
INFERENCE AND LEARNING IN BAYESIAN NETWORKS USING

OVERLAPPING SWARM INTELLIGENCE

by

Nathan Lee Fortier

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

Doctor of Philosophy

in

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

April, 2015

c© COPYRIGHT

by

Nathan Lee Fortier

2015

All Rights Reserved

ii

DEDICATION

To my loving wife, Amber; for her love, devotion, and endless support

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. John Sheppard for his constant support

during my time as a graduate student here at Montana State University. His encour-

agement has pushed me to excel and has helped me mature as a researcher. This

research would not have been possible without his support.

I would also like to thank to my committee members, Clem Izurieta, Mike Wittie,

John Paxton, and Peter Tillack, for their helpful comments and advice.

I would like to thank the members of the Numerical Intelligent Systems Laboratory

at Montana State University for their comments and advice during the development

of this work. I would also like to thank Shane Strasser and Karthik Ganesan Pillai

for their ideas during the development of this research.

On a more personal note, I would like to thank my wife and family for supporting

me during the development of this work. My beautiful wife, Amber, has stood by

me, giving me strength and encouragement whenever I needed it. My parents, Tish

and Randy Fortier, encouraged me to develop a scientific mind from an early age and

have always supported me in my endeavors.

iv

TABLE OF CONTENTS

1. INTRODUCTION ..1

1.1 Contributions ..3
1.2 Overview ...6

2. BACKGROUND...8

2.1 Bayesian Networks ...8
2.2 Exact Inference in Bayesian Networks ... 12

2.2.1 Variable Elimination ... 12
2.2.2 Clique Tree Propagation ... 14
2.2.3 Abductive Inference .. 17

2.3 Structure Learning in Bayesian Networks .. 20
2.4 Bayesian Network Classifier Learning .. 23
2.5 Parameter Estimation and Learning with Latent Variables 25
2.6 Particle Swarm Optimization .. 29
2.7 Discrete Particle Swarm Optimization ... 32
2.8 Overlapping Swarm Intelligence .. 33

3. RELATED WORK ... 35

3.1 Distributed Soft Computing.. 35
3.2 Distributed Optimization.. 37
3.3 Common Approaches to Bayesian Inference ... 39
3.4 Soft Approaches to Bayesian Inference... 41
3.5 Common Approaches to Bayesian Parameter Estimation 43
3.6 Soft Approaches to Bayesian Parameter Estimation 44
3.7 Common Approaches to Bayesian Structure Learning............................... 45
3.8 Soft Approaches to Bayesian Structure Learning 47

4. FULL ABDUCTIVE INFERENCE IN BAYESIAN NETWORKS 49

4.1 Full Abductive Inference via OSI .. 49
4.1.1 Computational Complexity.. 55

4.2 Full Abductive Inference via DOSI .. 56
4.3 Experimental Design .. 66
4.4 Comparison Against Existing Algorithms .. 70
4.5 Comparison Against Modifications of DOSI ... 75
4.6 Comparison of Overlap Structures... 75
4.7 Discussion ... 77

v

TABLE OF CONTENTS CONTINUED

5. PARTIAL ABDUCTIVE INFERENCE IN BAYESIAN NETWORKS 79

5.1 Partial Abductive Inference via OSI .. 79
5.1.1 Computational Complexity.. 81

5.2 Partial Abductive Inference via DOSI.. 83
5.3 Experimental Design .. 84
5.4 Results .. 86
5.5 Discussion ... 87

6. PARAMETER ESTIMATION... 91

6.1 Single-Swarm Particle Swarm Optimization ... 91
6.2 Overlapping Swarm Intelligence .. 94

6.2.1 Computational Complexity.. 98
6.3 Experimental Design .. 99
6.4 Results .. 102
6.5 Discussion ... 103

7. BAYESIAN NETWORK STRUCTURE LEARNING 106

7.1 Learning Bayesian Classifiers .. 106
7.1.1 Fitness Evaluation .. 111
7.1.2 Computational Complexity.. 112
7.1.3 Experimental Design... 114
7.1.4 Experimental Results .. 115
7.1.5 Discussion .. 116

7.2 Generative Structure Learning .. 117
7.2.1 Experimental Design... 120
7.2.2 Experimental Results .. 120
7.2.3 Discussion .. 121

7.3 Structure Learning with Latent Variables .. 122
7.3.1 Experimental Design... 123
7.3.2 Experimental Results .. 124
7.3.3 Discussion .. 125

8. SUMMARY AND CONCLUSIONS.. 126

8.1 Summary of Contributions.. 126
8.2 Future Work .. 131
8.3 Publications... 133

vi

TABLE OF CONTENTS CONTINUED

REFERENCES CITED.. 134

vii

LIST OF TABLES
Table Page

4.1 Properties of the test networks ... 67

4.2 Comparison against population based approaches 71

4.3 Comparison of OSI and DOSI .. 72

4.4 Comparison against MBE and SLS... 73

4.5 Comparison against modifications of DOSI ... 74

4.6 OSI results for different sub-swarm architectures. 76

5.1 Comparison with other approaches ... 87

5.2 Comparison with DOSI.. 88

6.1 Network Statistics ... 101

6.2 Comparison against other approaches ... 103

7.1 Datasets used in experiments ... 115

7.2 Comparison of classification accuracy for Swarm algorithms 116

7.3 Comparison of classification accuracy against TAN and Greedy............ 116

7.4 Average log-likelihoods for general structure learning........................... 121

7.5 Average log-likelihoods for latent variable structure learning 125

viii

LIST OF FIGURES
Figure Page

2.1 Alarm network .. 10

2.2 Latent variable example... 27

4.1 Markov blanket example .. 53

4.2 Share States example... 64

4.3 Bipartite Bayesian networks used for experiments.................................. 68

4.4 Number of Fitness Evaluations... 76

5.1 Number of Fitness Evaluations... 89

6.1 Swarm assignment example.. 94

7.1 Representation example ... 108

ix

LIST OF ALGORITHMS
Algorithm Page

2.1 Variable Elimination for computing P (Y |E).. 13

2.2 SP-Message(i, j) .. 15

2.3 Clique Tree Calibration ... 16

2.4 Bucket Elimination.. 19

2.5 K2 Structure Learning Algorithm... 22

2.6 Particle Swarm Optimization ... 30

4.1 Overlapping Swarm Intelligence.. 50

4.2 Compete... 52

4.3 SeedSwarms .. 52

4.4 Distributed Overlapping Swarm Intelligence.. 60

4.5 Compete and Share ... 61

4.6 Share States.. 61

6.2 Generate Parameters ... 96

6.1 Overlapping Swarm Intelligence for Parameter Estimation 97

7.1 Overlapping Swarm Intelligence for Classifier Learning 110

7.2 OSI for Structure Learning with Complete Data.................................. 119

x

ABSTRACT

While Bayesian networks provide a useful tool for reasoning under uncertainty,
learning the structure of these networks and performing inference over them is NP-
Hard. We propose several heuristic algorithms to address the problems of inference,
structure learning, and parameter estimation in Bayesian networks. The proposed
algorithms are based on Overlapping Swarm intelligence, a modification of particle
swarm optimization in which a problem is broken into overlapping subproblems and
a swarm is assigned to each subproblem. The algorithm maintains a global solution
that is used for fitness evaluation, and is updated periodically through a competition
mechanism. We describe how the problems of inference, structure learning, and
parameter estimation can be broken into subproblems, and provide communication
and competition mechanisms that allow swarms to share information about learned
solutions. We also present a distributed alternative to Overlapping Swarm Intelligence
that does not require a global network for fitness evaluation.

For the problems of full and partial abductive inference, a swarm is assigned to
each relevant node in the network. Each swarm learns the relevant state assignments
associated with the Markov blanket for its corresponding node. In our approach
to parameter estimation, a swarm is associated with each node in the network that
corresponds to either a latent variable or a child of a latent variable. Each node’s cor-
responding swarm learns the parameters associated with that node’s Markov blanket.
We also apply Overlapping Swarm Intelligence to several variations of the structure
learning problem: learning Bayesian classifiers, learning Bayesian networks with com-
plete data, and learning Bayesian networks with latent variables. For each problem,
a swarm is associated with each node in the network.

This work makes a number of contributions relating to the advancement of Over-
lapping Swarm Intelligence as a general optimization technique. We demonstrate the
applicability of Overlapping Swarm Intelligence to both discrete and continuous opti-
mization problems. We also examine the effect of the swarm architecture and degree
of overlap on algorithm performance. The experiments presented here demonstrate
that, while the sub-swarm architecture affects algorithm performance, Overlapping
Swarm Intelligence continues to perform well even when there is little overlap between
the swarms.

1

CHAPTER 1

INTRODUCTION

Bayesian networks have proven to be useful tools for reasoning under uncertainty

and have been applied to a variety of fields. For instance, Bayesian networks have been

used in the field of bioinformatics to identify gene regulatory networks [1]. They have

also been applied to system diagnostics as a method for predicting failures and track-

ing degradation [2, 3, 4]. Many authors have used Bayesian networks for classification

in medical diagnostics, music identification, and other areas [5, 6, 7]. There are many

reasons for the appeal of Bayesian networks in these domains. First, they are directed

graphical models that provide an intuitive representation of cause-effect relationships.

Second, they handle uncertainty using well established probability theory. Finally,

they can be used to represent both direct and indirect conditional dependencies.

However, using Bayesian networks in any field requires the construction of an

effective model. While Bayesian networks can often be constructed by experts, in

many cases the problem of defining a Bayesian network is too complex for manual

construction. For these cases, the structure and parameters of the network can be

learned from data.

There are two categories of learning related to Bayesian networks, the first involves

learning the structure of the network, while the second involves learning the parame-

ters that define the local probability distributions of the network. Learning a Bayesian

network model from data has been shown to be NP-Hard [8], and several authors

have applied machine learning techniques to the problem [9, 10, 11]. In the area of

classification, model learning typically consists of learning relationships between the

various features and the associated classes. When complete data is present, many of

2

the scoring functions used to evaluate Bayesian network structure can be decomposed

into a product of terms, one for each family (each node and its parents). However, in

practice, the training data is often incomplete, and some hidden variables never have

data.

It is common for latent or hidden variables to be incorporated into Bayesian net-

work models. Latent variables allow the network to encode unobserved effects and

can drastically reduce the number of parameters used to specify the model. However,

latent variables complicate the problems of parameter estimation and structure learn-

ing. When latent variables are introduced to a Bayesian network, the probability of

the data given the model no longer decomposes into a product of terms and cannot

be computed efficiently [12]. Also, since the likelihood of the parameters is no longer

decomposable, conditional dependencies exist between the optimal parameters and

structure for the network’s variables. Because these latent variables are not recorded

in the training data, parameters must be estimated for distributions that include

these variables. Such parameter estimation may also be required when the training

data is incomplete.

Once a model has been constructed, inference must be performed to answer

queries. In some cases, inference involves computing the probability associated with

the states of one or more variables in the model given a set of observations, while in

other cases inference may involve discovering the most probable state assignments for

a set of variables in the network given the evidence. The latter problem is referred

to as abductive inference. In some cases, we may be interested in ranking the k

most probable assignments to be examined by some other process. Thus the k-MPE

task is to find and return these k most probable assignments. In [13], it was shown

that abductive inference for Bayesian networks is NP-hard. Because of this, much

research has been done to explore the possibilities of obtaining partial or approximate

3

solutions to the problem. However in [14], it was shown that even the problem of

finding a constant factor approximation of the k-MPE is NP-hard.

1.1 Contributions

This work presents novel approximation algorithms for the problems of Bayesian

classifier learning, general Bayesian structure learning, latent variable learning, pa-

rameter estimation, and abductive inference in Bayesian networks. These algorithms

are based on the overlapping swarm intelligence (OSI) framework, first introduced by

Haberman and Sheppard [15]. For each of these problems, a particle swarm optimizer

is split into multiple swarms, and a swarm is assigned to each node in the network. For

all problems, a global solution is maintained and used for fitness evaluation. Swarms

with overlapping solutions compete for inclusion in the global solution.

We also present an algorithm, called distributed overlapping swarm intelligence

(DOSI), that eliminates the need for a global solution vector. We demonstrate em-

pirically that this distributed algorithm is often competitive with OSI and we define

the necessary conditions under which the distributed swarms will reach consensus.

We examine a variety of different swarm architectures for the various problems.

In the case of abductive inference and parameter estimation, each swarm learns the

state/parameters associated with its node’s Markov blanket. However, for the struc-

ture learning problems, assigning each swarm to a fixed Markov blanket structure

will not be possible since the network structure is unknown. In the case of gen-

eral structure learning from complete data, each swarm learns the parents for its

corresponding node. This swarm architecture does not exhibit any overlap, thus

competition between the swarms will be unnecessary. For the learning of Bayesian

classifiers, each swarm learns both the parents and children for its associated node

4

and swarms compete where these structures overlap. Finally, for the problem of

structure learning in the presence of latent variables, each swarm learns the parents

for the nodes of its Markov blanket within the current global best structure. In this

architecture, the set of nodes learned by a swarm will change dynamically as the

global structure improves.

Examining the performance of OSI on problems related to Bayesian networks

allows us to begin testing important properties of the framework. The explicit condi-

tional independence properties of Bayesian networks provide a convenient setting for

testing the effect of conditional dependencies on effective OSI overlap structures, and

the problem of structure learning with latent variables allows us to explore how OSI

may be applied to problems when conditional dependencies are unknown. The results

presented for the continuous parameter estimation problem and the discrete structure

learning and inference problems provide strong evidence that the effectiveness of OSI

is not tied to a specific problem domain or search space. Finally, we provide both an

empirical and theoretical analysis of OSI’s computational complexity, as compared to

traditional PSO.

We also present and test a number of hypotheses. First, OSI will outperform

PSO in terms of solution quality for most experiments and will never perform worse

than single-swarm PSO. For full and partial abductive inference, this means that the

the state assignments found by OSI and DOSI will have higher log-likelihood than

those found by DMVPSO for most experiments on complex networks. For parameter

estimation, this means that the likelihood of the data given the model will be higher

for parameters learned by OSI as compared to those learned by single-swarm PSO.

When learning the structure of Bayesian classifiers, the hypothesis will be supported

if the models learned by variants of OSI have higher classification accuracy than

those learned by DMVPSO for most datasets. For the task of generative structure

5

learning, both with and without latent variables, the hypothesis will be supported

if the likelihood of the data given the model is higher for models learned by OSI as

compared to those learned by single-swarm PSO for the majority of datasets.

Our second hypothesis is that OSI and DOSI will tie statistically in terms of

log-likelihood for most experiments. For the problems of full and partial abductive

inference, this hypothesis will be supported if there is no significant difference between

the log-likelihoods of assignments found by OSI and the log-likelihoods of assignments

found by DOSI, for most networks.

Our third hypothesis is that the Markov blanket overlap structure will not be out-

performed by any other overlap architecture, and will often outperform alternative

architectures. For the abductive inference problems, this hypothesis will be sup-

ported if the average log-likelihood for state assignments found by OSI when using

the alternative overlap architectures is never significantly greater than the average

log-likelihood for state assignments found by OSI when using the Markov blanket

architectures. Additionally, this hypothesis predicts that OSI will often find state

assignments with higher log-likelihood when using the Markov blanket architecture,

when compared to the state assignments found when using the alternative architec-

tures. For the problem of structure learning with latent variables, this hypothesis

will be supported if OSI often learn models with higher log-likelihood when using

the dynamic Markov blanket architecture, as compared to the models learned by the

static family-based architecture.

This work describes these algorithms, presents results comparing OSI to other

commonly used approaches, and includes a discussion of the meaning of these results

in the context of specific problems and in terms of the OSI framework generally.

Through the problems of inference, learning, and parameter estimation in Bayesian

6

networks, we show that OSI is a versatile method that is applicable to a wide variety

of problems.

1.2 Overview

The primary contributions of this work are the development of new methods, based

on Overlapping Swarm Intelligence, that are able to perform inference on Bayesian

Networks and learn the structure and parameters of Bayesian networks more effec-

tively than existing approaches. The remainder of this thesis is organized as follows:

In Chapter 2, we review the background work related to this thesis. This in-

cludes an overview of Bayesian networks and an introduction to traditional methods

for Bayesian network inference and learning. We also describe the Particle Swarm

Optimization algorithm for both discrete and continuous optimization problems.

In Chapter 3, we review the literature related to this thesis. In this chapter,

we describe the existing algorithms in the areas of distributed soft computing and

optimization. We also review existing approaches to inference, parameter estimation,

and structure learning in Bayesian networks.

In Chapter 4, we describe our algorithms for full abductive inference in Bayesian

networks. We present both centralized and distributed versions of OSI for this prob-

lem. We compare OSI and DOSI to competing approaches for full abductive inference

in terms of both solution quality and computational complexity, and we evaluate effect

of the various components of OSI in terms of log-likelihood of the solutions found.

In Chapter 5, we present our algorithms for partial abductive inference in Bayesian

networks. We describe both centralized and distributed versions of OSI for partial

abductive inference and we compare OSI to other approaches for partial abductive

inference in terms of both solution quality and computational complexity.

7

In Chapter 6, we describe an algorithm for parameter estimation in Bayesian

networks based on OSI. In this chapter we also present a new single-swarm PSO

algorithm for parameter estimation, and OSI is compared to this traditional PSO

algorithm along with several other algorithms used for parameter estimation. Here

we also present results evaluating the effect of overlap on OSI performance.

In Chapter 7, we present three methods for Bayesian network structure learning

based on OSI. The first is an algorithm for learning the structure of the attribute

nodes in a Bayesian classifier. The second is an algorithm for generative Bayesian

network structure learning. We compare this algorithm to a traditional PSO and to a

commonly used algorithm for generative structure learning with complete data. The

third is an algorithm for learning Bayesian network structure with latent variables,

which uses a dynamic overlap architecture. We compare this algorithm to structural

Expectation Maximization, and a traditional single-swarm PSO.

In Chapter 8, we conclude with a summary of contributions, an overview of po-

tential future work to expand upon the research presented here, and a survey of

published research directly related to this work.

8

CHAPTER 2

BACKGROUND

When reasoning in any domain, complete knowledge is almost always impossible

to obtain and many facts about a system are often left unknown. For this reason,

numerous methods have been developed to summarize and quantify the uncertainty

of a system by specifying numeric measures of uncertainty. Bayesian networks are

one of the most popular models used to quantify such uncertainty. These models

have been used in areas such as information retrieval [16], risk analysis [17, 18, 19],

bioinformatics [20, 21, 22], and medicine [23]. However, many difficult problems must

be solved to use Bayesian networks effectively. These problems include, inference,

structure learning, and parameter estimation.

2.1 Bayesian Networks

Prior to the introduction of Bayesian networks, full joint distribution tables were

commonly used for probabilistic reasoning tasks. However, even in the case of binary

valued variables, a full joint distribution requires specifying an exponential number of

parameters. Such distributions are difficult to manipulate computationally, and it is

nearly impossible for a human expert to specify the large number of required parame-

ters. Bayesian networks address this problem by providing a compact representation

of the joint distribution that exploits the conditional independence properties of the

distribution [24].

More formally, a Bayesian network is a directed acyclic graph that encodes a joint

probability distribution over a set of random variables X = {X1, ...Xn}, where each

9

variable can assume one of several mutually exclusive values [12]. In a Bayesian net-

work (BN), each random variable is represented by a node, and edges between nodes

in the network represent probabilistic relationships between the random variables.

Each root node contains a prior probability distribution while each non-root node

contains a probability distribution conditioned on the node’s parents.

For any given node X in the network, the conditional distribution P (X|Pa(X))

is said to be a factor φ over {X} ∪ Pa(X). The set of variables used to specify a

factor φ is called the scope of φ. For any set of random variables in the network,

the probability of any state of the joint distribution can be computed using the chain

rule.

P (X1, ..., Xn) =
n∏
i=1

P (Xi|Xi+1, ..., Xn)

Using the local distributions specified by the BN, the joint distribution can be repre-

sented equivalently as

P (X1, . . . , Xn) =
n∏
i=1

P (Xi|Pa(Xi)).

Given a set of variables X, Y, Z associated with a Bayesian network G, X is

conditionally independent of Y given Z in the distribution defined by G if G satisfies

P (X, Y |Z) = P (X|Z)P (Y |Z) for all values x ∈ Val(X) , y ∈ Val(Y), and z ∈ Val(Z).

In a Bayesian network, the Markov blanket of a node consists of the node’s parents,

children, and children’s parents. A variable Xi is conditionally independent of all

other variables in the network given its Markov blanket.

{Xi ⊥ (X\({Xi} ∪MB(Xi))) |MB(Xi)}

10

Figure 2.1: Alarm network

Burglary P (B) 0.01 Earthquake P (E) 0.002

Alarm

B E P (A|B,E)
True True 0.95
True False 0.94
False True 0.29
False False 0.001

Mary Calls
A P (M |A)
True 0.91
False 0.25

We exploit Markov blankets and their conditional independence properties in the par-

ticle representation used for abductive inference, and parameter estimation. While the

relationship between a node and its children/parents seems intuitive, the relationship

between a node and its children’s parents is less obvious. This dependency is the

result of interactions between the various causes of the same effect.

To illustrate using a Bayesian network, suppose we have installed a new alarm

system in our home. Although this alarm system will detect a burglary reliably, it

may also be set off by an earthquake. Also, suppose a friend, Mary, has promised to

call whenever she hears the alarm. A Bayesian network for this system is presented

in Figure 2.1. The network structure shows that earthquakes and burglaries directly

effect the alarm but the probability of Mary calling only depends on the alarm.

11

Suppose we know that the alarm went off earlier today and we would like to know

the probability of a burglary. While we know the probability distribution for the

alarm given a burglary and an earthquake, we do not have a distribution in terms

of our two variables of interest (i.e. alarm and burglary). That is, we have an extra

variable, earthquake, that must be eliminated from the distribution. Conveniently

we can eliminate any variable by summing terms from the full joint distribution.

Specifically, the variable earthquake can be eliminated by a process called summing-

out or marginalization as follows:

P (A,B) =
∑
e∈E

P (A,B, e) =
∑
e∈E

P (A|B, e)P (B)P (e) = P (B)
∑
e∈E

P (A|B, e)P (e)

Using this process, along with the definition of conditional probability, we can

compute following conditional probability of a burglary given the alarm:

P (B|A) =
P (A,B)

P (A)
=

P (B)
∑

e∈E P (A|B, e)P (e)∑
b∈B P (b)

∑
e∈E P (A|b, e)P (e)

= 0.86

Now suppose that we later learn that there was an earthquake in the area. The

updated conditional probability of a burglary is now given by

P (B|A,E) =
P (B)P (A|B,E)P (E)∑
b∈B P (A|b, E)P (E)P (b)

= 0.03

Essentially, we have provided an alternative explanation for the Alarm being trig-

gered, thereby reducing the probability that a burglary was the cause of the alarm. In

other words, we have explained away the alarm via the observation of an earthquake.

Explaining away is an example of a reasoning pattern called inter-causal reasoning,

in which the various causes of the same effect interact.

12

2.2 Exact Inference in Bayesian Networks

In Bayesian networks, inference is the process of answering probabilistic queries

about the network. In standard inference the probability of the state of one or more

variables in the network is queried, while in abductive inference the goal of the query

is to find the most probable state assignment for one or more variables.

2.2.1 Variable Elimination

Variable elimination is an exact algorithm for computing P (X|E) in Bayesian

networks, where X is an unobserved variable in the network and E is a set of observed

evidence variables in the network. The pseudocode for variable elimination is shown

in Algorithm 2.1. The primary operation used during variable elimination is that of

marginalizing out variables from the distribution.

Let Φ be the factors parameterizing some Bayesian network G with a set of vari-

ables X. Let Z ∈ X be some variable and let Φ′ = {φ ∈ Φ : Z ∈ Scope[φ]}. The

factor marginalization of the variable Z, can be defined as a new factor ψ such that:

ψ(Z) =
∑
Z

∏
φ∈Φ′

φ (2.1)

When the variable, Z, has been marginalized out using the above process, we say

that the variable has been eliminated.

For a given query P (Y |E), variable elimination begins by eliminating the evidence

variables E. This is done by iterating over each local distribution φ ∈ Φ and removing

entries that are inconsistent with the evidence. After inconsistencies are removed, the

algorithm removes all references to evidence variables from the distributions. Next,

the algorithm eliminates all variables that are not evidence or query variables through

13

Algorithm 2.1 Variable Elimination for computing P (Y |E)

Procedure Variable-Elim(
X // Set of variables in the network
Y // Query variable
E // Evidence
Φ // Set of factors in the network

)
1: Eliminate evidence variables from Φ
2: Z← X− {Y } − E
3: for Zi ∈ Z do
4: Φ′ ← {φ ∈ Φ : Zi ∈ Scope[φ]}
5: Φ′′ ← Φ−Φ′

6: ψ(Zi) =
∑

Zi

∏
φ∈Φ′ φ

7: Φ← Φ′′ ∪ {ψ}
8: end for
9: φ∗ ←

∏
φ∈Φ φ

10: α←
∑

y∈Val(Y)φ∗(y)

11: return φ∗α−1

marginalization. During this process the algorithm iterates over this set of variables

and eliminates each one as described in equation 2.1. After eliminating all irrelevant

variables, the algorithm will compute the normalizing coefficient α as follows:

α =
∑
y∈Y

φ∗(y)

Once all variables have been eliminated, the algorithm computes the posterior prob-

ability of the query variables as:

P (Y |E) =
φ∗

α

The time complexity of variable elimination is tied to the order in which the

variables are eliminated. While the problem of finding an optimal variable ordering

is known to be NP-complete [12], several heuristics have been proposed for choosing

14

a variable order. These include choosing variables for elimination with a minimum

number of neighbors and choosing variables that will minimize the number of edges

that will be added to the graph following elimination.

2.2.2 Clique Tree Propagation

Clique tree propagation is an algorithm for exact inference in probabilistic graph-

ical models that is more efficient than variable elimination when performing inference

over multiple variables. The algorithm relies on a data structure called a clique

tree, which is a special type of clique graph. A clique graph provides a graphical

representation of the factor-manipulation process in variable elimination. A Bayesian

network is said to be moralized if an edge exists between all non-adjacent parents

that share a child. Each node in the clique graph corresponds to a sub-clique in the

triangulation of the moralized Bayesian network. Clique trees exhibit the running

intersection property. A clique graph satisfies the running intersection property if,

for each pair of cliques X and Y with intersection Z, all cliques on the path between

X and Y contain Z. A clique tree can be constructed from a Bayesian Network as

follows [12]:

• Moralize the graph by adding an edge between all non-adjacent parents of the

same child

• Triangulate the moralized graph by inserting edges in cycles longer than length

3 so that all shortest cycles are of length 3.

