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ABSTRACT

Musical instrument recognition is an important research task in music information
retrieval. While many studies have explored the recognition of individual instruments,
the field has only recently begun to explore the more difficult multi-label classification
problem of identifying the musical instruments present in mixtures. This dissertation
presents a novel method for feature extraction in multi-label instrument classification
and makes important contributions to the domain of instrument classification and to
the research area of multi-label classification.

In this work, we consider the largest collection of instrument samples in the lit-
erature. We examine 13 musical instruments common to four datasets. We consider
multiple performers, multiple dynamic levels, and all possible musical pitches within
the range of the instruments.

To the area of multi-label classification, we introduce a binary-relevance feature ex-
traction scheme to couple with the common binary-relevance classification paradigm,
allowing selection of features unique to each class label. We present a data-driven
approach to learning areas of spectral prominence for each instrument and use these
locations to guide our binary-relevance feature extraction. We use this approach to
estimate source separation of our polyphonic mixtures.

We contribute the largest study of single- and multi-label classification in musical
instrument literature and demonstrate that our results track with or improve upon the
results of comparable approaches. In our solo instrument classification experiments,
we provide the seminal use of Bayesian classifiers in the domain and demonstrate the
utility of conditional dependencies between frequency- and time-based features for
the instrument classification problem. For multi-label instrument classification, we
explore the question of dataset bias in a cross-validation study controlled for dataset
independence. Additionally, we present a comprehensive cross-dataset study and
demonstrate the generalizability of our approach.

We consider the difficulty of the multi-label problem with regards to label density
and cardinality and present experiments with a reduced label set, comparable to many
studies in the literature, and demonstrate the efficacy of our system on this easier
problem. Furthermore, we provide a comprehensive set of multi-label evaluation
measures.
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CHAPTER 1

INTRODUCTION

Music is diverse, culturally specific, and an inherently complex phenomenon.

There are many dimensions and qualities to music including genre, style, mood,

musical key, harmony, rhythm, loudness, spatial positioning, reverberation, instru-

mentation, and timbre [1]. In this age dominated by intelligent gadgets, such as

smart phones, watches, and eye-wear, we increasingly rely on software to monitor,

interpret, and react to our environment. Currently, music recommendation systems,

such as Pandora or Spotify, are widely used to select the music to which we listen, and

acoustic fingerprinting systems, such as Shazam, attempt to identify which music is

playing. Some of the attributes of music sound correspond to physical aspects of the

audio signal, such as rhythm, while others refer to more subjective interpretations

of the sound, such as mood. Some of these qualities of music can be captured by

meta-data extracted from album notes, reviews and commentary, or even by peer-

recommendation systems. Many of these qualities of musical sound, however, are

quite complex and do not easily map to physical attributes of sound.

The human brain is particularly adept at distinguishing between multiple musical

instrument sounds. The perception of timbre allows humans to identify two different

musical instruments, even if they play the same pitch, duration, and volume level.

Humans can readily discern between different musical instruments under a variety

of conditions including large and complex groupings of instruments, such as a large

symphony orchestra, noisy environmental conditions, such as listening through head-

phones on the subway, or even following significant hearing loss. Researchers in the

areas of psychoacoustic perception, neuroscience, psychophysics, statistical multidi-
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mensional scaling analysis, machine learning, and acoustic analysis of sound’s physical

characteristics, all suggest the perception of timbre is a complex multi-dimensional

attribute that relies on both the spectra (frequency content) and the temporal features

of the sound [2].

The identification of musical instruments in audio recordings is a frequently ex-

plored, yet unsolved, machine learning problem. Despite a number of experiments in

the literature over the years, no single feature extraction scheme or learning approach

has emerged as a definitive solution to this classification problem. The ability of a

computer to learn to identify musical instruments is an important problem within

the field of Music Information Retrieval (MIR), with high commercial value. For

instance, companies such as Pandora or Amazon desire to index their music libraries

automatically based on the musical instruments present in the recording, allowing

search and retrieval by specific musical instrument. Timbre identification is also im-

portant to the ongoing research areas of musical genre categorization [3, 4, 5, 6], query

by example [7, 8, 9], automatic score transcription [10, 11, 12, 13], score informed

source separation [14, 15, 16, 17], musical audio annotation [18, 19, 20], score align-

ment [21, 22, 23, 24], musical content similarity and music recommendation systems

[25, 26, 27, 28], and automatic musical accompaniment by a computer [21, 29, 30].

1.1 Motivation

Since the late 1970’s [31], many researchers have attempted the automatic recogni-

tion of individual musical instruments in isolation. In these many years, numerous fea-

ture extraction schemes and classification algorithms have been proposed and tested.

Because these studies differ in data sources, feature extraction schemes, feature con-

tent, feature dimensionality, experimental design, and classification algorithms, rarely
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are these studies directly comparable (see Section 3.1 for a review). Since these ap-

proaches are often sensitive to the feature input and classification algorithms; they

most often do not generalize between different datasets. Furthermore, because the

field lacks readily available or standardized datasets, most studies cannot be repli-

cated.

Recent work in the field has shifted to the more complex case of identifying the

instruments present in polyphonic mixtures. This is a more difficult problem because

the spectral content of the constituent tones can overlap in time and frequency (see

Section 2.1.4 for a discussion of timbre), often causing interference between spectral

components. Most of the approaches developed to recognize of individual instruments

are not scalable to the more complex case of polyphonic music signals [32].

In this dissertation, we present a feature extraction scheme designed for exten-

sibility to multilabel classification of polyphonic mixtures. In the next sections, we

identify and discuss the design criteria needed to extend an approach to multi-label

classification of polyphonic mixtures.

1.1.1 Scalability

The goal of identifying instruments present in polyphonic mixtures is a multi-

label classification problem. One possible approach is to train models on all possible

mixtures of instruments [33]. This method, however, suffers from the combinatorial

explosion of labels needed to classify, and it is not feasible to train models with every

possible combination of instruments.

The task of polyphonic identification lends itself naturally to binary-relevance

(BR) classification, a decomposition approach in which a single classifier is trained

for each class label (see Section 2.2.2.3). In this work, we use a binary-relevance
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feature extraction scheme and a binary-relevance classification scheme, requiring a

separate model for each instrument responsible for identifying the presence of that

instrument in a signal, independent of any other instruments that may be present.

The strength of BR classification for polyphonic mixture identification is that it only

requires training models on single instrument data yet allows extensibility to unseen

combinations of those instruments, requiring only an additional binary instrument

for each new instrument trained.

1.1.2 Generalizability

Arguing that many approaches cannot generalize to new data, Livshin and Rodet

[34] identified five different musical instrument datasets that shared a common subset

of seven instruments and performed cross database evaluations. The authors received

results ranging from 20% accuracy in the worst case up to 63% in the best, with an

average accuracy of 42%. These results demonstrate the poor generalization abilities

of common classification techniques across databases.

Their results indicate that many techniques overfit the training dataset and the

features sets used do not sufficiently capture general qualities of instrumental timbre.

Many of these approaches have significant limitations (see [35] for a discussion). These

limitations include small datasets containing very few examples, the use of a small set

of hand-picked instruments, often selected from different instrument families, datasets

containing examples of only a single instrument or performer, differences in dynamic

levels of the musical notes recorded, and differences in recording procedures, equip-

ment, and levels. Additionally, many studies report low accuracy results, despite

testing only a small number of instruments [35]. Furthermore, very few studies have

addressed validation of approach against different datasets [34].
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To demonstrate the generalizability of our binary-relevance feature extraction ap-

proach, in this work we compare cross dataset performance on four datasets and a

large set of thirteen instruments. These datasets feature multiple performers, instru-

ment manufacturers, dynamic levels, and cover the range of each musical instrument

(see Chapter 5).

1.1.3 Practicality

Timbre perception and recognition rely on both the harmonic content of the mu-

sical partials and the fine timing of the envelope of each harmonic. The attack of an

instrument sound and the differences in the fine-timing of the envelopes of individual

partials are of particular importance in both perception and algorithmic recognition

of timbre. Many classification approaches exploit this valuable information, as does

the human auditory system [32].

The literature has most often focused on single instrument classification in which

the datasets contain examples of the entire length of an instrument sample, including

the attack and the decay, as does this work. However, any approach that relies on

capturing the time differences of the instrument’s temporal envelope may not be

practical and properly capture situations in which signals contain only part of an

instrument’s note and to circumstances in which multiple notes overlap in time. A

practical system cannot expect sterile notes in which the attack, sustain, and release

portions of the signals are intact, but rather given an arbitrary time frame that

contains some portion of a note in time. In this dissertation, we ignore any timing

information and instead focus on identifying locations of harmonic content most useful

in discriminating between musical instruments.
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1.2 Contributions

This dissertation contributes a number of important advancements to the research

area of musical instrument classification. They are listed as follows:

• In this dissertation, we provide a comprehensive review of the literature of both

single-label and multi-label classification of musical instruments. The last thor-

ough review of the monophonic classification literature appeared in 2008 [36] and

this work is the first thorough literature review in the domain of classification

of polyphonic instrument mixtures.

• In our study of single instrument classification, we present the seminal use of

Bayesian networks for the classification of musical instruments. Additionally,

we demonstrate the utility of conditional dependencies between features in the

time and frequency domains, a novel contribution to the domain. Lastly, we

present a novel topology, the grid-augmented näıve Bayes model, for modeling

sequential conditional dependencies in two dimensions.

• We present an approach for binary-relevance feature extraction for use with

binary-relevance classifiers for multi-label classification. Since binary-relevance

classification requires training a separate classifier for each class, we argue that

each classifier need not cover the same feature space, which is the common prac-

tice in multi-label classification. A binary-relevance feature extraction scheme

does require an extra feature extraction for each instrument class, but provides

the benefit of customizing each binary classifier to features that best represent

the class it must learn. In this work, we use a data-driven clustering approach to

learn locations to each instrument that best represent areas of spectral promi-

nence in the instrument’s signature. The combination of a binary-relevance
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feature set and a binary-relevance classifier allows an estimation of source sep-

aration in the spectral domain in order to classify each contributing source

separately.

• We demonstrate our approach to musical instrument classification on four large

datasets with thirteen instruments in common. Studies in the musical instru-

ment classification domain often overfit models to single datasets, often with

very few instrument classes or few examples per instrument. In this work, we

use several and diverse datasets to test the generalizability of our approach to

capture features that represent qualities of the instruments’ timbre. Three of the

datasets are those most commonly reported in the literature and we contribute

a fourth dataset, a novel use of this public collection for the research domain.

We consider a large set of 13 instruments, the set of instruments common to

the four datasets. We consider examples from multiple performers, covering

multiple musical dynamic levels and notes covering the entire playable range of

the instruments.

• We describe a novel data-driven approach to learn areas of spectral promi-

nence for each instrument to guide feature-extraction. We use these instrument

signatures to estimate source separation, attempting to minimize overlapping

musical partials. These signatures guide our binary-feature extraction scheme

in both single- and multi-label classification. This is the first study to consider

a different feature space for each binary classifier in the domain of multi-label

instrument classification.

• In this work, we demonstrate our our approach to single- and multi-label classi-

fication with a battery of experiments across four datasets mentioned above. We

demonstrate that our approach achieves comparable efficacy across the datasets

in both the single- and multi-label problems, indicating our approach captures
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features that describe the timbre of the instrument, rather than cues from the

recording procedure.

• To test their approaches to multi-label classification, researchers frequently gen-

erate test sets by mixing multiple solo examples into polyphonic mixtures, as we

do in this work. Although the training set and the test set are not exactly the

same, this relation raises the question of dataset bias. This study is the first to

explore this question through a set of cross-validation experiments, permitting a

comparison of these dataset independent results to the full dataset classification

results.

• Many of the approaches to musical instrument classification, both of single

and multiple instruments, do not generalize well beyond the dataset used for

training. In this work, we demonstrate generalizability of the approach with

cross-dataset experiments, training on one dataset and testing on a different

dataset. In this work, we provide the most comprehensive cross-data study in

both the single- and multi-label instrument classification literature.

• Although studies in general multi-label classification often report many of the

different metrics for evaluation [37], studies in classification of polyphonic mix-

tures rarely report more than one single evaluation metric. We evaluate our

multi-label experiments with a comprehensive set of evaluation measures for

multi-label classification, including example-, label- and rank-based multi-label

evaluation metrics. Although these metrics are widely used in other domains

of multi-label classification [37], no musical instrument classification study has

provided a systematic multi-label evaluation of their performance. We seek to

align the domain of instrument classification with the standards of evaluation

common elsewhere in multi-label classification. Additionally, we present an
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extension to an existing multi-label evaluation measure, which is discussed in

Section 2.2.3.

• In our multi-label classification experiments we consider the cardinality and

density of the problem. Although these measures are often found in other

multi-label domains, this dissertation presents the first discussion of difficulty

of the multi-label problem, considering these measures in the instrument clas-

sification domain. Additionally, we demonstrate the efficacy of our system on a

multi-label problem with a reduced cardinality, one commonly reported in the

literature.

1.3 Organization

This section describes the organization of this dissertation, providing a brief

overview of the focus of each remaining chapter.

In Chapter 2, we discuss many of the background topics and terminology nec-

essary to understand the approaches given in this work. First, we review musical

terminology and discuss the properties of sound. Next, we discuss the concept of

timbre, which is integral to this work, and introduce methods for spectral analysis.

Then we review supervised classification and the area of multi-label classification,

including the binary-relevant approach for classification. This is followed by a discus-

sion of the evaluation metrics for multi-label classification we use in the experiments.

Finally, we review the algorithms for clustering and classification that are referenced

in subsequent chapters.

In Chapter 3, we review the literature of the many varied approaches to musical

instrument classification. We begin with a review of solo instrument classification

and progress to the cases of multi-label classification of polyphonic mixtures.



10

In Chapter, 4, we present our study on classification of single instruments. This

early work heavily influenced our subsequent approaches, including our choice of

datasets, our cross-dataset experimental design, and our feature extraction technique.

In Chapter 5, we discuss the data used in this work, including the original sources,

the list of musical instruments on which this work focuses, the pre-processing steps,

the signal-processing steps, and the division of the data into datasets for classification

experiments.

In Chapter 6, we present our approach to learn an instrument-specific feature

extraction schemes for use as a binary-relevance feature extraction schemes in classi-

fication experiments. From datasets of recordings of solo instruments, we learn areas

of spectral prominence for each instrument and use these areas as spectral filters to

guide the feature extraction process. In this chapter, we validate this approach by

using the feature extraction scheme learned from one dataset for extraction of features

from a different dataset, demonstrating the generalizability of this approach.

In Chapter 7, we demonstrate the use of the feature extraction schemes learned

in the previous chapter and discuss the extensibility of this approach, showing its use

of this procedure on the multi-label polyphonic data.

In Chapter 8, we present experiments designed to test the generalizability of this

approach by training models with data from one source but testing these models on

an entirely different source.

In Chapter 9, we demonstrate the extensibility of this approach to multi-label

data, with classification experiments on mixtures of two, three, and four instruments.

In Chapter 10, we conclude with a summary of results and contributions and

discuss areas for future research.

In Appendix A, we provide a detailed walk-through example of the learning process

described in Chapter 6.
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In Appendix B, we provide results of classification result by instruments for the

polyphonic mixture experiments given in Chapter 9.
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CHAPTER 2

BACKGROUND

In this chapter, we provided background needed to understand the terminology,

procedures and algorithms discussed in this dissertation. We begin by discussing

relevant musical terminology and discuss the algorithm we use in processing our

audio signals. In Section 2.2, we discuss the machine learning discipline of supervised

classification, with special emphasis on the binary-relevance approach to multi-label

classification. Section 2.2.3 presents the evaluation metrics we use to evaluate the

multi-label classification experiments discussed in Chapter 9. Section 2.3 provides

explanations of the algorithms explored in Chapters 6, 8, and 9. Lastly, we review

Mel-Frequency Cepstral Coefficients, a feature space commonly used in single-label

instrument classification, in Section 2.4

2.1 Musical Sound

This dissertation examines the automatic identification of musical instrument

sounds from audio signals. In order to understand the approach taken in this work,

one must first understand what constitutes a musical sound and which properties

make a sound recognizable and distinguishable from other types of sounds.

The acoustic or physical properties of sound are those concerned with the produc-

tion, transmission, and propagation of sonic waves. The psychoacoustic or perceptual

properties of sound are those related to auditory perception and interpretation of

sound. The aural recognition of sound is dependent on both the physics of sound –
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how the ear receives the waveform, and psychoacoustic properties – how the brain

interprets the sound.

A musical sound is characterized by four perceptual attributes: pitch, loudness,

duration, timbre. The first three attributes have clear physical counterparts of fre-

quency, amplitude, and time. The fourth attribute of sound, timbre, is the quality of

sound that allows the human brain to distinguish between different musical instru-

ments. Timbre is less well understood and does not have a direct mapping to a single

physical characteristic.

In this section, we discuss the various properties of sound, both the acoustic

properties of the sonic waveform and the psychoacoustic corollary of the perception

of each property. This section introduces many important terms, which are referenced

throughout this dissertation. The concept of timbre, which is integral to this work,

is introduced and discussed along with an explanation of the Fast Fourier Transform

used for spectral decomposition of the audio signals.

2.1.1 Pitch

Pitch is the perceptual quality of sound that allows us to distinguish between dif-

ferent music notes of the musical scale. For example, when one plays two consecutive

notes on the piano, the human brain registers that there is a difference between the

sounds and the relative direction of the change, either increasing or decreasing [38].

Pitch is a subjective measure that allows the ordering of sounds on a frequency-

related scale. The differences between musical pitches are described by music in-

tervals. The octave is a natural musical interval that occurs at the doubling of the

frequency of a note. Western music divides the octave into 12 equal steps, the notes

of a chromatic scale. Other cultures subdivide the octave in differing ways.
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The simplest of sounds, a sine tone, contains energy of only a single frequency.

When a musical instrument plays a note, however, we still perceive only a single

tone, even though the sound contains energy at a number of different frequencies.

The Fourier series describes a periodic waveform as a sum of a single fundamental

frequency and the other harmonic components. For musical notes, the fundamental

frequency, f0, is the lowest frequency present in a periodic waveform. The remaining

harmonic content are known as overtones and the set of the fundamental frequency

together with overtones are known as partials.

2.1.2 Volume

The volume, or loudness, of a sound is the perceptual correlate of the physical

strength, or amplitude, of the waveform. The American National Standards Institute

(ANSI) defines loudness as “that intensive attribute of auditory sensation in terms of

which sounds may be ordered on a scale extending from soft to loud” [39]. The per-

ception of loudness is complex and depends on several factors, including the acoustic

energy of the sound wave, the frequency content of the sound, and the duration of

the sound.

In musical notation, notes are marked by a subjective and relativistic measure

known as the dynamic level. The dynamic level indicates the volume level of which

the note should be produced by a performer, relative to the dynamic levels of the

other notes. Western music uses a system ranging from quiet to loud using the

terms: pianissimo (pp), piano (p), mezzopiano (mp), mezzoforte (mf ), forte (f ),

and fortissimo (ff ). Several of the datasets we examine in this dissertation contain

examples of instruments playing at three different dynamic levels (see Chapter 5).
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2.1.3 Duration

The next principal parameter of sound is the duration, which correlates to the

physical property of time, or length of the waveform. The duration of a sound affects

the perception of the other properties of sound. The perception of loudness increases

with duration of the sound. Additionally, musical notes often contain subtle fluc-

tuations in pitch over time, and when the effect is intentionally exaggerated, it is

technique known as vibrato. Lastly, the relative strengths of the individual harmon-

ics vary over time and their relative intensities may differ between the attack, sustain,

and decay portions of the musical note.

In this dissertation, we consider only the frequency content within one single time

window, one second in length. In future work, we will discuss extending our approach

to a temporal model in order to capture the fluctuation of amplitudes of frequency

components over time.

2.1.4 Timbre

When a musical instrument plays a note, we perceive both a musical pitch and

the instrument playing that note. Timbre, sometimes known as tone color, is the

psychoacoustic property of sound that allows the human brain to distinguish read-

ily between the same note, despite being played on two different instruments. The

primary musical pitch we perceive is the first partial, known as the fundamental

frequency. When an instrument produces an overtone series that matches the se-

quence of integer multiples of the fundamental frequency, the instrument is known

as harmonic. With the exception of some drums and bells, such as chimes, most

orchestral instruments are harmonic.
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The perception of timbre depends on the harmonics (spectra) and the fine timing

(envelope) of each harmonic constituent (partial) of the musical signal [40]. ANSI

defines timbre as:

Timbre is that attribute of auditory sensation in terms of which a
listener can judge that two sounds similarly presented and having the
same loudness and pitch are dissimilar. Timbre depends primarily upon
the spectrum of the stimulus, but it also depends upon the waveform, the
sound pressure, the frequency location of the spectrum, and the temporal
characteristics of the stimulus [41].

Timbre is the least well understood property of sound. The other three psychoa-

coustic qualities of sound − pitch, volume, and duration − have direct correlates

to the physical properties of the waveform. Timbre, however, cannot be so easily

defined, and subsequently, it cannot be measured. Timbre is a multi-dimensional

entity, dependent on the other attributes of sound.

2.1.4.1 Consonance and Dissonance. The difference between any two pitches forms

a musical interval. Although the interpretations vary across cultures, consonance and

dissonance refer to the subjective perceived pleasantness or unpleasantness, respec-

tively, of a musical interval. When two notes are play simultaneously, the harmonic

partials of individual tones are interleaved in both the frequency and time domains.

In some cases, partials from more than one instrument can overlap and cause de-

structive or constructive interference. Since the consonance and dissonance of an

interval are tied to the ratio of the frequencies of the pitches, consonant intervals

exhibit a greater coincidence of partials [42]. This is particularly the case in musi-

cally consonant intervals, such as the octave or the fifth, because two notes forming

these intervals have the frequencies of many of their harmonic partials in common.
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The more instruments playing at the same time increases the likelihood of source

interference between contributing notes.

2.1.4.2 Perception of Timbre. Although the perception of timbre has been studied

by the psychoacoustic community for many years, no consensus of definition or mea-

sure has been reached. In 1977, John Grey carried out a perception study to better

understood how humans compare the similarities and differences between timbre. He

presented subjects with pairs of tones that differed in timbre and asked the subjects to

rate the dissimilarity between the sounds. Using the statistical technique of multidi-

mensional perceptual scaling, Grey visualized the similarities and differences between

musical instruments according to several dimensions. Grey reported that the three

dimensions most important for the human perception of timbre is the distribution of

energy among the harmonics, the presence of low-energy high frequency energy, and

the fluctuation of spectral energy of the harmonics over time [43].

Although no single definition or measurement has emerged, the work of Grey

and others make clear that the human perception of timbre is most reliant on the

differences in the spectral content between sounds. Since the goal of this disserta-

tion is the development of an approach for the machine recognition of timbre from

audio waveforms, we must calculate and analyze the spectral content of a sound.

This transformation from the waveform, or time domain, to the frequency domain is

accomplished with a Fourier transformation.

2.1.4.3 Fourier Transform. The Fourier Theorem states that any complex signal

can be described as the potentially infinite sum of a series of sine or cosine terms.

This theorem allows a complex signal to be decomposed into a series of sine waves

that differ in frequency, amplitude, and phase.
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(a) Waveform of a Violin note (261.5 Hz)) (b) Spectra of a Violin note (261.5 Hz)

Figure 2.1: The FFT transforms a signal from the waveform in the time domain (left)
to the spectra in the frequency domain (right).

The Fast Fourier Transform (FFT) is an efficient implementation of a Discrete

Fourier Transform used to estimate the power spectra of discrete non-periodic signals

[44]. The FFT algorithm is an important tool in science and engineering with appli-

cations in spectral analysis, image compression, partial differential equation solving

methods, multiplication of polynomials, among many others. Fourier analysis yields

a spectral decomposition, revealing periodicities in the input signal including the rel-

ative strengths of any periodic components, allowing a transformation of a signal as

a function of time to a function of frequency. An example of a waveform of a musical

note and the subsequent transformation to the spectra using an FFT is shown in

Figure 2.1.

Although frequency is a linear concept, measured in Hertz, pitch is perceived

logarithmically. In Western music notation, the semitone scale is a logarithmic map-

ping from frequency to pitch. FFT analysis, on the other hand, provides a uniform

resolution across a linear Hertz scale. This has the implication that the high frequency

partials are measured with a much higher resolution than lower frequency partials.

The typical human ear can nominally hear sounds in the range 20 Hz to 20,000 Hz.

The piccolo, the orchestral instrument with the highest range, has a top note with
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a pitch just under 4000 Hz. For contrast, the average male speaking voice ranges

between 85 Hz and 155 Hz and a typical female ranges from 165 Hz to 255 Hz [45].

Therefore, if the analysis of the FFT spectra necessitates a high resolution, a time

sample of sufficient length must be provided in order to provide adequate resolution

in the lower frequency range.

The computational complexity of the FFT algorithm is loglinear in time: O(n ·

log n), where n is the number of samples in the audio file. Because of the linear

resolution of the result, FFT analysis provides a constant trade-off between the length

of input sample in time and the frequency resolution of the result. If the input sample

is too short, the frequency resolution in the analysis of the lower partials will be too

poor, and this is the frequency range that matters most for speech and music. For

consistency in resolution, throughout this work, we consider a single time window of

one second for all our sound examples, rather than considering multiple overlapping,

but small, windows sliding over time.

2.2 Classification

Supervised learning is one of the most widely explored paradigms in the field of

machine learning. Given a training set of examples with known class labels, supervised

techniques attempt learn a model that outputs a class label for previously unseen

examples. Classification is the task of assigning each example with one or more

labels from a finite number of discrete categories. Regression, on the other hand,

is the task of assigning one or more output variables with continuous values. This

section discusses the various approaches to supervised classification, which we use in

this dissertation.
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2.2.1 Multi-class Classification

In classification tasks, X represents the input space, L represents the output

space, and the task of learning is to derive a function g : X → L. Each instance

x ∈ X is represented as a vector x = [x1, . . . , xM ] of length M , in which each xi is a

feature describing some property of the instance. Single-label classification describes

the assignment of instance x to a label ` from a set of disjoint labels L in which ` ∈ L.

Tasks discerning only two label classes, |L| = 2, are known as binary classification

problems. In multi-class classification, the set of possible classification labels is larger,

|L| > 2. Traditional approaches limit the assignment of each example to only a single

label, embedded with the assumption that each example can be associated with only

a single concept or semantic meaning.

2.2.2 Multi-label Classification

In multi-label classification, on the other hand, an example to classify is relevant

to more than one class label. Therefore each example x ∈ X is assigned a set of labels

Y by the classifier, where Y ⊆ L. Specifically, the classifier g, for a given instance

x ∈ X , yields

g(x) = [g1(x), g2(x), · · · , gk(x)]T (2.1)

where gj(x)(j = 1, · · · , k) is either 0 or 1, indicating association of x with the jth

label [46].

Multi-label classification is increasingly popular in many real-world domains, such

as text categorization [47, 48], image annotation [49, 50], bioinformatics [51] medical

diagnosis [52], classification of film genre [53], and the classification of emotions in

music [54].
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There are two broad approaches to multi-label classification: either transform the

algorithm to fit the data or transform the data to fit the algorithm. Algorithm adap-

tation approaches adapt and extend algorithms designed for single-label classification

tasks to handle multi-label classification tasks directly. In the problem transformation

approach, on the other hand, a multi-label problem is transformed into a set of single-

label classification problems so that existing algorithms for single-label classification

can be applied without the need to change the algorithm.

2.2.2.1 Algorithm Adaptation. The first approach, known as algorithm adaptation,

consists of adapting existing algorithms to return a set of labels instead of a single

label. A number of algorithms have been adapted for use in multi-label classification

including: decision trees [55], adaboost [56], k-nearest neighbor [57, 58], ranking

support vector machines [59, 60], associative rule learners [61], neural networks [62,

51], as well as several probabilistic approaches [63, 64]. Many of these approaches,

suffer limitations in scalability as the number of training examples, dimensionality of

the feature space, or the number of class labels increases [65] and from correlations

between labels, much like in multi-class counterparts.

2.2.2.2 Problem Transformation. The second approach, problem transformation

methods, describes the transformation of a multi-label classification problem into

a single label multi-class problem. One common approach is known as the Label

Powerset (LP) method [66]. In this approach, all possible sets of labels are enumerated

and used as if they were individual labels, which results in a combinatorial explosion

in the number of labels [67]. For this reason, this approach is highly undesirable if |L|

is a large number. The complexity of the LP approach is O(min(n, 2k)), where n is

the number of training examples, and k is the total number of class labels before the
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Table 2.1: Illustration of multi-label data and problem transformation methods for
multi-label classification.

Example Label Set
x1 {`3}
x2 {`1, `2}
x3 {`2, `4}
x4 {`1, `3, `4}

(a) Example of multi-label data

Example Multiclass Label
x1 {`3}
x2 {`1,2}
x3 {`2,4}
x4 {`1,3,4}

(b) Transformation of Fig. 2.1a using Label Powerset method

Ex. Label
x1 ¬`1
x2 `1
x3 ¬`1
x4 `1

Ex. Label
x1 ¬`2
x2 `2
x3 `2
x4 ¬`2

Ex. Label
x1 `3
x2 ¬`3
x3 ¬`3
x4 `3

Ex. Label
x1 ¬`4
x2 ¬`4
x3 `4
x4 `4

(c) Transformation of Fig. 2.1a using Binary-Relevance method



23

transformation [65]. When the number of labels k becomes large, it adds significant

complexity to the training process. Another problem is when the data contains a

small n, and there may not be enough examples of particular label combinations to

learn meaningful relationships. An example of problem transformation is shown in

Table 2.1b.

