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ABSTRACT

In this dissertation we develop ways to discover encodings within autoencoders
that can be used to exchange information among neural network models.

We begin by verifying that autoencoders can be used to make predictions
in the meteorological domain, specifically for wind vector determination. We use
unsupervised pre-training of stacked autoencoders to construct multilayer perceptrons
to accomplish this task. We then discuss the role of our approach as an important
step in positioning Empirical Weather Prediction as a viable alternative to Numerical
Weather Prediction.

We continue by exploring the spatial extensibility of the previously developed
models, observing that different areas in the atmosphere may be influenced unique
forces. We use stacked autoencoders to generalize across an area of the atmosphere,
expanding the application of networks trained in one area to the surrounding areas. As
a prelude to exploring transfer learning, we demonstrate that a stacked autoencoder
is capable of capturing knowledge universal to these dataspaces.

Following this we observe that in extremely large dataspaces, a single neural
network covering that space may not be effective, and generating large numbers
of deep neural networks is not feasible. Using functional data analysis and spatial
statistics we analyze deep networks trained from stacked autoencoders in a spatio-
temporal application area to determine the extent to which knowledge can be
transferred to similar regions. Our results indicate high likelihood that spatial
correlation can be exploited if it can be identified prior to training.

We then observe that artificial neural networks, being essentially black-box
processes, would benefit by having effective methods for preserving knowledge for
successive generations of training. We develop an approach to preserving knowledge
encoded in the hidden layers of several ANN’s and collect this knowledge in networks
that more effectively make predictions over subdivisions of the entire dataspace. We
show that this method has an accuracy advantage over the single-network approach.

We extend the previously developed methodology, adding a non-parametric
method for determining transferrable encoded knowledge. We also analyze new
datasets, focusing on the ability for models trained in this fashion to be transferred
to operating on other storms.
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CHAPTER ONE

INTRODUCTION

1.1 Motivation

The surface area of the Earth is 510.1 million square kilometers. The

troposphere, which is the layer of the atmosphere where weather takes place, extends

from 0 to 12 kilometers above the Earth’s surface. This surface area is constantly

being scanned by remote sensing devices that are both ground-based and space-

based. The scanning technologies are diverse, employing a wide variety of sensors and

observing the Earth at varying spatial and temporal resolutions. These instruments

produce an enormous volume of data. Therefore, any system making use of such

data will a priori have to navigate the problem handling of extremely large amounts

of data that are only comparable if they are calibrated in exactly the same way

or if the differences can be quantified. We may describe the temporal coverage of

the Earth as “arrhythmic” since the observations may not happen at a consistent

time interval, and “spatially inconsistent” since coverages are spotty and occur using

disparate instrumentation.

1.2 Numerical Weather Prediction vs. Empirical Weather Prediction

Numerical Weather Prediction (NWP) models the entire Earth mathematically

and predicts future conditions of the atmosphere by extrapolating the current

conditions based upon the dictates of the models. It is a precise treatment of the
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atmosphere and is based on a long legacy of science. There is a growing amount of

work that is being done in this direction, which we describe using the term Empirical

Weather Prediction (EWP). We define EWP as weather prediction by means of

analysis of the data alone, disregarding the atmospheric processes that produce this

data. In other words EWP deemphasizes knowledge about the physical and chemical

processes that describe the atmosphere and relies on machine learning techniques to

discover patterns in the data.

Several recent advancements may enable EWP for some critical atmospheric

problems. These problems include the determination of the speed and magnitude of

wind (wind vector determination) and the extrapolation of atmospheric character-

istics into the future (atmospheric condition prediction). These advancements have

occurred primarily in the area of remote sensing, which is technically any kind of

sensing in which the observer does not have direct contact with that which is being

observed. Here we use the term remote sensing to mean specifically observations

from space using satellite technology. The advancements include new, higher-

resolution sensor technology; new satellite constellations; and better ground-based

data collections devices. To ensure that the techniques of assimilating, analyzing,

and modeling this flood of data keep pace with the development of these collection

technologies, high-fidelity, high-resolution simulations are being created and used in

anticipation of the deployment of the observation technologies on a grand scale.

As an example, in our research we use an interpolated dataset that has:

• temporal resolution of the data at 15 minutes, meaning that a new snapshot of

the entire planet is achieved every 15 minutes;

• 15km grid at Earth’s surface (225 km2). This translates to 2,266,666 grid cells

at the surface of the Earth.
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• multiple elevations in a vertical profile (normally a vertical profile of 6 cells)

NWP is already computationally expensive at the current resolutions, even

over limited areas of the Earth [101]. Because we desire higher temporal and

spatial resolutions, it is important to use data-driven EWP to create new prediction

models. Since prediction using EWP promises to be less computationally intensive

than NWP, it should be able to handle the increased amount of data that results

from using these higher resolutions. We do not envision EWP as a replacement to

NWP, since NWP is an important endeavor that employs systemic understanding of

the atmosphere and atmospheric processes. However, these models will benefit the

meteorological community because they will add understanding of the difference in

how the atmosphere is understood through the mathematical models and how the

atmosphere actually behaves. This will facilitate improvement of their numerical

models: a cross pollination between NWP and EWP. It is this finer resolution that

now enables the use of data-driven methods to make wind vector determinations as

well as predictions of the future state of the atmosphere. The research detailed in

this dissertation concentrates on these data-driven methods.

1.3 Contributions

In this dissertation we take advantage of the opportunity exposed by the higher

resolution datasets to establish EWP as an alternative to NWP. To do this we will use

the attributes of simulated datasets derived from NWP models to identify encodings

in deep neural networks for transfer learning in weather prediction. The identification

of these encodings (or feature detectors) is an advancement on transfer learning using

neural networks because it uses knowledge gained from one area of the dataspace to

make assertions about another, spatially distinct area. In developing our technique,
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we make contributions to the meteorological community as well as to the computer

science community.

Our interest in Meteorological data started as a response to the Industry’s need

for novel ways of using some datasets to enrich others, as in this case where we

determine wind vectors from radiometric data. Through the development of our

research we discovered that our interest in it is due to its spatial, temporal, functional

nature. It is this type of data that we need to develop our techniques for transfer

learning. An early problem we address is whether it is possible to determine wind

vectors from atmospheric data that does not include previous wind vectors using a

lattice of neural networks? This is the domain-specific problem that exposes several

computer science research issues due to both the size and the dynamic nature of the

problem. We start in this area, with an eye towards increasing the generality of our

approach as we develop this research.

In this dissertation we detail our efforts that have culminated in the following

contributions:

• Examination of the use of autoencoders to augment radiometric data, giving

the system the ability to determine wind vectors. The difficulty is that static

“pictures” of the atmosphere cannot be used to determine motion. Wind vector

determination is a specific manifestation of this.

• Creation of a method to train neural networks based on stacked autoencoders

to perform prediction on spatiotemporal data, whose areas of interest are

influenced by the surrounding areas.

• Evaluation of the effectiveness of pre-trained feed forward networks on wind

vector determination, and the models’ ability to generalize over adjacent spaces.

This evaluation will help the community through the application of networks on
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new areas of the dataspace on which they were not trained, potentially reducing

the number of networks needed to make useful predictions over large areas.

• Novel application of unsupervised pre-training across diverse areas of this

dataspace in a way that tracks the methods used by NWP.

• A method of achieving a baseline in performance using unsupervised pre-

training in an effort to understand how predictions differ for distinct areas of

the dataspace.

• Transfer learning analysis of neural networks across the dataspace. We would

also like to characterize the transferability of neural network knowledge from

one area in the dataspace to another. This analysis concentrates on transferring

knowledge between locations that are spatially and temporally different.

• Identification of distinct, transferable encodings in trained neural networks.

• Development of methods for transferring encodings into other networks. This

will include a study of the effects of having performed these transfers.

• Development of a highly controlled technique for exploring this dataspace using

spatial statistics and functional data registration.

• Development of a method of “divide and transfer” that divides the dataspace

into contiguous clusters of application and performs an exchange of useful

encodings within these clusters.

• A method for expanding the hidden layers of a network to adapt the architecture

to increasing data variety.
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• A locality-sensitive clustering procedure that pays attention to both the data in

a spatiotemporal dataset as well as feature identifiers that have been collected

during a pre-training process.

• Application of this technique across three separate storm events, with transfer

between two of them.

• A “cluster to application” mapping procedure for transferring clustered neural

network models.

1.4 Organization

This dissertation is organized as follows: Chapter 2 contains background

information on weather prediction and neural networks. It also introduces the

dataspace and the general set of problems we are intending to address. We describe

the NWP-enhanced dataset that we use as ground truth data, the data organization,

and the current state of NWP. This chapter also contains a review of literature related

to this work. Some basis for the assumptions and the general approach that we take

to addressing the problems in this domain are addressed in this chapter. This includes

information about spatial and temporal distribution of our data as well as our general

decisions regarding neural network architecture.

Chapter 3 presents some results of the first set of experiments we conducted in

this area. We show that unsupervised pre-training may be used in a deep-learning

setting to estimate wind vector components and that they can approximate the

functional relationships between radiometric data and wind vector data.

Our second set of experiments evaluates the spatial generalization of stacked

autoencoders and is presented in Chapter 4. In this chapter we begin to explore

how well stacked autoencoders can be adapted to new areas of the dataspace whose
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data were not part of the initial training process. In other words, we see how well a

trained model can make predictions about areas that are adjacent to the initial area

over which the model was trained.

In Chapter 5 we use spatial statistics to identify transferrable encodings within

trained networks. We treat the meteorological data as functional, leveraging

functional data registration for a view into how these functions differ.

We continue developing our method of identifying transferrable encodings of

the data in Chapter 6. In this chapter we show how we divide the dataspace into

clusters that warrant the use of unique neural networks. These clusters exchange

internal encodings among each other in a novel subset transfer process. We compare

this technique, using several thresholds for the number of clusters produced, with the

performance of a single network over the same space.

In Chapter 7 we demonstrate extending the process that was presented in

Chapter 6 using a non-parametric process for identifying encodings. We also

demonstrate cross-dataset transfer learning, using data from Hurricane Harvey and

Hurricane Irma from 2017.

Finally, in Chapter 8 we give a brief summary of our major contributions, list

some conclusions, and give directions that this research can take in the future.
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CHAPTER TWO

BACKGROUND

2.1 Numerical Weather Prediction

Our area of application, meteorology, is a very developed field. In this section we

give an introduction to the state of the art in weather prediction. Numerical Weather

Prediction (NWP) involves using large supercomputers to solve a set of non-linear

partial differential equations, called the Primitive Equations, that govern atmospheric

physics [29]. The horizontal motion (momentum) equations for a spherical Earth

(Equations 2.1 and 2.2) represent Newton’s second law of motion, stating “...the rate

of change of momentum of a body is proportional to the resultant force acting on the

body, and is in the same direction as the force.” [101]

∂u

∂t
= −u∂u

∂x
− v∂u

∂y
− ω∂u

∂p
+ fv

∂φ

∂x
+ Fx (2.1)

∂v

∂t
= −u∂v

∂x
− v∂v

∂y
− ω∂v

∂p
+ fv

∂φ

∂y
+ Fy (2.2)

where t is the time, u, v, and ω are the independent Cartesian velocity components, f

is the Coriolis parameter, φ is the geopotential height, Fx and Fy are friction in

the x and y directions, φ is the geopotential (gravity-adjusted) height, and p is

the barometric pressure. The thermodynamic temperature equation (Equation 2.3)
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accounts for adiabatic (occurring without loss of heat) and diabatic (occurring with

loss of heat) effects on temperature.

∂T

∂t
= −u∂v

∂t
− v∂v

∂t
+ ω

(
RT

Cpp
− ∂T

∂P

)
+ H

Cp
(2.3)

where R is the gas constant for air, T is the temperature, C is the thermal capacity, p

is the pressure, H is heat and P is the rate of water input through precipitation. The

continuity equation (Equation 2.5) for total mass states that mass is neither created

nor destroyed. Equation 2.4 is an application of this principle for water vapor.

∂q

∂t
= −u∂q

∂x
− v ∂q

∂y
− ω∂q

∂p
+ E − P (2.4)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂p
= 0 (2.5)

where q is the specific humidity and E is evaporation. Finally, equation 2.6 represents

the ideal gas law.

∂φ

∂p
= −RT

p
(2.6)

In addition, further parameterizations must be estimated, including heat, evap-

oration, precipitation, and friction in all directions. Furthermore, a parameterization

scheme for sub-grid scale phenomena must be created. The system is also not a

closed system, as the Earth absorbs incoming solar radiation and emits some of this

radiation back into space [29,101].

There is a growing amount of work that is being done in the direction of using

machine learning models for weather prediction, which we describe using the term

Empirical Weather Prediction (EWP). We define EWP as weather prediction by
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Figure 2.1: Depiction of the Hexagonal Discrete Global Gridding System [15]

means of analysis of the data alone, disregarding the atmospheric processes that

produce this data. In other words, EWP deemphasizes knowledge about the physical

and chemical processes that describe the atmosphere and relies exclusively on machine

learning techniques to discover patterns in the data. To be clear, we do not make

any claims that Empirical Weather Prediction (EWP) provides functionality that is

superior to NWP. We hypothesize that EWP can supplement the NWP endeavor in

many ways and that both methodologies can benefit greatly by paying attention to

one another. At the outset, barring any ability to explain why the neural networks

that EWP will use make the decisions that they make, EWP can be used to inform

NWP practitioners about the effectiveness of their models. Such mechanisms, while

beyond the scope of this dissertation, would be very useful avenues for exploration.

2.2 Discrete Global Gridding Systems

NWP uses the Discrete Global Gridding Systems (DGGS) as a method of

geographical binning. A DGGS [69] is a system of adjacent polygons that cover

the entire planet. Such systems allow the collection of point observations that occur
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in the same vicinity so that each point collected in a polygon is seen as representative

of that polygon. The size of these polygons determines the resolution of the weather

information system. Throughout this dissertation we use grid cells with 15 kilometer

diameters, so in the language of remote sensing our system can be described as having

a resolution of 15 kilometers at sea level.

We have chosen to use a geodesic DGGS grid based on hexagonal grid shapes [36].

All of this formed the basis for our geospatial data binning procedure. Figure 2.1

shows a hexagonal DGGS superimposed over the entire planet at three different

resolutions. The geographic location of the point observations coupled with the

polygon arrangement makes up the “gridding” procedure for our data.

2.3 Neural Networks

Artificial Neural Networks (ANN) [61] are computational models originally

inspired by how the human brain was thought to function [41]. They act in a

highly complex, nonlinear, and parallel fashion, as the human brain does, and in

distinction to how traditional models of computation behave. To do this they employ a

massive interconnection of simple artificial neurons as their constituent computational

components. They store and make use of experiential knowledge from data using

synaptic weights on the connections between these artificial neurons [41].

Figure 2.2 represents a model of an individual neuron. The inputs on the left

of the diagram correspond to neuronal synapses, receiving input from a procedure

that feeds data to the network from an incoming dataset. After input is received,

the values of the inputs are then multiplied by weights wm. The circular node in the

center that is labeled with the large Σ is a summing junction, whose function is to

calculate the dot product of x and w plus the bias b. The result is the activation

potential or activation vk, which is then sent to an activation function, whose job it is
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x2 w2 Σ φ

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 2.2: Nonlinear model of an artificial neuron [41]

to limit the permissible amplitude range of the output signal to some finite value [41],

usually between 0 and 1. We use the ReLU function [39] as our activation function,

which forces the activation to be between 0 and 1.

The backpropagation procedure is then used to adjust the weights of each of the

connections between the nodes in the network. It does this by comparing the output

value of the network with the actual value in the training data. When this difference

is calculated, the negative gradient of this value with respect to the weights of the

incoming connections is computed. This lets the system know what it needs to do to

the incoming weights in order to minimize the prediction error. In multilayer neural

networks this procedure is propagated back from the output all the way to the inputs,

hence the name “backpropagation.”

The operation of this neuron is summarized here:

yk = φ

 m∑
j=1,k

wj,kxj,k + bk


where m is the number of inputs to the neuron; k is an index identifier for a neuron in

the collection of neurons (if multiple neurons are employed); wj,k is the weight of the

kth neuron given the jth input; xj,k represents the jth input; bk represents a “bias”
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Figure 2.3: Architectural graph of an multilayer feedforward network

node; and φ(·) is the activation function. This bias node is sometimes included to

apply an affine transformation to the value before the activation function is applied.

Common activation functions are the logistic function and the hyperbolic tangent

function. For our purposes we used the Rectified Linear Unit (ReLU) function [48],

corresponding to the following:

ReLU(u) =


0 if u < 0

u otherwise

Figure 2.3 shows the structure of a multilayer feedforward network with one

hidden layer. The middle layer is hidden because it is not observed or interacted

with directly from the perspective of either the input or output of the network [41].

Hidden layers have the effect of extracting higher order factors that are inherent in

the structure of the input data. The outputs from the input layer are used as inputs



14

to the hidden layer. The outputs from the hidden layer are in turn used as inputs

to the output layer. In many cases, including in the early parts of this investigation,

more than one hidden layer is used.

We use neural networks that are trained using the backpropagation algorithm,

which is a type of supervised training [81]. It uses the gradient of the error function

iteratively to change the weights of each of the inputs to the summing junction. For

the error function, we use the Mean Squared Error (MSE), with respect to the weights,

as follows:

E = 1
n

n∑
i=1

(predicted valuei − actual valuei)2

where E is the MSE and n is the number of elements that have been predicted.

2.4 Autoencoders and Unsupervised Pre-Training

Autoencoders, whose were first defined by Ackley, Hinton, and Sejnowski [9]

are neural networks that encode a vector of inputs into a lower-dimensional

representation, with the aim of decoding them into the original dimensionality with

minimal distortion [14]. Stacked Autoencoders have been credited with beginning the

current enthusiasm for Deep Learning in general [39]. They also form the basis of the

neural networks in our experiments.

Figure 2.4 depicts an autoencoder. The features enter into the input layer on the

left. The values of these dimensions are then multiplied by their weights and sent to

the hidden layer. The activations from the hidden layer are then multiplied by their

respective weights and sent to the output layer, which through training will become

an approximation of the input layer. Through training, the hidden layer becomes a

lower dimensional representation of the input layer, capable of being reconstructed

at the output layer. Mathematically, x∗ = g(f(x)) such that L(x∗,x) is minimized,
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Figure 2.4: Architectural graph of an autoencoder

where L is the loss function, which in the case of autoencoders is the reconstruction

error, which itself is defined as:

L(x∗,x) = ||x− x∗||

In Unsupervised Pre-Training (UPT), autoencoders are stacked using an itera-

tive procedure in which an autoencoder is trained to capture the behavior of the input

data [26]. The supervised learning procedure endeavors to benefit from leveraging an

unsupervised learning component during the pre-training phase. In the experimental

analysis performed in [26], results are offered that indicate that “unsupervised pre-

training guides the learning towards basins of attraction of minima that support

better generalization from the training data set.”
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Figure 2.5: General unsupervised pre-training operation

Figure 2.5 shows the operation of UPT when stacking three autoencoders. The

segment labeled “Autoencoder 1” at the top-left of the figure shows the input-hidden-

output layers of a single autoencoder like the one that is depicted in Figure 2.4. After

training Autoencoder 1, the hidden layer is extracted and added to the set of hidden

layers in a Multilayer Perceptron (MLP), as the arrow from the “Hidden” layer in

Autoencoder 1 to the “Hidden” layer under the MLP column shows. The same

procedure is repeated for Autoencoder 2, using the encoded output values from the

hidden layer of Autoencoder 1 as input, and Autoencoder 3 using the encoded output

values from the hidden layer of Autoencoder 2 as input. The final layer of the stacked

autoencoder should be a representation that is as close to the Autoencoder 2 output
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representation as possible and is therefore labeled “Output / Input.” To complete the

construction of the MLP, the same input layer from Autoencoder 1 is added to the

MLP at the head of the network. This is so we can train the MLP on the same training

dataset and with the same dimensionality that we used to train Autoencoder 1. The

output layer of the MLP consists of the desired number of nodes that correspond to

the classifications, or a single node in the case of regression.

2.5 Neural Networks in Weather Prediction

After recognizing that weather data is nonlinear and follows irregular trends,

Abhishek, et al. [8] developed “effective and reliable” nonlinear models using ANNs

to simulate them. In [8] they recognized “massive computational power required

to solve the equations that describe the atmosphere, error involved in measuring

the initial conditions, and an incomplete understanding of atmospheric processes”

as factors motivating the ANN approach. Further, they observed that “the ANN

minimizes the error using various algorithms and gives us a predicted value which is

nearly equal to the actual value.” Their approach specifically addressed temperature

forecasting and used an assemblage of temperature data, year over year, to predict a

recent daily maximum temperature. A key way that we differ from this approach is

that we do not rely on the data from the same time of year in the previous years for

our predictions. We rely on temporally contiguous data instances during the lifetime

of a hurricane.
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2.6 Weather Data

2.6.1 Space-Borne Remote Sensing

There are several problems that come from the areas of meteorology and remote

sensing that expose a need for EWP and for this research. This section introduces

these problems and explains why these issues persist today.

“Remote sensing” refers to any observation that an instrument makes without

making direct contact with the subject of the observation [106]. Here, we define

“remote sensing” strictly to be the use of space-bourne observation technologies.

2.6.2 Passive Microwave Radiometry

The primary type of remote sensing data we use for our experiments is Passive

Microwave Radiometry, which operates on the principle that the Earth is a black-body

emitter of radiation. Some of this radiation is in the form of thermal emissions, which

at longer wavelengths can be detected using instruments called Passive Microwave

Radiometers (PMR) [106]. The detection of phenomena at these wavelengths is

important because some of them interact with the constituent components of the

atmosphere, such as nitrogen, oxygen, and water vapor. For example, radio waves

at 118 Ghz interact with oxygen [87].

Figure 2.6 depicts the interaction of microwaves with oxygen and water vapor

between 0 GHz and 500 GHz. The areas where the transmission percent dips to 0

percent are called absorption bands. Microwaves with a wavelength of around 118 GHz

interact with water, as can be seen in the chart where the transmission percent dips

to zero and then returns to around 74 percent. Likewise, microwaves at a wavelength

of around 183 GHz interact with water vapor. It is this interaction that allows

radiometers to measure the state of these chemicals in the atmosphere.
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Figure 2.6: Chemical absorption of microwaves [4]

Figure 2.7 is a composite image taken by the Advanced Technology Microwave

Sounder (ATMS) on the Suomi National Polar-orbiting Partnership (NPP) satel-

lite [97]. The image shows the state of the atmosphere as seen through the instrument

at 183.31 GHz. Due to various constraints on the system (power, orbital profile, etc.)

such an image can only be formed a few times a day. Since the temporal resolution

is so low, the types of effective machine learning that can be done using such data is

very limited because weather phenomena can form and dissipate on a time scale that

is much finer than the resolution of this system. An example of this phenomenon is

summer storms in the midwest that can form and dissipate in the span of merely a

couple of hours. Observations taken before and after a summer storm cause valuable
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Figure 2.7: Global view at 183.31 GHz [97]

information that would be missed completely as the storm is not represented in the

data at all.

On either side of 118 GHz there are channels that are relatively opaque or

transparent1. In other words, if the sensitivity of the radiometer is modulated to

a wavelength slightly lower than 118 Ghz then the radiometer will be able to see

through more of the atmosphere and closer to the surface of the Earth. If it is

modulated slightly higher, then it is not able to see as far into the atmosphere and

will therefore be reading information about higher altitudes. The effect of this is

that if several channels surrounding 118 GHz are read, then a vertical profile of the

atmosphere can be obtained [34]. Such a vertical profile is called a “sounding” because

1The exact level of opacity depends on other factors.



21

of an analogy that is made between obtaining “soundings” of water depth using sonar.

The number of frequencies that are used will provide a “vertical resolution,” which is

the spatial resolution of the readings in the vertical direction. In effect, this produces

a 3-dimensional representation of the Earth’s atmosphere.

2.6.3 Wind Data

In the existing data and literature, wind vectors are represented using three

components: the East-West component u, the North-South component v, and the

vertical component w. A negative u value indicates eastward motion and positive

indicates westward motion, a negative v value indicates southward motion and

positive indicates northward, and a negative w value indicates downward motion

and positive indicates upward.

Information about wind vectors primarily comes from ground stations that

are located throughout locations on the surface of the Earth. This data is quite

limited as it can only give information about the two dimensional wind vector at

exactly one altitude. This information is supplemented by wind vector readings that

can be obtained using Doppler radar and weather balloons, which can take wind

measurements aloft, but only in specific areas.

Space-borne wind vector data can be derived using scatterometer measure-

ments [64]. This is an active technology, meaning that the instrument broadcasts

a signal to the subject of observation and senses the reflection of that signal. Because

it is active, it requires a lot of power to run and therefore has seen limited deployment.

2.7 Weather Determination and Prediction

We define weather determination to mean the specification of weather dimensions

in the current time from other dimensions that are co-located in space and time. In
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other words, if we are determining wind vectors, we determine them from dimensions

that do not include wind vectors. We define weather prediction to mean extrapolation

of weather dimensions into the future. This section introduces the problems upon

which we focus in this area.

2.7.1 Wind From Radiometric Readings

Establishing a wind vector measurement using only radiometric readings is

difficult and is currently a frontier in weather analysis [33]. Radiometers do not

detect movement. Nevertheless, knowledge of wind vector measurements using only

radiometric readings could be very important, since it might be able to add vertical

wind vector soundings to a large portion of the Earth’s atmosphere [99] and increase

the awareness of the disposition of wind over the rest of the Earth at a minimal cost.

2.7.2 Problem with Neural Networks Meteorology

Mathematical precision can be computationally expensive. Since this mathe-

matical precision is desired, very large supercomputers have to be dedicated to the

problem of weather prediction [29]. This is because of the complexity of the equations

that are used to describe the atmosphere and the computational techniques that have

to be utilized to perform the extrapolations necessary to predict the weather (see

Section 2.1) [8]. Still, imprecision creeps back into the system at every level, since

there are many causes of uncertainty in a system as complex as the weather.

In some cases where remote sensing is used for weather observation, the types of

observations that can be made are limited by the instrumentation. This is the case

when all that is available is satellite observations, such as when observing oceans, or

other remote areas of the Earth. Using the example of radiometric data, it is easy for

this type of instrument to determine things like temperature, moisture content, and

precipitation type, which are all critical to determining atmospheric conditions. But
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other useful information, such as wind vectors, must be inferred because it cannot be

observed directly using this technology.

2.8 Literature Review

2.8.1 Stacked Autoencoders

One purpose of using Autoencoders is to obtain a lower-dimensional encoding

of a dataset [9]. Stacked autoencoders are arranged so that a progressively lower

dimensional representation of each successive layer is achieved by autoencoding the

previous layer. The general concept is that each layer captures the fundamentally

important features of the previous layer. As in generalized ANNs, in stacking these

Autoencoders, there is an assumption that the data expresses a hierarchical nature.

Exploiting this, each subsequent layer learns a higher level of abstraction from its

predecessor. Pre-training an ANN in this way results in a set of ANN layers that

have captured the main variations in the input data [26].