• Find all maximal sub-cliques in the moralized triangulated graph and make

each clique a node in the clique graph (Note: in general, the maximal sub-

clique problem is intractable; however, maximal sub-cliques can be found in

polynomial time in perfect graphs, i.e., where the graphs clique number is equal

15

Algorithm 2.2 SP-Message(i, j)

Procedure SP-Message(
i // Index of sending Clique
j // Index of receiving clique

)
1: ψi(Ci)← ψi

∏
k∈Nbi−{j} δk→j // compute clique potential

2: τ(Si,j)←
∑

Ci−Si,j
ψi(Ci) // compute resulting factor to be sent as a message

3: return τ(Si,j)

to its chromatic number. Bayesian networks that have been moralized and

triangulated are perfect graphs.)

• Add an edge between intersecting cliques in the clique graph labeled with their

sepset Si,j = Ci ∩Cj

• Let the weight of an edge in the clique graph be the cardinality of its sepset

|Si,j|

• Obtain the clique tree by finding the maximum spanning tree of the clique graph

Once constructed, a clique tree can be used to perform inference in Bayesian net-

works through a process called message passing. Each clique in the clique tree takes

incoming messages from its neighbors, multiplies them, sums out one or more vari-

ables (similar to variable elimination), and sends the newly computed message to a

neighboring clique. Algorithm 2.2 describes the message passing algorithm.

When computing a message, the clique Ci multiplies all incoming messages δi→j

from its other neighbors Ni with its initial clique potential ψi to obtain a new factor

ψi(Ci). It then sums out all variables except those in the intersection (Si,j) of Ci and

Cj and sends the resulting factor τ(Si,j) as a message to Cj. Using these messages a

clique tree can compute the probabilities of all variables in the network without need-

16

Algorithm 2.3 Clique Tree Calibration

Procedure CTree-Calibrate(
Φ // Set of factors in the network
T // Clique tree for network

)
1: Initialize Cliques
2: // Perform message passing
3: while exist i, j such that i is ready to transmit to j do
4: δi→j(Si,j)← SP-Message(i, j)
5: end while
6: // Compute beliefs for all cliques
7: for each clique i do
8: βi ← ψi

∏
k∈Nbi

δk→i
9: end for
10: return {βi}

lessly recomputing the same sum-product calculations multiple times. This process

is called clique tree calibration and is presented in Algorithm 2.3.

The clique tree calibration algorithm shown above is defined as an asynchronous

algorithm in which each clique sends a message to a neighboring clique as soon as it

is ready. This algorithm is equivalent to a more synchronized process consisting of

an upward pass and a downward pass. During the upward pass the algorithm picks

a root clique and sends all messages toward the root. During the downward pass the

root sends the appropriate messages to its children. This continues until the leaves

of the tree are reached. Once the message passing process is complete, the beliefs

βi for all cliques are computed by multiplying the initial potential with each of the

incoming messages. The desired posterior for any variable can then be determined

by summing out the unwanted variables in a clique containing the target variable.

The primary advantage of the clique tree algorithm is that it calculates the poste-

rior probability of all variables in the Bayesian Network using only twice the computa-

tion of the upward pass on the same tree. In other words, once the tree is calibrated,

17

it is not necessary to recalculate the posteriors of any of the variables in the network,

unless new evidence is introduced.

2.2.3 Abductive Inference

Another type of inference used to query a Bayesian network is abductive infer-

ence. Abductive inference is the problem of finding the maximum a posteriori (MAP)

probability state of the variables of a network, given a set of evidence variables and

their corresponding state. This problem is often referred to as the k-Most Probable

Explanation (k-MPE) problem.

If we let XU = X\XO, where X denotes the variables in the network and XO

denotes the set of evidence variables in the network, the problem of abductive infer-

ence is to find the most probable state assignment to the variables in XU given the

evidence XO = xO:

MPE(XU , xO) = arg max
xu∈XU

P (xu|xO)

In [25], it was shown that abductive inference for Bayesian networks is NP-hard.

Because of this, much research has been done to explore the possibilities of obtaining

approximate solutions to the problem of full abductive inference. However in [14]

it was shown that even the problem of finding a constant factor approximation for

abductive inference is NP-hard.

Partial abductive inference is the problem of finding the k most probable state

assignments for a subset of the variables XE ⊂ XU , known as the explanation set:

PAI(XE, xO) = arg max
xE∈XE

P (xE|xO)

= arg max
xE∈XE

∑
xR∈XR

P (xE, xR|xO)

18

where XR = XU\XE. This problem is more useful than general abductive inference

in most applications since it allows for the selection of only the relevant variables

as the explanation set. However, Park proved that partial abductive inference is

an even more complex problem than full abductive inference [26]. Specifically, Park

showed that partial abductive inference is NPPP-Complete. Unlike full abductive

inference, when performing exact partial abductive inference, the variables in XR

must be marginalized out. This additional marginalization process increases the time

complexity of partial abductive inference when compared to full abductive inference.

An exact algorithm capable of finding the MPE called bucket elimination was

proposed by Dechter [27]. While bucket elimination is applicable to many problems

in Bayesian inference, we will discuss it in the context of abductive inference. The

pseudocode for bucket elimination in the context of MPE is presented in Algorithm

2.4. The first step of bucket elimination is to partition the factors of the Bayesian

network into groups called buckets. A bucket is associated with each variable, and the

bucket of a particular variable contains the probability functions associated with that

variable. The next step, called the backward phase, processes the buckets based on a

predefined variable ordering. A bucket Φ′ is processed by multiplying all probability

functions in the bucket and then eliminating the bucket’s variable Xi using a process

called factor maximization:

ψ(Xi) = max
Xi

∏
φ∈Φ′

φ

This process is identical to the process of factor marginalization in variable elimina-

tion, except that the sum is replaced with a max operator. The distribution obtained

by processing a bucket is placed in an earlier bucket of its largest index variable,

where the index of a variable is based on its position in the ordering.

19

Algorithm 2.4 Bucket Elimination

Procedure Bucket-Elim(
Φ // Set of factors in the network
E // Evidence

)
1: Populate buckets bucket1, ..,bucketn
2: Place each observed variable Xp = xp ∈ E in its bucket
3: Let S1, ..., Sj be the subset of variables on which factors are defined
4: for p← n to 1 do
5: for each factor φ1, ..., φj ∈ bucketp do
6: if the bucketp contains Xp = xp then
7: assign Xp = xp to each φi and put each in the appropriate bucket
8: else
9: Up ← ∪ji=1Si − {Xp}
10: ψ(Xp)← maxXp

∏
φ∈Φ′ φ

11: xop ← arg maxXp ψ(Xp)
12: Add hp to the bucket of largest index variable in Up
13: end if
14: end for
15: end for
16: Assign values in the ordering using the recorded functions xop in each bucket

This assignment is stored in the bucket associated with Z. Once all buckets are

processed, the algorithm initiates a forwards phase to compute the most probable

state assignment by assigning values along the ordering from X1 to Xn. After a

partial assignment has been obtained for the variables {X1, ..., Xi−1}, a value xi is

appended to the assignment where:

xi = arg max
Xi

ψ(Xi)

The backward phase of the algorithm aggregates information regarding the most

probable assignment to variables higher in the ordering. As with variable elimination,

the complexity of the bucket elimination is highly sensitive to the variable ordering

used by the algorithm.

20

2.3 Structure Learning in Bayesian Networks

While in simple cases, a Bayesian network can be developed by an expert, in many

cases, the problem of defining a Bayesian network is too complex for manual construc-

tion. In these cases, the Bayesian network structure and parameters can be learned

from data. One type of method for general Bayesian network structure learning is

score-based search. Score-based methods rely on a function to evaluate how well the

dependencies in a structure match the data, and they search for a structure that

maximizes this function. A common scoring method to evaluate Bayesian network

structures is the probability of the data given the structure. It was shown in [28] that

the probability of the data D given a candidate Bayesian network structure G can be

computed as follows.

Let X be the set of n discrete variables in G, where each variable Xi ∈ X has

ri possible value assignments: (x1, ..., xri). Let D be a set of data containing m

cases, where each case contains a value assignment for each variable in X. Each

variable Xi ∈ X has a set of parents, represented by Pa(Xi). Let wij denote the jth

unique instantiation of Pa(Xi) relative to D. Define qi to be the number of unique

instantiations of Pa(Xi) relative to D. Let Nijk be the number of cases in D for which

the variable Xi has the value xk and Pa(Xi) is instantiated as wij. Let

Nij =

ri∑
k=1

Nijk.

Then

P (D|B) =
n∏
i=1

qi∏
j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

Nijk!. (2.2)

21

Since the values for P (D|B) can be very small, the log likelihood of the data given

the model is often used as a scoring metric:

L(D|B) = logP (D|B). (2.3)

Another scoring metric commonly used for Bayesian network model selection is

the Bayesian Information Criterion (BIC) developed by Gideon E. Schwarz [29]. This

metric introduces a penalty term for the number of parameters in the candidate model

to control overfitting. The formula for the BIC [30] is as follows:

BIC = −2 logP (D|B) + p log(m) (2.4)

where p is the number of free parameters and m is the size of the dataset.

K2 is a heuristic search technique for Bayesian network structure learning proposed

by Cooper and Herskovits [31]. The algorithm is a greedy method that relies on a

pre-specified node ordering. The main loop of the K2 algorithm iterates over all nodes

in the ordering. For each node X, K2 incrementally adds edges between X and the

parent node Y that results in the greatest increase to the likelihood of the model. If

no such parent can be found, then K2 stops adding parents to the node and moves

to the next node in the ordering. A node X can be added as the parent of another

node Y if and only if Y precedes X in the ordering.

The pseudocode for K2 is shown in Algorithm 2.5. Here Pred(x) denotes the

nodes preceding x in the ordering and the function g(x, P) returns the probability

of the data given the model when the variables in P are set as the parents of X.

The algorithm has been shown to have a time complexity of O(mn4r) where n is the

22

Algorithm 2.5 K2 Structure Learning Algorithm

Procedure K2(
D // the training data
X // set of variables in specified ordering

)
1: for each variable Xi ∈ X do
2: Pa(Xi)← ∅
3: Pold ← g(Xi,Pa(Xi))
4: while Pa(Xi) < u do
5: z ← arg maxz∈Pred(Xi)−Pa(Xi) g(Xi,Pa(Xi) ∪ {z})
6: Pnew ← g(Xi,Pa(Xi) ∪ {z})
7: if Pnew > Pold then
8: Pold ← Pnew

9: Pa(Xi)← Pa(Xi) ∪ {z})
10: else break
11: end while
12: end for

number of nodes, r is the maximum number of value assignments for any variable,

and m = |D|.

The techniques described above implicitly assume that our goal is to learn the

Bayesian network that best approximates the underlying joint probability distribu-

tion of the data. This approach is called generative learning because we are learning

the model to generate all variables in the data, including both the variables that we

aim to predict and the evidence variables used for prediction. However, we often

want to learn a network that will perform well on a particular task, such as pre-

dicting the state of a specific node from evidence without concern for the underlying

joint distribution. For this type of problem we most likely want to learn the model

discriminatively, where the goal is to find the network that best represents the true

conditional probability distribution of the prediction given the evidence.

23

2.4 Bayesian Network Classifier Learning

In classification a more specific type of Bayesian network structure is often learned.

Given a classification problem consisting of a series of attributes A and a class label

C, a Bayesian classifier is a Bayesian network in which a node is associated with a

each attribute Ai ∈ A and the class C. Typically, an edge is placed in the structure

from the class node to each of the attribute nodes; although this is not necessary.

Additional relationships and latent variables can also be included in this structure.

Classification is performed by computing the most probable state of the class C given

the states of the attributes A1, ..., An.

One approach to Bayesian classification is the Naive Bayes classifier, where all

attributes are assumed to be conditionally independent given the class, and there are

no edges connecting any of the attribute nodes. In this model, given some observed

attribute values a1, ..., an, the probability of each class can be computed as:

P (C|a1, ..., an) =
P (C)

∏n
i=1 P (ai|C)∑

c∈C P (c)
∏n

i=1 P (ai|c)

Learning a naive Bayes classifier requires estimating the prior probability of the class

P (C) and the conditional probabilities of the attributes P (a|C). The prior probability

of the class can be computed as:

P (C) =

∑
d∈D 1d(C)

|D|
(2.5)

24

where 1d is an indicator function for a data point d. The conditional probability of

each attribute A can be computed as:

P (A|C) =

∑
d∈D 1d(A,C)∑
d∈D 1d(C)

(2.6)

An alternative to Naive Bayes that relaxes the independence assumption is the

Tree Augmented Naive Bayes (TAN) classifier described in [32]. The TAN algorithm

adds edges to the network that maximize the conditional mutual information between

the connected feature nodes given the class. Conditional mutual information is defined

as follows:

I(X, Y |C) =
∑
x,y,c

P (x, y, c) log
P (x, y|c)

P (x|c)P (y|c)
(2.7)

where X and Y are the feature variables, C is the class variable, and x, y, and c are the

states of variables X, Y , and C respectively. This function computes the information

that Y provides about X when the state of the class variable C is known. The TAN

algorithm is described as follows:

1. Construct an undirected graph G containing a node for each feature.

2. Place a weighted edge between each pair of nodes X and Y where the weight

of the edge is defined as I(X, Y |C).

3. Find the maximum weighted spanning tree T of the graph G.

4. Add direction to the edges of T by selecting a root variable and setting the

direction of all edges to be outward from it.

5. Create a class node C and add an edge from C to each feature node.

For the TAN model, the prior probabilities for the class and the conditional proba-

bilities for the root node of the spanning tree can be computed as shown in equations

25

2.5 and 2.6 respectively. The conditional probabilities for each non-root node X given

its parent Y and the class C can be computed as:

P (X|Y,C) =

∑
d∈D 1d(X, Y,C)∑
d∈D 1d(Y,C)

The TAN algorithm has been shown to have higher accuracy that Naive Bayes on

many problems. This algorithm is based on the ChowLiu algorithm, which is an effi-

cient method for learning second-order product approximations of joint distributions

using mutual information [33].

2.5 Parameter Estimation and Learning with Latent Variables

When learning a Bayesian network structure from data, the parameters associated

with each node’s probability distribution will need to be estimated. If a variable and

its parents are present in the data, we can estimate its parameters directly based on

frequency. Given some data-set D we can estimate any joint probability over the

observed variables as

P (x1, x2, ..., xn) =

∑
d∈D 1d(x1, x2, ..., xn) + α

|D|+ αz

where

z =
n∏
i

|Xi|

In the above equations, 1d is an indicator function for a data point d, |Xi| is the

number of possible values for variable X, and α > 0 is a smoothing parameter. Using

the above joint probability estimate, we can compute any conditional probability over

26

a subset of the observed variables as follows:

P (x|Pa(x)) =
P (x,Pa(x))

P (Pa(x))

Although parameter estimation can be performed efficiently in the presence of com-

plete data, in practice training data is often incomplete and some hidden variables

never have data.

It is common for latent or hidden variables to be incorporated into Bayesian

network models. Latent variables allow the network to encode unobserved effects

and can drastically reduce the number of parameters used to specify the model. An

example of this is shown in Figure 2.2. This figure is based on an example presented

by Russell and Norvig [34], in which the nodes D, E, and F are symptoms of a

disease, indicated by node L, while the nodes A, B, and C represent potential causes

of the disease. If the disease variable L is not taken into account, it will appear

that the symptoms D, E, and F interact. Additionally, the causes of the disease

(A, B, and C), will appear to directly influence the the symptoms (D, E, and F).

These apparent interactions are described by the Bayesian network in Figure 2.2(a).

By introducing a latent variable L to represent the disease, we can explain many of

the apparent interactions, thereby producing the Bayesian network shown in Figure

2.2(b).

Suppose that each variable in these networks has two states. Prior to introducing

the latent variable L, the model shown in Figure 2.2(a) requires 118 parameters, but

after the introduction of the latent variable L, the model only requires 34 parameters,

as shown in 2.2(b).

27

A B C

D

E

F

(a) Model without latent variables

A B C

L

D

E

F

(b) Model with latent variable

Figure 2.2: Latent variable example

A score s(B : D) of a Bayesian network B is said to be decomposable if the score

can be written as:

s(B : D) =
∑
Xi∈X

FamScore(Xi|Pa(Xi) : D)

where FamScore(Xi|Pa(Xi) : D) measures how the variables Pa(Xi) serve as the

parents of Xi. Score decomposability has dramatic implications when searching for

structures that maximize some score. If a score is decomposable, then a local change

in network will not change the score of other sub-structures and the computational

overhead of evaluating different structures can be reduced.

Unfortunately, latent variables complicate the problem of parameter estimation.

When latent variables are introduced to a Bayesian network, the marginal probabil-

ity is no longer decomposable and cannot be computed efficiently [12]. This problem

could be addressed by filling in the values for the missing variables, but this would

require knowledge of the very parameters that we are estimating. Thus, parameter

28

estimation from incomplete data requires solving two optimization problems simul-

taneously: learning the parameters and estimating values for the latent variables in

each data point.

Expectation maximization (EM) is a commonly used algorithm that provides a

solution to this problem [35]. EM begins with an initially random set of estimated

parameters and then alternates between two steps.

Expectation step: The algorithm uses the current parameters θt to estimate

the expected sufficient statistics.

• For each data point di and each variable X, calculate the joint distribution

P (X,Pa(X)|di, θt)

• Estimate the sufficient statistics for each assignment x and Pa(x) as

Mθt [x,Pa(x)] =
∑
i

P (X,Pa(X)|di, θt)

Maximization step: The algorithm performs maximum likelihood estimation

relative to the expected sufficient statistics to estimate the new parameters.

θt+1
x|Pa(x) =

Mθt [x,Pa(x)]

Mθt [Pa(x)]

At each iteration of the algorithm, EM is guaranteed to increase the likelihood of

the data given the model, and it has been proven that EM will converge to a local

maximum in likelihood [12].

When learning Bayesian network structure with latent variables, a variant of EM

called structural EM is often used [36]. As in the EM algorithm for parameter estima-

tion, structural EM alternates between an expectation step and a maximization step.

In the expectation step, the current model is used to generate a completed data set,

29

which is used to compute the expected sufficient statistics. In the maximization step,

the expected sufficient statistics are used to improve the model. The primary differ-

ence is that the maximization step in structural EM will improve both the parameters

and the structure. The structure learning algorithm used in the maximization step can

be any of the search algorithms used in the complete data case. If the scoring metric

used is based on the probability of the data given the model and the search algorithm

used will improve the score at each iteration, then the structural EM procedure will

converge to a local maximum. However, since EM is a local optimization method, it

will often converge to sub-optimal parameter estimates.

2.6 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm was first proposed by Eber-

hart and Kennedy [37]. PSO is a population based search technique inspired by the

behavior of fish schools and bird flocks. In PSO the population is initialized with a

number of random solutions called particles. Each particle has a position that encodes

a potential solution in the search space and a velocity that defines how the particles

will move through the search space. Each particle keeps track of the coordinates in

the search space that are associated with the best solution it has found so far (pi).

These coordinates are called the personal best position of the particle. The algorithm

also keeps track of the overall best solution value and location found so far by any

particle in the population (pg). This is called the global best position.

Both position and velocity are typically defined as a vector of real numbers. The

search process updates the position vector of each particle based on that particle’s

corresponding velocity vector. These velocity vectors are updated at each iteration

based on the locations of pi and pg relative to the current position. Eventually all

30

Algorithm 2.6 Particle Swarm Optimization

Procedure PSO(
φ1 // maximum force with which a particle is pulled toward pi;
φ2 // maximum force with which a particle is pulled toward pg;
ω // inertia weight

)
1: Initialize the particles
2: repeat
3: for each particle position xi ∈ P do
4: Evaluate position fitness f(xi)
5: if f(xi) > f(pi) then pi = xi
6: if f(xi) > f(pg) then pg = xi
7: vi = ωvi + U(0, φ1) ⊗ (pi − xi) + U(0, φ2) ⊗ (pg − xi)
8: xi = xi + vi
9: end for
10: until termination criterion is met

particles move closer to an optimum in the search space. The pseudocode for the

traditional PSO algorithm is presented in Algorithm 2.6.

PSO begins by randomly initializing a swarm of particles over the search space.

On each iteration of the algorithm, a particle’s fitness is calculated using a problem

dependent fitness function. The personal best position is maintained in the vector pi.

The global best position found among all particles is maintained in the vector pg. At

the end of each iteration a particle’s velocity, vi, is updated based on pi and pg. The

use of both personal best and global best positions in the velocity equation ensures

diverse responses within the swarm.

In Algorithm 2.6, P is the particle swarm, U(0, φi) is a vector of random numbers

uniformly distributed in [0, φi], ⊗ is component-wise multiplication, vi is the current

velocity of a particle, and xi is the object parameters or current position of a particle.

Three parameters need to be defined for the PSO algorithm:

• φ1 determines the maximum force with which a particle is pulled toward pi;

31

• φ2 determines the maximum force with which a particle is pulled toward pg;

• ω is the inertia weight.

The inertia weight ω is used to control the scope of the search.

The random weighting of the parameters φ1 and φ2 in PSO can result in an

explosion in which the particles’ velocity and position rapidly move toward infinity.

While many researches have addressed this problem with the use of a maximum

velocity Vmax and the above-mentioned inertia weight ω, Clerc and Kennedy [38]

have suggested introducing a constriction factor χ to the velocity update equation as

follows:

vi = χ(ωvi + U(0, φ1)⊗ (pi − xi) + U(0, φ2)⊗ (pg − xi))

The authors recommend setting the constriction factor χ relative to ψ = φ1 + φ2 as

shown below:

χ =
2

|2− ψ −
√
ψ2 − 4ψ|

Note that the authors assume that ψ = φ1+φ2 > 4. By setting the constriction factor

as recommended above, the authors eliminate the need for a maximum velocity.

Often, the reliance on a global best for updating the velocity of each particle can

cause PSO to get trapped in local optima. Additional variants that do not rely on the

entire swarm’s best known position when updating velocity have been developed to

address this shortcoming [39, 40, 41, 42]. One commonly used alternative topology is

the ring topology, in which each particle uses the position of two of its local neighbors

to update its velocity [42].

32

2.7 Discrete Particle Swarm Optimization

Kennedy and Eberhart proposed a modification of the traditional PSO algorithm

for problems with binary-valued solution elements [43]. In this algorithm, each parti-

cle’s position is a vector from the d-dimensional binary solution space x ∈ {0, 1}d, and

each particle’s velocity is a vector from the d-dimensional continuous space, vi ∈ Rd.

A particle’s velocity denotes the probability of that particle’s position having a

value of 0 or 1 in the next iteration. Each particle’s velocity is updated as in traditional

PSO, while each particles position is updated using the following equation:

p(xi = 1) =
1

1 + exp(−vi)

Although this algorithm was been shown to be effective, it is limited to problems with

binary valued solution elements.

A discrete multi-valued PSO (DMVPSO) algorithm, which relaxed this binary

state assumption, was proposed by Veeramachaneni et al. [44]. In this algorithm, each

particle’s position is a d-dimensional vector of discrete values in the range [0,M − 1]

where M is the cardinality of each state variable. The velocity of each particle is a d-

dimensional vector of continuous values and is updated as shown above. A particle’s

velocity is transformed into a number between [0,M] using the following equation:

Si =
M

1 + exp(−vi)

Then each particle’s position is updated by generating a random number according

to the Gaussian distribution, xi ∼ N(Si, σ × (M − 1)) and rounding the result. To

ensure the particle’s position remains in the range [0,M − 1] the following formula is

33

applied:

xi =


M − 1 xi > M − 1

0 xi < 0

xi otherwise

Notice that, while there is a probability of choosing any value between [0,M − 1] for

a given Si, the probability of choosing a given value decreases based on its distance

from the current value of Si.

2.8 Overlapping Swarm Intelligence

Overlapping Swarm Intelligence(OSI) is a multi-population search technique first

proposed by Haberman and Sheppard to develop an energy-efficient routing protocol

for sensor networks [15]. OSI is a variant of PSO in which a problem is divided

into a series of overlapping sub-problems, and a swarm is assigned to each. Each

swarm optimizes over its assigned sub-problem, and a competition mechanism is used

to combine the solutions found by the various swarms. The specific sub-problem

assigned to each swarm is often based on the underlying conditional dependencies of

the problem [45, 46].

More formally, for some function F (·) to be optimized with parameters X =

{X1, X2, . . . , Xn}, OSI assigns a subset of the parameters Yi ⊆ X to each swarm

si. Each swarm in OSI optimizes over its subset of parameters via PSO, and the

algorithm maintains a global solution vector for the complete set of parameters xg =

{x1, x2, . . . , xn} to be used for fitness evaluation.

The fitness of each particle is evaluated by inserting its partial solution into a

complete global solution vector and evaluating the quality of the newly formed so-

lution. For a particle pi,j in swarm si, a complete solution vector zi,j is constructed

34

from the particle’s partial solution vector yi,j as follows:

zi,j = yi,j ∪ xg\{xk : Xk ∈ Yi}

The fitness of this newly constructed complete solution vector zi,j is then evaluated

and used as the fitness for particle pi,j.

When multiple swarms optimize over the same portion of the global solution

vector, these swarms are said to overlap. At the end of each iteration, overlapping

swarms compete to determine which values to include for each entry in the global

solution vector. This competition is held between the values encoded in the best

particles of each swarm. The parameters resulting in the highest fitness are selected

for inclusion in the global solution vector. In some cases, swarms may be seeded with

values from the global solution vector once the competition is complete.

35

CHAPTER 3

RELATED WORK

Here we present a review of literature related to distributed soft computing, dis-

tributed optimization, and multi-population algorithms. We also describe work done

in the areas of inference, parameter estimation, and structure learning in Bayesian

networks.

