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Abstract

In the past few years, Deep Learning has become the method of choice for produc-

ing state-of-the-art results on machine learning problems involving images, text, and

speech. The explosion of interest in these techniques has resulted in a large number

of successful applications of deep learning, but relatively few studies exploring the

nature of and reason for that success.

This dissertation is motivated by a desire to understand and reproduce the per-

formance characteristics of deep learning systems, particularly Convolutional Neural

Networks (CNNs). One factor in the success of CNNs is that they have an inductive

bias that assumes a certain type of spatial structure is present in the data. We give

a formal definition of how this type of spatial structure can be characterised, along

with some statistical tools for testing whether spatial structure is present in a given

dataset. These tools are applied to several standard image datasets, and the results

are analyzed.
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ABSTRACT

We demonstrate that CNNs rely heavily on the presence of such structure, and

then show several ways that a similar bias can be introduced into other methods.

The first is a partition-based method for training Restricted Boltzmann Machines

and Deep Belief Networks, which is able to speed up convergence significantly with-

out changing the overall representational power of the network. The second is a

deep partitioned version of Principal Component Analysis, which demonstrates that

a spatial bias can be useful even in a model that is non-connectionist and completely

linear. The third is a variation on projective Random Forests, which shows that we

can introduce a spatial bias with only minor changes to the algorithm, and no exter-

nally imposed partitioning is required. In each case, we can show that introducing a

spatial bias results in improved performance on spatial data.

Primary Reader: John Sheppard

Secondary Readers: Greg Hager, Raman Arora, Carey Priebe
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Chapter 1

Introduction

1.1 Deep Learning

The topic of deep learning has seen an explosion of interest in the past few years,

both in the machine learning community and in the media at large. This attention

has been the result of some spectacular successes using the technique, advancing

the state of the art for a number of difficult machine learning problems. Historically,

deep learning has mostly been applied to computer vision problems (i.e., learning from

digital images), but these days deep learning is being applied to problems in a wide

range of other fields as well, including speech recognition, linguistics, bioinformatics,

and game AI [5, 19, 23, 124, 139].

1



CHAPTER 1. INTRODUCTION

Deep learning developed as part of the field of connectionist models, as a way of

harnessing the increased representational power that arises from the composition of

nonlinear functions (connectionist models are discussed in greater depth in Chapter

2). By adding extra layers to a multilayer perceptron, for instance, a greater range of

functions can be encoded efficiently, and more abstraction is possible. Unfortunately,

this increased theoretical power has historically proven difficult to realize in practice.

Simply adding lots of layers to a traditional multilayer perceptron tends to backfire,

since the more layers are present, the more difficult it becomes to train the layers

near the “bottom” using traditional gradient-descent based learning algorithms.

The techniques that have come to be labeled deep learning are methods of getting

around this problem, in one way or another, enabling networks with many layers to

be trained efficiently. There are now a variety of different deep learning algorithms

that have been proposed, but the vast majority still fit this simple description.

Much of the original inspiration for connectionist models, including deep learning,

came from studies of neurology, and in particular the study of the neurons in the

primary visual cortex of the brain [89]. Early work by Rosenblatt suggested that, “A

perceptron is first and foremost a brain model, not an invention for pattern recog-

nition,” [114] but this view did not persist. While there is still work being done in

the field of neural modeling, the majority of modern connectionist models are not de-

signed to simulate biological neural systems, and are in fact a poor model for actual
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CHAPTER 1. INTRODUCTION

neural tissue. However, many of the basic architectures still in use can trace their

roots back to our understanding of brains, limited as that understanding is.

For this reason, the success of a particular connectionist model (deep learning

included) is sometimes waved off as simply being a result of neuromorphic design.

However, even if it were the case that a system worked because it was modeled after

brain tissue, that would not be an explanation of why that system worked, in either

the natural or the artificial context.

To an engineer who simply wants to solve a problem, this may not be a concern;

so long as the tool works, the fact that it is treated as a black box is irrelevant. To

such an engineer, the results speak for themselves, because results are all that matter.

To a scientist, however, this approach is unsatisfying. Science seeks not just to

accomplish things, but also to understand things. The scientist wants to know why

and how a tool works, and ideally where or when it will work as well.

Partly, this is driven by pure scientific curiosity; we value knowledge and under-

standing for their own sakes. But it is also true that a deep understanding of a thing

often allows us to see new ways of improving that thing, or an entirely new purpose

to which the thing may be put. There are also many contexts in which the “inter-

pretability” of a model is important, such as cases where the purpose of the model

is to help humans understand the data, where the model must be able to explain its

decisions to a human, or where we need to be certain when the model will work and

3



CHAPTER 1. INTRODUCTION

when it will fail. In cases like these, a black box approach may not be sufficient to

meet all design goals.

In this dissertation, we will explore some of these questions of understanding as

they apply to deep learning. We will attempt to understand why deep learning works,

as well as when it is likely to succeed or fail; we will both review previous work on

understanding deep learning and present our own work extending this knowledge.

From there, we will test our understanding by trying to apply similar principles to

a variety of different models, some of which are not connectionist models at all. In

so doing, we hope both to improve understanding of deep learning and to offer ways

to leverage that understanding in a much broader range of models than just the

connectionist systems used for deep learning currently.

Some deep learning researchers have expressed the view that deep learning is fun-

damentally not amenable to examination and explanation, because its power comes

from complex compositions of nonlinear functions and highly distributed represen-

tations [45, 55]. While not everyone agrees with this view, this idea has led to a

great deal of emphasis on simply trying to tweak existing deep learning systems to

obtain state-of-the-art performance on some particular problem. In that type of work,

objective performance is the primary measurement of relevance.

The work we present in this dissertation comes at the problem from a different

perspective; we are not seeking to improve the state-of-the-art directly, but rather to

4



CHAPTER 1. INTRODUCTION

take a more “basic science” approach to understanding why deep learning works so

well in the first place. Our work often focuses on comparing the relative performance

of a baseline method to a modified version that incorporates a potential source of

performance advantage. We often design experiments intentionally to handicap one

or both methods, in order to make the comparison as fair as possible so we can be

sure that any difference in performance can only result from one factor. By separating

potential sources of performance advantage and examining them independently, our

hope is that, in the long run, the overall state-of-the-art can be improved, but state-

of-the-art performance is not our immediate goal.

1.2 Terms and Notation

While detailed definitions of many terms are provided in later chapters, our hy-

potheses and contributions make use of a few terms that may lead to confusion if

the reader is not clear on precisely what we mean by them. This section will briefly

discuss the different ways these terms are sometimes used, and what we mean when

we use them in this work. A summary of our mathematical notation appears at the

end of the section.

5



CHAPTER 1. INTRODUCTION

1.2.1 Machine Learning

The term machine learning can mean slightly different things depending on con-

text; for the purposes of this dissertation, we will use a fairly broad definition: a

machine learning algorithm is one that takes data samples as input, and generates a

problem solver as an output (i.e., its output is another algorithm). This definition

includes supervised and unsupervised learning, as well as semi-supervised learning

and reinforcement learning. The terms machine learning and statistical pattern recog-

nition are often used interchangeably, and indeed most machine learning techniques

do rely on the existence of statistical patterns in the data.

In this work, we will use the term machine learning because some techniques

explicitly model statistical patterns (for example, probabilistic graphical modeling),

while others only implicitly rely on the existence of such patterns (for example, in-

ductive logic programming); this can lead to confusion when using the term statistical

pattern recognition to refer to the broader class of learning algorithms.

1.2.2 Bias

The term bias can also be used to mean a variety of different things. In this

work, we will primarily use the notion of inductive bias, as well as the Bayesian

statistical meaning of the word: a bias is some expectation we have a priori, and is
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CHAPTER 1. INTRODUCTION

often referred to as a “prior belief,” “prior probability distribution,” or just a “prior”

for short. In Bayesian statistics, a model is built by combining information extracted

from samples with information encoded in the bias. A bias can be useful for many

things; for example, to incorporate outside knowledge from a domain expert into a

model, or to help avoid overfitting.

Importantly, the statistical use of the term bias is distinct from the way the term

is used in the social sciences to describe a form of discrimination (e.g., racial bias

or implicit bias [104]). While there are obvious similarities between the uses, there

are some important differences as well. In the social context, bias is often viewed as

something that we must work to minimize or eliminate (e.g., in the context of lending

or hiring practices biased by race, gender, or some other marker), even if it is actually

supported by the data (e.g., income disparities between different groups may be very

real, but we still want to treat them equally). When the term is used conversationally

or in the media, it generally has this meaning.

From a frequentist statistical point of view, bias is simply the difference between

the model and the true distribution; that is, it is fundamentally a measure of error

in the model. In this context, all bias is considered to be bad, and an unbiased

estimator is considered to be ideal. However, it is worth noting that this logic only

holds under the assumption that our samples are drawn independently and identically
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distributed (IID) from the underlying distribution, which may not always be the case

for real-world data.

The Bayesian statistical notion is a bit broader, so we must be more careful; in

the Bayesian interpretation of probability, probabilistic estimates represent degrees

of belief, and the prior distribution represents a way to model belief in the absence of

evidence. Here, we may use the term prior belief rather than bias, but mathematically

the two concepts are closely related. Some forms of prior belief are still undesirable

(e.g., our beliefs are wrong, or introduce a selection bias in a sampling process), but

other forms are helpful (e.g., a bias created by a domain expert to augment a sparse

dataset, or to compensate for a known problem with our sampling method).

The final meaning of bias we will consider here is inductive bias; in this meaning,

all machine learning relies on some sort of bias. This type of bias is frequently implicit

in the technique, and is also referred to as model bias or representation bias. Rather

than a source of statistical error, this type of bias can be thought of as a set of

assumptions being made (usually a priori) about which possible solutions are worth

considering, which should be preferred, and which can be ignored. Without a bias of

this type, machine learning not would be possible.
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CHAPTER 1. INTRODUCTION

1.2.3 The Need for Biases

In his seminal paper “The Need for Biases in Learning Generalizations [98],” Tom

Mitchell highlighted the importance of bias by pointing out that without some form

of inductive bias to restrict the hypothesis space, the basic task of machine learning

is impossible. Generalization, in this context, is the ability to fit a model to some

samples, and then make good predictions about future samples based on that model.

For supervised learning, this means taking a set of solved examples and learning to

correctly solve novel examples; the ability to solve novel examples is generalization.

What Mitchell pointed out is that there is always an infinite set of models that

will correctly fit any finite set of samples. To illustrate this, consider the very simple

case of two points in the Cartesian plane; there can be only one linear function that

will pass through both points. But if we do not limit ourselves to linear functions, it

quickly becomes clear that there are lots of other functions that will pass through these

two points. In fact, we can demonstrate that the set of functions that passes through

these two points is an infinite set; consider functions of the form A·sin(B·x+C)+D. If

we can find a set of values for the parameters that fit our two points, we can generate

an infinite number of phase-shifted alternatives that will also fit the points by varying

the parameter C alone (by adding multiples of π). We can also generate an infinite

number of functions that will fit our points by varying A and B; if we vary all the

parameters, we can see that we have an uncountably infinite set of functions passing
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through our two points, and we have not even considered the class of polynomials

yet, let alone the space of all functions.

A truly unbiased evaluation is based purely on how well a model fits the data,

meaning any of these infinite models that fit our points is equally “good;” they all fit

our data perfectly. However, in practice some will be better than others at modeling

the “true” underlying distribution our data was sampled from. Therefore, we need

some way of refining our notion of “good” so we can choose a model from this infinite

set; in machine learning, “good” ideally means a model that generalizes well. This

preference for one model over another in spite of the fact that they both match the

data equally well is the definition of inductive bias.

One example of a commonly used inductive bias is Occam’s Razor, which is a bias

towards simplicity. Occam’s Razor says that we should choose the simplest model

that correctly fits the data. Note that this does not necessarily mean this model is the

best one possible; in particular, if we get more data, we may need to revise the model,

and if our data is noisy, a naïve application (i.e., trying to fit the data perfectly) can

lead to overfitting. Empirically, however, Occam’s Razor has tended to be a good

starting point, and it can generally be found underpinning most scientific theories.

A more concrete example of a representation bias is the type of model used to fit

some data. Do we use a polynomial model, a mixture model, or a non-parametric

model? Each type of model is well suited to some problems and poorly suited to
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others. If we choose a type of model that is poorly suited to our data, the learned

model is unlikely to represent the underlying distribution accurately, and will therefore

tend not to generalize well.

The observation that bias is critical to generalization (and therefore to all machine

learning) is important, not just because it helps us understand what machine learning

is about, but also because it suggests that we should be directly studying bias, so

that we can create better learning algorithms. Mitchell’s paper concludes,

“If biases and initial knowledge are at the heart of the ability to gen-
eralize beyond observed data, then efforts to study machine learning must
focus on the combined use [of] prior knowledge, biases, and observation
in guiding the learning process. It would be wise to make the biases and
their use in controlling learning just as explicit as past research has made
the observations and their use.” [98]

Our work follows this tradition of explicitly examining and making use of the biases

of machine learning techniques.

1.2.4 Local vs Spatially Local

Our use of the terms local and spatially local in this work are different than the

normal usage of the term local. A full definition of our usage can be found in Chapter

4, but we will briefly contrast the two uses here, since a misunderstanding could lead

to a great deal of confusion.
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The standard usage of the term local refers to short distances in data-space, mean-

ing distance as measured between two feature vectors; this is the way the term local

is used in contexts like ISOMAP or Locally Linear Embedding, where distance is

frequently something like the L2 norm of the difference between two vectors in Rn

(see Section 2.3.2.3 for more information on these techniques). When we use the

term spatially local, we are talking about locality in feature-space, where distance is

measured not between data points, but between feature sampling locations, using an

approach borrowed from the field of Spatial Statistics.

In Spatial Statistics, each sample is associated with a sampling location, in ad-

dition to the sampled value. This sampling location can be thought of as meta-

information, giving us a way of measuring “spatial” distance between the sampling

locations of different features. In an image, for example, it is natural to use the

image coordinates of a pixel as its sampling location, meaning adjacent pixels would

be highly “local,” while pixels from opposite sides of the image would be “non-local.”

This means that if we treat an image as a feature vector, each feature (i.e., each

element of the vector) has an associated sampling location based on its pixel coordi-

nates. Spatially local describes distance between features, not distance between data

vectors.
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a, b, x, y scalars
M,D,S matrices or sets
x,y,u,v vectors

x⊤ transpose of vector x
xi ith element of vector x
xij the element at row i, column j of matrix X
x ∼ p x is sampled from distribution p

Table 1.1: Conventions for mathematical notation

1.2.5 Multi-scale and hierarchical models

Much of our work deals with breaking data down in ways that resemble the ap-

proaches taken in multi-scale learning and multi-resolution analysis. However, the

term “multi-scale” is used inconsistently, and is sometimes interpreted to mean a

particular type of image recognition problem, in which objects of the same class may

appear at different scales (i.e. a significant degree of scale invariance is required).

Similarly, several of our models could be correctly described as “hierarchical,” but

the term is already in use to label other types of techniques, such as Hierarchical

Clustering. For terms of this type, we will attempt to be clear about when we are

using them as names, and when we are using them as descriptions.

1.2.6 Notation

Key notational conventions can be found in Table 1.1.
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1.3 Statement of Main Hypothesis

Our basic hypothesis is that deep learning methods like Convolutional Neural

Networks (CNNs) have several built-in inductive biases that help explain their success,

and that one of these biases is the assumption of spatially localized structure in the

data.

This basic hypothesis may be fairly intuitive for many deep learning researchers;

in fact, the use of spatial information is mentioned as an advantage of CNNs in some

of the earliest work [81, 82]. However, it is a claim made without any evidence or

citations to back it up, so we want to demonstrate that it is true before moving

on. We have demonstrated instances in which other pieces of untested ‘conventional

wisdom’ about spatial structure has proved to be inaccurate (see Chapter 6), so it is

important to experimentally confirm this hypothesis before making use of it.

Once confirmed, we explore the much more interesting question of how we can

add this type of bias explicitly to other techniques, and whether doing so will allow

us to improve the performance of a wide variety of techniques when applied to spatial

data. Here, our hypothesis is that applying a spatial bias to other techniques should

be both possible and beneficial when spatial data are involved, even in the context of

non-connectionist techniques.
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1.4 Overview of Contributions

The major contributions to the field made in this dissertation are as follows:

• We define spatially local structure for use in a standard machine learning frame-

work, and we demonstrate some methods for analyzing data to determine how

much spatially local structure is present.

– We provide both intuitive and formal statistical definitions of local struc-

ture with respect to features (as opposed to vectors), both in the general

case and in the special case of spatially local structure.

– We adapt tools from the field of Spatial Statistics for analyzing spatially

local structure in image datasets.

– We use these tools to demonstrate that several standard image datasets

contain significant spatially local structure.

– We apply a random permutation to the feature order in these datasets,

and show that these permuted datasets have no spatially local structure.

• We show that Convolutional Neural Networks have a built-in assumption that

their input data contains spatially local structure, and that their performance

is hurt significantly if this assumption proves false.
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• We demonstrate that other techniques can have similar spatially-aware biases

explicitly imposed, and that doing so improves their performance when the

assumption of local structure proves true, but hurts their performance when it

proves false.

– We develop a spatially-partitioned training scheme for Restricted Boltz-

mann Machines that takes advantage of spatial structure to allow for faster

training and more accurate results.

– We develop a partition-trained Deep Belief Network using our partitioned

Restricted Boltzmann Machine training algorithm, and show that the re-

sulting network not only has performance advantages, but also preserves

spatial structure in the higher layers that is lost using traditional training

methods.

– We develop a deep, spatial version of Principal Component Analysis that

takes advantage of spatial structure, even when constrained in all other

ways to be comparable to standard Principal Component Analysis.

– We develop Spatially-Biased Projective Random Forests that can take ad-

vantage of spatial structure in the data, even using a very weak form of

spatial bias.
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1.5 Organization

This chapter, Chapter 1, contains an introduction to the main problems addressed

in this dissertation, as well as an overview of our contributions to the field. It also

contains a summary of notation, and definitions of a few key terms that are important

to understanding our contributions.

Chapter 2 is a review of background work that may be helpful in understanding

and contextualizing our work. It contains a brief history of the fields of connectionist

models and deep learning. The chapter also contains reviews of several other methods,

unrelated to deep learning or connectionism, that are important to understanding the

novel work described in later chapters.

Chapter 3 introduced the various datasets used in our experiments; each dataset

is described, and examples are given.

Chapter 4 describes and defines local structure in detail, both in general and

in the special case of spatially local structure. It introduces a framework for how

structural bias can be introduced, and describes several ways in which data can be

partitioned to take advantage of local structure. Finally, it explores how data can

be analysed to reveal the presence (or absence) of spatially local structure. This

includes an introduction to several techniques from the field of Spatial Statistics,

how they can be applied to image data, and how the results are interpreted. This

process is then demonstrated experimentally on several standard computer vision
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benchmarking datasets. Randomly permuted versions of these datasets are created

and are then analyzed the same way, allowing for comparisons between data with and

without spatial structure.

Chapter 5 examines the behavior of Convolutional Neural Networks in the presence

and absence of spatial structure, using the data described and analysed in the previous

chapters. This serves to confirm the importance spatial structure in Convolutional

Neural Networks, by demonstrating how performance is adversely impacted by the

absence of spatial structure.

Chapter 6 presents a spatially local training algorithm for Restricted Boltzmann

Machines, and experimentally demonstrates the performance advantages of such an

algorithm. It then explores the impact of using such a training algorithm in each

layer of a Deep Belief Network, demonstrating not only quantitative performance

gains, but qualitative differences in spatial structure in hidden layer activations.

Chapter 7 presents a non-connectionist model constructed using the principles of

spatial data partitioning. The model is a simple one based on Principal Component

Analysis, ensuring that the experimentally demonstrated performance advantage of

the spatially local model can have no source other than the spatial structure of the

model. We also show that model using local structure relies on the presence of local

structure for its performance, while the baseline model does not.
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Chapter 8 presents a second non-connectionist model, this one based on Random

Forests. This model uses a different mechanism to introduce a spatial bias than those

described in previous chapters, and is radically different from traditional deep learning

algorithms. In spite of this, we are still able to demonstrate that the spatially biased

version has a performance advantage on data with spatial structure.

Chapter 9 concludes the dissertation, and contains an overview of what we were

able to conclude from our analysis and experiments. It again summarises our contri-

butions to the field, this time with reference to the work presented in the previous

chapters. Finally, it describes some of the many ways our work could be extended

and built upon in the future.
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Background

In this chapter, we cover many existing techniques and concepts that are useful

in understanding our work. Sections relating to techniques with which the reader

is already knowledgable can safely be skimmed, or skipped entirely. Alternatively,

the chapter can be bypassed entirely, and then used as a reference if things become

confusing later.

We begin the chapter with a review of the connectionist models that standard

deep learning uses as building blocks. We then give a brief history of connectionism

and deep learning. Finally, we cover relevant non-connectionist techniques.

20



CHAPTER 2. BACKGROUND

2.1 Connectionist Models

Connectionist models are generally represented as graph structures, with nodes

(or units) representing integrating elements and edges (or connections) representing

connection strengths. When parallels are drawn to biological neural tissues, the nodes

represent neurons, and the edges represent synapses.

In general, a node takes the intensity values from its incoming edges and computes

a function based on those values, the output of which is the activation level of that

node. This function is called an activation function or an aggregation function. The

activation is then put onto each outgoing edge, where it is multiplied by the weight

associated with that edge. In typical network operation, some nodes will have their

values clamped (input nodes), and some nodes will have their values examined (output

nodes). Other nodes in the network are called hidden nodes, because their activations

are neither set nor examined externally.

Typically, an activation function is some kind of nonlinear squashing function

applied to the sum of the inputs (see Figure 2.1). The Heaviside step-edge function

was used in the earliest networks, with a suitable threshold to give a binary output;

later networks used sigmoid activation functions, which can be viewed as a smoothed

version of the Heaviside function. The activation function, frequently labeled g(·),

takes as input an activation vector x ∈ Rn and a weight vector w ∈ Rn. Using this
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a1
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a3

a4

a5

g (x,w)

w1

w2
w3
w4

w5

aout

Figure 2.1: An example connectionist node with five incoming edges and one outgoing
edge, with an activation function g(·).

notation, one possible sigmoid activation function is the logistic function:

g(x,w) = 1
1 + e−(∑wixi)

The architecture of a connectionist model is a description of the network graph

topology; i.e., how many nodes are there, and which ones are connected by edges.