Furthermore, since this approach requires training on all possible combinations of

class labels, it is not readily extensible to handle new previously unseen class labels.

Adding a new class label requires creating new examples that feature all combinations

of the new label with all other labels, in addition to retraining the models.

2.2.2.3 Binary-Relevance Classification. The most common method to the prob-

lem transformation approach to multi-label classification is known as the Binary-

Relevance (BR) method. The BR method learns |L| different binary classifiers, one

for each possible label. Each binary classifier is trained to distinguish the examples

in a single class from the examples in all remaining classes. When classifying a new

example, all |L| classifiers are run and the labels associated with the classifiers that

output the label true are added to Y . This is known as the one-vs-all (OVA) scheme.

More specifically, each binary classifier Cl is responsible for predicting the true/false

association for each single label ` ∈ L. The final label set Y is the set of labels from

all classifiers that returned true [68]. The complexity of the BR approach is linear in

the number of models O(m) where m = |L| class labels. When adding a new class

label to a BR approach, an additional model must be trained to handle to the new

class label, and the existing models must be updated to be able to differentiate from

the the new class label. An example of problem transformation is shown in Table

2.1c. This dissertation will use the BR approach to multi-label classification.
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2.2.3 Evaluation Measures

In multi-class classification, performance of a classifier is most commonly evaluated

by accuracy, error-rate, or information retrieval measures of precision, recall, and F1-

measure. Since multi-label classification yields a set of predicted labels, it presents

new challenges in evaluating classifier performance. Subsequently, there are many

ways to evaluate multi-label classifiers including strict measures that reward complete

accuracy of the predicted label set to other measures that reward partial correctness.

The measures of cardinality and density, discussed below, are frequently used to

discuss the difficulty of the problem in the multi-label classification literature, How-

ever, in the domain of multi-label classification, these measures are not discussed, nor

do researchers comprehensively report the common multi-label evaluation measures

described in this section. In this dissertation, we seek to align the musical instrument

classification literature with the measures common to other domains of multi-label

classification.

In this section, let there be n examples to classify. Assume there are q = |L|

possible labels in L. For each instance i, let Yi be the set of true labels where Yi ⊆ L.

The set Zi is the set of labels predicted by the classifier for instance i.

2.2.3.1 Number of Labels. The number of labels q = |L| affects the difficulty of

any multi-label classification problem. There are two measures that quantify the label

space of the dataset: label cardinality and label density. Cardinality measures the

mean number of labels of the instances in the dataset. Density, on the other hand,

is the mean of the number of labels of the instances, normalized by the number of

labels q [69, 70].
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Cardinality =
1

n

n∑
i=1

|Yi| (2.2)

Density =
1

n

n∑
i=1

|Yi|
q

(2.3)

The difficulty of a multi-label classification problem is tied to the label cardi-

nality and density. Density is a value with the range (0.0, 1.0) and the difficulty

of the problem lessens as the density approaches 1.0. In a comprehensive empiri-

cal study, Bernardini et al. demonstrated a strong correlation between label density

and multiple multi-label evaluation metrics and this correlation was stronger than

the correlation between label cardinality and multiple multi-label evaluation metrics.

The authors conclude “the lower the density and the higher the cardinality, the more

difficult the multi-label learning process” [70].

2.2.3.2 Example-based Measures. Example-based measures examine the average

difference between the actual and predicted sets of labels, averaged over all examples.

• Subset accuracy measures the fraction of correctly classified labels [63]. This

metric is analogous to classification accuracy in multi-class classification.

Subset-Accuracy =
1

n

n∑
i=1

I(Zi = Yi) (2.4)

where I(·) is an indicator function. Subset accuracy, or exact match ratio, is

a very strict measure, especially as the number of labels q is high, because it

discounts a partially correct labeling as incorrect.
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• Hamming loss measures the fraction of misclassified instance/label assignments,

capturing both the cases of an incorrectly classified label as well as when a

relevance label is missed [56].

Hamming-Loss =
1

n

n∑
i=1

I(Zi ∆Yi)

q
(2.5)

where ∆ indicates the symmetric difference between the two label sets. Ham-

ming loss is normalized by the number of examples n and the number of labels

q. The smaller the value of the Hamming loss, the better the performance of

the classifier.

• Accuracy is the fraction of correctly predicted labels to the total number of

predicted and actual labels, averaged over all classified instances. In other

words, accuracy is the Jaccard similarity of the relevant and the true label sets.

Accuracy =
1

n

n∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

(2.6)

The common information retrieval measures have been extended for multi-label

classification [60]. These measures account for partial correctness as compared to

subset accuracy which does not.

• Precision is the ratio of correctly predicted labels to the total number of actual

labels, averaged over all classified instances.

Precision =
1

n

n∑
i=1

|Yi ∩ Zi|
|Zi|

(2.7)

• Recall is the ratio of correctly predicted labels to the total number of predicted

labels, averaged over all classified instances.
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Recall =
1

n

n∑
i=1

|Yi ∩ Zi|
|Yi|

(2.8)

• F1 is a weighted measure of precision and recall, averaged over all classified

instances.

F1 =
1

n

n∑
i=1

2 · Precision(i) · Recall(i)

Precision(i) + Recall(i)
=

1

n

n∑
i=1

2 · |Yi ∩ Zi|
|Yi|+ |Zi|

(2.9)

2.2.3.3 Label-based Measures. Label based measures evaluate each label individ-

ually, and then aggregate over all labels. Any evaluation measure appropriate for a

binary classifier can be used a label-based metric, such as the information retrieval

measures given above. There are two approaches to calculating label-based measures:

macro-averaged and micro-averaged approaches. Macro-averaging approaches com-

pute the score on individual class labels and then average of the number of classes.

Micro-averaging, on the other hand, approaches compute totals over all instances and

all class labels, before calculating the measure.

• Macro-averaging approaches

Precisionmacro =
1

q

q∑
`=1

∑n
i=1 Y

`
i Z

`
i∑n

i=1 Z
`
i

(2.10)

Recallmacro =
1

q

q∑
`=1

∑n
i=1 Y

`
i Z

`
i∑n

i=1 Y
`
i

(2.11)

Macro-F1 =
1

q

q∑
`=1

2 ·
∑n

i=1 Y
`
i Z

`
i∑n

i=1 Y
`
i +

∑n
i=1 Z

`
i

(2.12)

• Micro-averaging approaches
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Precisionmicro =

∑q
`=1

∑n
i=1 Y

`
i Z

`
i∑q

`=1

∑n
i=1 Z`

i

(2.13)

Recallmicro =

∑q
`=1

∑n
i=1 Y

`
i Z

`
i∑q

`=1

∑n
i=1 Y `

i

(2.14)

Micro-F1 =
2 ·
∑q

`=1

∑n
i=1 Y

`
i Z

`
i∑q

`=1

∑n
i=1 Y

`
i +

∑q
`=1

∑n
i=1 Z

`
i

(2.15)

where

Y `
i =


1 if the ith example has true label `

0 otherwise

and

Z`
i =


1 if the ith example is predicted with label `

0 otherwise.

2.2.3.4 Rank-based Measures. Some multilabel classification approaches, such as

the binary-relevance approach used in this dissertation, are able to learn rankings of

predicted labels. The function ranki(`) returns the ranking of label ` for instance i,

a value between [1, q] in which 1 is the top ranked label and q is the last ranked label

[37].

• One-error measures how often the top-most ranked label is not in the set of true

labels of the examples.
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One-Error =
1

n

n∑
i=1

I(argmin
`∈L

ranki(`) 6∈ Yi) (2.16)

• Coverage measures how far down the list of ranked labels, on average, is needed

to go to find all true labels of the instance. This metric determines how many

false positives must be considered in order to find all true positives.

Coverage =
1

n

n∑
i=1

I(max
`∈Yi

ranki(`)− 1) (2.17)

In this dissertation, we consider an extension to the Coverage measure,

Coveragej, in which j ∈ [1, q] represents the depth of coverage in the list of

rankings. For example, Coverage1 represents the average depth down the list of

ranked labels to find the first label. Likewise, we consider Coverage2, Coverage3,

and Coverage4 for the depths of two, three, and four, respectively. These mea-

sures are useful to determine the partial coverage of j labels. The case in which

j is equal to the label cardinality represents the traditional Coverage measure

given by Equation 2.17.

• Ranking loss measures the number of times, on average, that an irrelevant label

is ranked higher than a relevance label.

RankingLoss =
1

n

n∑
i=1

1

|Yi|
|{(`a, `b) : ranki(`a) > ranki(`b), (`a, `b) ∈ Yi × Yi}|

(2.18)

where Yi is the complement of the set of predicted labels Yi.

• Average precision measures the fraction of relevant labels ranked above each

relevant label, averaging over the number of relevant labels.
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Table 2.2: List of multi-label classification measures with best and worst values.

Type Metric Ideal Score Worst Score

Example-based

Subset Accuracy 1.0 0.0
Hamming Loss 0.0 1.0
Accuracy 1.0 0.0
Precision 1.0 0.0
Recall 1.0 0.0
F1 Measure 1.0 0.0

Label-based

Macro-Precision 1.0 0.0
Macro-Recall 1.0 0.0
Macro-F1 1.0 0.0
Micro-Precision 1.0 0.0
Micro-Recall 1.0 0.0
Micro-F1 1.0 0.0

Rank-based

One-Error 0.0 1.0
Coverage 0.0 q − 1
Ranking Loss 0.0 |Yi|
Average Precision 1.0 0.0

AveragePrecision =
1

n

n∑
i=1

1

|Yi|
∑
`∈Yi

|{`′ ∈ Yi : ranki(`
′) ≤ ranki(`)}|

ranki(`)
(2.19)

Table 2.2 provides a list of the ideal score and worst scores for each of the above

measures.

2.3 Algorithms

In this section, we discuss the algorithms we use in this work. We use the k-

means algorithm (Section 2.3.1) to learn regions of prominent spectral energy for

each instrument, presented in Chapter 6. In our classification experiments, given in
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Chapter 8, We evaluate the efficacy of our proposed feature extraction approach with

classification experiments using the k-nearest neighbor algorithm (Section 2.3.2).

2.3.1 k-Means Clustering

Formally, the k-means algorithm considers n data points in d-dimensional space,

X = xi, i = 1, . . . , n, and clusters these points into a set of k clusters cj ∈ C where

j = 1, . . . , k [71]. At each iteration, the algorithm assigns an example to a cluster by

minimizing the distortion of each data point to the nearest cluster center. For each

cluster ck with mean µk, the distortion is defined as:

Distortionk =
∑
xi∈ck

||xi − µk||2 (2.20)

The k-means algorithm greedily minimizes the total distortion across the k clusters:

Distortion =
K∑
k=1

∑
xi∈ck

||xi − µk||2 (2.21)

The k-means algorithm begins by randomly assigning all the data across the k

clusters, where k is determined using a predefined criterion. For each cluster ck,

calculate the mean µk. The total distortion of the cluster assignment is calculated

according to Equation 2.21. The data points are then reassigned to the cluster with

the nearest mean as to minimize Equation 2.20. The process is repeated iteratively

until the total error converges, which occurs when no data points are reassigned and

the cluster means do not change in value.

Because k-means is a greedy algorithm, minimizing the total error of the cluster

assignment, it converges to a local minimum. For well separated clusters, k-means

has been shown to converge to the global optimum with high probability [72]. The
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choice of k is critical to the partitioning, and many approaches for determining k have

been proposed, including techniques to vary k between iterations [73].

2.3.2 k-Nearest Neighbor

The k-nearest neighbor (k-NN) algorithm is a common lazy, or instance-based

classification algorithm in which a previously unknown example is classified with the

most common class among its k nearest neighbors, where k is a small positive integer.

A neighbor is determined by the application of some distance metric D(·, ·), such as

Euclidean distance, in d-dimensional feature space [74].

Formally, let X be a space of points where each feature vector f ∈ X is defined

as f = 〈{f 1, . . . , fd}; c〉, where c is the class label, and Xtr ⊂ X be a set of training

examples. For a unknown query example fq ∈ X−Xtr. find an example fr ∈ Xtr such

that ∀ fx ∈ Xtr, fx 6= fr, D(fq, fr) < D(fq, fx) and return the class label cr associated

with example fr [75].

k-NN is popular because it is easy to implement, robust to noisy training data, and

often effective when given sufficiently large training sets. However, as an instance-

based learning algorithm, general k-NN requires retaining all training instances in

memory in order to classify a new instance. This can lead to expensive computations,

memory limitations, and slow running times. Additionally, k-NN suffers from bias

to the value of k, is sensitive to irrelevant attributes, and does not scale well as the

number of classes increases [76].

2.3.3 Support Vector Machine

The support vector machine (SVM) is a discriminant-based method for classi-

fication [77], regression [78], or ranking learning [79]. In recent years, SVMs have
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been successful employed in many domains, including: bioinformatics [80], computer

vision [81], numerical optimization [82], text categorization [83], fault diagnosis [84],

time-series forecasting [85], and event-detection [86].

The SVM algorithm constructs a hyperplane in high dimensional space that rep-

resents the largest margin separating two classes of data. The SVM is defined as

the hyperplane w> · Φ(f) − b = 0 that solves the following quadratic programming

problem:

minimize

{
1

2
‖w‖2 + C ·

∑
i

ξi

}
(2.22)

subject to:

y(w> · Φ(f)− b) ≥ 1− ξi, ξi ≥ 0 (2.23)

where f is a vector of features, w> is the discriminant vector, C is a regularizing

coefficient, ξi is a slack variable, b is the bias offset, y is the class label such that

y ∈ {−1,+1}, and the kernel function K(fi, fj) = Φ(fi)
> · Φ(fj) is the inner product

of the basis function [87].

The traditional form of the SVM is a binary classifier in with the output of the

classifier is either -1 or 1. To support multiclass problems, the SVM is often im-

plemented as a series of ‘one-versus-all’ binary classifiers in which multiple binary

classifiers are coupled pairwise [88].

When the kernel function K(f) = f , the SVM is a linear classifier. When the

kernel is a non-linear function, such as a polynomial, the features are projected into a

higher order space. This allows the algorithm to fit the maximum margin hyperplane

in the transformed feature space, which is no longer linear in the original space [89].

Support vector machines are popular because SVMs have relatively few parameters

to adjust, good generalization across many domains and datasets [90], ability to map

to non-linear feature space using a kernel, and robustness to large errors concerning
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Table 2.3: Three common SVM kernel functions

Linear: K(fi, fj) = fi · fj, where r ∈ R,
Polynomial: K(fi, fj) = (fi · fj + b)δ, where b ∈ N,

Gaussian: K(fi, fj) = exp(− ||fi−fj)||
2

2σ2 ), where σ > 0

only a small portion of the dataset as well as robustness to small errors affecting the

whole dataset [91]. Furthermore since the optimality problem is convex, SVMs return

a single solution as opposed to neural network which may return different solutions

for different local minima [92]. Lastly, unlike k-NN and other online techniques, SVM

techniques produce a model that can be used off-line.

On the other hand, SVMs do suffer a few disadvantages. The results of a learned

model are often difficult to interpret without visualization tools [92]. As a binary

method, SVM requires adaptation in order to be applied to multiclass problems, which

can potentially add significant overhead [88], and the technique pairwise comparison

of binary classifiers tends to obscure final class probabilities. Furthermore, selecting

the kernel most appropriate to the data may require either expert knowledge of the

data domain or extensively empirical testing [93].

2.3.4 Bayesian Networks

Bayesian networks are probabilistic graphical models that are comprised of random

variables, represented as nodes, and their conditional independencies, represented as

a directed edges. The joint probability of the variables represented in the directed,

acyclic graph can be calculated as the product of the individual probabilities of each

variable, conditioned on the node’s parent variables. The Bayesian classifier with
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observed variables is defined as:

classify(f) = argmax
c∈C

P (c)
∏
f∈f

P (f | parent(f)) (2.24)

where P (c) is the prior probability of class c and P (f | parent(f)) is the conditional

probability of feature f given the values of the variable’s parents. The classifier finds

the class label which has the highest probability of explaining the values of the feature

vector [94].

2.4 Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral Coefficients (MFCC) are features dominant in speech

recognition and speaker identification tasks [95]. MFCCs are a nonlinear spectrum-

of-a-spectrum that result from a cosine transform of the logarithm of a log power

spectrum on a nonlinear mel scale of frequency.

The Mel scale was introduced by Stevens, Volkman and Newman in 1937 and

is named after the word melody. The Mel scale is a subjective scale that relates

perceived pitch to to a measured frequency, constructed by perceptional distances

between musical pitches as determined by human subjects [96]. This scale reflects

the fact that human perception of frequency is non-linear and that humans are less

sensitive at higher frequencies, such as those above 1 kHz.

The formula to convert from a frequency f in Hertz to Mel m is [97]:

m = 2595 · log10(1 +
f

700
) (2.25)
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To calculate the MFCCs, the first step is to divide the signal into short overlap-

ping time frames, each multiplied by a smoothing windowing function. The discrete

Fourier transform (DCT) is applied to each time frame to transform to the spectral

domain. A Mel-spaced filterbank is multiplied by the spectra, which spaces the filters

approximately linearly below 1 kHz and logarithmically above 1 kHz. A set of 26 tri-

angular filters is most commonly used. Within each filter, the amplitude coefficients

are summed, resulting in 26 values that indicate the energy in the filter bank. The log

of the square magnitude is taken for each of the 26 values. Lastly, take the DCT of the

26 log-energies in the Mel-filtered spectrum to yield 26 cepstral coefficients. Speech

recognition system frequently retain only the first 12 or 13 cepstral coefficients, but

the instrument classification literature frequently retains all of them.

MFCCs are a commonly reported feature space for the classification of single in-

struments and are used by many of the studies reported in Section 3.1. We compare

our single instrument approach with results using MFCCs as features, presented in

Chapter 4. MFCCs, however, are summary statistics of the spectra audio signal and

are not useful in polyphonic classification with some estimation of source separa-

tion, although some multi-label classification algorithm approaches have attempted

to use MFCCs as features (see Section 3.2.1.3). For polyphonic signals, MFCCs often

capture nearby spectral peaks under the same filter even when they originate from

different sources. Our approach outlined in this work attempts to estimate source

separation between instruments . We discuss extending our approach to combine our

source separation techniques with MFCCs as future work.



37

CHAPTER 3

RELATED WORK

3.1 Monophonic Classification

Initial investigations in the task of musical instrument recognition focused on

the identification of solo instruments. Although there have been a number of studies

recognizing musical instruments playing isolated notes, no dominant learning strategy

nor feature extraction technique has emerged.

These studies have explored various spectral, temporal, and cepstral features for

instrument recognition (see [36] for a review). MFCCs are commonly used in both

speech processing and music classification [98]. A variety of supervised classification

techniques have been explored, including k-nearest neighbors, decision trees, support

vector machines, linear discriminant analysis, Gaussian mixture models, Bayesian

networks, and neural networks (see [99] for a review).

3.1.1 Nonparametric Methods

3.1.1.1 k-Nearest Neighbors. In 1995, Kaminskyj and Materka explored music in-

strument recognition using a nearest neighbor classifier. They extracted short-term

RMS energy envelopes from their sound sources, transformed the features using Prin-

ciple Component Analysis (PCA), and tested their approach with a single-neighbor

classifier. On a set of four instruments (piano, marimba, guitar, accordion), restricted

to a single octave but covering five dynamic levels, the authors achieved 98% accuracy

[100]. In subsequent work, Kaminiskyj classified 19 instruments covering three octaves
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playing only a single dynamic level with 93% accuracy using k-NN and six spectral

features [101].

In a series of experiments in the late 1990’s, Fujinaga employed k-NN to classify

a set of 23 musical instruments with 50% accuracy using spectral features. When he

used timing information from the spectral envelope, classification accuracy increased

to 64% [102, 103, 104]. Agostini reported 80% classification accuracy using k-NN on

a dataset of 17 instruments and 66% accuracy on a dataset of 27 instruments (see

Table 3.1) [105].

Using a k-NN classifier and 43 spectral and temporal features, Eronen and Klapuri

achieved 80% recognition on a dataset of 1498 samples covering 30 instruments in 2000

[106]. However, in subsequent research, the authors used four combined datasets,

totaling 5286 samples covering 16 instruments but achieved only 35% accuracy [107].

Another study demonstrated the ability of a k-NN classifier to outperform a decision

tree classifier and a discriminant analysis on a set of nine drum sounds [108].

Martin and Kim compared a standard k-NN classifier against a hierarchical ex-

tension to the k-NN classifier. Using a set of 31 spectral and temporal features

on a dataset of 14 musical instruments, the authors observed the hierarchical k-NN

achieved 67% accuracy compared to 61% accuracy of the non-hierarchical k-NN ver-

sion [109, 110]. In 2003, Peeters also compared k-NN and hierarchical k-NN classifier

on a large dataset of 27 instruments. The flat k-NN (k=10) classifier achieved 54%

accuracy and was outperformed by the hierarchical k-NN classifier, which achieved

64% classification accuracy [111].

Livshin and Rodet created an k-NN classifer to operate on a feature set reduced by

Linear Discriminate Analysis (LDA). Working from a dataset of continuous recordings

covering seven instruments, the authors achieved 88% accuracy for solo instruments.

Furthermore, the authors report that their classification system, which was developed
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for single instrument recognition, is able to identify the dominant instrument in a two

instrument mixture at rates greater that chance [112, 113]. In subsequent extensions

of their work, the authors examined the importance of non-harmonic “noise” in mu-

sical instrument classification. Beginning with a dataset of 5000 recordings covering

10 instruments, the authors created synthetic copies of their dataset that contained

only energy at the harmonic partials of the original signal. To accomplish this they

performed Fourier analysis and extracted the harmonic partials while discarding the

inharmonic components. Using only the harmonic information, the authors used addi-

tive synthesis to re-synthesize the audio signals. The authors used a feature selection

algorithm to greedily select the ten best features from a set of 62 common spectral and

temporal features. The authors used a k-NN classifier to compare the original signals

against the harmonic-only synthetic copies, achieved 94% accuracy on the original

dataset but only 90% accuracy on the synthesized dataset, demonstrating the utility

of non-harmonic information when classified harmonic instruments [114, 115].

In a recent study, Jiang et al. explored the sensitivity of classifiers to selected

feature sets. Using subsets of the MPEG7 audio descriptors, the authors demon-

strated that k-NN is more sensitive to a selected feature set than a decision tree. On

a dataset of 2762 examples covering 26 instruments playing middle C, the authors

achieved results ranging from 47% up to 99% accuracy depending on the subset of

MPEG7 features selected [116].

3.1.1.2 Decision Trees. One study claimed to show the ability of binary decision

trees to classify musical instrument sounds from a dataset of seven instruments. How-

ever the study did not vary their features, compare their approach to other algorithms,

nor give specific results [117]. Herrera et al. found a k-NN classifier to significantly

outperform both C4.5 and Partial Decision Tree (PaRT) classifiers on a dataset of
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Table 3.1: Instrument classification results of Agostini et. al [105].

Instruments SVM k-NN QDA
17 80.2 73.5 77.2
20 78.5 74.5 75.0
27 69.7 65.7 68.5

Family 77.6 76.2 80.8

drum sounds [99]. Contemporaneously, Peeters demonstrated both a Gaussian clas-

sifier and k-NN classifier significantly outperforming a decision tree on a set of 27

instruments [111]. More recently, Jiang et al. observed that a decision tree (94%

accuracy) was outperformed by a k-NN classifier (98% accuracy) on a set of 26 in-

struments [116]. For these reasons, decision trees have not become a popular approach

for musical instrument classification.

3.1.2 Discrimination Methods

3.1.2.1 Support Vector Machines. In a seminal study using SVM, Marques and

Moreno classified 200 milliseconds of recorded audio for eight musical instruments, us-

ing 16 Mel-frequency cepstral coefficients (MFCC) as features. The authors achieved

70% accuracy using a ‘one versus all’ multi-class SVM with a polynomial kernel [118].

In 2003, a study demonstrated the ability of SVMs to outperform k-NN on the task

of musical instrument identification. Agostini et al. tested several algorithms, using

a set of nine spectral features and classifying over three different sets of instruments

(see Table 3.1) [105].

On a set of 10 instruments and selecting from among 150 features, Essid

et al. achieved 87% accuracy using an SVM with a radial basis function kernel and a

pairwise classification strategy, outperforming the 82% accuracy of a GMM [119, 120].

In subsequent work, the authors examined the impact of the integration of temporal
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information in the feature set. Examining features based on 20 frames of audio over a

dataset of eight instruments, the authors achieved between 79 and 82% classification

accuracy using an SVM [121].

Sturm et al. explored classification of musical instruments using various MFCC-

derived features and a pairwise SVM classifiers. The authors achieved 80% accuracy

on a dataset of seven instruments using standard MFCC and 84% accuracy when

incorporating MFCCs features over consecutive time frames [122, 123].

Ligges and Krey investigated musical instrument classification with an SVM clas-

sifier considering four different kernel functions: linear, polynomial, Gaussian, and ra-

dial basis function (RBF). Over their large dataset of 38 instruments and using MFCC

features, the authors achieved 81% accuracy with the polynomial kernel (d = 2) which

outperformed the other kernels as well as several other baseline algorithms [124, 125].

Another study also demonstrated an SVM with a quadratic kernel outperforming

linear, RBF, and other polynomial kernels with d > 2 [126].

A recent study explored the efficacy of the SVM on the family identification task

for a dataset that included non-Western instruments, achieving 87% accuracy on a set

of 8 instrument families covering both Western and Chinese instruments [127]. Other

recent investigations of SVM classification of musical instruments have focused on

feature extraction techniques [126, 128, 129], feature dimensionality reduction [130],

SVM parameter optimization [131], or the classification of non-harmonic instruments

[132, 133, 134] and non-Western instruments [127, 135].

3.1.2.2 Discriminant Analysis. On a dataset of 27 instrument and using a small set

of spectral features, Agostini et al. achieved 77.2% accuracy using quadratic discrim-

inant analysis (QDA). The authors also tested instrument family discrimination (e.g.,

strings, woodwinds) and achieved 80.8% accuracy using QDA (see Table 3.1), which
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outperformed SVM and k-NN [105]. Herrera et al. attempted classification of drum

sounds using Canonical Discriminant Analysis (CDA), which achieved 83% accuracy

but was outperformed by a k-NN classifier at 90% [99].

A recent study attempted to classify both Western and ethnomusicological instru-

ments into broad taxonomic categories using Linear Discriminant Analysis (LDA),

achieving 80% accuracy [136]. Other studies have attempted to develop decision

boundaries between specific pairs of instruments, such as discrimination between flute

and saxophone [137] or piano and guitar [138].

3.1.2.3 Higher-Order Statistical Methods . Dubnov et al. sought to use differing

aperiodic, nonlinear fluctuations in harmonics as a method to to discriminate between

sound types. In a series of investigations, the authors analyzed the waveforms of sound

sources using higher-order statistical methods, such as kurtosis and skewness. They

then applied a maximum-liklihood (ML) classifier to discriminate between musical

instrument families (i.e., string, brass) [139, 140, 141, 142]. Unfortunately the authors

did not attempt discrimination between individual musical instruments.

3.1.2.4 Non-Negative Matrix Factorization . Benetos et al. attempted musical in-

strument classification using non-negative matrix factorization (NMF) on a small

dataset of six instruments. The authors achieved 95% accuracy with their NMF

technique, which was outperformed by a GMM and HMM [143, 144, 145]. Another

study created excitation-filter models for musical instruments using NMF to learn

the excitation basis functions and weights. On a small dataset, the authors reported

accuracy ranging from 60% to 80% over the five instruments [146].
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3.1.3 Bayesian Methods

3.1.3.1 Näıve Bayes. In an early study, Brown extracted 18 cepstral coefficients

following a constant Q-transform on each sound. Using the k-means algorithm to

cluster the features, she extracted the cluster densities for use as probabilities in a

Bayesian classifier. Over a small set of short oboe and saxophone sounds, she achieved

85% average accuracy [147]. In subsequent work, Brown et al. applied this technique

using a variety of features, such as cepstral coefficients, bin-to-bin differences of the

constant-Q coefficients, and autocorrelation coefficients. The authors achieved 74%

to 84% accuracy on a set of four instruments: oboe, saxophone, clarinet, and flute

[148].

Martin and Kim modified a tree augmented näıve Bayes (TAN) classifier, adding

context-dependent feature selection and beam search, to estimate maximum likelihood

of an instrument class for a given a feature set. On a dataset of 14 musical instruments,

using a set of 31 common spectral and temporal features, this modified TAN classifier

outperformed a k-NN classifier [109, 110].

Kitahara et al. examined the effectiveness of näıve Bayes on a feature set sub-

ject to dimensionality reduction. Using 129 features, normalized by the example’s

fundamental frequency f0, the authors applied both PCA and LDA on the features

extracted for each example from a dataset covering 19 musical instruments. The näıve

Bayes classifier outperformed a k-NN classifier when the feature space was reduced to

18 dimensions. However, the k-NN classifer outperformed the näıve Bayes classifier

when more dimensions were retained [149, 150].

3.1.3.2 Gaussian Mixture Models. Marques and Moreno classified 200 milliseconds

of recorded audio for eight musical instruments, using 16 Mel-frequency cepstral co-
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efficients (MFCC) as features. The authors achieved 63% accuracy using Gaussian

mixture models (GMM) which were outperformed by a SVM [118]. Another study

achieved 66% accuracy using GMM on a small set of five instruments [151]. Other

studies have compared GMM to k-NN [106], decision trees [99], and Hidden Markov

Models (HMM) [121], but in none of these studies was GMM the most successful

classifier.