2.8.2 Numerical Weather Prediction

Numerical Weather Prediction (NWP) began in its basic form about a century

ago [56]. Previously, weather forecasting relied on the opinions and experience of

experts using very sparse observations with data points drawn crudely, by hand, on

weather maps. It was at this time that the principal concern of “advection,” the

transport of fluid characteristics and properties by the movement of the fluid itself,

was identified. It was the job of the human forecaster to perform the necessary

weather prediction extrapolations using this sparse and irregular data [29].

A significant advancement came about with the development of thermodynamics

and enumeration of physical principles that describe the atmosphere. A purely

mathematical approach was proposed by Abbe in [6]. Explicit scientific analysis
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was undertaken following this by Bjerknes [19], who enumerated basic variables of

pressure, temperature, density, humidity, and the three wind vector components as

basic variables to be used in prediction. He also identified equations of motion,

continuity, and state expressing thermodynamics for these variables. Bjerknes’ efforts

were hampered by the absence of computational capability. Modern approaches to

weather prediction are current incarnations of the methods of Richardson [101], who

favored methods of mathematical extrapolation following the dynamics identified

by Bjerknes.

Drawing on his interest in turbulent fluid flows, John Von Neumann recognized

that the weather prediction problem was ideal for an automatic computer [56]. The

effort that came out of this interest identified the problem that integrating the

primitive equations using a short time step rendered computation intractable.

Numerical methods in meteorology were created because computers, while

excellent at arithmetic, had difficulties with calculus, especially in this domain [57].

The equations of Bjerkens, and of those who advanced the science in subsequent years,

require computers to approximate solutions to a variety of differential equations.

Often the time scales on which the approximations to the solutions to these differential

equations occur dictate the precision with which phenomena can be predicted [96].

A current state of the art regional weather forecasting model is the Weather

Research and Forecasting model (WRF). It is a portable, open-source community

model that allows the inclusion of custom physics packages [110]. We made use of

WRF in our research to perform critical data interpolations that gave us consistent

temporal and spatial resolutions.
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2.8.3 Non-neural Machine Learning Methods in Weather Prediction

2.8.3.1 Overview Machine learning is becoming increasingly prevalent in weather

prediction. A manifestation of this is IBM’s acquisition of the product and technology

assets of The Weather Company in 2016 and subsequent launch of “Deep Thunder,”

which is “the World’s Most Advanced Hyper-Local Weather Forecasting Model” [2].

In several press releases, IBM has said that they are using historical weather datasets

to train machine learning models, though IBM and The Weather Company are not

revealing the exact machine learning methods that they are using [20,45,46].

In general, a variety of statistical methods have been used to analyze weather

data and to create predictive models. Machine learning, in particular, is becoming

more popular as an avenue of research. Williams et al. provide an example using

decision trees by combining NWP forecasting information with random forests in

order to rank the performance of predictors [52]. Their intent was to find the best

combination of predictors based on day, hour, and location, because the optimal set

of predictors may change due to daily initial conditions. Using the data from several

variables obtained from satellite and ground station measurements, combined with

the ground truth provided by TITAN (an external process for thunderstorm boundary

detection) [25], they successfully identified the best predictors for thunderstorm

initiation, which simplified the extrapolations that had to be performed in the

NWP process.

2.8.3.2 Genetic Programming Feng, et al. created ClimateLearn [28], which is a

toolkit for “climate network analysis.” “Climate networks” are networks of correlated

fields on a global or regional level. The correlations are characterized by similar

patterns of climate variability. They used genetic programming to forecast the time

evolution of NINO3.4 index (the sea surface temperature anomaly averaged over the
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area of interest) which is a scalar characteristic of El Niño. The scalar characteristic

would give them information about the presence and intensity of El Niño events.

An interesting technique was created by Singh and Gill, who concentrated on

time series prediction, assuming a temporal relationship in the state of the dimensions

and also a relationship among the dimensions [90]. This was an adaptation of

the work of Siu, et al., who improved the backpropagation algorithm using genetic

programming as a strategy of escaping local minima [92]. Such relationships were

not considered in the work of Siu, et al., who were not using weather data in their

experimentation.

2.8.3.3 Probabilistic Graphical Models Cofiño, et al. use probabilistic graphical

models to perform meteorological time series prediction by modeling spatial and

temporal dependencies among weather stations [22]. They derived a Bayesian network

whose graph was learned from the data available from these weather stations. They

proposed an efficient methodology for obtaining precipitation forecasts using inference

mechanisms on the Bayesian networks created using the temporal dependencies

extracted from the weather station dependency models.

2.8.3.4 Support Vector Machines Using support vector machines, Rao, et al. [77]

estimated the maximum temperature of a day based on the maximum temperature

from a series of previous days. They used linear support vector regression to make

this prediction. Their approach did not differ significantly from the approach of

Radhika and Shashi [73], who achieved better performance, as measured by the mean

squared error, than a multilayer perceptron by minimizing an upper bound on the

generalization error rather than the training error. Pérez-Vega, et al. [70] made

an additional attempt at the temperature forecasting problem using support vector
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machines, though they emphasized the preprocessing of the data as the critical step

in performing the regression.

In 2011, Wei used support vector machines to build a system for forecasting

hourly precipitation during typhoon events [102]. For this, Wei used the advanced

wavelet kernel because of the kernel’s high predictive ability when applied to areas of

pattern recognition. The performance of this technique was compared with a more

traditional support vector machine that used a Gaussian radial basis function. They

found that the use of the the wavelet kernel resulted in slightly better prediction

accuracy than when the Gaussian radial basis function was used.

2.8.4 Deep Learning Methods in Weather Prediction

Subhajini provides a survey of the application of neural networks in weather

forecasting [95]. The conclusion of the survey is that reasonable accuracy can be

obtained using a variety of neural network models. The audience of this work is, in

general, meteorologists and Earth scientists. This is an example of several survey

papers that have been published in the last few years, signaling a positive change in

attitudes towards neural methods in this domain.

Deep methods have seen a trend in usage in meteorology, particularly for

rainfall prediction. Hernández, et al. [42] used deep learning to predict accumulated

daily precipitation a day in advance. They used a “multilayer autoencoder” (as

opposed to a stacked autoencoder), where the hidden layers of the autoencoders

are directly connected to single nodes in the single hidden layer of a multilayer

perceptron. They used a variety of input variables related to rainfall such as relative

humidity, temperature, dew point, rainfall, sun brightness, and barometric pressure

over ranges varying from the previous three to the previous five days. Their technique

outperformed the use of multilayer perceptrons alone and significantly outperformed
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the work of Abhishek et al. [7] who used a multilayer perceptron three layers deep

with 10 and 20 nodes per layer. Our primary methodology differs from that of

Hernández, et al. because we are using unsupervised pre-training to train stacked

autoencoders rather than to condition the nodes of a single layer perceptron.

Salman, Kanigoro, and Heryadi compared the prediction performances of recur-

rent neural networks, conditional restricted Boltzmann machines, and convolutional

networks in the exploration of hierarchical weather representations that result from

the training of these networks [83]. Specifically, they wanted to predict the behavior

of El Niño / Southern Oscillation (ENSO) parameters (wind, oscillation index, sea

surface temperature, and outgoing long-wave radiation). Their study was preliminary,

so their methodology was largely exploratory, and they did not claim that they had

a superior technique.

Grover, Kapoor, and Horvitz studied combining discriminatively trained predic-

tive models with a deep neural network that models the joint statistics of weather

related variables [40]. They made use of the spatial characteristics of the data,

learning long-range spatial dependencies in the process. They used this technique

effectively to predict wind speeds, dew points, geopotential heights, and temperature

over a period of time ranging from 6 to 24 hours. Their technique performed well

against some state of the art methods that are currently being used at the National

Oceanic and Atmospheric Administration (NOAA).

In 2015, Dalto, Matsuko, and Vasak [24] applied deep ANNs to the problem

of ultra-short-term wind forecasting. By intelligently reducing the number of input

variables, they allowed the network to complete training in a reasonable amount of

time. This input variable reduction was based on Partial Mutual Information Input

Variable Selection, which determines the degree of redundancy of input variables.
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They used separate pre-trained Stacked Denoising Autoencoders for each wind vector

component, much like components of our work.

Multilayer pre-trained Restricted Boltzmann Machines were used in the work

of Narejo and Pasero [63] to perform “meteonowcasting,” (i.e., predicting conditions

of the present or very near future). They used another method based on mutual

information for parameter optimization relative to the time-step of interest. Using

this analysis, the critical atmospheric parameters for making these very short term

predictions were found to be the temperature and the time of day. The authors

used several different network topologies, adapting the architectures to the diverse

configurations of atmospheric parameter variables.

Wang, Balaprakash, and Kotamarthi used output from the Weather Research

and Forecast model (WRF) to train deep neural networks in hopes of finding “...an

accurate alternative to physics-based parameterizations.” [100] They concentrated

specifically on the Planetary Boundary Layer, which is the “portion of the atmosphere

in which the flow field is strongly influenced directly by interaction with the surface

of the Earth.” [68] In this area, the wind velocity, temperature, and humidity

dynamics greatly influence the conditions of the underlying atmosphere. They

achieved a successful simulation of vertical profiles, or how the aforementioned

variables behave moving vertically from the surface, within the boundary layer for

several response variables, including wind velocity, temperature, and water vapor,

successfully accounting for the diurnal cycle. This is another verification of the

viability of ANN’s in this domain. Our work is quite different in that we are searching

for transferable encodings within these trained networks.
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2.8.5 Transfer Learning

There are many times in machine learning when it is assumed that data upon

which machine learning procedures can be trained, tested, and applied are drawn

from the same dataset, implying that they have the same distribution. This is not

always the case. Sometimes the assumption that there are commonalities in the way

source and target datasets behave. By “sufficient” we mean that the training will

apply to the domain of interest to a useful degree. Transfer Learning (TL) makes use

of knowledge and internal representations that were captured from auxilliary domains

to build models for new domains [55, 67, 98, 104]. In TL, a machine learning system

uses some information that has been learned in one setting to improve performance

in another setting [39].

According to Pan and Yang [67], there are three major sub-disciplines that make

up TL: inductive transfer learning, unsupervised transfer learning, and transductive

transfer learning. In inductive transfer learning, the source and target data domains

are the same, but the source and target tasks are different. This is used in situations

where source and target labels are available, or in a situation where the source domain

labels are unavailable but the target domain labels are available. Transfer in the latter

situation is constrained to representation learning, which helps in the target domain

since the domains are the same. Unsupervised transfer learning, which is an important

subtask of our research, is similar to inductive transfer learning but differs in that

what is being sought is a clustering, density estimation, or dimensionality reduction.

It is used when the source and target domains and tasks are all different but related.

In our research we are primarily interested in transductive transfer learning, in which

the source and target domains are different but related, as in different segments of the

atmosphere (due to differences in underlying terrain, storm lifecycle, solar radiation,

etc.), and the source and target tasks are the same.
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An advance in TL was made by Cao, et al. [21] who were looking at the problem

of how to avoid “negative transfer,” where the transfer of a trained procedure to a

new domain hinders prediction performance. Cao, et al. used a Gaussian Process to

adapt TL schemes, automatically estimating the similarity of the source and target

tasks in a process they called “safe transfer.” Such an approach is interesting from

our perspective as we hope to adapt the predictor to the problem, and not necessarily

the problem space to the predictor.

More recently, Hu, Zhang, and Zhou [44] addressed the short-term wind speed

prediction problem for situations in which wind speed data over new wind farms was

unavailable. The authors were able to effectively predict wind speed by considering

the terrain and topography of the areas of interest along with the prerequisite

atmospheric variables.

2.8.6 Explainable AI

Addressing a deep concern that is an obstacle for the adoption of ANNs in many

domains, Samek, Wiegand, and Muller [85] state that “it is not clear what information

in the input data makes them arrive at their decisions.” Methods that combine the

worlds of transfer learning and explainable AI have been elusive. In the community,

published work that addresses this issue is sparse at best.

Through discovering useful and transferable encodings in the internal represen-

tations within ANN’s we believe that we are addressing the explainable AI question

pertaining to ANN’s on their own terms. In order to create an explanation of how an

ANN makes the decisions that it makes we would have to translate the endemic logic

of ANN’s to logic that humans can understand. This translation will be imprecise.

If we can get ANN’s to exchange information amongst themselves according to their

own logic we will have made a significant contribution to this area of understanding.
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2.8.7 Functional Data Analysis

Functional Data Analysis (FDA) is the process of analyzing data that is

generated as a result of some underlying process. Prerequisite to this treatment, the

data are modeled as a function, often of time or space. One of the first texts to define

FDA and describe several attending analysis methods is written by Silverman, et

al. [89]. FDA treats functions as single entities, rather than sequences of individual

observations. To do this, the data are represented as linear combinations of basis

functions, which are well suited for storing information about functions. Silverman,

et al. consider two major types of basis functions: Fourier basis for describing

periodic data and B-spline for data without strongly cyclic variation. The power

of matrix algebra could be brought to bear on the resulting linear combinations. In

our experiments we use the B-spline basis, since in our FDA treatment of data we

are studying intra-day measurements. In the future, for multi-day datasets cyclic

variation may become more of an issue because of the diurnal cycle. This may then

motivate the use of a Fourier basis for FDA.

Bel, Bar-Hen, and Petit used FDA to “...account for interactions between climate

variables...” in their study of paleoecological data [16]. They were studying the

impact of global warming on genetic diversity and how climate affects this. Their

functional dataset reconstructed climate variables (temperature and precipitation)

over the past 15,000 years. Their work is an example of how FDA techniques have

helped Earth scientists to discover patterns and interactions among variables over a

long term.

In meteorological Earth science, King [50] used functional analytic methods to

analyze climate change data. The author fit temperature time series data to a spline

basis to track temperature changes in US cities over the last few decades. This,

however, was not a machine learning study.
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2.9 Technical Approach

In this research we use neural networks whose hidden layers are autoencoders

that have been preconditioned using unsupervised pre-training. We adapt the internal

layers to the data and then proceed with training the model as a feedforward network.

This chapter gives some reasons for our treatment of the data and our use of

autoencoders around which to build our models.

2.9.1 General Data Treatment

The primary data in which we are interested for the purposes of this dissertation

is spatial, temporal, functional data. Meteorological data fits this description because

it is highly structured data whose dynamics are dependent on time and space

relationships. We call this data “functional” because we treat the process that

generated the data as a singular entity, rather than treating the data as sequences

of individual observations. The functions in meteorology have space and time as

their abscissas. Importantly, these temporal and spatial dependencies are consistent

across time and space. This means that in an ideal collection of this data there is a

regular, consistent temporal interval of data distributed at collection points that are

consistent distances from one another.

Meteorology is a subject that is experiencing a lot of excitement regarding

artificial neural networks and associated technologies. Circumstances are not always

ideal though, as the distribution of data collection points is not evenly spaced, nor is

data collected at a consistent time interval. This motivates the use of the Weather

Research and Forecasting model, which is a system that makes spatial and temporal

interpolations based on numerical models.
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2.9.2 Use of Autoencoders

Right now there is a wide variety of ANN types that are being leveraged in

meteorological research. For example, Wei opted for a “Deep Learning-based DNN”

in his study on wind simulations, with a reference to the use of Convolutional Neural

Networks (CNN’s) to expand the capabilities of their model [103]. Wimmers and

Velden instead used “DeepMicroNet,” which is based on CNN’s as well [107]. The

spatial and temporal nature of this data might motivate the use of CNN’s, which by

design address both space and time, and Long Short Term Memory (LSTM) networks,

which by design address time. In this dissertation we elected to use feedforward

networks composed of autoencoders that were pre-trained using unsupervised pre-

training because, for now, we wanted to create as direct a relationship with the state

of the art of (NWP) as possible.

To explain our model’s relationship to NWP, Figure 2.8a shows the forecast

domain, which consists of 3-dimensional grid cells. The figure shows rectangular

cells, which represent just one among a multitude of ways the atmosphere can be

divided into grid cells. Figure 2.8b shows an example of one dynamical process in

which adjacent grid cells have an effect on the conditions of the grid cell about which

predictions are being made. The physics underlying the grid cell and its surrounding

grid cells are illustrated in Figure 2.8c, where some more detail is given about the types

of processes that are exchanged among the cell under study and its surroundings.

Our version of this situation employs similar logic, considering a center cell and

each of this cell’s surrounding cells. Figure 2.9 shows the hexagonal gridding system

that we used. Each of the cells surrounding the center cell in this figure is analogous

to the conditions in the cells surrounding the forecast domain cell in Figure 2.8. We

elected to simulate the general spatial treatment of NWP in our ANN environment in

the manner that we did because the relationship to the NWP spatial treatment is very
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Figure 2.8: Forecast domain representation [94]



36

Level: high

Level: mid

Level: low

Figure 2.9: The 27 3D DGGS Cell Lattice

straightforward. Since this relationship has been established here, the adaptation to

Neural Network models more adapted to spatial and temporal data can proceed in

the next generation of this research.

2.10 General Data Pipeline

Our general data pipeline is shown in Figure 2.10. Significant variations on

this general procedure will be explained in the chapters that follow as they happen.

The raw data was taken from satellites, ground stations, and other collections that

normally act as inputs for the WRF system. Radiometric readings and wind readings

came from separate systems, as different instruments are used to collect either one of

them. The design matrices were formed as multidimensional arrays. Normalization

was done on a per-dimension basis across all time slices and all locations to a range

of between −1 and 1. The negative values only happened in the case of the wind

vectors (it does not make sense to have negative precipitation, for example). The
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Figure 2.10: General data pipeline

time shifts were performed so that we could account for the temporal nature of the

system within our chosen architecture, that of feedforward networks.

2.11 General Experimental Design

Figure 2.11 depicts our general experimental design. Again, clarifications are

made in each of the following chapters where the experimental design differs from

this. For most of our experiments we use a single prototype network from which

all of our networks are derived. This is so the initial network will have the same

initialization values, removing a source of random variation. This is not the case for

the initial experiments. The design matrix is the output from the general procedure

that is explained in Section 2.10. The training procedures are subject to variation
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Figure 2.11: General experimental design

and one or more instances of repetition, which will be explained in the chapters that

follow. Finally, the application (testing) of these models happens after these other

procedures have been completed.
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CHAPTER THREE

DEEP LEARNING FOR WIND VECTOR PREDICTION

3.1 Overview

Figure 3.1 shows Hurricane Sandy as it was on October 29, 2012. This hurricane

was the second costliest storm in the history of the United States [27]. We used data

collected during this hurricane, coupled with WRF interpolations of the conditions

during this hurricane as our medium for our first investigation in the first phase of

the research detailed in this dissertation.

For this phase we used unsupervised pre-training to condition a four-layer multi

layer perceptron to determine wind vectors using radiometric data. The reasons that

we used the four-layer architecture are that we believed that this architecture provides

enough of an abstraction from the 168 input dimensions (for no-wind experiments)

and still retains enough differentiation to allow us to examine how the training process

proceeded.

3.2 Dataset

The output of the WRF model interpolations of Hurricane Sandy were created

by Zhang and Gasiewski [109]. It consists of data captured directly from the hurricane

plus temporal and spatial interpolations. The WRF-enhanced dataset provides data

at a 5 km grid spacing and generates the entire field at a time interval of 15 minutes.

Figure 3.2 shows the area covered by the interpolated dataset, which corresponds to

an area of the Eastern seaboard of the United States for one 24 hour period. The

area is bound in the southwest at 26.4902◦ north, 81.6064◦ east and in the northeast
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Figure 3.1: Hurricane Sandy [27]

at 41.2117◦ north, 60.3809◦ east. The box in Figure 3.2 appears distorted due to the

geodesics on the surface of a sphere.

Figure 3.3a shows where the standard deviation of the barometric pressure varied

most, with the darker areas corresponding to a greater standard deviation and the

lighter areas corresponding to a lesser standard deviation. This area was in the

northeast of the dataspace. Likewise, in Figure 3.3b the lighter areas represent areas

where the standard deviation of the temperature over the entire 24 hour dataset was

lower and the darker areas show where it was higher.

After we chose a point in the Earth’s atmosphere to analyze, we collected

information about all of the areas surrounding this point. The dataset was binned

using a 3D hexagonal DGGS, so we made predictions concerning the entire cell in

which our point of interest lies. Each individual cell has a horizontal resolution
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Figure 3.2: The area of interest included in the WRF simulations

of 15 kilometers at the surface of the Earth. Figure 3.4a shows this lattice from the

surface of the Earth to the top of the atmosphere. Each level of this lattice represents

around 2,000 meters. We are interested in the sixth level from the ground, since this

corresponds to a level of around 30,000 to 36,000 feet, which is an area of heavy air

traffic.

Figure 3.4b shows a cutaway of this lattice. The cell at the center contains

the point in the atmosphere in which we are interested. There are three layers of

surrounding cells from which we collect data in order to perform our experiments.

These correspond to the elevation containing our point of interest and the cells that

lie immediately above and below this point. For each of these elevations, data from

the center cell and all of the cells corresponding to all six hexagonal azimuths are

collected. The number of data points for each cell, and for each time period was on

the order of 10 (varying by at most 2 in either direction).

In this phase of our research, our major concern was to ensure that feedforward

networks with unsupervised-pre-trained could be used to simulate some of functions
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(a) Barometric Pressure (b) Temperature

Figure 3.3: Standard deviations over time of barometric pressure and temperature

that spatially relate atmospheric components, specifically relating to radiometric

data and wind vectors. This is useful in meteorology because of the elusive nature

of the specific functional relationship between radiometric data and wind vector

determination, as radiometers (in their existing deployments) do not detect wind.

We believed that these relationships could be learned from the data that is available

using this neural model.

Our experiments all have the assumption that the current weather conditions of

any location depends on:

1. the previous state of that location;

2. the previous states of the locations immediately surrounding that location.

This is in keeping with the explanation of our experiments’ relationship to NWP

explained in Section 2.9.2. With respect to our experiments, if we are attempting to

determine wind vectors for a location, the current conditions can be influenced by:

1. the current state of that location not including the wind vector (which we do

not know);



43

Top of Atmosphere

Surface of Earth

Level: high

Level: mid

Level: low

Level: high

Level: mid

Level: low

a) Hexagonal lattice from
ground to top of atmosphere b) The 21 3D DGGS cell lattice

Figure 3.4: DGGS and surrounding cells

2. the previous state of that location;

3. the previous states of the locations immediately surrounding that location.

3.3 Approach

Referring again to Figure 3.4, we are interested in making predictions about the

center cell, which is outlined in bold. As stated above, we assume that the current

conditions in that cell are influenced directly by its own conditions in the previous
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Figure 3.5: 7 cells representing one DGGS level

time slice, and the conditions of all the cells adjacent to it in the previous time slice.

The figure puts this concept into three dimensions, showing that influences on the

cell in which we are interested can come from any azimuth and above and below.

To simplify, Figure 3.5 depicts one level of the DGGS lattice. In this case we

want to infer the condition of cell 0. Cells 1 through 6 correspond to adjacent cells

on this level with their respective azimuths. For example, cells 1 through 6 in one

scenario would have azimuths 32, 78, 139, 215, 260, and 319, indicating that all of

these cells surround the center cell.

For each experiment, we retrieved all of the data for each variable and for each

time slice from each cell for the entire duration of the simulation. These readings

were sorted by time. Each reading, including the wind vector reading, was regarded

as representative of the entire cell from which it came. Since our DGGS cell resolution

is 15 km and the simulation resolution was 5 km, there were on the order of 10 readings

(sometimes varying by as much as 2) for each time slice for each cell. Therefore, in

most cases, the radiometric data do not correspond to the exact locations of the wind

vector data, but they always occur in the same cell.

3.4 Experiments

Figure 3.6 shows the general outline and process flow of our experimental

procedure. This section explains each of the steps of this procedure in detail.
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Figure 3.6: Overview of the experimental procedure

3.4.1 Locate Containing DGGS Cell and Retrieve Surrounding DGGS Cells

For each of our points of interest on the map, a PostGIS query is made to the

database to obtain the DGGS cell that contains this point and another set of queries

to obtain all of the cells surrounding this cell. For each of these cells, their azimuths
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Table 3.1: Data dimensions for each point in the simulation
Reading Source Reading Name

Radiometry Simulation

Temperature
Pressure

Cloud Density
Rain Density

Ice Density
Snow Density

Graupel Density

Wind Simulation
Wind U
Wind V
Wind W

are recorded and will be used later to identify the location of individual readings.

The height information is not held in the DGGS data structures, though in a future

incarnation of this system this could certainly be the case.

3.4.2 Retrieve Cell Data Points

For each of the 22 cells retrieved from the database1, all of the points containing

data are retrieved. Table 3.1 shows the dimensions of data at each of these points.

The radiometry data provides the temperature, barometric pressure, cloud density,

and precipitation type. The WRF wind interpolations provide Wind U, Wind V, and

Wind W which are the u, v, and w wind vector components. These are the points

of data that we are interested in for our prediction, where u is the east / west vector

component, v the north / south component, and w is the vertical component. Each

of these readings are tagged with the elevation and azimuth information from the cell

1Included in the cells retrieved is the data from the 21 cells for the previous time slice plus another
query for the current conditions of the center cell, making 22 cells. If the altitude of interest is at
sea level or at the highest altitude captured by the dataset, the bottom-most or top-most level does
not exist. So the data from the 14 cells in the previous time slice plus the current conditions of the
center cell makes 15 cells.
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Table 3.2: Retrieved design matrix

Time
Slice

Input
Dimension 1

Input
Dimension 2 · · · Input

Dimension n
Output

Dimension 1
Output

Dimension 2
Output

Dimension 3
1 x1,1 x1,2 · · · x1,n y1,1 y1,2 y1,3
2 x2,1 x2,2 · · · x2,n y2,1 y2,2 y2,3
3 x3,1 x3,2 · · · x3,n y3,1 y3,2 y3,3
4 x4,1 x4,2 · · · x4,n y4,1 y4,2 y4,3
5 x5,1 x5,2 · · · x5,n y5,1 y5,2 y5,3

Table 3.3: Time shifted design matrix

Time
Slice

Input
Dimension 1

Input
Dimension 2 · · · Input

Dimension n
Output

Dimension 1
Output

Dimension 2
Output

Dimension 3
1 x1,1 x1,2 · · · x1,n y2,1 y2,2 y2,3
2 x2,1 x2,2 · · · x2,n y3,1 y3,2 y3,3
3 x3,1 x3,2 · · · x3,n y4,1 y4,2 y4,3
4 x4,1 x4,2 · · · x4,n y5,1 y5,2 y5,3
5 x5,1 x5,2 · · · x5,n

in which the reading was taken. For example, the temperature for the high-level cell

at azimuth 260 becomes the dimension azimuth 260 high temperature.

3.4.3 Time Shift Wind Data

After the previous step we have a set of data that is arranged as in Table

3.2. Input Dimensions 1 through n represent the radiometric dimensions we are

using to predict the wind vectors for all of the cells shown in Figure 3.4. Output

Dimensions 1, 2, and 3 represent the wind vector components that we are trying to

predict. We use one single-output network for each output dimension.

For each of the input dimensions, and as was mentioned in Section 3.3 we are

interested using the conditions of the surrounding cells in the previous time step to

determine the conditions of the center cell at the current time step. To represent this

to our procedure we shift the output dimensions by one time step, creating a new
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design matrix with the output dimensions of the current time step associated with

the input dimensions of the previous time step. This is shown in Figure 3.3, where

the output dimension columns are shifted up by one time slice. A consequence of

this is that the output dimension values for the first time step (y1,1 and y1,2) are no

longer used because they have dropped off. Also, the input dimension values for the

last time step (x5,1 through y5,n) are no longer used because they are not associated

with output dimensions for that time step any more.