There are many types of connectionist model architectures; here, we will primarily

concern ourselves with the subset known as feed-forward networks. A feed-forward

network is an acyclic directed graph, where the input nodes have no incoming edges

and the output nodes have no outgoing connections. In this type of network, nodes

are often organized into layers, where a layer is a subset of nodes that are all the

same hop-count distance from the input nodes. Layers are typically indexed up from

the input nodes, so nodes in the first hidden layer have incoming edges from input

nodes, nodes in the second hidden layer have incoming edges from nodes in the first
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Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.2: An example fully connected feed-forward network with four inputs, five hidden
nodes, and one output.

hidden layer, and so forth. Activation values can then be computed one layer at a

time, starting with clamped values at the input nodes and propagating activations

up to the output nodes. A network in which every node in each layer is connected

to every node in the layer above is known as a fully connected feed-forward network

(see Figure 2.2).

2.1.1 Types of Connectionist Models

A perceptron is a fully-connected feed-forward connectionist network that uses a

linear activation function with a threshold to yield a binary output. It generally does

not contain more than one hidden layer.
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A multilayer perceptron (MLP), on the other hand, uses a continuous, nonlinear

activation function (often a logistic or hyperbolic tangent function); it is still a fully-

connected feed-forward network and almost always contains one or more hidden layer.

An artificial neural network (ANN) in general is a broader term for this type of

connectionist model; it is not restricted in architecture or activation function, but is

generally only used to describe directed-graph networks.

2.1.2 A Brief History of Connectionist Models

The field that has become known as connectionist modeling derives originally from

work done by McCulloch and Pitts, who were trying to understand the vision system

in the brains of animals. Their first major contribution was the 1943 paper [95] that

presented a simple mathematical model of the behavior of neurons, based on the

observed fact that neuronal activity was based on discrete electrical impulses, which

meant that communication was essentially binary in nature. This binary nature

allowed them to apply a logic-based interpretation, though the authors do point out

that the logical behavior at a high level does not describe or explain the underlying

functionality of actual neurons (in particular, they note that actual neurons learn

using what amount to continuously variable parameters, which their model does not

fully for). While the model had some limitations, it was the first attempt to describe

how neural tissue could perform formal computations.
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Their second major contribution was the 1959 paper [89] that examined the func-

tional characteristics of the visual system of frogs, using a combination of electron

microscopy to determine numbers and types of cells, and fine electrical probes to ex-

amine electrical activity of axon bundles in the brains of living frogs (the frogs were

sedated and had a small flap of bone opened to allow the probes to be used, but were

otherwise normal). By exposing the frogs to a variety of different visual stimuli while

recording the electrical activity in various different cells, they were able to determine

that the frog’s visual system was not presenting the brain with a set of point-based

measures of light intensity, but rather was sending the brain a sparse set of signals

that represented complex functions of the actual visual stimulus. In effect, the frog’s

visual system presents the brain with simple features based primarily on movement

(that is, change in the visual stimuli) which allows it to respond to prey-like visual

stimuli and predator-like visual stimuli, but is largely insensitive to static visual stim-

uli, regardless of what those stimuli are. The realization that the neural pathways

coming from the retina represented highly complex functions of their inputs was an

unexpected one, and led to a new way of thinking about the role of visual neurons.

At around the same time, Rosenblatt published the 1957 paper [113] that intro-

duced the term perceptron. The perceptron was the first practical application of the

logical model developed by McCulloch and Pitts to solve perceptual problems. The

perceptron, as originally conceived, was a custom-designed electronic machine that
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used a grid of photoreceptors as input and a set of potentiometers that could be ad-

justed by motors during training. The original system was able to learn to recognise

simple patterns, and this success was met with wild media speculation about what

the system would be able to accomplish. This speculation was encouraged by Rosen-

blatt’s own claims about the revolutionary power of his system, leading to predictions

that human-like artificial intelligence would soon be possible.

Unfortunately, the actual system, while interesting, was fairly limited in the types

of patterns it could recognise. This led to problems when it failed to fulfil the

grandiose claims that had been made early on, and resulted in a spike of early interest

and funding followed by a backlash in which interest and funding largely dried up for

over a decade (an event often referred to as the “AI winter”). This is often said to have

been the result of the 1969 publication of a book by Minsky and Papert [96], though

there is some debate over the extent to which this was the intended interpretation of

their work.

The main failing highlighted in the book was that a perceptron with only one

layer of hidden nodes is a linear classifier, and can therefore only be trained to clas-

sify linearly separable problems. Since many problems of interest are not linearly

separable (including XOR and parity), this is a significant drawback. The power of

perceptron-style networks to encode non-linear functions was actually described in

the original 1943 paper [95], but it requires more complex architectures. Rosenblatt’s
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algorithm for learning the connection weights was not able to handle networks with

more than two hops between an input and an output, meaning that a single hidden

layer was all that could be used effectively.

The solution to this was a training algorithm that allowed networks with more than

one layer to be trained. The algorithm is known as error backpropagation [116], and

it works by applying the chain rule to derive updates for connection weights based on

how much they are responsible for an incorrect output. For the chain rule to be used,

however, the weight aggregation function must be continuously differentiable; the

step-edge Heaviside functions used in early perceptrons were not. By using a sigmoid

function instead, connection weights could be learned for networks with multiple levels

of hidden nodes. This allowed for much more complex problems to be solved, because

the sigmoid function, which can be thought of as a step-edge with a smoothing kernel

applied, has the added benefit of providing a smoother fitness landscape for gradient

descent.

The math underlying this algorithm for continuous functions was derived in the

1960s [13, 14, 68], but it was not actually applied to perceptron weight learning until

later. Werbos initially suggested such a possible application in his 1974 disserta-

tion [140], followed by a basic application a few years later, but the 1986 publication

by Rumelhart and Hinton [116] is generally considered to be the first example of

modern backprop.
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The combination of the error backpropagation algorithm with the increased com-

putational resources that became available during that time period led to a renewal

of interest in the area of artificial neural network research that has continued to the

present.

2.1.3 Autoencoders and RBMs

Autoencoders and RBMs are two standard methods used as building blocks for

deep learning. Both methods allow a distributed representation to be learned from

input data in an unsupervised fashion; connectionist models are used to encode these

representations. Once trained, this representation can then be used to train another

model, which takes the output of the first model as its input. This process is repeated,

and the components are stacked to form a deep network (see Section 2.2.3). Note

that, while the two techniques are different, the encoding networks they produce can

often be used interchangeably, which can lead to confusion (especially when deep

autoencoders use RBMs to pre-train their layers).

2.1.3.1 Autoencoders

An autoencoder [55] is a type of feed-forward neural network that is trained to

predict its own input; that is, the training signal for the output nodes is the same as

for the input nodes. One or more fully-connected hidden layers are typically used,
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generally with fewer nodes in the hidden layer(s) than in the input and output layers

(see Figure 2.3). Since it is trained to minimise reconstruction error, the optimization

task is essentially one of compression or dimensionality reduction. Sometimes, other

optimization criteria may be imposed as well, such as sparseness of encoding, which

can lead to more neurologically plausible results [103]. Alternatively, by stochastically

dropping some inputs, a de-noising autoencoder can be trained to reconstruct full

vectors from lossy ones [138].

Autoencoders with many hidden layers are generally “pre-trained” one layer at a

time, from the bottom up; the first hidden layer is trained to reconstruct the inputs,

then the weights between the inputs and first hidden layer are fixed, and the second

hidden layer is trained to reconstruct the first hidden layer activations, and so forth.

Once all layers have been pre-trained, a final pass of tuning all the weights using

standard gradient descent can be performed; the pre-training allows the algorithm to

be initialized in a sufficiently good local basin to achieve high performance.

Once trained, the hidden layer activations can be used as an encoded represen-

tation of the input, much like the output of any other dimensionality reduction or

feature extraction technique. For an input vector x ∈ Rn, a trained autoencoder can

be treated as an encoding function f(x)→ h, where h is the activations of the hidden

nodes. For a single hidden layer made up of m nodes with a n×m weight matrix W

and a bias b, the mapping is f(x) = g(Wx + b), where g is an aggregation function.
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Figure 2.3: Basic architecture of an autoencoder network; the network is trained to min-
imize the difference between the inputs x and the outputs x′.

As with MLP networks, sigmoid functions such as logistic or hyper-tangent are

the most common choice for aggregation function. If a linear function is used instead

of a sigmoid, then a standard autoencoder tends to converge to the same encoding

as PCA does (see 2.3.2.1 for details on PCA). However, the ability to use non-linear

activation functions gives autoencoders more representational power than traditional

PCA (which is a linear technique).

2.1.3.2 Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is type of connectionist model designed

to optimize for reconstruction error, much like an auto-encoder. While RBMs can be

used as a type of auto-encoder, they are based on quite different principles from the

more traditional perceptron-style auto-encoders described above.
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The RBM model was first proposed as a simplification of a full Boltzmann Ma-

chine [31] by Smolensky in 1986 [126] under the name Harmonium. A Boltzmann

Machine is a probabilistic version of a Hopfield network, meaning it is primarily

auto-associative in nature. The goal is to learn patterns inherent in a set of input

samples by building connections that encode those patterns. However, where clas-

sic Hopfield networks and Boltzmann Machines are uniform in construction (i.e., all

nodes are equal), an RBM has two distinct types of nodes: visible nodes, and hidden

nodes.

The distinction is that visible nodes correspond with features of the observed

samples, where hidden nodes do not. Much like with other connectionist models,

hidden nodes end up encoding a complex, distributed representation of the visible

nodes; in effect, they become the model representation of the data.

Unlike a perceptron, in an RBM there is no distinction between input and output

nodes, but rather the visible nodes function as both. An RBM is therefore represented

as an undirected graph. The visible nodes and the hidden nodes are normally fully

connected, but there are no connections between the nodes in each category, so the

result is a complete bipartite graph. This constraint is the “restriction” which dif-

ferentiates RBMs from classic Boltzmann Machines. We will use x to denote visible

nodes, and h to denote hidden nodes; see Figure 2.4 for an example RBM.
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Figure 2.4: Basic architecture of a Restricted Boltzmann Machine with seven observable
nodes x and four hidden nodes h.

The key insight (and the origin of the name) comes from the fact that this type of

model can be represented as a Boltzmann energy distribution [88]. The Boltzmann

energy distribution is a concept developed by physicists to describe a system of par-

ticles, where it models the likelihood of the system being in any given configuration

as a function of the amount of energy the system has in that state, as well as the

temperature of the system.

RBMs make use of the math but detach it from its original physical meaning,

instead taking advantage of the fact that we can use a Boltzmann distribution to

efficiently learn a set of parameters (i.e., edge weights in the graph) that will cause

the sample data to be produced with high likelihood. The equation for

p(x,h) = e(−E(x,h))

Z
,
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where E is the energy of the state, and Z is the partition function, which defines

configurations over all possible states:

Z =
∑
x,h

e(−E(x,h))

The conditional probability can be written in terms of the energy function as follows:

p(h|x) = e(−E(x,h))∑
h e(−E(x,h))

The probability of data p(x) is then obtained by marginalizing over the hidden vector

h:

p(x) =
∑

h
p(x,h)

=
∑

h

e(−E(x,h))

Z

Calculating p(x,h) exactly is not tractable due to the partition function, Z; how-

ever, the conditional probability, p(h|x) = p(x,h)/∑h′ p(x,h′), has a rather simple

form. To differentiate from the current vector h, we use h′ to represents all possible

hidden vectors (configurations) of size n. Then given our definition of the Boltzmann
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distribution, we obtain

p(h|x) = e(h⊤Wx+b⊤x+c⊤h)/Z∑
h′∈{0,1}n e(h′⊤Wx+b⊤x+c⊤h′)/Z

.

Although an algorithm for training RBMs was known in the early 1980s [31], it did

not scale well on the hardware available at the time. RBMs began to gain popularity

2002, when Hinton et al. developed Contrastive Divergence, a more efficient training

method based on Gibbs Sampling [54]. Since then, RBMs have been used widely as

basic components of deep learning systems [9, 55, 56]. RBMs have also been applied

successfully to classification tasks [22, 76, 92], as well as other learning tasks such as

Collaborative Filtering [118].

The Contrastive Divergence (CD) method provides a reasonable approximation

to the likelihood gradient of the energy function. Algorithm 2.1 shows pseudocode

for training RBMs using a one step Contrastive Divergence method. The algorithm

accepts a sample data instance and a set of model parameters: weight vector (W),

visible layer bias vector (b), hidden layer bias vector (c), and learning rate (α). It

updates the model parameters in two phases, referred to as the positive phase and

the negative phase respectively.

First, in the positive phase (lines 1-2), the probability of the hidden node is

calculated for all hidden nodes, given the visible vector. In the negative phase (lines
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Algorithm 2.1 Pseudocode for one-step contrastive divergence, CD-1(xi, α)
Input: xi: data sample, α: learning rate.
Output: W: weight vector, b: visible node bias vector, c: hidden node bias vector

Positive Phase:
1: x0 ← xi
2: h0 ← σ(c + Wx)

Negative Phase
3: h̃0 ∼ p(h|x0)
4: x̃ ∼ p(x|h̃0)
5: h1 ← σ(c + Wx̃)

Update parameters:
6: b← b + α(x0 − x̃)
7: c← c + α(h0 − h1)
8: W←W + α(h0x0 − h1x̃)

3-5), the probability of each hidden node is determined by sampling from the model.

First a sample of points for the hidden nodes is drawn based on the current estimate of

the distribution p(h|x0) (line 3). Using these sampled points h0, the current estimate

of p(x|h) is used to sample points for the visible nodes x (line 4). Finally, on line 5,

the probabilities of the hidden nodes are updated based on the sampled vector for the

visible nodes. The parameters of the network are updated on lines 6-8. Contrastive

Divergence need not be limited to one forward and backward pass in this matter,

and Algorithm 2.1 can be extended by creating a loop around lines 1-5. Then for

k > 1, the positive and negative phases are repeated k times before the parameters

are updated.

The CD-1 algorithm (i.e, Contrastive Divergence with one step) has proven to be

sufficient for many applications [8, 133]. CD-k is rarely used, because resetting the
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Markov chain after each parameter update is inefficient (as the model has already

changed [133]). As an alternative, Tieleman modified the Contrastive Divergence

method by making Markov chains persistent [133]; one or more persistent chains are

kept during training, leading to greater efficiency for the multi-step case. Even so,

many applications have demonstrated minimal (if any) improvement in performance

using persistent Markov chains.

2.2 A Brief History of Deep Learning

While deep learning has become wildly popular only recently, it has been an area

of active study for over 35 years. In fact, the desire for “deep” connectionist networks

can be traced back to the first models developed by McCulloch & Pitts [95]. From

the beginning, the goal was to build a model of the primary visual cortex, which was

already known to exhibit a deep hierarchical structure by the 1950s. The reason early

models were “shallow” is simply that shallow models are much easier to train than

deep ones. It was the lack of an ability to train connection weights for multi-layer

networks, pointed out by Minsky & Papert [96] in the late 1960s, that is frequently

blamed for the decline of interest (and funding) for connectionist models that took

place in the following decade.
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The first solution to this problem was the error gradient backpropagation training

technique, which used a continuously differentiable activation function in combination

with the chain rule to derive “error” values for non-output nodes. This technique

proved very successful for networks with a layer or two of hidden nodes, allowing

networks to be trained to solve non-linear problems. However, as more hidden layers

were added, gradient diffusion and overfitting resulted in a failure to converge to a

good solution. This is often referred to as the problem of vanishing or exploding

gradients. The chain rule involves taking the product of node activations to derive an

error gradient for hidden nodes, so the deeper the network is the closer the products

will get to zero (if the activation function is always less than one) or sometimes ±∞

(if the activation function can be greater than one).

There have been attempts to work around this problem going back many years,

with one of the earliest successes being Fukushima’s Neocognitron [39]. For most

of the intervening time, interest in the field was relatively small, with the majority

of publications coming from the labs of Hinton, Bengio, and LeCun. Convolutional

Networks [82] and Deep Belief Networks [53] are the two primary deep network types

that have been studied significantly. There have been other deep networks models

proposed [6, 42], but they have not had as significant an impact on the field.

All of these techniques have offered ways to minimize or sidestep the problem of

vanishing gradients. Additionally, they all share the same neuromorphic approach,
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basing their functionality on the neuroanatomy of the primary visual cortex (some

more loosely than others), and they were all initially targeted at computer vision

problems.

While this history goes back over 35 years, deep learning did not receive much

attention until recently. In fact, the term “deep learning” did not come into com-

mon usage in the machine learning community until around 2008. The explosion of

interest we have seen since then was sparked largely by the success of Convolutional

Networks and Deep Belief Networks on computer vision problems. In the last few

years, Convolutional Networks have become the dominant deep learning paradigm

for many types of real-world problems, but other techniques are also still studied and

used.

2.2.1 Neocognitron

The first model which was “deep” in the modern sense of the word was Fukushima’s

Neocognitron [39] (which predated Rumelhart’s introduction of backprop). Not only

is the system continuing to be studied today [40], but it has also been highly influential

in the design of many other deep learning techniques. It was explicitly designed to

be an abstract model of primary visual cortex (V1) neural tissue in animals as it

was understood during the 1960s (see [62, 63, 75, 89]). It is worth noting that more

recent neurological studies have given us a significantly more detailed understanding
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of some of these processes; here, we will only concern ourselves with the work that

most heavily influenced the design of the Neocognitron network, and even then we

leave out much of the neural complexity that was not modeled in the network.

In abstract terms, Neocognitron is a connectionist network composed of two dis-

tinct types of nodes, called S-cells and C-cells. A full network consists of alternating

layers of the two types of nodes in a feed-forward architecture. The layers are not

fully-connected, but instead use a restricted connection scheme.

2.2.1.1 Cell Types

S-cells are modeled after a class of neurons in the primary visual cortex (V1) called

‘simple’ cells [63]. A simple cell acts as a type of detector; its activity is normally low,

but spikes when it is presented with an input that matches the particular pattern that

cell is looking for. In the visual cortex, the first layer of simple cells are connected to

the retina through the lateral geniculate body (LGB) via retinal ganglion cells each of

which is activated by either a bright spot (‘on’-center) or a dark spot (‘off’-center) in

a small, localized region of the retina [75]. Each simple cell has a “receptive field” that

characterises what part of the retina can impact its activity (see Figure 2.5). Each cell

also has a pattern of light and dark that, when applied to its patch of retina, will cause

a spike in its response. Simple cells have both excitatory and inhibitory regions; this

allows them to respond to very specific patterns, such as oriented edges, or bands of a
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Figure 2.5: Illustration showing the input interconnections to the cells within a single
cell-plane, adapted from [39]

particular width [62]. Each cell responds only to a single pattern, and then only when

the location of that pattern on the retina corresponds with the location of the pattern

in the receptive field of the cell. Hubel & Weisel described them as ‘simple’ because

the patterns they respond to are fixed, and fairly easy to characterize, but they can

still respond to much more complex patterns than the simple center/surround spots

that activate retinal ganglion cells.

C-cells are modeled after a type of ‘complex’ cell [63], which are the other primary

class of cells described by Hubel & Wiesel. The essential difference is that ‘complex’

cells respond to patterns that cannot be easily characterised by a simple spatial form.

For example, a cell that activates primarily based not just on a shape, but on having

that shape move in a certain way, or a cell that does not activate in the presence of a

stimulus, but produced a brief spike in activity when that stimulus is removed. The

particular type of complex cell modeled in a Neocognitron is one that responds to a
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Figure 2.6: Correspondence between the hierarchy model by Hubel and Weisel, and the
neural network of the neocognitron, adapted from [39]

pattern with a degree of spatial invariance; that is, it is looking for a pattern that is

smaller than its receptive field, and activates when that pattern is present regardless

of the specific location of the pattern within the overall receptive field.

Hubel & Weisel also describe ‘lower-order hypercomplex’ cells and ‘higher-order

hypercomplex’ cells, which behave similarly to ‘simple’ and ‘complex’ cells respec-

tively. The distinction is that they use the activations of ‘complex’ cells as their

inputs, rather than using input directly from the retina. For the purposes of Neocog-

nitron, these are treated as being just another set of S-cells and C-cells, the distinction

being only whether the inputs come from raw pixel intensities or from the outputs of

a previous stage of the network. The correspondence between cell types in the Hubel

& Weisel model and a Neocognitron network is show in Figure 2.6.
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Figure 2.7: The architecture of a Neocognitron, adapted from [40]

2.2.1.2 Architecture

The overall architecture of a Neocognitron network consists of a series of “modular

structures,” each of which consists of a layer of S-cells followed by a layer of C-cells.

The input layer is a 2D array of units treated as a binary image.

Within a layer, cells are grouped into “cell-planes,” where all the cells in a plane

have receptive fields that respond to the same pattern, with the difference being only

the region of the input that they consider. This can be thought of as each “cell-plane”

representing the output of a single local feature-detector applied at each position in

the input image (see Figure 2.7).
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The numerical operation of the C-cells is fairly simple; each C-cell receives input

from all S-cells in a fixed size region of the preceding layer. The weights are fixed, and

defined in such a way that activation of any of the inputs is sufficient to activate the

output; in effect, the C-cell performs a logical AND on its inputs. Since the weights

are fixed, no learning takes place in these layers.

The S-cells are somewhat more complicated; they receive input from a region in the

same way as the C-cells, but their output function is based on learned connections.

The mathematical model is based on the Hubel & Weisel model of ‘simple’ cells,

meaning it involves a pattern of excitatory and inhibitory connections that combine

to yield a cell that responds only to a particular pattern.

2.2.1.3 Training

Training a Neocognitron network (described as “self-organization”) is an unsuper-

vised Hebbian learning process, and works by using a form of competitive learning

to incrementally update the weights in the network. After each presentation of an

input, a few “representative” S-cells are picked in each S-layer based on which cells

show the highest activation for that input. The selection is competitive, meaning

only one cell can be selected in any given cell-plane. Weakly activating cell-planes

may have no representatives chosen, in which case their weights will not be updated.

As with other forms of competitive learning, the chosen unit is updated to make it
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respond even more strongly and specifically to the pattern that was presented by

increasing the excitatory value of connections where the pattern is high, and increas-

ing the inhibitory value of all other connections to compensate (i.e., so that uniform

input continues to produce a low output value).

No supervised learning is done; the network is trained purely as an (unsupervised)

feature extractor. While this is partly because the intention was to model the self-

organizational pattern discovery seen in neural tissue, it is also worth remembering

that the error backpropagation algorithm had not yet been applied to neural networks

when the Neocognitron model was first described.

2.2.1.4 Applications

In its earliest versions [39], the Neocognitron was able to learn clusterings that

corresponded very closely to the classes of a 5-class input problem. The problem

used was in effect a very small digit recogniser, mapping images of the numbers 0-

4 to distinct units in the highest layer. This was robust to small changes in scale,

placement, shape, and additive or subtractive noise, meaning that the same output

unit would activate regardless of these changes to the input.