3.1 Distributed Soft Computing

Several authors have proposed distributed multi-population genetic algorithms

(GA) [47, 48, 49, 50]. In these models, several subpopulations are maintained by

the genetic algorithm, and members of the populations are exchanged through a

process called migration. These methods have been shown to obtain better quality

solutions than traditional GAs [48] when applied to the problems of neural network

parameter learning, the traveling salesman problem, and several deceptive problems

proposed by Goldberg et al. [51]. One type of multi-population algorithm is the

island model, in which subpopulations called islands are maintained and individuals

in each subpopulation are allowed to migrate. Because the islands maintain some

independence, each island can explore a different region of the search space while

sharing information with other islands through migration. This improves genetic

diversity and solution quality [50]. Like OSI, these methods maintain multiple sub-

populations, but, unlike OSI, each of the sub-populations learn complete solutions to

the problem being optimized.

36

Van den Bergh and Engelbrecht developed several distributed PSO methods for

the training of multi-layer feed-forward neural networks [52]. These methods include

NSPLIT in which there is a single particle swarm for each neuron in the network,

LSPLIT in which there is a swarm assigned to each layer of the neural network, and

ESPLIT which splits the serialized vector in half, assigning a swarm to each split. The

authors’ claim that splitting the swarms in this way results in a finer-grained credit

assignment, reducing the possibility of neglecting a potentially good solution for a

specific component of the solution vector. The results obtained by Van den Bergh

and Engelbrecht indicate that the distributed algorithms outperform traditional PSO

methods. The authors did not compare these methods to any non-PSO approaches.

Note, however, that these methods do not include any communication between the

swarms and provide access to a global fitness function.

Recently a new distributed approach to improve the performance of the PSO

algorithm has been explored where multiple swarms are assigned to overlapping sub-

problems. This approach is called Overlapping Swarm Intelligence (OSI) [15, 53, 54].

In OSI each swarm searches for a partial solution to the problem, and solutions found

by the different swarms are combined to form a complete solution once convergence

has been reached. As distinct from NSPLIT, LSPLIT, and ESPLIT, here overlap oc-

curs, requiring communication and competition take place to determine the combined

solution to the full problem.

Haberman and Sheppard first proposed OSI as a method to develop an energy-

efficient routing protocol for sensor networks that ensures reliable path selection while

minimizing the energy consumption during message transmission [15]. In this ap-

proach, a swarm is associated with each node in the sensor network, and each swarm

consists of a particle for its corresponding node and the particles for all of the node’s

immediate neighbors. Thus, the swarm for a given node overlaps with its neighboring

37

swarms. This algorithm was shown to be able to extend the life of the sensor networks

and to perform significantly better than current energy-aware routing protocols.

Ganesan Pillai and Sheppard extended the OSI method to learn the weights of

deep artificial neural networks [53]. Deep neural networks are defined as neural net-

works that have more than two hidden layers. This algorithm separates the structure

of the network into paths where each path begins at an input node and ends at an

output node. Each of these paths is associated with a swarm that learns the weights

for that path of the network. A common vector of weights is maintained across all

swarms to describe a global view of the network. This vector is created by combining

the weights of the best particles in each of the swarms. This method was shown to

outperform the backpropagation algorithm, the traditional PSO algorithm, and both

NSPLIT and LSPLIT on deep networks. A distributed version of this approach was

developed subsequently by Fortier et al. [54].

3.2 Distributed Optimization

Much work has been done in the area of distributed optimization. Rabbat and

Nowak [55] analyzed the convergence of distributed optimization algorithms in sensor

networks. Many algorithms used to estimate environmental parameters or functions

of interest in sensor networks transmit all data to a central point for processing.

Rabbat and Nowak propose an alternative approach based on distributed in-network

processing. The authors showed that, by distributing the computation of functions

of interest in sensor networks, communication and energy resources consumed can

be reduced significantly. The authors proved that, for a large set of problems, these

algorithms will converge to a solution within a certain distance of the global optimum.

38

In a network of agents, consensus means that the agents reach an agreement

regarding a certain value of interest that depends on the state of all agents. Prob-

lems that require agents in such a network to reach consensus are called consensus

problems. A consensus algorithm is an interaction rule specifying the information

exchange between an agent and its neighbors in the network. Olfati-Saber et al. [56]

provided an analysis of consensus algorithms for multi-agent networked systems. The

authors defined several types of consensus problems, described methods of conver-

gence and performance analysis for multi-agent distributed systems, and proved the

convergence of these methods.

Patterson et al. [57] provided an analysis of the convergence rate for the dis-

tributed average consensus algorithm. In the distributed average consensus algorithm,

each node in the network has some initial value, and the goal is for all nodes to reach

consensus on the average of the values for all nodes. Consensus must be reached

using only communication between neighbors in the network graph. This work also

included an analysis of the relationship between the convergence rate and the network

topology.

Boyd et al. [58] analyzed convex distributed optimization in the context of ma-

chine learning and statistics. The authors argued that the alternating direction

method of multipliers (ADMM) can be applied to such distributed optimization algo-

rithms. In ADMM, a problem is divided into small local subproblems that are solved

and used to find a solution to a large global problem. The authors showed that this

approach can be applied to a wide variety of distributed optimization problems.

Distributed Overlapping Swarm Intelligence (DOSI) has several similarities to the

methods discussed in this section. As in the first three works, DOSI requires con-

sensus to be reached between all swarms in the algorithm with respect to the state

assignment for a Bayesian network. Like the distributed average consensus algorithm

39

discussed by Patterson et al., consensus between the swarms must be reached using

only communication between neighbors in the network graph. However, unlike Pat-

terson’s distributed average consensus algorithm, consensus in DOSI is not reached

with respect to an average value, but the swarms instead reach a consensus with

respect to a value determined by a designated arbiter swarm. To determine the best

value for a given variable, the arbiter swarm holds a competition between the values

learned by all swarms that are optimizing over the variable. The winning value is

then propagated to the other swarms to ensure consensus. The difference between

this method and the average consensus algorithm proposed by Patterson is significant,

because once consensus is reach in DOSI, not only will all swarms agree on a value

for a particular variable, but this value will be always be the value that achieved the

highest fitness competition. DOSI is similar to the work by Boyd et al. since it solves

subproblems in a distributed manner and recombines the solutions to answer a larger

global problem.

3.3 Common Approaches to Bayesian Inference

As mentioned in Section 2.2.3, an exact algorithm to solve the k Most Probable

Explanation (k-MPE) problem called bucket elimination was proposed by Dechter

[27]. This algorithm uses a form of variable elimination in which the node with

the fewest neighbors is eliminated at each iteration. Bucket elimination uses max-

marginalization instead of sum-marginalization when eliminating a variable and stores

the most probable state assignment for the variable. In max-marginalization, the sum

in equation 2.1 for sum-marginalization is replaced with a max operator. Like variable

elimination, this algorithm has worst-case time complexity that is exponential in the

40

tree width of the network, where the tree width of a graph is the size of the largest

maximal sub-clique minus one.

An approximation algorithm for the MPE problem called mini-bucket elimination

(MBE) is described in [59]. While MBE can be applied to problems other than

abductive inference, here we only examine it in the context of abductive inference.

This algorithm is a variation of bucket elimination that can address both partial and

full abductive inference. MBE further partitions the buckets defined in the bucket

elimination algorithm into mini-buckets, and the elimination operator is applied to

these mini-buckets instead of being applied to each singleton function in a bucket.

The size of the mini-bucket partitions can be modified so that the algorithm produces

exact solutions to the abductive inference problem. This is done by using the complete

buckets of exact bucket elimination, instead of partitioning into mini-buckets.

A divide and conquer algorithm that provides an exact solution to the k-MPE

problem is described by Nilsson in [60]. Nilsson’s approach is based on the flow

propagation algorithm proposed in [61] for finding the k-MPE for clique trees. While

the algorithm is faster than other exact abductive inference algorithms such as bucket

elimination, it still has exponential time complexity and is impractical for large net-

works. This limitation is true of all exact inference algorithms.

A simulated annealing algorithm (SA) for partial abductive inference was proposed

by de Campos as an approximation algorithm [62]. In simulated annealing the system

is initialized to some initial temperature T0. Then some change e is randomly chosen

and is applied based on the value of p = exp(∆(e)/T0), where ∆e is the change

in fitness. If p > 1, then the change is accepted otherwise, the change is accepted

with probability p. this selection and evaluation process is repeated α times or until

we make β changes. If no changes are made in α repetitions, then the search is

terminated. Otherwise, the temperature is lowered by multiplying T0 by a decay

41

factor 0 < γ < 1, and the search process continues. If the temperature has been

lowered more than δ times, then the algorithm is terminated.

The simulated annealing algorithm proposed by de Campos uses an evaluation

function based on clique tree propagation. The algorithm begins with a single state

assignment and at each iteration a single variable is modified within the state assign-

ment. A hash table is maintained consisting of 〈assignment, probability〉 pairs and

each new assignment is stored in this table. If an assignment is found that is not

stored in the hash table, then the probability of the assignment is computed. Since

SA only modifies a single state at each iteration, the algorithm can avoid recalculating

all of the initial clique potentials when evaluating a new state assignment.

A stochastic local search (SLS) algorithm for solving the MPE problem was pro-

posed in [63]. In this approach, stochastic local search was combined with an approx-

imate inference algorithm called Gibbs Sampling. The results of the author’s exper-

iments indicate that their approach outperforms other techniques such as stochastic

simulation, simulated annealing, or hill-climbing alone.

The Elvira Consortium software environment uses a junction tree based algorithm

to approximate a solution to the k-MPE Problem [64]. This algorithm is based on

Nilsson’s algorithm, but approximate probability trees are used in place of the true

probability trees.

3.4 Soft Approaches to Bayesian Inference

Several researchers have used soft computing techniques to find approximate solu-

tions to the k-MPE problem. Gelsema describes a genetic algorithm for full abductive

inference (GA-Full) in Bayesian networks [65]. In this approach, the states of the

variables in the Bayesian network are represented by a chromosome corresponding

42

to a vector of Boolean values. Each value in the chromosome corresponds to a state

assignment for a node in the network. Crossover and mutation are applied to the chro-

mosomes to generate offspring from parent chromosomes. To evaluate chromosome

fitness, the chain rule is applied.

A graph-based evolutionary algorithm for performing approximate abductive in-

ference on Bayesian Networks was developed by Rojas-Guzman et al. [66]. In their

method, the graphs specify a possible solution that is a complete description of a

state assignment for a Bayesian network. Fitness of a chromosome is based on the

absolute probability of the chromosome’s corresponding assignment. However, this

approach was designed to find a single most probable explanation rather than the

k > 1 most probable assignments.

A genetic algorithm for partial abductive inference was proposed by de Campos

et al. [67]. In this approach, the state assignments for the subset of variables are

represented as a chromosome consisting of integers. The value of each integer in a

chromosome corresponds to the state of a variable in the network. To evaluate the

fitness of each chromosome, clique tree propagation is used.

Sriwachirawat et al. [68] developed a niching genetic algorithm (NGA) to find

k-MPE, designed to utilize the “multi-fractal characteristic and clustering property”

of Bayesian networks. The multi-fractal characteristic and clustering property states

that low-probability instantiation clusters and high-probability instantiation clusters

are normally located far away from others, while, medium-probability instantiations

do not form clusters and are located almost everywhere in the search space. This

algorithm makes use of the observation that there are regions within the joint prob-

ability distribution of the Bayesian Network that are highly “self-similar.” Because

of this self-similarity, the authors chose to organize their GA using a probabilistic

43

crowding method that biases the crossover operator toward self-similar individuals in

the population. Chromosomes in this approach were encoded as described in [65].

Ganesan Pillai and Sheppard [69] describe a discrete multi-valued PSO (DMVPSO)

[44] approach for finding k-MPE. In their algorithm, each particle’s set of object pa-

rameters is represented by a string of integers corresponding to state assignments

for each node in the network. The chain rule is used to calculate the fitness of each

particle. The results of the authors’ experiments indicated they were able to find

competitive explanations much more efficiently than the approaches described in [65]

and [68].

3.5 Common Approaches to Bayesian Parameter Estimation

A number of algorithms have been developed for parameter estimation. As de-

scribed in section 2.5, the most common algorithm for parameter estimation is Ex-

pectation Maximization (EM) [12]. The algorithm begins with an initially random

parameter assignment and repeatedly executes the expectation and maximization

steps. During the expectation step, the algorithm samples values using the current

parameter estimates of the model. This way, a set of data can be generated with

values corresponding, not only to the observable variables but to the hidden variables

as well. The maximization step uses the resulting completed data set to find a new

maximum likelihood estimate of the probability estimates for those hidden variables.

Unfortunately, since the EM algorithm is a local search method, this process often

converges to sub-optimal parameters and even small changes to the initial parameters

can change the local optima found by the algorithm significantly. Also, the expec-

tation step can often be computationally expensive since it must estimate the joint

distribution for each data point.

44

Several authors have developed enhanced versions of EM in terms of both com-

putational efficiency and quality of learned parameters. In 1990, Wei and Tanner

proposed a randomized EM algorithm in which the expectation step is approximated

using Monte Carlo sampling [70]. In this approach, the data is completed by sam-

pling from the conditional distribution of the missing data for each data point. The

expectation is then approximated as the Monte Carlo average. The performance of

Monte Carlo EM (MCEM) is often comparable to that of traditional EM, and the

algorithm has been shown to perform well even when a single sample is drawn for

each data-point [71].

In 2002, Elidan et al. used data perturbation to improve upon the quality of the

local maxima reached by EM [72]. Their algorithm allows EM to escape local maxima

by perturbing the training data, thereby forcing the algorithm to explore new ascent

directions. This work evaluates the effectiveness of both random data perturbation

and adversarial data perturbation in which the data is modified to directly challenge

the current parameter estimates.

In 2005, Elidan and Friedman proposed the information bottleneck EM algorithm

for learning both the parameters and the structure of Bayesian networks in the pres-

ence of incomplete data [73]. This approach, which is based on the information

bottleneck framework described by Tishby et al. [74], involves grouping observed

variables by mutual information and then creating a hidden variable for each group.

3.6 Soft Approaches to Bayesian Parameter Estimation

More recently, EM has been combined with population based approaches to im-

prove the quality of learned parameters. In 2006, Jank proposed a genetic algorithm

version of EM (GAEM) based on MCEM. In this algorithm, each individual in the

45

population encodes a set of parameter estimates. The fitness of an individual is the

approximate probability of the data given the parameters as computed by a single

iteration of MCEM[75].

Another variant of EM based on evolutionary computation was proposed by Meng-

shoel et al. in 2012 [76]. This algorithm is described as an age-layered EM (ALEM)

approach that discards low likelihood runs before convergence. This algorithm main-

tains a population of individuals that represent EM runs. The population is then

divided into a set of layers, each with a user-defined age limit. Once the number of

iterations for an individual EM run exceeds this limit, the individual is removed from

the layer and, if the likelihood of the data given the parameters is high enough, the

individual is moved to the next layer.

3.7 Common Approaches to Bayesian Structure Learning

Yuan et al. [77] propose an exact algorithm for Bayesian structure learning based

on the A* algorithm which is capable of find an optimal Bayesian network structure.

This is a state space search technique in which heuristics are used to search only among

the most promising portions the search space. The authors propose two heuristics

for use with the A* algorithm. The first, involves a relaxation of the acyclicity

constraint for Bayesian networks. The second, reduces the relaxation of the first

heuristic by preventing directed cycles within some variable groups. While both

heuristics are admissible and consistent, the first results in too much relaxation and

causes the search space to have a loose bound. While the computational complexity

of this algorithm is exponential, the authors’ experiments indicate that it outperforms

existing exact structure learning methods in terms of both search time and bounding

of the search space.

46

The Greedy Thick Thinning algorithm (GTT) described by Heckerman [78] is a

common approach to Bayesian structure learning. The algorithm begins with a fully

connected graph and removes arcs between nodes based on conditional independence

tests. GTT then optimizes the structure by modifying the graph and scoring the

result. The modifications used by GTT include adding an arc if one does not already

exist, and removing or reversing an arc if it already exists. The modified network

is then scored and, if the modifications fail to improve the network, the algorithm

returns the current structure. To encourage greater exploration, a predetermined

number of network perturbations are produced after each scoring.

Heckerman also describes a simulated annealing algorithm for general structure

learning [78]. This algorithm starts with an initially empty graph and at each iteration

an edge e is randomly is selected. A change is made to this edge with probability

p = exp(∆(e)/T0) as described in section 3.3. These changes can include removing,

reversing, or adding an edge.

Cooper et al. describe a method for constructing Bayesian networks from data

called K2 [28], which we describe in more detail in section 2.3. K2 is a greedy

algorithm that determines the set of edges that best matches the data given a node

ordering. If some node Xi precedes node Xj in the ordering, then Xj cannot be a

parent of Xi. K2 visits each node Xi based on the sequence specified in the ordering

and greedily inserts a parent into the parent set of Xi if the addition of the parent

maximizes the score of the network. Their algorithm uses P (B,D) as the scoring

function.

47

3.8 Soft Approaches to Bayesian Structure Learning

Several researchers have applied soft computing techniques to the problem of

Bayesian structure learning. Wang et al proposed a PSO algorithm for Bayesian

structure learning [9] where the position of each particle is an n×n adjacency matrix,

and n is the number of variables in the network. The fitness function for a candidate

network in this approach is denoted as:

F (B) = logP (D|B)

where D denotes the training data and B denotes the Bayesian network. Before

constructing the Bayesian network for fitness evaluation, the adjacency matrix is

checked for cycles, and the cycles are removed.

An island model genetic algorithm for Bayesian structure learning was proposed

by Regnier-Coudert et al [10]. In this algorithm each chromosome consists of an

ordering of the nodes in the network. For a given ordering, each node can only be

parent of a node ahead of it in the ordering. A Bayesian network is constructed

from an ordering by applying the K2 edge selection algorithm described in [28] to the

ordering. The fitness function for a candidate network in this approach is denoted as:

F (B) = P (B,D) (3.1)

The populations of chromosomes are separated into several islands running the genetic

algorithm in parallel. The search is periodically paused, and migration occurs between

the islands. In this approach the genetic algorithm acts a heuristic to learn a variable

ordering for the K2 algorithm.

48

Wu et al proposed an ant colony optimization algorithm for Bayesian structure

learning called K2ACO [11]. In this algorithm, the representation is similar to that

used in [10]. Each individual represents a node ordering and the fitness of each

ordering is calculated by running the K2 search algorithm. Each ant in the algorithm

traverses a graph of the nodes in the network, and an ant in node i moves to node j

according to a probabilistic state transition rule based on the amount of pheromone

on the edge between i and j. The amount of pheromone deposited on an edge is

based on equation 3.1. The order of the nodes in the graph traversal containing the

highest pheromone levels defines the variable ordering for the K2 algorithm.

.

49

CHAPTER 4

FULL ABDUCTIVE INFERENCE IN BAYESIAN NETWORKS

In many domains, when reasoning with a Bayesian network, it is desirable to know

the most probable explanation of the evidence, rather than the probability of a single

variable in the system. The problem of performing such queries is called abductive

inference. In full abductive inference, the goal is to find the most probable states

for all variables in the network, given the evidence. Unfortunately, full abductive

inference is known to be NP-Hard and Dagum [14] showed, that even the problem

of finding a constant factor approximation for the abductive inference problem is

NP-hard.

To demonstrate the validity of applying OSI to problems of full abductive inference

we present both distributed and centralized OSI-based algorithms for full abductive

inference, and we compared our algorithms to existing approaches.

4.1 Full Abductive Inference via OSI

We developed an approach for full abductive inference based on the OSI method-

ology [45]. In our approach, a swarm is associated with each node in the network.

Each node’s corresponding swarm learns the variable assignments associated with

that node’s Markov blanket using the DMVPSO algorithm [44]. This representation

provides an advantage since every node in the network is conditionally independent

of all other nodes when conditioned on its Markov blanket. The pseudocode for our

approach is shown in Algorithm 4.1.

50

Algorithm 4.1 Overlapping Swarm Intelligence

Procedure OSI-Infer(
G // A Bayesian network
E // Evidence variables

)
1: Initialize global set of state assignments A using forward sampling
2: Initialize particles in each swarm
3: repeat
4: for each swarm s do
5: for each particle, p ∈ s do
6: Construct personal set of state assignments Bp

7: Add Bp to A
8: Calculate particle fitness f(p)
9: if f(p) > p’s personal best fitness then
10: Update p’s personal best position and fitness
11: end if
12: if f(p) > the global best fitness then
13: Update global best position and fitness for s
14: end if
15: Update p’s velocity and position
16: end for
17: end for
18: A← k most probable assignments in A
19: for each state assignment α ∈ A do
20: for each node n in the network do
21: Let S be all swarms s where n ∈ MB(Xs)
22: Let vn be the state of n in α
23: vn ← Compete(S, n, α)
24: SeedSwarms(S, vn)
25: end for
26: end for
27: until termination criterion is met

51

Our algorithm requires that a set of k global state assignments A be maintained

across all swarms for inter-swarm communication. A is initialized by forward sampling

m ≥ k samples and selecting the k most probable assignments for inclusion in A.

Forward sampling is a method used to generate a sample for every variable in a

network, such that each sample is generated proportionally to its probability. Forward

sampling draws a sample for each variable, following a topological ordering of the

network. It samples a value for each variable from the distribution of the variable

given the values assigned to its parents.

Each particle’s position is defined by a d-dimensional vector of discrete values.

Each position value corresponds to the state of a variable in the swarm’s Markov

blanket, thus each particle represents a state assignment for part of the network. We

use log likelihood to determine the quality of a complete state assignment as follows:

L(x) = log

(
n∏
i=1

P (xi|Pa(xi))

)

=
n∑
i=1

logP (xi|Pa(xi)).

where x = {x1, x2, ..., xn} is a complete state assignment and Pa(xi) corresponds to

the assignments for the parents of xi.

Given a partial state assignment xp represented by some particle p in swarm s

and the set of complete global state assignments A = {α1, . . . , αk}, we can construct

a new set of state assignments Bp = {β1, . . . , βk} for use in fitness evaluation by

inserting xp into each state assignment αi ∈ A as follows:

∀βi ∈ Bp βi = {xp} ∪ αi\MB(Xs)

52

Algorithm 4.2 Compete

Procedure Compete(
S // competing swarms
n // node the swarms are competing over
α // a state assignment

)
1: bestQ← −∞
2: for each swarm s ∈ S do
3: Let pg be the most fit particle in s
4: Let vn be the state of n within pg
5: Insert vn into α
6: if L(α) > bestQ then
7: bestQ← L(α)
8: bestV ← vn
9: end if
10: end for
11: return bestV

Algorithm 4.3 SeedSwarms

Procedure SeedSwarms(
S // swarms to be seeded
vn // state of node n

)
1: for each swarm s ∈ S do
2: Let p be the least fit particle in s
3: Let qn be the state of n in p
4: qn ← vn
5: end for

where MB(Xs) consists of the state assignments for the Markov blanket of node Xs

within Ai. We use Bp to calculate the fitness of each particle,

f(p) =
∑
βi∈Bp

L(βi)

This function defines the fitness of particle p as the sum of the log likelihoods of the

assignments in A when the value assignments encoded in p are substituted into A.

53

C

d1 d2 d3 d4 d5 d6

s1 s2 s3 s4 s5

(a) Markov blanket of d3

C

d1 d2 d3 d4 d5 d6

s1 s2 s3 s4 s5

(b) Markov blanket of d5

C

d1 d2 d3 d4 d5 d6

s1 s2 s3 s4 s5

(c) Overlap of Markov blankets for d3 and d5

Figure 4.1: Markov blanket example

54

Our algorithm exploits the concept of Markov blanket overlap, which is illustrated

in Figure 4.1. Figure 4.1(a) highlights the Markov blanket of d3, Figure 4.1(b) high-

lights the Markov blanket of d5, and Figure 4.1(c) highlights the overlap of the Markov

blankets of both d3 and d5. In the example, nodes in the Markov blanket of d3 and

nodes in the Markov blanket d5 are shown with a dashed rectangle. In Figure 4.1(c)

nodes that are in the Markov blankets of both d3 and d5 (namely c and d4) are shown

to be inside both dashed rectangles, thus indicating an overlap. We will exploit these

overlaps later.

When two or more swarms share a node in the network (such as c and d4 in

Figure 4.1(c)), these swarms are said to overlap. At the end of each iteration of the

algorithm, overlapping swarms compete to determine which state is assigned to a

given node in each assignment αm ∈ A (Algorithm 4.2). This competition is held

between the state assignments found by the personal best particles in each swarm.

The state resulting in the highest log-likelihood is the one selected for inclusion. Once

a node’s state has been selected through competition, each swarm associated with the

node is seeded with this state. This is performed by the SeedSwarms function. In

our algorithms, we seeded a swarm by replacing the least fit particle in the swarm

with the state vn for node n, where vn is the state of n within the most fit particle in

the swarm. This allows for the transfer of information between different swarms that

are trying to optimize over the same values. This process is shown in Algorithm 4.2.

In the example presented in Figure 4.1, the swarms associated with d3 and d5 would

compete to determine which state is assigned to the nodes c and d4.

Whenever a state assignment is constructed, that assignment is stored in A. At

each iteration, A is pruned so that it contains the k most probable assignments found

so far. Once the algorithm has terminated, A is returned.

55

4.1.1 Computational Complexity

We first describe the computational complexity of OSI and show which step has

the most computational burden in the algorithm. To do so, we break down each step

in the algorithm. We refer to the pseudo code shown in Algorithm 4.1.

• Fitness Evaluation– First, we determine the complexity of evaluating the

fitness of an individual particle. During fitness evaluation we compute the log

likelihood for k candidate explanations, where the calculation of likelihood for

a single explanation has a worst case complexity of O(n), where n is number of

variables in the network. Thus, the fitness function complexity is O(kn).

• Optimization Algorithm– Next, we determine the complexity of the under-

lying PSO algorithm. We assume that the algorithm has q = |P | individuals,

where P is the set of all the individuals in the population. During each iteration,

an individual, with n variables in the worst case, has its position and fitness

updated. These two steps are done sequentially, with updating the position

having a complexity of O(n) and while evaluating the fitness is O(kn). This

is done q times, once for for each individual; therefore, assuming the algorithm

performs e iterations, the total complexity is O(kneq).

To complete our analysis of the complexity of OSI, we next show the complexity

of the two main parts of OSI: solve and competition

• Solve– The solve step in OSI involves iterating over the set of subpopula-

tions S and having each one optimize over its variables. Using the complexity

from above for optimization algorithms, each subpopulation has a complexity

of O(kneq). Since this is done s = |S| times, the total complexity of this step

is O(skneq).