3.4.4 Unsupervised Pre-Training on Training Set

For unsupervised pre-training we used four layers of autoencoders, each with 100

nodes. We determined that this was a reasonable number by running experiments on

different sizes of the layers, from 10 through 100, 500, and then 1000. The predicted

values began to match the distributions of the holdout data when the networks had

around 100 nodes per layer. Figure 3.7 shows the progression of layer sizes from 30

through 60 (10 and 20 were very similar to 30) and Figure 3.8 shows the same for 70

through 100. As can be seen, something happens between 50 and 60 hidden nodes per

layer. The reason has yet to be determined and could be a future avenue of research.

Figure 3.9 shows that using layer sizes of 500 and 1000 hidden nodes per layer

produced results similar to those where layers of size 100 were used. From this we

concluded that 100 was a reasonable number of neurons in each layer. Typically, in

order to work properly, autoencoders need to reduce the inputs to a representation

of lower dimensionality, thus creating a bottleneck that summarizes the input data.

With layers of size 100 we are constraining the layers to a lower dimensionality,

since the input data that includes wind vectors from the previous time slice has 231

dimensions and the input data that does not include wind vectors from the previous

time slice has 168 dimensions. If we were to use hidden layers with sizes greater than
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Figure 3.7: Results without wind vectors from the previous time slice using layer sizes
of 30 through 60

the number of dimensions we would have to employ a regularization procedure to

prevent the model from eventually just passing the data through the model without

creating any interesting internal representations. While this is interesting in the future

we considered this to be beyond the scope of this particular set of experiments.

3.4.5 Neural Network Training

After the pre-training and assembly the network has one input layer accepting

all of the data from each dimension, several hidden layers consisting of the hidden
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(g) Four Layers of 90 (h) Four Layers of 100

Figure 3.8: Results without wind vectors from the previous time slice using layer sizes
of 70 through 100

layers that were trained using UPT, and an output layer consisting of a single node.

Since we are using only one output node per network the training and testing for each

wind vector proceeded independently. In other words, we constructed one network

for the u component, one for the v component, and a third for the w component.

Training of this assembled network then proceeded via backpropagation. We did

this because, according to [33], these three components should be treated as if they

are independent. Preliminary experiments where we combined all components into
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Figure 3.9: Results without wind vectors from the previous time slice using layer sizes
of 500 and 1000

a single network supported this recommendation. Future iterations of this research

could use one network with three outputs.

3.4.6 Test

We divided the data based on 10-fold cross validation of the time steps. 90% of

the data was used for training, which includes training subsets for training (90% of

the 90%) and verification (10% of the 90%). Following the fine tuning described in

the previous step, we use the 10% test fold to test the performance of our models.

Unfortunately, since we are the only ones using this data in this manner, and

it is a new dataset with the unique characteristics that enable this type of analysis

and prediction, we are unable to compare our results directly to the results of anyone

else. However, we do provide a pioneering investigation into the use of this data using

machine learning techniques, and we plan to build upon this knowledge.
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(a) (b)

Figure 3.10: Four locations for analysis were chosen at four different areas of varying
standard deviation for barometric pressure as well as a variety of standard deviations
for temperature. a) Standard Deviation for the Barometric Pressure. b) Standard
Deviation for the Temperature. Darker areas indicate higher standard deviation and
lighter areas indicate lower standard deviation.

3.5 Experimental Design

3.5.1 Distribution of Locations For Analysis

We chose four points of interest to demonstrate the effectiveness of this

methodology. Figure 3.10 shows these points. Our intent in choosing these points

was to capture the greatest variety in the underlying weather conditions. Hurricane

systems are normally characterized by dramatic swings in barometric pressure.

Considering this, the points were chosen, primarily, on the basis of capturing a variety

of barometric pressure variation profiles. Of secondary importance, the points also

were chosen so that a variety of temperature variation profiles were represented.

3.5.2 Wind Vector Measurements from the Previous Time Slice

For comparison, we wanted to evaluate how having knowledge of all of the

previous time slices’ wind vector measurements influenced the predictions that
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(a) RMSE without Wind (b) RMSE with Wind

Figure 3.11: Heat map for the root mean squared error of all 100 points of interest

were made. In the main thread of experimentation we excluded all wind vector

measurements, relying solely on radiometric data for wind vector prediction. For the

other thread we included all wind vector measurements for each cell except for the

cell about which we were making predictions.

3.6 Results

A heat map of the average root mean squared error (RMSE) across all 10 folds of

all of the predictions for each of the 100 experimental locations is shown in Figure 3.11.

The smaller dots represent lower RMSE and the larger ones represent higher RMSE.

It is interesting that there are areas in which knowledge of the wind vector values

seemed to be correlated with higher RMSE than without knowledge of the wind

vector. This occurs at the extreme right of the area of observation. But generally,

both depictions appear to be similar.

Table 3.4 shows the root mean squared error (RMSE) of predictions for all

three vector components for the locations studied, concentrating on the four closely
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Table 3.4: Deep network RMSE for the locations studied
u component v component w component

With Wind Without Wind With Wind Without Wind With Wind Without Wind
Location 1 0.0794 0.1042 0.1218 0.1894 0.1590 0.1022
Location 2 0.1688 0.1505 0.0631 0.1121 0.1415 0.1523
Location 3 0.0115 0.0596 0.1031 0.1284 0.1103 0.1324
Location 4 0.1048 0.1245 0.1736 0.2107 0.1373 0.1241
Avg Over
All 100 0.0850 0.1235 0.0958 0.1326 0.1203 0.1359

Table 3.5: Coefficient of determination (R2) of deep networks for locations studied
u component v component w component

With Wind Without Wind With Wind Without Wind With Wind Without Wind
Location 1 0.4630 0.3300 0.4558 0.1737 -2.1930 -0.5132
Location 2 0.0769 0.0627 0.7621 0.5473 -0.0673 -0.1679
Location 3 0.9606 0.7963 0.4401 0.3246 0.0818 -0.0407
Location 4 0.5161 0.4617 0.1710 0.0286 -0.1488 -0.1368
Avg Over
All 100 0.5956 0.4265 0.5462 0.3888 -0.1931 -0.3395

inspected locations with an average over the k folds. It also shows an average RMSE

over all 100 locations studied. Table 3.5 shows the coefficient of determination values

(R2) for these same locations with an average R2 value over all 100 locations studied.

Here

R2 = 1−
∑

i(yi − fi)2∑
i(yi − ȳ)2

where fi is the ith predicted value from the neural net, yi is the ith target (observed)

value, and ȳ is the mean target (observed) value over the range of prediction.

The results from Location 1 in Figure 3.10 are represented in Figures 3.12, 3.13,

and 3.14. Figure 3.10 shows this as being an area of both greater barometric pressure

and temperature variability. This may explain why we see wind vector functions that

vary more dramatically. It appears in the figure that the predicted values generally

simulate the distribution of the actual values. It is apparent from this that the
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difference between actual and predicted values is smaller when the previous time

slice’s wind vector information is used for prediction.

Location 2, whose results are shown in Figures 3.15, 3.16, and 3.17 is an area

where the standard deviation of the barometric pressure is high and the standard

deviation for the temperature is less so. Both the predicted and actual values display

less erratic movement from the beginning of the time period through the end. Again,

the predictions appear to follow the general shape of the distribution of the actual

values and follow the actual values more closely than in the case of Location 1.

Location 3, an area of lower standard deviations for both barometric pressure and

temperature, is shown in Figures 3.18, 3.19, and 3.20. It is an area of higher overall

wind speed and apparently exhibits a greater degree of predictability. In this area,

there appears to be less of a difference between using the wind vector measurements

from the previous time slice and not using them.

Finally, the results from Location 4 are represented in Figures 3.21, 3.22,

and 3.23. This is an area where the barometric pressure varies more than the

temperature. Here we see similar behavior to the other locations, where the

predictions made by the networks tend to be smoother than the actual values. It

remains to be seen whether the outliers in these cases are artifacts of instrumentation

or of added noise in the simulation, if they are not values truly representative of the

condition of the atmosphere.

3.7 Discussion and Contributions

We observe that a multilayer perceptron whose hidden layers have been

preconditioned using unsupervised pre-training is able to approximate the distribution

of wind vector components using nothing but radiometric data. We also observe that

the predictions tend to have a smoothing effect on the outliers in the data, though we
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do not know exactly how to characterize the outlying observations in the first place.

An analysis should be performed on the procedure that generated the simulation

with the intent of finding out if these outliers are calibration artifacts of the original

instrumentation or if noise was added into the simulation to bring it closer to reality

or to a desirable test scenario.

Our procedure results in predictions that generally follow the trend of the

observations, but are smoothed to a great degree. We do not yet know if this is

desirable. There may be many sources of noise that creep into data acquisition or

simulation. This, again, is a question that is beyond the scope of this dissertation with

respect to the noise attribution. We can only expect an approximation of the functions

that describe the forces acting in the atmosphere, without being able to account

for aberrations in equipment or simulations. Questions regarding the desirability

of the smoothing effect must be understood through further collaboration with the

meteorological community.

As a contribution, in this chapter we have developed a method to train neural

networks based on stacked autoencoders to perform prediction with spatiotemporal

data where the value of the prediction is influenced by the data in spatial areas

immediately surrounding the primary area of interest. Approaches to this problem

normally involve using convolutional neural networks or long short-term memory

networks [39]. However, our method is inspired by the way that the spatial

arrangement in the cells and the temporal arrangement of the data instances are

performed in numerical weather prediction. The exception is that it is not tied to

the physics behind such an approach. As a result, our method can be applied more

broadly.

An example of a system with this same assumption is in NWP, where the

dependence on previous time steps is limited to one time step. A difference is that
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our method is limited to considering immediately adjacent cells only, while NWP

considers more distant cells with an influence that diminishes with the distance from

the cell being considered [94]. Examples of areas for broader application are in

neurological data from functional near-infrared spectroscopy (fNIRS) or functional

magnetic resonance imagery (fMRI). The set of inputs in this type of data is all

numerical or real-valued, is tied to spatial locations, is given as a time series, and

can be restricted to the first-order Markov assumption [94]. In addition, the response

variable is often real-valued. Any function that can be expressed in this manner can

be simulated within a spatio-temporal lattice such as the one used in our approach.

Another contribution is that our method produces an approximated function

that produces predictions that follow a smoothed version of the ground truth function.

In this respect there is an analogy to be drawn between what our method does and

what a denoising autoencoder does. But rather than attempting to remove the noise

from the input signal, our approach focuses on reducing the effects of the noise on

the prediction. The benefit of this is that we are able to focus on obtaining accurate

predictions from the model, instead of denoising the observed measurements.

3.8 Conclusions and Future Work

Using neural networks to simulate a functional relationship between radiometric

readings and wind vectors is a novel application. Eventually, using techniques like

this in a broader application to EWP, the computational burden would be shifted

to something that is more adaptable to real-time global predictions. This is because

all of the function simulations would be pre-trained into neural networks ready for

application. This would be done in lieu of having to perform just-in-time calculations

of the Primitive Equations of NWP. The trade-off would be the necessity to maintain

a corpus of application-ready networks and train them in the background.
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Remote sensing data is different from what is normally termed as “big data,”

since remote sensing data is highly structured. However, data collection in this

area results in enormous volumes that must be correlated spatially and temporally.

Because of this, to use remote sensing data effectively in machine learning (i.e., in

creating systems that are relatable and queryable such that timely predictions can

be made), different data deployment regimes than those traditionally used in the

meteorology community must be exploited. We intend to experiment with large scale

distributed storage systems to facilitate an environment more favorable for this type

of analysis. Such a system would be necessary to make any of this analysis usable for

real-world data.

An avenue of research that will closely follow this paper is testing the longer-

term (on the scale of hours) prediction capabilities of this procedure. This will involve

generating models for all involved dimensions and so will require considerably more

time for processing. The process will be to train the networks on the first part of

the day, extrapolate for the next several hours, and test against the actual (WRF-

simulated) data at the end of the day. Considerations will have to be made for the

effects of the diurnal cycle on the behavior of the data. Recurrent neural networks

may play a role here because they are specifically designed to address temporal

data. Eventually, they will be able to account for n-order temporal consequences

of some of the cyclical effects of the diurnal cycle, adding the ability for the model to

automatically account for them.

The fact that we are inferring wind vector begs the question: can we create an

accurate simulation environment using wind vector values that we predict (essentially

using newly predicted wind vector values as inputs)? How far into the future can we

run these predictions and still expect reasonable accuracies from the models? In doing

this we would have to compare this deep-learning prediction framework with current
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states of the art in NWP (such as WRF) and see which system ends up with values

that are closer to reality. A system like this would have entirely different computing

burdens based on maintaining a corpus of neural networks, keeping them trained and

swapping them in and out of use as their accuracy fluctuates. However, use of these

systems would enable predictive models that run closer to real-time, adding insight

for NWP practitioners and perhaps, one day, more accurate weather predictions.

There is an opportunity to extend what we have done here to a long-term

prediction system. This system would be able both to make predictions about the

conditions of the input variables and to use those predictions to predict the values of

the response variable as well. Doing this would require a change in the architecture,

as it would now be a multitask learning system that produces both predictions of

the response variable and estimates about the conditions of the input variables in

the next time step. A similar paradigm was explored by Li, et al., who approached

large-scale automated prediction using cellular automata to predict precipitation [53].

However, they were using newly received radar data at each time step, not predicting

the conditions of the input variables and allowing the system to run independently.
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(b) u Component with Wind

Figure 3.12: Results from location 1: u component
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(b) v Component with Wind

Figure 3.13: Results from location 1: v component
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(b) w Component with Wind

Figure 3.14: Results from location 1: w component
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(b) u Component with Wind

Figure 3.15: Results from location 2: u component
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(b) v Component with Wind

Figure 3.16: Results from location 2: v component
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Figure 3.17: Results from location 2: w component
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Figure 3.18: Results from location 3: u component
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Figure 3.19: Results from location 3: v component
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Figure 3.20: Results from location 3: w component
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Figure 3.21: Results from location 4: u component
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Figure 3.22: Results from location 4: v component
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Figure 3.23: Results from location 4: w component
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CHAPTER FOUR

SPATIAL GENERALIZATION

4.1 Introduction

From a human perspective, the major factors that influence weather conditions

in one area of the Earth’s atmosphere and those that influence weather conditions

in another seem to be the same. However, considering that the atmosphere is fluid,

that conditions vary in time, that we have no access to the initial conditions of

this fluid, and that we cannot enumerate the myriad forces that compose these

factors, prediction is a very complex task. The simulation of functions that can

produce predictions in this domain is a task for machine learning. If we assume that

consistency holds between disparate locations around the Earth, transfer learning can

be used to reduce the complexity of whole-Earth models.

In this chapter we begin to move knowledge gained in one area of the dataspace

to other distinct areas of the dataspace where there are consistencies, but also some

important differences. Here we are considering separate, discretized areas of the

Earth’s atmosphere to be these disparate settings. Some consistencies that exist

among these diverse settings are that they are all composed of atmospheric gases,

they are influenced by their own conditions and by the conditions of the areas that

immediately surround them, and that this is not an entirely closed system. The

differences are in that they have differing initial conditions and that they are affected

by external forces in complex ways. For example, one area of the atmosphere may

be over mountainous land and another may be over water, thus radically changing
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the associated weather dynamics. Further, one area may receive more solar radiation

than another during the day.

Given such variation, one may be inclined to think that each area of the Earth

would need to train its own model, resulting in a whole-Earth system that would be

required to maintain millions of models (depending on the spatial resolution of each

model). We seek a method whereby a fraction of these models would be required. In

this paper we discuss experiments testing the generalization ability of representations

learned by artificial neural networks (ANN) over a primary area of the Earth to

areas adjacent to this primary area. We demonstrate that the functions learned to

approximate wind vector components using radiometric data can be used to make

determinations about the general trend of the wind vectors in these areas.

The results in this paper extend our work that we described in Chapter 3,

demonstrating the extent to which trained networks can generalize to nearby regions

in space. In the next section we will provide background on the problem domain.

Next we will discuss the data that we are using and motivate how this study will

support research into transfer learning. We will then discuss our approach. Our

experimental design, execution, and results will then be explained. We will then

discuss the broader implications of our results. Finally, we discuss our conclusions

and the next steps for this research.

4.2 Background

4.2.1 Related Work

4.2.1.1 Stacked Autoencoders: In this work we use stacked autoencoders [9].

Autoencoders are used to create compact, reconstructible representations of data at

a lower dimensionality. These representations can be stacked, using the outputs

of hidden layers of one Autoencoder to encode deeper levels in a process called
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unsupervised pre-training (UPT). In this way, we can capture hierarchical internal

representations of (theoretically) the most important features of the data [26]. This

is discussed in more detail in Section 2.4.

4.2.1.2 Deep Learning in Weather Parameter Prediction: Research using deep

neural networks for weather forecasting has been increasing over the past few years.

This is partially in response to the advancement in deep belief network (DBN) training

efficiency that was achieved by Hinton, et al. [43]. Since the structure of DBN’s and

stacked autoencoders are very similar, the training efficiency of the latter model was

enhanced as well [38]. This is motivated by how important weather prediction is

becoming to many industries. As a domain-specific example, Singh [91] used deep

networks to determine how much wind energy was expected given the wind speed,

humidity, and generation time.

Earlier, Dalto, Matusko, and Vasak [24] used deep networks for ultra-short-

term (3 hour horizon with 10 minute resolution) wind forecasting. Their study

demonstrated that deep neural networks benefit from an intelligent reduction in the

number of input variables, allowing network training to complete in a reasonable

time. They used Partial Mutual Information-based Input Variable Selection, which is

a technique for determining how much redundancy is captured in the input variables,

and selected variables that contributed the most information required to predict

the response variables. Similar to our approach, they used separate networks for

orthogonal wind vector components, not considering the vertical dimension at all.

They used pre-trained stacked denoising autoencoders as their network model.

Narejo and Pasero [63] performed “meteonowcasting,” (i.e., predicting conditions

of the present or very near future) using multilayer pre-trained restricted Boltzmann

machines. They used a method based on mutual information to determine the
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relevancy of atmospheric parameters at the prior time step to the current or future

prediction of these parameters. The previous temperature and time of day were

found to be useful for determining the temperature in the current time or near future.

Each of these atmospheric parameters was treated separately, and the collection of

parameters and topology of the networks used differed with each parameter they were

trying to predict.

4.2.1.3 Transfer Learning: Transfer learning is the act of enabling a learner to

use information from a model that was trained in one domain as a way to bootstrap

training in another, related domain [67, 104]. One of the motivations for transfer

learning is that data may not be available for a domain for which one wishes to

make predictions. So the idea is to train on a domain in which there is plentiful

data that is somehow related to the domain of interest and then fine tune with data

that is available in the new domain. We assert that another motivation for using

transfer learning is when there exists an extremely large number of domains that

differ in subtle but important ways. Such a set of domains could be manifest as

many geographic points on the globe that each have different forces influencing the

conditions in their respective areas.

Hu, Zhang, and Zhou [44] used transfer learning for short-term wind speed

prediction. They were addressing the problem where data for wind speeds over

new wind farms was unavailable. The authors trained deep Autoencoders in areas

that varied with respect to terrain, weather, and topography and still were able to

produce models that learned abstractions that predicted wind speed in new farm

areas effectively.
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4.2.2 Problem Strategy

In our experiments, we attempt to determine current wind vector values using

only radiometric data. Radiometers are unable to measure wind directly, but we assert

that radiometric readings still provide information about wind vectors that can be

used to train associated predictive models. The wind vector data we use comes from

a separate wind-oriented model that was enriched using WRF and was taken over

the same region at the same spatial and temporal resolution as the radiometric data

we use for training. The dataset is explained in greater depth in Section 4.2.3. This

wind vector data is used as ground truth for our models.

In predicting wind vectors, we want to know the extent to which the knowledge

encoded in a neural network trained in one geographical area can be leveraged in

making accurate predictions about conditions in another area. In each location

around the Earth, weather conditions are all described by the same number and type

of dimensions. This means that we are ensured of the ability to describe different

locations using the same parameters. This is why we hypothesize the ability to

transfer knowledge geographically; the consistency in parameters for each area allows

us to feed the trained model with data from different regions.

4.2.3 Data

As was done in Chapter 3 we used a dataset created by [109] using an NWP

simulator called the Weather Research and Forecasting Model (WRF). This dataset

was created to support developing models from higher spatial and temporal resolu-

tions than are currently available. The simulation used measurements of the East

Coast of the United States during 24 hours of Hurricane Sandy in 2012. Specifically,

the data is within an area bounded in the southwest at 26.4902◦N, 81.6064◦E and in

the northeast at 41.2117◦N, 60.3809◦E (Figure 3.10). Actual radiometric and wind
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Table 4.1: Latitude and longitude of the locations of interest
Name Latitude Longitude

Location 1 37.07 -73.79
Location 2 38.34 -62.63
Location 3 30.69 -75.65
Location 4 28.14 -64.49

measurements were taken at a far lower spatial and temporal resolution during this

storm. WRF was used to interpolate measurements between these base measurements

so the simulated dataset has a spatial resolution of 5km and a temporal resolution of

15 minutes.

For our study, as in Chapter 3, we focused on the four points shown in

Figure 3.10a. Location 1 is an area that was in the eye of the storm for the duration

of the simulation. Location 2 was in an area that was relatively unaffected. Strong

rain bands were occurring in Location 3, and Location 4 had already been hit by the

storm. Table 4.1 shows the latitudes and longitudes of these locations.

The data was provided in the form of point clouds, which are collections of

points that exist in some spatial coordinate system. To make deep learning possible,

we needed to bin these points spatially into discrete cells so that each data point in

one cell would be representative of the conditions in that cell at that time. We used

a Discrete Global Gridding System (DGGS) as the spatial binning mechanism [82].

Each data point in the point clouds was given a GIS Point designation on the globe,

which allowed the data to be discretized into the DGGS using spatial queries. Each

DGGS cell has 15km resolution in our model.

Radiometers are capable of obtaining vertical soundings of the atmospheric

parameters. Therefore, our simulation included 60 vertical levels of readings, which

we discretized into 10 levels.
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Figure 4.1: 7 cells representing one DGGS level

4.3 Approach

4.3.1 Cell Lattices

Figure 3.4 depicts our view of the space surrounding a given center cell for which

we want to predict the wind vector components. This 21 cell lattice includes the 7

cells above the center cell, the 6 cells surrounding the center cell on the same level,

and the 7 cells below the center cell. When training, we used measurements for

representative points from all of these cells in the previous time slice (including wind

vector information), as well as the wind vector components from the current time slice

for the center cell as ground truth. In a second experiment, we just use radiometric

data (no wind vectors) from the previous time slice.

The focus of this study is on determining whether we can transfer the knowledge

from a model trained on one DGGS cell to a neighboring cell. This situation is

depicted in Figure 4.1, which limits the process in one layer1. The idea is that we

have trained a network for cell 0 using the information captured from the cell 0 and

its surrounding cells. We then shift to a neighboring cell, such as cell 1 (in gray). For

this cell, we use the network trained for cell 0 together with the measurements from

1Even though we have limited the presentation to one layer, the actual experiments considered
the measurements over all three layers surrounding the target cell.
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the previous time slice in cells surrounding cell 1 (outlined in bold). We repeat this

process, determining wind vector components in cells 2 through 6 as well.

We call the collection of all of these cells, along with their data, the super lattice

for cell 0. Thus, the super lattice includes all of the cells surrounding cell 0, which

we call the center lattice, as well as all of the cells surrounding cells 1 through 6 as

center cells. Working in the space of the super lattice provides a sense of the ability

of the network trained for cell 0 to generalize to the neighboring cells, thus indicating

a degree to which the trained network can be used in for transfer learning.

Our deep learning architecture consists of a four-layer stacked autoencoder,

trained using greedy unsupervised pre-training. We used the same architecture and

parameters discussed in Chapter 3 in these experiments.

4.4 Experiments

The intent of the experiments that we describe in this section is to determine

the generalization capabilities of stacked autoencoders trained on specific areas of the

dataspace to adjacent areas of the same dataspace. Though the differences in these

areas are minimal, we get a sense of the flexibility of these trained models.

4.4.1 Overview

Our experiments proceeded using the following steps:

1. For a location of interest, instantiate the super lattice.

2. Pre-train the stacked autoencoder layers using the data from the center lattice.

3. Fine-tune the stacked autoencoder using the data from the center lattice.

4. Use the trained stacked autoencoder to predict the wind vector components for

each of the peripheral cells.
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Table 4.2: Features for each data point
Reading Source Reading Name

Radiometry Measurements

Temperature
Pressure

Cloud Density
Rain Density

Ice Density
Snow Density

Graupel Density

Wind Speed
Wind u (East/West)

Wind v (North/South)
Wind w (Up/Down)

4.4.1.1 Super Lattice: Table 4.2 shows the data available for each cell in the

super lattice. The top section of the table shows what measurements are available

through passive microwave radiometry and the bottom portion shows what is available

using other instruments (dropsondes, direct observation, etc.). We conducted

experiments for input data that included the wind vector components for the previous

time step for all of the cells in the super lattice, as well as input data that did not

include these wind vector components. This approach allowed us to examine the

ability of networks trained using only radiometric data to predict wind vectors and

to assess the need for the wind vector data when moving to neighboring cells. The

data that included the wind vectors from the previous time step had 231 dimensions

and for the data without wind vectors had 168 dimensions.

4.4.1.2 Pre-Training and Fine Tuning: Our stacked autoencoders had 150, 140, 130,

and 120 neurons per hidden layer when proceeding from input to output. As

mentioned, the input layer consisted of 231 or 168 neurons depending on whether or

not prior wind vectors were included. These layers were pre-trained using the training

data from each cross validation fold. Following pre-training, the stacked autoencoder
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Table 4.3: Average RMSE by level for the cells around location 3

u Component v Component w Component
Level With Wind Without Wind With Wind Without Wind With Wind Without Wind
High 97.345 65.290 16.704 7.917 0.003 0.002
Mid 0.492 0.345 0.205 0.162 0.001 0.001
Low 55.841 53.823 4.600 1.369 0.005 0.003

Table 4.4: Coefficient of determination (R2) of deep networks for the mid level around
location 3

Level Azimuth u Component v Component w Component
With Wind Without Wind With Wind Without Wind With Wind Without Wind

Mid

Azimuth 1 0.989 0.993 0.984 0.985 0.817 0.658
Azimuth 2 0.993 0.995 0.988 0.992 0.866 0.769
Azimuth 3 0.989 0.992 0.984 0.988 0.823 0.736
Azimuth 4 0.992 0.993 0.986 0.991 0.853 0.797
Azimuth 5 0.993 0.995 0.987 0.991 0.726 0.627
Azimuth 6 0.989 0.993 0.982 0.983 0.810 0.729

layers were fine-tuned using backpropagation. Each wind vector component (u, v,

and w) was trained with a separate network as we described in Section 3.4.5.

4.4.1.3 Generalization: Once we trained our networks on the center lattice, we

used each network to predict the current values of the wind vectors using data from

the 20 neighboring lattices, using the 20 peripheral cells as the center cells.