What made this result impressive was the fact that an unsupervised system had

effectively learned a set of classes that corresponded well with the concept labels a

human would apply to the same data. However, the approach had difficulty scaling;
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when applied to a 10-digit input set, the network proved to be very sensitive to

initialization and parameter settings, and did not always learn to distinguish between

all ten digits. The computational limitations of the time and the complexity of the

algorithm meant that it was highly limited in terms of practical applicability, but the

invariance it captured was something that has historically been a weak point of most

machine learning techniques, including less structured feed-forward networks such as

perceptrons.

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) were originally developed by LeCun as

connectionist networks for handwritten-digit classification as a part of his dissertation

work [79]. The most recognizable form is probably that described in 1998 [82] as

LeNet5, though earlier versions had at least some of the same characteristics a decade

prior [81].

A CNN can be viewed as a fairly straightforward translation of a Neocognitron

architecture to use more standard feed-forward perceptron style unit activation func-

tions. The primary advantage of doing this lies in the error-backpropagation rule

which had recently been developed [116] for this type of network; by using percep-

tron style units, LeCun was able to train the network using supervised learning. This

made CNN style networks more practical for real-world tasks such as handwritten
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Figure 2.8: Architecture of a convolutional network. The outputs (not the filters) of
each layer (horizontally) of a typical convolutional network architecture applied
to the image of a Samoyed dog (bottom left; and RGB (red, green, blue) inputs,
bottom right). Each rectangular image is a feature map corresponding to the
output for one of the learned features, detected at each of the image positions.
Information flows bottom up, with lower-level features acting as oriented edge
detectors, and a score is computed for each image class in output. ReLU,
rectified linear unit. Adapted from [80].

digit recognition; one of the big early successes for CNNs was automatic processing of

zip-codes (for mail) and check values (for banks). Such systems were in use by banks

and post offices long before the modern use of CNNs for more difficult computer

vision tasks [82].

Where Fukushima was originally focused on creating plausible models of the pri-

mary visual cortex in biological systems, LeCun was more interested in the ability of

the system to solve real-world problems. The inspiration for the two models was the

same, however, and LeCun’s work follows from Fukushima’s (and Hubel & Weisel’s)

quite clearly. The language used to describe the two models is different, however,

even when it is describing functionally equivalent concepts.
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For instance, the CNN literature tends to use the term “unit” where the Neocog-

nitron literature uses the term “cell,” but the meaning of these terms is basically

the same. The feature-extracting “S-cells” become “convolutional units,” and the

resolution-reducing “C-cells” become “sub-sampling” or “pooling units” (we will tend

to use the latter term, since it is more common in use today, but earlier work uses the

former term to describe the same part of the network). What Fukushima referred to

as a “cell-plane” is called a “feature map” by LeCun, but is architecturally identical.

What Fukushima calls the “response field” of a unit is frequently referred to as a filter

or a kernel.

Besides linguistics, there are two big differences between the early Neocognitron

models and the early CNN models. First, CNNs used the sigmoid activation functions

typical of fully connected feed-forward networks, rather than the more directly neu-

romorphic activation functions used in Neocognitrons. Second, early CNNs included

trainable parameters for both convolutional units and pooling units; in Neocognitrons,

only the S-cells had trainable parameters.

2.2.2.1 Convolutional Layers

Units in a convolutional layer are organized in the same basic way as S-cells in a

Neocognitron; units are organized into groups based on weight-sharing. Each of k fea-

ture extractors (the weights for which are learned during training) will have a number
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of associated units which taken together are called a feature map; the complete con-

volutional layer will be made up of k feature maps (the size of each feature map is the

same as the size of the input to the layer, minus the width of the feature extraction

filter, since the entire filter must be inside the image boundaries). Each feature map

effectively contains the response of the associated feature extractor applied at each

possible location in the input image. LeCun observed that the process of calculating

the activations for the units in a feature map was mathematically equivalent to con-

volving the input with the weight matrix for the feature extractor in question, which

is where the name of the technique came from. Just like a Neocognitron, units within

a layer of a CNN are organized so as to correspond spatially with the layout of the

inputs below them; that is, units which are adjacent in a feature map are generated

by applying the feature extractor at adjacent locations in the input.

The activation of a convolutional unit is computed simply as the product of the in-

puts and their corresponding connection weights, added together and then fed through

a squashing function. In early work, this was a standard logistic or hyperbolic tan-

gent function (generally with fixed scaling parameters set to encourage solutions in

the plastic region of the function) [82]. In more recent work, great success has come

from using alternatives here, particularly rectified sigmoid [85, 108], and rectified lin-

ear units (ReLU) [100] or the similar but smoother SoftPlus [29]. Many formulations

will also incorporate parameters for the amplitude and slope (i.e., multipliers that al-
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Logistic ≡ 1
1 + e(−a)

Hypertangent ≡ tanh(a)
Rectified linear ≡ max(0, a)

SoftPlus ≡ log(1 + e(a))
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Figure 2.9: Some possible activation functions that can be used in neural networks, where
‘a’ is the weighted sum of the incoming activations. They are sometimes
scaled vertically or horizontally depending on application.

low the functions to be scaled vertically and horizontally respectively), but these are

generally constants set by a designer rather than parameters learned by the network.

They can be used to encourage the network to find solutions in the plastic region of

the functions. This can be desirable because trying to drive the network to produce a

value that can only be achieved in the limit as the input goes to ±∞ leads to extreme

weight values, which has been shown to hurt the generalization ability of a network.

See Figure 2.9 for a comparison of several common activation functions.

Particularly for the “rectified” functions, there are a number of alternate functions

that approximate them (one example is given above), as well as variations such as

“noisy” [100] or “leaky” [93] rectifiers. Generally, this is an attempt to retain the
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advantageous properties but with a function that produces a nicer gradient to learn

on.

In some later CNNs, this activation function is followed by applying some form

of local contrast normalization [85] (sometimes referred to as LeCun Local Contrast

Normalization, or LeCun LCN). This is another operation that is done both because

it seems to model visual cortex behavior and because it is frequently useful in practice.

In particular, it can help in creating invariance to changes in color or illumination;

local contrast normalization tends to produce overall network behavior that focuses

on shape rather than intensity. This can also be seen as a way of re-introducing a

mechanism similar to the balancing of excitatory and inhibitory weights in the S-cells

of a Neocognitron.

2.2.2.2 Pooling Layers

Units in a pooling (or sub-sampling) layer work in a way similar to the C-cells in

a Neocognitron; the big difference is that pooling units have trainable parameters.

Just like a C-cell in a Neocognitron, the basic function of a pooling unit in a CNN is

to reduce the spatial resolution of its input by combining several input values into a

single output value. Unlike convolutional units, the receptive fields of pooling units

generally do not overlap, so the result is that the output of a pooling layer will be

something like a sub-sampled version of the convolutional layer below it.

50



CHAPTER 2. BACKGROUND

In most CNNs, the input to a pooling unit is a fixed-size 2× 2 region of a feature

map, though there have been experiments using other sizes. The activation of a pool-

ing unit in early CNNs was calculated by taking the average of the inputs, applying

(trainable) additive and multiplicative biases, and then passing the result through a

sigmoid function [82]; different values for the biases allowed the units to perform op-

erations like simple averaging or to approximate a logical AND or OR of the inputs.

In more modern CNNs, the pooling units often just perform a soft-max operation on

their inputs [85]. This means pooling units in modern CNNs have actually converged

back to the behavior of C-cells in early Neocognitrons.

2.2.2.3 Architecture

Like Neocognitrons, CNNs are composed of alternating layers of feature-extracting

convolutional layers and resolution-reducing pooling layers (see Figure 2.7). Most of

the network structure for the two models is very similar; the main differences are in

how the unit activations are computed, and what the top of the network looks like.

Since CNNs were designed to be used in a supervised learning environment, they

need some sort of trainable output signal. Where a Neocognitron simply reduces

features to an abstract representation and stops, a CNN adds several layers of fully

connected feed-forward nodes on the top. This can be thought of as a deep, convolu-

tional “feature extraction” stage followed by a traditional multilayer neural network
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as a “classifier” making use of the features. However, unlike most such setups, the

two stages are trained in concert using a uniform training algorithm.

For the first convolutional layer C1, which is connected directly to the input,

there will be a total of k1 feature maps, where k1 is the number of filters used. Each

pooling layer will have a size that is 1/4 the size of its inputs, assuming a 2 × 2

pooling region. What is less straightforward, however, is the size of the remaining

convolutional layers. At a given layer n, we can choose kn as the number of filters

to apply, but if we apply each of these filters to each of the kn−1 feature maps in the

preceding layer, we will wind up with exponential growth as we add layers. Not only

is this computationally problematic, but giving the network too many free parameters

tends to result in poor performance.

Several alternatives have been presented for combatting this problem. One of

the simplest involves applying a filter to each of the maps in the previous layer, and

simply averaging the result. A more interesting alternative is to treat the set of 2D

feature maps as slices, and stack them into a 3D volume. The receptive field of the

convolutional units in the next layer also becomes 3D; in effect, each unit now takes

input from the same spatial region in each of the input feature maps.

This avoids the exponential increase in units, but it still introduces a large number

of free parameters. In some instances, only a subset of the feature maps in the previous

layer are used for each unit; in LeNet-5, for example, the first convolutional layer had
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6 filters, and the second convolutional layer had 16 filters. 6 of these received input

from 3 feature maps in the first layer, 9 received input from 4 feature maps in the

previous layer, and the final one received input from all 6 feature maps in the previous

layer [85].

In classic CNNs, after several stages the convolutional filters will be the same size

as the feature maps from the previous stage; at this point, each filter will produce a

single output. It is these outputs which are used as the inputs for the fully connected

classification network at the top.

In more recent work, a wide range of variations have been proposed. One recent

architectural idea that has shown promise is making the networks significantly deeper;

the simplest method for doing this is to add multiple convolutional layers between

each pooling layer. By using larger input images, keeping the filters small, and using

pooling layers less frequently, much deeper networks can be created. The architecture

proposed by Simonyan & Zisserman [125], frequently referred to as “VGG,” can con-

tain up to 19 convolutional layers; LeNet-5 by contrast contains only 3 convolutional

layers. He et al. [50] constructed networks with over 100 layers, though they found

some other changes to the network were required to get good performance from such

very-deep CNNs (in particular, the addition of fixed-weight shortcut connections so

the layers could learn residuals rather than original functions). There have also been

explorations of different types of pooling operations [86], or even discarding pooling
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entirely in favor of simply downsampling by increasing the stride of convolutional

layers [127].

2.2.2.4 Training

Unlike Neocognitrons, early CNNs were trained in a purely supervised manner, us-

ing the same error backpropagation gradient descent algorithm as other feed-forward

neural networks. This was applied to the weights and biases for both convolutional

units and pooling units.

Part of what differentiates convolutional units from S-cells is that where S-cells

had a built-in regularization constraint (i.e., the ‘inhibitory’ weights had to sum to

the same total as the ‘excitatory’ weights), the weights for convolutional units are free

parameters (as is the case in most artificial neural networks). In large part, this was

due to the recent development of gradient-descent based methods for training this type

of network weight in multi-layer perceptron style networks. Where Neocognitrons

were designed to self-organize (i.e., learn in an unsupervised fashion), CNNs were

designed from the beginning to solve supervised learning problems.

Modern CNNs are still trained using a form of error backpropagation; stochastic

gradient descent (SGD) is the standard practice. There are many variations that

can improve performance, including standard SGD modifications like adding a mo-

mentum term [130]. Mini-batches are often used as a compromise between full batch
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gradient descent and completely online single-sample SGD [90]. Performing data nor-

malization on a per-mini-batch basis has also become common since Ioffe & Szegedy

introduced it [65]; this technique is referred to as Batch Normalization (sometimes

abbreviated BatchNorm). Batch Normalization is one of several methods that can

be used to combat overfitting; others include Dropout [57] and DropConnect [139].

There has also been work on finding better ways of initializing network weights before

training [97].

2.2.2.5 Applications

The observation that unit activations can be computed via convolution allowed

for computational optimizations which, combined with access to better hardware,

allowed early CNNs to be trained more efficiently than Neocognitrons. The earliest

successes were primarily on handwritten digit classification and resulted in several

production systems built around CNNs [82].

While useful, for many years CNNs were only applied to relatively small datasets,

and could not be made to scale to more challenging computer vision tasks. There

were a number of important improvements in the architecture and training algorithms

that were introduced, but the community studying CNNs remained fairly small.

More recently, the availability of large datasets like ImageNet [145] has meant

that researchers are no longer limited to low resolution, low sample-count datasets
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like MNIST [83] or NORB [84]. At the same time, the availability of off-the-shelf

GPUs capable of general purpose computing resulted in possibilities for massively

parallel computation. The operation of CNNs lends itself well to parallelization,

because each unit in a layer is data-parallel with all other units in that layer.

The 2012 paper by Krizhevsky, Sutskever, and Hinton [73] described a CNN that

was trained on the subset of ImageNet released for the ILSVRC-2010 competition;

this dataset is composed of 1.2 million images in 1000 classes. The original ImageNet

images are of varying resolutions, so the images were cropped and scaled to be a

uniform 256× 256 pixels. While this is still low compared to modern digital camera

resolutions, it was much higher than the previous datasets that CNNs had been

applied to historically. This CNN (which took 5 days to train on a pair of top-of-the-

line graphics cards) achieved results that outperformed the best existing techniques

by huge margins, in some cases cutting the error rate nearly in half, and the authors

noted that, “all of our experiments suggest that our results can be improved simply

by waiting for faster GPUs and bigger datasets to become available” [73].

Following the publication of this paper, there has been a massive spike in interest

in CNNs, both in academia and in industry. At the time of writing, CNNs are

uncontested for state-of-the-art performance on a variety of computer vision problems,

and they are in use in a wide range of production systems at companies like Google,

Facebook, and Microsoft. However, it is worth remembering that CNNs are achieving
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these successes on a particular type of problems, namely those with spatio-temporal

structure (which includes images, audio, and text); there is no violation of the No Free

Lunch theorems [142] involved in their success, and there are plenty of non-spatial

problems for which they are not the best choice.

2.2.3 Deep Belief Networks

Deep Belief Networks (DBNs) were developed by Hinton [53, 55] and Bengio [9] as

a type of deep network based on a probabilistic graphical modelling framework. While

both DBNs and CNNs are deep connectionist models, they are significantly different

both in terms of architecture and in terms of training. In particular, where CNNs and

Neocognitrons use a rigid network structure with layers of qualitatively distinct unit

types, DBNs generally use fully connected layers in which all units operate uniformly.

Thus a DBN is closer in architecture to a traditional MLP network than it is to a

CNN.

However, DBNs are also fundamentally unlike perceptrons in that they are not

strictly feed-forward, and are trained in an unsupervised fashion. DBNs are more

closely related to undirected, associative-memory models such as Hopfield networks [61]

than they are to models trained with gradient descent. This means a DBN can be

thought of as a probabilistic model of the data, and can be used in a generative

capacity. If class labels are part of the data at training time, a DBN can be used
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Figure 2.10: Basic architecture of a Deep Belief Network with two hidden layers.

as a classifier by presenting the available information and then taking a maximum-

likelihood approach to selecting a class label, but such a label is not treated any

differently than any other observable variable.

Thus, while DBNs can be used as a discriminative model, they can also be used

for other inference tasks in a uniform way. This makes them particularly well suited

to tasks where some features may be noisy, obscured, or missing entirely [9]. While a

properly regularized CNN may be able to perform classification even in the presence

of noise, there is no clean way to handle “missing” features. Additionally, there are

many problems in which the goal is not classification, but de-noising or recovering

missing information [143]; for these tasks, DBNs have obvious advantages.
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2.2.3.1 Architecture

Classic DBNs are described as a probabilistic graphical model, where the two top-

most layers are undirected and the rest of the network is a direct acyclic graph [53]

(see Figure 2.10). The initial idea was to build up a “deep” network by training one

layer at a time in a greedy fashion, to avoid the problems of “explaining away” that

otherwise make training a deep probabilistic graphical model infeasible.

Nodes in a DBN are treated as latent variables; much like an MLP, layers are

fully-connected to the layers above and below, but there are no connections between

nodes in the same layer. Taken together, the nodes in a given layer encode a proba-

bility distribution over the nodes in the layer below them. Originally, each layer had

fewer nodes than the layer below it, resulting in distributed representations that be-

came increasingly low-dimensional and “abstract” as depth increased [53]. Later work

described variants that added sparsity constraints to force less distributed encodings,

which may require higher unit counts in the upper layers [109].

The connection scheme means that any two adjacent layers of a DBN form a

bipartite graph encoding a probability distribution; this is equivalent to a Restricted

Boltzmann Machine (RBM) [53] (see Section 2.1.3.2 for details on RBMs). DBNs take

advantage of this fact by using the Contrastive Divergence RBM training algorithm

to train the layers of the network.
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2.2.3.2 Training

DBNs are traditionally trained one layer at a time in an unsupervised fashion [53].

Starting with the raw inputs, a layer is added to form an RBM, which is then trained

using Contrastive Divergence (see Section 2.1.3.2 for details on RBM training). Once

the training process is complete, the weights for the RBM are fixed, and a new layer

is added. This new layer uses the activation of the previous layer as its inputs; since

the weights in the layers below are fixed, we can treat all the previous layers as the

input process for the new RBM, which is again trained using Contrastive Divergence.

This process is repeated for each layer in the network. It has been referred to

as greedy layer-wise training [9], because each layer is trained independently of the

others. The process of training a layer is “greedy” because it does not take into

account what impact its learned encoding will have on layers above it in the network.

Once all layers of the network have been trained using this process, the network can

be fine-tuned for a particular task using supervised learning. In this case, the initial

construction and training of the DBN can be thought of as a complicated weight-

initialization heuristic, in which case the process may be described as unsupervised

greedy layer-wise pre-training, or just unsupervised pre-training.

It has been demonstrated experimentally that this unsupervised pre-training step

results in networks that significantly outperform similarly architected networks trained

purely using supervised learning, even if the supervised learning is done in a greedy
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layer-wise fashion [8, 9]. Some of the only previous work attempting to explore the

inductive biases of deep learning examined the question of why unsupervised pre-

training helps, and concluded that it largely functioned as a very robust form of

regularization [30].

Several variations on the training algorithm have been proposed to incorporate

additional terms to constrain the energy function of the RBMs (including the intro-

duction of explicit sparsity and regularization terms) [109], or to increase the speed

of training and convergence [117]. It has also been shown that using more traditional

auto-associative networks in place of RBMs can yield similar results [9, 143].

2.2.3.3 Applications

For simple image classification problems like MNIST, DBNs compare favorably to

“shallow” methods like SVMs and MLPs [9, 53, 77]. However, DBNs have so far been

unable to scale to very large and difficult problems such as ImageNet; since the report

that CNNs could successfully scale to such problems by using using parallel computing

on GPUs, DBNs have fallen out of favor as an image classification technique. They

have continued to be used for reconstruction tasks on images [143], and have been

used for modeling semantic content in documents [56].

The main difficulty with DBN training is that contrastive divergence does not

scale and parallelize as easily as the algorithms used to train CNNs. CNNs use
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small response regions and weight-sharing to drastically cut down on the number

of free parameters (compared to fully-connected networks), and their operation is

one directional. Because RBMs are undirected models, information flows in both

directions along the edges; because they are fully connected, the activity of a given

node can depend (indirectly) on every single weight and activation in the network.

The result is that the cost of one training epoch for an RBM grows rapidly with

increasing numbers of inputs.

2.3 Feature Extraction

The deep learning methods described above can be thought of as singular models,

but they can also be thought of as a deep “feature extraction” network, followed

by a “shallow” method that computes the final output. CNNs, in particular, are

often described this way, with the deep convolutional part feeding into a shallow

fully-connected feed-forward network that learns to perform the specified task. In

this context, it is worth comparing deep networks to other methods that perform a

mapping from an initial “raw” data-space to some other feature-space that is more

convenient for a follow-on technique.
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Feature selection techniques generally work by choosing a small subset of the

features from the original feature vectors. In effect, the new feature-space is an axis-

aligned subspace of the original feature-space.

Dimensionality reduction techniques are a broader category that encompasses fea-

ture selection, but does not restrict the new feature-space to be an axis-aligned sub-

space of the original. In general, the only requirement is that the new feature-space

have a lower dimensionality than the original one. Techniques of this sort are gener-

ally applied to help combat what is referred to as the “curse of dimensionality”. The

“curse” refers to a set of phenomena associated with high dimensional data that can

make machine learning either ineffective or computationally intractable.

Feature extraction is the broadest label, and simply means that the feature-space

being used is different from the original. It encompasses dimensionality reduction,

but places no restrictions on the relative dimensionalities of the new and old spaces.

Thus, it is possible to have a feature extraction technique that results in outputs

that are higher-dimensional than the inputs (sparse coding and kernel methods are

common examples).

Feature engineering is a term sometimes used to describe a mapping of any of

these types being created by a human engineer, as opposed to algorithmic methods for

learning mappings automatically from data. This dissertation will focus on automated

learning, rather than knowledge engineering performed by humans.
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For our purposes, the end result of all these techniques can be described as a

function that maps “raw” feature vectors from their original feature-space to some

other feature-space. Without loss of generality, we will call such a mapping function

a “feature-space projection.” In this work, we will primarily use real-valued vector-

spaces, in which case such a projection function can be written as

f : Rn → Rm,

where f is the feature-space projection function, and n and m are the dimensionalities

of the original and projected spaces, respectively.

2.3.1 Feature Selection

The term feature selection is generally used to describe a class of techniques that

work to reduce the dimensionality of the data space by simply eliminating some

dimensions. Given a set of attributes or features, a subset of features is selected

for use, and the rest are discarded. Many different heuristics have been used to

determine which features to keep and which to discard. While the details of such

a selection criterion are inherently domain specific, there are two distinct high-level

goals: reducing the size of the data space, and improving the performance of the
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system that uses the data. Often, both are desirable, but there are applications in

which one or the other is more important.

Feature selection is generally performed in contexts where it is believed that the

majority of features will not provide useful information for the chosen exploitation

task. In such a problem, these extra features can serve as “distractors,” and re-

moving them can help reduce overfitting by preventing the learning algorithm from

using irrelevant features to discriminate between data points that are equivalent when

considering only relevant features. Feature selection can also help improve the con-

vergence of local search algorithms such as gradient descent. Removing irrelevant

features reduces the size of the hypothesis space, and can result in gradients which

are smoother and easier to calculate.