One study reported a GMM classifier outperforming an SVM classifier on a dataset

of five instruments. However, these results were skewed by instrument, with high

recognition accuracy for some instruments and extremely poor accuracy for others

[119]. In another study, the authors reported a GMM outperforming both an HMM

and Non-negative Matrix Factorization (NMF) classifier, although the study used

only a very small dataset of six instruments, and the accuracy differences between the

classifiers may not be statistical significant [143]. One study reported a hierarchical

Gaussian classifier outperforming a flat Gaussian classifier on a set 27 instruments

[152].

3.1.3.3 Hidden Markov Models. Eronen trained a continuous-density HMM with

MFCC features transformed by independent component analysis (ICA). On a dataset

of 27 musical instruments, he achieved between 50% and 68% accuracy as the num-

ber of states of the model was varied experimentally [153]. One study used HMMs

to successfully discriminate between two acoustic guitar players, but such results

likely will not scale as number of players or instruments increased. [154]. Through

numerous experimental variations, Joder et al. demonstrated an SVM to consistently

outperform both GMM and HMM classifiers on a dataset of 8 instruments [121].

However, one study demonstrated HMM to outperform GMM in the classification of

seven musical instruments, but this result may not be statistically significant [155].
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3.1.4 Soft Computing Methods

3.1.4.1 Artificial Neural Networks. In 1995, Kaminskyj and Materka explored in-

strument classification using a multi-layered perceptron (MLP). On a small set of

four instruments (piano, marimba, guitar, accordion), restricted to a single octave

but covering five dynamic levels, the authors achieved greater than 94% accuracy.

The authors varied the number of hidden layers between two and five but did not

observe performance increases above four hidden layers [100]. Cemgil and Gürgen

compared several network architectures and found the MLP to outperform both a

Time-Delay Neural Network (TDNN) and a Self-Organizing Map (SOM). However,

this study used a very small dataset covering 10 instruments and limited only to one

octave [156].

In a series of studies, Loughran and her team explored musical instrument classi-

fication using MLP combined with dimensionality reduction on the feature set. The

authors reduced their feature set via PCA, and used three, four, and five princi-

pal components (PC) to classify instruments with an MLP with two hidden layers.

The authors compared three features sets: MFCC, temporal envelopes, and spectral

envelopes, and found the MFCC feature set yielded the highest performance. The

authors also found that performance improved when a higher number of MFCCs were

used. Lastly, the authors achieved the highest performance on all feature sets with

four PCs across all three feature sets attempted. While these results are anecdotally

interesting, one should be cautious generalizing from them, given the small number

of instrument classes used and the limited number of PCs explored [157, 158, 159].

Kostek et al. have undertaken numerous and comprehensive studies on the effi-

cacy of neural networks for instrument classification, experimentally exploring various

network architectures, training algorithms, the number of hidden layers, and various
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feature sets. In the later experiments the authors achieved over 90% accuracy. How-

ever, although the authors tested several different sets of musical instruments, these

sets always contained a maximum of four instrument classes, strongly implying their

approach may not scale to a large number of instruments [160, 161, 162, 163].

Another study examined different feature sets for musical instrument classifica-

tion using MLP trained with back propagation. On a dataset of 19 instruments, the

authors achieved 88% using a mixture of spectral features compared to 41% using

wavelet features [164]. Bai and Chen examined a Fuzzy Neural Network (FNN), a

neural network combined with a fuzzy reasoning system, to classify the four closely

related instruments of the Violin family. Although an ANN and the FNN outper-

formed k-NN and an HMM, the FNN achieved 95% accuracy compared to the 92%

accuracy of a traditional neural network [165].

3.1.4.2 Self-Organizing Maps. Since self-organizing maps (SOM) are trained with

unsupervised learning methods, they cannot be used for classification without an

attempt to associate the output clusters to specific labels. Since this process can be

difficult and introduce error, SOMs have not often been used for instrument classifica-

tion. Several studies have attempted to use SOMs to cluster sounds using comparisons

to human-based perception results [43, 166, 167, 168, 169].

However, one study attempted to train a SOM for classification of musical instru-

ments. Using a set of just ten features, the authors associated the learned clusters

with class labels for a small set of five instruments. Although the authors reported

83% accuracy, the test set was extremely small and these results may not scale to

more instrument classes [170].
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3.1.4.3 Rough Sets. Kostek developed a decision system based on rough set theory

applied to the selection of features in musical instrument classification. On a set of 15

instruments, she achieved 80% accuracy, outperformed by both a neural network and

k-NN [171]. Wieczorkowska compared feature sets using rough sets. On a dataset of

18 instrument classes, she achieved 68% accuracy selecting among spectral features

compared to 51% accuracy selecting from wavelet-based features [172, 173].

3.1.4.4 Evolutionary Methods. Evolutionary techniques, genetic algorithms (GA)

in particular, are often used in feature selection for pattern matching problems across

many domains [174], and researchers have explored this approach in musical instru-

ment identification problems. Loughran et al. used a GA for selection of ten most

useful features from a set of 95 spectral features. These features were used by an

MLP to classify 3006 samples covering only five instruments. Although the authors

achieved only 64% average accuracy, with wide variance between instruments, they

argued their GA selected the most optimal feature set [175]. Another study used

Particle Swarm Optimization (PSO), a swarm inspired population-based search tech-

nique, to optimize the parameters of an SVM [131].

In subsequent work, Loughran’s team evolved a genetic program (GP) for musical

instrument classification. On the small set of five instruments, the GP achieved 75%

classification accuracy. However, the authors compared their GP to an MLP, which

achieved greater than 99% accuracy on the same dataset with the same feature set

[176].
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3.1.5 Summary

Although many of the above studies report high levels of accuracy in the recogni-

tion of musical instruments, these studies cannot be directly compared because they

use differing datasets, varying instrument sets, unique feature sets, and different eval-

uation metrics. Furthermore, many of the feature extraction approaches attempted

for single instrument classification are not extensible to the polyphonic mixture task.

3.2 Polyphonic Classification

Many of the techniques attempted in solo instrument classification, however, are

not practical for classification of real music performances in which multiple instru-

ments often play at the same time. The task of recognizing instruments present in

polyphonic mixtures is a more complex task as the harmonics of the instruments are

interleaved in both time and frequency. Furthermore, the sounds in the mixture can

interfere with each other both constructively and destructively. These issues com-

plicate the extraction of acoustic features from polyphonic mixtures and researchers

have sought various approaches to overcome this problem.

There are two general approaches to instrument recognition in polyphonic mix-

tures. The first approach attempts to extract general or robust features directly from

polyphonic mixtures without attempting source separation. Because of the over-

lapping harmonics and the potential interference between sources, these approaches

face the difficulty that the extracted features are often very different than features

extracted from monophonic sounds. Additionally these techniques often do not scale

to combinations of instruments unseen in the training set.
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The second approach attempts to separate notes from the mixture and applies

techniques from monophonic instrument recognition. These methods often require

estimation of the fundamental frequency f0 of each note in the mixture, a difficult

problem in itself, and any error made at this stage can potentially propagate to the

feature extraction and classification stages of the approach.

3.2.1 Techniques with Polyphonic Features

There have been several different approaches to classifying musical instrument in

polyphonic mixtures without attempting to estimate source separation of the mixture.

One näıve approach is to train on all possible combinations of musical instruments,

converting the multilabel problem to a multiclass problem (see Section 2.2.2.2). While

this approach might be feasible for pairs or even trios of instruments, training on all

possible combinations of instruments results in a combinatorial explosion of class

labels and quickly becomes intractable.

3.2.1.1 Taxonomy. Essid et al. created a system that does not require source sep-

aration but instead uses hierarchical clustering to build a taxonomy of musical in-

struments playing simultaneously. They tested their system on 20 instrument group-

ings, ranging from solo instruments to mixtures of four instruments from a dataset

of commercial jazz recordings, achieving 53% accuracy [33, 177]. Because these 20

instrument groupings represent the closed set of possible class labels from their train-

ing and testing sources, their approach is a multi-class problem but their results are

poorer than monophonic instrument classification studies of a comparable class label

size, such as those by [105] (see Section 3.1). Furthermore, these experiments were
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trained on fixed combinations of instruments and would not be extensible to unseen

combinations of instruments.

Another study attempted a multi-timbral approach of eight predefined instrument

mixtures, reporting that k-NN outperformed a Bayesian network and a decision tree

[178]. Although the authors reported 80% accuracy in identifying the instrument

mixture, these experiments considered only eight instrument mixtures drawn from

only a few examples with a large skew in the distribution of the class labels.

3.2.1.2 Robust Features. Another strategy to recognize instruments within mix-

tures is to attempt to extract features robust enough to enable recognition of indi-

vidual instruments despite source interference. One such approach used polyphonic

mixtures as training data in which examples are labeled if the target instrument

appears at some point in a mixture, but is not given the exact times when the instru-

ment is present. Over a small set of four instruments, the authors demonstrated that

training with weakly-labeled examples yielded an improvement over training with

isolated examples. This approach trains on mixtures, treating other instruments as

noise to create a training set more representative of the polyphonic test data [179].

Another strategy attempted to locate areas of minimal interference between

sources and prioritize features extracted from these areas of the mixture signal. Kita-

hara et al. used linear discriminant analysis to minimize the weight of features most

affected by overlapping partials in polyphonic mixtures of sounds. On a dataset of

recordings of mixtures from a set of five different instruments, the authors achieved

84% accuracy for duets, 77% for trios, and 72% for quartets. Although these result

may look promising at the surface, the authors were only able achieve to achieve

72% accuracy when the mixture contained four out of the five possible instruments.

This problem has a label density of 0.8, arguably an easier multi-label classification
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problem. Also, since the authors tested only a small set of instruments taken from

only three hand-picked recordings, it is not possible to compare these results to other

multi-label musical instrument classification studies. Furthermore this method re-

quires labeling the training and test data with the f0, onset time, and the duration

− effectively a musical score. As this information will not be available for real-world

data, the practicality of such an approach is severely limited [180, 181].

3.2.1.3 Multilabel Algorithms. One approach to multilabel classification is to

adapt algorithms to directly perform multi-label classification without any attempt at

problem transformation. Several studies have attempted classification of polyphonic

mixtures using multilabel classifiers and summary features that do not attempt source

separation.

A neural network can be adapted to multilabel classification by creating an output

node for each possible instrument class. An early study trained a multilabel MLP

to identify the dominant instrument present in instrument duets with 80% accuracy

[182]. Kostek, building off her substantial body of work in monophonic instrument

classification (see Section 3.1.4.1), developed an MLP for the recognition of musical

instruments in duet and trio mixtures. Although she demonstrated some promising

results, these were limited to only a few groupings of instruments for a only two

or three specific pitches and only musical intervals that contain minimal overlapping

partials were tested [163, 183]. Consistent with expectation, Kostek found the greatest

confusions between instruments of the same family, such as the violin and viola.

Another study used 136 generic features without source separation to discriminate

the family of the instrument present in polyphonic mixtures. Drawing from a small

set of only six instruments on synthesized audio data, the authors reported a deep
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belief neural network outperformed an SVM classifier and an MLP classifier with only

a single hidden layer [184, 185].

Paulus and Klapuri proposed a method for detecting drum sounds in polyphonic

recordings. The authors subdivided the signal into temporal frames and extracted 26

MFCC features as observations for Hidden Markov Models (HMM) which are decoded

with the Viterbi algorithm. On a dataset of recordings on three drummers playing

three different drums, the authors identified the correct instrument as present in the

recording 79% of the time [186].

Kitahara et al. modeled polyphonic signals as a temporal spectogram, training

an HMM to predict an probability of an instruments presence in the mixture. The

authors considered only a small set of four instruments and examined mixtures con-

taining three out of the four instruments, reporting 63% recall and 69% precision

for trios of instruments [187, 188, 189]. Although the authors report a multi-label

precision and recall measure, they average the accuracy of individual 10 ms time

windows over the length of a piece of music. Such an approach unfairly weighs more

heavily the identification of long sustained notes compared to shorter notes.

In additional to neural networks and HMMs, researchers have attempted other

multilabel classification techniques. Testing on mixtures of two instruments drawn

from set of 26 single instruments, the authors achieved 48% recognition with a Mul-

tilabel Decision Tree and 87% with a Multilabel k-NN. Although these results might

seem encouraging, the authors do not address the ability of the experiments to scale

to beyond just pairs of instruments and only tested instruments playing a single note,

middle C (261 Hz). Furthermore, the authors average over time frames in a piece of

music rather than individual notes creating a dependency which creates a dependency

on their system and the distribution of musical notes by instrument in their training

dataset [190, 191].
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On mixtures drawn from a set of nine instruments, Fuhrmann et al. achieved 63%

recognition using an multi-class SVM classifer trained for solo recognition to detect

the presence of an instrument in a mixture of three instruments [32]. The authors

considered a large feature space, extracting features for many short time windows over

the length of the sample. When the authors extended their work to attempt a source

separation pre-processing step based on spacial information of stereo recordings, they

improved recognition 19% [192]. A recent work explored a multi-label SVM with

a dataset of 13 instruments testing polyphonic mixtures ranging from two to six

instruments. Using a self-defined evaluation method, the authors report an accuracy

of 37% for two instruments, 32% for three instruments, and 30% for four instruments

[193]. This study involves the same instrument set as our experiments and the same

label density. We refer to this study in Section 9.4 in comparison with our multi-label

results.

Another study used 120 generic features without source separation to identify

musical instruments present in pairs of instruments. The authors built a binary

random forest model for each instrument class, and reported 72% subset accuracy on

their test set of instrument duos, however, the authors considered only 12 possible

pairings of instruments. Furthermore, the authors observed that training on both

single instruments and mixtures of instrument pairs was more beneficial than training

on single instruments alone [194]. A recent study demonstrated a single multi-label

random ferns classifier outperforming the a set of binary random ferns classifier,

however the authors only considered four instruments and the scope of test data was

rather limited [195].

Recent studies have explored feature selection for instrument recognition tech-

niques that do not require prior source separation. Vatolkin et al. used an evolution-

ary algorithm to optimize feature selection in order to minimize classification error
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[196, 197]. In another study, Vatolkin et al. compared generic features to instrument-

specific features extracted from polyphonic mixtures. The authors observe that a

feature set optimized for a particular instrument yields degraded classification ac-

curacy when applied to other instruments [198]. This is an important result which

argues against the optimizing feature selection for specific instrument, given the lim-

ited number of data sources many studies use. Additionally, this result implies that

features sets optimized for a specific instrument are more desirable than single fea-

ture set balanced across all instruments, which carries an important implication for

binary-relevance approaches to multi-label classification.

3.2.2 Source Separation Techniques

The other general approach to multilabel classification of polyphonic mixtures is

to attempt some form of source separation. Common approaches to source separa-

tion include matching single instrument templates in mixtures, feature selection to

minimize interference, and modeling of signal mixtures inspired by computational

auditory scene analysis.

3.2.2.1 Template Matching. Kashino et al. created a music transcription architec-

ture named OPTIMA (Organized Processing toward Intelligent Music Scene Analysis)

that attempted recognition of individual notes from signals using template matching

that included mixtures of up to five instruments [199]. This scheme, however, required

estimation of the f0 and the onset time of each note. This work was continued in

[200, 201], achieving 88% recognition of three different instruments, so long as the

system was provided the true pitches of the notes. Kinoshita et al. further improved

the performance of the system using a weighted template-matching scheme to achieve
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75% accuracy in identifying musical notes, but not specific instruments, without re-

quiring prior knowledge of the pitch [202].

Leveau et al. decomposed signals into a mid-level representation to train a dictio-

nary of prototypical atoms based on solo instrument examples. The authors model

signals as the composition of various pitch and instrument specific atoms using an

optimization process. The authors achieved between 56% and 87% accuracy in a

single instrument recognition task over a dataset of five instruments [203, 204]. Ap-

plying this technique to identification of musical instruments in polyphonic duets,

the authors achieved an accuracy varying between 48% and 87%, a result that seems

highly dependent on the specific combination of musical instruments [204]. Since the

authors considered only four pairs of instruments, rather than all of the ten possible

pairings of the five instruments, the results are more comparable to single instrument

multi-class study than a multi-label classification approach. In extending their tech-

nique to three and four instrument mixtures, the authors achieved less than 45% and

15% accuracy, respectively [205].

3.2.2.2 Missing Feature Approach. Another approach to source separation is to

attempt recognition of individual sources based on partial information. The missing

feature approach has been used in speech recognition [206, 207, 208]. For the purposes

of polyphonic classification, these approaches use knowledge or expectations of an

instrument’s timbre to guide feature extraction and selection.

Eggink and Brown proposed an approach that attempted to identify areas of

interference between sound sources. In their missing feature approach, the authors

assumed expert knowledge about the instrument’s timbre to create a mask to exclude

features from regions of hypothesized source interference. Excluding these unreliable

features, the authors used a Gaussian Mixture Model (GMM) to classify the instru-
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ment [151]. From a set of five musical instruments, the authors achieved 63% accuracy

in identifying two instruments playing concurrently [209]. The authors extended this

approach to identify the solo instrument from the accompaniment in sonatas and

concertos, achieving 47% accuracy from a set of five instruments [210]. Although the

authors argue the success of their approach given a correctly estimated mask, this

approach assumes a harmonic spectra and therefore would not be extensible to all

musical instruments. Furthermore, determination of the mask relies on the correct

identification of multiple fundamental frequencies in the signal, a difficult unsolved

problem in itself [211, 212]. Although Eggink and Brown considered three different

datasets, they did not include any cross-dataset experiments.

Barbedo et al. sought to identify areas of no interference and use only features

extracted from these areas of the mixture’s spectra, ignoring other areas of the spec-

tra. In their study the authors attempted to identify isolated partials from which

they extracted features for a pairwise linear discriminant classifier. The authors

demonstrated their approach on a large set of 25 instruments drawn from multiple

sources to achieve precision ranging from 0.84 on two instrument mixtures down to

0.5 on six instrument mixtures [35]. This approach partitions an example into many

small time frames. Each time frame is classified and the chosen label votes toward

the determination of the finals set of class labels for the example. Additionally, this

approach, like many others mentioned previously, depends on the knowledge of the

number of instruments in the mixture and their respective f0s.

Another study modeled spectral envelopes as time-varying functions of log-

frequency to estimate masks of an instrument’s timbre. The authors calculated

the probabilistic reliability of different features to an ideal mask and used bounded

marginalization to marginalize the features considered unreliable. On a set of ten

instruments, the study reported 64% average accuracy for single instruments and
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61% average accuracy of recognition of individual instruments within mixtures of

four instrument. Unfortunately the authors do not report a multi-label evaluation

measure, but rather accuracy of recognition of each individual instrument, and this

accuracy varied greatly between individual instruments. Since the dataset used con-

tains a differing number of examples for each instrument, their approach indicates a

bias towards the training data. Furthermore, this approach relies on accurate multi-

pitch f0 detection [213].

3.2.2.3 Source Factorization. Although instrument classification does not require

precise signal separation, some approaches have borrowed techniques from the area

of blind source separation and applied these to polyphonic instrument classification.

Virtanen et al. attempted an unsupervised approach to source separation by ap-

plying weighted non-negative matrix factorization on the power spectrogram on an

input signal. The authors factorized the input power spectrogram into a sum of

components that have a fixed magnitude spectrum with a time-varying gain and

minimized reconstruction error between the input spectrogram and a set of linear

models of the spectrogram. Using a database of six instruments and testing on a

set of mixtures of two to five musical instruments, the authors achieved 73% accu-

racy for two instrument mixtures down to 66% accuracy for five instrument mixtures

[146, 214, 215, 216]. However, this study considered a very small dataset including

only 26 examples in the polyphonic test sets. This approach relies of temporal model

which averages the classification over many small individual time frames.

Matrix factorization has also been attempted to separate two instruments [217],

extract drum sounds from other harmonic sounds [218, 219, 220], separate vocals from

musical accompaniment [221], and extract speech from background music [222].
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Recently, studies have shown close relationships between NMF and both proba-

bilistic latent semantic analysis (PLSA) and probabilistic latent component analysis

(PLCA) [223]. Grindlay and Ellis attempted PLSA for polyphonic transcription in-

cluding instrument identification. The authors modeled individual instruments as

spectrograms containing a joint distribution of time and frequency. The authors

considered mixtures to be weighted combinations of these instrument subspaces, es-

timating the unknown parameters using the EM algorithm. On a large set of 34

instruments, the authors achieved 45% recognition for two instruments, but only

26% recognition of four instruments [224, 225, 226]. This study was focused on

transcription, averaging instrument recognition over many times frames and the data

consisted of long musical examples in which presumably not all instruments were

playing concurrently or perhaps contains moments of musical silence (rests). The

frames containing only one instrument or none at all likely artificially inflate their

results.

A more recent study using PLCA for instrument identification demonstrated im-

proved recognition, but only for mixtures of two instruments drawn from a set of

four instruments [227]. Bentos and Dixon created a shift-invariant PLCA system for

polyphonic transcription achieving and a frame-wise F-measure of 45% instrument

recognition in a sample four voice recording [228, 229].

Another study attempted a probabilistic mixture model decomposition in which

the probability density function of an observed mixture note is estimated as a weighted

sum approximation of time-frequency models for individual notes. The probability

of the existence of an instrument playing a specific pitch is represented as a weight

coefficient, which is estimated using the Expectation-Maximization (EM) algorithm.

Training over a set of 14 musical instruments, the authors achieved 75% accuracy
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for two instruments down to 62% accuracy for four instrument mixtures [230]. This

approach relies on onset detection of the note and is a temporal model.

3.2.2.4 Computational Scene Analysis. Inspired by computational auditory scene

analysis, Vincent and Rodet represented the spectra of polyphonic mixtures as

weighted non-linear combinations of typical note spectra plus background noise, learn-

ing the prototypical spectra from a dataset of solo instruments. The authors search

for the combination of instruments with the highest probability of explaining the mix-

ture [231]. Another approach uses sinusoidal modeling and dimensionality reduction

to build prototypical spectro-temporal envelopes of different instruments. One study

used a graph partitioning algorithm to cluster these envelopes and classify a set of

six instruments, ranging from 83% accuracy in the single instrument case to 33% for

four instrument mixtures [232].

Wu et al. modeled the spectral envelope as a Gaussian mixture of harmonic mod-

els and onset attack models for each potential note present in a mixture. On a

dataset of six instruments and using a SVM to classify, the authors achieved 74.8%

accuracy for two instrument mixtures down to 50.7% for four instrument mixtures

using a customized metric for transcription accuracy over the times frames of the

musical excerpt [233]. Another series of studies modeled temporal-spectral envelopes

as Gaussian processes and used Euclidean distance to the prototypes as a classifi-

cation metric, achieving 95% accuracy for single instruments, 73% accuracy for two

instrument mixtures, and 54% for four instrument mixtures, however, drawing from

a limited set of only five instruments [234, 235, 236].
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3.2.3 Summary

Although there have been several approaches to multi-label classification of poly-

phonic mixtures, these studies vary in their choices of feature, classification algo-

rithms, datasets, and evaluation metrics, and the reported results are not comparable.

Furthermore, these approaches suffer many limitations in their datasets including the

use of synthetic data [184, 185], consideration of a examples of single notes and only

one musical interval [163, 183], evaluation of only a small instrument set of only four

or five instruments [163, 179, 183, 189, 236].

Many of these approaches require temporal features [32, 35, 189, 191, 192, 231, 232]

and report frame-based accuracy measures. Some approaches are not scalable as the

number of labels increase [33, 177, 178]. Others hand-picked multi-label pairings,

evading the multi-label problem [194]. Some studies require prior knowledge of the

frequencies or timing information of the notes [181, 230], an expectation unrealistic

for real-world data. Finally others of these studies reported in this chapter have

goals that differ from multi-label classification including transcription, in which test

examples contain passages of individual instruments [226, 229, 233], identification of

instrument as present at some point in a musical except [186], or ability to identify

only one instrument from a mix and ignoring the others [182].
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CHAPTER 4

SINGLE INSTRUMENT CLASSIFICATION

In this chapter, we investigate classification of single, monophonic musical instru-

ments using several different Bayesian network structures and a feature extraction

scheme based on a psychoacoustic definition of timbre. This early work heavily influ-

enced our subsequent approaches, including our choice of datasets, our cross-dataset

experimental design, and our feature extraction technique. The results present a

seminal use of graphical models in the task of musical instrument classification, and

are compared to the baseline algorithms of support vector machines (SVM) and a

k-nearest neighbor (k-NN) classifier.

4.1 Datasets and Feature Extraction

Feature extraction is a form of dimensionality reduction in which, for the purposes

of this task, the audio files are transformed to a small vector of highly relevant numeric

features. Recently, attention in the literature has centered on the task of feature

identification (see [36] for a review) rather than on the choice of learning strategy. In

addition to differing datasets, most of the studies in the literature have used varied sets

of features, rendering many direct comparisons of studies in the literature impossible.

In order to compare our Bayesian approach to timbre classification to the methods

commonly used in the literature, we create a dataset, define a spectral-based feature

extraction scheme − which is a preliminary version of our more complete feature

extraction scheme described later in this dissertation, and empirically compare our
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Table 4.1: EastWest dataset of 24 instruments sorted by instrument family.

Strings Woodwinds Brass Percussion
Piccolo
Flute

Violin Alto Flute Chimes
Viola Clarinet French Horn Glockenspiel
Cello Bass Clarinet Trumpet Vibraphone

Contrabass Oboe Trombone Xylophone
Harp English Horn Tuba Timpani

Bassoon
Contrabassoon

Organ

Bayesian classifiers to a k-NN and two SVM classifiers. Additionally, we test our

feature extraction scheme and our classifiers on the publicly available MIS dataset.

4.1.1 EastWest Dataset

For our experiments, in addition to the MIS dataset described in the next section,

we create a dataset (EastWest) that contains 1000 audio examples for each musical

instrument, covering the 24 different orchestral instruments shown in Table 4.1. Each

audio file is two seconds in duration, consisting of the instrument sustaining a single

note for one second, and time before and after to capture the attack and the resonant

decay, respectively. The audio samples were created using the EastWest Symphonic

Orchestra sample library [237] at the MONtana STudio for Electronics and Rhythm

(MONSTER) at Montana State University.

Figure 4.1 shows an overview of the data generation process. For each musical

instrument, the Kontakt Virtual Studio Technology (VST) player [238] loads the

respective samples from the EastWest sample library. For each musical example,

a MIDI control sequence is sent from a Java program to the Kontakt sampler for
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Figure 4.1: For a selected pitch and dynamic level, MIDI control signals are transmit-
ted to the Kontakt VST player. The VST player renders an audio signal corresponding
to the parameters of the MIDI messages. This signal is then recorded by another Java
program and the resulting sample is saved to disc as a WAV file.

rendering to audio. The interaction between Java and the VST player is handled

by the jVSTwRapper interface [239]. Using the EastWest Symphonic Library, the

VST player produces an audio signal that corresponds to the parameters of the MIDI

message. The resulting audio stream is recorded in another Java program using the

javax.sound package. The samples are recorded at a 44.1 kHz sampling rate, 16-bits

per sample, and stored as a single channel waveform audio file (WAV).

The pitch is randomly sampled uniformly with replacement covering the entire

musical range of the instrument. The dynamic level is also sampled uniformly with

replacement of the MIDI velocity parameter in the range [40, 105], covering the dy-

namic range pianissimo to fortissimo. In total, there are 1000 audio samples for each

of the 24 instruments, yielding 24,000 total examples.

The dataset is then normalized to the range [0, 1] using the audio utility normalize

[240]. The files are batch normalized to scale the loudest gain in any of the files to

a value of one and adjusting all the other files by this offset. This method preserves

the relative dynamic levels between example files.
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Table 4.2: MIS dataset of 25 instruments sorted by instrument family.

Strings Woodwinds Brass
Piano Alto Flute
Guitar Flute
Violin Bass Flute French Horn
Viola Soprano Saxophone Trumpet
Cello Alto Saxophone Trombone
Bass Bb Clarinet Bass Trombone

Violin Pizzicato Eb Clarinet Tuba
Viola Pizzicato Bass Clarinet
Cello Pizzicato Oboe
Bass Pizzicato Bassoon

4.1.2 MIS Dataset

The MIS dataset (Musical Instrument Samples), created by the Electronic Music

Studios at the University of Iowa, contains scales of 21 different musical instruments

each at three different dynamic levels: pianissimo, mezzoforte, and fortissimo [241].

We use a subset of the instruments from the MIS dataset in later experiments, de-

scribed in Chapters 6 − 9, and is discussed in more detail in Section 5.1.2.

We parsed these scales into individual files each containing a single note using the

Sound eXchange (SoX) audio program [242]. For the purposes of these experiments,

the bowed and pizzicati samples of the Violin, Viola, Cello, and Contrabass are

considered to be eight separate classes. This dataset contains 4521 samples covering

the 25 different instrument classes shown in Table 4.2. The number of samples for each

instrument varies, ranging from 70 examples of the Bass Trombone up to 352 examples

of the Cello. The samples are remixed in mono, 44.1 kHz, 16-bit, clipped to two

seconds in duration, and batch normalized to the range [0, 1] using the normalization

strategy described in the previous section.
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4.1.3 Feature Extraction

Each audio sample is transformed to the frequency domain using an FFT. The

signal is first divided into equal width time windows. The number of time windows is

selected to be twenty to yield 100-millisecond windows. Each of these 100-millisecond

time windows is analyzed using a fast Fourier transform (FFT) to transform the data

from the time domain into the frequency domain. This FFT transformation yields

an amplitude value for each frequency point present in the analysis.

Frequency perception is a logarithmic concept but FFT analysis provides a resolu-

tion across a linear Hertz scale. Therefore, for example, the analysis provides a much

lower resolution for the lowest note of the piano compared to the resolution of the

highest note. In order to group nearby frequencies into a single window, the vector

is divided into ten exponentially increasing windows, where each frequency window

is twice the size of the previous window, covering the range [0, 22050] Hertz. This

scheme allows the system to generalize over musical pitch.