To the best of our knowledge, we are the only ones using this data in this

manner. Therefore, we are unable to compare our results directly to similar methods

reported in the literature. Therefore, our comparison focused more on the potential

dependence on prior wind vector information in generalizing predictive power in

different geographic regions.

4.4.2 Results

We used the root mean squared error (RMSE) as our performance measure,

which was the same performance measure used in Chapter 3. Table 4.3 shows the
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average RMSE of predictions for all three vector components for all cells surrounding

the center cell (six surrounding azimuths above and below) for Location 3. This

location is interesting because it lies directly in the rain band area south of the eye

of the hurricane. As an indication of how much the variation in the u, v, and w

components can be explained by the predicted values, Table 4.4 shows the coefficient

of determination values (R2) for the six cells surrounding the center cell at the same

elevation, where we calculated R2 as follows:

R2 = 1−
∑

i(yi − fi)2∑
i(yi − ȳ)2

where fi is the ith predicted value from the neural net, yi is the ith target (observed)

value, and ȳ is the mean target (observed) value over the range of prediction.

The results for the peripheral cell at azimuth 1 at the medium elevation for

Location 3 in Figure 3.10 are represented in Figures 4.2, 4.3, and 4.4. The magnitude

of error over the range of the predictions is shown by the shaded region between

the plots. The first column of charts shows the results of the predictions made for

the data that included wind vectors from the previous time slice, and those on the

right did not include wind vectors from the previous time slice. The first row depicts

predictions for the u component, the second for the v component, and the third for the

w component. This location, azimuth, and relative elevation was chosen because it

was representative of the results obtained over the entire dataspace of peripheral cells.

4.5 Discussion and Contributions

For the locations studied, we found that our stacked autoencoders produced

approximations of the real wind vectors. This is advantageous to the meteorological

community because, as yet, a numerical, physics-based procedure to relate these
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radiometric measurements to wind vector values does not exist [33]. This methodology

has the potential to enhance the data offering of radiometers with wind vector

determinations.

We intentionally chose cells that were adjacent to the training cell to allow us

to deviate spatially from the training space in a gradual manner. This is based on

an assumption of locality that we made with regard to atmospheric dynamics—the

forces that cause the atmosphere to behave the way it does—differ more as one moves

further away from the initial training point [23]. If this is true then the networks so

trained will be unable to capture a general model of the atmosphere when trained

on any single area; however, we may be able to identify conditions under which

generalization and transfer would be feasible.

The network trained on the center cell performed best at the middle elevation.

The conditions in the cells above and below the center cell were different, but we

were generally able to approximate the shape of the functions of the wind vectors in

those areas. The average RMSE for the cells in the layers above and below the level

depicted in Figures 4.2, 4.3, and 4.4 were significantly higher than for the cells at the

same level as the cell upon which we trained the network. We may infer from this

that there is an altitude-based sensitivity to the predictive capabilities to networks

trained in this manner, though this conclusion will have to be tested using much

larger datasets.

In a system of neural networks that makes predictions over a large spatio-

temporal data space, different usage scenarios will have diverse modeling options,

temporal (real-time) requirements, and accuracy standards. For example, we study

three such scenarios.

The first learns a single model (e.g., a neural network) to act as a predictor

over the entire space for all time slices. In this case, the model would need to have
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all input data and all response variables (along with location information) funneled

through the same procedure. Also, since the model is being asked to account for a

broader range of phenomena, the model itself may have to be expanded in complexity

(e.g., depth or in number of nodes per layer) thus running the risk of overfitting due

to having insufficient data to train properly.

The second scenario uses one model (i.e., network) for each area of interest,

considering that model as being “responsible” for that area and no other. The

expressivity of the model becomes a factor when discussing the types of functions that

will need to be learned. For example, expressivity characterizes how the structural

properties of a neural network affect the functions it is able to represent [74]. The

intuitive advantage here is that the networks each concentrate their predictive power

on a localized area whose data is affected by a lesser variety of underlying causes than

it would be if it had to concentrate on the entire dataspace. Training and deploying

models in this scenario can be parallelized but require a large stable of models (one

for each area of interest) that all have to be updated when new data are available. A

further complication is determining which model to apply in which situation, given

the fact the properties of the data modeled are not fixed either in time or space.

The third scenario uses a collection of models trained on a relatively localized

set (or cluster) of locations. The number of networks required would be somewhere

between that required for the first scenario and the second scenario. The process

involves determining how the data behaves in localized areas so that the division of

the space can be done properly. This, in fact, is the scenario employed in later chapters

of this dissertation. The tradeoffs in these scenarios pertain to the complexity of the

models, the number of models that must be maintained, and the accuracy of the

entire system.
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Our contribution in this chapter is that we produced models of the second

scenario. We look to avoid both of the extremes while still maintaining a useful

system for prediction. By determining the spatial extent of the effectiveness of our

models, we are able to get an idea about how many models we will need to create a

comprehensive set of models that are appropriate to the data under observation. In

Chapter 6 we address the third scenario in constructing localized clusters of locations

for training and application of neural networks.

4.6 Conclusions and Future Work

Based on the results of these experiments, we believe that we are able to apply

deep learning with stacked autoencoders to capture important generalizations about

the state of the atmosphere with respect to radiometric data and wind vectors. We

have confirmed that these generalizations are capable of producing approximations for

wind vector values in closely adjacent areas, thus suggesting the potential to be able

to apply deep learning in NWP without the need for massive numbers of spatially

distinct models. How versatile and transferable these generalizations are will be a

subject of the next chapter, where we explore encodings and transferability in these

networks.

We intend to focus the next steps of our research on determining what useful

generalizations are captured when the networks are trained on one area and applied

in a variety of novel situations. Among these situations will be locations that are

further apart and the same locations in a different dataset depicting a different storm

system (or no storm system). This investigation will also include an analysis of the

effectiveness of pre-training on a primary region of interest and fine-tuning on the

target region of interest of interest.
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When our methodology is used with any compatible dataset, depending on the

degree of local consistency that the dataset has, generalization may be used to a

point with a tolerable level of error. After this point, if the data are sufficiently

incompatible with the model with respect to dimensionality and spatial and temporal

dependence, our method can determine what knowledge can be extracted from the

trained models and transfer that knowledge to newly created models that address the

unique characteristics of the target data. As future work, we will focus on exploring

or developing approaches to determine the limits of the models in a given domain.

We will use the results as a means to determine the number of models that will have

to be trained to create a comprehensive system for prediction over a data space.
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Figure 4.2: Predicted vs actual plots for the peripheral cell at azimuth 1 at the middle
elevation for location 3, component u. The magnitude of error over the range of the
predictions is shown by the shaded region between the plots.
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Figure 4.3: Predicted vs actual plots for the peripheral cell at azimuth 1 at the middle
elevation for location 3, component v. The magnitude of error over the range of the
predictions is shown by the shaded region between the plots.
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Figure 4.4: Predicted vs actual plots for the peripheral cell at azimuth 1 at the middle
elevation for location 3, component w. The magnitude of error over the range of the
predictions is shown by the shaded region between the plots.
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CHAPTER FIVE

EXPLORING TRANSFERABILITY IN DEEP NETWORKS

5.1 Introduction

One of the the fundamental issues preventing the broad adoption of neural

networks for many is the black-box aspect to them in that there is yet to be a

comprehensive framework that allows an observer to understand and replicate what

is going on inside the network. This predicament was noticed by DARPA, who

issued a Broad Agency Announcement (BAA) for Explainable Artificial Intelligence

in 2016 [1]. This BAA solicited techniques for training artificial neural networks

(ANN) that would allow users to understand the reasoning that has been employed

by the ANN.

It remains difficult to understand why ANNs produce the answers that they

produce [85]. This opacity limits the ways that the ANN can assist in the under-

standing of the governing processes that underpin the system under examination.

This has become a major area of research: to “look inside” ANNs and understand the

“reasoning” that takes place. An advantage this understanding would confer is the

ability to apply this data-derived logic in novel areas. Modern deep learning methods

are effective and widely applicable to many critical problems, thus there is heavy

motivation to use them even in the face of their opacity. If we cannot understand

what is going on in these models maybe we can distill some of the knowledge inside

of them so we can apply that as the data-derived logic.

A component of this issue is that there is a computational complexity in the

training of these models. Combining this computational complexity with the amount
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and dimensionality of the data under investigation yields an exacerbated issue of

effectiveness of the model per the time involved in creating it. There is much hope in

figuring out how to transfer knowledge among models, whereby portions of trained

models can be re-used as transplanted knowledge to act as intelligent starting points.

Intuitively, this transferred knowledge, if more broadly applicable to the dataspace,

will be knowledge that is more fundamental to the “understanding” of the abstract

universe that encompasses both the source and the target of this transfer.

In this chapter we used a Stacked Autoencoder (SAE) on data that has been

conditioned using techniques from functional data analysis (FDA). We then use

spatial statistics to expose this transferable knowledge. After this we apply this

insight to select internal components of the model learned to transfer them to models

of other areas of the dataspace, and test the effectiveness of this transfer. To facilitate

this, we created a highly controlled environment, bootstrapped by a single SAE

with randomly initialized weights for the entire set of experiments. For each area

of interest (AOI) we cloned this SAE and pre-trained the clones on the data from

their respective AOIs in exactly the same fashion, meaning in the exact same order of

instance precedence. This effectively removed all stochasticity in the training process,

with the exception of the initial random weighting. It also allowed us to remove

uncontrollable sources of variation and uncertainty that are normally endemic to the

ANN training procedure and to concentrate on how different areas of the dataspace

affect the aggregate training. This structure was the foundation for our experiments.

In meteorology and remote sensing domain, modeling and prediction has been

a deterministic, mathematical process since the its beginning [101]. An advancement

in ANN research in this specific area will provide an opportunity for deep learning to

inform these traditional computational models, creating an exchange between data-
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derived machine learning techniques and mathematically derived statements about

the fundamental dynamics governing the system.

This phase of our research contributes the following. Primarily, we provide

a structured, controlled approach to evaluate the learnability and transferability of

ANNs. To do this, we use functional data analysis and spatial statistics in a novel way

to tightly control the experiment. Secondly, we develop an approach that applies the

results of spatial analysis to make determinations of what subsets of neurons inside

an ANN are transferable. Thirdly we test this transferability of these ANNs that

have been trained in this manner.

5.2 Related Work

Yosinski, et al. studied transferable features in deep neural networks where

the features were expressed as entire layers [cite “How Transferable . . . ”]. Later,

Thompson, et al. extended this work, looking at how the layers held acoustic

abstractions in language processing and how these abstractions would be transferable

across languages [cite “How Transferable . . . languages”]. We take a more granular

approach in our work, asserting that feature abstractions do not necessarily include

entire layers of the neural networks. If we are able to determine the subsets of nodes

across these layers that encode valuable feature detectors, we should be able to create

new networks that include more than one of these feature detectors. A benefit of this

would be that the new networks may be able to produce accurate predictions in a

wider variety of circumstances and overall training complexity would be reduced.
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5.3 Data

As in the last section, the data we used for this phase of our research was the same

data used in Chapter 3 and described in Section 3.2. In this phase we are concerned

only with the fact that this data is highly multidimensional, spatial, temporal, and

functional. The multidimensionality comes from the fact that, for each AOI, we have

temperature, pressure, precipitation, humidity, and wind data. The spatial nature

exists in that we are examining these same dimensions across a three-dimensional

physical space, and these spatial relationships are a significant factor in the behavior

of the system. It is temporal because data at each location are represented as a

time series as it tracks a storm over a 24-hour period. It is also functional because

changes in one area propagate through the space according to atmospheric forces and

dynamics as a function of (among other things) space and time. A guiding principle

in this research is that this data could be of any functional type, if what substitutes

for the spatial and temporal perspectives still has distance and acts as the abscissa

for the functional relationship among the data dimensions.

5.4 Functional Data Analysis

A prerequisite for the treatment of ANN training in the manner used in this

chapter is that the data under study be functional in nature. Therefore, a critical

assumption here is that the behavior of the data from each of the points of interest

is influenced by the same common, global factors that influence all of these points

together. Because of this, we hypothesize that the encodings that result from training

networks on the data from each point of interest contain transferable knowledge.

We assert that the understanding gained through this examination can broaden the

predictive capability of ANNs trained through the procedure detailed herein that
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removes all unnecessary sources of stochasticity. We further hypothesize that spatio-

temporally correlated feature detectors in a trained network can be extracted and used

to train networks for other parts of the dataspace more efficiently and more accurately.

5.4.1 Description

When casting data in the functional data paradigm, data are analyzed as

functions rather than as a collection of individual data points [50]. Viewing our

meteorological data in this light is appropriate since the data vary smoothly as a

function of time and distance. Also, since there is a hurricane moving through the

space, each area of interest will undergo changes in data that track the hurricane

moving in and out of the area of interest. The character of these changes will of

course be appropriate to the position of the area of interest relative to the track of

the hurricane.

5.4.2 A Simple Functional Data Analysis Example

Ramsay and Silverman [89] use the example from the Berkeley Growth Study [47]

to explain functional data. In this work, the authors describe several children

undergoing their pubertal growth spurt. Though the time, magnitude, and specific

course of development may differ across the subjects, the process of maturation in

this part of human development is generally similar in all subjects under study. This

similarity is reflected in the similar transformation of the data as a function of time.

The following toy example illustrates the role that functional data analysis

plays in this chapter. Suppose three people are standing along the side of a road

as a firetruck passes by with its siren blaring. This is illustrated in Figure 5.1

with three pedestrians standing close to the road. When the three pedestrians

are in the same relative position to the street as the firetruck passes, each of their

experiences will be exactly the same in terms of the volume of the siren they perceive,
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Figure 5.1: Pedestrians along road with passing firetruck

Time

Vo
lu

m
e

a
b
c

Figure 5.2: Volume levels by time for each pedestrian

albeit the experience will occur at different times. This is shown in the plot in

Figure 5.2. However, when they are at different distances from the edge of the

street and at inconsistent intervals along the length of the street, the power of

the functional treatment of this data is much more readily apparent. Figure 5.3

shows three pedestrians positioned in this way, and Figure 5.4 shows a notional

plot of the corresponding volume perceived by each pedestrian. Notice how added

distance causes the overall volume to be lower and the volume change to be flatter,

in contrast with the experience of the pedestrian closest to the street. Also, the time

of experiencing the change in volume of the siren varies based on the lateral position

of the pedestrian.
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Figure 5.4: Volume levels by time for each pedestrian

Functional data registration (FDR) is a procedure that causes the peaks of

these curves to become aligned (shift registration) and the amplitudes to be modified

(amplitude registration) as much as possible to bring the features of the functions

into alignment [89]. The objective is to minimize the impact of the differences in the

dimensions upon which the function is dependent so that the features themselves can

be contrasted. Hurricane Sandy, depicted in our example data, is analogous to the

firetruck in our toy example. The Hurricane is a spatio-temporal phenomenon that is

moving through our area of study. As the phenomenon makes its way through every
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location on the map, its “locations” in the phenomenon affect “locations” in the space

in a related way, like the siren on the firetruck.

5.5 Approach

We performed a two-stage training of a set of SAEs to extract encoded

information that we could use to transfer through the dataspace. The autoencoders

that make up the hidden layers were trained using unsupervised pre-training. All

sources of randomness in the model, and in the model’s training, were removed with

the exception of the primary random initialization of the weights in the prototype

network. Each network corresponding to each AOI in the dataspace was cloned from

this prototype network, resulting in identical initial networks. Continuing the motif of

removing all sources of randomness, both pre-training and fine tuning used data in the

exact same temporal order for each AOI, resulting in a consistent time-correspondence

across the dataspace.

This treatment allowed us to trace how the data affected a consistent model,

which ensured a focus on the exploration of the dataspace rather than a concentration

on optimizing and refining the model itself. The analysis proceeded on the weights

and activations that resulted from differential interactions across the dataspace. This

allowed us to use variograms from spatial statistics to determine what is and what is

not shareable data that generalizes across the entire area.

5.5.1 Data Preparation

5.5.1.1 Area of Interest Instance Data Figure 5.5 shows the specific subset of the

areas of interest where our data was collected. The white figure in the background

on the left side of the figure shows the Eastern seaboard of the United States from

Long Island on the upper left to Florida and Grand Bahama in the lower left. The
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Figure 5.5: Analysis locations for training the neural networks
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Figure 5.6: 7 cells representing one DGGS level (repeated here for convenience)

blue area depicts the Atlantic Ocean. The dots (including the green dots and the red

star) show the locations of each geographical area we analyzed. Each dot represents

the center of a grid cell in a geodesic Discrete Global Gridding System (DGGS) [82]

superimposed over the entire planet.

The areas of interest were arranged as depicted in Figure 5.6, repeated here from

Figure for convenience. Each numbered cell corresponds to a DGGS cell of 15km

resolution. As in previous chapters, we concentrated on predicting the wind vector
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conditions in cell 0 at each location for each succeeding time step in the dataset.

This is consistent with the previous assumptions we have made: that the wind vector

values in cell 0 for the current time slice (excluding those forces not represented in

the data) can be determined by the radiometric readings of that same cell for the

current time slice and the radiometric and wind readings of all cells in the previous

time slice.

5.5.1.2 Time Shift Instance Data Table 5.1 represents data instances as they are

presented to the system, where tin corresponds to the time that the input data was

captured, tout corresponds to the time the output data was captured, {t0, . . . , tm} are

the specific time steps, {x0, . . . , xn} represent the input data variables, and {u, v, w}

represent the output data variables. These output are the variables that we are trying

to predict, with u representing the East-West wind vector component, v representing

the North-South component, and w representing the vertical component. In the

Figure, the input variable xi,j represents an instance of the variable xj at time slice

i. The output variable u1 represents an instance of the variable u at time slice 1

and the variable um represents an instance of the variable u at time slice m. The

time variables are offset from each other by one time step, with tin starting at time

slice 0 and tout starting at time slice 1. Thus we set this up as a one-step time series

prediction problem.

To address the temporal nature of this data, we assume the conditions of each

variable at each time step influence the conditions of the output variables at the next

time step. With this in mind, to create our predictive model, we shift the time for

the output variables, associating ti−1 for the input variables with ti for the output

variables.
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Table 5.1: Time shifted data

tin x0 x1 · · · xn tout u v w
t0 x0,0 x0,1 · · · x0,n t1 u1 v1 w1
t1 x1,0 x1,1 · · · x1,n t2 u2 v2 w2
... ... ... · · · ... ... ... ... ...

tm−1 xm−1,0 xm−1,1 · · · xm−1,n tm um vm wm

5.5.1.3 Scale Data The scale of the input and output data variables differed

widely. The minimum range of the unnormalized data variables was between 0.0

and 1.2713466e-09. The maximum range of the unnormalized data variables was

between -50.939037 and 42.185276. Each of the data variables was also captured

using differing units, for example: kilometers per hour for wind and degrees Celsius

for temperature. To bring all of the data into a common scale, we scaled the values

for each of the variables to a range between 0 and 1. Each of the data variables

was scaled individually so that the functional character of the data represented was

preserved. We retained each of the scalers so that the predictions could be compared

to the values that they were supposed to simulate.

5.5.1.4 Separation of Input and Output Data We were interested in the func-

tional relationship between atmospheric variables from radiometry readings and the

wind vectors in the same area, so the radiometry measurements were the main features

used for prediction. In the future we would like to use the wind vector predictions from

the prior time step as inputs for the next time step, creating a more comprehensive

system with enhanced predictive capabilities. But for now we wanted to provide the

networks with as little information as possible about the state of the wind vector,

save for the ground truth outputs in training.
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5.5.1.5 Functional Data Registration To bring the shapes of each of the input

dimensions into greater relief, rendering the data comparable, we performed functional

data registration over the dataset. This included temporally shifting the functional

form of the data to bring the features into alignment regarding time and intensity.

This is called shift and amplitude registration—shift registration describing the

adjustment of the function’s time dimension to align features along the abscissa,

and amplitude registration describing the increase or reduction in intensity to align

features along the ordinate.

Functional treatment of the data required its transformation into functional

form. We converted the data into a set of basis functions and a corresponding set of

coefficients. The two choices for the basis functions explained in [89] are the Fourier

basis and the spline basis. Since the Fourier basis function is primarily used in periodic

data, and our data only spanned a single day, we chose the spline basis as being better

suited for our non-periodic dataset. To be clear, we are not using splines as a model

of the data. We are using them as a part of the procedure for the registration of the

data.

A spline is defined as, “A piecewise polynomial function that can have a locally

very simple form, yet at the same time be globally flexible and smooth [105].”

The function components are joined smoothly at the breakpoints that separate the

functions because of the constraint that the functions, their derivatives, and their

second derivatives be equal at their junctions. The junctions in this case are the

actual data points. To create the sample functions, for each function we define a

system of spline basis functions, and since a scalar multiple of a spline function is still

a spline function, represent them as linear combinations of these basis functions [89].

For shift registration of the curves, we are interested in the values:
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x∗i (t) = xi(t+ δi)

where xi is the sample function, t is the position (in our case the time) along

the abscissa, and the shift parameters δi align the curves. We estimate the mean

function µ̂(t) over the interval in which we are interested. The mean is estimated

using the spline smoothing criterion (PenSSE) [89]:

PenSSE =
ni∑

j=1
(yij − xi(t))2 + λ

∫ (
d2x(t)
dt2

)2
dt

where n is the number of observations, λ is a roughness penalty, and yij is fit by the

curves of xi [50]. We then minimize the following criterion with respect to δi:

∂

∂δi
REGSSE = 2

∫
T
{xi(t+ δi)− µ̂(t)}

(
dxi(t)
dt

)
dt

∂2

∂δ2
i

REGSSE = 2
∫

T
{xi(t+ δi)− µ̂(t)}

(
d2xi(t)
dt2

)
dt

+ 2
∫

T

(
dxi(t)
dt

)2
dt

where REGSSE is the global registration criterion and T is the time interval in

which we are interested. The process is iterated, re-computing the mean µ̂(t) from

the registered curves, and re-computing the shifts δi using the following [89]:

δ
(v)
i = δ

(v−1)
i − α (∂/∂δi)REGSSE

(∂2/∂δ2
i )REGSSE (5.1)

where v is the iteration number and α is a step-size parameter.

Algorithm 5.1 shows the shift registration procedure. The variables ξ and ζ are

convergence parameters for the (∂/∂δi)REGSSE and (∂2/∂δ2
i )REGSSE functions.

The parameters for this procedure correspond to the variables in the respective

formulas. Line 2 shows that the shift parameter is initially estimated to be zero.



103

Algorithm 5.1 Shift registration [89]

1: procedure shift reg(xi, yij , t, α, ξ, ζ)
2: δi = 0
3: v = 0 . Iteration counter
4: while (∂/∂δi)REGSSE > ξ and (∂2/∂δ2

i )REGSSE > ζ do
5: µ̂ = PenSSE

6: re-compute δ(v)
i as in Equation 5.1

7: v = v + 1
8: end while
9: return δi

10: end procedure

The convergence criteria are shown in line 4. Lines 5 and 6 show the updating of the

mean estimate and the re-computation of the shift parameter.

5.5.1.6 Train, Validate, and Test Separation Since we were exploring the datas-

pace rather than exhaustively validating a training methodology, it was important

that we kept the treatment of the data consistent among training, validation, and

testing sets. For this reason, the time indices for the training, validation, and testing

segments of the data were pre-selected before any of these processes proceeded. After

completing the aforementioned procedures, there were 93 data instances for each

area of interest. Since there were 93 total time slices for the data, for training we

reserved 73 of these, selected at random, and 10 each for validation and testing.

5.5.1.7 Sequential Data Training The data from all of the points of interest

on the map are bound together by time, with the first instance for each location

happening at the same time as the first instance in all other locations, and so

on. Normally, during the training of neural networks, the examples are fed to the

procedure randomly. This would have the effect of scrambling the temporal sequence

across the dataspace, rendering the instances incomparable. Since we wanted total
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consistency in the training of these networks, and so that there was no randomization

during the training process, exactly one ordering of data was used universally for all

locations. This was done to ensure that the same time indices were used for all areas

of interest and all of the training epochs corresponded with each other. This ordering

was pre-selected and was applied system-wide.

5.5.2 Layer Pre-Training

Figure 5.7 shows the stages of the pre-training procedure and how the general

process flow proceeds. The large rectangle in the center are the major parts

that we contributed in this study. Each item in the diagram is explained in the

following sections.

5.5.2.1 Prototype Network In the interest of removing all sources of variation

in the pre-training procedure, the networks trained on the data from each area of

interest were cloned from a single, randomly initialized, autoencoder. Therefore, all

pre-training had the same random starting point. The prototype autoencoder was a

single layer of 150 nodes and its layer weights were each initialized to random values

between −1 and +1.

5.5.2.2 Node Profiles and Pairwise Dot Products After pre-training, each

network was the result of the original, cloned autoencoder having been pre-trained

on data from its respective area of interest, and therefore contained the compressed

autoencoder representation of that area of the dataspace. This is crucial to this

investigation because it is a goal to expose the different ways in which different areas

of aggregate environment differently affects a homogeneous system in order to extract

knowledge that can be used in other areas of the dataspace.
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Figure 5.7: Pre-training

To compare what was learned by each node across the dataspace, we collected

each node’s incoming weight vector. Specifically, for each autoencoder and for each

area of interest we collected the weight vector of each corresponding node and

arranged them into a similarity matrix. Because of the way the networks were

trained we assert that if their weight vectors are the same, the feature learned by
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Table 5.2: Node profiles

(a) Node profiles

a0 a1 · · · ac

v0 w0,0 w0,1 w0,c

v1 w1,0 w1,1
... . . .

ve we,0 we,c

(b) Pairwise dot products

a0 a1 · · · ac

a0 p0,0 p0,1 p0,c

a1 p1,0 p1,1
... . . .

ac pe,0 pc,c

a particular node at one location corresponds to the same feature learned by that

node in another location.

More formally, suppose we have two autoencoders A1 and A2. Suppose we order

the hidden nodes of each autoencoder as h1, . . . , hn. Because of the controlled pre-

training procedure and the fact each autoencoder started from the same state, we

assert that node hA1
i and hA2

i are examining the same feature of the underlying data

and are, therefore, comparable. This is because we are using a controlled pre-training

procedure that uses gradient descent. Since the autoencoders are being trained using

gradient descent they will converge to a stable local optimum. We computed the

pairwise dot products of the node weight vectors for each node as the measure of

similarity between each of the node profiles for each location. Table 5.2 depicts the

results of the node profile extraction proceure.

5.5.2.3 Variograms Having the matrix of pairwise dot products based on

location allowed us to analyze the variance as a function of distance between each

node. For this we used variograms [13, 35], which depict the differences in the dot

products for all of the nodes for each location. This tool enabled us to examine the

extent to which the results of unsupervised pre-training were spatially dependent [65].
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Such a spatial analysis is appropriate here because we have endeavored to remove

all other randomness from the model and are instead analyzing the systems that

remain: those of the pre-trained neural model and the mixture of random and

functional dynamics that are endemic to the storm system [65]. The mathematical

definition of a variogram is as follows [13].

γ(h) = 1
2V ar [Z(x+ h)− Z(x)]

where γ is called a variogram, Z(x) and Z(x+ h) are regionalized random variables,

which in our case would be the incoming node dot products for the networks

corresponding to each location, and x and x + h are the spatial positions separated

by h [13].