Within the feature-space projection framework, a feature selection function simply

maps from an original high dimensional vector to a new lower dimensional vector by

concatenating the selected attributes into a new vector and discarding the rest. If

m features are selected from an original set of n, the projection function would be

f : Rn → Rm, where the space Rm is an axis-aligned subspace of Rn, and the function

f(x) simply returns the linear projection of x into the subspace Rm. The dimensions

(or features) not shared by Rn and Rm are discarded, and the values for the remaining

dimensions are unchanged.
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2.3.2 Dimensionality Reduction

Dimensionality reduction describes a broad class of methods that attempt to take

long data vectors and transform them into shorter ones, ideally without the loss of

task-relevant information. Many different types of algorithms can be used to do this,

and what information qualifies as task-relevant is by definition problem-specific, so

no one algorithm will be best for all situations.

One use of dimensionality reduction is data compression, in which the task is

the reduction in total size of some data while minimizing loss of information. Some

compression schemes are lossless, meaning the size of the data is reduced without any

loss of information; others are lossy, meaning that some information is irrecoverably

lost in the transformation. Lossy algorithms can generally compress the data more

efficiently (that is, to a smaller final size), but many problems cannot tolerate the

loss of information. The goal is to find a mapping function

C : Rn → Rk,

where k < n. The ratio

RC = n

k

is known as the compression ratio, and the primary goal of data compression is to

maximize this ratio.
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Techniques in data compression rely on finding regularities in data that can allow

the data to be represented using fewer bits of information. One commonly used

regularity is the existence of repeated patterns; if a given pattern, or sub-vector,

appears multiple times in a data vector, the data vector can be compressed by storing

the pattern once, and then replacing the matching sub-vectors with references to the

stored pattern.

Techniques in dimensionality reduction more broadly rely on similar regularities

and algorithms. The difference is that in standard compression, we are only con-

cerned with the ability to compress known data. In the broader context, we are

often concerned with the ability to compress un-known data. This is the concept of

generalization as applied to data modeling.

The requirement of good generalization changes the pattern-finding problem; in

compression, if a pattern exists more than once in the data, the compression ratio

can be increased by storing that pattern in a codebook. Compression ratio is a very

simple performance measure, but when comparing lossless compression algorithms,

it is generally the primary factor we are concerned with (time and space needed for

compression/decompression are sometimes of interest as well).

Performance measures based on good generalization are more complex, and more

difficult to satisfy. For a set of real-valued vectors, finding compressible patterns in

each vector and storing them will generally result in a longer representation of a given
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novel vector than that novel vector’s original length. This is due to the fact that we

are storing a potentially very large number of patterns that are present in only a small

number of vectors. In the context of generalization, we are therefore less concerned

with generating lossless decompositions, since they tend to result in overfitting.

When performing standard compression, we can easily measure how much in-

formation is lost in the process, and can make firm theoretical claims that a given

algorithm produces a “lossless” compression scheme. If we need to compress vec-

tors that we never saw when generating the compression scheme, such claims can no

longer be well-grounded. Instead, we must use an indirect measurement of informa-

tion loss, such as average loss over a given testing set, or mean expected loss for a

given distribution.

In order to achieve good compression but minimize loss of information, we want

to store patterns that are highly likely to appear in a novel vector, and not those that

are highly unlikely to appear. This likelihood is generally not known a priori, but

can be estimated if we make the standard assumptions that the novel vector is drawn

from the same distribution as the training data, and that all samples are independent

and identically distributed (IID).

If we are interested in feature extraction, we generally want to extract a consistent

set of features, which means that we need a fixed-length decomposition, and one in

which given output elements have a consistent interpretation. Standard codebooking
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does not fit these requirements, nor do many other standard algorithms designed for

compression; the underlying ideas and mathematics, however, remain quite similar.

In particular, while standard variable-length codebooks will not work, a type of

fixed-length codebook can be used, and often performs quite well. Known as vector

quantization, the idea is to pick a set of template vectors, and then represent each

data vector with a reference to the template that it most closely matches. The loss

of information in this case will be the difference between the vector and its template.

If the templates are well chosen, this can lead to a high compression ratio and low

loss of information for amenable types of data.

Standard vector quantization works on one data vector at a time, attempting to

map each data vector to a single template. This is effectively a clustering algorithm;

find clusters (templates), then use cluster membership to represent points. The trou-

ble with this is that in order to get low loss of information, we generally need a large

number of clusters. Since we need to store all the cluster means as full-length vectors,

the compression ratio is often not as good as we might like.

Vector quantization fundamentally takes advantage of the assumption that the

data has meaningful structure to it; that is, we assume the data are not distributed

uniformly across the entire space in which they are defined, but rather are predomi-

nantly confined to smaller local regions or manifolds. The fact that vector quantiza-

69



CHAPTER 2. BACKGROUND

tion appears to work for many types of real-world data suggests that this assumption

is often well founded.

Mathematically, we can describe a set D of vectors in Rn using a set of template

vectors T , yielding a resultant “compressed” set D′ as

D = {v0,v1, . . . ,vm} ,vj ∈ Rn

T = {t0, t1, . . . , tk} , tj ∈ Rn

D
′ = {u0, u1, . . . , um} , uj ∈ N[1, k],

where the compression ratio, RC , is the ratio of the total description lengths,

RC = m · n
m+ (k · n)

,

given the simplifying assumption that the representation length of a single uj ∈ N[0, k]

is similar to the representation length of one vector element, vji ∈ R. A more detailed

computation would require a specification of the representation length of the integer

and real-number data types being used.
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2.3.2.1 Principal Component Analysis

Principal Component Analysis (PCA) [67, 105] is a classic example of a dimension-

ality reduction technique; like vector quantization, it uses templates, but it represents

data points as a linear combination of templates, rather than just a single template.

It is a method for taking a set of points in one orthogonal basis and creating a lin-

ear transformation matrix which projects those points into a new orthogonal basis.

The new basis vectors are parallel to the eigenvectors of the covariance matrix of the

original data. For this reason, PCA is sometimes referred to as eigen-decomposition.

The advantage of this is that each (scalar) eigenvalue is related to how much of the

variance of the original data set lies along the dimension represented by the corre-

sponding eigenvector. This property means that low eigenvalue basis vectors can be

discarded with little loss of information. The basis vectors themselves can be viewed

as templates in the original dataspace. The encoding can be reversed by treating the

low-dimensional coordinates as weights applied to a linear combination of the basis

vectors.

If all basis vectors are used, the projection is lossless. PCA for dimensionality

reduction works by retaining the basis vectors associated with the top k eigenvalues,

and discarding the rest. Projecting into this basis then functions as an encoding into

Rk. The value of k is selected by a human engineer, often by examining a plot of the

eigenvalues to select a point of diminishing returns.
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Using PCA in this way can be seen as a way of generating a linear transformation

to k dimensions that is optimal with respect to mean squared reconstruction error.

It is worth remembering, however, that mean squared reconstruction error is not

always an accurate measure of encoding quality for all types of exploitation tasks.

Additionally, better reconstruction error may be achievable if we allow for non-linear

projections.

Within the feature-space projection framework, PCA generates an f function that

takes an original data vector and projects it into the space defined by the selected

eigenvectors. Given the singular value decomposition of the original data matrix into

UDV⊤ (where the columns of U and V form orthogonal bases to transform to and

from the eigenspace, and D is a diagonal matrix containing the singular values), this

is accomplished by multiplying input vectors by the first k rows of V⊤, where k is

the desired output dimensionality:

f(x) = V⊤ · x

If a non-linear projection is desired, this approach can be extended to Kernel

Principal Component Analysis (KPCA) [120]. Many other variations and optimiza-

tions have been proposed; of particular interest in our own work is an iterative ap-
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proximation algorithm that allows the first k eigenvectors to be found without the

computational expense of working with the full covariance matrix [4].

2.3.2.2 Discriminant Analysis

PCA-based techniques are designed to minimize reconstruction error, which is

useful for modeling but is not necessarily optimal for discriminative tasks such as clas-

sification. The related class of discriminant analysis techniques choose basis vectors

to maximize inter-class discrimination rather than to minimize loss of information.

The best known of these is Fischer’s Discriminant Analysis [35]. The term “Linear

Discriminant Analysis (LDA)” is sometimes used to refer to Fischer’s technique, but

this usage can lead to confusion since this term is also used to refer to a binary

classification algorithm that relies on the same underlying mathematics.

Fischer’s technique works by looking at the ratio of inter-class variance to intra-

class variance. As with PCA, singular value decomposition can be used to find a

set of eigenvectors whose corresponding eigenvalues describe their importance. The

multi-class version was described by Rao [110], and works by multiplying the inverse

covariance (Σ−1) with the inter-class scatter matrix Σb:

Σb = 1
c

c∑
i=1

(µi − µ)(µi − µ)⊤.

73



CHAPTER 2. BACKGROUND

The eigenvalues of (Σ−1Σb) correspond to class separation, meaning we can rank the

eigenvectors by how well they separate points.

The top k eigenvectors can then be used to form a basis that will give the best

possible separation between classes. As with PCA, we can then use the top k rows of

V⊤ to create a feature space projection function

f(x) = V⊤ · x.

2.3.2.3 Isomap & Locally-Linear Embedding

Isomap is a technique designed to fit a low dimensional manifold to a set of

data [132]. As with kernel methods such as support vector machines [119], the idea

is that data which are not linearly separable under any linear projection may be

linearly separable under a non-linear projection. Unlike kernel methods, however,

Isomap takes the approach of explicitly trying to fit the data to an k-dimensional

manifold (where k is less than the dimensionality of the data vectors). The most

common example is data that form a (sometimes extruded) spiral, which needs to be

“unrolled” before it can be linearly separable.

The underlying assumption is that the high-dimensional data exist on (or near)

a low-dimensional manifold, and that distance on the manifold is of much stronger

relevance for the chosen exploitation task than distance in the high-dimensional data-
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space. The algorithm proceeds from this assumption by assigning each data point a

“neighborhood” of nearby points to which it is connected with edges in an undirected

graph. Once this graph is built, pairwise geodesic distances are computed for each pair

of points using shortest-path costs in the graph. These pairwise geodesic distances

are then used to perform standard multidimensional scaling (MDS) [74, 122, 123].

Locally-Linear Embedding (LLE) was developed independently at around the

same time as Isomap [115] and follows the same conceptual approach, though the

mathematical and algorithmic approaches differ. In LLE, low-dimensional points are

represented as linear combinations of eigenvectors rather than as the type of low-

dimensional Euclidean embedding created by MDS.

It is important to note that the use of the term local in this context refers to pairs

of data points that have a low value for some pairwise distance measure. This is

locality in data-space and is distinct from the feature-space based notion of locality

described in Chapter 4.

2.3.2.4 Hierarchical Clustering

Hierarchical clustering techniques such as agglomerative or divisive clustering [66]

can also be seen as a way of creating feature-space projections. In either the agglom-

erative or the divisive case, each level of the clustering hierarchy can be viewed as a

single feature-space projection function that maps data vectors to their corresponding
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cluster membership. Thus, for a hierarchy of depth d, with original data vectors in

Rn, we have a set of feature-space projection functions F :

F = [f 1 : Rn → Rm1 , . . . ,

f i : Rn → Rmi , . . . ,

fd : Rn → Rmd ],

where mi is the dimensionality of the cluster membership vector for the clustering pro-

duced by level i of the clustering hierarchy. This output dimensionality is particularly

important when the clustering allows multiple-membership or fuzzy-membership. The

output dimensionality will be equal to the number of clusters present at a given level of

the clustering hierarchy. For single-membership clustering, this results in a “one-hot”

style encoding. If multiple or fuzzy membership is allowed, there may be non-zero

values along multiple dimensions, each describing a degree of membership in the

corresponding cluster.

2.3.2.5 Hierarchical Self-Organizing Maps

Hierarchical Self-Organizing Maps [111] are essentially a form of divisive cluster-

ing. A Kohonen-style Self-Organizing Map (SOM) [70] is trained to split the data into

some number of subsets; each of these subsets is then used to train another SOM, and

the data continues to be recursively split until some termination criterion is met. This
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results in a relatively standard clustering hierarchy, it just uses a competitive learning

mechanism for choosing the clusters. Mathematically, all that has changed from the

previous case is the method used for generating the cluster labels. From a practical

standpoint, SOMs have some important differences from more traditional clustering

algorithms, such as the distinction between distance in data space and distance in

cluster space, and the fact that cluster centers are affected by a local neighborhood

of other cluster centers.

2.3.3 Multi-Resolution Analysis

Traditional Multi-Resolution Analysis (MRA) [25, 94, 112] is one of the few non-

connectionist algorithms that does make some use of spatial locality (as described

in Chapter 4). Like CNNs, MRA was originally designed to analyze spatio-temporal

data. Unlike CNNs, MRA came from a signal processing background, and has no

strong ties to connectionism, though there are still occasional mentions of evidence

that animal vision systems have a hierarchical structure of this kind [1]. Additionally,

one of the primary goals of MRA is to introduce scale invariance; this is distinct from

CNNs, where translational invariance is also considered to be of high importance

(though each method also allows several other forms of invariance to varying degrees).

In fact, retaining information about the spatial localization of patterns was described

as an intentional goal of some of the early work in this field [1].
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Figure 2.11: An image pyramid generated from an image of a teacup. Above are downsam-
pled versions of the original image; below are versions of the downsampled
images rescaled to the size of the original. Resolutions of the downsampled
version are listed below each column.

2.3.3.1 Image Pyramids

The simplest way of analysing an image at multiple resolutions is simply to gen-

erate multiple versions of the image, each at a different resolution, and then analyze

each version separately.

One way of doing this is to start with an image, and then downsample by a factor

of 2 in each dimension. The result will be an image with the same basic content, but

at a lower resolution. If this process is repeated, the resulting versions can be thought

of as a vertical “stack” where resolution decreases going up the stack. This type of

structure is referred to as a pyramid style decomposition [1, 15, 21]. See Figure 2.11

for an example.

There are a number of variations on this basic method that offer improved per-

formance. First, while the downsampling can be a simple sub-sampling scheme in
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which one sample is taken from each 2 × 2 group of pixels, this tends to result in

significant aliasing. As a result, most formulations apply a low-pass filter of some

sort prior to downsampling. This can be as simple as applying a Gaussian blur to

an image before sub-sampling, and then averaging the pixels from the 2× 2 region of

the blurred image [1]. This is sometimes called a Gaussian pyramid; the example in

Figure 2.11 is of this type.

This type of pyramid will naturally tend to loose high-frequency information such

as edges; in many applications, this is not desirable, so alternatives can be used.

A Laplacian pyramid [15] can be generated by replacing the Gaussian filter with a

Laplacian filter, which can be thought of as using a band-pass filter instead of a low-

pass one. Another way to think of this is as subtracting the “blurred” image from

the original, resulting in an image that brings out the high-frequency features. When

the downsampling is done after this, the result is that edges are enhanced, taking up

proportionally more of the smaller images.

A complete image pyramid takes only 11/3 times the space of the original image

to store, and operations on the smaller versions are computationally cheaper than

on the larger image, so pyramids can be seen as an efficient data structure. For

example, they can be used to test for template matching at multiple resolutions

much faster than could be done by using multiple scaled versions of the template [1].

Pyramids are also frequently used in computer graphics, where they are often referred
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to as mipmaps [141], and are deployed to increase texture fill speed while decreasing

aliasing.

2.3.3.2 Wavelets

Image pyramids represent image information at multiple scales, but they are in-

tended to represent visually interpretable information. Wavelet analysis discards the

visual understandability of the pyramid in favor of using basis functions to encode

each level of the pyramid [25, 94]. Intuitively, this is similar to a Fourier transform,

which converts a signal from a time domain representation to a frequency domain

representation. A value in the frequency domain encodes the amplitude of a sinu-

soidal waveform of corresponding frequency in the time domain, along with a phase

offset (encoded as the imaginary component of the complex number). The goal is to

pick a set of waveforms that, when composed, re-construct the original signal.

Wavelet analysis does something intuitively similar, but instead of using sinusoidal

functions, it uses some other set of functions as a basis to encode the signal. It is

these basis functions that are referred to as wavelets, ψ(x) (this terminology was

introduced in [49]). It is important to note that these are not arbitrarily chosen basis

functions; in particular, it is desirable to have functions that provide good localization

(as opposed to the sinusoidal functions used in traditional Fourier analysis), and form

an orthonormal basis of L2(R) (i.e., Lebesgue spaces). Haar functions were used as
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an early example, and were later shown to be a special case of the more general class

of wavelet functions described by Daubechies [24].

For one-dimensional (i.e., time-series) data, a continuous wavelet transform (CWT)

can be defined as:

Ψψ
x (τ, s) = 1√

|s|

∫
x(t)ψ

(
t− τ
s

)
dt

where ψ is the basis wavelet, τ and s are the translation and scale parameters, and

x(t) is the (time-domain) signal being analyzed. Since Ψ is a function of τ and s, we

need to compute this at a range of values, but so long as our data is band-limited

(which any data from actual sensors must be), the ranges will be bounded. In theory,

this must be done for a continuous range of values of s and τ , though in practice

this can be approximated by a sufficiently fine-grained grid search. Even with this

limitation, however, analytically computing the above integral for a large range of

parameter values tends to be computationally intractable.

For this reason, the approach taken in wavelet-based multi-resolution analysis

is typically to use a discrete wavelet transform (DWT). This can be thought of as

performing a CWT where the scale parameter s is discretized on a log-scale grid;

this is because at lower frequencies, the lower spatial resolution of the wavelet means

fewer samples are required. The offset parameter τ is then discretized based on s;

at higher frequencies (i.e., more compressed versions of the basis wavelet), τ samples

are closer together.
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Computationally, however, the DWT is generally done by sub-sampling the data,

rather than by compressing the wavelet (as in image pyramids, the data is convolved

with a filter before sub-sampling to avoid aliasing). This results in a more computa-

tionally efficient approach.

For computer image problems, s is generally sampled at powers of 2 (just like an

image pyramid), and τ (now 2-dimensional) is sampled linearly in s. This results

in something that looks rather like the image pyramids described earlier, but now

instead of a low resolution image at the top of the pyramid, we have low-frequency

wavelets (meaning a low value of s and only a few different values of τ). At the base

of the pyramid, we have many high-frequency wavelets (meaning wavelets with a high

value of s with densely sampled offsets).

It is also common to take the approach of modeling residuals, meaning the top

layer attempts to fit the data, but the layer below it attempts to fit the difference

between the data and the top layer. Modeling residuals in this fashion gives us greater

independence between the layers and tends to result in better models.

Like image pyramids, MRA can be used as a form of compression; in fact, the

JPEG-2000 image format offers wavelet based methods for both lossy and lossless

compression, though the format has not seen widespread adoption at the time of

writing.
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From a machine learning standpoint, wavelets combine many of the advantageous

properties of Fourier analysis and image pyramid based multi-scale analysis. The

primary practical disadvantage in comparison with CNNs is that CNNs use learned

filters (rather than pre-defined ones), and can handle more types of invariance.

2.3.4 Multi-Scale Learning

Multi-Scale is a term which is not always used consistently. This can lead to

confusion, but under some interpretations the concept is closely related to our work.

We will describe a few of the uses of the term here, and indicate how our work relates

to them.

The term “multi-scale” has been used to describe approaches that apply non-

wavelet based methods to multi-resolution problems (i.e. problems where the same

“object” may appear at vastly different scales). Recently, attempts have been made

to address multi-scale problems using a variation on CNNs [91]. This work uses an

approach called spatial pyramidal pooling, which was applied to allow CNNs to handle

non-uniform resolutions in input images [51]. Unfortunately, current approaches still

require all input resolutions that will be used to be explicitly enumerated, with a

separate network being trained for each resolution. Weight sharing between these

networks reduces the computational overhead, but these methods are still not fully

able to handle arbitrary resolution inputs.
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As with MRA, the intent is to learn representations that can be matched at

multiple scales. These approaches make implicit use of local spatial structure, as well

as multi-scale invariances in the data. The work presented in this dissertation does

not attempt to make use of multi-scale invariance in its inputs, though this is an

interesting direction for future work. Of the work presented, the technique described

in Chapter 7 is the closest to being applicable in this type of multi-scale setting,

though the approach described in that chapter is limited by the fact that different

levels of the hierarchy do not interpret feature values the same way. If the features at

different levels could be “standardized,” we believe such a hierarchy could be used in

a multi-scale context relatively easily, though we have not yet tested this hypothesis

experimentally.

However, the term “multi-scale” is also used in several other ways. In the context

of deep learning, it has been used to describe the practice of feeding the outputs

of multiple hidden layers to the final classifier (as opposed to using only the final

layer) [28, 121]. Similarly, it has been used to describe a model that used a wavelet

transform to produce inputs to a “multi-scale” set of predictive models [144], or a

model that uses a “multi-scale” set of Gaussian filters to pre-process data for seg-

mentation [32]. Using this broader definition of the term, much of the work in this

dissertation can be viewed as taking advantage of “multi-scale” information. The

technique described in Chapter 7, in particular, could easily be used as a multi-scale
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feature extractor simply by giving the final classifier access to the intermediate level

encodings.

2.3.5 Random Forests

Random Forests are an ensemble method using decision trees. Over the years, a

number of variants have been proposed, but all share the property that decisions are

made based on an ensemble of trees, which are trained using some sort of constraint

that makes them function as “weak” classifiers. If there is sufficient independence

between the trees (i.e., if they make errors independently of one another), they have

several nice properties from both theoretical and practical standpoints.

The first description of an ensemble of intentionally-weakened decision trees was

by Ho [58, 59]; each tree was trained using a random subset of the available features.

This is effectively a partitioned training scheme, with conceptual similarities to what

we describe in Section 4.2 (though we were not aware of Ho’s formulation when

we began our own). The idea of an ensemble of classifiers trained from random

partitioned subspaces was explored further by Kleinberg [69], who called it “stochastic

modeling.” Unlike our work, however, neither Ho nor Kleinberg were interested in

using these partitions to capture spatial structure explicitly; their use of partitions

was simply to create weak-but-independent classifiers.
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The formulation of random forests from Amit & Geman [3] described doing the

recursive node-splitting in a stochastic way, which also used the notion of random

partitioned subspaces, but the subspaces were created per-node rather than per-tree.

Breiman [12] extended this approach by using a bagging scheme such that each

tree was trained on a subset of examples (Ho trained on the full set of examples,

but each tree had a fixed subset of the features for each example), and each node

was trained using a subset of the features. Breiman also described several variants,

including “Forest-RI” in which each split used a single feature (i.e., a subspace of size

1), and “Forest-RC” in which each split used a random combination of features (i.e.,

a subspace of size c).

