogeneous (or mostly so) with respect a particularly fit individual that
represents a local minima. Elitism can encourage this genetic homogeneity.

Following on the previous discussion of exploration versus exploitation, we can see
that many of these elements are a bit muddled together in the Genetic Algorithm.
Selection is probabilistic (exploration), but we are more likely to pick fit individuals
(exploitation). Crossover generates new candidates (exploration) but only out of the
existing genetic material (exploitation). Mutation may perhaps be the only operator
that involves pure exploration.

Perhaps more importantly for the discussion yet to come, one of the most in-
teresting things about the Genetic Algorithm and its accompanying literature is the
importance of analogy for the algorithm. The central analogy of the Genetic Algo-
rithm is “Survival of the Fittest” or competition. In the GA, the members of the
population compete for the chance to spread their genes into the next generation.
Fit individuals are selected and, through crossover and mutation, produce hopefully
more fit variants as offspring. If an individual is fit enough, it is selected many times
to participate, and many variants of its genetic material end up in the successor

generation.

25

CHAPTER 2. BACKGROUND

Algorithm 2.4 Particle Swarm Optimization
Input: Objective function f, inertia w, exploration parameters ¢, ¢
Output: Candidate solution x

1: P <« initialize()
2: repeat
3: for pin P do

4: PV < wp.v + prug (gbest.x — p.x) + Poua(p.pbest.x — p.x)
5: P.X < p.X+p.Vv

6: if f(p.x) < f(p.pbest.x) then

7: p.pbest < p

8: end if

9: end for

10: gbest < find-global-best(gbest, P)
11: until stopping criteria
12: return gbest.x

2.1.5.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is another biologically inspired algorithm,
although this time the cues are taken from groups or flocks of birds, fish and even
people [25]. Here we describe the gbest variant of PSO [6].

The PSO algorithm operates on a population (swarm) of candidate solutions (par-
ticles), Algorithm 2.4. Each particle has a position, x; velocity, v; fitness, f(x); and
the best position it has attained so far or “personal best”, pbest. The algorithm be-
gins with particles initialized to random positions (Line 1). Each iteration updates
every particle’s velocity and position and, if warranted, its pbest (Lines 3-9). After
all particles are updated, the global best, gbest, is updated from the swarm’s current

set of personal bests (Line 10). Because all particles are updated before the gbest is

26

CHAPTER 2. BACKGROUND

evaluated as opposed to after each particle is updated, this version simulates a parallel
algorithm [26] instead of an sequential one [6].

The velocity update equation combines three components. The first is the w in-
ertia component applied to the previous velocity. The second is the public or social
component calculated by taking the difference between the swarm’s global best, gbest,
and the particle’s current position, p.x and then mixing in a randomizing effect calcu-
lated by multiplying ¢; times a vector of random numbers on the interval (0,1), uy.
The third is the cognitive or individual component calculated by taking the difference
between the particle’s personal best’s position, p.pbest.x, and the particle’s current
position, p.x and then mixing in a randomizing effect calculated by multiplying ¢
times a vector of random numbers on the interval (0,1), us.

We can once again see a mixture of exploration and exploitation. The second
and third components include both exploitation by taking the difference between a
best position and the current position and exploration by adjusting by an exploration
constant, ¢;. Because ¢; is usually between 1 and 2 and each element of u; is between
0 and 1, the exploration factor ranges from 0 to 2.

As each new particle position is calculated, we compare f(p.pbest.x) and f(p.x)
to determine if a new personal best has been achieved (Lines 2-4). After all particles’
pbests are updated, we pick the best as the new global best (Line 10, Algorithm 2.5).

Because each pbest is only updated if p.x is better than the current pbest.x, and gbest

27

CHAPTER 2. BACKGROUND

Algorithm 2.5 PSO find-global-best
Input: Current global best gbest, Current swarm P
Output: New global best gbest

1: for pin P do
2 if f(p.pbest.x) < f(gbest.x) then
3: gbest < p.pbest
4: end if
5: end for

6: return gbest

is only updated if a pbest is better than gbest, the gbest is a non-decreasing function
of pbests.

The update process is repeated a fixed number of iterations or until some other
stopping criterion is met. The gbest (or just the gbest’s position) is returned as the

candidate solution (Line 6).

2.1.6 Challenges

Although both Genetic Algorithm and Particle Swarm Optimization have been
quite successful, they are not without problems. First, like all stochastic local search
algorithms, they are subject to the curse of dimensionality [27, 28, 29]. As the dimen-
sionality of a problem increases, other things being equal, the number of individuals
required in the population to achieve the same level of performance must generally
increase exponentially [8]. Second, both algorithms are susceptible to a phenomenon

known in the GA literature as hitchhiking [30]. In the PSO literature, this has been

28

CHAPTER 2. BACKGROUND

Table 2.1: Hitchhiking in PSO

pbest; X f(x)
1 [1.53, 1.84, 5.29, 0.59] 34.06
2 (gbestne,) [0.42, 2.01, 4.76, 1.84]1 30.26
3 [3.23, 0.72, 4.68, 0.47] 33.07
4 [2.83, 3.83, 2.71, 1.27] 31.64
gbest g [2.39, 1.24, 5.71, 0.34] 39.97

called “Two Steps Forward, One Step Back” [8]. We will use the term hitchhiking to
describe the phenomena in both GA and PSO.