Figures 5.8 through 5.10 show three examples of variograms that were produced

during this procedure. Each of these charts uses a different scale on the ordinate,

since the scale of each of the pairwise differences differed significantly. To remove the

influence of the scale in the expression of the patterns in the data, we individually

scaled each of the variograms to a range between 0 and 1. This allowed us to

pairwise compare the patterns that were in the variograms, rather than the data

that generated them.

5.5.2.4 Hierarchical Agglomerative Clustering Since all of the variograms were

now on the same scale, we used hierarchical agglomerative clustering (HAC) to

determine inter-relatedness among variograms. We assumed that similar general

shapes for the distributions of the variograms meant that there were similar, or

analogous, processes that generated them. Since the number of clusters is an input

parameter to HAC, we assessed each clustering from 2 clusters through 9 clusters. To

determine what we regarded as an optimal clustering we used the Calinski-Harabasz



108

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0 5 10 15

0.
0e

+
00

5.
0e

−
10

1.
0e

−
09

1.
5e

−
09

xp

yp

Figure 5.8: Example variograms from each cluster in selected clustering for node 19
(average silhouette coefficient = 0.11).

score (also known as the pseudo-F score) [54] as follows.

FNC =

NC∑
i=1

nid(ci, c)/(NC − 1)

NC∑
i=1

∑
x∈Ci

d(x, ci)/(N −NC)

where NC is the number of clusters, N is the number of objects in the dataset, ni is

the number of examples in the ith cluster, d(x, y) is the Euclidean distance between x

and y, ci is the center of the ith cluster, and c is the center of the dataset. The
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Figure 5.9: Example variograms from each cluster in selected clustering for node 1
(average silhouette coefficient = 0.18).

Calinski-Harabasz measure is an evaluation of cluster validity based on intra-cluster

distance and inter-cluster distance. An example Calinski-Harabasz score profile from

our training is shown in Figure 5.11. The chart shows that, for this configuration,

the optimal HAC clustering to use is three clusters.

We identified and distinguished the clusters inside the clusterings by their

silhouette scores, which is a quality measure based on pairwise differences of between
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Figure 5.10: Example variograms from each cluster in selected clustering for node 18
(average silhouette coefficient = 0.43).

and within-cluster distances. The silhouette score is defined as:

SilNC = 1
NC

NC∑
i=1

 1
ni

∑
x∈Ci

b(x)− a(x)
max{b(x), a(x)}


where

a(x) = 1
n− 1

∑
x∈Ci,y 6=x

d(x, y)
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Figure 5.11: Calinski-Harabasz score for clusterings: 2–9 Clusters

and

b(x) = min
i,j

 1
nj

∑
y∈Cj

d(x, y)
 .

After using the Calinski-Harabasz score to select the number of clusters as an input

parameter, the clusters that were produced using HAC had different silhouette scores.

We used that as an indication of cluster quality, which varied widely. A maximal

silhouette score is to be preferred over minimal, so we wanted to see if cluster quality in

this respect had an impact on the resulting convergence and prediction performance.

The results depicted in Figures 5.16, 5.17, and 5.18 are divided by average silhouette

score for each cluster. Again, NC is the number of clusters, n is the number of objects

in the dataset, d(x, y) is the Euclidean distance between x and y, and ci and c are

the centers of an individual cluster and entire dataset respectively.

The three charts in Figures 5.8 through 5.10 are variograms of nodes that were

examples of three clusters, each with different average silhouette coefficients (ASC).
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Algorithm 5.2 Fixed node identification

1: procedure FNID(locations, ae proto, data)
2: trained ae← []
3: for all l ∈ locations do
4: trained ae = trained ae+ train(ae proto, datal)
5: end for
6: ae dp← []
7: for all ael ∈ trained ae do
8: dpael

← []
9: for all node a ∈ nodes(ael) do

10: for all node b ∈ nodes(ael) do
11: dpael

= dpael
+ dot product(weights(node a), weights(node b))

12: end for
13: end for
14: ae dp = ae dp+ dpael

15: end for
16: for all node ∈ nodes(ae proto) do
17: semvars← []
18: semvars = semvars+ variogram(ae dp[node.id])
19: end for
20: dendro = dendrogram(semvars)
21: ch dict← {}
22: for all cut levelin(2 . . . 9) do
23: ch dict[cut level] = calinski harabasz(dendro[cut level])
24: end for
25: max cut clustering = dendro[max ch(ch dict)]
26: asc← {}
27: for all cluster ∈ max cut clustering do
28: asc[cluster] = avg silhouette(cluster)
29: end for
30: return max sil(asc)
31: end procedure

When we examined the variograms across the space of all nodes, we observed this

variety of patterns. It is this data that allows us to separate nodes that we fix in the

next step, as opposed to nodes that we allow to vary.

The fixed-node identification procedure is shown in Algorithm 5.2. The

parameters shown on Line 1 are all of the locations in the investigation, the prototype
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network (ae proto), and all of the data corresponding to all of the locations. On

Lines 3 through 5 ae proto is cloned for each of the locations and each clone is

trained on the data from that location. Lines 6 through 15 show the collection of

pairwise dot products of all the incoming weights for all nodes for all of the trained

autoencoders. The variograms are created on Lines 16 through 19. On Line 16 each

node in the prototype is extracted from the prototype only for the use of identifying

the other nodes in the other networks. Since all of the networks started out as clones

of the prototype, this is so that all corresponding nodes can be extracted from each

of the other networks using node.id on Line 18. On that same line, the function

variogram(ae dp[node.id]) creates a variogram of the corresponding node’s pairwise

dot products. Line 20 creates a dendrogram, or HAC, of all of these variograms. The

Calinski-Harabasz score for each cut level of the dendrogram is obtained in Lines 21

through 24 to determine the optimal clustering. This optimal clustering is extracted

on Line 25, where the function max ch extracts the dendrogram from the dendro list

that has the highest Calinski-Harabasz score. Lines 26 through 29 create a dictionary

where the average silhouette score of the dendrograms contained in each cluster are

collected. Finally, on Line 30 the cluster of nodes that have the highest silhouette

score in the optimal clustering is returned.

Though there are several loops in this algorithm, its time complexity is

dominated by the collection of the pairwise dot products in Lines 6 through 15. The

time complexity of these lines is O(l × n2 × p), where l is the number of locations, n

is the number of nodes, and p is the size of the previous layer.

Considering the hierarchical agglomerative clustering, our technique of deter-

mining which is more organized vs. which is less organized is expensive, as it involves

creating a dendrogram, at a cost of O(l3), where l is the number of locations, and

cutting this dendrogram at several levels. The aggregate cost of this procedure thus
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Figure 5.12: Autoencoder fixed nodes

ends up as O(d×n× l3), where d is the number of data instances and n is the number

of hidden nodes. But given this is used to support analysis rather than training, this

added cost should not be regarded as problematic.

5.5.2.5 Fixed Pre-Training What we obtained from each cluster is the fixed-

set, which is a list of nodes to transfer to other locations in the dataspace. This

forms the basis for the transfer learning experiment. In this procedure, the original

autoencoder layers were once again copied from the single prototype autoencoder.

The node weights for the fixed-set of nodes were then transferred into the copy of this

prototype. The resulting autoencoder layers were pre-trained in this configuration,
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holding the weights of the fixed-set constant throughout the pre-training procedure

(disallowing any change weight during the backpropagation procedure). Figure 5.12

shows this situation for one layer of the network. In this figure, the shaded (red)

nodes are copies from another network identified from a cluster of spatially correlated

feature detector nodes. In this paper we only used a one-layer stacked autoencoder;

however, we intend to extend this to multiple layers in future work.

For the “Surrounding POI Experiments” described in Section 5.6.1, we refer back

to Figure 5.5. The location in the upper left indicated by the star shows an example

AOI whose node weights were copied, as they were identified as holding transferrable

information. The surrounding dots represent the areas of interest to which these node

weights were copied and the network’s performance tested.

For the “Linear Cross Transfer Experiment,” whose results are described in

section 5.6.2 we refer to Figure 5.20, where the weights were copied from each corner

location (locations 12, 19, 82, and 89) into the networks corresponding to the line

of AOI’s leading to the respective diagonal’s opposite corners. For example, for

location 12 in the figure, the fixed-set was copied to the networks to be trained on

trained on data from locations 23, 34, 45, 56, 67, 78, and 89.

5.5.3 Fine Tuning and Testing

The stacked autoencoder reassembly and test procedure is depicted in Fig-

ure 5.13. The beginning of the procedure has some elements in common with the

procedure shown in Figure 5.7, with the prototype networks being replaced by the

Fixed Pre-Trained Networks. The remainder of the diagram shows the prediction

process is situated.

5.5.3.1 Network Assembly Figure 5.14 shows the first hidden layer copied from

the Autoencoders. The weights are allowed to vary during fine-tuning, allowing
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Figure 5.13: Fine tuning and testing

each network to more fully represent its own area of interest. The previously

fixed nodes are shown in red to show that this layer was copied from its fixed pre-

trained representation.

5.5.3.2 Fine Tuning and Testing After transfer and during fine-tuning, the

training data are fed into the network in the same order as they were fed in for

the unsupervised pre-training procedure. This, again, is to remove as many sources

of variation as we could during the entire procedure. The number of iterations and

associated mean squared error of the networks were tracked and compared to the

original training to determine if the transfer learning process was more efficient and

effective as hypothesized.
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Figure 5.14: Stacked autoencoder fixed nodes

5.6 Results

5.6.1 Surrounding Point of Interest Experiments

Figure 5.15 shows the difference in convergence time that is typical for each

of the locations surrounding the location from which we transferred the fixed-set.

As can be seen, fixing the nodes from the pre-training of the center cell had the

effect of substantially reducing convergence times. It also shows consistently lower

overall mean squared error with respect to autoencoder reconstruction during the

pre-training procedure.
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Figure 5.15: Typical convergence comparison plot

Figures 5.16, 5.17, and 5.18 show the test performance when predicting the wind

vectors for each of four configurations that we used. We tested configurations that

were both regularized (L1 regularization) and unregularized, and we used both the

ReLU and hyperbolic tangent (tanh) activation functions in the networks that were

assembled from the autoencoder labels. Of particular interest is the configuration that

used regularization and the ReLU activation function. In this configuration, using

fixed nodes from the cluster corresponding to the higher average silhouette coefficient

produced better predictive results, in general, than either those of the fine-tuned

pre-trained networks or the fixed pre-trained configuration using the lower average

silhouette coefficient. In general, the results from the fixed pre-trained configurations

corresponding to the lower silhouette coefficients produced more erratic results.

The heatmaps in Figure 5.19 are visual representations of the average difference

in predictive accuracy for the 8 cells surrounding the cell from which the fixed-set
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Figure 5.16: u Component cross location prediction performance for ReLU configu-
ration with regularization: silhouette coefficients given in legends

was copied. Again, referencing Figure 5.5, the fixed-set was copied from the location

represented by the star. We created the heatmaps by averaging the differences of the

MSE’s of each location surrounding the starred location.

The first row of heatmaps represents the cluster with the lowest silhouette

coefficient, and the second row represents the cluster with the highest silhouette

coefficient. In these heatmaps, we observe a greater mean squared error variability

in the cluster with the lowest silhouette coefficient. This may suggest that greater
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Figure 5.17: v Component cross location prediction performance for ReLU configu-
ration with regularization: silhouette coefficients given in legends

transferability is achieved using the fixed-set from the cluster with the greater

silhouette coefficient. For the u component, these differences are shown numerically

in Tables 5.3 and 5.4.

5.6.2 Linear Cross Transfer Experiment

In this experiment we wanted to see how the convergence properties and

prediction accuracy changed as we moved far across the data space. To achieve

this, the fixed-sets were taken from the networks corresponding to the corners and
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Figure 5.18: w Component cross location prediction performance for ReLU configu-
ration with regularization: silhouette coefficients given in legends

copied to the networks corresponding to the line crossing the data space diagonally,

as shown in Figure 5.20. For example, nodes were copied from location 12 to each

network along the path to location 89, etc.

The convergence behavior resembled that from the previous experiment, whose

results are shown in Figure 5.15, with minor variation. The convergence time was

substantially lower and the MSE converged to a similarly lower value.
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Table 5.3: Differences in prediction error in surrounding regions for locations in cluster
with silhouette coefficient 0.190

0 1 2 3 4 5 6 7
0 0.071663 0.181648 0.091526 0.144587 0.142470 0.107549 0.144603 0.156638
1 0.173422 0.198090 0.120792 0.098738 0.134753 0.216859 0.180250 0.236516
2 0.146268 0.065116 0.107992 0.053564 0.069530 0.102851 0.129786 0.104743
3 0.152467 0.104508 0.108294 -0.031736 0.024594 0.015864 0.134914 0.167747
4 0.193729 0.172512 0.074459 0.117674 0.123894 0.061272 0.065049 0.122773
5 0.126530 0.127691 0.147620 0.155785 0.126462 0.115997 0.148730 0.251933
6 0.083317 0.183645 0.200183 0.159251 0.192128 0.101274 0.035824 0.133931
7 0.027401 0.126359 0.077443 0.208089 0.099937 0.045052 0.044794 0.148031

Table 5.4: Differences in prediction error in surrounding regions for locations in cluster
with silhouette coefficient 0.226

0 1 2 3 4 5 6 7
0 -0.006103 0.026441 0.031365 0.079269 0.075486 0.113234 0.089962 0.010246
1 -0.046888 0.002377 -0.035044 -0.038244 -0.001453 0.061009 0.093929 0.087198
2 0.034286 0.017958 0.001052 -0.040874 -0.016071 0.062118 0.022195 0.059957
3 0.097574 -0.001716 -0.068291 -0.085860 -0.106535 0.004428 0.137219 0.085019
4 0.057002 0.008859 0.029313 0.019012 -0.083162 -0.054874 -0.026438 -0.000454
5 -0.009035 -0.054717 -0.061529 -0.013007 -0.050549 -0.055664 0.049241 0.116108
6 0.079068 0.029965 0.058726 0.026723 -0.056399 -0.039050 -0.068245 0.040383
7 -0.002633 0.000531 -0.000337 0.049586 -0.034041 0.017514 0.008220 0.102648

Figures 5.21 through 5.23 shows the prediction performance of the resulting

networks for the configuration where no regularization was used and ReLU was used

as the activation function. For the first two rows the locations moving to the right

across the x axis indicate a movement in the dataspace farther away from the network

from which the trained nodes were copied. In the last two rows, movement to the left

along the x axis indicates this movement.
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5.7 Discussion and Contributions

In this chapter we developed a carefully controlled experiment to analyze the

transferability of knowledge stored in a neural network across a complex data space.

In our experiment, we performed functional data registration on all the input and

output dimensions. Then we initialized a single autoencoder clone for each area

of interest. During the training we did not allow random sampling of the data

and we restricted the batch size to one. We did this to reduce the differences in

scale and to control the training of the networks in such a way as to evaluate what

each area of interest where the learned features are aligned across the structures of

the networks. Exercising greater control over the autoencoder training procedure

allowed us to compare the resulting feature detectors across all locations. This

analysis method is unique in the neural network transfer learning domain in that

it operates on functionally registered data, creates consistent representations of the

feature space using autoencoders, and analyzes the effects that distance has on the

features extracted.

One contribution that we made in this chapter is our controlled analysis method.

We wanted to have as much control as possible over the training process. This allowed

us to compare the components of the neural networks side by side. In this case we

were most interested in the results of the unsupervised pre-training, as these results

contain the feature detectors of the autoencoder. This means that the encoding

layer is subject to the same random initialization, so each autoencoder has the same

starting point. Furthermore, the data is sampled in exactly the same way to make

sure that the training process is deterministic and consistent across all of the spatial

regions in the space.
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As another contribution, when analyzing transferability across the data space,

we found it advantageous to align time and magnitude in the functions being analyzed.

This way the shape of the functions could be compared as if the common cause of

the function’s behavior happened to each location at the same time and characterized

each area in the same way. Referencing our firetruck example from Section 5.4.2, there

may be ways that the observers affect the perceived sound of the firetruck as well,

such as their position relative to buildings and other obstacles. In other words, the

environment and context that defines the data space must be regarded as a critical

part of the process that generated the data. This is the case in many situations

such as neurological data in the form of the propagation of brain wave patterns,

sociological data in the form of community changes in society, and epidemiological

data in the form of propagating disease through a population [multiple citations (and

explanations) needed].

We also contributed an analysis method uses variograms from the field of spatial

statistics in a new way, focusing on the their shapes as an indicator of whether or

not a trained autoencoder node captures useful information. Simply, we assert that

the more difficult it is to explain the shape of the variograms corresponding to a

trained node, the less well-trained that node is. This is the motivation behind the

“more organized” vs. “less organized” description given in Section 5.5.2.4 and behind

clustering these variograms based on their shapes.

5.8 Conclusions and Future Work

We observe that selecting a clustering from a HAC clustering with the highest

Calinski-Harabasz score, and using this clustering with the information about the

silhouette scores of the clusterings can provide information about what random

initializations allowed better generalization across the dataspace, given the context
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of the other initializations. The procedure of copying the weights corresponding to

the nodes in the clustering to the original randomly-initialized network, and keeping

those weights constant during pre-training results in lower convergence times for pre-

training. We note, however, that this procedure is not practical in the sense of

providing a general training and transfer process. This is by design, as coming up

with such a procedure was not our goal. Rather, our goal was to analyze spatial

correlation in learned feature detectors to determine whether or not such spatial

correlation might exist and be exploited in transfer learning.

For future work, we will shift our focus from analysis to developing a practical

training procedure. Specifically, our intent is to apply model reduction strategies

(e.g., hidden node pruning) to determine those feature detectors in the network that

are likely to exhibit the desired spatial correlation. An alternative approach might be

to apply the ideas from the lottery ticket hypothesis [31, 93], as a way of identifying

transferable subnetworks. This hypothesis states that there are subnetworks within

large networks that, when trained in isolation, “can converge in a comparable number

of iterations to a comparable accuracy.” It focuses on locating these subnetworks,

which have “won the lottery” by being initialized in an advantage part of the

initialization space. These features might then be transferable and tunable in the

other areas of the dataspace.

An interesting component to this problem is in determining whether or not

spatial differences in this type of data cause the behavior of the attendant phenomena

to be different enough to warrant an original network for each specific area to be

modeled. We do not think this is so, but if we are right then there must be a way

to divide the dataspace intelligently into areas appropriate for application of models

that were trained on “compatible” areas. For this, we also need to determine what
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we mean when we call these areas “compatible.” There also may be a need to allow

overlap, in which case we may introduce fuzzy clustering or a type of mixture model.
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Figure 5.19: Heat maps depicting neighborhood mean squared error differences:
Regularization, ReLU
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Figure 5.21: u Component cross location prediction performance for ReLU configu-
ration without regularization: silhouette coefficients given in legends
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Figure 5.22: v Component cross location prediction performance for ReLU configu-
ration without regularization: silhouette coefficients given in legends
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Figure 5.23: w Component cross location prediction performance for ReLU configu-
ration without regularization: silhouette coefficients given in legends
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CHAPTER SIX

SPATIAL FEATURE EXTRACTION

6.1 Introduction

As an intermediate step in understanding knowledge learned by ANN’s it is

important to be able to make use of information gained in training for novel but

related purposes. For us, this means having the ability to transfer subsets of

internal nodes that have been trained to make effective predictions on a related set

of data. This concentrates our effort on preserving accumulated intelligence rather

than interpreting the model.

A variety of problems exist where one might consider training a single model to

perform predictions of the associated dataspace. Situations exist where a single model

to cover the space is suboptimal; it would be better to train several models covering

subsets of the space, albeit not as an ensemble where predictions are combined. These

situations often arise when the data is spatial or temporal in nature. The challenges

then arise as to determining the relevant subsets of the data for a particular model

to cover, efficiently training the set of models, and then determining which model to

apply at runtime.

In this chapter, we proceed from the perspective of working specifically with

spatial data1 This makes the third challenge trivial, thus our focus is on addressing

the first two. To that end, we explore how to preserve information encoded in ANN’s

trained in specific spatial regions and then identify key hidden nodes in networks

1Technically, the data is spatiotemporal; however, we train over the entire temporal range, thus
abstracting out the temporal relationships.
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to be used to train networks in spatially similar regions. The main question being

addressed is whether it is possible to preserve knowledge encoded in the hidden layers

of several ANN’s and collect that knowledge in a network that can effectively make

predictions over a more granular subdivision of the entire dataspace.

The remainder of this chapter is organized as follows: In the next section we

discuss some background information relevant to our task, including some related

work and a characterization of the data that were used here. Section 6.3 details the

approach we take as well as summarizing the common concepts that we utilize in our

approach. Our experiments are described after this in Section 6.4 with the results

presented in Section 6.5. Finally, in the last section, we present our conclusions based

on the results and outline directions for future work.

6.2 Background

6.2.1 Related Work

In this work we use autoencoders to pre-condition our hidden layers via greedy,

layerwise unsupervised pre-training [26,66]. Autoencoders perform feature extraction

by exploiting a property of being “undercomplete,” meaning that they ideally capture

the most salient features of the training data at a lower dimensionality [39]. Networks

pre-trained in this manner have been credited with causing the renewed interest in

deep neural networks starting in 2006 [17,39,43,76].

The data that we are interested in is spatiotemporal functional data, which is

data that exist in a continuous space whose changes happen as a function of space and

time. The field of functional data analysis is characterized and explored by Silverman

and Ramsay in [89]. A critical characteristic of this data is its tendency to vary in a

continuous, non-abrupt manner.
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Layerwise relevance propagation (LRP) is a procedure for removing some of the

“black box” characteristics of artificial neural networks [12,62,84,85]. Originally, LRP

was intended to attribute contributions of single pixels in an image to classification

decisions that a neural network made. It has also been used to compute scores for

regions of images “denoting the impact of the particular image region on the prediction

of a classifier” [18].

Partitioning of the dataspace was addressed by Rakhmatova, et al. in [75].

The authors cite differences in relief, soil type, terrain, and anthropogenic effects

causing the data to be “spatially inhomogenous” as a motivation for their work.

They use three strategies for partitioning the data: random partitioning into 70%

training and 30% test partitions, an approach based on spatial quotas (minimum

number of observations per partition), and an approach based on spatial quotas taking

the modeled variables’ magnitude difference into account. This is consistent with

our motivations in this dissertation. However, though they address pre-partitioning

a dataset for greater accuracy in the application of ANN’s, their method mainly

addresses optimally splitting the data for training and test purposes, rather than to

create a multiplicity of networks to more accurately make predictions on their own

subdivisions, as is done here.

In [88], Sergeev, et al. refer to processes that cause “spatial heterogeneity”

in studying the spatial distribution of topsoil components. They used spatial

components as inputs to their procedure, allowing the ANN’s that were trained on

the data to learn how the spatial locations affected the function being simulated. Our

approach does not rely on the ANN’s to do this and instead uses separate networks

for the contiguous related regions identified via the two stages of clustering detailed

below.
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6.2.2 Data

For this study, we used the Microwave CubeSat fleet simulation dataset created

by Zhang and Gasiewski [109]. This data depicts radiometric and wind readings from

one day over Hurricane Sandy, an Atlantic Ocean hurricane in 2012. The average

spatial resolution of the data is 5 kilometers, which we down-sampled during the

spatial binning process to 15 kilometers. The temporal resolution was 15 minutes.

The configuration of the data for training and testing purposes was the same as was

used in Chapter 5.

The particular task that we use to study our procedure is the same as in Chapter

5, which is to infer the u component of the storm’s wind vector (East-West component)

using radiometric data. The data that we use is a hybrid of two datasets (radiometric

and wind) that were taken over the same area at the same time. In Chapter 5, we

explore the functional relationship between radiometric data and wind vector data.

This is useful to the meteorological community since radiometry does not measure

wind directly.

Table 4.2 shows the input features that were used and output for these

experiments. These are the same features used in Chapter 5; however, we considered

all three components in that work (i.e., u, v, and w) but we restrict our attention here

to the u component alone. This decision was made in the interest of time. As can

be seen, the input dimensions do not directly address the wind vector but do address

components that are somewhat related to it.

Over a large enough space on the Earth, the further apart two distinct areas are

the more the data from these areas will be influenced by different forces. To address

this question we use weather data, which is a form of spatial-temporal-functional

data. Over a large enough space on the Earth, the further apart two distinct areas

are the more the data from these areas will be influenced by different forces. This
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will cause the data to behave in fundamentally different ways, motivating the use of

several ANN’s to make predictions over this dataspace. It is in this area that we make

our investigation.

6.3 Approach

6.3.1 Overview

The general approach we take is to divide the dataspace into contiguous clusters

based on two types of representations. The primary clustering is based on the original

training data (data instance clustering). The intent of data instance clustering is to

provide a first-look agglomeration of contiguous areas with similar data behavior

over the training instances. The second set of clusters is based on the LRP values

of the hidden nodes of a stacked autoencoder-based multilayer perceptron that has

been trained on the respective clusters that make up the primary clustering (LRP

clustering). The intent of LRP clustering is to capture similar knowledge that has

been learned by the networks and provide a basis for hidden-node generalization.

Our approach to knowledge transfer among networks is to identify nodes in the

hidden layer that have been most significant in producing correct predictions. These

nodes are then combined with other nodes from other networks within their spatial

cluster to form a hybrid network. Since we are performing regression, we are interested

in studying the effect of both excitatory and inhibitory neurons.

6.3.2 Computational Components

6.3.2.1 Spatial Data Clustering To exploit functional relationships in the data,

we developed a Locality-Sensitive Hierarchical Agglomerative Clustering algorithm

(LSHAC). This proceeds from the assumption that points of interest that are close

to one another (spatially) behave functionally with a greater degree of similarity
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Algorithm 6.1 Locally-sensitive hierarchical agglomerative clustering

1: procedure LSHAC(L, cluster limit)
2: for all l ∈ L do
3: cl ← l . Each location is its own cluster.
4: end for
5: while num(C) > cluster limit do
6: lr ← rand(L)
7: clr ← cluster containing lr
8: closest locs = []
9: for all lclr

∈ clr do
10: La ← adjacent(lclr

)\clr
11: closest locs← closest locs+ argmin

la∈La

(distance(la, lclr
))

12: end for
13: clr ← clr + closest( locs)
14: end while
15: end procedure

than points that are further apart. As mentioned in Section 6.1 these areas may be

influenced by common factors that are relatively alien to other areas. Assuming this,

we begin by performing LSHAC on the raw training data points.

The key difference between LSHAC and normal hierarchical agglomerative

clustering is that, at each agglomeration stage, we only consider the locations

neighboring a randomly selected neighboring cluster. Note that we refer to these

locations as Areas of Interest (AOI). We use cosine similarity to compare these

neighboring locations to determine which of the neighbors is added to the cluster.

Pseudo-code for our procedure is shown in Algorithm 6.1. This is done in stages, and

the candidates for expansion are selected randomly at each stage.

Algorithm 6.1 shows our procedure for LSHAC. Lines 2 through 4 show that

at the beginning each location is its own cluster. The major loop (lines through

constrains the number of clusters being formed to the cluster limit parameter. In

lines and we select a random location and get the cluster corresponding to that
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location. Lines through iterate through all locations inside this cluster, saving the

closest location outside this cluster to each of these interior locations. The cluster

being examined (clr) is then merged with the external cluster containing the location

that is closest to any location inside clr on line .