Tomita et al. [134] further generalized this to base decisions on weighted-linear

combinations of features (i.e., projections onto arbitrarily oriented subspaces). This

approach allows for the number of features to be used to be randomized on a per-node

basis, and the weighted combination allows for arbitrarily oriented decision boundary

hyperplanes.

2.3.5.1 Decision Trees

Decision trees are a type of decision algorithm that predates modern computer sci-

ence by a considerable margin; they are simple, intuitive, and their operation is trans-

parent (i.e., a human can look at a decision tree and understand the decision-making
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process). Historically, decision trees were created manually by domain experts, but

in the field of machine learning they are created in an automated fashion.

While many methods have been suggested, the majority of tree-learning algo-

rithms boil down to a greedy algorithm for recursively splitting a dataset. At the

root node, this algorithm is applied to generate a set of children; the algorithm is

recursively applied to each child. The base case results in terminal (or leaf) nodes,

which are associated with decision values. Decision trees can be produced for either

classification or regression (the term classification-and-regression-tree (CART) was

introduced by Breiman et al. [11] to encompass both variants); in this work, we are

primarily interested in classification.

Early work by Quinlan [106, 107] suggested several variants using the concepts

of entropy and information gain for node splitting criteria. Breimen [11], working

independently at around the same time, suggested the Gini purity index as a node

splitting criterion. There have since been a wide range of alternative methods pro-

posed; here, we will concentrate on these two, since they are what is typically used

in random forests.

The information gain based heuristic suggested by Quinlan [106] works by min-

imizing entropy, which is an information theoretic measure of how many bits of

information are required on average to encode a sample. Entropy is minimized when
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the set is homogeneous, since for a uniform set all samples will be the same, and

therefore no information is required to encode the value of a sample.

For a set of examples S, with k classes, let si be the set of examples of class i.

Then the entropy of S is given by:

H(S) = −
k∑
i=1

P (si) log2(P (si))

Since we do not know the true probability P (si), we estimate it by using counts:

P (si) ≈
|si|∑k
j=1 |sj|

= |si|
|S|

If we substitute this into the entropy equation, we get

H(S) = −
k∑
i=1

|si|
|S|

log2

(
|si|
|S|

)
.

In the context of classification, we want to minimize entropy, since the goal is to get

disjoint subsets of examples in which all examples share a class label (i.e., all examples

are classified correctly by the tree). To determine the value of a particular candidate

splitting criterion, we can compute how much entropy is reduced by performing such a

split; this is called information gain. If a candidate split criterion α assigns examples
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to m disjoint subsets, we can define the combined entropy of those subsets as

H(S|α) = −
m∑
j=1

(
|sj|
|S|

H(sj)
)
,

where sj is the set of examples that are assigned to subset j by α. Plugging in H(sj),

we get

H(S|α) = −
m∑
j=1

(
|sj|
|S|

(
−

k∑
i=1

|sji |
|sj|

log2

(
|sji |
|sj|

)))
,

where sji is the set of examples that are of class i and are assigned to subset j by α.

The information gain for α can then be written as:

IG(α) = H(S)−H(S|α)

The Gini impurity measure proposed by Breiman [11] as an alternative is intu-

itively similar, measuring the likelihood that a randomly selected element of a set will

be misclassified by a label drawn from a distribution based on the proportion of set

elements belonging to each class. As with entropy, the Gini impurity is minimized

when the set is homogeneous.

89



CHAPTER 2. BACKGROUND

Again, for a set of examples S, with k classes, let si be the set of examples of class

i. Then the Gini impurity of S is given by:

IG(S) =
k∑
i=1

P (si) (1− P (si))

= 1−
k∑
i=1

P (si)2

which is approximated with occurrence counts as

IG(S) ≈ 1−
k∑
i=1

(
|si|
|S|

)2

.

Both methods are applied in a greedy fashion, in that the training algorithm selects

the split that reduces entropy or impurity as much as possible in a single step. While

optimizing for overall tree behavior might be ideal, global optimization of decision

trees has been shown to be NP-complete [64].

In early work, the candidate split criteria (α) were just single attribute values [106].

Later work used combinations of attributes to generate “oblique” decision trees [52,

99]. In general α can be any function that assigns data vectors to one of m discrete

values. For each of these values, a child node is added to the node in question, and

training samples are assigned to each child node by applying α to the set of training

samples at the current node.
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The recursive algorithm normally terminates when the set of training samples

at a node is uniform (i.e., they all have the same class value, and/or they all have

identical values for all attributes), though this tends to result in overfitting. Several

early stopping and pruning methods have been suggested to alleviate this, but none

have met with universal success.

2.3.5.2 Random Decision Forests

As mentioned previously, there are a number of ways to build an ensemble out

of decision trees; the only fundamental requirement is that the trees be built in a

stochastic way. As with any ensemble, the goal is to have the members make mistakes

in independent ways, such that the ensemble as a whole has higher performance than

any of the members. In reality, complete independence is generally impractical at best,

and performance is still limited by the ability of the member classifiers to generalize.

In Breiman’s classic formulation [12], a random forest is an ensemble of decision

trees, each of which is trained using some random “parameter” vector Θ. In practice,

random values are normally generated on the fly by sampling from a (pseudo-)random

number generator as needed, but the idea is the same.

While there are many methods that fit this definition, the term “random forest”

is often used to describe Breiman’s Forest-RI, which uses orthogonal trees [59] (i.e.,

splits are always axis-parallel). The basic procedure is to start each tree with a

91



CHAPTER 2. BACKGROUND

subset of the full set of training examples, a method called bagging [10]. Bagging

works particularly well for unstable learning methods (i.e., sensitive to small changes

in the training set), which greedily-learned decision trees tend to be.

Each tree is then trained using a greedy recursive algorithm similar to the one

described above, but with much more randomness (and, therefore, less aggressively

greedy). At a given node, the algorithm picks c candidate features as possible splitting

criteria. For each possible candidate, an optimal splitting value is chosen by testing

possible splitting values against a metric (generally information gain or Gini). The

candidate with the best score is chosen as the winner, and is used to split the current

node. Other than this, the overall recursive algorithm is the same as for basic decision

trees as described above.

Tomita et al. [134] presented a generalized algorithm for Projective Random

Forests, which both encompasses most previously described random forest variants

and allows for new variants. The basic idea is that, rather than selecting a single

feature (as in Forest-RI) or a fixed number of features (as in Forest-RC) to use as a

splitting criterion, we can use any projection down to a scalar value. Forest-RI can be

thought of as a projection onto an (orthogonal) axis, and Forest-RC can be thought

of as a projection onto an oblique axis. Rather than using a fixed value for the num-

ber of features to use in such a projection, we can generate projections randomly;

this results in a more flexible process, but so long as we use a linear projection, it
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Algorithm 2.2 Pseudocode for Random Projection Forests, which generalizes a
wide range of previously proposed decision forests, adapted from [134]. xi are feature
vectors, yi are class labels, and A is a projection matrix; a ∼ b indicates a is sampled
from b
Input: data: D = (xi, yi) ∈ (Rp×Y ) for i ∈ [n], tree rules, distributions on projection

matricies: A ∼ fA(D),
Output: decision trees, predictions

1: for each tree do
2: Sample training data to obtain a bag (X̄, ȳ)
3: Create a root node with this bag as its sample set
4: for each leaf node do
5: Let X̃ = A⊤X̄, where A ∼ fA(D)
6: Find the “best” split coordinate k∗ in X̃
7: Find the “best” split value t∗(k∗) for this coordinate
8: Split X according to whether X̃i > t∗(k∗)
9: Assign each child node as a leaf or terminal node using stopping criteria

10: end for
11: end for

still ultimately boils down to making a decision based on a threshold applied to a

weighted linear combination of features. Pseudocode for this algorithm can be found

in Algorithm 2.2.

Much theoretical work has been done to characterize the properties of random

forests (see, for example, [12, 58, 59, 69]). Like all ensemble classifiers, random

forests can out-perform their member classifiers to a degree that is related to the

level of independence between the members (in terms of their likelihood of making

an incorrect prediction for any given example).

One of the biggest strengths of random forests is the fact that adding more trees to

the forest will tend to improve overall ensemble performance, with no upper bound on
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the number of trees. While a point of diminishing returns may be reached, adding ex-

tra trees does not (on average) result in decreased performance on novel testing data.

For this reason, decision forests are often described as being immune to overfitting.

It is worth noting, however, that this is only true when comparing forests that

differ only in the number of trees but have all trees generated using the same way. In

particular, we have found in our own experiments that increasing the modeling power

of the individual decision trees can result in lower overall forest performance due to

overfitting, regardless of how many trees are generated (see Chapter 8).

2.3.5.3 Applications

Random forests have been successfully applied to a wide range of problems, and

have been shown to outperform other classifiers on a wide range of benchmarks [16,

33]. The latter tested 117 distinct classifiers on 121 datasets from the UCI machine

learning repository. The results of both of these papers was that random forests were

the overall winner, followed closely by SVMs. Studies like these suggest that random

forests are a good choice for arbitrarily selected problems, i.e. those for which we can

make no particular assumptions safely.

However, as the authors of these studies point out, the UCI repository does not

cover the complete space of interesting machine learning problems. In particular,

most of the problems are relatively low dimensional, and even the largest had only
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262 features. Compared to high resolution digital images, which may have tens of

millions of features, this is a small number. When these methods are compared to

CNNs on image classification problems, they do not fare nearly so well.
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Image Datasets

In this chapter, we describe several image classification datasets used in our ex-

periments and analysis. These particular datasets were selected mostly for their

widespread use in benchmarking image classification techniques and for being datasets

on which deep learning algorithms have been shown to perform well. They span a

wide range of size and task difficulty, but all are fundamentally the same type of

problem, allowing results to be easily compared between them. Note that not all

datasets were used for all experiments (generally for computational reasons). For

the sake of comparison, we provide state-of-the-art results from the literature in Ta-

ble 3.1, though we did not attempt to replicate these results ourselves. Because we

did not control these experiments, we will treat these results as anecdotal, and no

conclusions should be drawn about relative performance compared to our methods.
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Dataset Classification Error Source
MNIST 0.21% Wan et al., 2013 [139]
SVHN 1.69% Lee et al., 2016 [86]

CIFAR-10 3.47% Graham et al., 2015 [46]
CIFAR-100 24.28% Clevert et al., 2016 [18]

ImageNet (ILSVRC 2012) 16.5% Szegedy et al., 2016 [131]

Table 3.1: State of the art classification performance on standard image benchmarking
datasets. In each case, the system producing the state-of-the-art result is some
form of Convolutional Network.

3.1 MNIST

The MNIST (Mixed National Institute of Standards and Technology) database is

a dataset of handwritten digits, constructed from NIST’s SD-3 and SD-1 databases.

MNIST is distributed as 60,000 training samples plus 10,000 testing samples. Each

image is 28×28 pixels, and encodes a single handwritten digit (0 to 9). The task is to

recognise the digit, effectively a 10-class classification problem. The data is heavily

pre-processed, with raw images having been thresholded, binarized, and cleaned to

get a black digit on a white background. The binary digit images were then cropped

and scaled to fit in a 20 × 20 region, resulting in a low-resolution grayscale image

with the original digit aspect ratio maintained. The digits are then centered in the

final 28× 28 image, resulting in a 4 pixel wide white border around every image. See

Figure 3.1 for some sample images. It was introduced in [82], and can be obtained

from [83].
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Figure 3.1: Sample images from the MNIST dataset. Each example is a hand-written
digit which has been heavily preprocessed and scaled to 28× 28 pixels.

Classifying MNIST was one of the first big successes of deep learning, at a time

when it was considered a challenging problem. Today, MNIST is largely regarded as

a “toy” problem, as it is fairly small and relatively easy compared to other image

classification datasets. State-of-the art at the time of writing is less than 0.21%

classification error [139].

3.2 SVHN

The Street View House Numbers (SVHN) dataset is another digit classification

problem, but with digits extracted from house numbers in Google Street View im-

ages. SVHN is distributed as 73,252 training samples, 26,032 testing examples, and
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Figure 3.2: Sample images from the SVHN dataset. Each example is a digit from a house
number in a Google Street View image which has been cropped and downscaled
to 32× 32 pixels.

531,131 “extra” samples. It can be obtained either as a set of 32 × 32 pixel images,

each centered on a digit, or as the full-size original images along with bounding-box

information for each digit; both versions are color images. For our experiments, we

used the 32 × 32 pixel images, which were generated by cropping a square image

patch based on the bounding-box information. The patches took the larger of the

two bounding box dimensions, and extended the other to make the region square, so

the patches retain the original aspect ratio, but are scaled down to a uniform size.

No other preprocessing is done, so the images are fairly heterogeneous compared to
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MNIST. In particular, both background and foreground color and texture are highly

variable, orientation is not uniform, and most images contain some or all of the adja-

cent digit(s) in the house number, which tend to function as distractors. See Figure

3.2 for some sample images. SVHN was introduced in [102] and can be obtained

from [101]

The basic task is similar to MNIST, but the lack of preprocessing makes the task

significantly harder. This is another dataset which has proved to be a good fit for

deep learning, with most high-performing solutions involving some form of CNN.

State-of-the-art at the time of writing is less than 1.7% classification error [86].

3.3 CIFAR

The CIFAR dataset (Canadian Institute for Advanced Research) is two subsets of

CSAIL’s 80 Million Tiny Images dataset [135] which have been hand-labeled to enable

their use as an image classification dataset. There are two versions, CIFAR-10 and

CIFAR-100; we used the CIFAR-10 version in our work. CIFAR-10 and CIFAR-100

are non-overlapping subsets, but each was generated in the same way. The difference

is that CIFAR-10 is comprised of 10 distinct classes with 6000 examples of each, and

CIFAR-100 is comprised of 100 distinct classes with 600 examples of each (the sets

of classes do not overlap). Each is distributed as a set of 50,000 training examples
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Figure 3.3: Sample images from the CIFAR-10 dataset. Each example is an image of an
object which has been cropped and downscaled to 32× 32 pixels.

and 10,000 testing examples. The original Tiny Images data was gathered by feeding

search terms into several image search engines and downloading the results, each of

which was downsampled into a 32 × 32 pixel color image with “noisy” labels (i.e.,

the search term used to obtain the image). The CIFAR datasets are subsets for

which humans examined the images to ensure that only correctly labeled examples

with a clear foreground object were included. Other than scaling to 32 × 32 pixels,

no preprocessing was done. The classes are broad enough that there is significant

variation between the actual foreground object given a particular label, as well as

variations in scale, orientation, location, and foreground and background color and
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texture. Some images contain foreground objects that are partly occluded but are still

recognisable by a human. See Figure 3.3 for some sample images. It was introduced

in [71] and can be obtained from [72]

The task here is significantly harder than the digit classification datasets; while

CIFAR-10 is still a 10 class problem, the class “dog” contains a great deal more

variation than the class “7”. Additionally, the total number of training examples

for each class is relatively small, especially for CIFAR-100. Again, high-performing

systems tend to be variations on CNNs. State-of-the-art at the time of writing is less

than 3.5% classification error for CIFAR-10 [46] and less than 25% classification error

for CIFAR-100 [18].

3.4 ImageNet

ImageNet is a large-scale image database in which images are associated with

nouns from WordNet. This allows the images to be organized into a “concept” hier-

archy, which allows for classification at different levels of abstraction, among other

things. The raw images are scraped from the web, but they are curated and an-

notated by hand. At the time of writing, there were around 16 million images in

the dataset, representing over 20,000 concepts, referred to as “synsets” in WordNet

parlance; WordNet contains around 80,000 noun-concepts in total. No preprocessing
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Figure 3.4: Sample images from the ImageNet dataset. Each example is an image scraped
from the web which has been hand-tagged with WordNet synsets; in the
ILSVRC2015-Places2 version we used, images were scaled to 256×256 pixels.

has been done, and since the images were not created by the maintainers, the im-

ages are highly non-uniform. There is a wide range of image shape and resolutions,

quality, and style, and the images were taken under a wide range of different con-
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ditions. A variety of subsets of ImageNet have been created for different machine

learning competitions; the work we present used the “small” (256 × 256 pixel) ver-

sion of the ILSVRC2015-Places2 dataset, which is approximately 115Gb in size. This

version of the dataset was introduced in [146] and can be obtained from [145] (for

non-commercial research and educational purposes only). See Figure 3.4 for some

sample images.

The classification task here is extremely difficult and remains very much an un-

solved problem. The total dataset is big enough to be intractable without specialized

hardware and algorithms, and the lack of a uniform image resolution also presents

problems for many standard techniques; for this reason, most work is done using only

a portion of the images, and they are often scaled down to a more manageable (and

standardized) resolution. Even the large-scale distributed training algorithms devel-

oped at Google [26], which used a cluster with over 10,000 CPU cores, required the

images to be rescaled down to 100× 100 pixels, though they were able to train on all

16 million of these small images by sharding the dataset across the cluster. This work

achieved a classification accuracy of 16%, meaning the error rate was 84%. While

this is significantly better than chance for a 20,000 class problem, 16 out of 100 is

still pretty poor performance. This problem is so difficult that even on the smaller

subsets, results on ImageNet classification are frequently reported as “5-guesses” er-

ror, meaning that if any of the top 5 guesses by the classifier are correct, it is counted

104



CHAPTER 3. IMAGE DATASETS

Figure 3.5: Some example images from the Simple Objects dataset. Each image is a
photograph of a foreground object against one of 5 backgrounds. Images were
cropped and downscaled to 512× 512, 256× 256, and 128× 128, giving three
different “versions” of the dataset.

as a success. The best results reported at the time of writing is 16.5% error on the

ILSVRC 2012 subset [131].

3.5 Simple Objects

This is a small object recognition dataset we created for some early experiments.

There are 600 images of 10 foreground objects taken against 5 different backgrounds;

we used 512×512, 256×256, and 128×128 pixel versions so we could test behavior at
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different scales. This dataset is very sparse and very small by modern standards; at

the time, we lacked the compute resources to handle large datasets of high-resolution

images. We created this novel data set so that we could have natural images (i.e.,

not artificially generated or composited) in multiple resolutions. Since the release of

ImageNet, this dataset is of largely historical interest. See Figure 3.5 for some sample

images.

106



Chapter 4

Spatially Local Structure

Our basic hypothesis is that many deep learning techniques share an inductive

bias that assumes certain structural properties are satisfied by the data. If true, it

makes sense this would give them an advantage, but only when working on data that

conforms to this assumption. Before we can test this hypothesis experimentally, we

need to first define in a more precise and formal way what this assumption is. We also

need to explore the realm of statistical techniques that will let us test how badly this

assumption is violated by a given dataset. This, along with methods of artificially

creating or destroying such structure, will allow us to devise a set of experiments to

determine whether our hypothesis is supported by actual systems.

In addition, once we have clearly defined these assumptions, we will be able to

impose these assumptions on models where they are not built in implicitly. Not only
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will this serve as another test of the hypothesis, but it also has the potential to let us

boost the performance of these other methods.

4.1 Local Structure

First, let us be clear about what we mean by spatially local structure, or just

local structure in general. In many machine learning and statistical contexts, the

term structure is used to describe properties of a dataset. In these contexts, we are

looking at a set of examples and trying to discover patterns formed by the distri-

bution of examples. The “structure” in this case consists of relationships between

different examples. For instance, if our data points are real valued vectors, we would

be comparing the vectors to one another, so any “structure” would have the same

dimensionality as our data.

We want to distinguish this from local structure, which we define to be patterns

or statistical relationships between different features. The distinction here is between

looking at structure across a dataset, and looking at structure across the dimensions

of the data space. In this work, we will use the term global structure to refer to the

“standard” use of the term structure, as a way to help us keep these concepts distinct.

Our use of the term local is also a bit different from the way it is often used, in

that we are referring to locality in terms of features within a data vector. The more

108



CHAPTER 4. SPATIALLY LOCAL STRUCTURE

standard usage of local as it is applied in contexts like Locally Linear Embedding [115]

or Isomap [132] refers to locality in terms of distances between complete data vectors.

The basic notion of locality is the same; in both instances, it is a way of describing

how close two things are to each other. The difference is whether we are measuring

distance between data vectors, or between features.

Global structure lets us ask questions like, “if this image contains a dog, how likely

is it to also contain a cat?” Local structure lets us ask questions like, “if this pixel is

red, how likely is the pixel next to it to be blue?” Given how much more interesting

the answer to the first question is, it is unsurprising that machine learning tends to

concern itself primarily with global structure. Here, we concern ourselves with local

structure, not so much because it is more interesting by itself, but because it offers

us a chance to simplify some of the combinatorially intractable problems that global

structure analysis tends to run into.

In fact, many statistical modelling techniques already make some use of local

structure; the independence relationships encoded in a Bayesian network, for example,

can be thought of as encoding a form of (conditional) local structure. The main

distinguishing feature of our work is the application and examination of assumptions

about local structure that are built into a model. In particular, we will be focussing

on structure in data with an intuitive notion of spatial distance between features,

hence the term spatially local structure.
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While it is less well known than some others, there has long been a branch of

statistics dedicated to the examination and modeling of spatially local structure.

That field is Spatial Statistics, and we will be making use of a number of concepts

and methods drawn from spatial statistics in our work. We will go into more detail

about the theory and the math in section 4.3, but a deep understanding of the math

is not required for a high-level conceptual understanding of the deep local structure

hypothesis. We will also not make extensive use of the language and terminology of

spatial statistics. This is a conscious choice, made largely because our data do not

always meet the standard assumptions made in the spatial statistics literature, which

could make our use of that terminology misleading.

4.1.1 Locality

In its most general form, the term locality as we use it here describes statistical

dependence relationships. Information is local to some subspace if it has no depen-

dencies with anything outside that subspace. Formally, for data in Rn, we say that

a statistical relationship is localized to a subspace C ⊂ Rn if that relationship can

be completely captured using only C (i.e., Rn \ C can be discarded with no loss of

information). In other words, local information is information that is encapsulated

within a particular subspace and is statistically independent of everything outside of

that subspace. We can also speak of conditional locality, which is equivalent to saying
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a subspace is conditionally independent from the rest of the data given some other

(possibly latent) value. While statistically (and combinatorially) weaker, this type of

conditional independence is generally a better fit for real-world data, so it will often

wind up being of more practical use.

Formally, then, local structure is simply structure (in the statistical sense) which

is localized. Like most strong statistical properties, in real-wold data the question is

not whether we can prove complete independence (or even conditional independence),

but how close to that ideal we can get. In practice, the question is not a binary one of

presence or absence, but rather a question of membership; how much local structure

is present?

This is a more complex question than it seems because there are actually two

factors involved. Given some subspace, it is relatively straightforward to determine

how strongly elements of that subspace are correlated with other elements both inside

and outside of that subspace. If elements within the subspace are highly correlated

with each other and have low correlation with elements outside the subspace, we can

say that subspace shows high locality.