56

• Competition– In OSI, the competition step is used to find the optimal set of

values for the variables in X. This is done by iterating over all the variables

and then comparing the fitness of the competing individuals. Note that there

are n variables. In the worst case, all swarms will overlap over every variable,

resulting in n competing subpopulations, while each fitness evaluation has a

complexity of O(nk). Therefore, the total complexity of the competition step

in OSI is O(nn2k) = O(n3k).

OSI iterates over the solve and competition steps m times. Combining the steps

above and multiplying times m gives a complexity of

O(OSI) = O(m(nkeqs+ n3k))

= O(mnkeqs+mn3k)

In the algorithm presented above, a swarm is associated with each node in the net-

work, therefore s = n. Substituting this into the above equation, we now have

O(OSI) = O(mn2keq +mn3k)

Based on these results, we can see that OSI will almost always be more compu-

tationally complex due to the n3 factor caused by the competition phase. However,

in practice, the worst case O(n3k) complexity of the competition phase will be rare,

and will only occur when all variables in the network share a Markov blanket.

4.2 Full Abductive Inference via DOSI

We also modified the OSI approach proposed in [45] to eliminate the need for a

set of global state assignments to be maintained across all swarms. In the distributed

approach, each swarm s maintains a set of personal state assignments denoted as

57

As. The most probable assignments learned by each swarm are communicated to

the other swarms and inserted into the swarm’s personal state assignment through a

periodic communication mechanism. At each iteration of the algorithm, the swarm

associated with a given node holds a competition between all swarms that share this

node to determine the most probable state assignment. This state assignment then

is communicated to the other swarms. Because this approach does not require a

global network to be shared between swarms, the learning process can be distributed.

Initially a set A is obtained by forward sampling m ≥ k samples. Each As is initialized

as the k most probable assignments in A.

The fitness calculation and the calculation of a new set of state assignments for a

given swarm s and particle p, denoted Bs,p, is similar to the calculation of Bp used in

OSI. Given a partial state assignment xp represented by some particle p in swarm s

and the set of personal state assignments As = {α1, . . . , αk}, we can construct a new

set of state assignments Bs,p = {β1, . . . , βk} by inserting xp into each state assignment

αi ∈ As as follows:

∀βi ∈ Bs,p βi = {xp} ∪ αi\MB(Xs)

where MB(Xs) consists of the state assignments for the Markov blanket of node Xs

within αi. We use Bs,p to calculate the fitness of each particle,

f(p) =
∑

βi∈Bs,p

L(βi)

This function defines the fitness of particle p in a swarm s as the sum of the log

likelihoods of the assignments in αs when the state assignments encoded in p are

substituted into αs. Algorithm 4.4 shows the pseudocode for DOSI.

58

As with OSI, a competition is held between overlapping the swarms at the end

of each iteration of the algorithm. For each node, its associated swarm holds a

competition between the states learned by all swarms that optimize over the node.

We call this swarm the arbiter swarm. During this competition, the state resulting

in the highest log likelihood, is selected for inclusion in the arbiter swarm’s set of

personal state assignments. After performing competition, the state values selected

by the arbiter swarm are propagated to the other swarms in the algorithm. This

competition and sharing procedure is shown in Algorithm 4.5.

Unlike OSI, once a node’s state has been selected by the competition function,

only the swarm associated with the node is seeded with the new state. This is done to

reduce communication overhead. State assignments are shared using the ShareStates

function described by Algorithm 4.6. To share state assignments, each swarm keeps

track of a variable δn for each node n. These variables indicate the minimum distance

between the swarm’s node and n in the moralized graph of the Bayesian network (the

graph obtained by connecting all unconnected nodes that have a common child).

For example, a value of zero for δn indicates that n is the swarm’s corresponding

node while a value of one for δn indicates that the swarm’s node is in the Markov

blanket of n. Values for δn are set initially to infinity for all nodes other than the

node assigned to that swarm. Values for δn are set to 0 for the node assigned to the

swarm. At each iteration of the communication the tentative distances between each

pair of nodes are updated. A swarm sj will communicate its value for a node n to

another swarm si if si.δn > sj.δn. This is done because nodes that have a smaller

value for δn are closer to n. At each iteration, a swarm s will communicate, with

their neighbors, the state values learned by s, and the state values received by other

swarms that have communicated with s in the past. Thus, if a swarm si is a neighbor

of swarm sj, then si will receive the learned states from sj in a single iteration, but if

59

si is a distance of two from sj, then it will receive the learned states from sj after two

iterations. So, swarms whose nodes are closer to the node n will have a more current

value for the state of n. This communication mechanism ensures that DOSI will reach

consensus with respect to the values for δn and the assigned values for a given state.

This means that, if the communication mechanism runs for enough iterations, then

all swarms will agree on the values for δn and the assigned states for every node n.

A proof of DOSI consensus for connected nodes follows. This proof ties the number

of iterations required for consensus between two nodes to the distance between the

nodes in the moralized graph of the Bayesian network. Note that, in the moralized

graph G of some Bayesian network B, an edge is added between all unconnected

parents that share a child. As a result, all nodes in the moralized graph will have an

edge connecting them to their children’s parents. This means that, for each node X

in the moralized graph, an edge will be present between X and every node in MB(X).

As a result, if ShareStates(X, Y) is called from Algorithm 4.5, then an edge must exist

between nodes X and Y in the moralized graph of the Bayesian network. Therefore,

if d(X, Y) = 1, then X ∈ MB(Y) and during the each iteration, ShareStates(Y,X)

will be called. This concept if formalized in Lemma 1.

60

Algorithm 4.4 Distributed Overlapping Swarm Intelligence

Procedure DOSI-Infer(
G // A Bayesian network
E // Evidence variables
X // Set of all variables in the network

)
1: Sample A using forward sampling
2: Initialize particles in each swarm
3: for each swarm s do
4: Create an empty list of assignments As
5: Add k most probable assignments in A to As
6: end for
7: repeat
8: for each swarm s do
9: for each particle, p ∈ s do
10: Construct Bp

11: Add Bp to As
12: Calculate particle fitness f(p)
13: if f(p) > p’s personal best fitness then
14: Update p’s personal best position and fitness
15: end if
16: if f(p) > the global best fitness then
17: Update global best position and fitness for s
18: end if
19: Update p’s velocity and position
20: end for
21: As ← k most probable assignments in As
22: end for
23: CompeteAndShare(X)
24: until termination criterion is met

61

Algorithm 4.5 Compete and Share

Procedure CompeteAndShare(
X // set of nodes

)
1: for each node n ∈ X do
2: Let s be the swarm associated with n
3: for each state assignment α ∈ As do
4: Let S be all swarms s where n ∈ MB(Xs)
5: Let vn be the state of n in A
6: vn ← Compete(S, n, α)
7: SeedSwarm(s, vn)
8: end for
9:

10: for i = 0 to C do
11: for each swarm si do
12: for each swarm sj ∈ MB(Xsi) do
13: ShareStates(si, sj)
14: end for
15: end for
16: end for
17: end for

Algorithm 4.6 Share States

Procedure ShareStates(
si // First swarm
sj // Second swarm

)
1: Let Ai and Aj be the set of personal state assignments of si and sj respectively
2: for each node n do
3: if si.δn > sj.δn then
4: si.δn ← sj.δn + 1
5: for m = 0 to k do
6: Let αi be the mth assignment in Asi
7: Let αj be the mth assignment in Asj
8: Insert αj’s value for n into αi
9: end for
10: end if
11: end for

62

Lemma 1. [Moralization and Markov Blankets] Let X and Y be two nodes in some

Bayesian network B = (VB,EB), and let G = (VG,EG) be the moralized graph of the

Bayesian network B, where VG is the set of nodes in G and EG is the set of edges.

We prove by contradiction that

(X, Y) ∈ EG → X ∈ MB(Y) (4.1)

Proof. Assume that that 4.1 is false. Then there exists an edge (X, Y) ∈ EG such

that X 6∈ MB(Y). If (X, Y) ∈ EG, then either (X, Y) ∈ EB or the edge (X, Y) was

added to EG during moralization.

If (X, Y) ∈ EB, then either Y ∈ Pa(X) or X ∈ Pa(Y). This implies, by the

definition of the Markov blanket, that X ∈ MB(Y).

Alternativly, if the edge (X, Y) was added to EG during moralization then, by

the definition of moralization, there exists some node Z such that X ∈ Pa(Z) and

Y ∈ Pa(Z). This implies that X is Y ’s children’s parent. Therefore, by the definition

of the Markov blanket, X ∈ MB(Y).

Thus, either (X, Y) ∈ EB, implying that X ∈ MB(Y), or the edge (X, Y) was

added to EG during moralization, also implying that X ∈ MB(Y). Therefore X ∈

MB(Y) and X 6∈ MB(Y), a contradiction.

Conclusion: By the principle of contradiction, 4.2 is true.

Theorem 1 (DOSI Consensus). Let X and Y be two nodes in some Bayesian network

B = (VB,EB) where VB is the set of nodes in B and EB is the set of edges. Let

C(X, Y) be the number of sharing iterations required (the loop on line 10 of Algorithm

4.5) for X and Y to have reached consensus with respect to the state of node X. We

prove by induction that

C(X, Y) = d(X, Y) (4.2)

63

where d(X, Y) is the minimum distance between X and Y in the moralized graph

G = (VG,EG) of the Bayesian network B.

Proof. Base case: Let i be the number of elapsed sharing iterations. Suppose

d(X, Y) = 1. When i = 0, X.δX = 0 and Y.δX = ∞. Since d(X, Y) = 1, we

know that (X, Y) ∈ EG. By Lemma 1, this implies that X ∈ MB(Y). Thus, during

the first iteration, ShareStates(Y,X) will be called. Because Y.δX > X.δX when i = 0,

Y.δX ← X.δX + 1 = 0 + 1 = 1. Also, the state assignments for node X in AY will

be identical to the state assignments for node X in AX . Therefore consensus will be

reached when i = 1 in this case. Thus C(X, Y) = 1 = d(X, Y).

Induction step: The inductive hypothesis is that C(X, Y) = d(X, Y) holds for

d = k. Suppose d(X,Z) = k + 1. Then there must exist some node Y such that

(Y, Z) ∈ EG and a path with length d(X,Z) = k + 1 which passes through Y .

Therefore, there must exist a path between X and Y such that d(X, Y) = k. Based

on the inductive hypothesis, once i = k consensus will be reached between X and Y

with respect to the state of node X.

When i = k + 1, Y.δX = k and Z.δX = ∞. By Lemma 1, we know that, since

(Y, Z) ∈ EG, the MB of Y must include Z. Thus, when i = k + 1, ShareStates(Z, Y)

will be called. Because Z.δX > Y.δX , Z.δX ← Y.δX + 1 = k + 1. Additionally, the

state assignments for node X in AZ will become identical to the state assignments

for node X in AX . Therefore consensus will be reached after i = k + 1 in this case.

Thus C(X, Y) = k + 1 = d(X, Y).

Conclusion: By the principle of induction, 4.2 is true for all d(X, Y) ∈ N.

An example of several iterations of the communication portion of the algorithm is

shown in Figure 4.2. Here the most probable state assignment for F in each personal

state assignment is shown along with each swarm’s value for δF at the beginning of

64

A
F = 2
δF =∞

B
F = 3
δF =∞ C

F = 0
δF =∞

D
F = 2
δF =∞

E
F = 0
δF =∞ F

F = 1
δF = 0

(a) Before Communication

A
F = 2
δF =∞

B
F = 3
δF =∞ C

F = 0
δF =∞

D
F = 1
δF = 1

E
F = 0
δF =∞ F

F = 1
δF = 0

(b) After Iteration 1

A
F = 2
δF =∞

B
F = 1
δF = 2 C

F = 1
δF = 2

D
F = 1
δF = 1

E
F = 1
δF = 2 F

F = 1
δF = 0

(c) After Iteration 2

A
F = 1
δF = 3

B
F = 1
δF = 2 C

F = 1
δF = 2

D
F = 1
δF = 1

E
F = 1
δF = 2 F

F = 1
δF = 0

(d) After Iteration 3

Figure 4.2: Share States example

each iteration. In this example the swarm associated with node F has determined

through competition that the best state assignment for F is 1. Prior to the first

iteration of communication δF = 0 for the swarm associated with F while δF =∞ in

all other swarms. After the first iteration

D.δF = F.δF + 1 = 1

65

since D.δF = ∞ > 0 = F.δF . When D updates its value for δF , it receives the

most probable state assignment, F = 1, from the swarm associated with F . During

the second iteration of communication D will share states with nodes B, C, and E.

Once the second iteration is complete nodes B, C, and E have all set F = 1 in their

personal state assignment and B, C, and E have all set

δF = D.δF + 1 = 2

During the third iteration, node B will share states with node A. Since A.δF =∞ >

2 = B.δF the swarm associated with A will update its value for δF such that

A.δF = B.δF + 1 = 3

and A will set F = 1 based on the state of F in the personal state assignment for

node B. Once the third iteration is complete, for any given node in the network,

δF will contain the minimum distance between that node and F in the moralized

graph of the network and all nodes will agree upon a value for F . Once the personal

state assignment for all swarms have identical state assignments for some variable,

we say that the network has reached consensus with respect to that variable. In this

example, after the third iteration of communication the swarms will reach consensus

with respect to F . Eventually all tentative distances will be updated in this way so

that they reflect the correct distances between the nodes.

This algorithm is similar to Dijkstra’s algorithm in that initially each node is

assigned a tentative distance value for each δn (zero for our initial node and infinity

for all other nodes) that is updated at each iteration through the communication

mechanism. After each iteration, each node will update one of its δ’s if and only if

66

one of its neighbors has a lower δ value for the same node. Because each node starts

with a δ value of 0 for itself and ∞ for all others, the only δ’s that will be updated

are nodes that are within each other’s MBs; therefore, after the first iteration, all δ’s

will either be 0, 1, or ∞.

As this process is repeated, the δ will be increased by one for each node as the value

is distributed throughout the network, which also corresponds to the distance from

one node to another node in the moralized graph. Eventually, all of the nodes will

have finite numbers for all δ’s in a connected network. If some parts of the network are

disjoint from others, then there will still exist some delta’s with values of∞ for certain

nodes. However, this does not present a significant problem. If two sub-networks are

disjoint from one another, then the most probable state assignments for variables in

one sub-network will be independent of the most probable state assignments in the

other. This means that the most probable state assignments in one sub-network can

be optimized without regard for the states assigned to variables in the other, so long

as the two sub-networks are disjoint.

4.3 Experimental Design

For our first set of experiments, we compare our OSI and DOSI algorithms for full

abductive inference to the following algorithms:

• SLS: Stochastic Local Search algorithm proposed in [63].

• NGA: Niching genetic algorithm proposed in [68].

• MBE: Mini bucket elimination algorithm proposed in [59].

• DMVPSO: Discrete multi-valued PSO algorithm proposed in [69].

67

Table 4.1: Properties of the test networks

Network Nodes Arcs Parameters Ave. MB Size Ave. States
Network A 11 12 261 4 3.00
Network B 13 16 399 4.53 3.00
Network C 15 12 483 4.60 3.00
Win95pts 76 112 574 5.92 2.00
Insurance 27 52 984 5.19 3.30
Hailfinder 70 66 2656 3.54 3.98
Hepar2 56 1236 1453 3.51 2.31

For these comparisons, we used the bipartite networks presented in Figure 4.3 [69]

along with four additional Bayesian networks obtained from the Bayesian Network

Repository [79]: Win95pts, Insurance, Hailfinder, and Hepar2. Win95pts and Hepar2

were chosen because they were the only large networks (60 - 100 nodes) in the bnlearn

repository. Such large networks were desirable to validate our hypothesis that OSI and

DOSI would excel when learning state assignments for larger networks. Insurance and

Hailfinder were chosen because they are real-world networks that have been validated

in published literature [80, 81]. The properties for all networks are shown in Table

4.1. For all networks each leaf node in the network was chosen as evidence with a 50%

probability. The state of each evidence variable was chosen uniformly at random.

For each network, experiments were performed with different values of k: k =

2, 4, 6, 8. We did not examine the performance of OSI when k = 1 because the

performance of our algorithms in this case will likely be similar to the performance

when optimizing over multiple explanations. For all of the algorithms, initial popu-

lations were generated using forward sampling. In every experiment, the number of

particles in each swarm was set to 20 and σ was set to 0.2. We chose a population

size of 20 because we found that this resulted in good performance during preliminary

evaluation of the algorithms. For the swarm-based algorithms φ1 and φ2 were set to

68

d1 d2 d3 d4 d5 d6

s1 s2 s3 s4 s5

(a) Network A

d1 d2 d3 d4 d5 d6 d7

s1 s2 s3 s4 s5 s6

(b) Network B

d1 d2 d3 d4 d5 d6 d7 d8

s1 s2 s3 s4 s5 s6 s7

(c) Network C

Figure 4.3: Bipartite Bayesian networks used for experiments.

1.49618, while ω was set to 0.7298. Eberhart and Shi empirically determined that

these are good parameter choices for ω, φ1, and φ2 [82]. The value for σ was taken

from [69] to ensure consistency of results. For the genetic algorithms, the population

size was set to 20 to match the number of particles in each swarm. All algorithms

were run until convergence. We determined that an algorithm had converged if the

best solution found by the algorithm did not improve for 10 iterations. The sums

of the log likelihoods for the k most fit solutions found in each run were averaged

over ten runs of each algorithm. We compared the results using a paired t-test with

a confidence interval of 95% to evaluate significance. In addition to log likelihood,

69

we also measured the number of fitness evaluations required by each algorithm for a

comparison of computational complexity.

For networks A, B, and C, the MBE algorithm is used to compute the exact

solution for the full abductive inference problem. For all other networks, MBE is used

to find an approximate solution with parameters m and i set to 2 and 3, respectively,

since the networks are too large for exact inference.

For our second set of experiments we performed a lesion study [83] by implement-

ing two alternative versions of DOSI. In the first implementation (DOSI-Comm), the

competition mechanism was disabled, while in the second implementation (DOSI-

Comp), the communication mechanism was disabled. We compared these alternative

implementations to DOSI to validate our hypothesis that both the competition and

communication of DOSI improve the algorithm’s performance in terms of average

log likelihood of solutions found. All other parameters and design decisions were the

same as the first set of experiments.

For the final set of experiments we compared the performance of various swarm

architectures. In the first architecture (Markov), a swarm learns the state assign-

ments for the Markov blanket of its corresponding node. In the second architecture

(Clique), a swarm was assigned to each clique in the network’s corresponding clique

tree and each swarm learned the state assignments for all nodes in its associated

clique. In the third architecture (Parent), a swarm was assigned to each node and

each swarm learned the state assignments for the parents of its corresponding node.

For the final architecture (Random), a swarm was assigned to each node and each

swarm learned the state assignments for a randomly selected set of other nodes. For

these experiments, we set k = 1, no evidence was set, and the log-likelihood of each

architecture was averaged over 30 runs.

70

We have four hypotheses relating to the experiments presented here. First, we

hypothesize that OSI and DOSI will outperform the competing approaches for most

experiments. Second, we hypothesize that OSI and DOSI tie statistically for best on

most of the network presented here. Third, we hypothesize that removing the compe-

tition or communication mechanism from DOSI will cause a drop in performance for

some of the experiments. Finally, we hypothesize that the Markov blanket overlap

architecture will provide the best performance for most networks, and will never be

outperformed by the other architectures.

4.4 Comparison Against Existing Algorithms

Tables 4.2, 4.3, 4.4, and 4.5 show the average sum of the log likelihoods for each

algorithm and each value of k. Bold values indicate that the corresponding algorithm’s

performance is statistically significantly better than all other algorithms for the net-

work given the corresponding value for k. Algorithms that tie statistically for best

are bolded. Table 4.2 shows the average sum of the log likelihoods for the population

based algorithms while Table 4.4 shows the average sum of the log likelihoods for

MBE and SLS. Table 4.3 compares the average sum of the log likelihoods for OSI and

DOSI.

For all networks containing more than 15 nodes we observe that, based on the

paired t-tests on log likelihood, the OSI algorithm outperforms all other approximate

algorithms, and DOSI is never outperformed by any approximate algorithms other

than OSI. For Network A, all population based algorithms tie statistically when k is

set to 2, OSI, DOSI, and DMVPSO tie statistically when k is set to 2 and 6, and

OSI outperforms all other approximate algorithms when k is set to 8. For Network

B, OSI, DOSI, and DMVPSO tie statistically when k is set equal to 4 while OSI and

71

Table 4.2: Comparison against population based approaches

Network k OSI NGA GA-Full DMVPSO

Network A

2 -13.64 ± 0.02 -14.06 ± 0.51 -14.16 ± 0.87 -13.95 ± 0.73
4 -27.31 ± 0.10 -29.40 ± 1.59 -29.42 ± 1.69 -28.33 ± 2.29
6 -40.92 ± 0.03 -46.70 ± 2.77 -47.07 ± 3.77 -43.07 ± 2.67
8 -54.56 ± 0.03 -60.43 ± 2.12 -64.52 ± 4.18 -59.03 ± 3.68

Network B

2 -17.12 ± 0.07 -18.11 ± 0.48 -18.39 ± 0.56 -18.23 ± 0.40
4 -34.62 ± 0.14 -36.90 ± 1.14 -37.32 ± 1.49 -36.66 ± 0.57
6 -51.87 ± 0.24 -57.18 ± 2.63 -58.63 ± 2.16 -57.40 ± 1.90
8 -69.26 ± 0.32 -77.25 ± 1.69 -77.74 ± 2.84 -76.05 ± 2.02

Network C

2 -16.05 ± 0.02 -17.23 ± 1.53 -17.61 ± 1.47 -17.08 ± 1.26
4 -32.09 ± 0.05 -37.69 ± 2.87 -36.82 ± 1.73 -35.05 ± 1.52
6 -48.18 ± 0.11 -57.09 ± 2.56 -57.46 ± 1.69 -55.77 ± 2.45
8 -64.28 ± 0.19 -78.68 ± 5.01 -77.51 ± 3.21 -74.67 ± 2.77

Win95pts

2 -32.27 ± 5.59 -2442.06 ± 545.94 -2866.92 ± 755.73 -941.05 ± 1236.95
4 -57.10 ± 3.85 -4561.73 ± 1602.60 -5615.89 ± 2551.70 -2162.27 ± 2810.62
6 -90.21 ± 13.53 -9580.33 ± 1727.51 -9314.64 ± 2208.09 -3858.00 ± 3559.27
8 -124.78 ± 20.97 -13885.76 ± 1843.64 -13240.43 ± 4066.10 -5947.98 ± 5681.22

Insurance

2 -24.63 ± 2.29 -36.57 ± 6.80 -34.55 ± 2.99 -31.85 ± 2.38
4 -48.85 ± 3.04 -76.92 ± 19.59 -73.66 ± 7.87 -79.56 ± 8.43
6 -74.02 ± 9.14 -120.14 ± 13.54 -133.65 ± 26.96 -132.08 ± 15.91
8 -100.25 ± 7.25 -196.69 ± 35.05 -179.64 ± 25.23 -170.20 ± 24.44

Hailfinder

2 -69.51 ± 2.19 -176.20 ± 234.93 -102.08 ± 5.72 -247.79 ± 313.59
4 -142.31 ± 3.85 -355.61 ± 314.29 -502.07 ± 931.43 -425.46 ± 500.03
6 -210.29 ± 6.16 -1210.99 ± 1091.34 -1069.50 ± 983.59 -1795.57 ± 1210.33
8 -278.88 ± 9.34 -2217.57 ± 1809.46 -2282.79 ± 1061.93 -3986.79 ± 983.68

Hepar2

2 -66.54 ± 0.00 -79.40 ± 2.10 -80.79 ± 2.82 -72.92 ± 2.07
4 -134.19 ± 1.85 -164.57 ± 3.87 -161.64 ± 4.02 -146.78 ± 7.59
6 -199.84 ± 0.67 -249.92 ± 7.44 -253.03 ± 7.61 -217.70 ± 10.71
8 -405.12 ± 3.75 -472.44 ± 5.72 -471.40 ± 7.42 -440.27 ± 11.95

DOSI tie statistically for best when k is set equal to 2. OSI outperforms all other

approximate algorithms when k is set to 6 and 8. For Network C, all population

based algorithms tie statistically for best when k is set equal to 2, 4, and 6. OSI

outperforms all other approximate algorithms when k is set to 8. For networks A, B,

and C, the average sum of the log likelihoods for OSI differs from the exact solution

by at most 0.4 while, for DOSI, the average sum of the log likelihoods differs from the

exact solution by at most 3.11. For Win95pts, OSI and DOSI tie statistically for best

when k is set equal to 2, 4, and 6. For Insurance, OSI and DOSI tie statistically for

72

Table 4.3: Comparison of OSI and DOSI

Network k OSI DOSI

Network A

2 -13.64 ± 0.02 -13.85 ± 0.58
4 -27.31 ± 0.10 -27.81 ± 0.70
6 -40.92 ± 0.03 -41.82 ± 2.51
8 -54.56 ± 0.03 -55.27 ± 0.45

Network B

2 -17.12 ± 0.07 -17.20 ± 0.16
4 -34.62 ± 0.14 -35.59 ± 1.45
6 -51.87 ± 0.24 -52.66 ± 0.64
8 -69.26 ± 0.32 -71.97 ± 2.19

Network C

2 -16.05 ± 0.02 -16.71 ± 0.96
4 -32.09 ± 0.05 -34.58 ± 4.24
6 -48.18 ± 0.11 -50.74 ± 2.15
8 -64.28 ± 0.19 -67.08 ± 2.59

Win95pts

2 -32.27 ± 5.59 -40.60 ± 10.96
4 -57.10 ± 3.85 -125.07 ± 98.46
6 -90.21 ± 13.53 -350.87 ± 368.13
8 -124.78 ± 20.97 -520.60 ± 517.70

Insurance

2 -24.63 ± 2.29 -26.77 ± 4.14
4 -48.85 ± 3.04 -54.05 ± 6.08
6 -74.02 ± 9.14 -83.40 ± 9.83
8 -100.25 ± 7.25 -102.37 ± 12.98

Hailfinder

2 -69.51 ± 2.19 -86.74 ± 8.72
4 -142.31 ± 3.85 -183.56 ± 16.64
6 -210.29 ± 6.16 -260.12 ± 20.88
8 -278.88 ± 9.34 -357.30 ± 30.19

Hepar2

2 -66.54 ± 0.00 -67.28 ± 1.44
4 -134.19 ± 1.85 -136.34 ± 2.64
6 -199.84 ± 0.67 -205.37 ± 5.68
8 -405.12 ± 3.75 -409.87 ± 6.13

best for all a values of k. For Hepar2, OSI and DOSI tie statistically for best when k

is set equal to 2, 4, and 8.