Normally, Hierarchical Agglomerative Clustering algorithms have a time com-

plexity of O(n3), where n is the number of locations. For LSHAC, we constrain the

similarity search space to include only adjacent clusters, and only adjacent locations

within those adjacent clusters. Consequently, this algorithm has a time complexity

that is closer to the Adjacency-constrained HAC algorithm described by Ambroise,

et al. [10]. Considering only merging clusters that are adjacent constrains the time

complexity to that of O(n log n), which is the number of iterations to merge the

clusters into one cluster.

Figure 6.1 depicts the initial stage of clustering using 25 points in a five by five

grid. At this stage, no clustering decisions have been made, and each location is

treated as its own cluster. For illustration purposes, we select location 6 arbitrarily

as a starting point (Figure 6.1b). The surrounding locations of location 6, shown in

grey, are identified, and each of their cosine similarities with location 6 is calculated.

Now suppose that location 7 is determined to be most similar. Figure 6.1c shows

location 7 added to the cluster that includes location 6. Figure 6.1d then shows the

next step by considering the surrounding locations of the cluster containing locations

6 and 7.

For the second stage of clustering, Figure 6.2 shows that all of the locations have

either been paired with another location or are orphaned by not being included in

another cluster (e.g., locations 8 and 18). The second round of clustering begins with

collecting all of the locations neighboring a randomly selected cluster. We continue

the previous example by using the cluster containing locations 6 and 7, with the
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a) Unclustered locations b) Random location

c) New cluster d) New cluster frontier

Figure 6.1: Clustering a 5× 5 grid of locations

surrounding location shown in grey. Figure 6.2c shows that location 12 has been

selected as the location with the highest cosine similarity. Analogous to a single-

linkage approach to clustering, the entire cluster containing location 12 is now merged,

creating a new cluster containing locations 6, 7, 12, and 17. This new cluster is

excluded from evaluation until the second stage completes.

6.3.2.2 Unsupervised Pre-Training and Fine Tuning Each ANN trained here

begins by unsupervised pre-training (UPT) of a single autoencoder [32]. The

described here should be generalizable to multilayer perceptrons constructed in the

same way. We use UPT to find favorable initialization points from which to apply

supervised learning with the ground truth data [39].
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a) First level agglomeration b) Cluster location selection

c) Location selection d) Cluster merge

Figure 6.2: Clustering a 5× 5 grid of locations (cont’d)

As was done in Chapter 5, a single initialization across all locations was used

to preserve comparability. During UPT, all of the training data for a given cluster

was used to train an autoencoder, presented in the same temporal order across all

networks. After training, the decoder portion of the autoencoder was discarded.

6.3.2.3 Layerwise Relevance Propagation Because we are interested in the

contributions of hidden nodes to train a final regression model, we use LRP at

the hidden layers to determine the most relevant nodes. LRP employs a layer-wise

conservation principle that assumes the preservation of a propagated quantity between
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adjacent layers of a multilayer perceptron [85]. The conservation principle requires

∑
i

R
(l)
i =

∑
j

R
(l+1)
j

where R(l)
i is the relevance associated to the ith neuron of layer l. To obtain a matrix

of relevance scores, this principle is applied on a backward pass through the network.

The relevance signal is directed proportionally to the subset of inputs that resulted in

the corresponding output for each training instance. The relevance score is calculated

according to

R
(l)
i =

∑
j

zij∑
i′ zi′j + ε sign

(∑
i′ zi′j

)R(l+1)
j

where ε is a parameter that encourages numerical stability, removing the possibility

that the denominator tends to zero and

zij = a
(l)
i w

(l,l+1)
ij

where ai is the activation value of node i and w(l,l+1)
ij is the connection weight between

nodes i and j between layers l and l + 1. This causes the lower-layer neurons (those

closest to the input) that mostly contribute to the activation of a higher layer neuron

(closest to the output) to receive a larger share of the associated relevance.

LRP was designed specifically to analyze input data. We are interested in

capturing the relevance of the hidden layer activations, so we modified the LRP

algorithm to do this (Algorithm 6.2). On line 2, we create a new network by removing

the output layer and using the activations of hidden layer l as the output. We then

capture this output A as new input data for the second part of the procedure. On

Line 7, we create a new network by removing the input layer from the original network

nAOI and using A as the input. We perform the LRP procedure on each of the records
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Algorithm 6.2 Hidden layer LRP

1: function HLLRP(nAOI , DAOI,training, l)
2: nfront,l = nAOI with layer αl as output
3: A← [] . A gets a new list.
4: for d ∈ DAOI,training do
5: A[d]← nfront,l(d)
6: end for
7: nback,l = nAOI with layer αl as input
8: Λ← [] . Λ gets a new list.
9: for α ∈ A do

10: Λ[α]← LRP (α)
11: end for
12: return Λ
13: end function

from the A list to obtain the relevance values Λ for each of the internal nodes in layer l.

Notic that we run the complete set of training data through the network once, and

then the activations through the network another time.

6.3.2.4 Subset Transfer We are interested in capturing the most important

subsets of the nodes that make up the hidden layers of our networks. Using these

subsets, we create a foundation for pre-training new autoencoders. We demonstrate

that this yields multi-layer perceptrons that are more accurate predictors for the local

area upon whose data the network has been trained.

When we transfer information among networks, we are combining networks that

have already been trained to make predictions within their own spatial clusters. Often,

corresponding nodes in different clusters’ networks have LRP values that are different

but still significant, which is demonstrated in Figure 6.3. Both clusters have produced

networks where node n1,0 has a significant LRP value.

When we examined the distribution of LRP values, we observed three interesting

differences (Figures 6.4 and 6.5). The whisker plot of the LRP values of the nodes from
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the networks within one cluster (Figure 6.4 shows that there is a variety of differences

among the nodes, including many with no difference at all (e.g., nodes 0, 3, 6, 9, 15,
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and 19). Figure 6.5a shows a histogram of the absolute values of the differences where

a large number of nodes have little or no difference with the distribution then trailing

off to the right. Figure 6.5b shows a histogram of both the positive and negative LRP

values. It should be noted here that the creators of the LRP procedure identified nodes

with negative LRP values as having an inhibitory influence on the final prediction.

To identify nodes with useful LRP values, we employ “Kneedle”, a knee detection

procedure to find the point where the influences between the tendency for the LRP

sum value to be zero (no influence) and the tendency for the node to have some

relevance [86]. The “Kneedle” procedure is based on the idea of finding the points

in a curve that are the local maxima for a curve that has been rotated by φ degrees

about the point (x min, y min) through a line formed by the points (x min, y min)

and (x max, y max). We applied this procedure to the final histogram for both

increasing (negative) and decreasing (positive) values. Nodes laying outside these

knee points were regarded as transferable.

When comparing two networks, if the LRP values of a node in each network are

regarded as significant, but one node is inhibitory while the other is excitatory, we

split the node in the combined network. Figure 6.6 illustrates this process. In our

case we are interested in excitatory and inhibitory nodes because these types of nodes

have the effect of either influencing an increase (excitatory) or decrease (inhibitory)

the final value of the regression. In this example we only depict the situation where

all three of the relevant nodes have been deemed relevant across multiple networks

in the merging cluster. Figure 6.6a highlights the three relevant nodes. Figure 6.6b

shows that all three have been included in a new autoencoder. The remaining nodes

are copied from the untrained template network.



146

n0,0

n0,1

n0,2

n0,3

n0,4

n0,5

n0,6

n0,7

n1,0

n1,1

n1,2

n3

n1,4

n5

n2,0

n0,0

n0,1

n0,2

n0,3

n0,4

n0,5

n0,6

n0,7

n1,0

n1,1

n1,2

n1,3

n1,4

n1,5

n1,6

n1,7

n1,8

n1,9

n2,0

n2,1

n2,2

n2,3

n2,4

n2,5

n2,6

n2,7

n0,0

n0,1

n0,2

n0,3

n0,4

n0,5

n0,6

n0,7

n1,0

n1,1

n1,2

n1,3

n1,4

n1,5

n1,6

n1,7

n1,8

n1,9

n2,0

a) Identification of nodes b) Node expansion c) New perceptron

Figure 6.6: Node identification and expansion

Figure 6.7: Spatially clustered areas of interest with query location
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6.3.2.5 Selective Network Application Figure 6.7 shows a 5×5 grid that has been

divided into four clusters with the centroids of those clusters depicted as the black

diamonds. The centroids are determined by taking the mean of all of the positions

in the cluster. Suppose we have a location about which we wish to make predictions

(e.g., the yellow star in Figure 6.7). Since centroid 4 is the closest, the network for

cluster 4 will be used to make predictions for that location.

6.3.3 Training Procedure

To begin the overall training procedure, spatial data clustering (cf. Sec-

tion 6.3.2.1) is applied to the raw data from each AOI. We call this “data instance

clustering.” The targeted number of clusters is an input parameter that guides the

algorithm, telling it when to stop clustering. The algorithm stops clustering when

the number of clusters is at this limit or when the next agglomeration will cause the

number of clusters to be below this limit.

The autoencoders that produce the initial hidden layers for each AOI’s network

are each copied from a pre-initialized template network. This is done to ensure

comparability among each of the networks. This is also important for the aggregation

and transfer steps later in the procedure.

Following the unsupervised pre-training, multilayer perceptrons (MLP’s) are

created using the pre-trained layer as the hidden layer. These MLP’s are then fine-

tuned with the training data. We then apply the LRP procedure to the trained

networks to determine the relevant hidden nodes. The fine-tuned MLP’s allow the

LRP procedure to occur, since they have been fine-tuned using the ground truth from

the training data. Following LRP, a second phase of clustering is performed using

the relevance values. It is this clustering step that produces the final clusters among

which accumulated knowledge is shared. It is also these clusters that are evaluated
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using the Selective Network Application procedure from Section 6.3.2.5, which is the

final step in the experiment.

The analysis for the transfer procedure occurs after the LRP values have been

obtained. We used this information in four ways, each of which is detailed in the

extreme lower right cell of Table 6.1. The nodes only above the positive knee point

represent the relevant positive nodes. The nodes only below the negative knee point

represent the relevant negative nodes.

6.4 Experiments

6.4.1 Experimental Design

For training, testing, and verification, we employed a 10-fold cross-validation

strategy where the same time slices are used for each of the splits across all of the

networks. The 10-fold cross validation used 90% of the entire set of time slices as

the training and validation set The remaining 10% of the entire set of data was used

for testing. We further subdivided the training set, with 90% of it used for training

and 10% of it for validation. The validation split was used for early stopping to

prevent overfitting. The networks were trained to predict wind vector components

from the radiometric data collected in the Microwave CubeSat data set.

6.4.2 Experiment Scenarios

Table 6.1 shows the different scenarios of experiments that were run. The global

experiment served as a baseline for performance comparison and consisted of training

a single network over all of the AOI’s. The dual clustering experiments involved

combining both data instance clustering and relevance clustering. The data were

clustered using the normalized data instances. The LRP procedure was then run to

obtain the relevance values for each instance in the training data. For data instance
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Table 6.1: Summary of experiment scenarios

Experiment Description Variations

Global
Train one ANN on all data from all
locations to predict over the
entire dataspace.

N/A

Dual Clustering (DC)

Cluster the dataspace using LSHAC
based on the training data.
Further cluster the data-space using
HLHAC based on LRP values.

N/A

Dual Clustering
with Transfer (DCT)

Same as DC. Combine networks
using relevance similarity.

1) Use only above positive
knee point.
2) Use only below negative
knee point.
3) Use both.
4) Use only relevant nodes.

Table 6.2: Experiment configurations for different scenarios

Experiment Sub-Experiment Expansion Abbreviation
Global N/A N/A Global
Dual Clustering N/A N/A DC
Dual Clustering with Transfer Nodes Above Knee Point Single DCT Above Single

” ” All DCT Above All
” Nodes Below Knee Point Single DCT Below Single
” ” All DCT Below All
” Above and Below Single DCT Both Single
” ” All DCT Both All
” Only Relevant Single DCT Rel Single
” ” All DCT Rel All

clustering the target cluster numbers were 20, 30, 40, 50, 60, and 70. Following this,

the LRP clustering used target cluster numbers of 4, 5, 6, 7, 8, 9, and 10. All 36

pairs were examined. Note that no knowledge transfer among networks occurred in

the first set of dual clustering experiments, but the knowledge transfer procedure was

applied in the second set.
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Figure 6.8: Summary of performance

When combining the clusters, there were situations where the candidate clusters

for the new combination contained weights that were the same or almost the same.

In response to this, the Dual Clustering with Transfer experiments in Section 6.5.3

were subdivided further into two node expansion techniques. In the first case, we

simply selected one of the nodes at random, treating it as a representative of the set

of nodes with similar weight vectors. Thus, in this case, only one node from the group

is transferred to the new network. In the second case, we simply transferred all of

the nodes from the collection (resulting in the transfer of as many nodes as were in

the group). Table 6.2 shows the abbreviations that are used in the discussion of the

experiment scenarios.
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6.5 Results

Figure 6.8 summarizes the performance of all experiments in terms of root

mean squared error (RMSE) on the wind vector determination task from Chapter 3.

As shown, the best performing configurations from each sub experiments all

outperformed the Global configuration. The best single configuration was the DCT

Both Single (40/4), which had a data instance clustering limit of 40 and an LRP

clustering limit of 4.

To test the performance of these scenarios, we ran paired t-tests comparing each

scenario depicted in Figure 6.8 with the Global configuration. The tests were run on

the cross validation error from each of the folds. At an α = 0.1 level, we found a

significant difference between the Global configuration and all of the experimental

configurations, with the exception of the DCT Both All configuration. We also

found that the DCT Above Single and the DCT Both Single configurations were

significantly better than the Global configuration at the α = 0.05 level, with the

DCT Both Single configuration having greater improvement over Global. However,

when comparing both of these configurations to each other, we found no statistically

significant difference, even at the α = 0.1 level.

6.5.1 Global Experiment

Results for the Global experiment are summarized in the heat map in Figure 6.9.

The global network was initialized with the same weights as for all of the rest of

the experiments. Since this experiment was used as a baseline, we only note the

general characteristics of the performance for this network. This figure shows better

performance in the North of the dataspace and especially in areas that are over land.
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6.5.2 Dual Clustering (DC) Experiment

The differences between the RMSE for the DC experiment and the Global

experiment are summarized in the heat map in Figure 6.10. The values used to

create the heat map are the mean difference in RMSE over the ten folds for the DC

experiment:

HM-Val = Global-RMSE− 1
|folds|

∑
f∈folds

RMSEf

This means that the heat map tends towards red when the results favor the experiment

and tends towards blue when results favor the Global configuration, with white

being neutral.

6.5.3 Dual Clustering with Transfer (DCT) Experiment

Figure 6.8 shows the performance of the “DCT Both Single” scenario, which

was the best-performing scenario. This heat map is constructed to compare the

performance for the 36 different combinations of cluster sizes when configuring data

instance clustering and LRP clustering. As shown, the configuration where the cluster

limit for data instance clustering was 40 and the cluster limit for the LRP clustering

was 4 is the highest-performing version. The heat map in Figure 6.11a is constructed

in the same way as in Figure 6.10 and compares the winning “DCT Both Single”

configuration to the performance of the Global network. The cell corresponding to

the best performing configuration in this diagram (Data Cluster Limit: 40, LRP

Cluster Limit: 4) conforms to the lower extreme of the RMSE differences, where

the Global average RMSE was 0.330 and the average RMSE for DCT Both Single

was 0.261.

Figure 6.11b depicts the the final hidden layer (autoencoder) sized that resulted

from the node expansion procedure detailed in Section 6.3.2.4. The winning

configuration (again, Data Cluster Limit: 40, LRP Cluster Limit: 4) produced on
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average 173.678 nodes in the autoencoder, which is near the mean of 176.926. The

lowest average number of nodes produced by “DCT Both Single” was 156.628 and

the highest average number was 202.702.

6.6 Discussion and Contributions

Neural networks exemplify a model of computation in which the trained,

feature detectors identify the most important features of the data. Our process

provides a step towards creating transferable feature detectors, represented as

collections of nodes, that may be used as starting points for newly initialized neural

networks. By using subsets of the layers throughout the network, our approach

differs from traditional approaches that use entire trained models or complete layers

as transferable components. In the fixed pre-training procedure from Chapter 5,

transferring trained sets of individual hidden nodes in the network resulted in faster

convergence. In this Chapter we saw that transferring the trained node subsets

resulted in greater predictive accuracy as well.

In this chapter we contributed a method for changing the neural network

architecture during the training process to adapt to the inclusion of data for which

the initial networks were not trained. When transferable subsets of hidden nodes are

identified, there are choices to be made. The nodes in the networks corresponding

to the clusters being merged may have “relevance intersections,” or more simply,

nodes that occupy the same position in either network that have significantly different

layerwise relevance propagation (LRP) values. Take, for example, when two of the

spatial clusters are being merged, the networks corresponding to both clusters may

have different nodes that are deemed important; however, some of these nodes may

hold the same position in each network, thus causing an intersection. For example,

suppose we are merging spatial clusters A and B, where nodes 3, 7, and 9 are relevant
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in the network corresponding to cluster A, and nodes 7, 9, and 12 are relevant in

the network corresponding to cluster B. There is an intersection of nodes 7 and 9.

Suppose that node 7 has approximately the same LRP value in both networks. In this

case we transfer that node to the new network. On the other hand, if the relevance

value for node 9 is significantly different for both networks, then we add both of these

nodes to the new architecture. We call this “node splitting.” In the worst case this

will cause the size of each hidden layer to double upon each merge. The benefit of

using this procedure, however, is that we have a way of combining multiple competing

relevant nodes when combining the networks.

Our locality-sensitive clustering procedure is another contribution. This follows

the line of thinking from the third scenario, which concentrates on clusters of

locations for application, which was discussed in Section 4.5. This procedure not

only merges spatial regions, but also merges the networks that have been trained to

make predictions for data that fall within those regions. The method can be viewed as

a type of “conceptual clustering” in that it satisfies the two problems that need to be

addressed by conceptual clustering systems [30]. These problems are 1) determining

useful subsets of an object set, which in this case is a collection of locations, and 2)

determining useful concepts for each object class, which in this case are the subsets

of the object set. The first problem is satisfied by dividing the data space. The

second problem is satisfied by combining the relevant nodes in both neural networks

corresponding to the merged clusters. Our method of locality-sensitive clustering

focuses on the first problem, and we leave addressing the second for future work.

6.7 Conclusions and Future Work

From our results, we conclude that our procedure is a reasonable one to employ if

the goal of the neural network is accuracy above training efficiency. Performance was
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indeed enhanced using our approach, but the cost of using this procedure is certainly

a factor, as it is indeed a more lengthy procedure that complicates the training.

Perhaps this subdivision via clustering of the dataspace is appropriate, especially in

situations where one is constrained to neural networks where the expressiveness is

constrained. Also, natural divisions in the dataspace may be sought, and this is one

way of obtaining them.

In merging networks where there are “relevance intersections” there is a question

as to whether or not it is beneficial to add the intersecting nodes from both networks.

In order to control the expansion of the resulting hidden layer, further evaluation

of the tradeoffs of including both nodes or of including one node and not the other

should be conducted. There is a danger that just including both intersecting nodes

from both networks will eventually lead to an exponential explosion in the size of the

network. This increases, not only computational burden, but the risk of the resulting

models overfitting in the target cluster. If we are to re-train the resulting autoencoder,

this would motivate including a regularizer. Also, the online expansion of the hidden

layer sizes, such as in our node splitting procedure, introduces the question of whether

it is possible to use an analogous procedure for “node coalescence” to reduce the

complexity of the hidden layers in another way. This is analogous to the concept

(object class) merging process in COBWEB [COBWEB paper].

To determine the optimal number of clusters, our locality-sensitive hierarchical

agglomerative clustering algorithm uses the Calinski-Harabasz measure. This requires

the system to produce several different clusterings so that the measure can be

performed and the optimal clustering selected. If we approach this clustering in

a similar way to the COBWEB algorithm, the pre-determination of the number of

clusters in the clustering may not be necessary. COBWEB [30] applies four operators:

1) classifying objects with respect to existing classes, 2) creating new classes, 3)
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combining two classes into a single class, and 4) dividing a class into several classes.

In classifying objects with respect to existing classes, which we do in the case of

merging clusters, locality will still have to be a factor. When performing the location

clustering, each element (or location) starts out as its own class, so no new classes

are created. Our procedure already pays attention to combining two classes (in this

case, locations or clusters of locations) into a single class. The division of a cluster

of locations into several clusters of locations is something that will be new to our

procedure. In the case that merging two classes, and therefore two networks, may

cause the network to no longer be representative of a portion of the new class, a

mechanism for division should be created.

Finally, since we are causing the size of the hidden layers to expand through

the process of discovering the relevance of certain nodes, we are in effect forcing the

expressiveness of the resulting models to adapt to the conditions of the space. An

interesting investigation would be to study the behavior of the networks concerning

underfitting and overfitting as these expansions and contractions take place. This

motivates the idea of searching for “appropriate expressiveness” of a model without

generating new models, thus losing all of the intelligence captured in the training of

a previous generation of networks.
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CHAPTER SEVEN

CROSS-DATASET TRANSFER

7.1 Introduction

In the case of hurricanes it is easy to understand that we do not have the benefit

of being able to train a DNN during the entire lifecycle of an active hurricane to

make predictions about it. The real benefit of transfer learning here comes if there

is the possibility of using knowledge gained from the behavior of one hurricane to

predict or characterize the behavior of another. This assumes that there is enough

commonality in the general behavior of these storms for the transfer to be of any use.

The knowledge gained may be understood as dynamics that are fundamental to the

behavior of generalized storms, but underlying conditions of terrain, solar radiation

reception, diurnal cycle variations, and other variables may be quite different.

As it becomes apparent that it is possible to build up a knowledge base in the

form of trained neural networks, their benefit to the task of hurricane prediction may

become greater as more storms are folded into the pre-conditioning of the neural

network knowledge base. This knowledge base may take the form of a database

of encodings, or subsets of nodes, whose inclusion in new generations of neural

networks enhances the accuracy of these models a priori to the new storm. To

do this, we extend the research of the previous chapter to cross storm transfer and a

nonparametric technique of finding encodings in trained networks.

The research detailed in this chapter builds directly on the research in Chapter 6,

with three major changes.
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1. We use the procedure detailed in Chapter 6 on two new storms, Harvey and

Irma, using the best configuration from that analysis as a baseline. The storms

have a different set of dimensions than that from the Hurricane Sandy dataset.

2. We add a new technique for transfer neuron (encoding) selection. This technique

uses the Kruskal-Wallis one-way ANOVA test for independence in the selection

of transferrable neurons.

3. We use networks trained on Hurricane Harvey to make predictions about

Hurricane Irma and vice-versa, performing another type of transfer learning.

The data that we use in this chapter span five days at a temporal resolution of 15

minutes instead of one day at the same temporal resolution, as in the previous

chapters.

This chapter is organized as follows: We begin with a background some

background information about transfer learning. Following this, we discuss the data

that we are using for this phase of the research, paying attention to the dimensionality

of the data as well as the spatial extent. We then describe our approach, beginning

with the Kruskal-Wallis One Way analysis of variance (ANOVA) method, proceeding

with our method of cross-dataset transfer, and ending with a description of our general

process. After this we describe the experiments that were run. We end this chapter

with some conclusions and directions that future work might take.

7.2 Background

7.2.1 Transfer Learning

We address the problem of wind vector determination and prediction for

hurricanes using autoencoders that have been pre-trained using unsupervised pre-

training in our published work [58–60] and in the chapters that precede this one.
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In this chapter we perform heterogeneous transfer learning as defined by Yang

in [108]. This is defined as transfer learning where the learning effort aims to improve

the learning of the target predictive function where the source and target domains

share no data.

Addressing the problem of transfer learning in wind vector prediction, Qureshi,

et al. used the idea of adaptive transfer learning to transfer knowledge gained from

training a deep neural network from region to region to predict wind power yield

in wind farms [71, 72]. The knowledge transferred was in the form of a series of

autoencoders that were pre-trained, which were then fine-tuned for adaptation to

the target region. Their conclusion was that adaptive transfer learning could make

this model adaptable to real-time applications. They assert that what makes their

concept “transfer learning” is that the underlying terrain differences from region to

region change the domain sufficiently to make the task fundamentally different.

7.3 Data

The data we used in this phase of our work consists of two separate hurricanes:

Harvey and Irma. Along with Hurricane Maria, these storms are known in the

insurance industry as the HIM (Harvey, Irma, Maria) event of 2017. It is famous

in that industry because it was a rare grouping of three major storms in a very short

period of time.

Table 7.1 shows the dimensions that were collected for each data point. These

dimensions differ from the dimensions in the previous chapters, mostly with respect to

how the precipitation dimensions are expressed. For example, the Ice Mixing Ratio is

defined as, “the ratio of the mass of ice per unit mass of dry air in a sample containing

cloud ice and/or frozen precipitation [11].” The rest of the mixing ratios are defined
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Table 7.1: New Data Dimensions for Each Point of Interest in the WRF Interpolated
Datasets

Reading Source Reading Name

WRF Radiometry Data

Temperature
Water Vapor Mixing Ratio
Cloud Water Mixing Ratio
Rain Water Mixing Ratio

Ice Mixing Ratio
Snow Mixing Ratio

Graupel Mixing Ratio
Cloud Fraction

WRF Wind Data
Wind U
Wind V

Wind W

analogously. We also do not have the benefit of having barometric pressure as a

dimension for this set of experiments.

7.3.1 Hurricane Harvey

In August of 2017 Hurricane Harvey started as a tropical wave off of the coast

of Africa. It then increased in strength and extent as it moved across the Atlantic

ocean, over the Caribbean, and then into the Gulf of Mexico. It weakened into a

tropical storm as it crossed the Yucatan Peninsula on August 22. After this it then

re-strengthened into a hurricane, making landfall on August 25th. It is responsible for

68 deaths and damage estimated at $125 billion [79]. A satellite image of Hurricane

Harvey from GOES-16 just before making landfall is shown in Figure 7.1.

The data we used for Hurricane Harvey was a 1,000 kilometer square centered

at 92.5 degrees West longitude and 22.5 degrees North latitude. Harvey crossed over

this point over the days of August 21-25, 2017. As mentioned, these are critical days

for this particular storm, as the data cover the re-intensification of the Hurricane as

well as its landfall.
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Figure 7.1: Tropical Storm Harvey on August 24, 2017 [5]

7.3.2 Hurricane Irma

Not much later in the season, just as in the case with Hurricane Harvey,

Hurricane Irma started as an African easterly wave in early late August, showing

convective appearance on satellite imagery on the 26th. It was classified as a

category 3 hurricane on August 31. It became a category 5 hurricane on September

5th with maximum sustained winds of 185 mph, the strongest hurricane ever recorded

in the Atlantic Basin outside of the Gulf of Mexico and the Caribbean. It is responsible

for 47 deaths and damage estimated at $50 billion [37]. A GOES-16 image of Irma

devastating Puerto Rico is shown in Figure 7.2.