Hitchhiking is most easily explained with a concrete example. Suppose we are
trying to minimize the four-dimensional Sphere function (Zle X?) on the interval
[0,10]* with four particles, and we find ourselves at the end of an arbitrary iteration
ready to call Algorithm 2.5. Although hitchhiking can occur in all functions, we use
the Sphere function for this example because it is separable. Separability permits the
unambiguous attribution of changes in individual variables to overall fitness. If z;
increases, f(x) increases; if z; decreases, f(x) decreases.

Table 2.1 shows current pbests and fitnesses of the four particles. Particle 1’s pbest
has a fitness of 34.06; Particle 2’s has a fitness of 30.26; Particle 3, 33.07; and Particle
4, 31.64. The current global best, gbest,y, is shown at the bottom of Table 2.1. As
previously mentioned, the current gbest must always be one of the particles’ pbest in
the version of PSO we are describing. We do not see that here because the pbests

have been overwritten in the previous loop. This means that if no pbest was better

29

CHAPTER 2. BACKGROUND

than gbest,q, then gbest,q would have to be one of the pbests in the table. Because
Particle 2’s personal best has the lowest fitness, 30.26, it will become the new global
best, gbest ey -

However, if we make a pairwise comparisons for each x;, we can see that while
the Particle 2 was a global improvement, it was not an improvement for individual
variables. A lower value of X; is unambiguously better in the Sphere function so we
can see that X in gbest g was 2.39 while it is 0.42 in gbest,,,. This is similarly true
for X5. However, X, in gbest,., is actually larger than its counterpart in gbest,q,
2.01 versus 1.24. The same is true for X4. The individually inferior values for X5 and
X, (red/italics) are hitchhikers.

We can see how this might generally arise in the Sphere function by looking at a

Figure 2.3: Selecting gbest in PSO (Sphere) and Hitchhiking

30

CHAPTER 2. BACKGROUND

contour or usoquant plot of the Sphere function and hypothetical pbests. Figure 2.3
shows this for the case of two variables. In this figure, the arcs represent the contours
of the Sphere function for two variables, X; and X5. The current gbest = (4.2,3.9)
also defines a contour (dotted) that is the dividing line between pbests that have a
better fitness (a lower contour) or a worse fitness (a higher contour). Additionally,
the gray areas denote the set of points where the pbest lies on a lower contour than
the gbest and thus has a better fitness but one or the other of the variables is larger
than its value in gbest. All points in the gray zones include hitchhiking. We can thus
see that pbests C, D, E, F are all inferior to the current gbest, and pbests A, B and G
involve hitchhikers. Only pbest H has both a better fitness and no hitchhiking. Thus
if H did not exist, pbest A would be chosen as gbest, hitchhikers and all. Although
throughout our research we concentrate on eliminating hitchhikers, it is not clear
that all hitchhiking is bad. Like the acceptance of inferior solutions in Simulated
Annealing, at least some hitchhiking could actually help the algorithm find the global

solution.

2.2 Factored Evolutionary Algorithms

We previously mentioned the importance placed on competition in biologically

inspired algorithms, especially the Genetic Algorithm. One approach researchers have

31

CHAPTER 2. BACKGROUND

taken to solving the problem of hitchhiking in both GA and PSO is by introducing
cooperation via multi-population versions of the algorithms. One such family of multi-
population algorithms is Factored Evolutionary Algorithms.

Factored Evolutionary Algorithms [9, 31, 32] constitute a family of algorithms that
decompose an optimization problem into subsets of variables and apply individual
populations to those factors. They are considered to be a family of algorithms because
any evolutionary algorithm can be used for optimization of a factor. This means there
is an FEA-GA, FEA-PSO, FEA-HC, FEA-SA, etc. All of these share some general
characteristics by virtue of the FEA part but have specific performance characteristics
by virtue of the specific evolutionary algorithm used. In order to better understand
FEA, its use of multiple populations, and the rationale for factoring an optimization

problem, we first discuss the history of the algorithm.

2.2.1 History

As previously discussed, stochastic local search algorithms such as the Genetic
Algorithm and Particle Swarm Optimization are susceptible to the curse of dimen-
sionality. As the size of a problem increases, in general, the resources required for
the same level of performance increase exponentially because the problem space in-
creases exponentially. Additionally, algorithms such as the GA and PSO suffer from

hitchhiking, which appears to be an inherent characteristic of the algorithms. It is

32

CHAPTER 2. BACKGROUND

worth noting that these problems are related. As the size of solutions increase, the
probability of hitchhiking increases as well. We appear to be doubly cursed.