73

Table 4.4: Comparison against MBE and SLS

Network k OSI SLS MBE

Network A

2 -13.64 ± 0.02 -19.40 ± 2.58 -13.64
4 -27.31 ± 0.10 -38.40 ± 4.12 -27.27
6 -40.92 ± 0.03 -59.20 ± 3.69 -40.91
8 -54.56 ± 0.03 -82.01 ± 8.47 -54.55

Network B

2 -17.12 ± 0.07 -24.65 ± 5.47 -16.99
4 -34.62 ± 0.14 -48.90 ± 4.48 -34.37
6 -51.87 ± 0.24 -72.73 ± 8.01 -51.59
8 -69.26 ± 0.32 -93.71 ± 5.15 -68.86

Network C

2 -16.05 ± 0.02 -23.67 ± 4.68 -16.03
4 -32.09 ± 0.05 -50.11 ± 5.89 -32.07
6 -48.18 ± 0.11 -71.88 ± 6.51 -48.10
8 64.28 ± 0.19 -98.24 ± 8.31 -64.14

Win95pts

2 -32.27 ± 5.59 -3529.16 ± 1215.55 -2992.69
4 -57.10 ± 3.85 -8469.61 ± 2217.93 -5991.64
6 -90.21 ± 13.53 -11412.51 ± 1872.39 -8996.11
8 -124.78 ± 20.97 -14708.08 ± 1830.15 -12006.28

Insurance

2 -24.63 ± 2.29 -1004.74 ± 992.53 -39.76
4 -48.85 ± 3.04 -2097.83 ± 1558.87 -83.85
6 -74.02 ± 9.14 -3778.13 ± 1181.34 -125.14
8 -100.25 ± 7.25 -4797.66 ± 1964.59 -170.11

Hailfinder

2 -69.51 ± 2.19 -2121.23 ± 1648.51 -90.44
4 -142.31 ± 3.85 -6175.14± 2845.54 -186.99
6 -210.29 ± 6.16 -9255.36 ± 3385.27 -274.01
8 -278.88 ± 9.34 -10032.40 ± 1965.23 -368.84

Hepar2

2 -66.54 ± 0.00 -88.42 ± 9.07 -72.21
4 -134.19 ± 1.85 -177.58 ± 9.46 -148.68
6 -199.84 ± 0.67 -266.16 ± 9.42 -233.23
8 -405.12 ± 3.75 -460.57 ± 25.72 -472.46

74

Table 4.5: Comparison against modifications of DOSI

Network k DOSI DOSI-Comp DOSI-Comm

Network A

2 -13.15 ± 0.32 -13.25 ± 0.46 -13.14 ± 0.27
4 -26.09 ± 0.39 -27.07 ± 2.35 -26.49 ± 0.51
6 -39.29 ± 0.36 -40.33 ± 1.44 -40.45 ± 1.40
8 -52.81 ± 1.30 -53.96 ± 1.67 -56.17 ± 4.35

Network B

2 -15.96 ± 0.65 -16.27 ± 0.67 -17.41 ± 2.06
4 -33.60 ± 2.02 -33.58 ± 2.87 -33.18 ± 1.56
6 -52.24 ± 2.26 -53.85 ± 5.13 -52.86 ± 4.00
8 -68.62 ± 3.62 -69.36 ± 6.28 -75.20 ± 3.56

Network C

2 -17.33 ± 0.25 -17.23 ± 0.33 -17.83 ± 1.37
4 -34.67 ± 0.62 -36.07 ± 3.76 -34.91 ± 0.85
6 -52.71 ± 0.78 -53.62 ± 2.64 -53.90 ± 1.37
8 69.88 ± 1.20 -71.20 ± 2.67 -74.25 ± 2.53

Win95pts

2 -65.64 ± 13.68 -211.43 ± 469.26 -207.70 ± 471.30
4 -125.68 ± 13.49 -134.46 ± 17.50 -4067.57 ± 614.37
6 -564.42 ± 384.45 -1027.76 ± 1440.54 -6289.36 ± 1197.70
8 -1258.92 ± 367.16 -1395.12 ± 1016.51 -7915.30 ± 1678.76

Insurance

2 -36.20 ± 3.49 -37.13 ± 4.56 -39.07 ± 3.75
4 -70.11 ± 5.83 -82.21 ± 9.90 -91.77 ± 10.10
6 -105.18 ± 14.81 -117.19 ± 14.62 -427.69 ± 371.47
8 -142.77 ± 15.25 -163.98 ± 11.54 -722.26 ± 773.90

Hailfinder

2 -83.50 ± 5.13 -87.98 ± 6.71 -85.27 ± 4.78
4 -159.91 ± 8.63 -242.77 ± 106.83 -157.78 ± 9.44
6 -274.13 ± 15.38 -277.02 ± 23.71 -762.74 ± 662.30
8 -350.56 ± 28.82 -379.61 ± 29.37 -1111.45 ± 1054.07

Hepar2

2 -78.70 ± 0.32 -79.19 ± 0.48 -80.94 ± 1.65
4 -157.60 ± 0.65 -158.91 ± 1.64 -161.76 ± 1.94
6 -233.77 ± 1.67 -236.04 ± 2.36 -252.35 ± 5.98
8 -232.18 ± 2.48 -234.58 ± 4.12 -239.96 ± 5.49

75

Table 4.3 indicates that, for Network A, OSI and DOSI tie with exact inference

when k is set to 2, 4, and 6, and OSI ties with exact inference when k is set to 8. For

Network B, while the results of our algorithms are close to those of exact inference,

both OSI and DOSI are outperformed by exact inference. For Network C, OSI and

DOSI tie with exact inference when k is set to 2, 4, and 6. For all other networks,

both OSI and DOSI outperform MBE and SLS.

4.5 Comparison Against Modifications of DOSI

The results of the comparison between DOSI-Comm and DOSI-Comp are shown

in Table 4.5. For all networks, DOSI performs either equivalently or better than

DOSI-Comp and DOSI-Comm. For Network A, all algorithms tie statistically when

k is set to 2, 4, and 8. For Network B, all algorithms tie statistically when k is

set to 4 and 6 while DOSI and DOSI-Comm tie statistically when k is set to 2 and

8. For Network C, all algorithms tie statistically for best when k is set equal to 2

and 4 while DOSI and DOSI-Comm tie statistically when k is set to 6 and 8. OSI

outperforms all other approximate algorithms when k is set to 8. For Win95pts,

DOSI and DOSI-Comm tie statistically for best for all values of k. For Insurance,

DOSI and DOSI-Comm tie statistically for best when k is set to 2. For Hailfinder,

DOSI and DOSI-Comp tie statistically for best when k is set to 2 and 4 while DOSI

and DOSI-Comm tie statistically for best when k is set to 6. For Hepar2, DOSI and

DOSI-Comm tie statistically for best when k is set equal to 8.

4.6 Comparison of Overlap Structures

The results for our comparison of the various overlap structures is presented in

Table 4.6. For all networks, the Markov blanket architecture performs either equiva-

76

Figure 4.4: Number of Fitness Evaluations

Table 4.6: OSI results for different sub-swarm architectures.

Markov Clique Parents Random
Insurance -11.79 ± 1.37 -12.44 ± 1.63 -12.44 ± 1.53 -13.27 ± 1.77

Win95 -7.54 ± 2.08 -8.64 ± 2.23 -7.51 ± 1.79 -8.96 ± 4.67
Hailfinder -35.64 ± 1.92 -334.49 ± 368.11 -66.64 ± 147.1 -37.35 ± 1.93

Hepar2 -16.37 ± 0.03 -17.77 ± 1.81 -17.49 ± 2 -25.31 ± 3.29

lently or better than the other architectures. For the Insurance network, the Markov

blanket architecture ties statistically with both the Clique and Parents architecture.

For the Win95 network, the Markov blanket architecture ties with the Parents ar-

chitectures. For the Hailfinder network, the Markov blanket architecture ties with

the Parents and Random architectures. For the Hepar2 network, the Markov blanket

architecture outperforms all other architectures.

77

4.7 Discussion

The paired t-tests on the sum of the log likelihoods indicate that both OSI and

DOSI performed better than the other approximate methods for nearly all values of k.

These results show that our algorithms outperform the other methods for all networks

containing more than 15 nodes. This indicates that both OSI and DOSI have an

advantage when used to perform inference on more complex networks. These results

support our hypothesis that OSI and DOSI would outperform competing approaches

for most experiments. Since multiple swarms learn the state assignments for a single

variable, our approach ensures greater exploration of the search space. Through

competition, we ensure that the best variable state assignments found by the swarms

are used in the final k explanations.

The results shown in Table 4.5 indicate that, for all networks, DOSI performs

either equivalently or better than the modified versions of DOSI and for all networks

containing more than 15 nodes DOSI outperformed either one or both of these al-

ternative implementations, again reinforcing the advantage of our approach in more

complex networks. These results support our the hypothesis, that removing the com-

petition or communication mechanism from DOSI would cause a drop in performance

for some of the experiments.

The results in Table 4.6 indicate that, for all networks the Markov blanket ar-

chitecture performs either equivalently or better than the other architectures. These

results support the hypothesis that the performance of OSI is tied to the structure

of the sub-swarms, and that the conditional dependencies between variables play an

important role when selecting an optimal overlap structure. Specifically, these results

indicate that the increased performance obtained by OSI and DOSI is due to the

representation of each swarm being based on the Markov blankets and the corre-

78

sponding communication and competition that occurs between overlapping swarms.

Recall that each variable Xi is conditionally independent of all other variables in

the network given its Markov blanket. By assigning each node’s swarm to a Markov

blanket we ensure that the swarm learns the state assignments for all variables upon

which that node may depend.

The results in Table 4.2 and 4.4 also indicate that the OSI algorithm outperforms

DOSI for many experiments. We believe that this is due to the communication delay

that results from DOSI being truly distributed. Because the DOSI algorithm requires

several iterations of the communication procedure for the swarms to reach consensus

with respect to the k most probable state assignments for each variable, the fitness

evaluations of a particle may be inaccurate prior to reaching consensus. If consen-

sus has not been reached, then some swarms will not have received updated state

assignments from swarms outside of its Markov blanket, so the fitness evaluations

performed in this swarm will rely on an outdated set of state assignments.

While OSI and DOSI appear to outperform the other methods in terms of the log

likelihoods of solutions found, these algorithms require many more fitness evaluations

than the other approaches. Figure 4.4 indicates that, while the number of nodes

in the network has little effect on the number of fitness evaluations required by the

competing algorithms, the number of fitness evaluations required by the OSI and

DOSI algorithms is higher for networks with a large number of nodes. This is because

our algorithms create a separate swarm for each of the nodes in the network, causing

the number of swarms and the number of fitness evaluations to increase with the

number of nodes.

79

CHAPTER 5

PARTIAL ABDUCTIVE INFERENCE IN BAYESIAN NETWORKS

While the goal of full abductive inference is to find the most probable states for

all variables in the network, the goal of partial abductive inference is to find the most

probable states for a subset of the variables in the network. This kind of inference is

useful when only a small number of variables are of interest. Unfortunately, partial

abductive inference is an even more difficult problem than full abductive inference,

since inference must be performed to even evaluate a candidate solution to the prob-

lem.

To demonstrate the validity of applying OSI to problem of partial abductive infer-

ence we developed both distributed and centralized OSI-based algorithms for partial

abductive inference and we compared our algorithms to existing approaches.

5.1 Partial Abductive Inference via OSI

Like the full abductive inference algorithm, our approach to partial abductive

inference uses the DMVPSO algorithm [44] and is based on the OSI methodologies

described in [15] and [53]. With this method, we assign a swarm to each node in the

explanation set and a swarm to each node in the explanation node’s Markov blanket.

Similar to full abductive inference, a global set of state assignments A is main-

tained across all swarms and is used for inter-swarm communication. Each particle’s

object parameters contain only state assignments for variables in the explanation set.

Thus each particle represents a partial state assignment for the explanation set. The

quality of each state assignment xE for the explanation set is determined by the log

80

likelihood of that assignment given the evidence xO as shown below:

L(xE) = log(P (xE|xO)) = log

(∑
xR

P (xE, xR|xO)

)

This calculation can be computationally expensive, since it requires inference to be

performed over the network. Because the problem of performing inference is NP-

Hard, we use the likelihood weighting algorithm to evaluate the quality of a state

assignment [84]. We chose likelihood weighting because its parameters can be set

such that it provides a bound on error with some probability, but other inference

methods could be used here, including exact methods such as Variable Elimination.

In likelihood weighting, each sample s generated is associated with a weight value

ws, which is set to the product of the probability of the evidence variables given the

states assigned to their parents in the sample:

ws =
∏
x∈xO

P (x|Pa(x))

Our algorithm begins by generating m samples using likelihood weighting given

xO as evidence. These samples are used to compute the approximate log likelihood

(denoted La):

La(xE) = log

(∑
s∈M

W (xE, s)

ws

)

where M is the set of samples generated by likelihood weighting, ws is the weight of

sample s, and W (Bp, s) is defined as,

W (xE, s) =

 ws xE ∈ s

0 otherwise

81

As with OSI for full abductive inference, fitness evaluation requires that a set of

state assignments Bp = {β1, . . . , βk} be constructed using the state of the particle p

and the set of global state assignments A. The process of constructing Bp is identical

to the process used in OSI for full abductive inference. We use Bp to calculate the

fitness of each particle,

f(p) =
∑
βi∈Bp

La(βi)

Thus the fitness of particle p is the sum of the approximate log likelihoods of the

assignments in A when the value assignments encoded in Bp are substituted into A.

After each iteration of the algorithm, swarms that share a node in the network

compete to determine which state is assigned to the node in each assignment αm ∈ A.

This process is the same as for abductive inference and is shown in Algorithm 4.2.

5.1.1 Computational Complexity

We first describe the computational complexity of OSI and show which step has

the most computational burden in the algorithm. To do so, we break down each step

in the algorithm.

• Fitness Evaluation– First, we determine the complexity of evaluating the

fitness of an individual particle. Let F be the computational complexity specific

to the fitness function used to evaluate each particle. During fitness evaluation

we compute the log likelihood for k candidate explanations, where giving a total

fitness function complexity of O(kF).

• Optimization Algorithm– Next, we determine the complexity of the under-

lying PSO algorithm. We assume that the algorithm has q = |P | individuals,

where P is the set of all the individuals in the population. During each iteration,

82

an individual, learning the state assignment for n variables in the worst case, has

its position and fitness updated. These two steps are done sequentially, with

updating the position having a complexity of O(n) and while evaluating the

fitness is O(kF). This is done q times, once for for each individual; therefore,

assuming the algorithm performs e iterations, the total complexity is O(kFeq).

To complete our analysis of the complexity of OSI, we next show the complexity

of the two main parts of OSI: solve and competition

• Solve– The solve step in OSI involves iterating over the set of subpopula-

tions S and having each one optimize over its variables. Using the complexity

from above for optimization algorithms, each subpopulation has a complexity

of O(kFeq). Since this is done s = |S| times, the total complexity of this step

is O(skFeq).

• Competition– In OSI, the competition step is used to find the optimal set of

values for the variables in X. This is done by iterating over all the variables

and then comparing the fitness of the competing individuals. Note that there

are n variables. In the worst case, all swarms will overlap over every variable,

resulting in n competing subpopulations, while each fitness evaluation has a

complexity of O(kF). Therefore, the total complexity of the competition step

in OSI is O(n2kF).

OSI iterates over the solve and competition steps m times. Combining the steps

above and multiplying times m gives a complexity of

O(OSI) = O(m(skFeq + n2kF))

83

= O(mskFeq + n2kF)

In the algorithm presented above, a swarm is associated with each node in the

network, therefore s = n. Substituting this into the above equation, we now have

O(OSI) = O(mskFeq + n2kF)

Based on these results, we can see that OSI will almost always be more computa-

tionally complex due to the n2 factor caused by the competition phase. However, in

practice, the worst case O(n2kF) complexity of the competition phase will be rare,

and will only occur when all variables in the network share a Markov blanket.

5.2 Partial Abductive Inference via DOSI

In this section we present our modification of the OSI algorithm for partial ab-

ductive inference that eliminates the need for a set of global state assignments to

be maintained across all swarms. As with distributed full abductive inference, each

swarm s maintains a set of the most probable personal state assignments found by

that swarm, denoted as As. The most probable assignments learned by each swarm

are communicated to the other swarms and inserted into the swarm’s personal state

assignment through a periodic communication mechanism. At each iteration of the

algorithm, the swarm associated with a given node n will hold a competition between

all swarms that share n to determine the most probable state assignment for n.

The fitness calculation and the calculation of Bs,p for a given swarm s and particle

p is identical to the calculation of Bs,p used in DOSI for full abductive inference. We

84

use Bs,p to calculate the fitness of each particle as follows

f(p) =
∑

βi∈Bs,p

La(βi)

Thus the fitness of particle p in a swarm s is the sum of the approximate log likelihoods

of the assignments in αs when the state assignments encoded in p are substituted into

αs.

The ShareStates method in this approach is identical to the ShareStates method

described for full abductive inference via DOSI (Algorithm 4.6) except that only state

assignments for nodes within the explanation set are shared. Similarly the compe-

tition between nodes remains the same as the competition used for full abductive

inference (Algorithm 4.2) except that swarms only compete over nodes within the

explanation set. These modifications, combined with the use of likelihood weighting

for fitness evaluation, are the primary differences between this approach and full

abductive inference via DOSI.

5.3 Experimental Design

We compare partial abductive inference via OSI and DOSI against four other

partial abductive inference algorithms:

• MBE: Mini bucket elimination algorithm proposed in [59].

• DMVPSO: Discrete multi-valued PSO algorithm proposed in [69].

• GA-Part: Genetic algorithm for partial abductive inference proposed in [67].

• SA: Simulated annealing algorithm proposed in [62].

85

For these experiments, we modified DMVPSO proposed in [69] so that it can be

used to perform partial abductive inference. As with OSI, our modified DMVPSO

uses likelihood weighting to approximate the log likelihood for fitness evaluation. To

compare these algorithms, we used the same networks as described in Figure 4.3 and

Table 4.1. Nodes were randomly selected for inclusion in the explanation set with a

25% probability.

For our experiments we ran each algorithm on each of the networks. We evaluated

all algorithms with k set to 2, 4, 6, and 8 respectively. For all of the algorithms, initial

populations were generated using a forward sampling process. In every experiment,

the number of particles in each swarm was set to 20. For the genetic algorithms, the

population size was set to 20. We ran all algorithms until convergence. We averaged

the log likelihoods of the solutions found by the various algorithms over 10 runs and

compared the solutions using a paired t-test to evaluate significance. For the t-test

the confidence interval was 95%. We also measured the number of fitness evalua-

tions performed by each of the algorithms to compare the computational complexity

of each approach. We hypothesize that OSI and DOSI will outperform competing

approaches in terms of log-likelihood for the more complex networks. Additionally,

we hypothesize that the performance of DOSI will not significantly differ from that

of OSI for most networks.

For networks A, B, and C, the MBE algorithm was used to compute the exact

solution for the partial abductive inference problem. For all other networks MBE

was used to find an approximate solution with parameters m and i set to 2 and 3

respectively.

86

5.4 Results

In Tables 5.1 and 5.2 we show the average sum of the log likelihoods for each al-

gorithm and each value of k. Bold values indicate that the corresponding algorithm’s

performance is statistically significantly better than the other algorithms for the net-

work given the corresponding value for k. Values for algorithms that tie statistically

for best are also bolded.

For all networks other than Network A, OSI and DOSI tie statistically with or

outperform MBE. For Networks A, B, and C, both OSI and DOSI find the optimal

solution for all values of k with one exception. In Network A, when k is set to 2

neither OSI or DOSI find the exact solution.

For Network A, OSI, DOSI, and DMVPSO tie statistically when k is set to 2.

Otherwise, OSI and DOSI have the best performance. For Network B, OSI, DMVP-

SO, and DOSI tie statistically for best for all values of k. For Network C, OSI,

DMVPSO, and DOSI tie statistically when k is set to 4 while OSI and DOSI have

the best performance otherwise. For Win95pts, and Insurance both DOSI and OSI

have the best performance for all values of k. For Hailfinder, OSI, DMVPSO, and

DOSI tie statistically for best for all values of k. For Hepar2, OSI and DOSI tie

statistically when k is set to 2, 6, and 8. Otherwise, OSI has the best performance.

In Figure 5.1 we compare the number of fitness evaluations required by each of

the algorithms with respect to the number of nodes in the network. We find a very

similar performance trend to Figure 4.4 for similar reasons.

87

Table 5.1: Comparison with other approaches

Network k OSI GA-Part DMVPSO SA MBE

Network A

2 -3.20 ± 0.00 -7.70 ± 1.92 -3.20 ± 0.00 -7.70 ± 2.58 -2.91
4 -8.39 ± 0.00 -14.59 ± 1.82 -8.92 ± 0.72 -11.86 ± 3.59 -8.39
6 -13.95 ± 0.00 -21.89 ± 2.17 -14.62 ± 0.84 -21.24 ± 2.59 -13.95
8 -23.57 ± 0.00 -24.95 ± 1.49 -23.57 ± 0.00 -25.01 ± 1.44 -23.57

Network B

2 -2.87 ± 0.00 -4.37 ± 0.65 -2.87 ± 0.00 -4.84 ± 0.68 -2.87
4 -7.55 ± 0.00 -9.03 ± 0.94 -7.55 ± 0.00 -9.10 ± 1.30 -7.55
6 -12.40 ± 0.00 -14.33± 0.54 -12.40 ± 0.00 -14.38 ± 0.76 -12.40
8 -18.22 ± 0.00 -18.83 ± 0.60 -18.22 ± 0.00 -18.85 ± 0.43 -18.22

Network C

2 -5.17 ± 0.00 -7.26 ± 1.79 -5.17 ± 6.81 -8.01 ± 2.15 -5.17
4 -11.47 ± 0.00 -15.77 ± 4.33 -11.47 ± 0.00 -18.51 ± 4.54 -11.47
6 -18.20 ± 0.00 -24.40 ± 2.83 -18.41 ± 0.26 -37.80 ± 11.32 -18.20
8 -25.15 ± 0.00 -33.29 ± 3.74 -26.32 ± 1.36 -58.56 ± 14.54 -25.15

Win95pts

2 -5.29 ± 0.00 -9.96 ± 2.98 -5.62 ± 0.45 -601.36 ± 310.82 -753.65
4 -12.45 ± 0.00 -20.23 ± 2.47 -13.26 ± 0.97 -1943.27 ± 381.27 -2952.21
6 -20.48 ± 0.00 -32.14 ± 3.82 -21.89 ± 1.58 -3135.72 ± 468.31 -2961.54
8 -28.69 ± 0.00 -43.14 ± 5.16 -32.22 ± 3.32 -4403.11 ± 886.28 -5904.43

Insurance

2 -6.47 ± 1.24 -1045.61 ± 380.91 -9.86 ± 2.19 -1341.29 ± 310.79 -22.52
4 -13.05 ± 0.52 -2313.46 ± 811.42 -28.85 ± 17.83 -2535.85 ± 380.35 -42.75
6 -20.29 ± 0.35 -3285.61 ± 864.35 -574.56 ± 760.88 -4318.95 ± 311.18 -62.97
8 -27.88 ± 0.49 -3963.88 ± 855.26 -298.07 ± 346.66 -5659.35 ± 516.60 -87.79

Hailfinder

2 -14.49 ± 0.52 -607.45 ± 574.35 -14.65 ± 0.76 -972.83 ± 353.91 -1484.99
4 -31.32 ± 2.39 -929.10 ± 821.42 -31.97 ± 4.24 -2464.16 ± 352.25 -2969.98
6 -49.79 ± 6.23 -1456.29 ± 417.35 -47.66 ± 4.22 -4101.11 ± 381.97 -4454.96
8 -72.93 ± 4.33 -1694.31 ± 968.11 -71.91 ± 3.14 -5441.21 ± 354.90 -5939.95

Hepar2

2 -8.12 ± 0.42 -20.68 ± 1.57 -9.47 ± 0.93 -609.28 ± 308.44 -25.03
4 -17.44 ± 0.76 -39.46 ± 4.09 -19.60 ± 2.01 -157.19 ± 11.44 -49.81
6 -27.49 ± 1.03 -57.81 ± 5.53 -32.77 ± 2.07 -2112.15 ± 1336.86 -73.46
8 -36.87 ± 1.34 -80.85 ± 7.33 -42.97 ± 2.18 -3754.73 ± 1094.14 -100.14

5.5 Discussion

The paired t-tests on the sum of the probabilities indicate that OSI and DOSI

performed either equal to or better than the other methods for most values of k on

nearly all networks. While the OSI approach does not appear to have an advantage

over DMVPSO when used on Hailfinder and Network B, we can see that it outper-

formed the other methods on all other networks for most values of k. We believe

that our algorithms were not able to outperform DMVPSO approaches when used on

Hailfinder because this network has many nodes with conditional probability distri-

butions that are essentially uniform. This may have allowed DMVPSO to perform

88

Table 5.2: Comparison with DOSI

Network k OSI DOSI

Network A

2 -3.20 ± 0.00 -3.20 ± 0.00
4 -8.39 ± 0.00 -8.39 ± 0.00
6 -13.95 ± 0.00 -13.95 ± 0.00
8 -23.57 ± 0.00 -23.57 ± 0.00

Network B

2 -2.87 ± 0.00 -2.87 ± 0.00
4 -7.55 ± 0.00 -7.55 ± 0.00
6 -12.40 ± 0.00 -12.40 ± 0.00
8 -18.22 ± 0.00 -18.22 ± 0.00

Network C

2 -5.17 ± 0.00 -5.17 ± 0.00
4 -11.47 ± 0.00 -11.47 ± 0.00
6 -18.20 ± 0.00 -18.20 ± 0.00
8 -25.15 ± 0.00 -25.15 ± 0.00

Win95pts

2 -5.29 ± 0.00 -5.29 ± 0.00
4 -12.45 ± 0.00 -12.45 ± 0.00
6 -20.48 ± 0.00 -20.48 ± 0.00
8 -28.69 ± 0.00 -28.69 ± 0.00

Insurance

2 -6.47 ± 1.24 -6.68 ± 1.22
4 -13.05 ± 0.52 -13.60 ± 1.16
6 -20.29 ± 0.35 -20.59 ± 0.92
8 -27.88 ± 0.49 -27.84 ± 0.53

Hailfinder

2 -14.49 ± 0.52 -14.95 ± 1.03
4 -31.32 ± 2.39 -31.31 ± 1.70
6 -49.79 ± 6.23 -49.80 ± 3.30
8 -72.93 ± 4.33 -72.03 ± 4.24

Hepar2

2 -8.12 ± 0.42 -8.48 ± 0.58
4 -17.44 ± 0.76 -19.80 ± 0.85
6 -27.49 ± 1.03 -28.15 ± 1.41
8 -36.87 ± 1.34 -38.42 ± 1.49

well given that, for many of the nodes, the states chosen did not affect the solution

quality. For future experiments, it may be worthwhile to control for this by ensuring

that such nodes are not included in the explanation set.