The data we used for Hurricane Irma was a 1,000 kilometer square centered at

62 degrees West longitude and 17.5 degrees North latitude. Irma crossed over this

point over the days of September 4-8, 2017. During this time, this storm became a

category 5 storm and began its extensive destruction over the Caribbean.
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Figure 7.2: Hurricane Irma on September 6, 2017 [3]

a) Harvey area of interest b) Irma area of interest

Figure 7.3: Harvey and Irma points of interest inside respective areas of interest
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7.3.3 Areas of Interest

Figure 7.3a shows the data collection points for the area of interest for Hurricane

Harvey. The white area to the bottom of the figure is the Yucatan Peninsula and the

Mississippi Delta (Louisiana) is at the top, situating the points of interest in the Gulf

of Mexico. Figure 7.3b shows the area of interest for Hurricane Irma. It is zoomed

out to make the area over which the points of interest lie easier to locate on the

Earth. The small white area to the left is Puerto Rico and the small islands below

the points of interest are Guadeloupe, Dominica, Martinique, St. Lucia, and other

Caribbean islands.

7.4 Approach

7.4.1 Overview

In this phase of our research, we wanted to reduce the number of parameters

required to run our procedure. To do this we leveraged the Kruskal-Wallis one-way

ANOVA test to determine transferrability.

7.4.2 Kruskal-Wallis One Way ANOVA

The Kruskal-Wallis one-way ANOVA (KWA) method is a non-parametric way

to determine whether or not samples come from the same distribution [51]. It uses

the ranks of the data rather than the data itself to determine this.

The first step in performing the KWA procedure is to rank all of the data

together, which means producing a collection where all of the data are assembled

regardless of group membership, and ranked to produce a ranking r for each

observation. The next step is to produce the test statistic H using the formula:

H = (N − 1)
∑g

i=1 ni(ri·−r)2∑g
i=1
∑ni

j=1(rij−r)2
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Table 7.2: Example LRP values

n0 n1 n2 n3
i0 10 5 4 11
i1 15 1 7 2
i2 6 0 3 9
i3 12 14 8 13

where ni is the number of observations in group i, rij is the rank of observation j from

group i, and N is the total number of observations across all groups. In addition:

ri· =
∑ni

j=1 rij

ni

where ri· is the average rank of all observations in group i. Also:

r = 1
2(N + 1)

where r is the average of all rij . In a situation where there are not ties in the data,

the H-statistic becomes:

H = 12
N(N+1)

g∑
i=1

ni

(
ri · −

N + 1
2

)2

= 12
N(N+1)

g∑
i=1

nir
2
i· − 3N − 1

For our purposes we are ranking the Layerwise Relevance Propagation values

(LRP) of a particular node (or neuron) against the remaining neurons in the network

that has been associated with a cluster. For example, in Table 7.2, we have LRP values

for four nodes n0 through n3, for four data instances i0 through i3. Again, these LRP

values represent the relevance of a particular node for making the decision that the

network made for the corresponding data instance. In determining which nodes are

transferrable (which nodes have the greatest aggregate relevance) we perform the
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Table 7.3: Example LRP values separated and sorted

n0 6 10 12 15
n1,2,3 0 1 2 3 4 5 6 8 9 11 13 14

Algorithm 7.1 Kruskal-Wallis transfer node identification

Require: clusterA is a cluster of LOI’s with an associated network netA
Require: clusterB is a cluster of LOI’s with an associated network netB
Require: relScores is an associative array where relScores[netA] relevance values

for each node and each instance in the training set
1: function KWID(newClust, prevClusters, relScores)
2: lrpSums← {} . {} is an associative array.
3: transNodes← [] . [] is an array.
4: for prevCluster ∈ prevClusters do
5: for node ∈ netA do
6: krus← Kruskal(relScores[node], relScores[netA \ node])
7: stat← chisquared(krus.pvalue, d free)
8: if stat < krus then
9: transNodes← node

10: end if
11: end for
12: end for
13: return transNodes
14: end function

KWA procedure by separating the node to be evaluated from the rest of the nodes

and performing the sorting operation as required by KWA.

Table 7.3 shows an example. Here we have separated node n0 from the rest

and performed our sorting operation on both it and the combination of nodes n1,

n2, and n3. The object then becomes to determine whether or not the LRP values

from n0 and the LRP values from the combination of nodes n1, n2, and n3 come from

the same distribution. If we determine that this is not the case, then we determine

that this node is transferrable.
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Algorithm 7.1 shows the procedure we used to identify transferrable node with

the Kruskal-Wallis Transfer Node Identification. The algorithm tracks the procedure

detailed above at the beginning of this section closely. The application of this

algorithm introduces some time complexity into our procedure. For each network

produced, an additional

O(|n|) +O(|n| log |n|)

is required for the sorting and evauation of each node, where n represents the nodes

in a hidden layer of a network. This gives of a total time complexity of:

O(|c|)(O(|n|) +O(|n| log |n|))

where c represents the set of clusters.

7.4.3 Cross Dataset Transfer

The procedure detailed in Chapter 6 produces a unique clustering for each fold,

with ten folds per configuration. When applying these networks to a new dataset,

since we lack the clustering information for the new dataset, and furthermore lack

information about how to relate clusters to clusters, we relate the clusters in the

dataset from which we performed the initial training to locations in the new dataset,

forming new, sometimes non-contiguous clusters for application. We did this for both

a straight application to the new dataset with no fine-tuning as well as performing

fine-tuning on the new dataset before application.

7.4.4 Procedure

The following subsections detail our general procedure for cross dataset transfer.

We first describe our collection procedure for the two datasets under examination:

Hurricanes Harvey and Irma. We then discuss the correspondence between clusters

in the “from” dataset and locations in the “to” dataset.
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Figure 7.4: 7 cells representing one DGGS level (reproduced from Chapter 3)

7.4.4.1 Collect Corresponding Data Instances The data from Hurricane Irma

was collected using the exact same procedure as the data collection for Hurricane

Harvey. As with the previous iterations of our research, we collected the data using the

3D Hexagonal DGGS to bin the data into 15 kilometer hexagonal bins at three levels

(above, at, and below the center cell). Figure 7.4 (Reproduced from Chapter 3) shows

the concentric arrangement of these cells. We are making predictions concerning cell 0

at the center of the figure.

Our time-shifting procedure constrains the process to making predictions for the

next time step (the next 15 minutes). This is in contrast to wind vector determination,

or meteonowcasting, which was done in the previous chapters. In the current phase,

and with the data from hurricanes Harvey and Irma, we are predicting the next time

step rather than determining the wind conditions in the current time step.

7.4.4.2 Fold and Cluster Application The number of network applications to the

entire new dataset (Hurricane Irma) was:

configurations× folds per configuration× clusters per fold

The numbers for each of these come from the application of our technique to the data

from Hurricane Harvey. During the application of our procedure on that data, there

were a variable number of clusters for every fold in every configuration. Lacking the
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data to relate the clusters from Hurricane Harvey to Hurricane Irma we elected to

apply all cluster networks to the entire dataset. This was to discover any performance

advantage training on a particular cluster of Hurricane Harvey has on an application

to Hurricane Irma.

Each fold in the “from” configuration (Hurricane Harvey in this case) produced

a unique clustering upon training, and each cluster had its own associated network

that was trained to make predictions for the locations in that cluster. To relate these

clusters to the new data locations, and consequently assign the cluster’s network for

application on these new data locations, we again used the Kruskal Wallis one-way

ANOVA test to identify the degree to which the new data locations and the clusters

had similar distributions. For each of the new locations, and for each of the input

data variables, we selected the cluster that had the lowest mean H statistic over

all of the input data variables as the cluster whose network we would use to make

predictions on that location. This operation has a time complexity of O(c×d) where c

is the number of clusters and d is the number of areas of interest in the new dataset,

which is done in lieu of having to pre-train new autoencoders and perform the initial

clustering.

7.4.4.3 Fine Tuning We tested configurations involving no fine-tuning on the

data from the new dataset as well as including a fine-tuning step, as is usually

performed in transfer learning. We did this to test how well the previous dataset

was able to generalize to the new dataset blindly. Testing consisted of using only the

testing fold that was generated at the beginning of the experiment.

Fine-tuning proceeded using training and validation dataset folds generated for

the new dataset. As with the initial “from” dataset, these were time-slice folds.

In other words, for each location in the new dataset, the same time-slices of data
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Table 7.4: Cluster limit combinations

Data Cluster Limit: 20 30 40 50 60 70
LRP Cluster Limit: 4 5 6 7 8 9 10

were used to test the validity of the model. For each of the clusters in the “from”

configuration, the cluster’s associated network was fine-tuned on the data from the

locations to which it was assigned in the new dataset.

7.5 Experiments

The number and variety of experiments were dictated by the experiments in

Chapter 6. However, we only used the configuration that was found to be the best in

that situation: which was the “DCT Both Single” configuration.

Table 7.4 shows the cluster limits that were used. We ran all combinations of

data cluster limits combined with LRP cluster limits (see Table 7.4) for both the

“DCT Both Single” configuration and the KWA configuration.

7.6 Results

7.6.1 Hurricane Harvey Baseline

Figure 7.5 summarizes the performance for the Global, Both Single (30/8), and

KWA (60/7) configurations. Both Single (30/8) is the configuration where the Data

Cluster Limit was 30 and the LRP Cluster Limit was 8, which was found to be the

best performing configuration among the Both Single Experiments. KWA (60/7) is

the configuration where the Data Cluster Limit was 60 and the LRP Cluster Limit

was 7, which was found to be the best performing configuration among the KWA

Experiments. As can be seen, both of these configurations outperformed the Global
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Figure 7.5: Baseline performance comparison

configuration for the Hurricane Harvey experiments, with the KWA configuration

performing marginally better than the Both Single configuration.

We tested the performance of the three scenarios as we did in Chapter 6. As

with the case in that chapter, at an α = 0.1 level the two experimental configurations

(Both Single (30/8) and KWA (60/7)) performed significantly better than the Global

configuration. However, they did not perform significantly better at an α = 0.05

level. Both Single (30/8) and KWA (60/7) were not significantly different from one

another, even at the α = 0.1 level.

7.6.1.1 Hurricane Harvey Global Network The Prediction Root Mean Squared

Error (RMSE) for each location where the Global network was applied is summarized

in Figure 7.6. As can be seen, this configuration experienced its best performance in

the Northeast and Southwest of the data space. There is a contiguous area of poorer

performance at the middle-South of the data space.
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Figure 7.6: Harvey global network performance

7.6.1.2 Hurricane Harvey Both Single Network Figure 7.7 shows the difference in

performance between each cluster configuration used for the Both Single configuration

of experiments. For each cluster configuration, the figure shows the average RMSE

for the Both Single configuration with the average RMSE for the Global configuration

subtracted for that cluster configuration. The configuration that was shown to have

performed best (Both Single (30/8)) is shown in off-white.

As explained in Chapter 6, our procedure expands the number of hidden nodes

in the network. Figure 7.8 shows the results of this layer expansion for the DCT Both

Single experiments. A general increase in number of hidden nodes can be seen as the

Data Cluster Limit increases, with three weak modes appearing (20, 30 through 50,

and 60 through 70).
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Figure 7.7: Harvey Both Single network layer performance comparison with Global
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Figure 7.8: Harvey Both Single network layer size comparison
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Figure 7.9: Harvey KWA network layer performance comparison with Global

7.6.2 Hurricane Harvey Kruskal Wallis One Way ANOVA

The performance comparison between the KWA configuration and the Global

configuration is shown in Figure 7.9. The best performing configuration here

(KWA (60/7)) is shown in the lower middle of the figure, having a difference between

its performance and that of the Global configuration that is near the middle of

the performance difference range. In general this range is wider than that of the

Both Single (30/8) configuration difference. As shown in Figure 7.10, the KWA

configuration generally produced more nodes than the Both Single configuration.

7.6.3 Hurricane Irma Baseline

A comparison to the three baselines we use for the Hurricane Irma dataset is

shown in Figure 7.11. As can be seen, the Both Single and the Kruskal configurations

both outperform the Global configuration on this dataset.
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Figure 7.10: Harvey KWA network layer size comparison
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Figure 7.11: Irma baseline performance comparison
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Figure 7.12: Irma Global network performance

7.6.3.1 Hurricane Irma Global Network For Hurricane Irma, the Prediction Root

Mean Squared Error (RMSE) for the Global network configuration is summarized in

Figure 7.12. For Irma, the best performance for this configuration was in the center-

North of the AOI. The worst performance was in the extreme Southeast.

7.6.3.2 Hurricane Irma Both Single Network The heatmap showing the perfor-

mance comparisons for the Both First configuration used on Hurricane Irma is shown

in Figure 7.13. The best configuration in this experiment had a data cluster limit

of 20 and an LRP cluster limit of 10. It is show in the extreme upper right hand

corner. The layer size comparison heatmap for the Both First configuration used on

Hurricane Irma is shown in Figure 7.14. As is the case with all of the experiments,

greater data cluster limit models produced more nodes in the hidden layer in general.
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Figure 7.13: Irma Both Single network performance
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Figure 7.14: Irma Both Single network layer size comparison
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Figure 7.15: Irma KWA network performance

7.6.3.3 Hurricane Irma Kruskal Wallis One Way ANOVA The performance

comparison between the KWA configuration and the Global configuration for

Hurricane Irma is shown in Figure 7.15. The best performing configuration here

(KWA (50/10)) is shown on the extreme right of the figure in the darkest square. As

is the case with the Hurricane Harvey KWA configuration, and shown in Figure 7.16,

the Hurricane Irma KWA configuration generally produced more nodes than the Both

Single configuration.

7.6.4 Harvey to Irma Transfer

Our first storm-to-storm transfer experiment was transferring models that were

trained on Hurricane Harvey to application on Hurricane Irma. We first studied

transferring the Global network configuration as a baseline for the other experiments.
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Figure 7.16: Irma KWA network layer size comparison

We then studied how the Both Single and KWA configurations performed when we

transferred their networks.

7.6.4.1 Global Transfer When transferring the Global network that was trained

using Hurricane Harvey as the “from” network, it is apparent that fine tuning made

a large difference. This is shown in the contrast between Figure 7.17a and 7.17b.

Figure 7.18 shows the difference between the Global network configuration without

fine tuning on the Hurricane Irma dataset and with fine tuning. The figure shows

that the greatest performance improvements happened in the west of the AOI.

Very interestingly, the performance of the Global network trained on the data

from Hurricane Harvey that is transferred and fine-tuned for Irma is better than that

of the Global network trained on and applied to the data from Hurricane Irma.
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a) Global network transfer performance
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b) Global network fine-tuned transfer performance

Figure 7.17: Performance of non fine-tuned vs. fine-tuned global networks trained on
Hurricane Harvey and applied to Hurricane Irma
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Figure 7.18: Performance difference (Harvey to Irma global network no fine tuning -
fine tuning)
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(a) Fold 1 clustering (b) Application from fold 1 clustering

Figure 7.19: Harvey Both Single best configuration clusterings: fold 1

7.6.4.2 Both Single Transfer Performance We begin our examination of the

performance of our procedure by looking at the clusterings produced by the Both
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Figure 7.20: Performance comparison: Harvey to Irma Both Single

Single network configuration initially trained on Hurricane Harvey and applied to

Hurricane Irma. Figure 7.19a shows the clustering that resulted from fold 1 of the

Both Single best configuration (20/10) applied to Hurricane Harvey. As can be seen,

the clusterings are not concave and in some cases appear disconnected due to diagonal

locations being added to clusterings. Figure 7.19b shows what clusters from this

initial clustering were applied to which areas of Hurricane Irma. The dark blue

cluster dominates this entire figure, indicating that this data was the most similar to

the corresponding dark blue cluster scattered around the Southeast of Figure 7.19a.

This was typical all of the folds.

The performance comparisons for all “from folds” are shown in Figure 7.20 for

the Harvey to Irma Both Single experiment that did not involve fine tuning and

Figure 7.21 shows comparisons for the experiment where the networks were fine-

tuned. Since the “from folds” from Hurricane Harvey were applied to 10 “to folds”

this chart represents an average of the performance across all 10 “to folds” from
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Figure 7.21: Performance comparison: Harvey to Irma Both Single fine tuned

Hurricane Irma. This is consistent across all of our experiments except for the Global

configuration. The aggregate performance of the application of the networks with no

fine tuning is not discernibly different from the Both First configuration. However,

when fine tuning is applied the performance improves noticeably, achieving the best

performance when using fold 5 on the new dataset.

Figure 7.22 shows a heatmap of the performance for the Both Single configura-

tion for Hurricane Irma that performed best. The (20/10) in the caption indicates

that this configuration had a data cluster limit of 20 and an LRP cluster limit

of 10. We use this as a baseline to compare the transfer performance from Hurricane

Harvey’s Both Single configuration and the transfer of these networks for operation

on Hurricane Irma.

For the Both Single configuration Figure 7.23 shows the performance of fold 5

of this model trained on Hurricane Harvey and transferred to Hurricane Irma. A

comparison of Figure 7.23 a and b to Figure 7.22 shows that they both outperform the
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Figure 7.22: Irma Both Single best performance (20/10)
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(a) Both single from fold 5 (b) Both Single Fine-Tuned From Fold 5

Figure 7.23: Harvey to Irma Both Single (non-fine-funed vs. fine-tuned) Fold 5

Both Single (20/10) configuration that was trained on Hurricane Irma. A comparison

between Figure 7.23a and Figure 7.23b shows the improvement that fine tuning

confers in all but one location of the space in the Northeast.
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(a) Fold 9 clustering (b) Application from fold 9 clustering

Figure 7.24: Irma KWA best configuration clusterings

7.6.4.3 Kruskal Wallis one-way ANOVA (KWA) Transfer Performance The

second set of transfer experiments we ran was the Kruskal Wallis one-way ANOVA

(KWA) configuration, transferring the networks from training on Hurricane Harvey

to application on Hurricane Irma. The clustering that resulted from training the

networks using this configuration on Hurricane Harvey is shown in Figure 7.24a. An

application of this clustering to the data from Hurricane Irma, shown in Figure 7.24b,

shows that this situation is not quite as dominated by the application of a single

cluster’s network. It also shows that networks that were trained on very small areas

of Harvey’s dataspace were applied to much larger areas of Irma’s dataspace. For

example, the small peach colored area in the Northeast ended up being most similar

to most of the data in the Hurricane Irma dataset.

It is apparent in this case, as it was in the case of transferring the Both

Single configuration from Harvey to Irma, that fine-tuning offered performance

improvements for at least half of the transfer experiments. This is shown in the
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Figure 7.25: Performance comparison: Harvey to Irma KWA
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Figure 7.26: Performance comparison: Harvey to Irma KWA Fine Tuned

contrast between Figure 7.25 and Figure 7.26. The greatest performance improvement

was in the case of fold 9.
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Figure 7.27: Irma KWA best performance (50/10)
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(c) KWA From Fold 9 (d) KWA Fine-Tuned From Fold 9

Figure 7.28: Harvey to Irma KWA (non-fine-tuned vs. fine-tuned) folds 1 through 3

Comparing the best performance of the KWA configuration, shown in Fig-

ure 7.27, to the best performing transfer configurations in Figure 7.28 we can see that

there was no performance gain in the non-fine-tuned KWA transfer (Figure 7.27a).

But as with the Both Single configuration, a performance advantage for the majority
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of locations in the Hurricane Irma data was realized by applying fine tuning, as seen

in Figure 7.27b.

7.6.5 Irma to Harvey Transfer

Having studied transferring our models that were trained on the data from

Hurricane Harvey to application on the data from Hurricane Irma, we also conducted

experiments in the opposite direction. This section describes the performance when

we applied our technique from training on Hurricane Irma to application on Hurricane

Harvey.

7.6.5.1 Global Transfer Performance As was the case with transferring the global

network configuration from Harvey to Irma, there was a performance advantage when

fine tuning upon transferring this configuration from Irma to Harvey. Though the

diagrams appear similar, Figures 7.29 a and b show this performance improvement.

The performance differences appear in Figure 7.30, which shows the fine-tuned

performance subtracted from the fine-tuned performance.

7.6.5.2 Both Single Transfer Performance In fold 9, the data from Hurricane

Harvey was found to be most similar to 14 locations located near the middle of the

AOI. This is shown in Figures 7.31 a and b. The figure also shows that only a subset

of the clusters available were applied from Irma to Harvey.

The Both Single configuration trained on Irma and applied to Harvey experi-

enced a greater apparent performance improvement when fine tuning was applied.

This is illustrated in the comparison of Figures 7.32 and 7.33. With the exception of

fold 1, all of the folds performed better than the Both First baseline when fine-tuning

was applied.
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a) Global network transfer performance
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b) Global network fine-tuned transfer performance

Figure 7.29: Performance of non fine-tuned vs. fine-tuned Global networks trained
on Hurricane Irma and applied to Hurricane Harvey
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Figure 7.30: Performance difference (Irma to Harvey Global no fine tuning - fine
tuning)
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(a) Fold 9 Clustering (b) Application From Fold 9 Clustering

Figure 7.31: Irma Both Single best configuration clusterings (continued)

As our baseline for comparison we included the heatmap of the performance of

the best clustering from the Both Single experiment trained on Hurricane Harvey in
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Figure 7.32: Performance comparison: Irma to Harvey Both Single
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Figure 7.33: Performance comparison: Irma to Harvey Both Single Fine Tuned

Figure 7.34. The best performing fold in this experiment was fold 9, whose non-fine-
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Figure 7.34: Harvey Both Single (60/7)
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(a) Both Single From Fold 9 (b) Both Single Fine-Tuned From Fold 9

Figure 7.35: Irma to Harvey Both Single (non-fine-tuned vs. fine-tuned) Fold 9

tuned and fine-tuned performances are illustrated in Figures 7.35 a and b. There was

an enormous advantage in fine tuning this configuration.
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(c) Fold 9 Clustering (d) Application From Fold 9 Clustering

Figure 7.36: Harvey KWA best configuration clusterings (continued)

7.6.5.3 KWA Transfer Performance The clustering from fold 9, both the original

application of the KWA configuration on fold 9 of the original data and the application

of this clustering to the Hurricane Harvey data is shown in Figure 7.36 a and b. The

application map in this instance appears more evenly divided, dominated by the peach

and blue clusters.

The performances of each of the “from folds” are summarized in Figures 7.37

and 7.38. It is again shown that there is an advantage to fine-tuning. The performance

advantage is also shown in the comparison of the heatmaps in Figures 7.39 and 7.40.

7.7 Discussion and Contributions

In current practice, transfer learning uses models that have been trained in

related domains, or with compatible input data configurations. The models are

imported, fine-tuned, and deployed. We contributed a method of creating systems

of transferrable models that are then transferred to other datasets compatible with

the original one. By compatible, we mean that the systems of transferrable models
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Figure 7.37: Performance comparison: Irma to Harvey KWA
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Figure 7.38: Performance comparison: Irma to Harvey KWA Fine Tuned

are meant to be transferred to domains that are related, such as from spatiotemporal

model to spatiotemporal model, especially in situations where the data dimensions
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Figure 7.39: Harvey KWA (50/10)
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(c) KWA From Fold 10 (d) KWA Fine-Tuned From Fold 10

Figure 7.40: Irma to Harvey KWA (non-fine-tuned vs. fine-tuned) fold 10

represent the same thing in both domains. In the transfer learning literature this is

referred to as heterogeneous, noninductive transfer learning [108]. This means that

regions of the source data space will be affected similarly to certain regions of the
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target data space. With proper parameterization, this removes the need to perform

any pre-training on the target data space, which now only requires fine-tuning. The

target data space then has the benefit of using the feature detectors from our source.

In our experiments, the transfer and fine-tuning among datasets was found to yield a

significant performance improvement without the need for the initial training on the

dataset to which the models were transferred.

Another interesting contribution that comes as a consequence of our set of

experiments is the need to define a “cluster to application mapping.” This is the

process where a clustering is created during the initial training of a model before

transfer and to the new dataset. Each cluster in this initial clustering has an

associated network that has been trained to operate on any location within that

cluster. When the new dataset is being considered, for each location in this new

dataset we determine the most similar cluster from the initial dataset. In other

words, the primary clustering’s characteristics determine which model to use in each

location in the the secondary dataset. It is the network corresponding to the cluster

from the first dataset that is fine-tuned and then makes predictions in the target

location.

7.8 Conclusions and Future Work

The Kruskal-Wallis one-way ANOVA test is a reasonable non-parametric

extension to and development of the previously used forms of encoding identification

from Chapter 6. It performs at least as well as these other configurations and has the

benefit of being a statistically-derived method. Whether or not it is worth the extra

time in training is a question that is highly domain dependent.

However, whatever the rigor involved in training and testing the original model,

it does appear that the transfer of a model from storm to storm provides some
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advantage in application. The effect is enhanced when fine-tuning is applied,

rendering it truly a transfer learning procedure. In our studies this was more effective

when applied from Irma to Harvey rather than from Harvey to Irma. The reasons for

this could be the subject of studies at the nexus of computer science and meteorology.

We intend to study the properties of “cluster to application” mapping from

the primary dataset (dataset upon which the networks were initially trained) to the

target dataset (dataset for application) in cross dataset transfer. The “cluster to

application” mapping often results in applying networks from the primary dataset to

non-contiguous areas of the second dataset. At this point we do not know whether

or not this affects performance negatively. To compare the clustering in the primary

dataset and the “cluster to application” mapping in the target dataset, we could

use the Calinski-Harabasz measure to determine the similarity of the clusterings.

Then, to study how contiguity affects performance in the second dataset’s locations

for application, we would experiment with the pre-clustering of the second dataset

before the relationships are drawn between the initial clustering and the locations

in the second dataset. At a cost of O(n3) for the clustering, where n is the number

of locations in the new dataset, this would cause the complexity of finding which

clusters’ networks from the initial dataset to apply to the locations of the second

dataset to be O(c1 ∗ c2) where c1 and c2 are the clusters from the first and second

datasets, respectively. If we assume that the number of datapoints in each cluster in

the second dataset is greater than 1, the Kruskal-Wallis one-way ANOVA procedure

to relate the clusters across data sets will need to run at most half as many times. An

open question here is whether or not this will enhance aggregate accuracy by causing

the areas of application in the second dataset to be less dispersed.

The use of the Kruskal-Wallis one-way ANOVA method for determining

transferrability of nodes, being a step in the direction of reducing the number of
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parameters required to run our procedures, signals our desire to reduce the number

of parameters as a whole that have to be given to the system. As of now there are

many parameters beyond those governing the transferrability determination of nodes.

For example, there are those governing the initial starting point for hidden layer size

and whether or not to apply regularization. These are on top of the usual neural

network parameterizations of epoch size, learning rate, batch sizes, etc. Automation

or flexibility in this area could be a major achievement in deep learning.
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CHAPTER EIGHT

CONCLUSION

8.1 Major Contributions

The encoding and transfer of knowledge in neural networks is a very important

topic for study, as these models are becoming ubiquitous. In this dissertation we have

taken a branch of this endeavor and, using an application to meteorology as a area

for testing and exploration, contributed a technique that could be developed into a

way for these models to share information and improve accuracy. We have detailed

several contributions in this area. We recap the most pertinent ones here:

8.1.1 Autoencoders in Meteorology

We have demonstrated of the use of autoencoders in meteorology, particularly

for the purposes of wind vector determination in three hurricane events. This was a

necessary first step of our investigations, as it provided a basis for all of the other

experimentation. We discovered that our base technique of using autoencoders in

a manner similar to the execution of Numerical Weather Prediction (as stated in

Chapter 2) yields results that tell us that there is a functional relationship between

radiometric data and wind vectors. This functional relationship can be exploited

in the training of neural networks, using unsupervised pre-training, for wind vector

determination. In doing this, we gained the confidence to move into more analytical

aspects of our experimentation.
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8.1.2 Stacked Autoencoders in Spatiotemporal Data

We created a system that uses stacked autoencoders to make predictions on

spatiotemporal data. This is normally done using convolutional, long short-term

memory networks. We did this through careful construction of the design matrices

and a data collection method that takes into account local, spatiotemporal influences.