Ten frequency windows are selected and for each of the ten frequency windows,

the peak amplitude is extracted as the feature. The feature set for a single musical

instrument example consists of ten frequency windows j for each of twenty time

windows i, yielding 200 features per audio example. The feature extraction scheme

is outlined in Figure 4.2.

These 200 continuous features, ranging [0, 1000], are discretized into a variable

number of bins using a supervised entropy-based binning scheme [243]. Entropy

provides a measure of purity of a certain interval. Let k correspond to the number

of class labels and pij correspond to the conditional probability of class j occuring in
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Figure 4.2: Each two second example is partitioned into twenty equal length windows.
FFT analysis is performed on each 100 millisecond time window. The FFT analysis
for i=10 is depicted. The FFT output is partitioned into ten exponentially increasing
windows. For readability, only the first seven frequency windows are depicted above.
The peak frequency from each window is extracted and used as a feature.
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the ith interval. The entropy hi of the interval i is given by the equation:

hi = −
k∑
i=1

pij log pij (4.1)

The total entropy H of the discretization is the weighted average of the individual

entropies:

H =
n∑
i=1

wihi (4.2)

where m is the number of values in the dataset, wi = mi/m is the fraction of the

values in the ith interval, and n is the number of intervals.

Entropy based discretization considers all possible bisections of an interval, com-

putes the associated entropies, and retains the bisection with the lowest entropy. The

process continues by selecting the next interval with the highest entropy and repeating

the process until the stopping criterion, given by [244], is reached.

This feature set attempts to capture the unique timbre of the each musical in-

strument by generalizing the changes in amplitude of groups of nearby partials over

time for each instrument. Examples of the feature set for four musical instruments

are visualized in Figures 4.3a - 4.3d.

4.2 Models and Experimental Design

On these datasets, these experiments compare the performance of several Bayesian

model structures in the task of musical instrument classification (see Section 2.3.4).

The first model described is the näıve Bayes classifier. The remaining three Bayesian

networks consist of variations of a grid-augmented näıve Bayes model, each adding

different conditional dependencies in the time and frequency domains. This novel
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(a) Violin (b) Trumpet

(c) Clarinet (d) Xylophone

Figure 4.3: Visualization of the feature set for four different musical instruments each
playing middle C at a mezzoforte dynamic level.
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topology is a unique variation of a tree-augmented näıve Bayes structure and allows

modeling dependencies in two dimensions [245].

For these descriptions, let f ij be the peak amplitude feature f at frequency window

j for time window i, where 0 < i ≤ 20 and 0 < j ≤ 10.

4.2.1 Näıve Bayes

For a baseline Bayesian model, we chose the common näıve Bayes classifier (NB).

In the NB model, all evidence nodes are conditionally independent of each other,

given the class. The formula for NB is shown as Equation 4.3 in which P (c) is the

class prior and P (f | c) is the probability of a single feature within the feature set,

given a particular class c. The NB network is shown graphically in Figure 4.4a.

P (c | f) = P (c)×
∏
f∈f

P (f | c) (4.3)

4.2.2 Frequency Dependencies

The second model is a Bayesian network with frequency dependencies (BN-F), in

which each feature f ij is conditionally dependent on the previous frequency feature

f ij−1 within a single time window as shown in Figure 4.4b, denoted as f ij−1 → f ij .

Equation line 4.4a shows the class prior and the probability of the first row of the

grid of features while line 4.4b defines the probability of the remaining features. There
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(a) Näıve Bayesian network (NB)
(b) Bayesian network with frequency depen-
dencies (BN-F)

(c) Bayesian network with time dependen-
cies (BN-T)

(d) Bayesian network with frequency and
time dependencies (BN-FT)

Figure 4.4: Structure of the different Bayesian networks.
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are no dependencies between the different time windows.

P (c | f) = P (c)×
20∏
i=1

P (f i1 | c) (4.4a)

×

(
20∏
i=1

10∏
j=2

P (f ij | f ij−1, c)

)
(4.4b)

4.2.3 Time Dependencies

The third model, a Bayesian network with time dependencies (BN-T), contains

conditional dependencies of the form f i−1j → f ij in the time domain, but contains no

dependencies in the frequency domain (see Figure 4.4c). Equation line 4.5a shows

the class prior and the probability of the first column of the grid of features while line

4.5b defines the probability of the remaining features.

P (c | f) = P (c)×
10∏
j=1

P (f 1
j | c) (4.5a)

×

(
20∏
i=2

10∏
j=1

P (f ij | f i−1j , c)

)
(4.5b)

4.2.4 Frequency and Time Dependencies

The final model, a Bayesian network with both time and frequency dependencies

(BN-FT), is shown in Figure 4.4d. The BN-FT model is a combination of BN-F and

BN-T and contains dependencies of the form f i−1j → f ij and f ij−1 → f ij . Equation

line 4.6a shows the class prior and the probability of the upper-leftmost node (f 1
1 ) of

the feature grid. Line 4.6b shows the probability of first column of the grid, line 4.6c,
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that of the first row of the grid, and line 4.6d, that of the remaining features.

P (c | f) = P (c)× P (f 1
1 | c) (4.6a)

×

(
20∏
i=2

P (f i1 | f i−11 , c)

)
(4.6b)

×

(
10∏
j=2

P (f 1
j | f 1

j−1, c)

)
(4.6c)

×

(
20∏
i=2

10∏
j=2

P (f ij | f i−1j , f ij−1, c)

)
(4.6d)

4.2.5 Baseline Algorithms

To explore the advantages of time and frequency dependencies between features,

the accuracies of the grid-augmented Bayesian models are compared with two support

vector machines, a k-nearest neighbor classifier, and näıve Bayes. SVM and k-NN

are chosen as the baseline algorithms for comparison to the Bayesian networks given

the prevalence of these algorithms in the literature. These algorithms are described

in Section 2.3.

For the SVM, we selected both a linear (SVM-L) and polynomial kernel (see

Equation 2.3) where δ = 2 (SVM-Q). We also examined a radial basis function kernel

and sigmoidal kernel; both scored at chance and were subsequently not included in

the experiments. For k-NN, we empirically examined values of k from 1 to 10. k-NN

with k = 1 achieved the highest accuracy and was selected for use in all experiments.

4.2.6 Experimental Design

All experiments were run using ten-fold stratified cross-validation for training

and testing. For the Bayesian networks, the parameter learning stage consisted of
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constructing the conditional probability tables (CPT) using counts from the training

data. For all the Bayesian networks, the worst case size complexity of any variable’s

CPT is O(n · ap) where n = 200 is the number of features, 9 ≤ a ≤ 42 is the number

of discretized states for any variable, and p is the maximum number of parents. For

the most complex model, the BN-FT model, p ≤ 3 for all variables.

In the testing phase, any event unseen in the training data results yields a zero

probability of the entire feature vector. To prevent this, we used the common tech-

nique of additive smoothing:

P (f ij) =
xi + α

N + α · d
(4.7)

where xi
N

is the probability of feature xi, as indicated in the training data, and d is

the total number of features [246]. The parameter α adds a small number of pseudo-

examples to each possible feature value, eliminating a possible count of zero that

might result in a zero probability. A value of α = 0.5 was used in all experiments.

4.3 Experiments and Results

To test the utility of conditional dependencies between variables in the frequency

and time realms, we conducted four experiments. In the first, we compare our

Bayesian models against the baseline models on the EastWest data set in both the

tasks of instrument identification and identification of musical instrument family. In

the second experiment, we explore classification accuracy on instruments within the

same musical family. In the third experiment we examine classification accuracy as

a function of the number of instrument samples for each instrument. Lastly, in the
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Table 4.3: Experiment 1 - Classification Accuracy (%) by instrument (n = 24) and
by instrument family (n = 4) for the East West Dataset.

Algorithm Instrument Family
NB 81.57 80.94

BN-F 97.53 92.87
BN-T 96.36 94.39

BN-FT 98.25 97.09

SVM-L 81.46 85.57
SVM-Q 93.55 95.65
k-NN 92.99 97.31

the fourth experiment we examine the classification accuracy of all algorithms on the

MIS data set.

4.3.1 Experiment 1: Instrument and Family Identification

The first experiment examines classification accuracy for both instrument iden-

tification (n = 24) and family identification (n = 4) on the EastWest dataset. The

results are shown in Table 4.3. The statistical significances using a paired student

t-test with p ≤ 0.01 are shown in Table 4.4.

All of the Bayesian networks, with the exception of näıve Bayes, outperformed

both SVMs and k-NN. The model with frequency dependencies (BN-F) outperforms

the model with time dependencies (BN-T). The combination of both frequency and

time dependencies outperforms BN-F and BN-T in both tasks, more significantly so

in the family identification task.

In many previous experiments, the family identification problem was found to

be an easier problem than the instrument identification problem. Conversely, in

this experiment, the Bayesian networks perform less well on the family identification

problem compared to the instrument identification problem. Both SVMs and k-
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Table 4.4: Statistical significance of Experiment 1 using paired t-test with p < 0.01.
Each cell indicates if the algorithm listed in the column performed significantly better
(+), significantly worse (−), or not significantly different (0) when compared to the
algorithm listed in the row. The first value is the significance of the instrument
(n = 24) experiment and the second shows the family (n = 4) experiment.

Algorithm NB BN-F BN-T BN-FT SVM-L SVM-Q k-NN
NB — +/+ +/+ +/+ 0/+ +/+ +/+

BN-F −/− — −/+ +/+ −/− −/+ −/+
BN-T −/− +/− — +/+ −/− −/+ −/+

BN-FT −/− −/− −/− — −/− −/− −/0
SVM-L 0/− +/+ +/+ +/+ — +/+ +/+
SVM-Q −/− +/− +/− +/+ −/− — 0/+
k-NN −/− +/− +/− +/0 −/− 0/− —

NN, however, both yield improved classification accuracy on the family identification

problem, consistent with the literature.

Confusion matrices for the family identification task are shown in Table 4.5. The

Bayesian models show increased confusion between brass and woodwind instruments

compared to string or percussion instruments. The SVMs, k-NN and näıve Bayes, on

the other hand, more often confuses strings with either brass or woodwind compared

to the Bayesian networks.

4.3.2 Experiment 2: Instrument Identification within Family

This experiment examines instrument classification by instrument family on the

EastWest dataset. Unlike Experiment 1, this experiment trains and tests only on

instruments within the same family (see Table 4.6). The dataset was divided into

four separate datasets, one for each family, eliminating the possibility of confusion

with instruments outside its own family. Ten-fold cross-validation is used on each of

the family datasets.
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Table 4.5: Confusion matrices for the family identification on the EastWest dataset,
showing classification counts. Bold values indicate a correct classification.

Algorithm S B W P ← classified as

NB

4470 21 327 162 String
24 3021 944 11 Brass
277 1923 7799 1 Woodwind
220 320 324 4134 Percussion

BN-F

4865 15 107 13 String
3 3756 239 2 Brass
97 883 9009 111 Woodwind
123 86 133 4658 Percussion

BN-T

4921 0 34 45 String
13 3612 364 11 Brass
173 600 9223 4 Woodwind
27 55 21 4897 Percussion

BN-FT

4923 3 67 7 String
1 3627 372 0 Brass
19 198 9783 0 Woodwind
4 15 13 4968 Percussion

SVM-L

4692 11 254 43 String
47 1265 2685 3 Brass
140 226 9626 8 Woodwind
25 3 19 4953 Percussion

SVM-Q

4670 69 188 73 String
84 3667 245 4 Brass
119 190 9680 11 Woodwind
42 5 14 4939 Percussion

k-NN

4792 56 107 45 String
40 3795 162 3 Brass
43 145 9802 10 Woodwind
22 6 6 4966 Percussion
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Table 4.6: Experiment 2 - Classification accuracy (%) on the EastWest dataset by
instrument family.

Algorithm Strings Woodwinds Brass Percussion
NB 89.76 84.58 92.43 99.64

BN-F 99.86 95.89 99.70 99.94
BN-T 99.12 95.56 99.36 99.92

BN-FT 99.60 97.86 99.58 99.96
SVM-L 98.66 92.01 98.65 98.18
SVM-Q 96.82 94.62 97.35 98.48
k-NN 98.72 92.67 98.63 99.72

Interestingly, the classification accuracy of strings, brass, and percussion exceeds

99% for all the Bayesian networks except näıve Bayes, whereas woodwinds, the largest

set of instruments (n = 10), achieves 97.86% accuracy. For the strings, brass, and

percussion, the BN-F and BN-FT achieves comparable accuracy, however, BN-FT

outperforms BN-F on the more difficult woodwind set. The percussion set achieve

the highest accuracy for all algorithms, including the SVMs and k-NN.

4.3.3 Experiment 3: Accuracy by Dataset Size

This experiment examines the classification accuracy by instrument (n = 24) on

the EastWest dataset, similar to Experiment 1, but as the dataset size is varied from

100 to 1000 in increments of 100 for each instrument (see Figure 4.5). The Bayesian

network models converge to their respective optimal accuracy between 500 and 800

data samples per instrument. However, both the SVMs and k-NN continue to improve

as the number of examples increase. It is possible that both would continue to improve

in accuracy if given more examples beyond 1000 examples per instrument. However,

all the Bayesian models achieved much higher accuracy with far fewer examples than

either SVMs or k-NN.
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Figure 4.5: Experiment 3 - Accuracy (%) on the EastWest dataset by number of
examples per instrument for each model.

4.3.4 Experiment 4: MIS Dataset

The final experiment examined classification accuracy for both instrument iden-

tification (n = 25) and family identification (n = 3) on the MIS dataset. The results

are shown in Table 4.7.

As in Experiment 1, all of the Bayesian networks, again with the exception of

näıve Bayes, outperform both SVMs and k-NN. The model with frequency depen-

dencies outperforms the model with time dependencies. BN-FT and BN-F achieves

comparable accuracies in the instrument task. The combination of both frequency

and time dependencies outperforms BN-F and BN-T in the family identification task.

The MIS dataset contains fewer examples of each instrument compared to the

EastWest dataset, and several instruments in the MIS dataset contain less than 100

examples each. Nevertheless, these results on the MIS dataset are consistent with
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Table 4.7: Experiment 4 - Classification Accuracy (%) by instrument (n = 25) and
by instrument family (n = 3) for the MIS Dataset.

Algorithm Instrument Family
NB 46.34 73.30

BN-F 80.76 81.82
BN-T 75.25 81.24

BN-FT 80.31 87.33

SVM-L 65.36 75.03
SVM-Q 65.89 83.19
k-NN 72.78 89.67

Table 4.8: Statistical significance of Experiment 4 using paired t-test with p < 0.01.
Each cell indicates if the algorithm listed in the column performed significantly better
(+), significantly worse (−), or not significantly different (0) when compared to the
algorithm listed in the row. The first value is the significance of the instrument
(n = 25) experiment and the second shows the family (n = 3) experiment.

Algorithm NB BN-F BN-T BN-FT SVM-L SVM-Q k-NN
NB — +/+ +/+ +/+ +/0 +/+ +/+

BN-F −/− — −/0 0/+ −/− −/0 −/+
BN-T −/− +/0 — +/+ −/− −/0 0/+

BN-FT −/− 0/− −/− — −/− −/− −/+
SVM-L −/0 +/+ +/+ +/+ — 0/+ +/+
SVM-Q −/− +/0 +/0 +/+ 0/− — +/+
k-NN −/− +/− 0/− +/− −/− −/− —



80

Table 4.9: Confusion matrices for the family identification on the MIS dataset, show-
ing classification counts. Bold values indicate a correct classification.

Algorithm S B W ← classified as

NB
1652 425 450 String

27 403 130 Brass
99 76 1259 Woodwind

BN-F
2013 239 275 String

12 438 110 Brass
129 57 1248 Woodwind

BN-T
1962 157 408 String

17 413 130 Brass
110 26 1298 Woodwind

BN-FT
2256 41 230 String

35 413 112 Brass
144 11 1279 Woodwind

SVM-L
2293 78 156 String
225 183 152 Brass
486 32 916 Woodwind

SVM-Q
2427 41 59 String
211 286 63 Brass
338 48 1048 Woodwind

k-NN
2303 74 150 String

18 501 41 Brass
102 82 1250 Woodwind

the our results on the EastWest dataset when considering a smaller dataset (see

Figure 4.5).

4.4 Discussion

Many previous approaches, such as [105], reported the greatest difficulty with

classifying string instruments over any other type of instrument. In our experiments,

the Bayesian network models, however, had the greatest difficulty with woodwind
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instruments, although the Bayesian model still outperformed both SVMs and k-NN

on the woodwind dataset in Experiment 2. All algorithms tested perform extremely

well on the percussion set, given the pronounced attack and immediate decay of these

types of instruments, consistent with results from the literature.

The BN-FT model achieves comparable accuracy on both the instrument classifi-

cation problem (n=24) and the family identification problem (n=4) on the EastWest

dataset. However, the BN-F and BN-T models each achieves better accuracy on indi-

vidual instrument classification than they achieve on family identification. This result

suggests that neither the frequency nor time dependencies themselves are sufficient

to generalize across musical instrument families, but the combination of both sets of

dependencies are needed. For both datasets, k-NN achieves much higher accuracy

on the family identification problem compared to the instrument identification prob-

lem, unsurprisingly, since k-NN is known not to scale well as the number of classes

increases [247]. Although the results of k-NN and the BN-FT model are competitive

on the EastWest dataset (n=4), k-NN outperforms the BN-FT model on the family

identification task on the MIS dataset (n=3).

As shown in Tables 4.5 and 4.9, the Bayesian models more often confuse brass

for woodwind instruments compared to either string or percussion. This is perhaps

unsurprising as our feature extraction scheme sought to capture the conditional re-

lationships of changes in amplitude of frequencies over time. Woodwind and brass

instruments are both classified as aerophones, instruments that generate sound by vi-

brating air, under the [248] scientific classification of musical instruments, suggesting

that our feature extraction scheme may better model the physical acoustics of the

instruments.

As Deng et al. notes, the choice of feature extraction scheme is crucial to the

success of any music instrument classification system [36]. Previous attempts to
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classify musical instruments have relied upon feature extraction schemes common in

speech processing, most commonly the Mel-frequency cepstral coefficients (MFCC).

Agostini et al. used a sparse set of nine spectral features to achieve 78.5% and 69.7%

accuracy classifying 20 and 27 instruments, respectively, using an SVM [105]. Our

feature extraction scheme, using 200 time and frequency varying features, achieved

93.6% accuracy classifying 24 instruments also using an SVM. Although not directly

comparable, these results imply that our feature extraction scheme better handles

more instrument classes. While our system employs a considerably larger feature

set, both feature extraction schemes are bounded by the O(n log n) time complexity

of the fast Fourier transform, where n is the number of samples in the audio file.

Therefore we find no disadvantages in using a larger feature set.

The goal of the experiments presented in this chapter is to explore the utility of

statistical dependencies of the features in both the time and frequency domains. In

these experiments, the structure of the Bayesian models are tied to the feature extrac-

tion scheme employed. Therefore it is not possible to compare our feature extraction

scheme to other schemes common in the literature using the Bayesian networks. Our

experiments independently demonstrated the success of Bayesian classifiers on both

the EastWest and MIS datasets. Livshin et al. noted the importance of cross-database

comparison [34]. The examples in the MIS dataset are longer in duration than those

in the EastWest dataset. Because our feature extraction scheme relies on temporal

and frequency partitions, a cross-database comparison is not possible as the features

do not align between the two datasets. In Chapters 6 and 7, we refine our feature

extraction scheme to allow for alignment of musical partials in an approach designed

to be extensible to feature extraction from polyphonic signals. Additionally, we focus

on cross-dataset validation in our subsequent experiments in Chapters 8 and 9.
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Anecdotally, our results, when compared to previously published results, indicate

the value of our feature extraction scheme’s ability to define statistical dependencies

between features. Perhaps the feature extraction schemes that are optimized for

speech recognition tasks may not be optimal in the musical instrument recognition

task. Furthermore, these results also indicate that statistical dependencies modeling

the changes in amplitude of partials over time, inspired by the human perception of

timbre, are also useful in computational models.

4.5 Conclusion

In this chapter, we have presented a method for feature extraction, inspired by

the psychoacoustic definition of timbre, that attempts to generalize the timbre of

musical instruments probabilistically rather than rely on feature extraction schemes

standard in speech recognition tasks. Furthermore, we demonstrate that modeling

conditional dependencies between both time and frequency (BN-FT) improves clas-

sification accuracy over either dependency individually (BN-F, BN-T) or none at all

(NB).

This chapter introduces the use of Bayesian networks for monophonic instrument

classification as well as a novel topology, the grid-augmented näıve Bayes model. The

experiments presented here demonstrate that Bayesian networks are a valid approach

to the classification of individual musical instruments. Overall, the BN-F, BN-T,

and BN-FT models outperformed näıve Bayes, both SVMs, and k-NN. In addition to

outperforming the SVMs and k-NN, the Bayesian models achieved desirable accuracy

with far fewer examples and with less execution time, albeit with a larger feature

space than other approaches in the literature.
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This early work in solo instrument classification heavily influenced the approaches

presented in the reminder of this dissertation. In our subsequent work, we moved

away from a self-generated dataset to instead focus on any database mentioned in

the literature that is publicly obtainable. These datasets are discussed in detail in

Chapter 5. Our feature extraction scheme presented in this Chapter, like most ap-

proaches for monophonic classification, is not scalable to the more complex polyphonic

classification problem because we do not attempt to estimate any source separation.

Guided by these preliminary experiments, we adapt our feature extraction approach

to scale to the polyphonic mixture problem and learn a unique feature space for each

musical instrument, capturing a feature space designed to minimize interference be-

tween spectral peaks of contributing sources. Our binary-relevance feature extraction

scheme is discussed in Chapters 6 and 7. Lastly, we observed the need to validate any

approach across multiple datasets in order to demonstrate that the feature extraction

scheme indeed captures information about musical timbre rather than specifics of a

single dataset. In this dissertation, we focus on demonstrating the generalizability of

our approach, shown through our experiments in Chapters 8 and 9.
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CHAPTER 5

DATASETS AND SIGNAL PROCESSING

Many of the approaches to music instrument classification are marred by signifi-

cant limitations in the availability of data. Many studies consider only small datasets,

containing only a limited number of instruments each with only few audio examples

and rarely consider examples played by multiple performers, different instrument

models, or differences in dynamic levels of the notes [35]. Rarely do studies consider

different dataset sources which inevitably contain differences in recording procedures,

equipment, and levels, although there are a few exceptions [249].

Livshin and Rodet demonstrated that many approaches to musical instrument

classification do not generalize from one dataset to another [34]. The authors consid-

ered five datasets: IRCAM Studio Online (SOL), University of Iowa (IOWA), McGill

Master Samples (McGill), and two small samples collections Pro and Vi collections.

The IOWA and McGill datasets corresponds to our datasets MIS and MUMS, re-

spectively, and the other three datasets were not available to us. Considering seven

instruments, the authors performed cross dataset evaluations and discovered accu-

racies of 20% to 60% when training on one dataset and testing on another, despite

classification results of over 90% for any single dataset using cross-validation (see

Table 5.1).

If the goal of the Music Information Retrieval community is to develop means to

automatically identify timbre from real-world recordings and commercial data collec-

tions, approaches to musical instrument identification must be designed with the goal

of generalizability across multiple datasets recorded under differing conditions.
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Table 5.1: Cross dataset validation results given by Livshin and Rodet [34]. The
values along the diagonal, shown in parentheses, represent cross-validated self classi-
fication. The other results indicate cross-dataset validation, showing the dataset used
to train in each row and the testing dataset listed in each column.

classified by SOL IOWA McGill Pro Vi
SOL (98.24) 39.93 20.14 21.51 58.17

IOWA 51.43 (97.75) 35.22 29.17 58.42
McGill 51.76 51.76 (60.78) 23.53 48.23

Pro 54.43 41.77 26.58 (48.04) 58.86
Vi 63.45 48.59 30.12 20.88 (64.42)

5.1 Dataset Sources

For this dissertation, our goal was to find multiple and varied datasets that contain

a large set of musical instruments in common. The data used in the experiments were

obtained from four different sources and contain 13 different musical instruments in

common. Although a common practice in studies of human perception [250] and

machine classification [107] of timbre, we chose not to use any artificially synthesized

musical instrument samples, nor any examples generated by interpolating musical

samples. This section discusses the original sources of the datasets used in this work.

5.1.1 McGill University Master Samples

The McGill University Master Samples (MUMS) is an 11 volume collection of

compact discs, published 1987-1989 [251, 252]. MUMS is a library of isolated sample

tones from a wide number of musical instruments, including most standard orches-

tral instruments as well as some popular musical instruments. Each instrument was

recorded separately at a 24 bit, 44.1 kHz sampling rate. The collection covers the

entire pitch range of each of the 34 instruments in the collection. This collection
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contains examples of musical scales, each played at a single dynamic level and is the

smallest of our four datasets used in our experiments (see Section 5.2 ). Although

once widely used in the musical instrument classification literature, the data sources

were sold by McGill University to a commercial entity and the dataset is no longer

available for purchase. For this work, we obtained copies of the published compact

disc collection from an academic library archive. Portions of the MUMS have been

used in a few polyphonic studies [151, 163, 198, 214].

5.1.2 Iowa Musical Instrument Samples

The University of Iowa Musical Instrument Samples (MIS) dataset was created

by the Electronic Music Studios at the University of Iowa, beginning in 1997, and the

collection was significantly expanded in 2011. These examples were recorded with

a Neumann KM 84 cardioid condenser microphone in an anechoic chamber at the

Wendell Johnson Speech and Hearing Center at the University of Iowa, and stored as

16 bit, 44.1 kHz sampling rate audio files [241]. Some of the examples recorded after

2011 were recorded in an ultra-high quality 24 bit, 96 kHz stereo format.

The samples are organized into chromatic scales played at pp, mf, and ff dynamic

levels throughout the full range of each of the 23 instruments. Some instruments

were performed with more than one technique, including arco, pizzicato, vibrato, and

non-vibrato. The Iowa dataset is freely available to download from the University of

Iowa Electronic Music Studios1 and has been used in several polyphonic classification

studies [151, 198, 193, 214].

1http://theremin.music.uiowa.edu/MIS.html

http://theremin.music.uiowa.edu/MIS.html
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5.1.3 Real-World Computing Collection

The Real World Computing (RWC) Music Database is a database created by the

RWC Music Database Sub-Working Group of the Real World Computing Partner-

ship (RWCP) of Japan. The RWC Music Database is a large-scale music database

compiled specifically for research purposes and includes six separate music datasets:

1. Popular Music Database (100 songs)

2. Royalty-Free Music Database (15 songs)

3. Classical Music Database (50 pieces)

4. Jazz Music Database (50 pieces)

5. Music Genre Database (100 pieces)

6. Musical Instrument Sound Database (50 instruments)

In this work, we use the Musical Instrument Sound Database which contains

a total of 50 different instruments. In addition to the common western orchestral

instruments, the collection also contains many traditional Japanese instruments. The

samples were recorded as CD quality audio files, 16 bit, 44.1 kHz sampling rate,

and contain instruments playing chromatic scales through the range possible for the

instrument.

The collection features each instrument playing a variety of playing styles, dynam-

ics, instrument manufacturers, and musicians. Each instrument set contains three

different instrument manufacturers each played by a different musician. Each con-

tains a variety of techniques or articulations, each played at three dynamic levels: pp,

mf, and ff. The entire instrument dataset contains 29.1 Gigabytes containing 91.6

hours of audio [253, 254]; however, we use only a subset of the musical instruments in

our experiments. Although the RWC dataset is a copyrighted collection, it is made

available for research purposes for the costs of duplication of media and shipping and
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handling. However, because there is a nominal cost required to obtain the collection,

the RWC dataset is less widely used in the literature than the aforementioned free

collections, despite the fact that the RWC collection is the largest source of musical

instrument samples currently available and therefore is increasing reported in the

polyphonic classification literature [193, 198, 213, 215, 216, 232, 234, 235].

5.1.4 Philharmonia Orchestra Sound Sample Collection

The Philharmonia Orchestra Sound Sample Collection (PHO) is a collection of

recordings of various musical instruments by the Philharmonia Orchestra in London

[255]. The samples are licensed for use under the Creative Commons Attribution-

ShareAlike License. The collection contains 18 common Western orchestral instru-

ments as well as numerous percussion instruments. The collection features instru-

ments playing notes of varying lengths, dynamics, and articulations. Unlike the other

three data sources, the PHO dataset provides recordings of individual notes rather

than musical scales, allowing omitting the file split step described in Section 5.3.1 for

this dataset.

The files are released in an MP3 format at a 44.1 kHz sampling frequency with

a bitrate varying between 64 and 96 kilobytes per second. Unlike the CD quality

audio of the other three datasets, these samples are of much lower audio quality.

For consistency of file format among the datasets, we convert these files to wav files.

However, it is important to note that this conversion process does not change the

underlying lower quality of the audio in this dataset. To our knowledge, this dataset

has not previously been used in any instrument classification studies.
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Table 5.2:

List of 13 instruments common the MUMS, MIS, RWC, and PHO datasets and the
number of examples per instrument in each dataset.

Family Instrument MUMS MIS RWC PHO

Brass

French Horn 74 55 1889 587
Trumpet 97 211 1972 416
Trombone 69 82 2743 796
Tuba 38 65 480 954

Woodwind

Flute 66 227 1084 813
Clarinet 37 139 1434 793
Alto Saxophone 14 193 1098 678
Oboe 32 91 773 557
Bassoon 32 64 1405 666

String

Violin 152 832 2862 800
Viola 144 583 2730 860
Cello 150 658 2629 825
Contrabass 138 671 3117 777

Total 1043 3871 24,216 9522

5.2 Common Instrument Set

Since a goal of this work is to validate the approach between different datasets,

we chose the set of instruments common all four datasets. Although these datasets

each contain additional instruments, only the 13 instruments shown in Table 5.2 are

present in all four datasets.