Consistent with our lesion studies on full abductive inference, we believe that the

increased performance of OSI and DOSI is due to each swarm being associated with

the Markov blanket of a single node and the resulting communication and competition

between overlapping swarms, as in the full abductive inference case. This is in contrast

to DMVPSO, where a single swarm learns the state assignment for all variables. This

can lead to a more local exploration around the solution found by the swarm’s global

89

Figure 5.1: Number of Fitness Evaluations

best. Also, because each swarm optimizes over the all variables, there is an increased

possibility of neglecting a potentially good solution for a specific component of the

solution vector for the global best particle.

We also note that, MBE performed poorly on many of the larger networks when

compared to OSI, DOSI, and DMVPSO. This is likely due to the fact that MBE be-

comes a greedy approximation for abductive inference when the factor maximization

is performed over the smaller-sized mini-buckets rather than the complete buckets

used for exact inference. Such a greedy approach does not provide the necessary

exploration needed to find good state assignments for these larger networks, when

compared to the swarm based algorithms.

DOSI was found to outperform all approaches not based on OSI, and DOSI tied

statistically with OSI for most networks and values for k. This validates our hypoth-

esis that the performance of DOSI would not significantly differ from that of OSI for

most networks. This result indicates that DOSI provides an effective distributed al-

90

ternative to traditional OSI for the problem of partial abductive inference. While OSI

and DOSI appear to outperform the other methods in terms of the log likelihood of

solutions found, these methods require many more fitness evaluations than the other

approaches. However, the correlation between the number of nodes and number of

fitness evaluations is not as strong in the case of partial abductive inference since the

number of required swarms is tied to the size of the explanation set rather than the

number of nodes in the network.

91

CHAPTER 6

PARAMETER ESTIMATION

In this chapter, we explore the problem of learning the parameters for Bayesian

networks with latent variables. We describe an OSI algorithm for latent variable

parameter estimation in Bayesian networks. To evaluate the improvement provided by

OSI, we present a traditional single-swarm approach to parameter estimation and then

compare our multi-swarm approach to single-swarm PSO and several other existing

approaches to parameter estimation.

In Bayesian networks, parameter estimation is the problem of discovering con-

ditional probabilities of random variables when data for these random variables is

missing or incomplete. Traditionally, this problem has been approached using Markov

chain Monte-Carlo techniques or expectation maximization. We describe two algo-

rithms for parameter estimation in Bayesian networks using PSO. The first uses a

traditional single swarm approach to solve the problem, while the second uses a multi-

population variant of PSO based on OSI.

6.1 Single-Swarm Particle Swarm Optimization

To our knowledge, PSO has not been applied to parameter estimation in Bayesian

networks; therefore we have developed both a single swarm and an OSI-based ap-

proach to the problem. This allows us to compare these two methods in terms of

the quality of learned parameters. For the single swarm approach, each particle’s

position vector x is a d-dimensional vector of real numbers where x ∈ [0, 1]d, d is the

number of unknown parameters in the network, and initially each component of xi

92

is drawn from a uniform probability distribution U(0, 1). Each value corresponds to

a parameter in the conditional distribution of a missing variable, or the child of a

missing variable and the size if this vector is equal to the number of parameters to

be estimated.

For some variable A in the network, let xa|Pa(A) be the value in a particle’s position

vector that encodes the likelihood of A = a given some state assignment to the parents

of A, Pa(A). During fitness evaluation, xa|Pa(A) is normalized to compute the particle’s

estimate of the probability P (a|Pa(A)) as follows:

P (a|Pa(A)) =
xa|Pa(A)∑

a′∈A xa′|Pa(A)

The parameters for each variable being learned can be computed from the particle’s

position in this way.

If a variable is present in the data and none of its parents are latent variables, we

estimate its parameters directly based on frequency. Given some data-set D we can

estimate any joint probability over the observed variables as

P (x1, x2, ..., xn) =

∑
d∈D 1d(x1, x2, ..., xn) + α

|D|+ αz

where

z =
n∏
i=1

|V al(Xi)|

In the above equations, 1d is an indicator function for a data point d, V al(X) is the

set of possible values for variable X, and α > 0 is a smoothing parameter. Using the

above joint probability estimate, we can compute any conditional probability over a

93

subset of the observed variables as follows:

P (x|pa(x)) =
P (x,Pa(x))

P (Pa(x))

Because these probabilities can be computed directly, PSO will not optimize the

parameters for observed variables with no latent parents.

Once the parameters have been computed, each particle’s fitness is evaluated.

Since we are learning parameters for networks containing latent variables, the states

of these variables will be missing from the data, and the latent variables must be

marginalized out in order compute the log likelihood of the data given the network.

To compute the fitness of a set of parameters, we use variable elimination to calculate

the log likelihood of the data D given the parameters Θ.

L(D|Θ) = logP (D|Θ). (6.1)

We chose variable elimination instead of an approximate sampling algorithm, because

we found that the probability of the data given the model was always very close to

zero and an extremely large number of samples would be required to obtain non-zero

probabilities, thereby offsetting any advantage that would be gained from using an

approximate sampling algorithm.

Since performing variable elimination can be computationally expensive, it may

be necessary to sample from the training data to obtain a smaller dataset S. The log

likelihood of this reduced data set can then be used as the fitness function. Alter-

natively, an approximate inference method such as importance sampling can also be

used. After computing the fitness for a particle, its position and velocity are updated

as in traditional PSO.

94

SC

A B

L

C D

(a) Nodes learned by SC

SD

A B

L

C D

(b) Nodes learned by SD

SL

A B

L

C D

(c) Nodes learned by SL

Figure 6.1: Swarm assignment example

6.2 Overlapping Swarm Intelligence

We have developed a multi-swarm approach to parameter estimation based on

OSI. In this approach, a swarm is assigned to each latent variable, and each child of a

latent variable. Each variable’s corresponding swarm learns the parameters associated

with that variable’s Markov blanket using PSO. This representation is advantageous

since every node in the network is conditionally independent of all other nodes when

conditioned on its Markov blanket.

Figure 6.1 shows an example network with a single hidden variable L where the

nodes whose parameters are learned by a particular swarm are indicated by a dashed

rectangle. For this network, the algorithm maintains three swarms: one for the

hidden variable L, and one for each of its children, C and D. Figure 6.1(a) shows

that parameters will be learned by swarm SC , which covers nodes L and C; 6.1(b)

shows that parameters will be learned by swarm SD, which covers nodes L and D;

and Figure 6.1(c) shows that parameters will be learned by swarm SL, which in this

95

case covers the nodes in SC ∪ SD. If C and D had children, then SC and SD would

have included those children while SL would not.

The pseudocode for our approach is shown in Algorithm 6.1. The algorithm

is split into two main loops that are executed repeatedly until some termination

criterion is met. The first iterates over each of the swarms, evaluating the fitness of

the corresponding particles, while the second holds a competition between the best

particles in the swarms to update a global set of network parameters. This set of

initially random global parameters is used for inter-swarm communication.

Each particle’s position x is defined by a d-dimensional vector of continuous values

where x ∈ [0, 1]d, where d is the number of parameters to be learned by the particle’s

swarm. Each position value encodes a likelihood value for the probability distribution

of a node in the swarm’s Markov blanket, thus each particle encodes the parameter

estimates for part of the network. As in the single-swarm PSO algorithm, the log-

likelihood of the data given the parameters is used to evaluate the fitness of each

particle.

For some swarm s, let MB(s) be the set of variables in the Markov blanket associ-

ated with s. Let Θg = {θg,v1 , . . . , θg,vn} be the set of CPTs for all variables v1, . . . , vn in

the network. Let Θp = {θp,v|v ∈ MB(s)} be the set of CPTs encoded by the position

vector of particle p in swarm s. A new full parameter set Θg,p can be constructed by

inserting Θp into Θg as follows:

Θg,p = Θp ∪Θg\{θg,v|v ∈ MB(s)}

We use the log likelihood of the data given the parameters Θg,p as the fitness for

the particle p.

f(p) = L(D|Θg,p)

96

Algorithm 6.2 Generate Parameters

Procedure Get-Params(
G // A Bayesian network structure
x // particle position vector
Θg // set of global parameter estimates

)
1: Let Θg,p be the set of personal parameters
2: Estimate parameters for observed variables and add them to Θg,p

3: for position value xa|Pa(A) ∈ x do
4: P (a|Pa(A)) =

xa|Pa(A)∑
a′∈A xa′|Pa(A)

5: Add P (a|Pa(A)) to Θg,p

6: end for
7: return Θg,p

This function defines the fitness of particle p as the log likelihoods of the data given

the global parameters Θg, when the parameter estimates encoded in p are substituted

into Θg.

When multiple swarms learn the parameters for a given node, (such as C and D in

Figure 6.1(a)) these swarms are said to overlap. After each iteration of the algorithm,

overlapping swarms compete to determine which parameter estimates to include for

each entry in the CPTs. This competition is held between the parameter estimates

encoded in the personal best particles of each swarm. The parameters resulting in the

highest log-likelihood are selected for inclusion in the global parameter set. Thus in

the example presented in Figure 6.1(c), the swarms associated with C and D would

compete to determine which parameter values are assigned to the node L.

97

Algorithm 6.1 Overlapping Swarm Intelligence for Parameter Estimation

Procedure OSI-PE(
G // A Bayesian network structure
D // training data
V // set of variables with missing parameters

)
1: Randomly initialize set of global parameters Θg

2: Initialize particles in each swarm
3: repeat
4: for each swarm s do
5: for each particle, p ∈ s do
6: Θg,p ← Get-Params(G,xp,Θg)
7: Calculate particle fitness f(p)
8: if f(p) > p’s personal best fitness then
9: Update p’s personal best position and fitness
10: end if
11: if f(p) > the global best fitness then
12: Update global best position and fitness for s
13: end if
14: Update p’s velocity and position
15: end for
16: end for
17: for each incomplete variable V ∈ V do
18: Let the set of swarms S = {s|V ∈ MB(s)}
19: for each parameter z ∈ θg,x do
20: z ← Compete(S, z)
21: end for
22: end for
23: until termination criterion is met
24: return Θg

98

6.2.1 Computational Complexity

Here we describe the computational complexity of OSI for parameter estimation

and show which step has the most computational burden in the algorithm. To do

so, we break down each step in the algorithm. We refer to the pseudo code shown in

Algorithm 6.1.

• Fitness Evaluation– First, we determine the complexity of evaluating the

fitness of an individual particle. Let p = h × |θmax| be the total number of

parameters to be learned, in the worst case, where h is the number of factors

in the network, and θmax factor with the largest number of parameters. During

fitness evaluation we compute the log likelihood of the data given the model,

which requires performing variable elimination d time, where d = |D|. Since,

variable elimination has a time complexity of O(p) [12], the fitness function

complexity is O(dp).

• Optimization Algorithm– Next, we determine the complexity of the under-

lying PSO algorithm. We assume that the algorithm has q = |P | individuals,

where P is the set of all the individuals in the population. During each iteration,

an individual, optimizing p parameters, in the worst case, has its position and

fitness updated. These two steps are done sequentially, with updating the posi-

tion having a complexity of O(p) and while evaluating the fitness is O(dp). This

is done q times, once for for each individual; therefore, assuming the algorithm

performs e iterations, the total complexity is O(dpeq).

To complete our analysis of the complexity of OSI, we next show the complexity

of the two main parts of OSI: solve and competition

99

• Solve– The solve step in OSI involves iterating over the set of subpopula-

tions S and having each one optimize over its variables. Using the complexity

from above for optimization algorithms, each subpopulation has a complexity

of O(dpeq). Since this is done s = |S| times, the total complexity of this step

is O(sdpeq).

• Competition– In OSI, the competition step is used to find the optimal set

of values for the global parameters. This is done by iterating over all the

parameters and then comparing the fitness of the competing individuals. Note

that there are p parameters. In the worst case, all swarms will overlap over every

variable, resulting in s competing subpopulations, while each fitness evaluation

has a complexity of O(dp). Therefore, the total complexity of the competition

step in OSI is O(sdp2).

OSI iterates over the solve and competition steps m times. Combining the steps

above and multiplying times m gives a complexity of

O(OSI) = O(m(sdpeq + sdp2))

= O(msdpeq +msdp2)

Based on these results, we can see that OSI will almost always be more computa-

tionally complex due to the p2 factor caused by the competition phase. However, the

parameters m, e, and q in OSI can be set such that it becomes competitive with PSO.

6.3 Experimental Design

To test the performance of our algorithms, several experiments were performed

using data generated from networks in the Bayesian Network Repository [79]. We

compared our algorithms to four competing approaches to parameter estimation: EM,

100

Monte-Carlo EM (MCEM), Genetic Algorithm EM (GAEM), and Age-Layered EM

(ALEM) [75, 12, 76, 70].

For these experiments, we chose networks with gradually increasing numbers of

parameters to evaluate the effect of network complexity on performance. For each

network, we used forward sampling to generate 2000 data points and then removed

the data for some of the nodes, thereby simulating the presence of latent variables.

To evaluate the effect of latent variable structure on performance, we repeated

the above sampling procedure for each network using two latent variable sets. The

first set of data was generated using a latent variable architecture with a number

overlapping Markov blankets, while the second was generated using latent variables

with fewer overlapping Markov blankets. We manually chose latent variables that had

at least one parent and one child, and that met the overlap criteria described above.

A cross-reference to the network information and latent variable configurations for

the datasets is shown in Table 6.1. Datasets annotated with “O” were generated

from networks with a greater number of overlapping latent variable structures, when

compared to the datasets annotated with “I”. We estimate the amount of overlap as

the average number of nodes learned by each swarm:

Overlap =
1

|S|
∑
s∈S

N(s)

where N(s) is the number of nodes learned by swarm s. Note that since we are

calculating Overlap based only on the swarms, this measure will differ on the same

network depending on which variables are identified as being latent. We found that

all of the networks with a greater number of overlapping latent variable structures

had Overlap ≥ 3.

101

Table 6.1: Network Statistics

Network Params Nodes Label Latent Variables Overlap

Sachs 178 11
O pka, raf, erk 3.57
I pip3, raf, erk 2.33

Child 230 20
O lungparench, hypdistrib, hypoxiaino2, chestxray 3.00
I lvh, hypdistrib, sick, co2 2.11

Alarm 509 37
O ventlung, intubation, sao2, catechol 3.20
I co, ventalv, lvedvolume, venttube 2.64

Win95 574 76
O ntgrbld, lclgrbld, dslclok, appbata, dsntok 3.89
I ttok, psgraphic, cmpltpgprntd, appdtgntm, dslclok 2.33

Insurance 984 27
O carvalue, thiscarcost, othercarcost, vehicleyear 3.67
I thiscarcost, seniortrain, drivquality, cushioning 2.75

Hepar2 1453 70
O obesity, steatosis, rhepatitis, hepatomegaly 3.89
I obesity, joints, encephalopathy, injections 2.40

For our algorithm, six particles were assigned to each sub-swarm. During prelim-

inary testing, we found that assigning more than six particles to each swarm slowed

the algorithm while providing little benefit to performance. For the other population

based approaches, the total number of individuals was six times the number of incom-

plete nodes to ensure that all population based algorithms had the same total number

of individuals. For both swarm-based algorithms φ1 and φ2 were set to 1.49618, while

ω was set to 0.7298. Eberhart and Shi empirically determined that these are good

parameter choices for ω, φ1, and φ2 [82].

To evaluate the effect of sampling from the dataset during fitness evaluation, we

compared two versions of OSI. In the first, the entire training set was used during

fitness evaluation, while the second version of OSI evaluated the parameters using

a subset of the training data, containing one third of the original data points that

were sampled at random during each fitness calculation. The data was re-sampled

during each fitness evaluation to ensure that all data-points in the training data would

likely be used to evaluate particle fitness at some point in algorithm. We denote the

sampling based OSI algorithm as OSI-S.

102

To evaluate the performance of these algorithms, each data set was divided into

training and testing data using a 5 × 2 cross-validation procedure. We chose 5 × 2

cross-validation instead of 10 fold cross-validation because of the faster execution

of the former. The log likelihoods for the best parameters found in each run were

averaged over the runs for each algorithm. We compared the average log likelihoods

of the algorithms using a paired t-test with a confidence interval of 95% to evaluate

statistical significance. We hypothesize that, OSI will outperform single-swarm PSO

for most of the networks, and PSO will never outperform OSI. We also hypothesize

that, performing fitness evaluation relative to a sampled subset of the data will not

have a significant impact on parameter quality for most networks.

6.4 Results

Table 6.2 shows the average log likelihoods for each algorithm and network con-

figuration. Bold values indicate that the corresponding algorithm’s performance is

statistically significantly better than the competing algorithms. If two algorithms

tied on the significance testing, both values are bolded.

On the networks with greater overlap, both OSI algorithms were statistically sig-

nificantly better than all the other algorithms. OSI performed the best on Child-O,

Alarm-O, Win95-O, and Hepar2-O networks while OSI-S did better on the Sachs-O

and Insurance-O networks. MCEM was the worst performing algorithm on the Sachs-

O and Hepar2-O networks. On the Child-O, Alarm-O, and Insurance-O, PSO was

the worst performing algorithm while GAEM was the worst on the Win95-O network.

Neither MCEM or GAEM outperform traditional EM on any of these networks.

On the networks with less overlap, OSI outperformed all other algorithms other

than OSI-S. However, while OSI and OSI-S were statistically significantly better

103

Table 6.2: Comparison against other approaches

Network Label EM MCEM GAEM ALEM PSO OSI OSI-S

Sachs
O -5700.67 -7049.28 -6664.70 -5602.99 -6804.89 -854.82 -834.18
I -5168.45 -6515.06 -5946.70 -5173.73 -5979.34 -3110.52 -3545.88

Child
O -10598.31 -11706.62 -11477.23 -10519.32 -11751.61 -3534.98 -3574.44
I -10966.85 -11263.68 -11250.29 -10715.44 -11342.20 -5118.27 -5499.05

Alarm
O -11053.01 -13172.76 -13043.30 -10572.05 -13365.95 -4797.21 -4811.59
I -11037.85 -13585.07 -13541.31 -10749.36 -13995.45 -4396.54 -4761.65

Win95
O -8951.64 -9387.82 -9505.28 -8786.31 -5542.32 -5194.31 -5814.35
I -9294.90 -9792.64 -9861.66 -9081.66 -8630.77 -5357.83 -5490.31

Insurance
O -12316.01 -13774.30 -14577.78 -12209.57 -15622.23 -7575.05 -7555.93
I -12554.39 -14234.46 -14014.89 -12375.49 -15504.62 -8942.22 -8855.79

Hepar2
O -33329.08 -34504.95 -33970.11 -32704.60 -34105.81 -19213.89 -19337.85
I -31249.45 -31214.12 -31261.57 -31195.40 -31006.87 -26198.50 -26719.78

than all the other algorithms on all networks, on the Alarm-I network, OSI was also

statistically significantly than OSI-S. MCEM was the worst performing algorithm

on the Sachs-I network while PSO performed the worst on the Child-I, Alarm-I,

and Insurance-I network. For the Win95-I and Hepar-I networks, GAEM was the

worst performing algorithm. EM was only outperformed by MCEM on the Hepar2-I

network. On all other networks, EM outperformed MCEM and GAEM.

Finally, we observed that for three of the six networks, the gap between EM and

OSI is much larger when the Markov blankets of the latent variables have greater

overlap. Additionally, the performance of the OSI algorithms is worse when there

was less overlap over the Markov blankets.

6.5 Discussion

The paired t-tests on the log likelihoods indicate that OSI and OSI-S perform

better than the competing methods for all generated datasets. While PSO has

consistently worse log likelihood than EM, OSI outperforms both EM and PSO on

all datasets. Although ALEM managed to outperform traditional EM for most of

104

the data-sets, the improvement was small compared that of OSI. Neither MCEM

or GAEM outperform traditional EM, this is likely a result of the error introduced

by the approximate Monte-Carlo based expectation step. Rather than compute the

expected sufficient statistics exactly, MCEM samples the incomplete data from the

model using the current parameter estimates. This completed data set is then used

to estimate the new parameters using the maximization step of EM. The results also

show that using a randomly sampled subset of the training data for fitness evaluation

does not have a significant impact on the performance of OSI in terms of log likelihood

for most datasets.

Although OSI outperforms EM and ALEM even when there is little overlap be-

tween the Markov blankets of latent variables, for half of the networks, the gap

between the log likelihoods of OSI and EM were even larger when the latent vari-

ables had greater overlap between their Markov blankets. This is evidence that the

improved performance obtained by OSI is due to the representation of each swarm

being based on the Markov blankets and the corresponding competition that occurs

between overlapping swarms. Recall that each variable is conditionally independent

of all other variables in the network given its Markov blanket. By defining each

variable’s swarm to cover its Markov blanket, we ensure that the swarm learns the

corresponding parameters for all variables upon which that variable may depend.

The difference in log-likelihood when overlap is varied is particularly large for the

Sachs and Hepar2 networks. This may be because of the large difference in the overlap

metric between the two configurations of the networks. However, we do not see similar

results for the Win95 network, which has the most extreme difference in overlap be-

tween the two configurations. It appears that the effect of overlap on the performance

of OSI could vary between networks, but further experiments must be performed to

verify this claim and determine the effect of overlap on OSI’s performance.

105

There are several additional advantages provided by our multi-swarm approach

that may explain why our method outperforms competing approaches, even when

there is little overlap between the Markov blankets of latent nodes. First, since the

sub-swarms maintain independence, each swarm can explore a different region of the

search space. Second, by splitting the swarms over the nodes of the network, we reduce

the possibility of neglecting a potentially good parameter for a specific component of

the global network’s complete parameter set.

Also, since several swarms learn the state assignments for a single variable, OSI

allows for greater exploration of the search space and the competition between swarms

ensures that the best parameter estimates found by the swarms are used in the global

network.

While these results are encouraging, more work must be done to empirically verify

the effect of conditional dependencies on the optimal overlap structure. We are cur-

rently researching the effect of applying the OSI framework to other stochastic search

techniques such as genetic algorithms, differential evolution, and simulated annealing

to determine if the benefit of overlap is algorithm specific.

106

CHAPTER 7

BAYESIAN NETWORK STRUCTURE LEARNING

While Bayesian networks can be developed by experts when the number of vari-

ables is small, the problem of defining a Bayesian network is often too complex for

manual construction. In these cases, the Bayesian network structure must be learned

from data. Chickering et al. have shown that the general problem of learning a

Bayesian network model from data is NP-Hard [8]. Due to the complexity of learning

a globally optimal network structure, several authors have developed approximate

and heuristic algorithms for the problem. Many of these heuristics include machine

learning techniques [9, 10, 11].

In this chapter, we explore the problem of structure learning in Bayesian networks.

We describe an OSI algorithm for learning the structure of Bayesian network classifiers

and we propose an OSI algorithm for more general structure learning, first in the

presence of complete data and then in the context of latent variables.

7.1 Learning Bayesian Classifiers

Given a classification problem consisting of a series of attributes Ai and a class

label C, a Bayesian classifier is a Bayesian network in which a node is associated with

each attribute Ai and the class C. Classification is then performed by computing the

most probable state of the class C given the states of the attributes A1, ..., An. We

propose an algorithm for learning Bayesian network classifiers based on OSI.

In this algorithm, a swarm is associated with each attribute node in the network.

Each node’s corresponding swarm learns the input and output edges associated with

107

that node. A global network G is maintained across all swarms for inter-swarm

communication. This global network is represented by an n×n adjacency matrix M .

Each element mi,j in the matrix is defined as shown in Equation 7.1.

mi,j =

 1 if node j is a parent of node i

0 otherwise
(7.1)

The global network is initialized using the Tree Augmented Naive Bayes (TAN) al-

gorithm, and a single particle in each swarm is initialized to the positions defined by

the initial global network. Since TAN learns the tree structure that maximizes the

likelihood of the data given the model, this initial network will ensure that particles

do not initially explore unproductive regions of the search space.

Each particle’s position x is defined by a d-dimensional vector of binary values

where x ∈ {0, 1}d, d = 2n, and n is the number of nodes in the network. The vector is

of length d = 2n because each position value in the first half of the vector determines

if a given variable in the network is a parent of the node, while each position value in

the second half of the vector determines if a given variable in the network is a child

of the node. For a particle in the swarm associated with node i, the position vector

encodes all elements in the column and row associated with node i in the adjacency

matrix M . These position values are constrained so that if a node Xi is a parent of

Xj then Xi cannot be the child of Xj.

An example illustrating our representation is shown in Figure 7.1. In the first

section of the figure, the representation used by the particles in swarms SA and SC is

shown, and the edge represented by each position value is indicated. Our algorithm

inserts the position vectors for the particles in swarms SA and SC into an adjacency

matrix, as shown in the second section of the figure. In the adjacency matrix, positions

108

Figure 7.1: Representation example

learned by swarm SC are shown in a different shade than the positions learned by

swarm SA. Entries in the matrix that are learned by both swarms are highlighted

with both shades. Once the particle positions have been inserted into the adjacency

matrix, a network containing the edges defined by the original particle positions can

be constructed as shown in the third section of the figure.