What makes things difficult is that this type of analysis relies on knowing what

elements should be in the subspace. We are left with a version of the model selection

problem; how many subspaces should we use, and how should we assign elements to

them? Like most versions of the model selection problem, this one is ill posed without
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some kind of modeling bias, and intractable unless that bias significantly restricts the

hypothesis space.

We will use the term partitioning to refer to this model selection process of decom-

posing a feature-space into a set of subspaces. In practice, this means taking feature

vectors and assigning each element of a vector to one or more partitions. Each parti-

tion corresponds to a particular subspace, based on a partitioning scheme that defines

this mapping. The process takes a single “full-length” vector as input, and outputs

several smaller vectors, one for each subspace. By applying this process to each vector

in a dataset, we can get a partitioned dataset. In general, a partitioned dataset will

contain more vectors than the original dataset, but each vector will be shorter (i.e., it

will have fewer features); the ratios involved will depend on the partitioning scheme

used. For a very simple example, if we start out with 10 vectors in R4, and our

partitioning scheme simply splits each vector in half with no overlap, the partitioned

dataset would contain 20 vectors in R2. A formalism, as well as several illustrative

examples, are presented in Section 4.2.

As with most forms of model selection, attempting to learn an optimal partitioning

scheme for a given task is a form of the meta-learning problem [129], and we will not

attempt to solve it here. Instead, we will use the familiar approach of solving the

model selection problem manually, and then using automated techniques to optimize

the parameters of the model. Just as most connectionist networks or graphical models
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begin with a defined network architecture, we will begin with a defined partitioning

scheme. As with most such models, this will be created based on a combination of

prior knowledge and trial-and-error, and will mean performance may be limited by

a poor choice of model. The full meta-learning problem, though a fascinating one,

must be left for future work as it is beyond the scope of this dissertation.

4.1.2 Spatial Locality

While the general case is of theoretical interest, it is of limited practical applica-

bility because of the aforementioned model selection problem. In practice, therefore,

we need a way of picking a sensible model before we can start to look for patterns.

One special case of general locality is spatial locality, which we can now define

formally as a partitioning scheme where partitions are based on spatial distance be-

tween features in our data vectors. This only makes sense when the original features

have some notion of “spatial” arrangement, and in which we have an expectation that

spatial distance might correlate with statistical independence. Fortunately, both of

these appear to be reasonable expectations for a number of types of real-world data.

One common example is digital images, for which each “vector” is a spatially orga-

nized grid of pixel values. When we say “spatial distance” here, we mean the distance

between corresponding pixels in that grid. In principle, we can use any distance

measure we like, though in practice we will mostly use the L2-norm.
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Square regions of an image, sometimes called “patches” or “windows,” are used

in a partitioned fashion in a wide range of image processing techniques, though the

statistical independence relationships implied by such a framework are generally not

talked about explicitly. However, since a wide range of successful techniques rely on

this type of decomposition (see Chapter 2), it seems reasonable to think this might

be an effective partitioning scheme.

For many of our experiments, we will stick to using regularly spaced and sized

spatial regions for partitioning, following many of the conventions used by other

techniques. This allows us to exploit assumptions that already seem to be working,

reducing the model selection problem to simply a choice of the size and spacing of our

patches. This also allows us to more easily and directly compare our results to other

existing work. However, this is not the only option available to us; see Chapter 8 for

an example of a spatial partitioning that is neither compact nor square.

While we will restrict our experiments to image analysis, the theory applies equally

well to other applications. However, “spatial” may have other meanings for different

types of data. For example, many applications have data that are not sampled on

a grid; fields like geology or meteorology often have data in which each value has a

corresponding sampling location. In this case, a spatial decomposition would probably

be based on the sampling locations, rather than on the relative position of the elements

in a data vector.
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We can also imagine non-spatial contexts in which intuitive notions of locality

may be productively applied; temporal locality, in particular, seems like a natural

extension, and again one that is implicitly used by many existing time-series analysis

techniques. We consider this to be another promising area for future work.

4.1.3 Deep Locality

In most real-world data, we would not expect completely local structure, meaning

that there will be some information that cannot be captured locally. Another way of

putting this is that partitioning the dataset would result in a net loss of information

(from an information-theoretic standpoint). This sort of real-world violation of strong

model assumptions is very common. For example, the Markov assumption and the

Naïve Bayes assumption are both routinely used despite the fact that they are not

perfectly adhered to; in spite of this, both have proven very useful in practice.

If we want the local structure assumption to be similarly useful, we must ensure

that it both matches real-world data as well as possible, and degrades as gracefully

as possible when not fully met. Conditional locality will frequently be of use here,

as it will allow us to construct a hierarchical model of (almost) local patterns. For

example, if we have two partitions that are mostly independent, we may be able

to make them more independent by creating a latent variable upon which both are

conditioned. This latent variable is less “local” since it effectively spans a larger
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subspace (the union of the two partitions). However, it is still somewhat local, since

it still only spans a portion of the original data space (unless the union of the two

partitions does, in fact, cover the entire space).

Again, we will use spatial structure in images to illustrate this idea. If we have an

image that has been partitioned into 16 non-overlapping patches of equal size (e.g., by

laying a 4× 4 grid over it), we can construct “local” models for the patches, and then

use latent variables to capture whatever information the local models were unable to

capture. We can even go a step further and make several latent variable models, each

of which covers only a subset of the local “patch” models. For example, let us say

that we will create four latent models, one for each quadrant of the original image.

Each latent model will then be linked to four of the original models, and the four

original models will be conditionally independent from each other given the latent

model.

Each of these latent models is a local model, but they indirectly span a larger

region of the original image (a quarter, instead of a sixteenth), so they are in some

sense less local. We can then repeat this process, creating another set of latent

variable models, which will be used to make the first set of latent models conditionally

independent of one another. This process can be repeated until the point where the

result is a single latent variable model that indirectly spans the entire original image.
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The result is a hierarchical model, where each level of the hierarchy can be thought

of as modeling the image at a certain level of granularity or abstraction. In an ideal

case, each model will account for as much information as can be captured locally, and

the models in the next level up the hierarchy will encode only the residual informa-

tion that is available over the larger area it implicitly spans. Latent Tree Graphical

Models [17] and Infinite Latent Feature Models [43, 44] have some similarities to this

approach, though they make no attempt to make use of spatial structure.

We will use the term deep locality to refer to this idea, since it is closely related

to the way deep learning models work, if a bit broader and more generic. In an

ideal case, the hierarchical model taken as a whole would give us a parsimonious-but-

lossless encoding of the original data. Since this will not occur with real data, we

will once again try to characterize how well a given dataset lends itself to this kind

of modeling.

In its broadest form, the concept of deep locality can be used with any type of

partitioning and modeling processes. In this dissertation, we will focus our attention

on deep spatial locality, which is the special case in which spatial distance is used

to decide which models to join at each level of the hierarchy. The image model

described above is an example of this. The broader case will be left largely to future

work, though as previously noted we expect it to be easily applicable in other spatio-

temporal domains, including natural language processing and time-series analysis.
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4.2 Feature-space Partitioning

To describe the statistical effects of partitioning on data vectors more formally,

we will first introduce notation to describe different partitioning schemes. To begin

with, we will restrict our notation to real-valued vector spaces. In principle, there is

no reason that most of the math cannot be applied to other types of feature spaces,

such as multivariate discrete or heterogeneous, but we will leave such applications for

future work.

If our input data space is Rn, we define a partitioning function π as

π : Rn → {u1, . . . ,uk} ,ui ∈ Rs,

which takes a single input vector in Rn and produces a set of k output vectors in

Rs, where s < n. In principal, Rs can be any s-dimensional space; the math does

not preclude the use of complex linear transformations, or even non-linear ones. In

practice, it is generally unclear how such a complex transform would be chosen, so

the standard approach is simply to keep a subset of the original vector elements. In

such a case, each partition can be thought of as a feature selection process (selecting

a subset of s features from n possibilities). The k subspaces are not required to

be disjoint, and in fact many existing techniques, including CNNs, use overlapping

subsets.
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Figure 4.1: Simple examples of vector partitioning. (A) breaking a vector into two disjoint
sub-vectors, and (B) breaking it into three overlapping sub-vectors.

As an illustrative example, let us consider a partitioning function that simply splits

vectors of length 6 into two equal length halves; in this case, n = 6, s = 3, and k = 2

(Figure 4.1-A). As mentioned, partition membership need not be mutually exclusive,

and partitions may overlap. So, we might have another partitioning function that

takes our length 6 vectors and produces 3 output sub-vectors of length 4, by having

a size-4 partition window placed at the front, middle, and end of the original vector.

This would give us n = 6, s = 4, k = 3 (Figure 4.1-B).

In general, it must be the case that 1 ≤ s ≤ n and 1 ≤ k ≤ n. There are more

precise constraints between s and k, but the exact form will depend on the type of

partitioning being done. In the simple case given above, s + k ≤ n + 1, because the
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longer the sub-vector is, the fewer size-s windows can be fit into the original vector

without repetition. If we do not want overlap, this is further restricted to s · k ≤ n.

Partitioning functions can also be constructed that respect structural properties

of the original data vectors. For example, in the case of vectors representing images,

there is a natural 2-dimensional layout to the vector elements (pixels). While it is

possible to treat an image as a single (long) vector and partition it in the way described

above, it would make more sense to treat the image as a 2D grid and partition it into

smaller 2D patches. For example, an 8 × 8 pixel image might be split into a set

of 4 × 4 pixel sub-vectors. In general, it is desirable for adjacencies and distances

between elements of the original data vector to be preserved in the partitioned sub-

vector, especially if the intent is to exploit spatially local characteristics of the data.

See Figure 4.2 for an example of a simple 2D partitioning.

If we want to talk about what statistical information is destroyed by the partition-

ing and what is preserved, we need to be able to reference more than one vector at a

time since a single sample contains no statistical information in isolation. Therefore,

we will assume a dataset composed of m samples, where each sample xi is composed

of n real-valued features:

D = {x1, . . . ,xm},xi ∈ Rn
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Figure 4.2: An example of partitioning a vector with a 2-dimensional inherent structure.
In this case, 4 equal sized partitions are created with no overlap.

We can treat each feature as a random variable Xj, where j ∈ {1, . . . , n}, meaning

a vector is interpreted as xi = {X1
i , . . . , X

n
i }. We will use Xj in the absence of any

subscript to denote the set of all the jth vector features in the dataset,

Xj = {Xj
1 , . . . X

j
m}.

We can now describe the statistical properties of these random variables across

the dataset. For any individual feature i, we can compute statistical measures like

mean and variance. For any given pair of features (i, j), we can compute statistical

measures like correlation, covariance, mean-deltas, and so forth; each vector in D
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provides one sample for each feature, so the number of samples will be the cardinality

of D.

By applying a partitioning function π to every element of a dataset D, we can

generate a new dataset, which will be a set of the sets created by applying π to the

xi:

Dπ = {{π(x1)}, . . . , {π(xm)}}

In some instances, we may be able to treat the partitioned sub-vectors uniformly, in

which case we may want to combine them into a single set by taking the union of the

subsets created by the partitioning,

Dπ = {π(x1) ∪ . . . ∪ π(xm)},

but this will not be appropriate for all types of data. In cases where all features

are interpreted the same way, this is generally fine, but if some features need to be

interpreted differently, we cannot take the union this way. It also helps if the data is

isotropic (i.e., changes are independent of direction), and spatial invariance is expected

(i.e., a given pattern is equally likely to occur anywhere in the data vector). Natural

image data tends to fit these assumptions fairly well, as do many types of geological

and meteorological data (for which this type of analysis is called geostatistics), and

location-based medical, social, and economic datasets (e.g., for the analysis of cancer
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clusters). This is also true of many types of temporal data, including audio, natural

language text, and generic time-series data.

The main advantage of taking the union is that we get a larger number of samples,

which allows for better estimation; the term “weight sharing” as it is used in the

context of CNNs [82] is implicitly describing this type of union. As an example,

for natural image data, taking the union is generally safe since we frequently want

to create spatially invariant models anyway. In a more structured dataset, such as

the MNIST dataset (see Section 3.1), we do not expect complete spatial invariance

in the data (the digit images are centered and surrounded by a white border, so

the statistical properties of pixels near the edge and pixels near the center will be

different), so taking the union would be a trade-off between having more samples

but making an (incorrect) assumption that they were all samples from the same

distribution. Whether or not this trade-off is a good one will depend on just how badly

the assumptions are violated; as with the Naïve Bayes and Markov assumptions, the

benefits can outweigh the downsides even if the assumptions are not met perfectly.

Within the partitioned dataset, we will need to keep track of which random vari-

ables in the original dataset map to which elements of the partitioned dataset. If we

do so, we will then be in a position to describe which statistical quantities can still be

calculated, and which quantities cannot be calculated because the variables involved

are not in the same partition.
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So long as the partitioning function preserves locally adjacent blocks of the original

vectors, it will be the case that we can still measure statistical properties of feature

pairs that are “near” each other in the original vectors, but we will be unable to

measure statistical properties of features that are “far apart” in the original vectors.

In other words, spatially local statistical information can be preserved, even if much

of the non-local information may be lost.

4.2.1 Types of Partitioning Functions

The simplest way of encoding local information is to simply partition a feature-

space into a set of sub-spaces; each sub-space will capture only the statistical infor-

mation local to the features it includes. This is closely related to the feature selection

problem, but the goal is to group features into related subsets, rather than to reduce

the overall number of features used. In the absence of perfect knowledge about what

features should be grouped together, there are a variety of heuristics that can be

used to partition a feature-space. Currently, these heuristics are mostly based on

spatio-temporal structure; we consider the investigation of heuristics for partitioning

based on generalized local structure to be a promising direction for future work.

124



CHAPTER 4. SPATIALLY LOCAL STRUCTURE

4.2.2 Partition Shape

The first aspect to consider is what the size of each partition should be, and how to

assign features to partitions. Models like CNNs and Neocognitrons have traditionally

used square, contiguous image regions; when a CNN is described as using filters of

size 5 × 5, it is a description of both the size of each partition (25 features) and the

way that features are assigned to partitions. The input features are treated as a 2D

array, a central locus is chosen, and then all features with both X and Y coordinates

less than 3 units away from the locus are grouped together in a partition.

While this is an intuitive and natural partition shape for the square images tra-

ditionally used as input for CNNs, it is not the only way we could imagine doing

a partitioning. For instance, there is no reason that the filters need to be square;

mathematically and algorithmically, using 5×7 filters works the same way that using

5× 5 filters does.

Images are not only spatial, but the spatial coordinates are on a fixed grid; for

other types of spatial data, it might make more sense to pick a feature as a locus

and then group with it all features with locations less than some distance d away (in

effect, all features within a hypersphere of some radius). Alternatively, we might take

the k nearest neighbors and group them together.

In temporal data, partitions are usually made by treating the time value as the

primary criterion for grouping features. So, for example, a window of 5 seconds might
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be used to define a partition, and all the samples inside that window would be grouped

into a subspace.

4.2.3 Overlapping Partitions

Partitioning can be done either in a way that ensures all subsets are disjoint or

in a way that results in overlap, meaning some features are present in more than one

subset. If partitions do not overlap, then the total size of the partitioned dataset will

be no greater than the size of the un-partitioned dataset. If overlap is present, the size

of the partitioned dataset will be strictly greater than the size of the un-partitioned

data; the greater the degree of overlap, the greater the size difference. For this reason,

using overlapping partitions can be viewed as a form of data augmentation.

For a CNN, the amount of overlap is determined by the relative magnitude of the

filter width and stride parameters. If the stride is greater than or equal to the width,

there will be no overlap; maximal overlap occurs when the stride is 1.

Whether overlap is desirable will depend on the application; more overlap gives

a better chance that a particular local relationship will be captured, but for some

algorithms overlap creates undesirable dependencies between parts of the model that

would otherwise be independent. For example, when training partitioned RBMs (see

Chapter 6), overlapping partitions result in slower training because the dominant

factor in RBM training time is clique size. By keeping partitions disjoint, the num-
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ber of mutually dependent parameters is kept low, allowing for rapid iteration and

convergence.

4.2.4 Hierarchical Partitioning

It is also possible to set up hierarchical partitioning schemes; for example, a stan-

dard quad-tree style decomposition can be thought of as a hierarchical spatial parti-

tioning. Within any given level of the hierarchy, the partitions of a standard quad-tree

decomposition will be disjoint. Across levels, however, this will not be true; each fea-

ture will be present in exactly one partition at each level, so the total number of

replications of a given feature will be equal to the number of levels in the quad-tree.

CNNs do something conceptually similar, but mathematically different, because

the “features” present at the second layer are not features that are present in the

input. These features are a result of feature extraction, rather than feature-space

partitioning, so a standard CNN does not technically use a hierarchical feature-space

partitioning, even if it implicitly results in something similar.

4.2.5 Stochastic Partitioning

Another way of defining partitions is to derive them from a function, which need

not be deterministic. A classic example of this is the way Random Forests (see
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Section 2.3.5) are built; what Breiman calls “Random Input Forests” (Forest-RI) [12]

are made by choosing a single feature at random to use as a candidate split criterion.

This is equivalent to creating a partition with dimension 1, where membership in the

partition is stochastic (in classic Random Forests, the feature to use in the partition

is drawn from a uniform distribution over the set of features being used for the tree

in question).

Breiman also discusses “Random Combination Forests” (Forest-RC) which are

made by choosing some small fixed number of features L, again drawn uniformly

from the available features. After partitioning, the L features are projected down to

a scalar (i.e., the candidate decision criterion is a weighted linear combination of the

selected features).

While previous work with random forests has always done partitioning by selecting

features from a uniform distribution, there is no reason other distributions cannot be

used. In particular, just as spatially aware heuristics can be used with deterministic

partitions, they can also be used with stochastically generated partitions. In Chapter

8, we discuss a variant in which partitions are not chosen by sampling from a uniform

distribution, but instead from a Gaussian distribution with a randomly selected mean;

this can be seen as a non-deterministic relative of the fixed-size spatial regions centered

on a spatial locus described earlier.
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4.3 Spatial Statistics

To analyze the spatial behavior of different learning algorithms, we need tools to

measure and describe spatial structure in data. In this work, we use two different

classes of methods for analyzing spatial structure. The first is to measure how inter-

feature variance and correlation changes with spatial distance between features. This

gives us a quantitative measure but tells us only about pair-wise relationships. In

addition, it is only meaningful as an average. The second is a more holistic qualitative

analysis that can be done by using dimensionality reduction to project the data onto

a 2-dimensional plane so it can be visualized. This lets us see what kind of clusters or

structure exists in the data and compare the amount of structure present in different

datasets.

Our interest in spatial locality means that we would be wise to draw from the

field of statistics for spatial data, also known as spatial statistics. While some of the

techniques used in geostatistics, for example, will not be relevant to all types of data,

there are a number of principles and techniques that can productively be borrowed

and used in our analysis of the impact of partitioning, particularly when using a

spatially meaningful partitioning function.

The field of spatial statistics was developed largely for analyzing data gathered

from processes that were expected to vary based on the location at which the sam-

ple was taken. Common examples are geological, meteorological, or epidemiological
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data. Many of the principles of spatial statistics originated from the study of ge-

ological data, referred to as geostatistics. Example problems include prediction of

crop yields based on field location, prediction of weather, temperature, pollution,

and other environmental conditions based on both temporal and spatial information,

and characterization of local epidemiological problems, such as discovery of cancer

clusters [20].

The basic problem addressed by spatial statistics is that most statistical mod-

els start with fairly strong assumptions about the nature of the distribution being

modeled. In particular, it is very common to assume that the data are sampled inde-

pendent and identically distributed (IID) from a distribution which is stationary and

homoscedastic.

This can be problematic in several ways. First, the model may make assumptions

that are too strong and are violated by the data, with the result that the model may

seem to capture trends that are not actually present in the data. Effectively, the space

represented by the model is strictly smaller than the space represented by the true

distribution. If we consider modeling as a search process, this effectively means the

hypothesis space excludes the true solution. Depending on the degree to which the

assumptions are violated, the result may be a model that is wildly inaccurate. This

can be highly problematic, but it is generally fairly easy to discover by evaluating the

performance of a model on novel (or held-out) data.
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Alternatively, the model may make assumptions that are too weak, with the result

that the model may have difficulty capturing trends that are present in the data.

This is often more subtle, since there may be no drastic disagreement between the

model and the data; here, the space represented by the model may be larger than the

space represented by the distribution. The result tends to be a model that underper-

forms, but not in any way that demonstrates a clear mismatch with the underlying

distribution.

Spatial statistics is an attempt to address the latter problem as much as the

former. In particular, it allows us to incorporate extra information into our model

to describe the spatial (or spatio-temporal) circumstances under which a particular

sample was taken. This means that spatially localized trends can be captured, which

would be impossible to characterize if we treated all samples as being IID.

We will follow the notational conventions of Cressie [20] for describing spatial

statistics. Given a distribution Z, the basic model used for spatial statistics is to

assume that a each data sample has a spatial location s ∈ Rn, where location is

generally modeled as position in an n-dimensional Euclidean space. For any location

s, Z(s) is the distribution (or random process) evaluated at that location. Note that,

unless this is a deterministic process, multiple samples drawn from the same spatial

location need not agree. Temporal information can either be included as a part of

the “location,” or explicitly separated into its own variable, making a spatio-temporal
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process Z(s, t). A dataset is then a set of samples drawn at particular locations; for

a set of locations D ⊂ Rn, we can write the random process as:

{Z(s) : s ∈ D}

The primary assumptions built into this model are that the distribution may vary

as a function of spatial (or temporal) location, but that for any given location the

distribution will be stationary and samples will be drawn IID from that distribution.

It is also generally expected that the distribution will be smoothly varying to some

degree, meaning that nearby spatial locations will tend to have similar distributions;

in other words, the locations are treated as values from a continuous (n-dimensional)

range, rather than as a set of discrete labels.

4.3.1 Variograms

The primary statistical tool we will borrow is the variogram, which provides a

way of measuring how important spatial distance is to statistical correlation (i.e.,

how smoothly does Z vary as a function of spatial distance). Given two samples

from a spatial distribution Z, sampled at locations s1 and s2, (Z(s1) − Z(s2)) is the

difference between the values of those samples, and (s1− s2) is the distance (typically

Euclidean) between spatial locations at which those samples were taken. If there
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exists a γ(·) such that

var(Z(s1)− Z(s2)) = 2γ(s1 − s2),∀s1, s2 ∈ D,

where D is the set of all possible sampling locations, then 2γ(·) is called a variogram;

note that it is a function of the distance between sampling locations.