Potter and de Jong developed one of the original approaches to addressing this
issue for the Genetic Algorithm [7]. Their solution was to decompose the problem
down to the individual variables and apply a GA to each variable. At any given mo-
ment, the candidate solution to the problem was the concatenation of the best results
found in each population. For example, if we take a simple 4d problem, we might have
each of Xy, X5, X3 and X, optimized by its own GA. The candidate solution is the
concatenation of the best individuals from the variable-specific GA populations. The
populations thus appeared to be collaborating subspecies each working on a different
section of the problem. This cooperative approach was contrasted with the com-
petitive nature of the canonical Genetic Algorithm and was called the Cooperative
Coevolutionary Genetic Algorithm (CCGA).

Van den Bergh and Engelbrecht [33] applied a CCGA-like version of PSO to train-
ing neural networks. They later generalized their algorithm creating the Cooperative
PSO (CPSO) [8] as an approach to addressing the “Two Steps Forward, One Step
Back” problem, as they characterize hitchhiking in PSO. However, they went a step
further by recognizing that the CCGA approach introduces problems of its own.

Decomposing an optimization problem into its constituent variables and solving

these individually implies strong assumptions about the independence of the vari-

33

CHAPTER 2. BACKGROUND

Figure 2.4: Example Optimization Problem under Different xo values

Eggholder function at x, = — 400 and x, = 225

600

400

200

fiX)

-200

-400

-600

-800
-400 -200 0 200 400

ables’ values. This assumption is true for some problems like Sphere—a fact we have
exploited. However, it is unlikely to hold true for all optimization problems.

In Figure 2.4, we have plotted two cross sections of the Eggholder function from
Section 2.1.2 with different values for X5. The solid (black) line is the same line as
before with Xy = —400. The dotted (red) line is plotted with a value of Xy = 225. If
we compare these two lines, we see that the minimizing values of X; will sometimes
be at odds with each other. In fact, looking at X; = —500, under X, = —400 we are
near a global minimum but under X, = 225 we are near a global maximum.

In general, if the optimal values of variables are related to each other, then they
must be discovered jointly. In keeping with the genetic metaphor, in the GA literature,

this phenomenon is called epistasis. Potter and de Jong recognized this was a problem.

34

CHAPTER 2. BACKGROUND

In their own research, Van der Bergh and Engelbrecht recognized this was a prob-
lem and that the partitioning of the variables mattered. They labeled this phe-
nomenon pseudo-optima. Again, concentrating on the case of pseudo-minima, one
way that CPSO sought to avoid such problems was by partitioning the problem into
larger groups of variables than CCGA had done. For example, our 4d problem might
be partitioned into (X, X3) and (X3, X4). Of course, the larger these groups are,
the more likely the individual groups will begin to experience hitchhiking themselves.
Therefore Van der Bergh and Englebrecht introduced the idea of the Hybrid CPSO
that would alternate between a CPSO optimizing smaller groups of variables and a
PSO optimizing all the variables. In keeping with the established metaphor, they
added more competition back into the algorithm.

In a different chain of research starting with Haberman et al. [2] and culminating
with Fortier et al. [34, 35|, an alternative solution was developed to address the po-
tential for pseudo-minima in PSO called Overlapping Swarm Intelligence (OSI). The
OSI algorithm differs from the basic PSO in that it subsets the variables of a problem
into overlapping groups, or factors, that are optimized by individual PSOs. This fac-
torization of the optimization problem is similar to how factorization in mathematics
decomposes a polynomial into a product of factors. The important innovation was to
extend the decomposition of a problem into possibly overlapping factors instead of

the CPSO’s disjoint factors.

35

CHAPTER 2. BACKGROUND

OSI has been applied successfully to a wide range of problems, such as energy
aware routing in sensor networks [2], training deep neural networks [14], performing
abductive inference in Bayesian networks [36], and learning Bayesian networks [34,

35].

2.2.2 Algorithm

Factored Evolutionary Algorithms (FEA) [9] generalize and improve upon OSI in
several important ways. First, FEA abstracts out the actual optimization of factors
into an Optimize Step into which any evolutionary algorithm can be inserted. Sec-
ond, while OSI requires the factors to overlap with one another [36], FEA does not.
If we continue our example from above, this means that we could optimize (X;, X3),
(X2, X3) and (X, X3, X4) as individual factors, and we can use a GA, PSO, or some
other algorithm to do so. FEA is thus more general than both OSI or CPSO because
factors can overlap and because other optimization algorithms can be used. Addi-
tionally, if we wished, we could always include a factor that covered all the variables
(X1, X2, X3, X4). This makes FE