5.3 Pre-Processing

If in a higher quality format than CD quality audio, each sound file is downsampled

to a 44.1 kHz sampling rate with 16-bit per sample. Additionally, the examples are

mixed down to a single channel waveform if provided in a stereo track, such as many
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from the MIS dataset. For the lower quality PHO dataset, the audio was upsampled

from lower quality MP3 format to the aforementioned compact disc quality.

5.3.1 Splicing the Audio Files

Most of the original source files contain performers playing chromatic musical

scales of individual notes separated by moments of silence, with the exception of the

PHO dataset. The audio utility SoX [242] is used to detect the silence and split the

recordings into individual files, in which each file represents a single, isolated musical

note. All resulting files are checked to ensure they contain audio data and are not

silent files. Any tracks that do not contain any signal above the amplitude threshold

of -45 dB are flagged as silent and deleted. Among the resulting files, any silence

detected before or after the musical note was trimmed. This procedure aligns the

attack of each note to appear at the beginning of the sound file.

5.3.2 File Length

The various audio files differ in length of note played. Some notes, such as those

played with a staccato articulation, are as short as 0.2 seconds. Other notes are much

longer, up to several seconds in length. Since the resolution of the Fourier transform

scales with the length in time of input file, all sound files were set to be the same

length. This yields a consistent frequency resolution across all examples used in the

experiments. All files were set to be 1.0 second in length. If the musical note is

shorter than one second, silence was added to lengthen the file to be 1.0 seconds. If

the musical note sample is longer than one second, the file was trimmed to be exactly

1.0 second. Next, a fade in of 10 milliseconds and a fade out of 10 milliseconds was
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imposed to eliminate any potential discontinuities in the waveform resulting from the

trimming in the previous step.

In this work we examine spectral features in a single, static time window. In

future work we will examine temporal models that capture changes in the features

over time Numerous studies have emphasized the importance of the note’s attack in

timbre recognition [106, 249]. The process described here ensures each audio example

contains the note’s attack, even if the final decay and release of the note was not

considered.

5.3.3 Volume Normalization

All sound files are then batch normalized to the range [0,1] using the audio utility

normalize2. Within each dataset and for each instrument, the loudest gain in any

of the files is scaled to a value of one and the volume of all other files are adjusted

respectively. This batch normalization approach preserves the relative dynamic levels

between all the examples for each instrument within each dataset.

5.4 Signal Processing

Following the pre-processing procedures in the previous section, each audio file

consists of a single musical note with an immediate attack at the start of the audio file.

Figure 5.1 shows examples of time domain waveforms for four different instruments.

In this work, we are concerned with the extraction and analysis of spectral features

for use in machine learning experiments. In order to extract meaningful spectral

features from the audio file, each audio sample must be transformed from a time

2http://normalize.nongnu.org/
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(a) Violin (261.5 Hz) (b) Trumpet (261.5 Hz)

(c) Flute (440 Hz) (d) Clarinet (440 Hz)

Figure 5.1: Time domain views of four different musical instruments

domain waveform into a frequency domain view using a Fourier transformation (see

Section 2.1.4.3).

5.4.1 Fast Fourier Transform

On all audio examples, an FFT with a single time window the entire length of the

recording transforms the waveforms to the frequency domain. This transformation

estimates the energy levels of each of the frequency components of the signal, returning

a set of the relative energy levels indexed by frequency. Figure 5.2 show the frequency-

domain views of the spectra for the waveforms shown in Figure 5.1.
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(a) Violin (261.5 Hz) (b) Trumpet (261.5 Hz)

(c) Flute (440 Hz) (d) Clarinet (440 Hz)

Figure 5.2: Frequency domain views of four different musical instruments

5.4.2 Amplitude Scaling

On a linear scale, the amplitude levels of the upper harmonics appear irrelevant

compared to the dominating lower harmonics (Figure 5.3a). Because these peaks do

have significant energy, relative to local frequency neighborhoods, throughout this

work we consider a compression and use the logarithmic power spectral density of

each amplitude, a common practice in the field [213]. This transformation scales the

amplitudes by 10 · log 10, as shown in Figure 5.3b.

Throughout this work, all sound examples are processed in the manner described

in this section. We use this spectral data to learn instrument specific locations for

feature extraction, discussed in Chapter 6, and for feature extraction from training

and testing classifiers in Chapter 7.
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(a) Spectra of a Violin note (261 Hz).

(b) Spectra of the same Violin note, showing amplitudes on a logarithmic scale.

Figure 5.3: Waveform and spectra of a Violin note.
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5.5 Binary-Relevance Datasets

In this work, we examine a binary-relevance (BR) approach to multilabel classi-

fication discussed in Section 2.2.2.3. Therefore we train a classifier to identify the

presence or absence of an individual instrument in an audio example, creating a set

of k models for k instrument classes. For an audio signal containing an unknown

instrument, each of the k models classify the signal and the signal is classified as the

containing the instrument(s) corresponding to the instrument model that returned

the highest confidence.

To train and test the instrument-specific binary classifier, we organize the datasets

into BR datasets for each individual instrument. These are datasets containing only

examples of single instruments, and a separate dataset is created for each instrument.

Each instrument-specific dataset contains an equal number of examples of the target

instrument and other instruments.

More precisely, for each instrument i, we create a dataset Di in which 50% of the

dataset are examples of instrument i, assigned the positive class (+) label. The other

50% of the examples in the dataset are examples of other instruments, that is, any

instrument ¬i, which is assigned the negative class label (−). To select examples for

the negative class label, we randomly select one of the other twelve instruments and

then randomly select a sound example of the chosen instrument.

The files were chosen without regard to the dynamic level, and the binary-relevance

datasets contain samplings of all the possible dynamic levels available from the data

sources (see 5.1). Additionally an instrument-specific BR dataset Di is created for

each of the four data sources, and the BR datasets do not mix examples of the same
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instrument between datasets. Chapter 8 presents cross-dataset experiments in which

a classifier is trained with one dataset but tests on another dataset.

Since the number of examples of instrument i available differs between instruments

and datasets, the total size of each dataset Di is twice the value given in Table 5.2

for each instrument and dataset. When training instrument-specific BR classifiers,

features are extracted using the cluster signature for the positive instrument class

(see Chapter 6).

5.6 Polyphonic Datasets

In Chapter 9, we apply our feature extraction approach to classify audio mixtures

containing two to four different instruments playing simultaneously. Since the data

sources used in this work consist of examples of solo instruments, we create polyphonic

datasets containing mixtures of sets of solo instruments.

We begin by creating a dataset for duet mixtures of two instruments. For each

instrument i, we create 1000 mixtures containing instrument i and another instrument

¬i, chosen randomly from the same data source. Each signal is scaled by 0.5 and

added together. The resulting mixture is then normalized so that the single largest

amplitude is 1.0 and the other amplitudes are scaled accordingly. The process prevents

clipping of the mixed audio signal while preserving the relative difference in dynamic

level between the two examples being mixed.

This process is repeated for each instrument, resulting in 13,000 mixtures for

each of the four data sources. Instruments are not mixed between the four data

sources. Each of the four polyphonic datasets contains at least 1000 examples of each

instrument as well as variable number of additional examples, as the instrument was

chosen at random during the aforementioned selection process.
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We repeat this approach for mixtures of three and four instruments. Figure 5.4

shows the spectra of four examples, ranging from a solo note to a mixtures of two,

three, and four instruments. The mixtures contain at most one instance of an in-

dividual instrument, that is to say, no mixture contains two examples of the same

instrument. The examples mixed were selected without regard to the dynamic level,

so the resulting set of mixtures contain examples of various combinations of dynam-

ics. Preserving the relative dynamics of the source signals makes the polyphonic

classification task more difficult, as the quieter instrument signal is more likely to

be dominated by the louder instruments − especially in cases of constant musical

intervals that result in interference of the harmonics. However, this better represents

the challenges of real-world musical data.

5.7 Summary

In this chapter we discuss our sources for data for our later experiments, including

discussion of our pre-processing and signal processing procedures. We propose the

largest collections of datasets ever considered in a single- or multi-label classifica-

tion task. Lastly, we discuss our binary-relevant datasets, including monophonic

datasets for training and testing the the experiments presented in Chapter 8 and the

polyphonic datasets with mixtures of two, three, or four instruments, used in the

experiments in Chapter 9.
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(a) Spectra of one instrument.

(b) Spectra of two instruments mixed together.

Figure 5.4: Frequency domain view of mixtures of one to four instruments.
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(c) Spectra of three instruments mixed together.

(d) Spectra of four instruments mixed together.
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CHAPTER 6

INSTRUMENT SIGNATURES

In this chapter, we outline an approach for binary-relevance feature extraction for

the task of musical instrument classification. In Section 6.3, we propose a data-driven

approach to training instrument-specific spectral filters for use in feature extraction

in the classification of musical instruments. In Section 6.4, we present experimental

results demonstrating that the feature spaces learned for instruments from any one

dataset can be successfully used in feature extraction to classify the other datasets.

6.1 Motivation

In polyphonic mixtures of instruments, the harmonic partials of individual tones

are interleaved, and many of the feature extraction approaches that are successful

for classification of solo instruments are not extensible to polyphonic classification.

These feature extraction techniques often take summary statistics of the spectral

energy over large frequency ranges, unnecessarily grouping harmonics from different

sources in cases in which the contributing harmonics are near in frequency but not

necessarily overlapping.

Even among the binary-relevance approaches to multilabel classification of poly-

phonic mixtures (see Section 3.2), investigators use the same feature space for all the

instrument-specific binary classifiers. However, because of the nature of BR classifica-

tion, there is no requirement to use the same number of dimensions for each classifier,

nor the same types of features for each binary classifier. Researchers usually use

the same feature space for all binary classifiers because the features need only be
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extracted once for any unknown example to be classified, even though each binary

classifier must be queried. However, some studies suggest that features optimized for

a specific instrument increase recognition rates [198].

In this work, we propose a binary-relevance approach to feature extraction for

the multilabel classification of polyphonic mixtures. We present an approach to learn

instrument-specific locations of regions of spectral prominence, relative to each instru-

ment studied. This procedure permits a feature extraction technique catered to each

instrument and each BR classifier to use a different feature space. This approach does

come with the burden of requiring a feature extraction step for each binary classifier

when classifying an unknown example, a complexity avoided by the aforementioned

approaches that use only a single feature space.

6.2 Binary-Relevance Feature Extraction

In the task of feature selection optimization, a relevance subset of features is

selected from the set of all possible features. Such a feature subset may maximize

some criteria, such as the independence between selected features or the efficacy of a

classification algorithm using the subset of features. This chosen subset of features

would then be used in subsequent learning experiments while the features not selected

would be discarded.

Feature selection approaches are extended to multilabel data such that the se-

lection algorithm searches for a subset of features that optimize a multilabel loss

function [37]. In other words, the algorithm selects a subset of features that seem to

work the best for the greatest number of labels. In the field of text categorization,

a common approach uses a binary-relevance transformation in order to evaluate the
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discriminative ability of each feature with respect to each individual label. These

scores are aggregated in order to provide rankings of the feature’s utilities [256].

In feature selection, for both single label and multilabel classification, the algo-

rithms select a single subset of features from a set of possible features and the feature

extraction stage will use this same subset to extract features from all the examples.

While this approach is necessary for multiclass classification and for the algorithm

adaptation approach to multilabel classification, in binary-relevance multilabel clas-

sification each individual classifier need not share the same a feature space common

to all classifiers.

In this work, we propose a data-driven feature selection approach for supervised

binary-relevance multilabel classification in which each binary classifier gi for some

class label i is associated with its own feature vector Xi. Feature vectors Xi and

Xj, for class labels i and j respectively, need not share the the same feature space

nor contain the same number of features, i.e., |Xi| 6= |Xj|. In a supervised learning

context, we propose using training examples for a specific class label i to learn a

subset of features that best discriminate examples with label i from those with label

¬i. This approach will permit optimizing a unique subset of features for each binary

classifier.

Compared to the traditional feature extraction approach for multilabel classifica-

tion, this proposed approach does carry the additional overhead that features must be

extracted multiple times from each example, once for each binary classifier. Another

potential disadvantage of this approach is that it may exacerbate problems stemming

from the label independence assumption of the binary-relevance approach.
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6.3 Learning Instrument Signatures

Since we are using instrument-specific binary models for each different instrument,

we are concerned with studying the feature spaces on individual instruments. There-

fore, for the signature learning stage we examine audio examples containing only a

single instrument per file.

In this section, we describe our approach to locate and extract the harmonics

with significant spectral energy specific to each instrument and dataset. First, we

transform the audio signals to the frequency domain using an FFT with a single time

window (see Section 2.1.4.3). The resulting amplitudes are scaled by 10 · log 10 dB to

a power/frequency scale as described in Section 5.4.2.

6.3.1 Spectral Threshold

Spectral peak detection is necessary to detect and extract the harmonics in the

spectra. In this stage, we identify the areas of the spectra that contain peaks of

significant energy and must identify a baseline threshold of significance above the noise

floor. Because the upper harmonics of a musical sound contribute less energy than

their lower counterparts, we consider a frequency-dependent threshold that permits

identifying peaks as significant to their local frequency neighborhoods, rather than

compared to all peaks of the entire frequency range.

For each example analyzed, we calculate the threshold, identify all spectral peaks

with amplitudes that exceed this threshold, and note the frequency locations of these

spectral peaks. The first step is to establish a threshold above the noise floor. In

order to capture the amplitudes of higher harmonics, despite the roll-off found at
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higher frequencies, we desire a threshold that considers amplitude values relative to

the amplitudes at nearby frequencies.

We employ the thresholding strategy presented by Every and Szymanski [257].

First, a smoothed amplitude envelope E is calculated for each example by convolving

the spectra F with a moving Hamming window h of length 256 + 1 samples in which

each value of Ej is set to be the average of the window with center point j. The moving

Hamming window permits capturing the amplitude at each frequency relative to a

small local frequency range and captures the contributions of the upper harmonics of

the spectra.

The frequency-dependent threshold for each frequency bin j is calculated as

Êj = eth · (Ej)c (6.1)

where c is a constant [0.5, 1) that determines the flatness of the envelope shape and

eth is a frequency independent threshold height. The parameter eth is defined as

eth = b · | F |1−c (6.2)

where F is the average amplitude across all frequency bins and b is a positive scalar

that raises the mean above the noise floor. We choose c = 0.5 to produce a flatter

envelope and a value of b = 2 in all our experiments. An example spectrum with

threshold Ê is shown in Figure 6.1.

This frequency-dependent variable threshold permits identifying peaks as signifi-

cant to their local frequency neighborhood, allowing capture of significant peaks even

in the higher frequency range.
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Figure 6.1: Amplitude spectrum of a Clarinet playing the note 440 Hz overlaid with
threshold.

6.3.2 Fundamental Frequency Identification

Next, we identify the fundamental frequency f0 in the signal. Since the signature

learning stage requires learning from examples containing only a single instrument,

we can assume the fundamental is the significant peak with the lowest frequency,

within a localized frequency neighborhood. We employ a näive f0 finding algorithm

in which

f0 = argmin
j
{argmax wk · F | wk · Fj > Êj} (6.3)

where moving frequency window

wk =


1 if j − 16 ≤ k ≤ j + 16

0 if otherwise
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Figure 6.2: Highly zoomed view of the fundamental frequency of a Trumpet playing
527 Hz. The highest peak shown represents f0 and the other local peaks are side-lobes
resulting from the fast Fourier transformation.

First, we find the largest amplitude value within a small frequency window of 33

samples. The window is of an odd length for symmetry. Considering a small window

allows capturing the maximum peak in the local frequency neighborhood, rather than

a local maximum of a peak’s side-lobe, such as those shown in Figure 6.2. The moving

window wk, centered on frequency j, is considered for all frequency values 0 < j ≤ N ,

and for each the peak with the maximum amplitude is considered if that peak also

exceeds the threshold Êj as a potential f0. We identify the fundamental frequency f0

as corresponding to the frequency of the peak with the lowest frequency from the set

of potential f0s.
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6.3.3 Spectral Peak Identification

The next step is to extract any amplitude peaks that exceed the threshold Êj

and note the frequency location of each peak. In this stage, we are concerned with

locating each significant peak relative to the fundamental frequency.

For each example, we locate each peak p that exceeds the threshold, Fj > Êj,

for all frequency bins j up to the Nyquist limit and save these values as vector p.

For each peak p ∈ p, its ratio to f0 is calculated as r = p/f0. Any ratio r > 64 is

discarded and the rest are saved in a vector of ratios r. At this stage, the amplitude

value in bin Fj is discarded because we are interested in identifying the ratios of these

spectral peak locations to the fundamental frequency.

We repeat this process for all files for each musical instrument and save all ratios

in a single dimension vector, with duplicate values allowed. By capturing the ratio of

peak to fundamental, rather than absolute frequency values, we normalize away the

pitch of the note, allowing direct comparisons between notes with different pitches.

6.3.4 Clustering Significant Peaks

In this stage, we cluster the vector of ratio data in order to learn the locations

of various harmonic locations important to each instrument. k-means is a common

clustering algorithm that partitions a set of n observations into k discrete clusters

so that every observation is assigned to the cluster with the nearest mean [71]. For

each instrument, we use k-means to partition the set of ratios into a set of Gaussian

clusters, given as Algorithm 6.1.

We begin with an initial k=10 clusters. Since musical instruments contain a quasi-

harmonic pattern of partials at near integer ratios, we expect that many clusters will

contain means near integer ratios of the fundamental. We seed the initial k clusters
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with integer values [2 . . . k + 1], corresponding to the first ten overtones above the

fundamental. We modify the traditional k-means to permit changing the number

of clusters as the algorithm progresses. At each iteration, if the standard deviation

exceeds a threshold, the cluster is split into two different clusters. We use a threshold

of σ = 0.5, which represents the halfway point between two quasi-integer ratios and

has precedence in the literature [35]. Likewise, if the means of two individual clusters

overlap by less than σ = 0.5, the two clusters are combined into one. This method

yields a variable number of clusters for each instrument and dataset.

For each cluster, we extract the mean and standard deviation. The mean µ of each

Gaussian cluster indicates an important spectral location, and the standard deviation

σ captures the variance in frequency of the harmonic over the set of examples for that

instrument. Although the majority of the ratios learned are near-integer ratios, many

clusters learned center around inharmonic ratios (such as µ = 11.50).

Having learned a set of clusters, we return a spectral signature for each instrument,

for each dataset. In the feature extraction stage of the experiments, the instrument

signature is applied as a spectral mask. Only the spectral energy underneath the

signature will be considered for feature extraction while the rest of the spectral signal

will be disregarded as noise.

In the next section, we present classification experiments that show that these

signatures learned for an instrument in one dataset can be successfully used in feature

extraction for the same instrument but from a different dataset.

6.4 Signature Validation

In section 6.3, we present a data-driven approach to learning the locations, relative

to the fundamental, of areas of significant spectral energy for each instrument. In
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Algorithm 6.1 Adaptive k-Means Cluster

Given: set of values X = x1, ..., xn, initial k = 10
Initialize clusters C with centroids µ1, µ2, . . . , µk ∈ {1, 2, 3, . . . , 10}
while no convergence achieved do
{Assign each example to the cluster with the nearest mean}
for all xi ∈ X do

Assign xi to cluster cj where argminj ||xi − uj||2
end for

{If cluster’s standard deviation exceeds threshold, split into two clusters}
for all cj ∈ C do

if σj > 0.5 then
remove cluster cj from C
create new cluster cr with mean µr ← (µj − 0.25)
create new cluster cs with mean µs ← (µj + 0.25)
add clusters cr, cs to C
k ← k + 1

end if
end for

{Calculate new cluster means and standard deviations}
for all cj ∈ C do

uj ←
∑n

i=1 1{ci=j}xi∑n
i=1 1{ci=j}

σj ←
√

1
n

∑n
i=1 1{ci = j}(xi − uj)2

end for
end while

this section, we test the generalizability of this feature extraction approach between

datasets. We show that an instrument signature learned from one dataset can be

used for feature extraction for the same instrument but in a different dataset. In

other words, we use the locations of the features learned for one instrument in one

dataset to extract the features for the same instrument on another dataset. These

experiments both train and test on audio examples containing only instrument notes.
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Table 6.1: List of number of clusters learned by instrument and dataset.

Instrument MUMS MIS RWC PHO
FrenchHorn 29 60 54 88
Trumpet 47 26 44 83
Trombone 64 86 95 110
Tuba 55 120 71 87
Flute 13 38 87 106
Clarinet 39 107 56 82
AltoSaxophone 52 75 84 94
Oboe 30 43 39 30
Bassoon 82 86 96 100
Violin 52 100 71 56
Viola 59 80 72 120
Cello 87 86 102 102
Contrabass 94 100 94 108

6.4.1 Experimental Design

Given the variable k-means clustering approach (Section 6.3.4), each instrumental

signature varies in the number of clusters, as shown in Table 6.1. This means that each

binary-relevance classifier operates on a different feature space. Using a particular

instrument signature, for each cluster in the signature we extract a single amplitude

as a feature, which is described in detail in the next chapter. Therefore the number

of clusters in each learned instrument signature dictates the number of amplitude

features used in the experiments. Since the number of clusters learned varies between

instruments and datasets, the same instrument from two different datasets will vary

in size of the feature space.

In the classification experiments in this and subsequent chapters, the same in-

strumental signature must be used for feature extraction on both the training and

test sets. However, the data used in training and testing can come from different

datasets. In subsequent experiments, such as those in Chapter 8, we explore cross-
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dataset classification, using one dataset for training and another for testing. In these

signature validation experiments, however, we use a self-classification paradigm in

which we train and test on the same dataset, using a 10-fold cross-validation approach,

reporting the average of the results of the 10-folds. Instead we vary the instrumental

signature used for feature extraction, using the important locations learned from one

dataset to extract the features for the same instrument on another dataset.

For instance, consider the task of training the binary classifier ci for instrument

i, assuming four datasets containing examples of instrument i, labeled Ai,Bi,Ci and

Di. The signature learning approach described in 6.3 learns one signature for each

instrument/dataset pair, SAi , S
B
i , S

C
i , and SDi . Next we apply the signature SAi to

each of the four datasets, Ai,Bi,Ci, and Di. The signature SAi is learned from the

data in dataset Ai, but is learned independently of the examples in the other three

datasets. We repeat this process for the remaining signature SBi , S
C
i , S

D
i .

6.4.2 Feature Extraction

For each dataset, we consider the cluster signature learned for each instrument, as

described above. This signature informs the locations in the signal of the features to

extract. We apply this signature to each of the other datasets and extract amplitude

features at that location. The details of the feature extraction procedure using the

instrumental signatures are discussed in the next chapter, and we use this approach

in these experiments. For any instrumental signature containing k clusters, this

procedure results in k amplitude features extracted.



113

6.4.3 Results

In Table 6.2, we report the F1 measure result of each binary classifier. For most

instruments and datasets, we show that a signature learned from one dataset can be

applied for feature extraction on another dataset. In a numerous cases, we found

a higher accuracy when applying a signature from one dataset to another dataset.

For example, many of the instrument signatures learned from the large, high quality

RWC dataset (Table 6.2c) produced a higher score than the self-classification result

of the RWC dataset itself. This likely results from the diversity of performers and

dynamic levels present in RWC, but absent from others such as MUMS.

In many cases, the lowest instrument scores result from applying the MUMS sig-

nature (Table 6.2a) to the other datasets. This is the smallest dataset and represents

only a single player and a single dynamic level. The inability of the MUMS signature

to generalize to the other larger, more diverse datasets is not surprising, but it does

underscore the need for large and diverse datasets in instrument classification tasks.

Another observation is that the PHO signature (Table 6.2d) was successful when

applied to the other datasets. The PHO dataset is a large, but lower MP3 quality

dataset. This implies that a large number of diverse examples of each instrument, even

if of lower quality, is more useful when training models than a small number of high

quality examples, such as the MUMS dataset provides. These results strongly imply

that our binary-relevance feature extraction technique finds features that generalize

an instrument’s musical timbre, regardless of the dataset.
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Table 6.2: Results of the signature validation experiments showing the F-measure for
each binary classifier (instrument) for each dataset. Figures 6.2a − 6.2d report the
results using instrument signatures learned from each of the four different datasets,
respectively. The bold results indicate the signature was learned from the same
dataset that is tested.

(a) Signature learned from the MUMS dataset.

Instrument MUMS MIS RWC PHO
French Horn 0.64 0.70 0.64 0.76
Trumpet 0.75 0.63 0.82 0.73
Trombone 0.51 0.58 0.67 0.64
Tuba 0.65 0.65 0.58 0.81
Flute 0.77 0.75 0.71 0.67
Clarinet 0.73 0.57 0.78 0.71
Alto Saxophone 0.53 0.61 0.61 0.93
Oboe 0.54 0.72 0.72 0.50
Bassoon 0.73 0.69 0.74 0.74
Violin 0.72 0.61 0.58 0.63
Viola 0.71 0.53 0.70 0.52
Cello 0.79 0.73 0.75 0.73
Contrabass 0.80 0.89 0.79 0.84

(b) Signature learned from the MIS dataset.

Instrument MUMS MIS RWC PHO
French Horn 0.74 0.75 0.81 0.74
Trumpet 0.88 0.91 0.83 0.80
Trombone 0.72 0.74 0.72 0.68
Tuba 0.77 0.88 0.87 0.90
Flute 0.69 0.73 0.68 0.72
Clarinet 0.85 0.87 0.87 0.89
Alto Saxophone 0.75 0.79 0.76 0.75
Oboe 0.78 0.83 0.74 0.78
Bassoon 0.70 0.67 0.76 0.68
Violin 0.86 0.87 0.88 0.86
Viola 0.74 0.74 0.73 0.70
Cello 0.78 0.78 0.77 0.80
Contrabass 0.89 0.89 0.90 0.87
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(c) Signature learned from the RWC dataset.

Instrument MUMS MIS RWC PHO
French Horn 0.71 0.75 0.77 0.78
Trumpet 0.71 0.69 0.73 0.71
Trombone 0.75 0.76 0.76 0.74
Tuba 0.88 0.91 0.86 0.90
Flute 0.78 0.77 0.77 0.75
Clarinet 0.90 0.86 0.88 0.88
Alto Saxophone 0.75 0.78 0.74 0.77
Oboe 0.81 0.83 0.80 0.80
Bassoon 0.87 0.85 0.87 0.85
Violin 0.86 0.84 0.84 0.86
Viola 0.78 0.77 0.78 0.75
Cello 0.85 0.84 0.83 0.83
Contrabass 0.92 0.92 0.91 0.91

(d) Signature learned from the PHO dataset.

Instrument MUMS MIS RWC PHO
French Horn 0.81 0.79 0.80 0.80
Trumpet 0.76 0.78 0.76 0.77
Trombone 0.76 0.78 0.76 0.77
Tuba 0.91 0.92 0.89 0.90
Flute 0.80 0.87 0.84 0.82
Clarinet 0.91 0.87 0.89 0.87
Alto Saxophone 0.76 0.74 0.75 0.75
Oboe 0.89 0.88 0.88 0.87
Bassoon 0.87 0.86 0.86 0.85
Violin 0.82 0.85 0.85 0.82
Viola 0.82 0.81 0.83 0.82
Cello 0.83 0.82 0.80 0.80
Contrabass 0.90 0.90 0.92 0.90
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6.5 Conclusion

In this chapter, we present a novel approach for binary-relevance feature extraction

for use with binary-relevance classifiers. This approach allows us to use a different

feature space for each binary classifier. We describe a data-driven clustering approach

to learn locations from each instrument’s spectra that best represent areas of spectral

prominence in the instrument’s signature. Furthermore, we present an approach that

generalizes across examples of different pitches and volume levels. In the experiments,

we demonstrate the ability to learn the locations of features in one dataset and use

the signatures to classify another dataset, indicating the ability of this approach to

generalize an instrument’s timbre, independent of the dataset.
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CHAPTER 7

FEATURE EXTRACTION

In Chapter 6, we present a data-driven approach to learn areas of spectral promi-

nence for each instrument, known as instrument signature. In the feature extraction

stage, presented in this chapter, the instrument signature is applied as a spectral

mask or filter. Only the spectral energy underneath the signature will be considered

eligible for feature extraction while the rest of the spectral signal is disregarded as

noise. These features are used in the classification experiments, discussed in Chapters

8 and 9.

7.1 Applying Spectral Signatures

For each example to process, we first convert the sound file to the spectral domain

using an FFT as described in Section 5.4. If the file to be processed is an example

single instrument, such as the datasets used in training the models, the fundamental

frequency is identified using the process in Section 6.3.2. If the file to be processed is

a test case containing an unknown set of instruments, each significant peak must be

considered as a possible fundamental frequency for each instrument hypothesis. This

polyphonic case is discussed in detail in Section 7.2.

7.1.1 Signature as a Mask

Assuming a hypothesis of a particular instrument, the signature learned for that

instrument (see Section 6.3) is applied to the amplitude spectra as a spectral mask.



118

Each cluster c of the signature has a mean cµ and a standard deviation cσ. For

each Gaussian cluster in the signature, we calculate a window centered on cµ and

ranging plus and minus one standard deviation. The ratio is calculated relative to

the fundamental, and each window ranges ((cµ − cσ) · f0) to ((cµ + cσ) · f0). Figure

7.1b shows a Clarinet signature applied to the spectra of the Clarinet note shown in

Figure 7.1a.