To insert a substructure Si for a node Xi into the network, all edges connecting to

Xi are removed, and the edges encoded in Si are added to the network. The is done

by inserting the row and column elements defined by a particle’s position vector into

the global adjacency matrix M . From this adjacency matrix, a Bayesian network is

constructed and an outgoing edge is inserted from each attribute Ai and the class C.

When inserting the substructure of a particle into the network, cycles may be

introduced. To prevent this, a two step process is performed each time a substructure

is inserted into the global network. First, we locate the cycles using the following

process:

• Identify a source node (a node that either has no incoming edges or no outgoing

edges).

• Delete the source node and its edges.

109

• Repeat until there are no source nodes.

Once this process is complete, the remaining network consists of the existing

cycles. Next each cycle is broken by randomly selecting one of the nodes in the cycle

and removing one of its outgoing edges. This process is repeated until all cycles are

eliminated.

For this problem, the overlap is defined by conflicts between the various swarms.

In our approach, two swarms are said to overlap if their highest scoring particle

positions conflict. The positions of two particles pi and pj are said to conflict if, for

a given entry mi,j in the adjacency matrix M , pi encodes a different value for mi,j

than pj. At the end of each iteration of the algorithm, a competition is held between

overlapping swarms to determine which set of edges is inserted into the network. This

competition is held between the conflicting position values of the most fit particles

of each competing swarm. The values resulting in the lowest classification error are

included in the global adjacency matrix M .

After each competition, the swarm resulting in the lowest fitness is seeded with

the position of the winning swarm. This involves replacing the position value for the

lowest ranked individual in the swarm with the value in the global solution.

110

Algorithm 7.1 Overlapping Swarm Intelligence for Classifier Learning

Procedure OSI-Learn-Classifier(
D // Training data

)
1: Initialize the global network G and adjacency matrix M
2: Initialize particles in each swarm
3: repeat
4: for each swarm s do
5: for each particle, p ∈ s do
6: Add edges of p to matrix M forming a new matrix Mp

7: Remove cycles from Mp and construct Bayesian network Gp

8: Calculate particle fitness f(p)
9: if f(p) > p’s personal best fitness then
10: Update p’s personal best position and fitness
11: end if
12: if f(p) > the global best fitness then
13: Update global best position and fitness for s
14: end if
15: Update p’s velocity and position
16: end for
17: end for
18: for each entry mi,j ∈M do
19: Let si be the swarm associated with node i
20: Let sj be the swarm associated with node j
21: if si and sj conflict over Mi,j then
22: Mi,j ← Compete(si, sj)
23: if si wins competition : seed sj with Mi,j

24: else seed si with Mi,j

25: end if
26: end for
27: until termination criterion is met
28: Construct Bayesian network G from the matrix M
29: return G

111

7.1.1 Fitness Evaluation

We compared four fitness functions to evaluate the quality of a network. The first

fitness function (OSI-LL) is the log likelihood of the data given the model as defined

in Equation 6.1. The second fitness function (OSI-BIC) is Bayesian information

criterion:

BIC = −2 logP (D|B) + p log(m)

The third fitness function (OSI-ACC) is the classification error of the network when

used to classify the training data:

error =

∑|C|
i=1 Fi∑|C|

i=1 Fi + Ti

where Fi is the number of examples incorrectly classified as class i and Ti is the number

of examples correctly classified as class i. The final fitness function (OSI-CMI) is the

average conditional mutual information of each edge in the network given the class:

ACMI =

∑
(X,Y)∈E I(X, Y |C)

|E|

where E denotes the set of edges in the network, (X, Y) denotes the edge between

nodes X and Y , and I(X, Y |C) is the conditional mutual information between nodes

X and Y given the class C.

The fitness of particle p is defined as the quality of the network G when the

substructure defined by the particle’s parameters is inserted into the network.

112

7.1.2 Computational Complexity

We first describe the computational complexity of OSI and show which step has

the most computational burden in the algorithm. To do so, we break down each step

in the algorithm. We refer to the pseudo code shown in Algorithm 7.1.

• Cycle Removal– Cycle removal can be performed in O(|V |2) where V is the

set of vertices. Let a be the number of entries in the adjacency matrix. Then,

the |V | =
√
a and the complexity of cycle removal is O(a).

• Fitness Evaluation– Next, we determine the complexity of evaluating the

fitness of an individual particle. To do so, we approximate the fitness function

complexity as O(aF), where a is number of entries in the adjacency matrix, and

F the computational complexity specific to the fitness function used to evaluate

each particle. When this is combined with cycle removal the time complexity

becomes O(aF + a) = O(aF)

• Optimization Algorithm– Next, we determine the complexity of the under-

lying PSO algorithm. We assume that the algorithm has q = |P | individuals,

where P is the set of all the individuals in the population. During each iteration,

an individual, with a variables in the worst case, has its position and fitness

updated. These two steps are done sequentially, with updating the position

having a complexity of O(a) and while evaluating the fitness is O(aF). This

is done q times, once for for each individual; therefore, assuming the algorithm

performs e iterations, the total complexity is O(aFeq).

To complete our analysis of the complexity of OSI, we next show the complexity

of the two main parts of OSI: solve and competition

113

• Solve– The solve step in OSI involves iterating over the set of subpopula-

tions S and having each one optimize over its variables. Using the complexity

from above for optimization algorithms, each subpopulation has a complexity

of O(aeq). Since this is done s = |S| times, the total complexity of this step is

O(saFeq).

• Competition– In OSI, the competition step is used to find the optimal set of

values for the variables in X. This is done by iterating over all the variables

and then comparing the fitness of the two competing individuals. Note that

there are n variables and 2 subpopulations, while each fitness evaluation has a

complexity of O(aF). Therefore, the total complexity of the competition step

in OSI is O(2a2F) = O(a2 × F).

Thus OSI iterates over the solve and competition steps m times. Combining

the steps above and multiplying times m gives a complexity of

O(OSI) = O(m(aFeqs+ a2F))

= O(maFeqs+ma2F)

In the algorithm presented above, a swarm is associated with each attribute in the

classification problem, therefore s = a. Substituting this into the above equation, we

now have

O(OSI) = O(ma2Feq + ka2F)

= O(ma2Feq)

Based on these results, we can see that OSI will almost always be more computation-

ally complex due to the a2 factor. However, the parameters m, a, and q in OSI can

be set such that it becomes competitive with PSO.

114

7.1.3 Experimental Design

To evaluate our algorithm, several experiments were performed using datasets

from the UCI Machine Learning Repository [85]. These experiments focused on com-

paring our algorithm with the PSO algorithm discussed in [9], the Tree Augmented

Naive Bayes algorithm [32], and the Greedy Thick Thinning algorithm [78]. Our

comparisons also include modification of the PSO algorithm discussed in [9] using

each of the fitness functions described above. We compared these algorithms to four

different versions of our own algorithm using each fitness function described in Section

7.1.1.

For the OSI algorithms, five particles were assigned to each sub-swarm. This

value was chose because, during preliminary testing, we found that a larger number

of particles did not improve performance and slowed training time. For the single

swarm PSO, the total number of particles was five times the number of features, to

ensure a fair comparison between the algorithms. For both swarm-based algorithms

φ1 and φ2 were set to 1.49618, while w was set to 0.7298. Eberhart and Shi empirically

determined that these are good parameter choices for w, φ1, and φ2 [82].

To evaluate the performance of the algorithms, the data was divided into training

and testing data sets using a 5×2 cross-validation procedure. We chose 5×2 to ensure

that both training and testing sets were large, and that each data point was used for

both training and testing during each fold. We performed pairwise comparisons of

average classification accuracy using a paired student t-test for each pair of algorithms.

For all t-tests we used a 95% confidence interval. We hypothesize that, OSI will

outperform single-swarm PSO for most datasets and, when the proper fitness function

is chosen, OSI will outperform both TAN and Greedy.

115

Table 7.1: Datasets used in experiments

Dataset Attributes Classes Instances

Ecoli 5 8 334
Vote 16 2 435

Nursery 8 5 12960
Car 6 4 1728

CMC 9 3 1473
TicTacToe 9 2 958

Spect 22 2 267

These experiments were performed using seven datasets downloaded from the UCI

machine learning repository: Nursery, Car, CMC, TicTacToe, Spect, Vote, and Ecoli.

We selected datasets with large numbers of instances, and most selected datasets have

few or no continuous attributes. For the datasets containing continuous attributes,

each continuous attribute was discretized into five bins using equal frequency binning.

The information about the datasets used is summarized in Table 7.1.

7.1.4 Experimental Results

Tables 7.2 and 7.3 show the average classification accuracy for each algorithm

and each dataset. The values presented in these tables do not reflect the fitness

scores achieved by any of the population-based algorithms. Bold values indicate that

the corresponding algorithm’s performance is statistically significantly better than all

other algorithms for the dataset. Algorithms that tie statistically for best are bolded.

Table 7.2 compares the classification accuracy of the swarm based approaches.

For all datasets, either OSI-ACC or OSI-CMI tie statistically for best. Also, for all

but two of the datasets, the OSI algorithm with the highest classification accuracy

outperforms traditional PSO using the same fitness function.

116

Table 7.2: Comparison of classification accuracy for Swarm algorithms

Dataset OSI-LL PSO-LL OSI-CMI PSO-CMI OSI-BIC PSO-BIC OSI-ACC PSO-ACC

Vote 0.908 0.908 0.929 0.925 0.921 0.920 0.916 0.907
TicTacToe 0.882 0.856 0.737 0.721 0.727 0.745 0.896 0.881
Nursery 0.952 0.940 0.910 0.914 0.911 0.916 0.958 0.945

Car 0.860 0.849 0.891 0.870 0.837 0.849 0.823 0.788
CMC 0.473 0.464 0.517 0.479 0.510 0.511 0.473 0.470
Spect 0.758 0.776 0.815 0.796 0.793 0.793 0.779 0.763
Ecoli 0.734 0.730 0.809 0.795 0.813 0.799 0.713 0.688

Table 7.3: Comparison of classification accuracy against TAN and Greedy

Dataset OSI-CMI PSO-CMI OSI-ACC PSO-ACC TAN Greedy

Vote 0.929 0.925 0.916 0.907 0.934 0.935
TicTacToe 0.737 0.721 0.896 0.881 0.746 0.755
Nursery 0.910 0.914 0.958 0.945 0.909 0.896

Car 0.891 0.870 0.860 0.849 0.871 0.867
CMC 0.517 0.479 0.473 0.464 0.506 0.448
Spect 0.815 0.796 0.758 0.776 0.801 0.750
Ecoli 0.809 0.795 0.734 0.730 0.760 0.791

Table 7.3 compares the average classification accuracy of TAN, GREEDY, and

the swarm based algorithms that most frequently achieved the highest classification

accuracy. For the Vote dataset, all algorithms other than PSO-ACC tie statistically

for best. For the TicTacToe dataset OSI-ACC ties statistically with PSO-ACC for

best. OSI-CMI outperforms all competing algorithm for every other dataset.

7.1.5 Discussion

The paired t-tests on the classification accuracy indicate that either OSI-ACC,

or OSI-CMI performed better than or equivalent to the other methods for every

dataset. These results show that OSI-CMI outperforms the other methods for three

of the datasets. OSI-ACC and OSI-CMI are the methods that most frequently outper-

formed the other approaches and these algorithms outperformed TAN, Greedy, and

the competing PSO algorithms on all but two of the datasets. This indicates that

117

both OSI-ACC and OSI-CMI have an advantage when used to learn the structures

of Bayesian classifiers. More importantly, an OSI-based method was always listed as

one of the winning algorithms.

We also note that our paired t-tests showed that the OSI algorithms outperformed

the single swarm PSO algorithms for many of the datasets, while single swarm PSO

algorithms never significantly outperformed the OSI algorithm using the same fitness

function. These results indicate that the communication and competition introduced

by the OSI gives the algorithm an advantage over traditional PSO.

Since multiple swarms learn the structure for a single node, our approach ensures

greater exploration of the search space, which results in improved performance in

terms of classification accuracy. Also, since the swarms are split over the nodes of the

network, the possibility of neglecting a potentially good sub-structure for a specific

component of a complete structure is reduced.

The results in Table 7.2 also indicate that no fitness function clearly outperforms

the others for all data sets. However, conditional mutual information appears to allow

OSI to have the best performance for five of the seven datasets. In all cases, when

OSI-CMI failed to achieve the best score, OSI-ACC had the best performance. These

results indicate that, when average conditional mutual information fails to provide

good performance, classification accuracy may be a good alternative scoring metric.

7.2 Generative Structure Learning

The method proposed in the previous section can be modified to allow for genera-

tive Bayesian network structure learning. The pseudocode for this algorithm is shown

in Algorithm 7.2. For this problem, we will use the Bayesian information criterion

118

(BIC) described in Equation 2.4 to evaluate network quality.

BIC = −2 logP (D|B) + p log(m)

It can be shown that BIC decomposes into a sum of terms, one for each node Xi in the

network [12]. This decomposability may reduce the need for overlap and competition

in the OSI algorithm.

As with OSI for classifier learning, we associate a swarm with each node in the

network but, for this problem, we will compare two different overlap architectures. In

the first, each swarm will learn the incoming and outgoing edges associated with its

corresponding node (similar to the classifier learning problem). In the second, each

node’s corresponding swarm will learn only the incoming edges associated with that

node. We refer to the first architecture as OSI-F, while we refer to the second as

OSI-N.

As in the previous algorithm, a global network G is maintained across all swarms

for inter-swarm communication. This global network is represented by an n × n

adjacency matrix M . Each element mi,j in the matrix is defined as shown in Equation

7.1.

Each particle’s position xi is defined by a d-dimensional vector of binary values

where xi ∈ {0, 1}d, d = n, and n is the number of nodes in the network. Each position

value in the vector determines if a given variable in the network is a parent of the

node. For a particle in the swarm associated with node i, the position vector encodes

all elements in the row associated with node i in the adjacency matrix M . These

position values are constrained so that if a node Xi is a parent of Xj then Xi cannot

be the child of Xj.

119

Algorithm 7.2 OSI for Structure Learning with Complete Data

Procedure OSI-Learn-Gen(
D // Training data

)
1: Randomly initialize the global network G and adjacency matrix M
2: Initialize particles in each swarm
3: repeat
4: for each swarm s do
5: for each particle, p ∈ s do
6: Add edges defined by p to G
7: Remove cycles from G
8: Calculate particle fitness f(p)
9: if f(p) > p’s personal best fitness then
10: Update p’s personal best position and fitness
11: end if
12: if f(p) > the global best fitness then
13: Update global best position and fitness for s
14: end if
15: Update p’s velocity and position
16: end for
17: end for
18: for each entry mi,j ∈M do
19: Let the si be the swarm associated with node i
20: mi,j ← value associated with best particle in si
21: end for
22: until termination criterion is met
23: return M

To insert a substructure Si for a node Xi into the network, all incoming edges for

Xi are removed and the edges encoded in Si are added to the network. This is done

by inserting the row elements defined by a particle’s position vector into the global

adjacency matrix M . From this adjacency matrix, a Bayesian network is constructed.

When inserting the substructure of a particle into the network, cycles may be

introduced. To prevent this, the cycle removal process described above is performed

prior to fitness evaluation. Once cycles have been removed, we evaluate the fitness of

the particle using BIC.

120

7.2.1 Experimental Design

For these experiments, we compared the above variations of OSI to a traditional

single swarm PSO and the K2 structure learning algorithm. For these comparisons

we used four datasets from the UCI Machine Learning Repository [85]: Vote, Car,

Spect, and TicTacToe.

For the OSI algorithms, the number of particles in each swarm was set to three.

This was done to ensure a manageable runtime for the population based approaches.

The number of particles in the traditional PSO algorithm was set to three times the

number of nodes, to ensure that all swarm algorithms had the same total number of

particles. For both swarm-based algorithms φ1 and φ2 were set to 1.49618, while w

was set to 0.7298.

To evaluate the performance of the algorithms, each data-set was divided into

training and testing data sets using a 5 × 2 cross-validation procedure to ensure

large training and test sets. The log-likelihoods of the best networks found by each

algorithm were averaged over all runs. We performed pairwise comparisons of average

log-likelihood using a paired student t-test for each pair of algorithms. For all t-tests

we used a 95% confidence interval.

7.2.2 Experimental Results

The results for these experiments are shown in Table 7.4. Bold values indicate that

the corresponding algorithms performance is statistically significantly better than the

other algorithms on the data set.

For all data sets, we observe that, based on the paired t-tests on log-likelihood,

OSI-F significantly outperforms both PSO and K2. Additionally, OSI-F outperforms

OSI-N, for three of the four networks. For all networks, all particle based methods

121

Table 7.4: Average log-likelihoods for general structure learning

OSI-N OSI-F PSO K2
Vote -2834.4 -2638.7 -2849.1 -4400.8
Car -6870.2 -6837.4 -6949.6 -9940.1
Spect -1758.3 -1666.6 -1767.9 -3345.7
TicTacToe -4880.5 -4884.3 -4906.2 -7768.9

outperformed K2. For the Vote and Spect data sets, we observe that, based on the

paired t-tests on log-likelihood, OSI-N and PSO tied statistically for best.

7.2.3 Discussion

The performance of OSI-F relative to OSI-N seems to indicate that the overlap

and competition provide an advantage, even when there is little overlap between the

sub-problems. Because several swarms learn the edges associated with each variable,

OSI ensures greater exploration of the search space, and the inter-swarm competition

ensures that the best sub-structure found by each swarm is included in the global

network.

OSI-N outperformed single-swarm PSO on two of the four networks and never

performed worse than single-swarm PSO. This indicates that OSI has an advantage

over single swarm PSO, even when there is no overlap. By splitting the swarms over

the nodes of the network, we reduce the possibility of neglecting a potentially good

sub-structure for a specific component of the global networks complete structure.

This advantage is present even when no overlap or competition is held between the

swarms.

122

7.3 Structure Learning with Latent Variables

We have modified our approach to generative Bayesian network structure learning

to allow for the learning of Bayesian networks with latent variables. This approach

assumes that the number of latent variables is a user-specified parameter. As in Al-

gorithm 7.2, we will use the Bayesian information criterion (BIC) to evaluate network

quality, but since latent variables have been introduced into the problem, this scoring

function will no longer be decomposable. As with the algorithm described in sec-

tion 7.2, a swarm is associated with each node in the network and a global network

structure is maintained for inter-swarm communication. The network structure is

represented by an n× n adjacency matrix M and each element mi,j in the matrix is

defined as shown in Equation 7.1.

To exploit the conditional dependencies introduced by the latent variables, each

swarm in this algorithm learns the incoming edges for the Markov blanket of its

associated node, as defined by the current global network structure. Because this

overlap structure may change at each iteration, we refer to this algorithm as OSI

with dynamic Markov blanket overlap (OSI-MB). For a swarm associated with some

node i, each particle’s position xi is defined by a d-dimensional vector of binary

values where xi ∈ {0, 1}d, d = mn, n is the number of nodes in the network, and

m = |MB(i)|. For a particle in the swarm associated with node Xi, the position

vector encodes all elements in the rows associated with Markov blanket of node Xi

in the adjacency matrix M . These position values are constrained so that if a node

Xi is a parent of Xj then Xi cannot be the child of Xj.

At the end of each iteration, the set of rows learned by a given swarm will be

updated based on the Markov blanket of the swarm’s corresponding node. During

this process, position and velocity values that do not correspond to incoming edges

123

for the Markov blanket will be removed. If the corresponding Markov blanket has

incoming edges that are not currently being optimized by the swarm, then random

position and velocity values corresponding to these edges will be added to the particles

of the swarm.

When evaluating the fitness of a given particle, the row elements defined by a

particle’s position vector are inserted into the global adjacency matrix M . From this

adjacency matrix a Bayesian network is constructed and cycles are removed from the

structure as described in section 7.1. Next, the parameters for each variable in the

network are estimated using the OSI algorithm for parameter estimation described in

Chapter 6. The fitness of the network is then evaluated by computing the BIC score

of the network.

When multiple swarms learn the incoming edges for a given node, these swarms are

said to overlap. After each iteration of the algorithm, overlapping swarms compete to

determine which edges to include in the global network structure. This competition

is held between the edges encoded in the personal best particles of each swarm.

The edges resulting in the highest BIC score are selected for inclusion in the global

adjacency matrix M .

7.3.1 Experimental Design

Several experiments have been performed to evaluate the performance of OSI for

structure learning with latent variables. We compare OSI with dynamic Markov

blanket overlap (OSI-MB) to both single-swarm PSO and OSI with a static overlap

structure in which each node learns the associated incoming and outgoing edges (OSI-

F). We also compare these algorithms to structural EM; a commonly used algorithm

for structure learning in the presence of latent variables.

124

The settings for the various PSO-based algorithms are the same as described

in section 7.2.1. For parameter estimation, the single-swarm PSO algorithm used

structural EM, while the OSI algorithms used the parameter estimation algorithm

described in Chapter 6. The OSI parameter estimation was run for six iterations

during each fitness evaluation and competition was held every third iteration. Our

goal was to run the parameter estimation algorithm for a small number of iterations

to minimize the algorithm’s runtime, and during preliminary testing we found that

the above settings produced good results. When learning parameters for the final

network, OSI was run until convergence.

As in section 7.2.1, the Vote, Car, Spect, and TicTacToe data-sets were used

for evaluation. To evaluate the performance of the algorithms, each data-set was

divided into training and testing data sets using a 5 × 2 cross-validation procedure

to ensure large training and testing sets, and the log-likelihoods of the best networks

were averaged. Pairwise comparisons of average log-likelihood were performed using

a paired student t-test for each pair of algorithms. For all t-tests we used a 95%

confidence interval.

7.3.2 Experimental Results

The average log-likelihoods for each of the algorithms is shown in Table 7.5. Bold

values indicate that the associated algorithms log-likelihood average is statistically

significantly better than the other algorithms for the data set.

For all data-sets, OSI-MB performed statistically significantly better than EM and

PSO in terms of log-likelihood of the networks found. For the Vote and Car data-sets,

OSI-MB significantly outperformed OSI-F, while these two algorithms tied statisti-

cally for the Spect and TicTacToe datasets. OSI-F and PSO performed statistically

significantly worse than all other algorithms for the Car data-set but outperformed

125

Table 7.5: Average log-likelihoods for latent variable structure learning

OSI-MB OSI-F EM PSO
Vote -2058.4 -2344.1 -3356.1 -2359.4
Car -3077.9 -4313.7 -3946.8 -3990.3
Spect -1207.1 -1240.1 -2516.7 -1528.4
TicTacToe -2447.6 -2773.4 -3900.2 -3391.8

EM for all other data-sets. OSI-F tied statistically with PSO for the Vote and Car

data-sets, but OSI-F outperformed PSO for the Spect and TicTacToe data-sets.

7.3.3 Discussion

The paired t-tests on the average log-likelihoods indicate that OSI-MB performed

better than the other methods for all data-sets. We believe that the increased perfor-

mance of OSI-MB is due to each swarm being associated with the Markov blanket of

a single node and the resulting communication and competition between overlapping

swarms.

The importance of the Markov blanket overlap structure is emphasized by the

comparison of OSI-MB and OSI-F. Not only does OSI-MB outperform OSI-F for two

of the four networks, but for the Car network, OSI-F was not even competitive with

structural EM. It appears that choosing a good overlap structure is crucial to OSI

performance for some problems. However, OSI-F still manages to tie with OSI-MB

for two of the four networks. This advantage is most likely due to the benefit of

splitting the swarms over the nodes of the network combined with the additional

exploration obtained by having multiple swarms explore overlapping sections of the

search space.

126

CHAPTER 8

SUMMARY AND CONCLUSIONS

8.1 Summary of Contributions

We have presented several approximation algorithms for the problems of structure

learning, parameter estimation, and abductive inference in Bayesian networks. These

algorithms are based on a multi-swarm approach to optimization called Overlapping

Swarm Intelligence, in which a particle swarm optimizer is split into multiple swarms

and a swarm is assigned to each node in the network. We compared these algorithms

to existing approaches for the problems of learning and inference in Bayesian networks,

in terms of both solution quality and computational complexity.

This work makes several contributions towards improving the quality of algorithms

in the areas of structure learning, parameter estimation, and abductive inference in

Bayesian networks:

• First, our approach to abductive inference provides a more effective technique

for discovering the most probable state assignments for nodes in a Bayesian

network given evidence; a problem which is relevant to a number of fields such

as fault diagnostics and prognostics. We presented both distributed and non-

distributed versions of OSI for this problem and we empirically demonstrated

that, while OSI is more computationally expensive than competing methods,

both OSI and DOSI significantly outperform the other approaches on most

networks studied in terms of the log likelihood of solutions found.

• Second, our approach to parameter estimation will allow for more effective use

of latent variable models and will allow for better handling of datasets with

127

missing data. Our empirical analysis of OSI indicates that OSI outperforms

traditional approaches such as EM in terms of log likelihood of the data given

the parameters. Additionally, we found that, by sampling from the training

data during fitness evaluation, we can reduce the computational burden of the

algorithm without impacting the quality of learned parameters.

• Third, by developing more accurate techniques for Bayesian structure learning,

we will allow automated structure learning to be applied to areas where current

techniques are either too computationally expensive or too inaccurate. We pre-

sented algorithms for both generative and discriminative structure learning and

empirically demonstrated that OSI often outperforms the competing approaches

to these problems. We also developed an OSI algorithm for structure learning

in the presence of latent variables and demonstrated the effectiveness of this

algorithm relative to both structural EM and traditional PSO.

This work also makes a number of contributions in the area of multi-population

search algorithms. Specifically dealing with the properties of OSI as a general search

technique.

• First, our results on all of the problems that we explored seem to indicate that

OSI is an effective search technique for a wide range of problems in both discrete

and continuous search spaces. It was found that OSI often outperformed single-

swarm PSO, while PSO never significantly outperformed OSI.

• Second, we presented a distributed alternative to OSI that does not require a

global network for fitness evaluation. We proved that the number of iterations

required for two swarms to reach consensus in DOSI is equal to the length of

the minimum path between their nodes, and we empirically demonstrated that

DOSI often performs as well as OSI on the abductive inference problem.