In geostatistics, variograms are often used for a type of predictive modeling called

Kriging [20, 41], which means that the assumptions must be fairly closely held. Krig-

ing is a predictive method that uses variograms to minimize mean-squared-error, and

essentially generates a predicted value for a novel location by interpolating between

samples from nearby locations.

Kriging is performed using γ(·), which is referred to as a semi-variogram; if we let

h be the distance between an existing sample and a location we would like to predict

a value for, h = s0 − snew, we can write the semivariogram as:

γ(h) = cov(0)− cov(h)
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where cov(·) is the covariance with respect to s0, defined in terms of the expected

value E:

cov(0) = var(Z(s0)

cov(h) = E {Z(s0 + h) · Z(s0)} − E {Z(s0)}2

For a variogram (or a semivariogram) to be defined properly, some fairly strong

assumptions about the data must be made, including but not limited to it being

sampled IID from a static, isotropic spatial distribution. Kriging was developed as

a means of making predictions for geological data (for mining purposes), which is

a setting in which the variogram assumptions tend to hold reasonably well. In the

case of the image data we will be analyzing, the assumptions are less accurate; in

particular, in geostatistics multiple samples from the same location will tend to give

the same (or at least similar) results. In image data, there is no expectation that

a particular pixel location will have similar values in different images. This means

applying Kriging to images would make no sense at all.

Fortunately, we will mainly use variograms as a descriptive tool, so the fact that

a variogram would make a poor predictive model for our data is not a problem. Even

if the assumptions are not met perfectly, an empirical estimate of a variogram can
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still be a useful tool for measuring the presence and extent of local structure in data,

and it is in this capacity we will use them in our experiments.

For image data, where features are sampled from an evenly spaced grid (referred to

in spatial statistics as lattice models), a variogram can almost be thought of as a kind

of histogram. The ‘bins’ are inter-feature (i.e., sampling location) distances rounded

to the nearest integer, and the height of each ‘column’ is the mean of the variance of

the sample value differences between all feature pairs that are that distance apart.

To generate a variogram plot, for every pair of features (i, j), take the element-wise

difference X i−Xj, and then compute the variance of the resultant set var(X i−Xj).

Next, for each distance d in the range [0, dmax], compute the mean of all the feature-

pair-variances between feature-pairs that are separated by distance d. These averages

are then plotted against the distances.

We can make a similar histogram using covariances, correlations, mutual infor-

mation, or any other pair-wise statistical measure between feature-pairs of a given

distance. The terms covariogram (C(·)) and correlogram (ρ(·)) can be used to describe

these functions, but much like the variogram they are frequently not well-defined in

practice, and we must use mean-based estimates:

cov (Z(s1, s2)) = C(s1 − s2)∀s ∈ D

ρ(h) = C(h)/C(0)
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For a more in depth treatment of variograms, covariograms, correlograms, and

spatial statistics in general, the reader is directed to Cressie’s [20] and Gelfand et

al.’s [41] books on the subject.

4.3.2 t-SNE

While pairwise statistical plots offer a nice quantitative depiction of spatial struc-

ture, they are limited in scope both by only measuring pairwise relationships and

by the fact that the assumptions that underlie the statistical models are poorly con-

formed to. We wanted a more qualitative and holistic method to complement these

measures; by embedding our data in a 2-dimensional space, we enable easy visual

comparisons of how much structure is present.

To embed our data into a plane for visualization, we used t-Distributed Stochastic

Neighbor Embedding (t-SNE) [27]. t-SNE was chosen because it is a dimensionality

reduction technique that is particularly designed for visualizing high dimensional data.

The method builds a map in which distances between points reflect similarities in the

data. It embeds high-dimensional data in lower dimensional space by minimizing the

discrepancy between pairwise statistical relationships in the high and low dimensional

spaces.

t-SNE is an embedding algorithm in much the same way as Multi-dimensional

Scaling (MDS) [74, 122, 123] or Locally Linear Embedding (LLE) [115] (see Sec-
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tion 2.3.2.3); the primary difference is the optimization being done. MDS is designed

to preserve overall distances, meaning that it is as important to maintain pairwise

distance even for pairs that are very far apart. t-SNE is closer to techniques like LLE,

in that it focuses more on preserving distances between pairs that are close by in the

original data-space. Unlike LLE, however, t-SNE does not encode point locations in

terms of their neighbors, but as absolute locations the way MDS does.

For a dataset of n points, let i, j ∈ [1, n] be indices, and let xi ∈ X and yi ∈ Y

refer to the ith data point of the original dataset and the low-dimensional equiva-

lent respectively. Given a candidate embedding, t-SNE first calculates all pairwise

Euclidean distances between data points in each space. The pairwise Euclidean dis-

tance between xi and xj is used to calculate a conditional probability, pj|i, which is

the probability that xi would pick xj as its neighbor. This probability is based on

a Gaussian centered at xi, with a variance based on sampling density (in densely

sampled regions, the variance will be smaller than in more sparsely sampled regions).

Similarly, pairwise conditional probabilities qj|i are calculated for each pair (yi, yj) in

the low-dimensional embedding. As an objective function, t-SNE tries to minimize

the discrepancies between the conditional probabilities for corresponding pairs in the

high dimensional and low dimensional spaces by using Kullback-Leibler divergence

(KL divergence):

DKL(P∥Q) =
∑
i

P (i) log P (i)
Q(i)
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This is an intractable global optimization problem, so gradient descent is used to find

a local optimum.

One drawback of t-SNE is that for large, high-dimensional datasets, even the local

search can be quite slow. In such cases, PCA is sometimes used as a pre-processing

step to speed up the computation and suppresses high-frequency noise [27]. A typical

example might retain the top 30 eigenvectors, and project the original data into the

eigen-basis. t-SNE would then be applied to this 30-dimensional dataset to reduce it

to a 2-dimensional set for visualization.

The resulting 2D plots make the structure (or lack thereof) readily apparent. Since

the optimization is done on pair-wise distances between original data vectors, feature

ordering (i.e., spatially local structure) in the high-dimensional data does not change

the qualitative properties of the low-dimensional data significantly. Moreover, since

the mapping is non-linear and non-parametric, it is relatively insensitive to whether

information is encoded using sparse or distributed representations. As a result, t-

SNE allows us to examine the presence of structure without having to worry about

the form of that structure impacting our analysis.
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4.4 Identifying Structure in Image Data

Since spatial structure is a statistical pattern, theoretical analysis is of limited use

without empirical evaluation of the patterns in actual data. We performed a series of

experiments on several different image datasets, both to look for statistical evidence

of spatial structure and to evaluate the impact of applying a spatial bias to different

techniques. See Chapter 3 for a description of the original datasets.

4.4.1 Randomly Permuted Datasets

Since we wanted to evaluate the ways different learning algorithms interacted with

spatial structure, we created permuted versions of each of the datasets listed above

to produce a non-spatial baseline.

To create these permuted data sets, we generated random permutations of the

same length as the data vectors. A random permutation of length k is simply a list

of the integers [1, k] in a random order; the likelihood of a given value being assigned

to a given index is uniform for all value/index pairs. We then use the permutation

to define a mapping we can apply to our data vectors: each dimension i of the input

vector is mapped to the dimension corresponding to the ith value of the random

permutation in the output vector. The mapping is 1-to-1 and onto, and is lossless
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from an information-theoretic standpoint, since we are only changing the order the

features appear in the input.

By applying a random permutation to each vector in a dataset, we get a permuted

dataset; note that the same random permutation is applied to all the input vectors,

including both training and testing samples. This means that while the generation

of the mapping is randomized, once a permutation has been generated its operation

on input vectors is deterministic (and easily reversible). See Figure 4.3 for some

examples of images before and after random permutation.

For our experiments, the purpose of the permutation is to disrupt any spatial

structure that might exist, while leaving all non-spatial structure intact. Any algo-

rithm that does not consider spatial structure should show the same performance on

both an original dataset and the permuted version of that dataset. An algorithm that

does rely on spatial structure, however, should show lower performance when applied

to the permuted data instead of the original data.

4.4.2 Locality Analysis

For four standard image datasets, we generated spatial information plots as de-

scribed in Section 4.3. Here, we show the variogram and mean-correlation plots for

both the original and the permuted versions of the MNIST dataset (see Section 3.1),
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Figure 4.3: Randomly permuted image examples. The first row shows original MNIST
images, the second row shows permuted versions of the same images. The
third and fourth rows do the same for CIFAR-10 images.

the SVHN dataset (see Section 3.2), the CIFAR-10 dataset (see Section 3.3), and the

ImageNet ILSVRC2015-Places2 dataset (see Section 3.4).

Figure 4.4 shows the variograms and mean-correlation plots for both the original

MNIST training data and for the randomly permuted version. To generate a var-

iogram, we calculated var(X i − Xj) for each pair i, j, and then for each distance,

plotted the mean of all the variances of feature pairs that distance apart. For the

mean-correlation plots, we calculated corr(X i, Xj) for each pair i, j, and then for each

distance, plotted the mean of the correlations of feature pairs that distance apart.
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Figure 4.4: Variogram and correlation plots for the MNIST dataset, before and after
random permutation of feature ordering.
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Figures 4.5, 4.6 and 4.7 show the same process applied to the SVHN, CIFAR-10,

and ImageNet ILSVRC2015-Places2 datasets, respectively.

First, we note that for each dataset, the variogram plots and the correlation

plots tend to contain qualitatively similar information; while they are not exactly the

inverse of one another, the same basic trends are present. We include both versions

here for completeness and to demonstrate the similarities, but for most purposes it

should be sufficient to simply pick one type of plot and use it.

In Figure 4.4, we can examine variogram and mean-correlation plots for original

and permuted versions of the MNIST dataset to draw conclusions about the spatial

structure present in that data. At distance 0, there is no variance and perfect cor-

relation, since any feature always has the same value as itself, regardless of the data

source. Beyond that, however, the variance and correlation plots for the permuted

dataset are basically flat, indicating that after permutation there remains no signifi-

cant relationship between statistical information and spatial distribution for feature

pairs. The deviations from this trend in the last few points in each plot are caused by

the reduced sample size available for the extreme distances (i.e., only pixels in oppos-

ing corners). Generating a new random permutation causes significant fluctuation in

these last few values, but the rest are stable.

This lack of spatial structure is the expected behavior for any dataset that has

been permuted randomly, since the permutation is specifically intended to make the
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Figure 4.5: Variogram and correlation plots for the SVHN dataset, before and after ran-
dom permutation of feature ordering.
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spatial distribution uniformly random. Examining the plots for the other datasets

(Figures 4.5–4.7) demonstrate that this property holds for the permuted versions of

all datasets, just as expected.

The plots for the original data, on the other hand, exhibit some interesting struc-

ture. The first thing to note is that for all datasets, adjacent features have high cor-

relation, and the variance of their inter-pair differences is low. As the feature-pairs

get farther apart, the degree of correlation drops off, but the rate differs between the

datasets.

The MNIST data (Figure 4.4) shows the most rapid falloff; by a distance of 5

pixels, there remains on average little statistical relationship between feature pairs.

This is likely related to the average line-width of the hand-written digits, which is

generally 2-3 pixels. The fact that correlation improves again as distances increase

is an artifact of the construction of the MNIST dataset. In particular, the MNIST

images all have a centered digit surrounded by a white border. Since background

pixels have the same value in all images, correlation scales with the likelihood that

both members of a pair are background. The greater the distance between a pair of

features, the more likely that both features will be a part of the background; in fact,

beyond a distance of 30 (note that maximum distance is 28 ×
√

2 ≈ 40) both pixels

are guaranteed to be background pixels, meaning they are guaranteed to always have

the same value. Note that most correlation measures are actually undefined when
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correspondence is perfect; for the purposes of Figure 4.4, we have set these values to

1.

The SVHN data (Figure 4.5) shows a falloff that is slower than that shown by

the MNIST data, but still has a relatively steep slope for the first 5-10 pixel-units

of distance. Since this dataset is also composed of numerical digits that have been

centered and scaled, it makes sense that we would see a similar pattern. However,

unlike the MNIST images, the SVHN images are not otherwise preprocessed. This

means we do not see the increase in correlation towards the end of the plot that we do

with MNIST; there is no universal background color, so distant pixels will not have

artificially inflated correlations. However, the backgrounds do tend to be somewhat

uniform within any given image, since they tend to be mostly paint, shingle, brick,

or whatever other surface the house numbers are attached to.

The CIFAR-10 data (Figure 4.6) has an even slower falloff of correlation than

the SVHN data, with both a shallower initial slope and a gentler corner at the top.

This is due to the fact that the CIFAR images have much greater variability than

the previous datasets (in terms of the shape, scale, location, etc., of the foreground

object, as well as in terms of backgrounds). Here, it takes around 15 pixels distance

before there appears to be little remaining statistical relationship on average; since

the images are 32× 32 pixels in size, this is about half the width of an image.
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Figure 4.6: Variogram and correlation plots for the CIFAR-10 dataset, before and after
random permutation of feature ordering.
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Figure 4.7: Variogram and correlation plots for the ImageNet ILSVRC2015 dataset, before
and after random permutation of feature ordering.
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The ImageNet data (Figure 4.7) show a curve with a very similar overall shape

to the CIFAR-10 data but with a different range. Where the CIFAR-10 images are

32×32 pixels, the ImageNet images are 256×256 pixels, so the overall range of possible

distances is much greater in the latter dataset. Proportional to image resolution, the

curves are very similar, but in absolute terms the ImageNet plot has a much shallower

slope. Additionally, the ImageNet data produce a variance curve that does not fully

plateau at half the image width the way the CIFAR-10 curve does, likely because the

foreground objects are even less uniform in type and placement.

Both the ImageNet curves and the CIFAR-10 curves show an odd “bump” near

the end; in both cases, this occurs at the point where the distance becomes greater

than the width of the images. In effect, pairs with distances greater than this can

only come from areas near diagonally opposed corners, which causes the number of

samples to drop rapidly. This effect is not present in the MNIST or SVHN data,

because those datasets have more uniform backgrounds.

Taken together, these results are a strong empirical demonstration that image data

does exhibit spatially localized structure, and that this structure can be eliminated

by randomly permuting the ordering of the features in a dataset.

The pattern exhibited by the ImageNet dataset is likely to be the most represen-

tative of arbitrary natural image data (i.e., images that have not been significantly

preprocessed and do not represent a narrow or uniform class of subjects). The fact
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that the CIFAR-10 data show the same pattern in miniature gives us confidence that

this is the case, while also highlighting the fact that spatial structure is a fundamental

property of the underlying data, and not a function of image resolution.
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Spatial Bias in Convolutional

Networks

5.1 Motivation

Proponents of convolutional networks have long expressed a belief that spatial

information is being exploited by CNNs, and that this one advantage they have over

unstructured approaches (see for example page 6 of [82]). No citations or evidence are

given; instead, this claim is generally presented as being so obvious that no evidence

is required. It is a sensible enough claim that this has tended to be sufficient for most

readers, but it has also never been terribly important. The performance numbers
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produced by CNNs demonstrate the overall utility of the method, which tends to be

the point of such papers, so the veracity of this claim is largely irrelevant.

We in no way dispute the claim that CNNs exploit spatially local information;

rather, our work relies heavily on it being true. Since we are explicitly looking at

spatially local information, we wanted empirical evidence that spatial information

was being used by CNNs, largely so we can demonstrate that other techniques can

be induced to produce similar behavior under similar circumstances. This will then

be evidence that these other methods are making similar assumptions (and making

use of similar information) to CNNs.

5.2 Methodology

The simplest way to test for the impact of structure on CNNs is to compare their

behavior in the presence and absence of that structure. In particular, we used several

standard datasets that CNNs are known to perform well on (see Sections 3.1 and 3.3),

and compared the behavior of CNNs with fully connected feed-forward networks on

these datasets. We then randomly permuted each dataset (as described in Section

4.4.1) to produce data that was identical in all ways other than the spatial ordering

of the features, and applied both techniques again.
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The expectation is that a method that makes no use of spatially local information

will perform identically on both original and permuted versions of the data. For

techniques that rely on spatial information, permuting the data should result in lower

performance than can be achieved on the original data.

It should be noted that while we attempted to find reasonable values for the model

parameters, better performance for these techniques is reported elsewhere in the liter-

ature; our goal was not to achieve state-of-the-art performance, but rather to observe

how performance is impacted by the presence (or absence) of spatial information.

5.3 Experiments

The CNN we trained for the MNIST dataset (see Section 3.1) used two convo-

lutional layers, with 16 and 32 filters respectively. All convolutional kernels were

5× 5 with local contrast normalization. Pooling regions were 2× 2 and used max-out

pooling. The network was topped with two fully-connected layers, with 512 and 128

units respectively. The network was trained using SGD with mini-batches and batch

normalization.

We also trained a standard multi-layer perceptron (MLP) separately on the same

data. The architecture and training was the same as for the two-layer output network
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used for the CNN; 512 units in the first hidden layer, 128 in the second, and trained

using SGD with mini-batches [90] and batch normalization [65].

We trained the same models on both the original MNIST data and a randomly

permuted version of the MNIST data. In each case, the training and testing sets

provided as part of MNIST were used for training and evaluation. The results of

these experiments can be seen in Table 5.1.

For the CIFAR-10 dataset (see Section 3.3), we used a VGG-like network [125],

trained using SGD with mini-batches [90], batch-normalization [65], and dropout [57].

The fully connected network on top consisted of two layers, each with 512 units.

The MLP architecture used for the CIFAR-10 dataset was two hidden layers, the

first with 4092 units and the second with 2048 units. Like the CNN, the MLP was

trained using dropout and batch-normalization.

Again, the models were trained on both the original CIFAR-10 data and on a

randomly permuted version of the CIFAR-10 data.

Each experiment was replicated 10 times, and the results reported in in Table 5.1

represent means over these 10 samples.
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MNIST Permuted MNIST CIFAR-10 Permuted CIFAR-10
MLP 98.41% 98.40% 60.69% 61.27%
CNN 99.54% 97.76% 92.34% 56.46%

Table 5.1: Classification accuracy on MNIST and CIFAR-10 test sets (average over 10
trials). MLP is a feed-forward multi-layer perceptron, CNN is a convolutional
neural network. Performance is reported on both original datasets, and ran-
domly permuted versions of the datasets.

5.4 Discussion

In Table 5.1, we can see that CNNs are able to outperform MLPs on both MNIST

and CIFAR-10 by wide margins, just as expected. CIFAR-10 is known to be a signif-

icantly more difficult problem, so it is no surprise that accuracy is always better on

MNIST, even though the networks used on the CIFAR-10 data are more powerful.

To test for statistical significance, we applied a paired Wilcoxon signed rank test

to each pair of experimental conditions, with the null hypothesis in each case being

that the two conditions were equivalent.

For our purposes, the result that is of primary interest here is the comparison

between performance on permuted data and unmodified data. In both the case of

MNIST and the case of CIFAR-10, we find that the MLPs behave the same way

regardless of whether the data have been permuted or not (p-values for the null

hypothesis are ≫ 0.05). This is a strong indication that the MLPs are not making

use of any spatial structure.
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The CNNs, on the other hand, show significantly worse performance on the per-

muted data than on the original data (p-values are < 0.006 for MNIST and < 0.002

for CIFAR-10). In fact, for both MNIST and CIFAR the CNN on permuted data

performs significantly worse than the basic MLP (p-values are < 0.006 for MNIST

and < 0.002 for CIFAR-10). In the case of the MNIST data, where the exact same

architecture as the MLP was used as the output network for the CNN, this indicates

that not only is the CNN making use of spatial information when it is present, it is

reliant on the spatial information to such an extent that removing the spatial data

makes the CNN perform worse than the identity function.

5.5 Conclusions

Overall, these results strongly support the hypothesis that CNNs not only make

use of spatially local information, but are reliant upon it. Thus, we conclude that

CNNs have an inductive bias that assumes the presence of spatially local structure,

and can move on to the question of how such a bias can be introduced into other

methods.

In CNNs, this bias is a result of the network architecture. Any given unit in a

convolutional layer has incoming connections from a small, spatially localized group

of the units in the layer below. The size of this group is the size of the convolutional
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filter that the unit represents. This is effectively a spatial partitioning of the input

data.
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Chapter 6

Partitioned Training of RBMs and

DBNs

6.1 Motivation

Having demonstrated that CNNs rely on assumptions about spatially local struc-

ture, we wanted to incorporate this type of assumption into other models. Restricted

Boltzmann Machines (RBMs) are another connectionist technique associated with

deep learning, but they are much more free-form networks; where CNNs have complex

partitioning and weight-sharing architectures, RBMs are normally fully-connected

(see Section 2.1.3.2 for more information about RBMs). This leads to a behavior
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on spatial data more like multi-layer perceptrons than like CNNs (see Chapter 5 for

what this behavior looks like for spatial and non-spatial data).

RBMs are an interesting candidate for introduction of a spatial bias in their own

right, but they are also the building blocks for Deep Belief Nets (DBNs), which have

been the primary alternative to CNNs within the deep-learning literature (See Section

2.2.3 for more information about DBNs).

6.2 Partitioned RBMs

As a means of utilizing spatially local information in RBMs, we proposed a train-

ing method for RBMs that partitions the network into several sub-networks that are

trained independently and incrementally re-combined until only a single, all-inclusive

partition is left [136]. With the partitioned RBM method, training involves sev-

eral levels of partitioning and training. At each level, the RBM is partitioned into

multiple RBMs as shown in Figure 6.1. In this figure, the partitions do not over-

lap, although [136] also demonstrates additional improvement in accuracy when some

amount of overlap is permitted. See Section 4.2 for a more detailed discussion of

partitioning functions.

In this case, the advantage of a disjoint partitioning is that all the RBMs at a

given level can be trained simultaneously in a way that is both data- and task-parallel.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

h1 h2 h3 h4 h5 h6 h7 h8

First Stage: 4 Partitions

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

h1 h2 h3 h4 h5 h6 h7 h8

Second Stage: 2 Partitions

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

h1 h2 h3 h4 h5 h6 h7 h8

Third Stage: 1 Partition

Figure 6.1: Example partitioning approach for an RBM, using 4 partitions in the first
stage, 2 in the second stage, and 1 in the final stage. Note that the learned
weights are retained from the previous stage.

If the partitions overlap, the sub-networks can no longer be trained independently,

because multiple sub-networks will be updating the same parameters. While some

parallelism can still be achieved, extra communication and synchronization mecha-

nisms are required; Fortier et al. [36, 37, 38] have described one approach for allowing

parallelization and distribution of optimization for overlapping networks.
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Once a partitioning function has been defined, each partitioned RBM is trained

using a set of sub-vectors from a corresponding partition of the training dataset;

in effect, each RBM is trained on “instances” that contain only the features that

correspond to the input nodes assigned to that RBM partition.