For each cluster i in the spectral signature, extract the maximum amplitude within

the window of (µi±σi) · f0. Consider this example. Given f0 = 446.0 Hz, µ1 = 2.003,

and σ1 = 0.026, we calculate a window [881.742, 904.934] and we extract the maximum

amplitude in window: −65.81 at 890.0 Hz.

In the next section, we discuss extracting the full set of features from a signal for

the entire instrumental signature.

7.1.2 Feature Extraction

Within each cluster window, the maximum amplitude is extracted to be used

as a feature. This is repeated for each Gaussian cluster in the signature. In this

dissertation we use the very simple feature of the maximum amplitude value within

each window. In future work, we will explore using other more complex spectral

features, such as those described in [36]. As our primary goal in this work centers

on creating a flexible feature extraction scheme extensible to multilabel classification

of polyphonic mixtures as well as providing generalizability between instruments of

different datasets, we avoid potentially overfitting individual datasets by selecting a

complex set of spectral features, and instead demonstrate our approach using a simple

feature space.
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(a) Spectra of the Clarinet note.

(b) Clarinet spectra with signature visualized (dotted)

Figure 7.1: Spectra of a Clarinet playing A (440 Hz).
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In Figure 7.2, we compare the entire spectra of a Clarinet note (Figure 7.2a) with

the filtered view of the spectra of a Clarinet note that falls under the spectral mask

(Figure 7.2b).

7.1.3 Amplitude Normalization

Since one of the goals of this work is to demonstrate generalization of this approach

by validating across datasets, we desire our feature set to be comparable across dif-

ferent datasets that may have been recorded with different equipment, procedures, or

volume levels. In order to accomplish this, we need a relative measure of amplitude

rather than absolute measurements. Therefore, we normalize the amplitude values

relative to the amplitude of the fundamental.

Given the amplitude of the fundamental, a0, and the amplitude ai of some har-

monic i, where i > 0, the amplitude ratio is ri = a0/ai. Since these are power spectral

density measurements, the values are negative and a higher value corresponds to a

frequency component with more energy. Therefore a ratio of the fundamental’s ampli-

tude to a partial’s amplitude yields a value greater than one if the partial is stronger

than the fundamental. The ratio is a value less than one if the partial is weaker than

the fundamental’s amplitude.

In Table 7.1, we show three Oboe notes from the RWC dataset, each played at

A (440 Hz) at three different volume levels. This table shows the raw power density

values in dB/Hz as well as the ratio values when normalized by the fundamental’s

amplitude. Observe that the amplitude value of the fundamental differs between the

three examples. Even though the absolute power density values of the first over-

tone (f1) differ among the three examples, the normalized amplitude ratios remain

comparable because of the normalization procedure.
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(a) Only the spectral mask of the Clarinet signature will be considered for feature
extraction while the rest of the signal will be ignored as noise.

(b) Portion of the spectra from Fig. 7.2a that falls under the spectral signature.

Figure 7.2: Spectra of a Clarinet playing A (440 Hz)
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Table 7.1: Shown are three examples of an Oboe playing 440 Hz at three dynamic
levels. The columns show the amplitudes of the fundamental frequency (f0) and the
first five overtones (f1 − f5) are shown. For each example, the top line shows the
power spectral density (dB/Hz) of each partial and the bottom line shows the ratio
of the amplitudes of the fundamental and the partial.

dynamic f0 f1 f2 f3 f4 f5

forte
-69.53 -51.27 -51.42 -58.81 -61.14 -62.29
− 1.36 1.35 1.18 1.14 1.12

mezzo-forte
-73.94 -54.24 -52.26 -57.38 -62.01 -61.24
− 1.36 1.40 1.29 1.19 1.21

piano
-74.84 -53.72 -53.61 -58.56 -61.66 -67.35
− 1.39 1.39 1.28 1.21 1.11

Preserving feature values that are relative to the amplitude of the fundamental

frequency allows us to compare notes played at different dynamic levels. Furthermore,

this approach permits us to compare notes between datasets, helping to overcome

differences between recording procedures. This allows us to compare features from

examples of the same instrument extracted from different datasets.

Because our signatures learn ratios to f0 rather than absolute frequency locations,

we are able to compare all notes of the same instrument despite differences in pitch.

Figure 7.3 shows the same Clarinet signature applied to three different notes and the

clusters spacing is dependent on the example’s f0.

This process is repeated for all clusters in the signatures (see Table 6.1) and the

resulting amplitude values are converted to the ratios to the fundamental’s amplitude

and stored as features. The final set of extracted amplitudes serves as the features

for the example.



123

(a) f0 = 261 Hz

(b) f0 = 440 Hz

(c) f0 = 738 Hz

Figure 7.3: Spectra of three Clarinet notes with signature (dotted) applied.
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Algorithm 7.2 Feature Extraction for Single Instrument Example

Given: Instrument hypothesis i, spectral signature Si, signal X
Y = FFT(X)
identify f0 in Y
for all c ∈ Si do
W = [(c.µ− c.σ) · f0, (c.µ+ c.σ) · f0]
fc ← extract maximum amplitude in W · Y

end for
return f , vector of amplitudes with one per cluster in Si

7.2 Feature Extraction of a Polyphonic Source

When presented with a mixture of unknown instruments, our system must test

for each possible instrument present in the mixture. For each instrument i, we must

query each binary classifier mi for a confidence that the instrument is present in the

mixture.

Because the instrument signatures trained in Chapter 6 contain a different number

of clusters for each instrument, each binary classifier model mi requires a different

feature space. Furthermore, for each instrument, we must extract the binary-relevance

feature set and then query the binary classifier.

For each instrument and dataset, we first train a binary model on solo instrument

data using the feature extraction scheme described in Section 7.1. The remainder

of this section discusses the feature extraction and classification steps for testing

unknown examples containing a mixture of more than one instruments.

In the case of solo instrument sound examples, we know there is only one instru-

ment in the recording and could assume that the lowest significant peak corresponds

to the fundamental frequency. In examples containing mixtures of instruments, this

assumption is not valid as any significant peak could correspond to the fundamental
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frequency of one of the instruments. Some approaches rely on a multi-pitch finding

algorithm for this stage of source separation, but that is an active field of research in

itself. We instead consider all peaks as possible candidate fundamental frequencies, a

näıve yet comprehensive approach which will in future work will be further optimized.

Therefore, for a polyphonic mixture file, we must first extract all significant peaks,

following the procedure given in Section 6.3.3.

In Algorithm 7.3, we give the pseudo-code of the feature extraction process for

each instrument. For any unknown audio example X, we run the FFT algorithm to

compute the spectrum Y . The FFT has the complexity O(n · log n), where n is the

number of input samples. At the sampling rate of 44.1 kHz, n = 44100 for each one

second example. The FFT must be computed only once per example to classify.

Next we iterate over all thirteen instruments. For each instrument i, we consider

each significant peak p found in Y as a possible fundamental frequency for the instru-

ment i. We use the frequency value of the peak as a hypothesis of an f0 for instrument

i.

In practice, we need not iterate over all the significant peaks but only those within

the musical range possible for the current instrument. We restrict this step to only

consider the frequencies within the range of the instrument shown in Table 7.2. To

produce these ranges, we analyzed the four datasets and found the examples with the

highest and lowest frequencies for each instrument. We expand the range to include

one additional musical semitone on both the low and high end.

Continuing the process, for instrument i and hypothesized f0 = p ,we apply the

spectral signature Si to the spectra Y . This is visualized in Figure 7.4. We need only

consider the portion of the spectrum under the signature as possible features and can

ignore the rest of the spectra. For each cluster c in the signature Si, we calculate

the window W according to the process described in Section 7.1.1. Within W , we
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Algorithm 7.3 Feature Extraction for Polyphonic Mixture

Given: signal X
Y = FFT(X)

{iterate over all instruments}
for all i ∈ Instruments do
Si ← load spectral signature for instrument i
sumi, counti ← 0

{iterate over all significant peaks}
for all p ∈ Y do
f0 ← p

{iterate over all clusters}
for all c ∈ Si do
W = [(c.µ− c.σ) · f0, (c.µ+ c.σ) · f0]
fc ← extract maximum amplitude in W · Y

end for

{classify the feature set f}
conf ← classifyi(f)
if conf ≥ 0.5 then
sumi ← classifyi(f)
counti ← counti + 1

end if
end for

{normalize sum by the number of peaks voting for instrument i}
confidencei ← sumi / counti
add confidencei to set of confidences

end for
return set of confidences by instrument
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Algorithm 7.4 Ranking Algorithm for Binary-Relevance Classifiers

Given: set of confidences by instrument

sort the set of confidences from highest to lowest

{iterate over all instruments}
for all i ∈ Instruments do

assign ranki to the index of confidencei

end for
return rankings of instrument labels from 1 . . . 13

extract the maximum amplitude. The amplitude ratio is calculated based on the

amplitude of the hypothesized f0. The set of amplitude ratios, one for each cluster

in the signature, is used as the feature set for the hypothesis of instrument i with

f0 = p.

7.3 Classification from a Polyphonic Source

We use a adaptation of the k-NN classifier [258] to provide confidences for each

instrument class. For each instance given to the binary classifier, we calculate the

average mean-square error between the test exemplar and the k nearest training

examples, and use this value of the confidence for the selected class. For each peak

p, we query the binary classifier ci for a confidence that the instrument i with f0 =

p matches the trained model’s expectation of instrument i. For all peaks for the

hypothesis of instrument i that were classified as containing instrument i, we calculate

an average confidence and use this average confidence, with a threshold of 0.5 to

determine if instrument i should be a relevant label. After repeating this process for all
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Table 7.2: Frequency ranges in Hertz of the musical instruments.

Instrument Low High
FrenchHorn 58.3 740.0
Trumpet 138.5 1975.5
Trombone 103.8 739.9
Tuba 38.8 415.3
Flute 246.9 2793.8
Clarinet 138.6 2093.0
AltoSaxophone 130.8 1479.9
Oboe 155.56 1760.0
Bassoon 46.2 698.5
Violin 185.0 3729.3
Viola 123.5 2793.8
Cello 46.25 2959.9
Contrabass 29.1 622.3

instruments, we use the set of confidences of each instrument as a ranking procedure

for the multi-label classification. This ranking process is shown as Algorithm 7.4.

7.4 Complexity of Approach

The complexity of this feature extraction scheme is the sum of O(n · log n) for the

FFT, which needs be computed only once, and the feature extraction and classification

steps. The feature extraction repeats for all i = 13 instruments and significant peaks

P ⊂ Y in the range of the instrument. Additionally, for each peak, a windowing

calculation is made for each cluster c in the signature Si. Together this requires

O(q · |P | · |C| + m), where q is the number of class labels (instruments), |P | is a

maximum number of peaks and |C| is the maximum number of clusters. There are

m models to query, and given the binary-relevance paradigm, m = q classification

steps. The number of clusters for each instrument does vary, but is bounded by the

counts shown in Table 6.1. The maximum number of significant peaks |P | is also a
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variable, but bounded value. In Section 6.3.3, we discuss the identification of spectral

peaks within a local frequency neighborhood. Therefore the number of peaks each

instrument must check is a small number in practice, often no more than a dozen,

but variable depending on the frequency distribution of the sound example.

Combining with the FFT step, the complexity of the process is O(n · log n+ 2 · q ·

|P | · |C|). In practice, the process is dominated by the number of class labels q thus

requiring a feature extraction and classification step for each instrument and peak.

All binary-relevance classification approaches require querying a model for each class

label q, but our approach requires an additional q feature extraction steps.

7.5 Conclusion

In this chapter, we present our feature extraction approach using a binary-

relevance feature extraction approach, using the signatures learned in Chapter 6.

First we discuss how to apply the instrument signatures to a monophonic examples,

creating a spectral mask. Next we discuss our simple feature extraction scheme and

novel amplitude normalization scheme. This amplitude normalization scheme allows

us to compare examples of differing dynamic levels and from different datasets. Next

we introduce our extension of our feature extraction approach to handle feature ex-

traction and classification from polyphonic mixtures. Our multi-label experimental

results for polyphonic mixtures are discussed in the next chapter. Lastly, we con-

clude with the computational complexity of our binary-relevance feature extraction

and classification approach.
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(a) Spectra of the mixture of two notes

(b) Trumpet signature visualized in red

(c) Spectra after filtering with Trumpet signature

Figure 7.4: Overlapping spectra of a Trumpet playing middle C (262 Hz) and a Violin
playing A (440Hz).
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CHAPTER 8

CROSS-DATASET VALIDATION

In this Chapter, we explore the ability of our approach to generalize between

datasets. Specifically, we test the ability of the binary-relevance feature-extraction

approach in experiments that train on one dataset and test on another dataset in the

monophonic instrument classification task.

8.1 Experimental Design

For each dataset, we train a separate binary classifier for each instrument. For

these experiments we use a k-NN classifier described in Section 2.3.2. To train each

instrument classifier, we need only consider examples of that instrument in isolation,

using the datasets described in 5.5. For the feature set, we extract features according

to the procedure for solo instruments given in Chapter 7.

For the instrument classifier, we use the instrument signature learned on the train-

ing dataset for feature extraction of both training and test examples. The same

signature must be used for feature extraction on both training and test examples,

because the number of features extracted differs for each instrument and dataset. We

use this trained instrument classifier to classify each of the other datasets. When the

training set and test set are from the same dataset, we self-classify from the dataset

using a 10-fold cross-validation paradigm as described in Section 6.4.2.
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Table 8.1: Cross-dataset experiments showing the F-measure for each binary classifier
(instrument) for each dataset. The column headers show the test dataset. The
boldfaced values indicate self-classification. All others values represent cross-dataset
classification

(a) Classifier trained on the MUMS dataset.

Instr. MUMS MIS RWC PHO
FH 0.66 0.65 0.59 0.59
TR 0.79 0.67 0.65 0.59
TB 0.62 0.66 0.65 0.61
TU 0.69 0.50 0.66 0.71
FL 0.78 0.73 0.72 0.63
CL 0.81 0.75 0.78 0.80
AS 0.59 0.38 0.47 0.44
OB 0.68 0.67 0.68 0.71
BS 0.77 0.72 0.70 0.68
VN 0.73 0.58 0.67 0.67
VA 0.68 0.63 0.66 0.65
VC 0.78 0.62 0.77 0.63
CB 0.83 0.74 0.84 0.77

(b) Classifier trained on the MIS dataset.

Instr. MUMS MIS RWC PHO
FH 0.65 0.77 0.65 0.62
TR 0.61 0.91 0.66 0.61
TB 0.65 0.74 0.69 0.68
TU 0.44 0.88 0.42 0.54
FL 0.66 0.77 0.74 0.66
CL 0.63 0.88 0.83 0.76
AS 0.66 0.81 0.64 0.55
OB 0.70 0.85 0.67 0.69
BS 0.81 0.77 0.73 0.68
VN 0.66 0.87 0.75 0.74
VA 0.69 0.78 0.58 0.61
VC 0.67 0.80 0.67 0.66
CB 0.91 0.90 0.88 0.81



133

Table 8.1: Cross-dataset experiments showing the F-measure for each binary classifier
(instrument) for each dataset. The column headers show the test dataset. The
boldfaced values indicate self-classification. All others values represent cross-dataset
classification

(c) Classifier trained on the RWC dataset.

Instr. MUMS MIS RWC PHO
FH 0.78 0.75 0.78 0.67
TR 0.75 0.74 0.72 0.64
TB 0.78 0.74 0.76 0.72
TU 0.59 0.36 0.87 0.73
FL 0.77 0.73 0.78 0.67
CL 0.78 0.82 0.89 0.75
AS 0.78 0.75 0.79 0.53
OB 0.80 0.79 0.82 0.79
BS 0.83 0.81 0.86 0.77
VN 0.72 0.69 0.87 0.77
VA 0.83 0.60 0.80 0.61
VC 0.88 0.67 0.84 0.70
CB 0.93 0.85 0.92 0.81

(d) Classifier trained on the PHO dataset.

Instr. MUMS MIS RWC PHO
FH 0.70 0.65 0.66 0.82
TR 0.62 0.83 0.68 0.79
TB 0.78 0.73 0.66 0.79
TU 0.86 0.67 0.83 0.91
FL 0.49 0.74 0.68 0.85
CL 0.85 0.80 0.79 0.88
AS 0.57 0.55 0.62 0.79
OB 0.76 0.76 0.81 0.88
BS 0.70 0.73 0.77 0.87
VN 0.78 0.66 0.75 0.84
VA 0.68 0.63 0.65 0.84
VC 0.74 0.63 0.76 0.83
CB 0.90 0.87 0.87 0.91
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8.2 Results

In Table 8.1 we report the F-measure results of each classifier. The dataset used

for training is listed in the caption of each subtable. The row headers indicate the test

set. The cases in which the training and test set are the same, and cross-validation

is used, are shown in boldface. Table 8.2 shows the relative performance of the cross-

dataset experiments to the self-classified dataset, noted with a dash (−).

8.3 Discussion

In these experiments, we found that we are able to train on features from one

dataset and test on features extracted from another dataset. As expected, we observe

a reduced classification accuracy for the cross-dataset experiments compared to the

self-classification experiments, represented as negative values in Table 8.2. However

these results are far more promising than the cross-dataset results reported in [34];

although, given the differing data, features and classification algorithms, the results

of the two approaches are not directly comparable.

Nevertheless, we are able to classify using the cross-dataset paradigm at rates well

above chance for almost all datasets and instruments. In our preliminary experiments,

we observe that setting a small value of k, such as k = 1 increased accuracy on the self-

classification experiments dramatically but decreased accuracy on the cross-dataset

experiments. This is an example of overfitting to a specific dataset, which is a common

problem in the instrument classification literature. As we increased the value of k, the

self-classification results decreased as the cross-dataset accuracy increased. In other

words, comparing an unknown example to the single nearest instance is useful in the
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Table 8.2: Shows the cross-dataset results shown in Table 8.1 as the relative difference
to the results of the self-classified training dataset. A negative value indicates a lower
F-measure score relative to the self-classification result, noted with a dash (−). A
positive value indicates the cross-data set result outperformed the self-classification
score.

(a) Classifier trained on the MUMS dataset.

Instr. MUMS MIS RWC PHO
FH − -0.01 -0.07 -0.07
TR − -0.12 -0.14 -0.20
TB − +0.04 +0.03 -0.01
TU − -0.19 -0.03 +0.02
FL − -0.05 -0.06 -0.15
CL − -0.06 -0.03 -0.01
AS − -0.21 -0.12 -0.15
OB − -0.01 0.00 +0.03
BS − -0.05 -0.07 -0.09
VN − -0.15 -0.06 -0.06
VA − -0.05 -0.02 -0.03
VC − -0.16 -0.01 -0.15
CB − -0.09 +0.01 -0.06

(b) Classifier trained on the MIS dataset.

Instr. MUMS MIS RWC PHO
FH -0.12 − -0.12 -0.15
TR -0.30 − -0.25 -0.30
TB -0.09 − -0.05 -0.06
TU -0.44 − -0.46 -0.34
FL -0.11 − -0.03 -0.11
CL -0.25 − -0.05 -0.12
AS -0.15 − -0.17 -0.26
OB -0.15 − -0.18 -0.16
BS +0.04 − -0.04 -0.09
VN -0.21 − -0.12 -0.13
VA -0.09 − -0.20 -0.17
VC -0.13 − -0.13 -0.14
CB +0.01 − -0.02 -0.09
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(c) Classifier trained on the RWC dataset.

Instr. MUMS MIS RWC PHO
FH 0.00 -0.03 − -0.11
TR +0.03 +0.02 − -0.08
TB +0.02 -0.02 − -0.04
TU -0.28 -0.51 − -0.14
FL -0.01 -0.05 − -0.11
CL -0.11 -0.07 − -0.14
AS -0.01 -0.04 − -0.26
OB -0.02 -0.03 − -0.03
BS -0.03 -0.05 − -0.09
VN -0.15 -0.18 − -0.10
VA +0.03 -0.20 − -0.19
VC +0.04 -0.17 − -0.14
CB +0.01 -0.07 − -0.11

(d) Classifier trained on the PHO dataset.

Instr. MUMS MIS RWC PHO
FH -0.12 -0.17 -0.16 −
TR -0.17 0.04 -0.11 −
TB -0.01 -0.06 -0.13 −
TU -0.05 -0.24 -0.08
FL -0.36 -0.11 -0.17 −
CL -0.03 -0.08 -0.09 −
AS -0.22 -0.24 -0.17 −
OB -0.12 -0.12 -0.07 −
BS -0.17 -0.14 -0.10 −
VN -0.06 -0.18 -0.09 −
VA -0.16 -0.21 -0.19 −
VC -0.09 -0.20 -0.07 −
CB -0.01 -0.04 -0.04 −
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self-classification task, but more neighbors are required to better generalize between

instruments across datasets.

In the musical instrument classification literature, most approaches are heavily bi-

ased by the training set and cannot be use to classify other datasets [34]. Cross-dataset

validation needs to be a goal of any approach that hopes eventually to generalize to

real-world musical data. Our cross-dataset experiments demonstrate an ability of our

approach to provide such generalization.

8.4 Conclusion

In this chapter, we present experimental results evaluating the ability of our system

to generalize between datasets and present the largest cross-dataset study in the

domain of monophonic instrument classification. We show our ability to train on

dataset but test on another dataset, indicating our binary-relevant feature extraction

scheme is capturing information pertinent to the instrument’s timbre, and not the

specifics of the recording procedures of the dataset.
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CHAPTER 9

POLYPHONIC INSTRUMENT CLASSIFICATION

In this chapter, we present experimental results for musical instrument classifica-

tion for polyphonic mixtures of two to four instruments. In the classification stage,

we use the instrumental signatures discussed in Chapter 6 and the feature extraction

techniques described in Chapter 7.

9.1 Problem Difficulty and Significance

This difficulty of a multi-label problem can be discussed in terms of the label

density and label cardinality measures discussed in Section 2.2.3.1. Recall that label

cardinality measures the average number of true labels per example and label density

measures the average numbers of true labels per example normalized by the total

number of possible labels. In our experiments, the label cardinality corresponds to

the number of instruments in the mixtures, either two, three, or four in our experi-

ments. In our principal experiments, the number of labels considered is q = 13. For

comparison, we also provide an experiment in Section 9.5 with a reduced label set,

where q = 5, to demonstrate our approach on an easier multi-label problem. The

label cardinality and density for the experiments in this chapter are listed in Table

9.1. Also listed are the probabilities of guessing the entire set of labels correctly at

random, which is calculated as the inverse of the number of combinations with n = q

choose r equal to the number of labels in the example.
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Table 9.1: Label density and cardinality of the multi-label experiments

q Polyphony Cardinality Density Chance

13
Two 2 0.154 0.01282

Three 3 0.231 0.00349
Four 4 0.307 0.00014

5
Two 2 0.400 0.1

Three 3 0.600 0.1
Four 4 0.800 0.2

9.2 Experimental Design

For each dataset, we train a separate binary classifier for each instrument. For

these experiments, we use the k-NN classifier described in Section 2.3.2 with a value

of k = 5, as discussed in Section 8.2. The classifiers are trained with examples of solo

instruments using the datasets described in Section 5.5. However, to test the models,

we use the polyphonic datasets described in Section 5.6. Similar to the approach given

in Section 8.1, for each instrument classifier, we use the signature learned from the

training set for the feature extraction process (see Algorithm 7.3). Our classification

procedure for polyphonic mixtures is described in Section 7.3. In these experiments

the training a set of solo instruments is different than the test set of polyphonic

mixtures. However, the polyphonic mixtures were created from the solo examples of

the same dataset, giving a dependency between the training and test sets. In Section

9.3.5, we discuss this potential dependency between datasets and present a set of

cross-validation experiments that explore this question empirically.
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Table 9.2: Results for mixtures of two instruments

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.022 0.028 0.030 0.028
Hamming Loss 0.250 0.246 0.237 0.241
Accuracy 0.132 0.143 0.164 0.155
Precision 0.188 0.201 0.231 0.218
Recall 0.188 0.201 0.231 0.218
F1 Measure 0.188 0.201 0.231 0.218

Label-based

Macro-Precision 0.189 0.204 0.229 0.208
Macro-Recall 0.187 0.201 0.231 0.220
Macro-F1 0.151 0.174 0.213 0.185
Micro-Precision 0.188 0.201 0.231 0.218
Micro-Recall 0.188 0.201 0.231 0.218
Micro-F1 0.188 0.201 0.231 0.218

Rank-based

One-Error 0.816 0.797 0.764 0.789
Coverage1 2.993 2.948 2.563 2.693
Coverage2 6.921 7.065 6.622 6.711
Ranking Loss 0.712 0.701 0.667 0.677
Average Precision 0.363 0.372 0.400 0.388

9.3 Multi-label Classification of Polyphonic Mixtures

9.3.1 Multi-label Self-Classify Experiments

In these experiments, we test our system’s ability to classify polyphonic mixtures

of two, three, or four instruments. In this section, each monophonic training set and

polyphonic test set originate from the same data source. These experiments use all

13,000 mixtures described in Section 5.6. The results of these experiments are shown

in Tables 9.2 − 9.4 and these results show measures for each of the four datasets.

Example- and label-based measures assume the number of target labels is known

and only that many labels are considered by the measure. In our experiments, all

examples have the same number of labels and cardinality of the experiment, corre-
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Table 9.3: Results for mixtures of three instruments

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.006 0.007 0.008 0.007
Hamming Loss 0.342 0.340 0.327 0.331
Accuracy 0.172 0.175 0.195 0.189
Precision 0.259 0.263 0.292 0.283
Recall 0.259 0.263 0.292 0.283
F1 Measure 0.259 0.263 0.292 0.283

Label-based

Macro-Precision 0.276 0.271 0.299 0.286
Macro-Recall 0.259 0.263 0.291 0.284
Macro-F1 0.207 0.224 0.267 0.246
Micro-Precision 0.259 0.263 0.292 0.283
Micro-Recall 0.259 0.263 0.292 0.283
Micro-F1 0.259 0.263 0.292 0.283

Rank-based

One-Error 0.763 0.745 0.703 0.727
Coverage1 2.226 2.173 1.912 2.000
Coverage2 5.356 5.334 5.072 5.120
Coverage3 8.606 8.684 8.414 8.437
Ranking Loss 1.018 1.01 0.953 0.984
Average Precision 0.404 0.409 0.435 0.424
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Table 9.4: Results for mixtures of four instruments

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.002 0.002 0.003 0.003
Hamming Loss 0.413 0.406 0.398 0.400
Accuracy 0.216 0.224 0.234 0.231
Precision 0.329 0.340 0.353 0.350
Recall 0.329 0.340 0.353 0.350
F1 Measure 0.329 0.340 0.353 0.350

Label-based

Macro-Precision 0.354 0.353 0.360 0.357
Macro-Recall 0.328 0.339 0.351 0.348
Macro-F1 0.259 0.296 0.321 0.309
Micro-Precision 0.329 0.340 0.353 0.350
Micro-Recall 0.329 0.340 0.353 0.350
Micro-F1 0.329 0.340 0.353 0.350

Rank-based

One-Error 0.704 0.664 0.641 0.654
Coverage1 1.709 1.597 1.461 1.500
Coverage2 4.318 4.197 4.049 4.065
Coverage3 6.938 6.855 6.750 6.723
Coverage4 9.638 9.641 9.562 9.503
Ranking Loss 1.268 1.247 1.173 1.219
Average Precision 0.453 0.464 0.481 0.474
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sponding to either two, three, or four labels, depending on the specific experiment.

Although our system provides a ranking of labels, for these metrics, only the top two,

three, or four labels are selected for polyphony of two, three, or four, respectively.

We begin by discussing the results of the example-based measures. Subset or exact

accuracy is a very strict measure which does not reward partial accuracy. For this

reason, it is rarely reported in the multi-label classification literature and has never

previously been reported in the polyphonic instrument classification domain before

this work. For mixtures of two instruments, our system achieves exact accuracy

between 2% and 3%. This value falls to 0.2% for polyphony of four instruments.

Although our exact match accuracy is quite low, as expected for a problem with a

low label density, it does exceed the value of guessing the set at random (see Table

9.1). For polyphony of four, our exact match score is an order of magnitude higher

than guessing at chance.

Hamming loss measures a fraction of misclassified instance/label assignments. As

expected, the Hamming loss degrades as the cardinality of the problem increases.

A Hamming loss of 1.0 implies a complete failure to find any correct labels. For

polyphony of four, our system achieves around 0.4 for each of the four datasets. Our

system finds similar Hamming loss for all the datasets, which is an encouraging result

supporting our claim of the generalizability of our system. Accuracy measures partial

accuracy between the true and predicted label sets. This partial accuracy is lowest

for polyphony of two and increases as the label density increases to an accuracy over

20% for polyphony of four. This measure is low because our system often confuses

instruments within the same family, a problem consistently encountered in the litera-

ture [163], and our relevant set may contain a similar but incorrect instrument label,

such as mistaking the Violin for a Viola. In these cases many of our predicted labels

that are also correct are ranked just below the cutoff of the cardinality.
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The multiple-label information retrieval measures of precision, recall, and F1 mea-

sure come in three variations, an example-based variation as well as label-based

macro- and micro- variations (see Section 2.2.3). In our experiments, given the large

number of examples and large value of q, we found the micro-based precision, recall,

and F1 values to converge to the values of the example-based precision, recall, and

F1 measures. This is not always the case for problems with a small label density and

fewer examples in the dataset (for example, consider the results of Section 9.5). Like

with other measures that permit partial accuracy, we found the F1 to increase as the

label density increased, ranging from around 0.2 for two-voice mixtures up to at least

3.2 for four-voice mixtures. We are encouraged by our highest F1 scores, achieved

by the RWC dataset for mixtures of four instruments, and recognize the need for

improvement in the two and three instrument experiments.