8.1.3 Spatial Generalization

We examined spatial generalization of the stacked autoencoders using the same

architecture we used in the previous study. In doing this we showed that adapting

trained networks to spatially adjacent areas to perform wind vector determination is

reasonable and can yield a useful degree of accuracy. This was purely a generalization

experiment, in that the networks did not lose their ability to operate in the original

space, as they were not fine-tuned. This provided us with the justification to proceed

with exploring ways we could perform transfer learning in the same general domain.

8.1.4 Model Inspired by Numerical Weather Prediction

The model that we created is inspired by the way that numerical weather

prediction techniques treat the temporal and spatial components of their data, but

uses unsupervised pre-training in feedforward networks rather than the Primitive

Equations to make predictions. Regarding NWP, we have some of the same

assumptions upon which we arrange and process data. An example of this is that we

use a gridding system, which we use to bin the data that we analyzed. We also rely

on locality and temporal dependence in the data instances that are run through our

procedures.
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8.1.5 Obtaining a Baseline for Generalization Performance

In our analysis of the generalization power of our original model, which

uses unsupervised pre-training on feedforward networks, we created a method for

determining the model’s spatial extent of generalization. In determining these

baselines we considered the immediate surroundings of an area whose data were used

in the training of the network as well as the entire swath of the dataspace.

8.1.6 Dataspace Exploration

We used the mathematical tools of functional data analysis and spatial statistics

to explore transferrable encodings of learned characteristics stages of trained an

unsupervised pre-trained feedforward network. This was an exploration of the

dataspace in terms of it being composed of functional data We used spatial statistics

to condition the data and provide a basis for spatial transfer learning. This was the

beginning of our transfer learning experimentation.

8.1.7 Controlled Dataspace Analysis

We devloped a highly controlled technique for using autoencoders to analyze

a spatiotemporal dataspace. In this technique, we wanted to remove sources of

randomness in the training process. This was to emphasize the analysis of the

dataset using clones of a single autoencoder so that we could observe how its weights

differed when these clones were applied to different areas of the dataspace. We also

removed other sources of randomness so the training process for each location would

have the same time correspondence. This was so that we could make claims about

transferrability of internal encodings that we identified through this process.
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8.1.8 Identification of Transferrable Feature Detectors

Using several different techniques, we created ways to extract transferrable

feature detectors from pre-trained autoencoders. We cannot claim to know exactly

what these feature detectors mean, but we demonstrated their usefulness in providing

a starting point for training new models on other areas of the dataspace. This was

done using our dual-clustering technique as well as analyzing the way that pre-trained

nodes are affected as one moves spatially across the dataspace.

8.1.9 Subset Transfer

Using what we learned in the Dataspace Exploration experiments, we were

ready to extend this technique to dividing the dataspace into localized areas for

network training. We devised a technique for transferring of subsets of hidden layers

(encodings) using locality sensitive clustering of both raw data and layerwise relevance

propagation information. We demonstrated the effectiveness of this technique by

comparing it to the use of a single global network for making determinations of one

of the wind vector components across one day of Hurricane Sandy. We then extended

this model to use a nonparametric statistical measure of distributional similarity to

determine node transferrability: the Kruskal-Wallis one-way ANOVA test. In doing

this, we opened up the technique for other methods of determining transferrability of

hidden node subsets.

8.1.10 Locality-Sensitive Clustering Procedure

With the technique for subset-transfer in hand, we created a procedure to

increase the area of application of this network through locality-sensitive clustering.

This clustering technique takes into account both data clustering and clustering via

the feature detectors that were learned during the pre-training procedure. The
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purpose of this was to optimize the number of neural networks needed to make

predictions over a large area.

8.1.11 Hidden Layer Expansion

In order to adapt a neural network to the expanding clusters mentioned in the

last section, we had to combine the transferrable feature detectors, creating a network

that retained critical characteristics of both networks. To do this we created a way

that resolves conflicts between the networks to be combined by expanding the hidden

layer to include both of the conflicting nodes. The new architecture was then used to

effectively make predictions in the new, expanded cluster.

8.1.12 Cross Dataset Transfer

Having our techniques in hand we applied them from storm to storm on two

new datasets: Hurricanes Harvey and Irma. We changed the intent of the prediction

in this task from wind vector determination to wind vector prediction. This was

to demonstrate the use of our technique in a transductive transfer learning setting,

according to the terminology of Pan and Yang [67]. We showed that, in comparison

with the best-of-breed configurations from the Subset Transfer experiments, the cross

dataset generalization does not provide any discernible benefit, but cross dataset

transfer provides a benefit in accuracy. In doing this we showed that there can be

an advantage to training on one storm, applying all of the rigor of training on that

storm, and fine-tuning on another storm. This reduces the amount of work that needs

to be done to obtain useful predictions on the second dataset.

8.1.13 Cluster to Application Mapping

When transferring our clustered models across datasets, the issue of what

network from which cluster to apply to each area of interest in the new dataset.
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To address this, we created a cluster to application mapping procedure that uses the

Kruskal-Wallis one-way ANOVA test to determine which areas in the new dataset

are most similar to which clusters in the dataset upon which the model was originally

trained. Cluster to application mapping eliminated the need to preprocess the new

dataset in the same manner as the original dataset.

8.2 Future Work

The avenues that we have explored have caused many more questions. There are

many areas for the continuation of this research, some of which are introduced here.

8.2.1 Application to New Datasets

Our “playground” for the development of our techniques has been meteorological

data. These techniques, we believe, are applicable far beyond meteorology or other

like Earth sciences. We have mentioned in this dissertation that the data that we are

most interested in is spatial, temporal, and functional. Examples of data that is also of

this character are in several species of neurological data. Particularly, we have looked

at using Quantitative Electroencephalographic (qEEG) [80], Functional Magnetic

Resonance Imagery (fMRI) [49], and Function Near Infrared Spectroscopy [78]. All

of these appear to be valid avenues of exploration in which we can have a positive

impact.

In the future we also do not want to completely depend on space and time as

functional predicates for the application of and investigation into these techniques.

We recognize that some functional datasets may depend on logical distances rather

than spatial or temporal distances. This would be a very interesting area to explore

as well.
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8.2.2 Extension to Deeper Models

Future generations of this research should be extended to deeper neural network

models. Spatial, temporal functional data with any hierarchical expression would

benefit from this treatment, as can any type of functional data that has logical

dimensions as its functional predicates (as mentioned in the last section). The

identification of encodings in this hierarchical internal expression may lead to very

interesting ways that the training and application on disparate datasets can exchange

a hierarchy of abstract information about their respective areas of concentration...a

logical “comparing of notes.” Separating what is domain-specific from what is very

general and context-preserving may be a very useful consequence of this.

8.2.3 Application to Explainable AI

There is an analogy to be made between subset transfer encodings and mathe-

matical statements, in that they are both encodings of a subset of the big picture. A

mathematical statement is a distilled version of some knowledge, sometimes gained

from the analysis of data. An encoding that has been refined from an ANN, perhaps

in ways related to what we have done here may be the same thing, but in the “natural”

terms of ANN’s rather than mathematical statements in human terms. Perhaps in the

future, work can be done on Neural Network models that exchange these encodings as

they would other knowledge encoded in mathematics or word descriptions. Perhaps

ontologies and databases of these encodings can be constructed and used so that

these bits and pieces of knowledge can be “snapped together” so that a domain-aware

model can be the starting point of even newer discoveries.
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8.2.4 LSTM and Convolutional Network Application

Having completed this iteration of study using a model that is analogous to how

Numerical Weather Prediction is executed, adaption of this logic to the current state

of the art in ANN’s will be a very interesting endeavor. This shift will be advisable,

if not necessary for the treatment of datasets that are spatial and temporal, as these

models have demonstrated great success in regression and classification for these types

of datasets. Convolutional neural networks have already seen use in meteorology, as

have recurrent neural networks like LSTM’s, so the trail is actively being blazed in

this area. Adaptation will not be without complexities but will be very valuable.

8.2.5 Global Modeling and Temporal Extrapolation

Neural models are very fast and can be adapted to a cellular representation

of the Earth. A neural network facsimile of an NWP grid could be created that

could be trained against live data. Another generation of this same network could

perform extrapolations into the future to perform worldwide weather predictions.

Given the speed at which these models work, this could become a competitor to

NWP models currently existing. This model could allow the entire atmosphere to be

tessellated, where favorable conditions for, say, air travel could be determined based

on parameters that are fed to the system. Creating a database of encodings and

trained networks for use on future storms would be an ambitious, but not impossible

goal, and would help in the global modeling effort.

8.3 Final Remarks

We began this study with a question in our minds about enhancing radiometric

datasets so they could be leveraged to provide more information than what they

were designed to provide, namely that of wind vectors. Alone, this will be useful,
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considering all of the datasets it can enhance and all of the information it could

provide. But there was always an inkling of greater utility lurking in the background,

which could be seen in greater relief once we leveraged the tools of spatial statistics,

functional data analysis, and the rest of computer science.

Neural networks have seen an explosive increase in their use in a diversity of

fields. The identification of transferrable encodings in autoencoders is a significant

advancement which can be used in any of them to foster even faster development

and acceptance of the models. This is because, in every field of application, there

is a great variety of knowledge that has to be assimilated by each model. If all of

this knowledge could be encoded, catalogued, and exchanged with other models, new

models would have more intelligent points from which to start their training and

application. This would lead to greater accuracy, shorter training times, and even

newer encodings discovered and shared, or marketed, with the rest of the universe of

neural networks.

In conclusion, we look forward to continuing this work, adapting it to the state

of the art in the rest of the neural network community. We are optimistic about being

able to refine what we have done here, making the boundary between transferrable

encodings and noise much clearer. And we are excited to find diverse uses for these

techniques as they become more developed.



209

REFERENCES CITED

[1] DARPA XAI BAA. https://www.darpa.mil/attachments/
DARPA-BAA-16-53.pdf, 2016.

[2] The Weather Company Launches ‘Deep Thunder’ — The Weather Company.
http://www.theweathercompany.com/DeepThunder, 2016.

[3] Hurricane Irma Approaches Puerto Rico — NOAA National Environmental
Satellite, Data, and Information Service (NESDIS), 2020.

[4] MicroMAS 1. https://directory.eoportal.org/web/eoportal/
satellite-missions/m/micromas-1, 2020.

[5] NOAA Satellite Imagery of Hurricane Harvey — NOAA National Environmen-
tal Satellite, Data, and Information Service (NESDIS), 2020.

[6] C. Abbe. The Physical Basis of Long Range Weather Forecasts. Monthly
Weather Review, 29(12):551–561, 12 1901.

[7] K. Abhishek, A. Kumar, R. Ranjan, and S. Kumar. A Rainfall Prediction
Model Using Artificial Neural Network. IEEE Control and System Graduate
Research Colloquium, 7:82–87, 2012.

[8] K. Abhishek, M. Singh, S. Ghosh, and A. Anand. Weather Forecasting Model
Using Artificial Neural Network. Procedia Technology, 4:311–318, 2012.

[9] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A Learning Algorithm for
Boltzmann Machines*. Cognitive Science, 9:147–169, 1985.

[10] C. Ambroise, A. Dehman, P. Neuvial, G. Rigaill, and N. Vialaneix. Adjacency-
constrained hierarchical clustering of a band similarity matrix with application
to genomics. Algorithms for Molecular Biology, 14(1):22, 11 2019.

[11] American Meteorological Society. American Meteorological Society Glossary of
Meteorology, 2011.

[12] S. Bach, A. Binder, G. Montavon, F. Klauschen, K. R. Müller, and W. Samek.
On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PLoS ONE, 10(7):e0130140, 7 2015.

[13] M. Bachmaier and M. Backes. Variogram or Semivariogram? Variance or
Semivariance? Allan Variance or Introducing a New Term? Mathematical
Geosciences, 43(6):735–740, 8 2011.

https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf
https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf
http://www.theweathercompany.com/DeepThunder
https://directory.eoportal.org/web/eoportal/satellite-missions/m/micromas-1
https://directory.eoportal.org/web/eoportal/satellite-missions/m/micromas-1


210

[14] P. Baldi. Autoencoders, Unsupervised Learning, and Deep Architectures. JMLR
Workshop on Unsupervised and Transfer Learning, 27:37–50, 2012.

[15] R. Barnes. dggridR: Discrete Global Grids for R. https://cran.r-project.
org/web/packages/dggridR/vignettes/dggridR.html, 2016.

[16] L. Bel, A. Bar-Hen, R. Petit, and R. Cheddadi. Spatio-temporal functional
regression on paleoecological data. Journal of Applied Statistics, 38(4):695–704,
4 2011.

[17] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy Layer-
Wise Training of Deep Networks. Advances in Neural Information Processing
Systems, pages 153–160, 2007.

[18] A. Binder, S. Bach, G. Montavon, K. R. Müller, and W. Samek. Layer-wise
relevance propagation for deep neural network architectures. In Lecture Notes
in Electrical Engineering, volume 376, pages 913–922, 2016.

[19] V. Bjerknes. The problem of weather forecasting as a problem in mechanics
and physics. Meteorologische Zeitschrift, 21:1–7, 1904.

[20] Brian Jackson. IBM Partners with The Weather Company to Update Forecasts
26 Billion Times a Day. https://www.itbusiness.ca, 2015.

[21] B. Cao, S. J. Pan, Y. Zhang, D. Y. Yeung, and Q. Yang. Adaptive transfer
learning. Proceedings of the National Conference on Artificial Intelligence,
1:407–412, 2010.

[22] A. S. Cofino, R. Cano, C. Sordo, and J. M. Gutierrez. Bayesian Networks for
Probabilistic Weather Prediction . Proceedings of the 15th European Conference
on Artificial Intelligence, 700:695–700, 2002.

[23] S. N. Collins, R. S. James, P. Ray, K. Chen, A. Lassman, and J. Brownlee. Grids
in Numerical Weather and Climate Models. Climate Change and Regional/Local
Responses, page 256, 5 2013.

[24] M. Dalto, J. Matusko, and M. Vasak. Deep neural networks for ultra-short-
term wind forecasting. In Proceedings of the IEEE International Conference on
Industrial Technology, volume 2015-June, pages 1657–1663, 2015.

[25] M. Dixon, G. Wiener, M. Dixon, and G. Wiener. TITAN: Thunderstorm Iden-
tification, Tracking, Analysis, and Nowcasting—A Radar-based Methodology.
Journal of Atmospheric and Oceanic Technology, 10(6):785–797, 1993.

[26] D. Erhan, Y. Bengio, A. Courville, P. Vincent, and S. Bengio. Why Does
Unsupervised Pre-training Help Deep Learning? Journal of Machine Learning
Research, 11:625–660, 2010.

https://cran.r-project.org/web/packages/dggridR/vignettes/dggridR.html
https://cran.r-project.org/web/packages/dggridR/vignettes/dggridR.html
https://www.itbusiness.ca


211

[27] A. Fallis. Tropical Cyclone Report Hurricane Sandy (AL182012) 22 – 29
October 2012 Eric. Journal of Chemical Information and Modeling, 53(9):1689–
1699, 2013.

[28] Q. Y. Feng, R. Vasile, M. Segond, A. Gozolchiani, Y. Wang, M. Abel, S. Havlin,
A. Bunde, and H. A. Dijkstra. ClimateLearn: A machine-learning approach for
climate prediction using network measures. Geoscientific Model Development
Disucssions, (February):1–18, 2016.

[29] R. J. Firth. A Novel Recurrent Convolutional Neural Network for Ocean and
Weather Forecasting. PhD thesis, Louisiana State University, 2016.

[30] D. H. Fisher. Knowledge Acquisition Via Incremental Conceptual Clustering.
Machine Learning, 2(2):139–172, 1987.

[31] J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. In 7th International Conference on Learning
Representations, ICLR 2019, 2019.

[32] K. Fukushima. Cognitron: A self-organizing multilayered neural network.
Biological Cybernetics, 20(3-4):121–136, 9 1975.

[33] A. Gasiewski. Personal Communication with Director of the Center for
Environmental Technology, University of Colorado, 2017.

[34] A. Gasiewski, D. Jackson, J. Wang, P. Racette, and D. Zacharias. Airborne
imaging of tropospheric emission at millimeter and submillimeter wavelengths.
In Proceedings of IGARSS ’94 - 1994 IEEE International Geoscience and
Remote Sensing Symposium, volume 2, pages 663–665. IEEE.

[35] A. E. Gelfand, P. J. Diggle, M. Fuentes, and P. Guttorpt. Handbook of Spatial
Statistics, volume 20103158. 2010.

[36] R. Gibb, A. Raichev, and M. Speth. The Rhealpix Discrete Global Grid Sys-
tem. http://www.discreteglobalgrids.org/wp-content/uploads/sites/
33/2016/10/PlanetRiskDGGS.pdf.

[37] E. Ginzburg, T. L. Zakrison, G. D. Pust, A. A. Grant, N. Lu, R. Rattan, and
N. Namias. Hurricane Irma. National Hurricane Center, 85(3):635–636, 2018.

[38] A. D. E. Giorgio and A. Holst. A study on the similarities of Deep Belief
Networks and Stacked A study on the similarities of Deep Belief Networks
and Stacked Autoencoders Supervisor. PhD thesis, KTH Royal Institute of
Technology, 2015.

[39] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

http://www.discreteglobalgrids.org/wp-content/uploads/sites/33/2016/10/PlanetRiskDGGS.pdf
http://www.discreteglobalgrids.org/wp-content/uploads/sites/33/2016/10/PlanetRiskDGGS.pdf


212

[40] A. Grover and E. Horvitz. A Deep Hybrid Model for Weather Forecasting.
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 379–386, 2015.

[41] S. S. Haykin. Neural networks and learning machines. Prentice Hall/Pearson,
2009.

[42] E. Hernández, V. Sanchez-Anguix, V. Julian, J. Palanca, and N. Duque.
Rainfall prediction: A deep learning approach. In Hybrid Artificial Intelligent
Systems (HAIS), pages 151–162, 2016.

[43] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep
belief nets *. Neural Computation, 18(7):1527–1554, 2006.

[44] Q. Hu, R. Zhang, and Y. Zhou. Transfer learning for short-term wind speed
prediction with deep neural networks. Renewable Energy, 85:83–95, 1 2016.

[45] IBM. Deep Thunder. https://www.ibm.com/ibm/history/ibm100/us/en/
icons/deepthunder/, 2020.

[46] Jennifer Booton. IBM Finally Reveals Why It Bought The
Weather Company. https://www.marketwatch.com/story/
ibm-finally-reveals-why-it-bought-the-weather-company-2016-06-15,
2016.

[47] H. E. Jones and N. Bayley. The Berkeley Growth Study. Child Development,
12(2):167–173, 6 1941.

[48] H. Kamyshanska and R. Memisevic. The Potential Energy of an Autoencoder.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
2014.

[49] M. Khosla, K. Jamison, G. H. Ngo, A. Kuceyeski, and M. R. Sabuncu. Machine
learning in resting-state fMRI analysis. Magnetic Resonance Imaging, 2019.

[50] K. King. Functional Data Analysis With Application to United States Weather
Data. PhD thesis, 2014.

[51] W. H. Kruskal and W. A. Wallis. Use of Ranks in One-Criterion Variance
Analysis. Journal of the American Statistical Association, 47(260):583–621, 12
1952.

[52] J. K.Williams, D.A.Ahijevych, C.J.Kessinger, T.R.Saxen, M.Steiner, and
S.Dettling. A Machine Learning Approach to Finding Weather Regimes and
Skillful Predictor Combinations for Short-Term Storm Forecasting. National
Center for Atmospheric Research, pages 1–6, 2008.

https://www.ibm.com/ibm/history/ibm100/us/en/icons/deepthunder/
https://www.ibm.com/ibm/history/ibm100/us/en/icons/deepthunder/
https://www.marketwatch.com/story/ibm-finally-reveals-why-it-bought-the-weather-company-2016-06-15
https://www.marketwatch.com/story/ibm-finally-reveals-why-it-bought-the-weather-company-2016-06-15


213

[53] H. Li, G. A. Perez, C. A. Martinez, and A. E. Mynett. Self-learning cellular
automata for forecasting precipitation from radar images. Journal of Hydrologic
Engineering, 18(2):206–211, 2 2013.

[54] Y. Liu, Z. Li, H. Xiong, X. Gao, and J. Wu. Understanding of internal clustering
validation measures. In Proceedings - IEEE International Conference on Data
Mining, ICDM, pages 911–916, 2010.

[55] J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, and G. Zhang. Transfer Learning
using Computational Intelligence: A Survey. Knowledge Based Systems,
80(10):14–23, 2015.

[56] P. Lynch. The origins of computer weather prediction and climate modeling.
Journal of Computational Physics, 227(7):3431–3444, 2008.

[57] J. Mason. Numerical Weather Prediction. P. Roy. Soc. Lond. A Mat., 407:51–
60, 1986.

[58] R. McAllister and J. Sheppard. Evaluating Spatial Generalization of Stacked
Autoencoders in Wind Vector Determination. In FLAIRS Conference, Mel-
bourne, FL, 2018.

[59] R. McAllister and J. Sheppard. Exploring Transferability in Deep Neural
Networks with Functional Data Analysis and Spatial Statistics. In Proceedings
of the IEEE International Joint Conference on Neural Networks, volume 2019-
July, 2019.

[60] R. A. McAllister and J. W. Sheppard. Deep Learning for Wind Vector
Determination. In IEEE Symposium Series on Computational Intelligence,
Honolulu, HI, 2017.

[61] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, 12
1943.

[62] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R. Müller.
Explaining nonlinear classification decisions with deep Taylor decomposition.
Pattern Recognition, 65:211–222, 5 2017.

[63] S. Narejo and E. Pasero. Meteonowcasting using Deep Learning Architecture.
IJACSA) International Journal of Advanced Computer Science and Applica-
tions, 8(8):16–23, 2017.

[64] NASA. Remote Sensors. https://earthdata.nasa.gov/user-resources/
remote-sensors, 2015.

https://earthdata.nasa.gov/user-resources/remote-sensors
https://earthdata.nasa.gov/user-resources/remote-sensors


214

[65] M. A. Oliver and R. Webster. Basic Steps in Geostatistics: The Variogram
and Kriging. Springer Briefs in Agriculture. Springer International Publishing,
Cham, 2015.

[66] T. L. Paine, P. Khorrami, W. Han, and T. S. Huang. An Analysis of Unsuper-
vised Pre-training in Light of Recent Advances. In 3rd International Conference
on Learning Representations, ICLR 2015 - Workshop Track Proceedings, 2015.

[67] S. J. Pan and Q. Yang. a Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering, 1(10):1345–1359, 2010.

[68] H. A. Panofsky. The Planetary Boundary Layer. Advances in Geophysics,
28(PB):359–385, 1985.

[69] G. Percivall. Geodata fusion study by the Open Geospatial Consor-
tium. http://proceedings.spiedigitallibrary.org/proceeding.aspx?
doi=10.1117/12.2016226, 5 2013.

[70] A. Perez-Vega, C. M. Travieso, J. G. Hernandez-Travieso, J. B. Alonso, M. K.
Dutta, and A. Singh. Forecast of temperature using support vector machines. In
2016 International Conference on Computing, Communication and Automation
(ICCCA), pages 388–392. IEEE, 2016.

[71] A. S. Qureshi and A. Khan. Adaptive transfer learning in deep neural networks:
Wind power prediction using knowledge transfer from region to region and
between different task domains. Computational Intelligence, 35(4):1089–1113,
2019.

[72] A. S. Qureshi, A. Khan, A. Zameer, and A. Usman. Wind power prediction
using deep neural network based meta regression and transfer learning. Applied
Soft Computing, 58:742–755, 9 2017.

[73] Y. Radhika and M. Shashi. Atmospheric Temperature Prediction using Support
Vector Machines. International Journal of Computer Theory and Engineering,
1(1):55–58, 2009.

[74] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. S. Dickstein. On the
expressive power of deep neural networks. In 34th International Conference on
Machine Learning, ICML 2017, volume 6, pages 4351–4374, 6 2017.

[75] A. Rakhmatova, A. Sergeev, A. Buevich, A. Shichkin, and M. Sergeeva.
Partition Procedure of the Initial Data for the Models Based on Artificial Neural
Networks. In Proceedings - 2019 Ural Symposium on Biomedical Engineering,
Radioelectronics and Information Technology, USBEREIT 2019, pages 241–243.
Institute of Electrical and Electronics Engineers Inc., 4 2019.

http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2016226
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2016226


215

[76] M. A. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning
of sparse representations with an energy-based model. In Advances in Neural
Information Processing Systems, pages 1137–1144, 2007.

[77] T. Rao, N. Rajasekhar, and T. V. Rajinikanth. An efficient approach for
Weather forecasting using Support Vector Machines. In 2012 International
Conference on Intelligent Network and Computing (ICINC 2012), 2012.

[78] J. Rhee and R. K. Mehta. Functional connectivity during handgrip motor
fatigue in older adults is obesity and sex-specific. Frontiers in Human
Neuroscience, 12, 11 2018.

[79] A. D. Ross. Hurricane Harvey. In U.S. Emergency Management in the 21st
Century, pages 91–122. 2020.

[80] Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk, and J. Faubert.
Deep learning-based electroencephalography analysis: a systematic review Deep
learning-based electroencephalography analysis: a systematic review Topical
Review. J. Neural Eng, 16:37, 2019.

[81] D. Rumelhart, G. E. Hinton, and R. Williams. Learning internal representations
by error propagation. In Parallel Distributed Processing, volume 1: Foundat.
MIT Press, Cambridge, MA, 1986.

[82] K. Sahr, D. White, and A. J. Kimerling. Geodesic Discrete Global Grid Systems
Discrete Global Grid Systems: Basic Definitions. Cartography and Geographic
Information Science, 30(2):121–134, 2003.

[83] A. G. Salman, B. Kanigoro, and Y. Heryadi. Weather forecasting using deep
learning techniques. International Conference on Advanced Computer Science
and Information Systems (ICACSIS), pages 281–285, 2015.

[84] W. Samek, G. Montavon, A. Binder, S. Lapuschkin, and K.-R. Müller.
Interpreting the Predictions of Complex ML Models by Layer-wise Relevance
Propagation. In Workshop on Interpretable Machine Learning for Complex
Systems (NEURIPS 2016), Barcelona, Spain, 2016.

[85] W. Samek, T. Wiegand, and K.-R. Muller. Explainable Artificial Intelligence:
Understanding, Visualizing, and Interpreting Deep Learning Models. ITU
Journal: ICT Discoveries, (Special Issue No. 1), 2017.
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