128

• Third, we examined the effect of the swarm architecture and degree of overlap

on the performance of OSI. From our experiments on parameter estimation,

it appears that, while the amount of overlap does seem to have some effect

on performance, the effect of overlap on the performance of OSI may vary

between networks. Our experiments comparing different swarm architectures

for the abductive inference problem indicate that the overlap structure of the

swarms plays a role in algorithm performance. Furthermore, we observed that

the Markov blanket architecture achieved better log likelihood than the random

architecture for most networks and the no alternative architecture ever outper-

formed the Markov blanket architecture. These results were reinforced by our

experiments on structure learning with latent variables, where, for half of the

data-sets, OSI only outperformed the competing approaches when the Markov

blanket was used to define the overlap.

• Fourth, we demonstrated that OSI may perform well even when there is little

overlap between the swarms. This is supported by our comparison of OSI to

other methods for the problem of parameter estimation where we found that

OSI outperformed competing approaches, even when there was little overlap

between the Markov blankets of latent variables. This is also supported by our

results on generative structure learning where, despite the decomposability of

the scoring function, the overlap and competition between swarms seemed to

give OSI an advantage for most of the data-sets.

The results presented here support the three hypotheses proposed at the beginning

of this work. Our first hypothesis was that OSI would outperform single-swarm PSO

for most experiments and would never perform worse than single-swarm PSO. This

hypothesis is supported by our results for full and partial abductive inference, where

129

we found that the the state assignments found by OSI and DOSI had higher log-

likelihood than those found by DMVPSO for most experiments on complex networks.

This hypothesis was further reinforced by our results for parameter estimation, where

the likelihood of the data given the model was higher for parameters learned by OSI

as compared to those learned by single-swarm PSO.

Additionally, the first hypothesis was supported by our results for Bayesian clas-

sifier learning, where the models learned by variants of OSI had higher classification

accuracy than those learned by DMVPSO for most datasets, when classification accu-

racy and conditional mutual information was used to evaluate particle fitness. How-

ever, for many of the datasets, OSI and DMVPSO tied statstically when log-likelihood

and BIC were used for fitness evaluation. The inability of OSI to outperform single-

swarm PSO for these cases is likely due to the poor performance of the log-likelihood

and BIC fitness scores when learning Bayesian classifiers.

The first hypothesis was further supported by our results for generative structure

learning, both with and without latent variables. For these problems OSI outper-

formed single-swarm PSO for all data sets, when a good overlap architecture was

chosen. Additionally, even when a poor overlap structure was chosen, OSI either

outperformed or tied with traditional PSO for all datasets.

For our second hypothesis, we predicted that OSI and DOSI would tie statistically

in terms of log-likelihood for most experiments. While this was true for both full and

partial abductive inference, there were several experiments in which OSI outperformed

DOSI. This may be because DOSI had not reached consensus for these experiments,

but more work will be needed to quantify the degree of consensus necessary to achieve

good performance.

Our third hypothesis was that the Markov blanket overlap structure would never

be outperformed by any other overlap architecture, and would often outperform alter-

130

native architectures. This was supported by our experiments for both full abductive

inference and structure learning.

For full abductive inference, the average log-likelihood for state assignments found

by OSI when using the alternative overlap architectures was never significantly greater

than the average log-likelihood for state assignments found by OSI when using the

Markov blanket architectures. Additionally, OSI often found state assignments with

higher log-likelihood when using the Markov blanket architecture, when compared to

the state assignments found when using the alternative architectures.

The third hypothesis was further supported by our results for structure learning

with latent variables, where OSI often learned models with higher log-likelihood when

using the dynamic Markov blanket architecture, as compared to the models learned

by the static family-based architecture. However, there were several instances for

both full abductive inference, and structure learning with latent variables, where the

Markov blanket architecture tied with one or more of the competing architectures.

This indicates that an optimal overlap structure may not be necessary for OSI to

achieve good performance.

The results presented here demonstrate that OSI is a powerful method that has a

clear advantage over single-swarm PSO when applied to a variety of problems. There

are many advantages to OSI that may explain why this method outperforms single-

swarm PSO on so many problems. First, the representation of each swarm being

based on the conditional dependencies present in the underlying problem ensures

that each swarm learns the relevant positions for all variables on which the sub-

problem depends. Second, since the sub-swarms maintain independence, each swarm

can explore a different region of the search space. Third, by splitting the swarms over

the nodes of the network, we reduce the possibility of neglecting a potentially good

sub-solution for a specific component of the global solution. The above contributions

131

mark the first steps toward understanding and improving the Overlapping Swarm

Intelligence algorithm.

8.2 Future Work

While this work provides an initial exploration of OSI with respect to learning

and inference in Bayesian networks, there is much research that may still be done

to develop OSI further. There is still much that we do not understand about the

algorithm, and there are several ways in which the algorithm could be improved.

One avenue of future research is the exploration of alternative representations and

competition strategies to reduce the computational complexity of OSI. For example,

it may be possible to vary the number of particles for each swarm based on the

complexity of the swarm’s Markov blanket without significantly affecting solution

quality. In this way, the computational complexity of our algorithm could be reduced

by assigning smaller swarms to nodes whose Markov blankets have fewer parameters.

Additionally, the algorithm could assign swarms to only a subset of the nodes in the

network. Each swarm could optimize over the Markov blanket of its assigned node

for some number of iterations t, and after t iterations have elapsed the swarm could

be assigned to a new node.

The theory behind OSI needs to be explored further. It may be possible to prove

the convergence of OSI under certain assumptions, as was done with single-swarm

PSO by Van den Bergh et al. [86]. Drawing from the approaches of [57] and [58] on the

distributed consensus problem to analyze the relationship between OSI convergence

rate and the structure of the sub-swarms is one possible avenue for this research.

Additionally, research must be done to examine the effect of overlap on the perfor-

mance of OSI. We conjecture that, for many optimization problems, optimal overlap

132

structures are related to the conditional dependence properties of the underlying

fitness landscape. Further work is needed to verify the existence of optimal swarm

overlap structures, and methods must be developed to identify good overlap struc-

tures for OSI when applied to a given problem. This problem could be addressed by

learning a graphical model from the data associated with a given problem whereby

we could determine each variable’s Markov blanket. This would then allow OSI to be

applied to a larger spectrum of optimization problems.

Also, more research must be done to extend the theory behind DOSI. This would

include evaluating the effect of consensus on the performance of DOSI. It is possible

that full consensus is not necessary to achieve good solution quality. If this is true, it

would increase the chance of distributing these algorithms efficiently. Another avenue

for future research is the exploration of additional techniques for achieving consensus.

For instance, instead of certain nodes acting as an arbiter, propagating correct scores

throughout the network, nodes could propagate personal best scores that would then

be included in the personal solutions of other nodes through a fitness-based weighted

average.

The effectiveness of OSI on the problems presented in this work, indicates that

similar distributed search techniques may be combined effectively with population-

based algorithms such as evolution strategies, genetic algorithms, or differential evo-

lution. It could be that the techniques used by OSI are even applicable to local and

stochastic search techniques such as hill-climbing and simulated annealing. Further

research must be done to verify this intuition and establish a general framework for

distributed search.

Finally, OSI must be compared against more recent state-of-the-art techniques

for Bayesian network structure learning, both with complete data and with latent

133

variables. While the results presented here are encouraging, more experiments must

be performed to demonstrate the competitiveness of OSI in this space.

8.3 Publications

Several papers have been published, which directly relate to the research presented

here:

• Nathan Fortier, John Sheppard, Karthik Pillai. Bayesian abductive inference

using overlapping swarm intelligence. IEEE Swarm Intelligence Symposium

(SIS), pages 263–270, 2013

• Nathan Fortier, John Sheppard, Shane Strasser. Abductive inference in

Bayesian networks using distributed overlapping swarm intelligence. Soft Com-

puting, pages 1–21, 2014

• Nathan Fortier, John Sheppard, Shane Strasser. Learning Bayesian classifiers

using overlapping swarm intelligence. IEEE Symposium on Swarm Intelligence

(SIS), pages 1–8. IEEE, 2014

• Nathan Fortier, John Sheppard, Shane Strasser. Parameter estimation in

Bayesian networks using overlapping swarm intelligence. To appear in the Pro-

ceedings of the Genetic and Evolutionary Computation Conference (GECCO2015),

2015

134

REFERENCES CITED

[1] Min Zou, Suzanne D Conzen. A new dynamic Bayesian network (dbn) approach
for identifying gene regulatory networks from time course microarray data. Bioin-
formatics, 21(1):71–79, 2005.

[2] Gennady Agre. Diagnostic Bayesian networks. Computers and Artificial Intelli-
gence, 16(1), 1996.

[3] Uri Lerner, Ronald Parr, Daphne Koller, Gautam Biswas, i in. Bayesian fault
detection and diagnosis in dynamic systems. AAAI/IAAI, pages 531–537, 2000.

[4] Gernot D Kleiter. Bayesian diagnosis in expert systems. Artificial Intelligence,
54(1):1–32, 1992.

[5] Daniel Nikovski. Constructing Bayesian networks for medical diagnosis from
incomplete and partially correct statistics. IEEE Transactions on Knowledge
and Data Engineering, 12(4):509–516, 2000.

[6] Igor Kononenko. Inductive and Bayesian learning in medical diagnosis. Applied
Artificial Intelligence, 7(4):317–337, 1993.

[7] Patrick Joseph Donnelly. Bayesian approaches to musical instrument classifica-
tion using timbre segmentation. Dissertation Proposal. Montana State Univer-
sity, Department of Computer Science.

[8] David Maxwell Chickering. Learning Bayesian networks is NP-complete. Learn-
ing from data, pages 121–130. Springer, 1996.

[9] Tong Wang, Jie Yang. A heuristic method for learning Bayesian networks us-
ing discrete particle swarm optimization. Knowledge and information systems,
24(2):269–281, 2010.

[10] Olivier Regnier-Coudert, John McCall. An island model genetic algorithm for
Bayesian network structure learning. Evolutionary Computation (CEC), 2012
IEEE Congress on, pages 1–8. IEEE, 2012.

[11] Yanghui Wu, John McCall, David Corne. Two novel ant colony optimization
approaches for Bayesian network structure learning. Evolutionary Computation
(CEC), 2010 IEEE Congress on, pages 1–7. IEEE, 2010.

[12] Daphne Koller, Nir Friedman. Probabilistic graphical models: principles and
techniques. MIT press, 2009.

[13] S.E. Shimony. Finding MAPs for belief networks is NP-hard. Artificial Intelli-
gence, 68:399–410, 1994.

135

[14] Paul Dagum, Michael Luby. Approximating probabilistic inference in Bayesian
belief networks is NP-hard. Artificial Intelligence, 60(1):141–153, 1993.

[15] B. K. Haberman, J. W. Sheppard. Overlapping particle swarms for energy-
efficient routing in sensor networks. Wireless Networks, 18(4):351–363, 2012.

[16] Robert Fung, Brendan Del Favero. Applying bayesian networks to information
retrieval. Communications of the ACM, 38(3):42–ff, 1995.

[17] Paolo Trucco, Enrico Cagno, Fabrizio Ruggeri, Ottavio Grande. A bayesian
belief network modelling of organisational factors in risk analysis: A case study
in maritime transportation. Reliability Engineering & System Safety, 93(6):845–
856, 2008.

[18] Carmel A Pollino, Owen Woodberry, Ann Nicholson, Kevin Korb, Barry T Hart.
Parameterisation and evaluation of a bayesian network for use in an ecological
risk assessment. Environmental Modelling & Software, 22(8):1140–1152, 2007.

[19] Philippe Weber, Gabriela Medina-Oliva, Christophe Simon, Benôıt Iung.
Overview on bayesian networks applications for dependability, risk analysis and
maintenance areas. Engineering Applications of Artificial Intelligence, 25(4):671–
682, 2012.

[20] Min Zou, Suzanne D Conzen. A new dynamic bayesian network (DBN) ap-
proach for identifying gene regulatory networks from time course microarray
data. Bioinformatics, 21(1):71–79, 2005.

[21] Nir Friedman, Michal Linial, Iftach Nachman, Dana Pe’er. Using bayesian net-
works to analyze expression data. Journal of computational biology, 7(3-4):601–
620, 2000.

[22] Arunkumar Chinnasamy, Wing-Kin Sung, Ankush Mittal. Protein structure
and fold prediction using tree-augmented naive bayesian classifier. Journal of
Bioinformatics and Computational Biology, 3(04):803–819, 2005.

[23] J Uebersax. Genetic counseling and cancer risk modeling: An application of
bayes nets. Marbella, Spain: Ravenpack International, 2004. Methodology Divi-
sion Research Report for RavenPack International.

[24] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan Kaufmann, 2014.

[25] S.E. Shimony. Finding MAPs for belief networks is NP-hard. Artificial Intelli-
gence, 68:399–410, 1994.

136

[26] James D Park. Map complexity results and approximation methods. Proceedings
of the Eighteenth conference on Uncertainty in artificial intelligence, pages 388–
396. Morgan Kaufmann Publishers Inc., 2002.

[27] R. Dechter. Bucket elimination: A unifying framework for probabilistic inference.
Proceedings of the Twelfth international conference on Uncertainty in artificial
intelligence, pages 211–219. Morgan Kaufmann Publishers Inc., 1996.

[28] Gregory F Cooper, Edward Herskovits. A Bayesian method for the induction of
probabilistic networks from data. Machine learning, 9(4):309–347, 1992.

[29] Gideon Schwarz, i in. Estimating the dimension of a model. The annals of
statistics, 6(2):461–464, 1978.

[30] Ernst Wit, Edwin van den Heuvel, Jan-Willem Romeijn. All models are wrong:
an introduction to model uncertainty. Statistica Neerlandica, 66(3):217–236,
2012.

[31] Gregory F Cooper, Edward Herskovits. A Bayesian method for constructing
bayesian belief networks from databases. Proceedings of the Seventh conference
on Uncertainty in Artificial Intelligence, pages 86–94. Morgan Kaufmann Pub-
lishers Inc., 1991.

[32] Nir Friedman, Dan Geiger, Moises Goldszmidt. Bayesian network classifiers.
Machine learning, 29(2-3):131–163, 1997.

[33] C Chow, C Liu. Approximating discrete probability distributions with depen-
dence trees. Information Theory, IEEE Transactions on, 14(3):462–467, 1968.

[34] Stuart J. Russell, Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, edition 2, 2003.

[35] Arthur P Dempster, Nan M Laird, Donald B Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society.
Series B (methodological), pages 1–38, 1977.

[36] Nir Friedman. The Bayesian structural EM algorithm. Proceedings of the 14th
conference on Uncertainty in artificial intelligence, pages 129–138. Morgan Kauf-
mann Publishers Inc., 1998.

[37] Russell Eberhart, James Kennedy. A new optimizer using particle swarm theory.
Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth
International Symposium on, pages 39–43. IEEE, 1995.

[38] Maurice Clerc, James Kennedy. The particle swarm-explosion, stability, and
convergence in a multidimensional complex space. IEEE Transactions on Evo-
lutionary Computation, 6(1):58–73, 2002.

137

[39] Vladimiro Miranda, Hrvoje Keko, Alvaro Jaramillo Duque. Stochastic star com-
munication topology in evolutionary particle swarms (epso). International Jour-
nal of Computational Intelligence Research, 4(2):105–116, 2008.

[40] Peng-Yeng Yin, Fred Glover, Manuel Laguna, Jia-Xian Zhu. Cyber swarm
algorithms–improving particle swarm optimization using adaptive memory
strategies. European Journal of Operational Research, 201(2):377–389, 2010.

[41] Wesam Elshamy, Hassan M Emara, Ahmed Bahgat. Clubs-based particle swarm
optimization. Swarm Intelligence Symposium, 2007. SIS 2007. IEEE, pages 289–
296. IEEE, 2007.

[42] Rui Mendes. Population topologies and their influence in particle swarm perfor-
mance. Doctoral Dissertation, Citeseer, 2004.

[43] J. Kennedy, R.C. Eberhart. A discrete binary version of the particle swarm al-
gorithm. Systems, Man, and Cybernetics, 1997. IEEE International Conference
on Computational Cybernetics and Simulation., Volume 5, pages 4104–4108, oct
1997.

[44] K. Veeramachaneni, L. Osadciw, G. Kamath. Probabilistically driven particle
swarms for optimization of multi-valued discrete problems: Design and analysis.
Proceedings of the IEEE Swarm Intelligence Symposium, pages 141–149, 2007.

[45] Nathan Fortier, John Sheppard, Karthik Pillai. Bayesian abductive inference us-
ing overlapping swarm intelligence. IEEE Swarm Intelligence Symposium (SIS),
pages 263–270, 2013.

[46] Nathan Fortier, John Sheppard, Shane Strasser. Abductive inference in Bayesian
networks using distributed overlapping swarm intelligence. Soft Computing,
pages 1–21, 2014.

[47] R. Tanese, J.H. Co-Chairman-Holland, Q.F. Co-Chairman-Stout. Distributed
genetic algorithms for function optimization. Proceedings of the International
Conference on Genetic Algorithms, pages 434–439. University of Michigan, 1989.

[48] D. Whitley, T. Starkweather. Genitor II: A distributed genetic algorithm. Jour-
nal of Experimental & Theoretical Artificial Intelligence, 2(3):189–214, 1990.

[49] T.C. Belding. The distributed genetic algorithm revisited. Proceedings of the
International Conference on Genetic Algorithms, pages 114–121, 1995.

[50] D. Whitley, S. Rana, R.B. Heckendorn. The island model genetic algorithm:
On separability, population size and convergence. Journal of Computing and
Information Technology, 7:33–48, 1999.

138

[51] David E Goldberg, John H Holland. Genetic algorithms and machine learning.
Machine learning, 3(2):95–99, 1988.

[52] F. van den Bergh, A. Engelbrecht. Cooperative learning in neural networks using
particle swarm optimizers. South African Computer Journal, 26:94–90, 2000.

[53] K. Ganesan Pillai, J. W. Sheppard. Overlapping swarm intelligence for training
artificial neural networks. Proceedings of the IEEE Swarm Intelligence Sympo-
sium, pages 1–8, April 2011.

[54] Nathan Fortier, John W Sheppard, Karthik Ganesan Pillai. DOSI: Training
artificial neural networks using overlapping swarm intelligence with local credit
assignment. Joint 6th International Conference on Soft Computing and Intelli-
gent Systems (SCIS) and 13th International Symposium on Advanced Intelligent
Systems (ISIS), pages 1420–1425. IEEE, 2012.

[55] M. Rabbat, R. Nowak. Distributed optimization in sensor networks. Proceedings
of the 3rd international symposium on Information processing in sensor networks,
pages 20–27. ACM, 2004.

[56] Reza Olfati-Saber, J Alex Fax, Richard M Murray. Consensus and cooperation
in networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.

[57] S. Patterson, B. Bamieh, A. El Abbadi. Convergence rates of distributed average
consensus with stochastic link failures. IEEE Transactions on Automatic Control,
55(4):880–892, 2010.

[58] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foun-
dations and Trends in Machine Learning, 3(1):1–122, 2011.

[59] Rina Dechter. Mini-buckets: A general scheme for generating approximations in
automated reasoning. IJCAI, Volume 97, pages 1297–1303. Citeseer, 1997.

[60] D. Nilsson. An efficient algorithm for finding the M most probable configurations
in probabilistic expert systems. Statistics and Computing, 8(2):159–173, 1998.

[61] A.P. Dawid. Applications of a general propagation algorithm for probabilistic
expert systems. Statistics and Computing, 2(1):25–36, 1992.

[62] L.M. de Campos, J.A. Gamez, S. Moral. Partial abductive inference in Bayesian
belief networks by simulated annealing. International Journal of Approximate
Reasoning, 27(3):263 – 283, 2001.

[63] K. Kask, R. Dechter. Stochastic local search for Bayesian networks. Workshop
on AI and Statistics, pages 113–122. Morgan Kaufman Publishers, 1999.

139

[64] Elvira Consortium. Elvira: An environment for creating and using probabilistic
graphical models. Proceedings of the first European workshop on probabilistic
graphical models, pages 222–230, 2002.

[65] E.S Gelsema. Abductive reasoning in Bayesian belief networks using a genetic
algorithm. Pattern Recognition Letters, 16:865–871, 1995.

[66] Carlos Rojas-Guzman, Mark A Kramer. Galgo: A genetic algorithm decision
support tool for complex uncertain systems modeled with Bayesian belief net-
works. Proceedings of the Ninth international conference on Uncertainty in arti-
ficial intelligence, pages 368–375. Morgan Kaufmann Publishers Inc., 1993.

[67] L.M. de Campos, J.A. Gamez, S. Moral. Partial abductive inference in Bayesian
belief networks using a genetic algorithm. Pattern Recognition Letters, 20:1211–
1217, 1999.

[68] N. Sriwachirawat, S. Auwatanamongkol. On approximating k-MPE of Bayesian
networks using genetic algorithm. Cybernetics and Intelligent Systems, pages
1–6, 2006.

[69] K. Ganesan Pillai, J. W. Sheppard. Abductive inference in Bayesian belief
networks using swarm intelligence. Joint 6th International Conference on Soft
Computing and Intelligent Systems (SCIS) and 13th International Symposium
on Advanced Intelligent Systems (ISIS), pages 375–380, 2012.

[70] Greg CG Wei, Martin A Tanner. A monte carlo implementation of the EM
algorithm and the poor man’s data augmentation algorithms. Journal of the
American Statistical Association, 85(411):699–704, 1990.

[71] Gilles Celeux, Jean Diebolt. A stochastic approximation type EM algorithm for
the mixture problem. Stochastics: An International Journal of Probability and
Stochastic Processes, 41(1-2):119–134, 1992.

[72] Gal Elidan, Matan Ninio, Nir Friedman, Dale Shuurmans. Data perturbation
for escaping local maxima in learning. Proceedings of the National Conference
on Artificial Intelligence, pages 132–139, 2002.

[73] Gal Elidan, Nir Friedman. Learning hidden variable networks: The information
bottleneck approach. Journal of Machine Learning Research, pages 81–127, 2005.

[74] Naftali Tishby, Fernando C Pereira, William Bialek. The information bottleneck
method. In Proc. of the 37th Annual Allerton Conference on Communication,
Control and Computing, page 368377, 1999.

[75] Wolfgang Jank. The EM algorithm, its randomized implementation and global
optimization: Some challenges and opportunities for operations research. Per-
spectives in operations research, pages 367–392. Springer, 2006.

140

[76] Ole J Mengshoel, Avneesh Saluja, Priya Sundararajan. Age-layered expectation
maximization for parameter learning in Bayesian networks. Proceedings of the
Fifteenth International Conference on Artificial Intelligence and Statistics, pages
984–992, 2012.

[77] Changhe Yuan, Brandon Malone. Learning optimal Bayesian networks: A short-
est path perspective. Journal of Artificial Intelligence Research, 48:23–65, 2013.

[78] David Heckerman. A tutorial on learning with Bayesian networks. Springer,
1998.

[79] Marco Scutari. Bayesian network repository, 2012. http://www.bnlearn.com/

bnrepository/.

[80] John Binder, Daphne Koller, Stuart Russell, Keiji Kanazawa. Adaptive prob-
abilistic networks with hidden variables. Machine Learning, 29(2-3):213–244,
1997.

[81] Bruce Abramson, John Brown, Ward Edwards, Allan Murphy, Robert L Win-
kler. Hailfinder: A Bayesian system for forecasting severe weather. International
Journal of Forecasting, 12(1):57–71, 1996.

[82] Russ C Eberhart, Yuhui Shi. Comparing inertia weights and constriction factors
in particle swarm optimization. Proceedings of the Congress on Evolutionary
Computation, Volume 1, pages 84–88. IEEE, 2000.

[83] Pat Langley. Machine learning as an experimental science. Machine Learning,
3(1):5–8, 1988.

[84] Richard E Neapolitan. Learning Bayesian networks. Pearson Prentice Hall Upper
Saddle River, 2004.

[85] D.J. Newman A. Asuncion. UCI machine learning repository, 2007. https:

//archive.ics.uci.edu/ml/datasets.html.

[86] Frans van den Bergh, AP Engelbrecht. A new locally convergent particle swarm
optimizer. Proceedings of the IEEE international conference on systems, man,
and cybernetics, Volume 7, pages 6–9, 2002.

[87] Nathan Fortier, John Sheppard, Shane Strasser. Learning Bayesian classifiers
using overlapping swarm intelligence. IEEE Symposium on Swarm Intelligence
(SIS), pages 1–8. IEEE, 2014.

[88] Nathan Fortier, John Sheppard, Shane Strasser. Parameter estimation
in Bayesian networks using overlapping swarm intelligence. To appear in
the Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO2015), 2015.

http://www.bnlearn.com/bnrepository/
http://www.bnlearn.com/bnrepository/
https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html

	Titlepage
	Copyright

	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms

	Abstract
	Chapter 1 — Introduction
	Contributions
	Overview

	Chapter 2 — Background
	Bayesian Networks
	Exact Inference in Bayesian Networks
	Structure Learning in Bayesian Networks
	Bayesian Network Classifier Learning
	Parameter Estimation and Learning with Latent Variables
	Particle Swarm Optimization
	Discrete Particle Swarm Optimization
	Overlapping Swarm Intelligence

	Chapter 3 — Related Work
	Distributed Soft Computing
	Distributed Optimization
	Common Approaches to Bayesian Inference
	Soft Approaches to Bayesian Inference
	Common Approaches to Bayesian Parameter Estimation
	Soft Approaches to Bayesian Parameter Estimation
	Common Approaches to Bayesian Structure Learning
	Soft Approaches to Bayesian Structure Learning

	Chapter 4 — Full Abductive Inference in Bayesian Networks
	Full Abductive Inference via OSI
	Full Abductive Inference via DOSI
	Experimental Design
	Comparison Against Existing Algorithms
	Comparison Against Modifications of DOSI
	Comparison of Overlap Structures
	Discussion

	Chapter 5 — Partial Abductive Inference in Bayesian Networks
	Partial Abductive Inference via OSI
	Partial Abductive Inference via DOSI
	Experimental Design
	Results
	Discussion

	Chapter 6 — Parameter Estimation
	Single-Swarm Particle Swarm Optimization
	Overlapping Swarm Intelligence
	Experimental Design
	Results
	Discussion

	Chapter 7 — Bayesian Network Structure Learning
	Learning Bayesian Classifiers
	Generative Structure Learning
	Structure Learning with Latent Variables

	Chapter 8 — Summary and Conclusions
	Summary of Contributions
	Future Work
	Publications

	References Cited