Next, we discuss the ranking-based measures, which, unlike the example- and

label-based measures, consider a ranked list of all q labels. These metrics are useful

to consider how many false positives must be tolerated in order to achieve all true

positives. As mentioned earlier, our system produces many confusions between similar

instruments, resulting in additional false positives. The first ranking-based measure

is One-Error, which considers how often the topmost ranked label is among the true

label set. A value of 0.0 indicates perfect performance while a value of 1.0 indicated

a complete failure. Our system ranked a true label first around 20%, 25%, and 30%

for polyphony of two, three, and four respectively.

The Coveragej measure examines how far down the list, on average, we must go to

cover j possible labels. For example, for polyphony of two, our system finds the first

label, Coverage1, within the first three labels on average. To cover both of the labels,

it takes about seven labels to cover. This indicates that on average, our system finds

both true labels within the first half of ranked label list. For polyphony of three,
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it takes about 2, 5, and 8 labels to cover the first, second, and third true labels,

respectively. For polyphony of four, it takes around 2, 4, 7, and 9 labels to cover the

first through fourth labels, respectively.

The last two rank-based measures explore the accuracy of the ranking order. For

example, consider polyphony of two with an instance where true labels set Yi =

{Trumpet, Viola} and a set of rankings {Trumpet, Violin, Viola, . . . }. The above

measures, such as F1 would not consider the Violin in the calculation, but a rank-

based measure would. Ranking loss, measures the fraction of times an irrelevant label

outranks a relevant label. This measure helps capture relevant labels that might

be ranked slightly below the cardinality cut-off used in label- and example-based

measures. Like other of the measures, save subset accuracy, the values improve as

polyphony increases and the label density of the problem decreases. For polyphony

of four, we achieve a ranking loss of around 1.2, in which 4.0 indicated a completely

incorrect label ordering. Average precision measures the ranking ordering of the

relevant labels, calculating the difference in rank between the various relevant labels

and averaging over all examples. For example, consider an instance in which relevant

labels are ranked first and fourth. This measure will penalize that instance more

so than an instance in which the relevant labels are ranked first and third. When

comparing our average precision to example-based precision, we observe a substantial

improvement, indicating that many of our relevant labels are ranked high on the

list, but outside the cut-off of the label cardinality, as found in the Viola and Violin

confusion example given above.
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Table 9.5: p-values of results compared to random chance for mixtures of two instru-
ments

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.009 0.007 0.007 0.006
Hamming Loss 0.156 0.144 0.136 0.142
Accuracy 0.156 0.144 0.136 0.142
Precision 0.156 0.144 0.136 0.142
Recall 0.156 0.144 0.136 0.142
F1 Measure 0.156 0.144 0.136 0.142

Rank-based

One-Error 0.088 0.077 0.075 0.067
Coverage1 0.222 0.215 0.203 0.214
Coverage2 0.148 0.181 0.131 0.145
Ranking Loss 0.203 0.193 0.157 0.169
Average Precision 0.138 0.122 0.098 0.112

9.3.2 Comparison to Random Permutations

To evaluate the efficacy of our results, we designed a statistical experiment to

compare our results to randomly chosen permutations of instruments. We create ran-

dom permutations of the set of thirteen instruments. We then evaluate our measures

on these sets for consideration of the two, three, and four labels. We calculate the

p-value as

p = (1 + perm+ >= measure score)

(1 + permn)
(9.1)

where the numerator represents the number of random permutations that exceed our

measure score and the denominator represents the number of random permutations

evaluated. We evaluated permn = 1000 random permutations. The plus one term in

both the numerator and denominator represents a smoothing term.

The p-values of our results given in Section 9.3.1 compared to random permuta-

tions are shown in Tables 9.5, 9.6, and 9.7. These values represent the fraction of

times a random permutation outscored our reported result. Because the label-based
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Table 9.6: p-values of results compared to random chance for mixtures of three in-
struments

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.002 0.001 0.002 0.001
Hamming Loss 0.293 0.283 0.274 0.297
Accuracy 0.293 0.283 0.274 0.297
Precision 0.293 0.283 0.274 0.297
Recall 0.293 0.283 0.274 0.297
F1 Measure 0.293 0.283 0.274 0.297

Rank-based

One-Error 0.125 0.105 0.108 0.117
Coverage1 0.293 0.283 0.202 0.297
Coverage2 0.212 0.221 0.217 0.206
Coverage3 0.137 0.149 0.140 0.143
Ranking Loss 0.196 0.207 0.171 0.169
Average Precision 0.171 0.160 0.141 0.155

Table 9.7: p-values of results compared to random chance for mixtures of four instru-
ments

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.001 0.001 0.001 0.002
Hamming Loss 0.174 0.180 0.177 0.177
Accuracy 0.174 0.180 0.177 0.177
Precision 0.174 0.180 0.177 0.177
Recall 0.174 0.180 0.177 0.177
F1 Measure 0.174 0.180 0.177 0.177

Rank-based

One-Error 0.149 0.155 0.159 0.161
Coverage1 0.260 0.268 0.258 0.274
Coverage2 0.248 0.253 0.255 0.260
Coverage3 0.165 0.162 0.172 0.174
Coverage4 0.137 0.138 0.146 0.164
Ranking Loss 0.197 0.208 0.176 0.190
Average Precision 0.190 0.188 0.177 0.193
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measures are normalized by number of examples and number of labels, they cannot

be compared to random permutations using Equation 9.1 and have been omitted.

Using the results of random permutations of instruments as a baseline, our ap-

proach was statistically less significant for mixtures of three instruments compared to

mixtures of two and four instruments. For all mixtures, our system was more effective

for the the larger RWC dataset compared to the other three datasets. For the difficult

measure of Subset Accuracy, our approach was significantly outperformed the random

permutation baseline. Additionally our system was more effective in the One-Error

measure which considers the accuracy of only the top-ranked label. For the Coverage

measures, our system was more effective at finding the complete set of instruments

for mixtures of two, three, or four instruments compared to finding only the first

instrument for the Coverage1 measure. This likely reflects our systems tendency to

confuse similar instruments. The other measures represents a weak confidence over

random sets, that we will continue to improve in our future work. This reflects the

difficulty of the problem and we compare these statistical results with our experiments

with an easier multi-label problem given in Section 9.5.

9.3.3 Polyphonic Results by Instrument

The label-based evaluation Macro-F1 measure aggregates examples by label be-

fore it is normalized by the number of instruments (see Section 2.2.3.3). For these

polyphonic results, we are able to report the Macro-F1 measure for each individual

instrument. These results are provided in Table 9.8. On the instrument level, we do

observe differences between the datasets. The MUMS dataset, our smallest dataset,

failed to identify the Clarinet and the Violin. The MIS dataset failed to recognize

the Oboe. Our largest dataset, RWC, also failed to recognize the Oboe. The PHO



149

dataset, comprised of lower MP3 quality examples failed to identify the Trumpet.

These failures were consistent over the two, three, and four instrument mixtures.

The differences between datasets motivate further study in combining datasets

into single training datasets and exploring ensemble models and we will explore this

as future work. Such an approach requires careful consideration of the empirical

questions of balancing dataset sampling, difficult when the dataset is small, and the

issue of cross-validation of datasets.

9.3.4 Polyphonic Results with Instrument Family Labels

In our results, we observed frequent confusion among similar instruments, such as

mistaking a Violin for a Viola note. Such confusion is to be expected and is commonly

reported in the literature. To further explore this observation, we analyzed our results

with regard to musical instrument family, either woodwind, brass, or string. Any label

that matched the instrument family was counted as correct, even if the instrument

predicted was mistaken for another instrument within its family. While interesting,

this analysis is not scientific, as it changes the multi-label problem, allowing the set

of rankings that contain duplicate family labels.

The results of this analysis are given in Table 9.9. The label-based measures

cannot be reported because we disturbed the label space in our substitution of family

name for instrument name. Although there are only three family labels, our ranked

list of labels contains duplicates and therefore may predict all the same family labels

for an example. For example, the system could predict four String instruments for

a mixture of four instruments. Therefore this is not a three label problem, but an

analysis of our 13 instrument problem.
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Table 9.8: Polyphonic classification results by instrument for mixtures of two, three,
and four instruments. For each instrument and dataset, the F1-macro is shown.

Instrument MUMS MIS RWC PHO
Flute 0.259 0.279 0.270 0.283
Oboe 0.241 0.014 0.045 0.145
Clarinet 0.016 0.267 0.302 0.154
Bassoon 0.035 0.147 0.094 0.091
AltoSax 0.174 0.083 0.199 0.108
FrenchHorn 0.042 0.220 0.222 0.194
Trumpet 0.062 0.234 0.175 0.015
Trombone 0.085 0.096 0.162 0.240
Tuba 0.336 0.275 0.228 0.366
Violin 0.013 0.159 0.204 0.150
Viola 0.201 0.129 0.148 0.197
Cello 0.215 0.085 0.282 0.130
Bass 0.286 0.277 0.437 0.327

(a) Results for mixtures of two instruments

Instrument MUMS MIS RWC PHO
Flute 0.349 0.370 0.351 0.365
Oboe 0.350 0.021 0.069 0.198
Clarinet 0.015 0.290 0.365 0.169
Bassoon 0.076 0.187 0.160 0.136
AltoSax 0.190 0.160 0.282 0.164
FrenchHorn 0.048 0.277 0.195 0.284
Trumpet 0.115 0.352 0.257 0.024
Trombone 0.214 0.114 0.257 0.307
Tuba 0.349 0.340 0.189 0.437
Violin 0.018 0.193 0.278 0.250
Viola 0.283 0.173 0.240 0.254
Cello 0.334 0.103 0.365 0.205
Bass 0.355 0.327 0.460 0.403

(b) Results for mixtures of three instruments
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Instrument MUMS MIS RWC PHO
Flute 0.445 0.470 0.426 0.442
Oboe 0.454 0.039 0.092 0.257
Clarinet 0.012 0.347 0.426 0.206
Bassoon 0.117 0.249 0.198 0.146
AltoSax 0.216 0.298 0.383 0.234
FrenchHorn 0.066 0.321 0.202 0.358
Trumpet 0.137 0.461 0.337 0.032
Trombone 0.341 0.182 0.328 0.391
Tuba 0.266 0.411 0.159 0.488
Violin 0.036 0.290 0.369 0.342
Viola 0.373 0.237 0.321 0.347
Cello 0.451 0.136 0.446 0.284
Bass 0.448 0.410 0.490 0.490

(c) Results for mixtures of four instruments

First, consider the subset accuracy measure, the strictest measure. We correctly

identified the families of all the true labels 37%, 45%, and 58% of the time for two,

three, and four instruments, respectively, a marked improvement over the < 1%

subset accuracy of the 13 instrument problem. Additionally, we find improvement in

our F1 measure, improving to 0.52, 0.55, and 0.53 for two, three, and four instruments,

respectively. Lastly, we point to the One-Error measure, which measures how often

the first ranked relevant label is indeed a true label. We predicted the family of a

correct label as our top-ranked label 73%, 78%, and 87% of the time for two, three,

and four instruments, respectively.

This analysis confirms our hypothesis that many of our errors are the result of con-

fusions among similar instruments. As future work we intend to revisit this issue and

carry out an empirical study examining the specific instrument confusions. Following

those results, we intend to adapt our system into an ensemble of classifiers in which

we identify instrument family of an instrument as a first step followed by classification

by models trained to differentiate between instruments in the same family.
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Table 9.9: Results for classification of polyphonic mixtures of with family labels

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.370 0.387 0.4 0.384
Hamming Loss 0.099 0.105 0.096 0.103
Accuracy 0.505 0.487 0.517 0.494
Precision 0.520 0.523 0.533 0.533
Recall 0.520 0.523 0.533 0.533
F1 Measure 0.520 0.523 0.533 0.533

Rank-based
One-Error 0.368 0.403 0.348 0.394
Coverage1 0.629 0.669 0.566 0.614
Coverage2 2.151 2.342 2.092 2.268

(a) Results for mixtures of two instruments with family labels

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.457 0.560 0.475 0.539
Hamming Loss 0.081 0.078 0.082 0.080
Accuracy 0.635 0.654 0.629 0.645
Precision 0.548 0.590 0.548 0.577
Recall 0.548 0.590 0.548 0.577
F1 Measure 0.548 0.590 0.548 0.577

Rank-based

One-Error 0.228 0.241 0.233 0.248
Coverage1 0.322 0.322 0.345 0.351
Coverage2 1.572 1.648 1.643 1.692
Coverage3 2.931 3.012 2.966 3.051

(b) Results for mixtures of three instruments with family labels
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Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.584 0.742 0.608 0.706
Hamming Loss 0.059 0.049 0.058 0.052
Accuracy 0.742 0.786 0.749 0.773
Precision 0.530 0.573 0.537 0.563
Recall 0.530 0.573 0.537 0.563
F1 Measure 0.530 0.573 0.537 0.563

Rank-based

One-Error 0.137 0.139 0.136 0.155
Coverage1 0.174 0.171 0.195 0.203
Coverage2 1.322 1.338 1.361 1.384
Coverage3 2.504 2.534 2.527 2.581
Coverage4 3.705 3.744 3.697 3.776

(c) Results for mixtures of four instruments with family labels

9.3.5 Self-Classification Experiments with Cross-Validation

In the domain of multi-label classification to polyphonic mixtures, there are two

approaches to handling test sets. One approach uses excerpts of musical passages.

These approaches most always normalize their evaluation by the number of time

frames classified correctly, artificially inflating results if the piece includes moments

of silence or passages of a solo instruments. The other approach, which is increasing

in popularity in the recent literature [193], is to train on solo instruments and test of

mixtures of multiple instruments playing simultaneously. We considered this approach

in the experiments given above.

As we mentioned earlier in this section, although the training datasets of solo

instruments and the test datasets of polyphonic mixtures are not the same dataset,

the solo examples are used to create the mixtures and thus a dependency between

the datasets exists. Although this is becoming a common practice, no study has

previously explored this bias with cross-validation experiments.

To explore this issue, we designed a 5 × 2 cross-validation experiment to explore

the effect of this dependency between training and test sets. Because the training and
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Table 9.10: Results of the cross-validation results for mixtures of two, three , and
four instruments.

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.022 0.027 0.025 0.032
Hamming Loss 0.248 0.244 0.242 0.236
Accuracy 0.137 0.147 0.163 0.165
Precision 0.194 0.207 0.199 0.232
Recall 0.194 0.207 0.212 0.232
F1 Measure 0.194 0.207 0.212 0.232

Label-based

Macro-Precision 0.219 0.239 0.241 0.243
Macro-Recall 0.193 0.205 0.212 0.231
Macro-F1 0.142 0.177 0.183 0.217
Micro-Precision 0.194 0.207 0.212 0.232
Micro-Recall 0.194 0.207 0.212 0.232
Micro-F1 0.194 0.207 0.212 0.232

Rank-based

One-Error 0.808 0.793 0.791 0.764
Coverage1 2.918 2.786 2.685 2.511
Coverage2 7.005 6.917 6.904 6.607
Ranking Loss 0.729 0.703 0.693 0.675
Average Precision 0.359 0.374 0.379 0.396

(a) Cross-validation results on mixtures of two instruments

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.005 0.007 0.007 0.009
Hamming Loss 0.337 0.336 0.331 0.324
Accuracy 0.178 0.181 0.188 0.200
Precision 0.269 0.272 0.283 0.298
Recall 0.269 0.272 0.283 0.298
F1 Measure 0.267 0.272 0.283 0.298

Label-based

Macro-Precision 0.279 0.297 0.301 0.309
Macro-Recall 0.270 0.272 0.282 0.296
Macro-F1 0.209 0.230 0.237 0.273
Micro-Precision 0.269 0.272 0.283 0.298
Micro-Recall 0.269 0.272 0.283 0.298
Micro-F1 0.270 0.272 0.283 0.298

Rank-based

One-Error 0.727 0.731 0.722 0.702
Coverage1 2.067 2.082 1.982 1.866
Coverage2 5.269 5.201 5.185 4.958
Coverage3 8.647 8.548 8.664 8.390
Ranking Loss 1.024 1.008 0.985 0.966
Average Precision 0.412 0.341 0.422 0.435

(b) Cross-validation results on mixtures of three instruments
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Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.003 0.003 0.002 0.003
Hamming Loss 0.408 0.407 0.401 0.395
Accuracy 0.222 0.224 0.230 0.238
Precision 0.337 0.339 0.348 0.357
Recall 0.337 0.339 0.348 0.357
F1 Measure 0.337 0.339 0.348 0.357

Label-based

Macro-Precision 0.359 0.355 0.369 0.373
Macro-Recall 0.335 0.342 0.348 0.358
Macro-F1 0.267 0.289 0.296 0.326
Micro-Precision 0.337 0.339 0.348 0.357
Micro-Recall 0.337 0.339 0.348 0.357
Micro-F1 0.337 0.339 0.348 0.357

Rank-based

One-Error 0.664 0.664 0.646 0.637
Coverage1 1.591 1.610 1.504 1.451
Coverage2 4.185 4.179 4.112 3.981
Coverage3 6.889 6.818 6.877 6.675
Coverage4 9.688 9.606 9.740 9.501
Ranking Loss 1.268 1.252 1.213 1.206
Average Precision 0.462 0.464 0.472 0.480

(c) Cross-validation results on mixtures of four instruments

tests set are different, albeit related, we cannot carry out cross-validation without first

creating independent datasets. For the set of solo instruments for each instrument,

we randomly select 50% of the examples and use these as our training set. The

remaining 50% of the solo examples are used to generate the polyphonic mixtures,

as described in Section 5.6. Then the process is repeated, switching the roles of two

halves of the data. This procedure ensures a complete decoupling of the training and

test sets. We repeat this process four more times, to create five folds of training and

test sets. For each fold, we create at least 200 examples of each instrument for a total

of 2600 mixtures. We repeat this process for all instruments across the four datasets.

We carry out our multi-label classification scheme for each of the folds, averaging the

results normalizing by the ten folds.
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The results of this cross-validation experiments are given as Table 9.10. We ob-

serve consistency across the measures across the folds. The cross-validation results

track with the full-dataset results given in Tables 9.2 − 9.4 across the two, three,

and four mixture experiments. Even the small MUMS dataset, which for some in-

struments, such as the Alto Saxophone, contribute only seven examples to each fold

of the training set. Nevertheless, the results track with the MUMS scores in the full

self-classification experiment. These results imply that the effect of the dependency

between a training set of solo examples and a test set of mixtures created from these

solo examples is negligible in our experiments for our levels of efficacy. As the field

of multi-label instrument matures and multi-label classification results improve, this

question of dataset bias should be revisited.

9.4 Multi-label Cross-Dataset Experiments

In this experiment, we explore cross-dataset classification of polyphonic mixtures

of two, three, or four instruments. These results are shown in Tables 9.11 − 9.13.

In these experiments, one dataset of solo instruments is used for training, and the

classifier is evaluated on all four datasets. If the training and test datasets come from

the same original data source, the result is marked in boldface in the tables. For each

polyphony of two, three, and four, 4× 4 experiments are run. For practicality, these

experiments test on only a subset of the polyphonic datasets given in Section 5.6. For

each instrument, at least 250 mixtures are considered, resulting in 13 × 250 = 3250

test examples in each experiment. These examples are selected at random without

replacement, ensuring at least 250 mixtures containing each instrument.

As expected, there is some degradation when testing on a dataset that differs

from the training dataset. However, these differences are small, consistent with our
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Table 9.11: Results of the cross dataset experiments for mixtures of two instruments.
Column headers show the test dataset. Self-classify dataset is shown in bold.

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.023 0.016 0.020 0.020
Hamming Loss 0.249 0.252 0.253 0.250
Accuracy 0.135 0.126 0.125 0.133
Precision 0.191 0.180 0.177 0.189
Recall 0.191 0.180 0.177 0.189
F1 Measure 0.191 0.180 0.177 0.189

Label-based

Macro-Precision 0.179 0.193 0.172 0.180
Macro-Recall 0.190 0.178 0.177 0.187
Macro-F1 0.155 0.146 0.142 0.152
Micro-Precision 0.191 0.180 0.177 0.189
Micro-Recall 0.191 0.180 0.177 0.189
Micro-F1 0.191 0.180 0.177 0.189

Rank-based

One-Error 0.804 0.827 0.826 0.813
Coverage1 2.964 3.163 3.164 3.093
Coverage2 6.859 7.277 7.234 7.239
Ranking Loss 0.702 0.714 0.711 0.712
Average Precision 0.370 0.354 0.354 0.361

(a) MUMS training set

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.016 0.032 0.017 0.022
Hamming Loss 0.260 0.246 0.253 0.252
Accuracy 0.109 0.144 0.123 0.128
Precision 0.155 0.200 0.177 0.181
Recall 0.155 0.200 0.177 0.181
F1 Measure 0.155 0.200 0.177 0.181

Label-based

Macro-Precision 0.172 0.201 0.199 0.168
Macro-Recall 0.156 0.199 0.176 0.188
Macro-F1 0.127 0.172 0.149 0.152
Micro-Precision 0.155 0.200 0.177 0.181
Micro-Recall 0.155 0.200 0.177 0.181
Micro-F1 0.155 0.200 0.177 0.181

Rank-based

One-Error 0.856 0.794 0.827 0.816
Coverage1 3.382 2.945 3.206 3.123
Coverage2 7.494 7.013 7.360 7.149
Ranking Loss 0.747 0.708 0.722 0.715
Average Precision 0.330 0.372 0.350 0.358

(b) MIS training set
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Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.029 0.029 0.031 0.025
Hamming Loss 0.237 0.243 0.236 0.245
Accuracy 0.163 0.151 0.165 0.145
Precision 0.229 0.212 0.232 0.205
Recall 0.229 0.211 0.232 0.204
F1 Measure 0.229 0.211 0.232 0.205

Label-based

Macro-Precision 0.215 0.204 0.236 0.201
Macro-Recall 0.228 0.209 0.232 0.205
Macro-F1 0.214 0.194 0.215 0.187
Micro-Precision 0.229 0.211 0.232 0.205
Micro-Recall 0.229 0.211 0.232 0.204
Micro-F1 0.229 0.211 0.232 0.205

Rank-based

One-Error 0.764 0.778 0.763 0.803
Coverage1 2.557 2.761 2.584 2.912
Coverage2 6.651 6.889 6.626 6.850
Ranking Loss 0.678 0.654 0.669 0.675
Average Precision 0.397 0.391 0.399 0.379

(c) RWC training set

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.024 0.019 0.020 0.023
Hamming Loss 0.243 0.244 0.246 0.243
Accuracy 0.147 0.144 0.140 0.149
Precision 0.209 0.206 0.200 0.212
Recall 0.209 0.206 0.200 0.211
F1 Measure 0.209 0.206 0.200 0.211

Label-based

Macro-Precision 0.201 0.196 0.201 0.200
Macro-Recall 0.210 0.203 0.201 0.213
Macro-F1 0.175 0.172 0.201 0.177
Micro-Precision 0.209 0.206 0.200 0.211
Micro-Recall 0.209 0.206 0.200 0.211
Micro-F1 0.209 0.206 0.200 0.211

Rank-based

One-Error 0.780 0.793 0.815 0.796
Coverage1 2.834 2.879 2.915 2.703
Coverage2 7.099 7.025 7.010 6.661
Ranking Loss 0.706 0.671 0.699 0.680
Average Precision 0.375 0.377 0.367 0.384

(d) PHO training set
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Table 9.12: Results of the cross dataset experiments for mixtures of three instruments.
Column headers show the test dataset. Self-classify dataset is shown in bold.

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.006 0.005 0.004 0.003
Hamming Loss 0.343 0.348 0.346 0.343
Accuracy 0.169 0.162 0.165 0.169
Precision 0.256 0.246 0.251 0.257
Recall 0.256 0.246 0.251 0.257
F1 Measure 0.256 0.246 0.251 0.257

Label-based

Macro-Precision 0.292 0.262 0.270 0.249
Macro-Recall 0.257 0.244 0.249 0.257
Macro-F1 0.204 0.194 0.197 0.201
Micro-Precision 0.256 0.246 0.251 0.257
Micro-Recall 0.256 0.246 0.251 0.257
Micro-F1 0.256 0.246 0.251 0.257

Rank-based

One-Error 0.759 0.764 0.777 0.762
Coverage1 2.225 2.329 2.302 2.268
Coverage2 5.381 5.587 5.537 5.550
Coverage3 8.641 8.910 8.835 8.811
Ranking Loss 1.023 1.027 1.024 1.021
Average Precision 0.402 0.395 0.393 0.399

(a) MUMS training set

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.003 0.006 0.008 0.006
Hamming Loss 0.351 0.340 0.345 0.345
Accuracy 0.156 0.174 0.167 0.166
Precision 0.239 0.262 0.252 0.252
Recall 0.239 0.262 0.252 0.252
F1 Measure 0.239 0.262 0.252 0.252

Label-based

Macro-Precision 0.215 0.280 0.241 0.230
Macro-Recall 0.240 0.265 0.251 0.252
Macro-F1 0.189 0.224 0.203 0.204
Micro-Precision 0.239 0.262 0.252 0.252
Micro-Recall 0.239 0.262 0.252 0.252
Micro-F1 0.239 0.262 0.252 0.252

Rank-based

One-Error 0.786 0.750 0.767 0.761
Coverage1 2.367 2.192 2.311 2.251
Coverage2 5.628 5.347 5.561 5.507
Coverage3 8.944 8.726 8.869 8.802
Ranking Loss 1.043 1.012 1.034 1.028
Average Precision 0.386 0.407 0.395 0.400

(b) MIS training set



160

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.005 0.006 0.009 0.007
Hamming Loss 0.325 0.333 0.326 0.335
Accuracy 0.198 0.185 0.196 0.182
Precision 0.296 0.278 0.294 0.274
Recall 0.296 0.278 0.294 0.274
F1 Measure 0.296 0.278 0.294 0.274

Label-based

Macro-Precision 0.286 0.281 0.299 0.281
Macro-Recall 0.295 0.279 0.290 0.273
Macro-F1 0.273 0.261 0.268 0.251
Micro-Precision 0.296 0.278 0.294 0.274
Micro-Recall 0.296 0.278 0.294 0.274
Micro-F1 0.296 0.278 0.294 0.274

Rank-based

One-Error 0.682 0.710 0.700 0.724
Coverage1 1.846 2.008 1.882 2.076
Coverage2 5.002 5.194 5.138 5.314
Coverage3 8.371 8.636 8.438 8.487
Ranking Loss 0.954 0.936 0.956 0.969
Average Precision 0.440 0.428 0.437 0.423

(c) RWC training set

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.006 0.005 0.006 0.007
Hamming Loss 0.337 0.339 0.339 0.329
Accuracy 0.178 0.175 0.176 0.192
Precision 0.269 0.266 0.267 0.287
Recall 0.269 0.266 0.267 0.287
F1 Measure 0.269 0.266 0.267 0.287

Label-based

Macro-Precision 0.275 0.265 0.262 0.296
Macro-Recall 0.270 0.266 0.264 0.287
Macro-F1 0.230 0.229 0.228 0.250
Micro-Precision 0.269 0.266 0.267 0.287
Micro-Recall 0.269 0.266 0.267 0.287
Micro-F1 0.269 0.266 0.267 0.287

Rank-based

One-Error 0.725 0.735 0.737 0.725
Coverage1 2.111 2.146 2.137 1.957
Coverage2 5.365 5.444 5.399 5.121
Coverage3 8.711 8.785 8.721 8.430
Ranking Loss 1.017 1.005 1.022 0.976
Average Precision 0.412 0.406 0.408 0.426

(d) PHO training set
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Table 9.13: Results of the cross dataset experiments for mixtures of four instruments.
Column headers show the test dataset. Self-classify dataset is shown in bold.

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.001 0.002 0.002 0.003
Hamming Loss 0.413 0.416 0.417 0.408
Accuracy 0.215 0.212 0.210 0.222
Precision 0.329 0.324 0.322 0.337
Recall 0.329 0.324 0.322 0.337
F1 Measure 0.329 0.324 0.322 0.337

Label-based

Macro-Precision 0.355 0.323 0.333 0.356
Macro-Recall 0.327 0.322 0.321 0.333
Macro-F1 0.259 0.252 0.249 0.268
Micro-Precision 0.329 0.324 0.322 0.337
Micro-Recall 0.329 0.324 0.322 0.337
Micro-F1 0.329 0.324 0.322 0.337

Rank-based

One-Error 0.710 0.684 0.704 0.680
Coverage1 1.721 0.694 1.733 1.662
Coverage2 4.309 4.366 4.417 4.278
Coverage3 6.904 7.134 7.136 7.033
Coverage4 9.602 9.894 9.818 9.772
Ranking Loss 1.266 1.274 1.277 1.252
Average Precision 0.453 0.451 0.446 0.458

(a) MUMS training set

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.000 0.002 0.002 0.002
Hamming Loss 0.420 0.408 0.416 0.413
Accuracy 0.208 0.222 0.212 0.216
Precision 0.318 0.337 0.324 0.329
Recall 0.318 0.337 0.324 0.329
F1 Measure 0.318 0.337 0.324 0.329

Label-based

Macro-Precision 0.328 0.356 0.319 0.338
Macro-Recall 0.317 0.336 0.323 0.330
Macro-F1 0.260 0.294 0.270 0.276
Micro-Precision 0.318 0.337 0.324 0.329
Micro-Recall 0.318 0.337 0.324 0.329
Micro-F1 0.318 0.337 0.324 0.329

Rank-based

One-Error 0.726 0.663 0.690 0.687
Coverage1 1.817 1.587 1.709 1.693
Coverage2 4.474 4.195 4.355 4.311
Coverage3 7.172 6.823 7.031 6.989
Coverage4 9.879 9.628 9.807 9.697
Ranking Loss 1.300 1.244 1.279 1.274
Average Precision 0.440 0.464 0.451 0.454

(b) MIS training set

s
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Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.004 0.002 0.003 0.002
Hamming Loss 0.399 0.405 0.397 0.407
Accuracy 0.233 0.225 0.235 0.222
Precision 0.351 0.341 0.355 0.339
Recall 0.351 0.341 0.355 0.339
F1 Measure 0.351 0.341 0.355 0.339

Label-based

Macro-Precision 0.351 0.349 0.362 0.339
Macro-Recall 0.351 0.341 0.354 0.336
Macro-F1 0.323 0.320 0.323 0.307
Micro-Precision 0.351 0.341 0.355 0.339
Micro-Recall 0.351 0.341 0.355 0.339
Micro-F1 0.351 0.341 0.355 0.339

Rank-based

One-Error 0.632 0.657 0.648 0.643
Coverage1 1.456 1.541 1.452 1.510
Coverage2 4.030 4.168 4.044 4.209
Coverage3 6.727 6.787 6.744 6.953
Coverage4 9.581 9.617 9.586 9.583
Ranking Loss 1.185 1.179 1.167 1.199
Average Precision 0.483 0.472 0.480 0.472

(c) RWC training set

Type Metric MUMS MIS RWC PHO

Example-based

Subset Accuracy 0.003 0.001 0.003 0.002
Hamming Loss 0.409 0.408 0.410 0.401
Accuracy 0.220 0.221 0.220 0.230
Precision 0.335 0.336 0.334 0.348
Recall 0.335 0.336 0.334 0.348
F1 Measure 0.335 0.336 0.334 0.348

Label-based

Macro-Precision 0.354 0.350 0.335 0.355
Macro-Recall 0.354 0.335 0.334 0.347
Macro-F1 0.354 0.299 0.291 0.308
Micro-Precision 0.335 0.336 0.334 0.348
Micro-Recall 0.335 0.336 0.334 0.348
Micro-F1 0.335 0.336 0.334 0.348

Rank-based

One-Error 0.663 0.670 0.663 0.651
Coverage1 1.624 1.599 1.637 1.500
Coverage2 4.275 4.265 4.299 4.070
Coverage3 6.968 6.921 6.969 6.701
Coverage4 9.752 9.725 9.735 9.445
Ranking Loss 1.266 1.248 1.274 1.215
Average Precision 0.461 0.460 0.460 0.474

(d) PHO training set
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cross-dataset experiments on monophonic classification given in Section 8.2 and far

more encouraging that the cross-dataset results given by [34]. Also of interest is the

relative consistency in the differences between the datasets across the set of evalua-

tion measures. Since the number of monophonic training examples differed greatly

between instruments across datasets (see Table 5.2), this result shows a consistency

in classification across the datasets that implies that our method is not skewed based

on the distributions of class labels in the training set.

There are very few studies that show any cross-data results, however, a recent

study, discussed in Section 3.2.1.3 , deserves revisiting here. Duan et al. considered

13 instruments from the RWC and MIS datasets [193]. Although published only

recently and long after we chose our datasets, coincidentally, the authors consider

the exact set of 13 instruments considered in this dissertation. However, the authors

consider only the mezzo-forte dynamic level, while our studies consider all three

dynamic levels from those datasets. The authors also only consider a short sustained

portion of the note, disregarding the attack and the decay portions of the signal. As

in our approach, the authors considers only one time window. However, the authors

use a different feature space and a multi-label SVM classifer. Most significantly, their

approach relies on a score-informed source separation algorithm, which requires the

set of true pitches as input. Our approach does not require knowledge of the pitches

present, nor uses a multi-pitch finding algorithm.

Despite these difference, this study contains the same number of labels q = 13

and the same musical instruments, making it the best candidate of the studies in

the literature for comparison to our work. The authors uses monophonic samples

from the MIS dataset and tested on samples from the RWC dataset, as we have

done given in Tables 9.11b − 9.13b. Unfortunately, the authors provide only this one

cross-dataset result. The authors report an accuracy of about 48% for monophonic
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classification, 37% for two instruments, 32% for three instruments, and 30% for four

instruments1. The authors do not supply their definition of accuracy, but report a

value of chance of 1/13 = 8%, which is incorrect if the authors are limiting the relative

label space to the problem’s cardinality. This implies the authors are counting true

positives but ignoring the false positives. Nevertheless, it can be noted that their

approach degrades as the cardinality increases while accuracy increases. For four

instruments, their system reports around 30% while we report an F1 score of 33%.

Our system also outperforms theirs on the task of monophonic classification. Their

approach appears to outperform ours for two and three instruments. However, it is

very important to note that this comparison is not scientific and direct comparisons

cannot be made, given the broad differences in the data, the features, the approach,

and the evaluation measure. The authors also report polyphony of five with accuracy

of 27% and polyphony of six with 25% accuracy. Although we will explore mixtures of

larger size as future work, our present results indicate that our accuracy will increase

rather than decrease as the label cardinality and density increases. The reported

accuracy of their system degrades as label cardinality increases.

9.5 Reduced Instrument Set Experiment

Although the results given in the previous two sections appear low when compared

objectively to some of the studies given in Section 3.2.1.3, these studies all differ in

datasets, experimental design, feature selection, and classification method. Most

notably, most of these studies test very few instruments, resulting in a high label

density score which correlates to a lesser problem difficulty. In a final experiment, we

1These values are approximate and were extracted from a line graph. The study did not report
exact numbers.
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test our system on dataset with a smaller label size to be consistent with the literature.

We chose q = 5 with the instruments Cello, Violin, Clarinet, Flute, and Pianoforte.

This set of instruments appears in several studies including [202, 180, 189, 181, 204]

and similar small sets of instruments appear in [151, 209, 234, 232, 235, 233].

We did not consider the Pianoforte for the experiments in this chapter because

the instrument is not present in the PHO dataset, but the other four instruments are

included in our experiments.

In our principal experiments, we did not consider the pianoforte because it is ab-

sent from the PHO dataset and therefore not one of the 13 instruments common to all

four datasets, given in Section 5.2. However, we now wish to consider the Pianoforte

in order to match the set of instruments given in the above studies. Therefore, for this

experiment, we consider only the RWC dataset, our largest set, which contains the

Pianoforte. For these five instruments, we create datasets following the procedures

given in Chapter 5, learn instrument signatures according to the process given in

Chapter 6, extract features as discussed in Chapter 7. The classification results are

given in Table 9.14.

In Table 9.15 we show the p-value for our results on the reduced instrument set

compared to random permutations. These p-values are calculated as described in

Section 9.3.2 for a reduced instrument set of q = 5. These statistical results show a

strong significance of our results for mixtures of two and three instruments compared

to random permutations, around 5% for most measures. The statistical significance

for mixtures of four was less strong but still improved over the results for the harder

q = 13 case. This reflects the easy problem of choosing four out of five labels. In all

cases, considering random permutations as the baseline, our system was more effective



166

Table 9.14: Results for mixtures of two, three, and four instruments for a dataset
with the number of labels q = 5.

Type Metric 2-mix 3-mix 4-mix

Example-based

Subset Accuracy 0.200 0.181 0.279
Hamming Loss 0.143 0.151 0.112
Accuracy 0.420 0.538 0.705
Precision 0.536 0.677 0.828
Recall 0.522 0.663 0.802
F1 Measure 0.527 0.668 0.812

Label-based

Macro-Precision 0.572 0.705 0.841
Macro-Recall 0.522 0.665 0.802
Macro-F1 0.528 0.663 0.802
Micro-Precision 0.537 0.677 0.828
Micro-Recall 0.522 0.663 0.802
Micro-F1 0.530 0.670 0.815

Rank-based

One-Error 0.414 0.246 0.114
Coverage1 0.609 0.291 0.115
Coverage2 2.301 1.683 1.271
Coverage3 − 3.097 2.458
Coverage4 − − 3.599
Ranking Loss 0.332 0.355 0.248
Average Precision 0.742 0.819 0.907

Table 9.15: p-values of results compared to random chance for the reduced dataset
experiments

Type Metric 2-mix 3-mix 4-mix

Example-based

Subset Accuracy 0.054 0.048 0.121
Hamming Loss 0.054 0.048 0.121
Accuracy 0.054 0.048 0.121
Precision 0.054 0.048 0.121
Recall 0.054 0.347 0.121
F1 Measure 0.054 0.048 0.121

Rank-based

One-Error 0.200 0.293 0.407
Coverage1 0.200 0.293 0.407
Coverage2 0.157 0.154 0.315
Coverage3 − 0.197 0.218
Coverage4 − − 0.121
Ranking Loss 0.104 0.101 0.218
Average Precision 0.151 0.154 0.218
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on this easier problem compared to the thirteen instrument case given in Tables 9.5,

9.6, and 9.7.

The label density of this problem with q = 5 is greatly increased compared to our

previous experiments, as shown in Table 9.1, rendering it a significantly easier multi-

label problem, and subsequently our results are significantly improved. Our subset

accuracy, the most strict measure, is 20% for mixtures of two, 18% for mixtures

of three, and 28% for mixtures of four. This is a significant improvement over the

< 1% subset accuracy of our q = 13 experiments. The F1 measure is 0.53 for two

instruments, 0.67 for three instruments, and 0.81 for four instruments. This is more

consistent with the results given for similar label density problems, although direct

comparisons between studies are anecdotal at best. The one-error measure has not

been reported by any other instrument classification studies, although it is perhaps

analogous to the studies that seek to recognize a single dominant instrument from a

mixture of instruments. For mixtures of four, our approach selected a true label as the

top ranked label 89% of the time. Many of the studies that test mixtures from datasets

of only five instruments, use approaches that rely on temporal features, multi-pitch

finding algorithms, or frame-based evaluation schemes, and none consider multiple

dynamic level. Our approach, tested under more adversarial conditions including

multiple dynamic levels, multiple performers, no consideration of temporal features,

simple feature space of single amplitude values, can compete with other systems when

tested on simple multi-label problems with a high label density, such as q = 5. The

results on the simpler q = 5 problems emphasize the promise of our results in the

hard q = 13 multi-label problem, especially considering the polyphonic classification

community has only recently begun examining harder multi-label problems and cross-

dataset evaluation and there are few studies available for comparison.
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9.6 Conclusion

In this chapter we present experimental results evaluating the classification of

polyphonic mixtures ranging from two to four instruments, analayzing our results

by instrument family label and individual instrument accuracy. We report a com-

prehensive set of multi-label evaluation metrics, the first study in the domain of the

polyphonic instrument classification to provide all possible measures. We contribute

the first cross-validation study in the domain concerning solo instrument training sets

and derived polyphonic mixture test sets. Next, we evaluate our system in a 4 × 4

cross-dataset study, the largest cross-dataset study in the domain, demonstrating the

ability of our system to generalize across datasets. We compare our work to the

only study with similar label density and same instrument space, showing compara-

ble performance. Our results show consistent improvement as the number of labels

increases from two to four. Lastly, we provide a case study of a multi-label problem

with only q = 5 instruments, for anecdotal comparisons to studies using the same

reduced instrument set. We show that on the much simpler problem with a very high

label density, our system tracks with results reported in the literature.



169

CHAPTER 10

CONCLUSION

In this dissertation, we present a system for the single- and multi-label classifica-

tion of polyphonic mixtures of musical instruments coupling a novel binary-relevance

feature extraction approach with the widely-used binary-relevance classification ap-

proach to multi-label classification. In this chapter, we summarize our contributions

to the domains of instrument classification and multi-label classification and present

our directions for future work.

10.1 Summary

We briefly summarize our contributions provided in this disseration. First, we

demonstrate the ability of a simple feature set of spectral amplitudes to compete

with state of the art classifiers for monophonic instrument classifiers that use complex

features sets, often those standard in speech recognition tasks, that often overfit the

training data and are not extensible to multi-label classification. Additionally, we

show statistical dependencies between an instrument’s harmonic partials through our

seminal use of classification with Bayesian networks. This result underscores the

importance of capturing all sequential partials in the feature extraction stage, an

observation that heavily influenced the design of our feature extraction approach for

multi-label mixtures.

Next, we present our four datasets, the largest data repository in the monophonic

or polyphonic instrument classification literature. We consider the three datasets

most frequently mentioned in the literature and a new, large dataset comprised of
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lower quality MP3 examples. We consider multiple performers for each instrument,

between three and five dynamic levels, and a large set of 13 musical instruments.

Furthermore, we present a novel amplitude normalization scheme that extracts as

features the ratios of the amplitudes of the partial to the amplitude of the fundamen-

tal frequency. This normalization scheme considers the instrument’s timbre with a

reference point to itself, allowing generalization across different dynamic levels and

recording procedures.

Building on our work with monophonic classification of musical instruments, we

designed a system for instrument classification that satisfies the qualities of scala-

bility, generalizability, and practicality. We present a novel data-driven approach

to learn locations of instrument’s significant spectral energy to inform the feature

extraction approach. We validate these signatures showing the application of a signa-

ture optimized for one dataset to find relevant features in a different dataset, arguing

our learned signatures capture areas relevant to an instrument’s timbre, rather than

acoustic properties of a specific dataset.

We propose a novel extension to the common binary-relevance approach to multi-

label classification. Our binary-relevance feature extraction scheme permits consid-

eration of a unique feature space for each binary-relevance classifier, albeit at the

expense of an additional calculation for each binary classifier. However, this ap-

proach scales in complexity with the number of models, as does the binary-relevance

classification approach. This design allows our system to scale linearly as the number

of class labels increases, unlike many other mult-label approaches that grow exponen-

tially with the number of class labels, satisfying our criteria of scalability.

In this dissertation, we evaluate our system on polyphonic mixtures of two, three,

and four instruments. We consider only a single time window in which the signals over-

lap. Our system does not rely on temporal features or signal alignment that require
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knowledge of the timing of the attack, sustain, and decay of the signal. Expectation

of such knowledge is impractical for most applications of instrument classification.

Our system does not rely on any musical score information or multi-pitch finding

algorithms, fields themselves still in active development. We argue such an approach

is necessary for practicality of any multi-label instrument classification system when

approaching real-world data. Additionally, we examine the bias between solo training

sets and derived mixture datasets used for testing in the only cross-validation study

of its kind in the domain.

We provide important experimental results consisting of the largest cross-dataset

in the instrument classification literature. We demonstrate our ability generalizes be-

tween datasets with losses in accuracy much smaller than in the literature. This shows

the ability of our system to capture instrument’s timbre rather than overfitting the

training datasets. Furthermore, we demonstrate these results on enormous datasets

that normalize notes by frequency, musical dynamic level, and differing levels of audio

compression and recording levels. We demonstrate this ability to generalize between

small (MUMS), medium (MIS), and large (RWC) datasets. We also demonstrate the

ability to generalize these three datasets, which are all recorded in ideal recording

environments, with our newly proposed PHO dataset, which contains low quality

MP3s.

Additionally, we demonstrate the ability of our system to improve with the label

cardinality and label density as the number of labels increase from two, three, and

four instruments, an expected result that differs from a relevant recent result in the

literature despite comparable performance for the four instrument classification prob-

lem. We demonstrate that our accuracy correlates to the difficulty of the multi-label

problem, showing desirable and comparable empirical results on a small, five instru-

ment grouping commonly reported in the literature. We also report comprehensive
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results on our large set of 13 instrument reporting F1 scores comparable to recent

efforts in the field.

Lastly, we present a comprehensive set of all multi-label evaluation metrics avail-

able in the multi-label classification literature. Unfortunately, the polyphonic instru-

ment classification literature rarely presents more than one metric and often nebulous

or poorly-defined measures of success. We hope to align the instrument classification

community with the measures common in other multi-label domains. Additionally we

point to the utility of rank-based metrics, which have not previously been reported

from studies in this domain, as well as our proposed extension to the Coverage measure

for understanding the confusions in the polyphonic classification, an area in which

there are frequently confusions between similar instruments as the complexity of the

problem increases.

10.2 Future Work

The area of multi-label classification of polyphonic mixtures of instruments is

a difficult problem, only obtaining serious attention in the last few years. As our

primary goal in this dissertation was to develop a system for generalizability between

data sources, we considered only a simple albeit effective feature space, leaving ample

opportunity for refinement. We intend to explore optimization of the feature space

in three ways.

In our present work, we consider only simple maximum amplitudes for each partial,

albeit filtered by a spectral mask trained for that instrument. As future work, we will

first explore optimizing the feature space for each instrument to further exploit our

binary-relevance feature extraction approach. By comparing the instrument signature

empirically, we can select features for each instrument that best differentiate it from
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other instruments. Additionally, we will consider other feature spaces. The extensible

desire of our spectral mask allows the use of many other spectral features from the

monophonic classification literature; although, cross-dataset validation experiments

are necessary to avoid overfitting the feature space to the training data, a common

issue in the domain. Additionally, we will explore training our binary instrument

models with “noisy” training data consisting on the instrument playing in a mixture

with other instruments.

Secondly, we will extend our approach to consider temporal features. We plan

to extend our Bayesian networks for multi-label classification, considering frequency

and temporal dependencies between spectra of adjacent time frames. Lastly, we

wish to explore a feature weighting scheme informed by our data-driven signature

learning stage. In present work, we consider each learned cluster as a feature in

our feature space. We will adapt our k-means clustering method to capture cluster

density information, informing the relative coverage of each cluster to the dataset.

This approach will allow pruning of features less common across the entire dataset

for each instrument.

Our present system does not require score information nor rely on a multi-pitch

finding algorithm. Currently, we consider each significant peak as a potential funda-

mental frequency for each instrument. In this dissertation, we wished to argue the

efficacy of our system independent of a coupling with a multi-pitch finding algorithm.

We will explore coupling our system with various multi-pitch finding algorithms,

which will allow us to consider fewer peaks as hypothetical fundamental frequencies,

improving the complexity of our approach. We hypothesize this approach will help

reduce the number of false positives resulting from confusions of similar instruments.

Lastly, we wish to analyze the confusions of our system, by empirically exploring

correlations to musical dynamic level and the musical intervals of the polyphonic
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mixtures. To analyze the effect of the dynamic levels of the contributing individual

instruments, we need to create new datasets, refactoring our class labels to adapt

to our evaluation measures. This analysis will allow us to explore the intuition that

louder musical instruments are more frequently classified correctly compared to the

softer notes of the mixture. Furthermore, we intend to explore analysis of the results

of our system in regard to the frequencies of the contributing pitches. Our present

work allowed mixtures of any possible musical interval, including the unison and

octave in which many harmonic partials are likely to overlap, despite our spectral

filters. Other musical intervals, such as the minor-second or major-seventh will have

far fewer harmonic partials in common. We anticipate strong correlation between the

musical intervals of the mixture and classification rates and will explore this topic

experimentally.
’
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[119] Slim Essid, Gaël Richard, Bertrand David. Musical instrument recognition
based on class pairwise feature selection. International Society for Music Infor-
mation Retrieval Conference (ISMIR), 2004.
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SIGNATURE LEARNING EXAMPLE
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This appendix provides a detailed walk-through of the signature learning process

described in Chapter 6.

A.1 Dataset Pre-Processing

First, we begin with an overview of the dataset processing described in Section 5.3.

Consider a single instrument, the Violin, taken from the RWC dataset. The original

raw dataset consists of performers playing through a chromatic scale, such as the

Violin playing at forte dynamic level shown in Figure A.1a. Many of the datasets, such

as RWC, contain two to three different performers on different instruments playing at

multiple levels and with varying articulations. Using the silence in between notes as a

cue, we split these files into individual files each containing a single note as described

in Section 5.3.1.

Next, consider a sound example of a Violin playing a single note, a middle C

(261 Hz) at a forte dynamic level. The waveform of this note is shown in Figure

A.1b. Each file is then truncated to one second in length, as described in Section

5.3.2. Across the datasets and instruments, many of the sound examples are shorter

than one second and silence is added to make them one second each. Others are

longer than one second and must be sampled, and a brief fade out is added at the

end to eliminate any discontinuities in the waveform, such as the Violin note shown

in Figure A.1c. Lastly, the sound files are batch normalized by each instrument for

each dataset. This means, for a specific instrument and dataset, the file containing

the loudest peak is scaled to the maximum gain of 1.0. All other files are also scaled

by this amount. This helps scale the significant data above the noise floor, while

preserving the relative dynamic differences between samples for the instrument.
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This entire process is repeated over the 13 instruments for all four datasets. These

datasets are used to generate datasets for training our binary models (Section 5.5)

and used to generate the datasets of polyphonic mixtures (Section 5.6).

A.2 Signal Processing

In this work, we are interested in spectral features and must transform each wave-

form from the time domain to the frequency domain. For each example of a single

note, we take the fast Fourier Transform of the signal, as described in Section 5.4.

Figure A.2a graphs the amplitudes of the spectra along a linear scale. In order to

consider the relative significance of peaks to their local frequency neighborhood, we

consider logarithmic power spectral density, scaling each by 10 · log 10 as described in

Section 5.4.2 and shown in Figure A.2b.

The next step is to determine the variable-frequency noise threshold as described

in Section 6.3.3. An example is shown in Figure A.2c. We consider any peak above

this threshold to be a significant peak. Among those significant peaks, we identify

the fundamental frequency f0 using the procedure described in Section 6.3.2. Our

algorithm selects the lowest significant peak, the leftmost peak shown in Figure A.2b.

A.3 Spectral Peak Extraction

After identifying the significant peak threshold, we extract all the locations (in

Hertz) corresponding to significant peaks. In this stage, we are interested in learning

the locations of the significant peaks, not the specific amplitude values. Using the

calculated f0 value, we calculate the ratio of the peak’s frequency to the fundamental.

Table A.1 shows the significant peaks for the 1st, 2nd, and 3rd overtone of a Violin



201

(a) Waveform of a performer playing a violin scale.

(b) Waveform of a Violin playing middle C (261 Hz).

(c) Waveform of a Violin playing middle C (261 Hz), truncated at one second.

Figure A.1: Waveforms of Violin notes
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(a) Spectra of a Violin playing middle C (261 Hz).

(b) Spectra of the same Violin note, showing amplitudes scaled by power spectral density.

(c) Spectra of the same Violin note, showing the variable-frequency threshold (dotted).

Figure A.2: Spectra of Violin notes
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Table A.1: Examples of significant peaks of a Violin note with f0 = 262.0 Hz

frequency amplitude ratio
502 -94.89 1.9160
507 -86.50 1.9388
513 -74.79 1.9618
516 -79.47 1.9732
519 -64.20 1.9847
525 -58.43 2.0076
531 -68.18 2.0306
537 -78.70 2.0535
543 -88.83 2.0765
548 -96.69 2.0956
552 -96.77 2.1109
766 -100.39 2.9237
770 -92.44 2.9389
775 -77.61 2.9580
777 -80.94 2.9656
781 -68.51 2.9809
787 -66.78 3.0038
790 -72.55 3.0153
792 -74.19 3.0229
794 -74.68 3.0305
798 -81.81 3.0458
801 -81.53 3.0573
1026 -97.88 3.9160
1032 -90.65 3.9389
1039 -80.85 3.9656
1043 -74.80 3.9809
1045 -74.27 3.9885
1049 -74.13 4.0038
1052 -75.63 4.0153
1055 -75.97 4.0267
1058 -75.46 4.0382
1061 -81.42 4.0496
1064 -80.21 4.0611
. . . etc.



204

note playing middle C (f0 = 261.5 Hz). The example shows significant peaks centering

around an integer ratios 2, 3, and 4. Since we use a single one-second time window in

our FFT, we obtain a high frequency resolution and capture the frequency fluctuation

over the course of the one second sample. This produces additional spectral energy

around each spectral peak, seen in Figure A.2b as the width of each peak, or as the

additional values in Table A.1. These values will contribute towards the standard

deviation of the signature clusters. String instruments, such as the Violin, typically

have more frequency fluctuations than other instruments, because of the sustained

bowing over the strings.

We repeat this procedure for all other Violin sound files in the dataset, such as the

simplified examples shown in Table A.2. We flatten all these values into a single one-

dimensional vector, shown in Table A.3. At this stage, we do not use any amplitude

information but only the ratio values. The energy of the peaks are used in the feature

extraction stage of the classification experiments. For now, we are concerned with

learning where to look for significant spectral energy.

A.4 Clustering Significant Peaks

Next we apply k-means clustering on the set of ratio values as described in Section

6.3.4. We then extract the resulting clusters as the signature for the Violin. Each

cluster returns a mean µ and standard deviation σ, which we use to specify a window

centered on the ratio ± one standard deviation. A larger standard deviation indicates

more fluctuation in frequency over the duration of the sound file.

Table A.4 shows some of the clusters learned for the Violin from the RWC dataset.

Notice that while many of the means are near integer values, they are not an exact

integer. This deviation varies between instruments and is useful information to cap-



205

Table A.2: A sampling of the ratios extracted from seven different Violin notes.

1.99, 2.00, 2.01, 2.02, 2.98, 2.99, 3.00, 3.01, 3.02, 3.03, 3.97, 3.98,
4.00, 4.01, 4.95, 4.97, 5.00, 5.01, 5.02, 5.03, . . .

1.989, 2.000, 2.011, 2.019, 2.981, 2.992, 3.000, 3.011, 3.019, 3.034, 3.969, 3.981, 3.996,
4.011, 4.950, 4.969, 4.996, 5.011, 5.023, 5.031, 5.038, . . .

1.966, 1.985, 2.004, 2.019, 2.038, 2.966, 2.985, 3.004, 3.019, 3.038, 3.951, 3.970, 3.985,
4.000, 4.011, 4.019, 4.038, 4.966, 4.985, 5.000, 5.008, 5.019, 5.038, 5.045, . . .

1.970, 1.981, 2.004, 2.023, 2.981, 3.004, 3.011, 3.023, 3.981, 3.992,
4.001, 4.009, 4.985, 4.992, 5.004, 5.015, 5.023, 5.042, . . .

1.950, 1.969, 1.981, 1.992, 2.000, 2.015, 2.034, 2.950, 2.969, 2.985, 3.000, 3.019, 3.034,
4.000, 4.019, 4.038, 4.046, 4.969, 4.985, 5.004, 5.019, . . .

1.981, 2.004, 2.027, 2.958, 2.966, 2.981, 3.004, 3.015, 3.023, 3.031, 3.046, 3.981, 3.989,
3.954, 3.969, 3.985, 4.004, 4.015, 4.027, 4.981, 4.989, 4.996, 5.004, 5.015, 5.027, . . .

1.958, 1.981, 2.004, 2.011, 2.026, 2.034, 2.045, 2.966, 2.985, 3.004, 3.011, 3.026, 3.038,
3.958, 3.966, 3.977, 3.985, 4.000, 4.011, 4.019, 4.030, 4.042, 4.981, 4.992, 5.008, . . .

Table A.3: One dimensional vector of the ratios extracted from Figure A.2.

1.950, 1.958, 1.966, 1.969, 1.970, 1.981, 1.981, 1.981, 1.981, 1.985, 1.989, 1.992,
2.000, 2.000, 2.004, 2.004, 2.004, 2.004, 2.011, 2.011, 2.015, 2.019, 2.019, 2.023,
2.026, 2.027, 2.034, 2.034, 2.038, 2.045, 2.046, 2.950, 2.958, 2.966, 2.966, 2.966,
2.969, 2.981, 2.981, 2.981, 2.985, 2.985, 2.985, 2.992, 3.000, 3.000, 3.004, 3.004,
3.004, 3.004, 3.011, 3.011, 3.011, 3.015, 3.019, 3.019, 3.019, 3.023, 3.023, 3.026,
3.031, 3.034, 3.034, 3.038, 3.038, 3.046, 3.049, 3.951, 3.954, 3.958, 3.966, 3.969,
3.969, 3.970, 3.977, 3.981, 3.981, 3.981, 3.985, 3.985, 3.985, 3.989, 3.992, 3.996,
4.000, 4.000, 4.000, 4.004, 4.004, 4.011, 4.011, 4.011, 4.011, 4.015, 4.019, 4.019,
4.019, 4.019, 4.027, 4.027, 4.030, 4.034, 4.038, 4.038, 4.042, 4.049, 4.950, 4.966,
4.966, 4.969, 4.981, 4.981, 4.985, 4.985, 4.985, 4.989, 4.992, 4.992, 4.996, 4.996,
5.000, 5.004, 5.004, 5.004, 5.008, 5.008, 5.011, 5.015, 5.015, 5.019, 5.019, 5.023,
5.023, 5.027, 5.031, 5.038, 5.038, 5.042, 5.045, . . .
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Table A.4: Example clusters learned for the Violin

µ = {2.027, 3.029, 4.029, 5.030, 6.028, 7.014, 8.017, 9.011, 10.008,
10.999, 11.843, 12.014, 12.210, 12.917, 13.083, 13.822, 14.047, . . . }

σ = {0.056, 0.060, 0.075, 0.084, 0.093, 0.090, 0.100, 0.096, 0.105,
0.099, 0.099, 0.046, 0.111, 0.074, 0.073, 0.117, 0.081, . . . }

ture. Also notice that not all of the means are quasi-integers. For example, notice

the clusters centered around the ratios 11.843, 12.014, and 12.210. Because our im-

plementation of k-means creates additional clusters by splitting clusters with a wide

standard deviation at each iteration, this signature learned three clusters centered

near the ratio of 12, instead of one cluster with a large standard deviation. This

strategy of having multiple smaller clusters has a benefit over a single cluster with a

wide standard deviation in that if there is source interference near this location, then

potentially only one of the three features extracted will contain the interference.

We repeat this procedure for every instrument and for each of the datasets. We

learn a unique spectral signature for each instrument and each dataset.
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