Once these RBMs have been trained, a new partitioning with fewer splits is cre-

ated, which forms the basis for the next level up. Figure 6.1 shows an example in

which the first layer has 4 distinct RBMs, the second layer has 2, and the final layer

has 1. The power of the method comes from the fact that all levels share the same

weight matrix. This means that during training, each RBM updates its own part of

the globally shared weights; because the partitions do not overlap, there is no data

dependency (which would prevent easy parallelization), but there is ultimately only

one set of weights. The result is that the later levels begin their training with weights

that have been pre-initialized by the earlier levels. The only exception is the units

that were not connected in the previous partitioning; here, new connections must be

initialized randomly, but this is a small percentage of the overall weights at any given

stage.

The reason this is useful is that, when RBMs are small (in terms of number of

nodes/weights being updated), they can be trained more quickly. While the results of

the disjoint training will not be perfect (because they lack the full data vectors, they

will be missing some relationships), they can be allowed to run for many more epochs
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Algorithm 6.3 Pseudocode for the partitioned RBM training method (see Algo-
rithm 2.1 for the contrastive divergence algorithm). Note that the same weight ma-
trix W is used for the entire training process. a ∼ b indicates a is sampled from b.
See Section 4.2 for details about partitioning functions.
Input: D: training data set, πj, j ∈ [1..k]: partition functions, α: learning rate.
Output: W: weight vector,

1: for j = 1 to k do
2: Dπj

← πj(D)
3: for all partitions in πj do
4: repeat
5: x ∼ Dπj

6: CD-1(x,W, α)
7: until convergence
8: end for
9: end for

in a given time frame. After each iteration, the RBMs become larger from recombin-

ing, but training requires many fewer epochs than normal to converge because most

weights are much closer to their optimal values than would be the case with random

initialization. This enables the overall Partitioned-RBM training method to achieve

higher performance over a given training interval than using the traditional RBM

training method, even though both ultimately produce networks that are identical in

structure. See Algorithm 6.3 for pseudocode.
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6.3 Partition Trained DBNs

Since unsupervised pre-training of DBNs is an iterative process of training RBMs

to reproduce their input, it is fairly straightforward to substitute our partitioned

RBM training method for the standard one. The result is a partition trained DBN.

Like a normal DBN, a partition trained DBN is trained one layer at a time,

using Partitioned-RBM training for each layer. Unlike the Convolutional Deep Belief

Network (CDBN) model [87], the resulting network is still a traditional DBN in its

architecture and operation. Like Partitioned-RBM, a CDBN uses partitioning for

its filter-response units, but the partitions are permanent and persist even in the

final trained model. The outputs are then combined with probabilistic max-pooling,

resulting in an architecture that looks more like a CNN than a DBN. A CDBN is

trained using standard sampling techniques. What differs is the architecture and

the probabilistic max-pooling operation. Our partitioned training method, on the

other hand, is not a new architecture but rather a new method of training a standard

DBN architecture. Thus, a partition trained DBN can be compared directly to a

conventionally trained DBN. Doing the same comparison with a CDBN is much less

informative, as the two models have fundamentally different representational power.
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6.4 Methodology

We compared standard RBMs to Partitioned RBMs on the MNIST dataset; see

Section 3.1 for details on the dataset. This dataset was chosen largely because it is a

good fit for RBMs of any kind; its nearly-binary nature and relatively low resolution

allow for RBMs to be trained relatively efficiently, and it is easy to compare our

results to the existing literature.

We measured the performance of the RBMs using reconstruction error, which is

defined to be the mean difference between the original and reconstructed images. We

used a binary reconstruction error, using a fixed threshold value of 30 to map pixels

in the range [0− 255] to a binary 1 or 0 for the original images.

To get the reconstructed image from the RBM, we first sampled a hidden node

activation vector from the RBM model for a given input image, and then sampled a

visible node activation vector based on the sampled hidden activations. The resulting

vector is also binarized and used in conjunction with the original vector to calculate

reconstruction error for length n vectors:

E(x,x′) = 1
n

n∑
i=1

I(xi ̸= x′
i) (6.1)

To examine what statistical information is being exploited by the Partitioned

RBMs, we performed a set of experiments training RBMs on both the original MNIST
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data and a randomly permuted version of the dataset (see Section 4.4.1). By com-

paring the performance of the different types of RBMs on both the original data and

the permuted data, we can see whether they make use of spatially local structure.

We also ran experiments using Class RBMs [78], meaning that an extra set of

visible nodes containing class labels was added to the fully connected RBM. These

class label values were clamped during training, and then used for class prediction

on testing data, which allows a more direct comparison with the supervised learning

techniques used in other chapters of this dissertation.

Each RBM was run for 20 iterations, and the error rates reported are the mean

values from 10-fold cross-validation (not using MNIST’s predefined split between

training and test data).

We also performed experiments in which the partitioned training method was

used for each layer of a DBN and compared this to architecturally equivalent DBNs

trained using the normal method. As with the RBMs, our performance measure was

reconstruction error, calculated by propagating an input image all the way to the last

hidden layer of Deep Belief Network, then reconstructing it by reverse propagation

to the visible layer, and applying Equation 6.1 as above.

To examine whether spatially local features are being disrupted in the DBN train-

ing process, we constructed a 2-layer DBN, where each layer is composed of 784

hidden nodes. One version of this network was trained using the partitioned RBM
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Configuration Samples Original data Permuted Data
Single RBM 60000 2.46% 2.44%
Single RBM 30000 2.55% 2.55%

RBM-28 60000 3.32% 7.00%
RBM-20 50000 2.20% 6.42%
RBM-15 40000 1.87% 6.13%
RBM-10 30000 1.64% 5.00%
RBM-5 25000 1.49% 3.88%
RBM-2 20000 1.44% 2.89%
RBM-1 30000 1.42% 2.24%

Table 6.1: Reconstruction error of traditional and partition-trained RBMs on the MNIST
dataset

training method, and the other was trained conventionally. We then calculated the

variograms and t-SNE plots for the output of hidden nodes at each layer, using the

methods described in Section 4.3.

6.5 Results and Discussion

6.5.1 Partitioned-RBM results

Table 6.1 shows the results of our RBM experiments. In the configuration column,

Single RBM indicates the RBM was trained on the full data vectors (i.e., no partition-

ing); RBM-n indicates a Partitioned-RBM with n partitions. RBM-1 is equivalent to

Single RBM in terms of its configuration, but the RBM-1 is trained on fewer samples,

since each successive RBM-n configuration starts with the output of the previous con-
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figuration. The Samples column gives the number of training instances that were used

to train the given RBM, selected at random from the total training set; these training

set sizes were chosen such that training all the RBM-n configurations matched the

time complexity of training a Single RBM (i.e., both methods were given the same

total number of weight updates).

For the original MNIST dataset, the Partitioned-RBM outperforms the Single

RBM not only for the RBM-1, but in all configurations except RBM-28. This means

that a single partitioned training step is already sufficient to produce good perfor-

mance, even though there are still many feature pairs that are unconnected. Addi-

tionally, when a Single RBM is trained using the same reduced-size dataset as the

final level of the Partition-RBM, its performance decreases even further. By design,

the computational complexity of the full stack of Partitioned-RBMs is comparable to

that of the Single RBM trained on the entire dataset; however, it is evident that sig-

nificantly less computation was necessary for the Partitioned-RBM to yield superior

performance. This behavior holds for classification as well as reconstruction error.

As can be seen in Table 6.2, when using Class RBMs the partition-trained RBM pro-

duces higher classification accuracy while simultaneously being more computationally

efficient.

For the Partitioned-RBM, reconstruction error on the permuted dataset is sig-

nificantly worse (p > 99.99% using a paired t-test) than on the original dataset.
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Configuration Samples (103) Accuracy Chain Operations (1010)
Single RBM 54 96.97% 131.71
Partitioned-RBM-(16-4-1) 54-50-30 97.18 % 78.42

Table 6.2: Classification accuracy of traditional and partition-trained RBMs on the
MNIST dataset

Permutation has no statistically significant impact on the performance of the stan-

dard Single RBM, as we would expect. From this result, we are led to the conclusion

that the Partitioned-RBM is making use of statistical information that is spatially

localized, where the Single RBM is not. The permutation results in no overall loss of

information for the Single RBM; it simply re-orders the elements of the vectors. For

this reason, any pair-wise correlation between a given pair of features will be unal-

tered by the permutation. The unchanged behavior of the Single RBM is therefore

exactly what we would expect.

Things are different for the Partitioned-RBM, however, since the location of the

two features in a given pair will be altered. This means that two features that would

have been assigned to the same partition in the original dataset might not be assigned

to the same partition in the permuted dataset. Since each piece of a Partitioned-

RBM only has access to features in its partition, this means that whatever statistical

information was contained in the correlation between this pair of features is no longer

available to the Partitioned-RBM.
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Configuration Samples (103) Error
Single RBM 54 2.59%
Partitioned-RBM-(16-4-1) 54-50-30 1.05%

Table 6.3: Reconstruction error of traditional and partition-trained 2-layer DBNs on the
MNIST dataset

In fact, the Partitioned-RBM will always be cut off from a great many of the pair-

wise feature correlations; the difference between the original and permuted datasets

is simply in which correlations are lost. The fact that the Partitioned-RBM performs

significantly worse on the permuted dataset implies that not all correlations are of

equal value. In particular, it means that correlations between pairs of features that

are spatially proximate in the original data are more important to the success of

the algorithm than correlations between arbitrary pairs (which will, on average, be

significantly farther apart in the original image). Given the spatial structure in the

data (see Section 4.4.2), these results demonstrate that the Partitioned-RBM is mak-

ing use of spatially local statistical information in the MNIST dataset to achieve its

performance advantage.

6.5.2 Partition Trained DBN results

Table 6.3 shows the results of training a two-layer DBN. The configuration column

specifies training method used for each layer; “Single RBM” indicates the traditional

RBM training method and “Partitioned-RBM” indicates our partitioned RBM train-
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ing method. The number of partitions in each training stage is defined in parentheses;

(16-4-1) indicates that we trained each Partitioned-RBM first with 16 splits, then 4,

and finally trained as a single partition. Note again that each successive Partitioned-

RBM configuration starts with the output of the previous configuration, as described

previously. The Samples column gives the number of training instances, selected at

random from the total training set, that were used to train the given DBN. Again,

as the number of partitions decreases, we decrease the training set size to match the

time complexity of the full Partitioned-RBM training process to that of the Single

RBM.

As with individual RBMs, a DBN trained using Partitioned-RBM significantly

outperforms the one trained using the traditional method (p > 99.99% using a paired

t-test). By design, the computational complexity of the full stack of Partitioned-

RBMs is comparable to or faster than that of the Single RBM trained on the entire

dataset; however, it is again evident that significantly less computation is necessary

for the Partitioned-RBM to yield superior performance.

We also generated variogram and mean-correlation plots (as described in Section

4.3) for several digits at multiple levels of the DBN (plots for the full MNIST dataset

are in Section 4.4.2). Figure 6.2 shows the variogram plots for subsets of the data

corresponding to digits 0, 5 and 9 (other digits are omitted for brevity, but look

similar). The first column shows variograms of the raw input vectors for each subset,
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Original Data Single RBM Partitioned RBM
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Figure 6.2: Variograms: labels 0, 5 and 9 (from top to bottom). Labels of the form
N−P indicate data for hidden layer N of a Deep Belief Network based on
Partitioned-RBMs with P partitions. First column corresponds to result of
original digits. Second column corresponds to Single RBM and last column
corresponds to Partitioned-RBM

the second column shows results of the traditionally trained DBN, and the third shows

results of the partition trained DBN; each graph has lines for both the first and second

layers of the DBN. For all digits, the partitioned training method produces an “arch”

pattern consistent with the original digit plot. In comparison, the hidden layers of
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Original Data Single RBM Partitioned RBM
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Figure 6.3: Mean-correlation: labels 0, 5 and 9 (from top to bottom). Labels of the form
N−P indicate data for hidden layer N of a Deep Belief Network based on
Partitioned-RBMs with P partitions. First column corresponds to result of
original digits. Second column corresponds to Single RBM and last column
corresponds to Partitioned-RBM.

the traditionally trained DBN do not preserve any relationship between distance and

difference.

Figure 6.3 shows the mean-correlation plots for digits 0, 5 and 9 of the MNIST

data. As with variograms, the first column depicts digits, the second column shows
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(Layer 1) (Layer 2) (Layer 3)

Figure 6.4: t-SNE plots for DBN hidden node activations on the MNIST dataset. The
first row shows results for the partition trained DBN, the second row shows
results for the traditionally trained DBN.

results of the traditionally trained DBN, and the third column shows results of the

partition trained DBN. These are consistent with the variogram results: The Single

RBM training method destroys any relationship between distance and mean correla-

tion, while the raw data and the Partitioned-RBM output both show correlation that

changes with distance, indicating that spatial information has been preserved.

We also used t-SNE (as described in Section 4.3) to visualize the activations at the

hidden nodes. To apply t-SNE to hidden nodes, we generated sample points by setting

a selected hidden node to 1.0 and all other hidden nodes to 0.0, and then computing

corresponding input node activations. Thus, the weights between that hidden node

and all visible nodes captures a “feature” (this can also be referred to as a filter, or
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(A) (B)

Figure 6.5: t-SNE plots for both original (A) and permuted (B) versions of the MNIST
dataset; color represents class label.

template, depending on context). For this experiment, we constructed a 3-layer Deep

Belief Network where each layer has 784 nodes. Results are shown in Figure 6.4. The

first row shows the results for the partitioned training method and the second row

for the traditional training method. Columns correspond to network layers 1–3. The

scatter plot of activations shows that the partitioned training method produces some

natural clusters, whereas the traditional training method output closely approximates

a zero-mean Gaussian.

To ensure that the t-SNE method is correctly accounting for possible re-ordering

of features, we applied t-SNE to both original and permuted versions of the MNIST

dataset. Figure 6.5 shows results of these experiments. The left figure is for original

data and right figure corresponds to permuted data. The permuted data generates

a t-SNE plot with qualitatively similar structure to that generated from the original
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(A) (B) (C)

Figure 6.6: t-SNE mappings for hidden node activations of different Partitioned-RBM
configurations on the MNIST dataset; (A) 16 partitions, (B) 4 partitions, (C)
1 partition

data; importantly, this resembles the output generated from the Partitioned-RBM,

but it does not resemble the Gaussian-like output generated from the traditional

RBM.

To explore how diffusion progresses across the configurations of the Partitioned-

RBM, we paused the training between stages (i.e., just before the number of partitions

was decreased). As the number of partitions changed, we plotted the t-SNE mapping

for the first hidden layer of the DBN (first RBM). Figure 6.6 shows that structure

continues to be present, though some consolidation does take place as partitions are

joined.

All of these results support our original hypothesis and offer a clear demonstration

that partitioning can be used to introduce a spatial bias into a technique that would

otherwise lack one.

175



CHAPTER 6. PARTITIONED TRAINING OF RBMS AND DBNS

6.6 Conclusions

We have begun to explore one of the potential inductive biases that deep learning

techniques leverage to achieve their performance. Our experimental results suggest

that data partitioning techniques can enable algorithms to make use of spatially local

information. This can be the case even when the final learned model has the same

architecture as the unmodified version. Further, when the models are stacked, the hid-

den node activations retain spatial information, which is not the case in traditionally

trained DBNs. Finally, the disruption of spatial structure hurts the performance of

the spatially biased method, confirming our expectations that the spatial partitioning

is only helpful when spatial structure is present.
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Deep Partitioned PCA

7.1 Motivation

One of our first attempts to introduce a spatially local structure bias into a non-

connectionist model is a variant on PCA (see 2.3.2.1 for details on PCA as a base

technique). We will refer to this system as Deep Partitioned PCA (DPPCA). The goal

in designing the system was to perform feature extraction in a way that gained some

of the structural properties of CNNs, but with as few other advantages as possible.

PCA was chosen as a base technique in large part because it is a linear technique

that is simple and well understood.

The intent of choosing a linear model was to be sure that any performance differ-

ence between “deep” and “flat” versions of PCA did not come from the extra mathe-
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matical power inherent in stacked non-linearities. Both standard PCA and DPPCA

have the same mathematical power (since composed linear functions have no more

power than a single linear function). Thus, so long as the total number of output

features generated by each model is the same, there should be no representational

advantage to one technique over the other.

PCA is also a deterministic technique, which produces a result that is guaranteed

to optimize a known criterion. In particular, if the top k principal components are

used as a basis to generate a length-k feature vector, there can be no other linear

projection into Rk that yields a lower average reconstruction error [2]. Additionally,

PCA is an algorithm with no parameters or hyper-parameters to tune (other than

the choice of k), which further reduces the possible impact of experimental design on

the results.

Finally, since we wanted to look at image data to make our work comparable to

prior work on CNNs, PCA was a reasonable choice. It has been used as a dimen-

sionality reduction technique for many years in the field of computer vision (see, for

example, [137]), which means that readers are likely to be familiar with it.
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7.2 DPPCA

DPPCA is a feature extraction hierarchy based on a partitioning of the original

feature space that resembles the partitioning used by CNNs. In our experiments

on image data, we used a quad-tree [34] style partitioning; the bottom level of the

partitioning was a set of non-overlapping 4 × 4 pixel patches. PCA was applied to

the set of all 4 × 4 patches from all images in the training dataset and the top k

eigenvectors were used as a reduced-dimensionality basis. This can be thought of as

comparable to a CNN architecture in which the stride length of the filters is equal

to their width; by using the union of the sets of 4 × 4 patches, we make the same

assumptions that “weight sharing” in CNNs does. Unlike a standard CNN, however,

we chose to use disjoint partitions rather than overlapping ones, so as to avoid giving

the deep method any extra advantages.

Each 4×4 patch was projected into this new basis, and the reduced-dimensionality

patches were then joined back together in their original order. The result of this was

that each original data vector (i.e., image) had its dimensionality multiplied by k/16

(Figure 7.1). These reduced dimensionality images formed the next layer up in the

hierarchy after the raw data.

This process was repeated, using the newly created layer as the data for the

split-PCA-join process to create the next layer up. At every layer after the first, the

dimensionality was reduced by a fixed factor of 4 (i.e. a factor of 2 in each dimension).
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Figure 7.1: An example of how DPPCA works on a pair of images from our dataset. The
v1 are vectors in S1, the v2 are vectors in S2, and the p1 are vectors in P 1.
Note only a small number of the vectors from each of these levels are shown.

The process was terminated when the remaining data was too small to split, and the

entire image was represented by a single k-dimensional feature vector at the “top” of

the hierarchy.

As an illustration, if our original data is a set of m vectors, each length n, then

we start with a raw data matrix D1, which is m × n. In the case of images, this

means each row of the matrix is an image. The level one split data matrix, S1, in our

hierarchy is generated by recursively splitting the vectors in D1 down to 4× 4 = 16

dimensional patches, so it will be a (m · n16)×16 matrix. We apply PCA to S1, extract
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the top k eigenvectors into F1, and use F1 as a basis to project the vectors of S1 into.

Applying the projection to the vectors in S1 results in P1, an (m · n16) × k matrix.

Adjacent vectors in P1 are then joined (using the inverse of the splitting operator),

resulting in S2, which is (m · n
16·4)× (4 · k). If we continue to recursively join the S2

data, we will get D2, which is an m × (n · k16) matrix. Alternatively, we can simply

apply PCA directly to S2 and avoid some extra split/join operations when building

the hierarchy.

In general, for layer l, Dl will be m × (n · k
16·4l ). When 16 · 4l = n, the hierarchy

is complete, giving a top layer with dimensions of m × k. We note that the math

only works cleanly for raw data vectors whose length is a power of four; this means

we need square images with power of two widths. While there are several ways this

constraint could be relaxed (by changing the split/join operation), we leave them for

future work.

Pseudocode for this algorithm is given in Algorithm 7.4. The SplitQuads function

(line 3) does a quad-tree style split of an image into four equal-sized sub-images, and

the JoinQuads function (line 8) inverts this operation. The function PCA(M,k)

(line 6) computes an eigen-decomposition of the covariance of M and then returns

the top k eigenvectors. The matrix multiplication in line 7 projects the data into the

new eigen-basis. The for loop in lines 2–4 does the “recursive” splitting of data, and

the for loop on lines 5–9 builds the feature hierarchy one level at a time.
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Algorithm 7.4 DPPCA
Input: input matrix X, depth of hierarchy m, number of eigenvectors to keep k
Output: feature-space hierarchy F , projected data hierarchy D

1: D1 ← X
2: for i = 1 to m do
3: D1 ← SplitQuads(D1)
4: end for
5: for i = 1 to m do
6: Fi ← PCA(Di, k)
7: P← FiDi

8: Di+1 ← JoinQuads(P)
9: end for

10: return F , D

Since our goal was to examine the benefits of performing “deep” dimensionality

reduction in this hierarchical fashion, we used only the top layer as the “output” of

the overall DPPCA technique. This allowed us to compare the k-dimensional feature

vector produced by DPPCA directly to the k-dimensional feature vector produced

simply by applying PCA directly to the raw image data and projecting into the top-k

eigen-basis (which we will call “Flat PCA” for the sake of clarity). We will leave the

exploration of using lower layers of the hierarchy as outputs for future work.

The DPPCA model has less theoretical power than most previous deep learning

models, due to the fact that it is a linear model. This is in contrast to the complex non-

linear functions used in other deep models, which often include things like inter-layer

adaptive contrast normalization, soft-max functions, and sigmoid or rectified-linear

input aggregation. Additionally, some deep methods do not restrict themselves to
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feed-forward operations [6], making the overall behavior of the system that much

more complicated.

The inherent power of the repeated non-linear aggregation used in standard deep

learning techniques makes it difficult to tell how much of the performance of those

techniques is due to the spatially organized feature partitioning, and how much is

due to the stacked non-linear functions. It was for this reason that we designed DP-

PCA to have as little non-linearity as possible. While this handicaps its performance

in comparison to something like a CNN, it allows us to examine the effects of the

hierarchical partitioning much more cleanly than would be possible using non-linear

aggregation (or using a non-linear feature extractor at each layer instead of PCA,

which would also introduce significant non-linearity into the result).

We also chose to use a non-overlapping partitioning; using overlapping partitions

when generating the PCA-based mapping would likely improve results, but can be

viewed as giving DPPCA an augmented dataset (i.e., more data overall than flat

PCA would have access too). Again, this choice was made to ensure DPPCA had no

possible source of advantage other than the hierarchical partitioning.
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7.3 Methodology

One of the most basic deep-structure hypotheses is that real-world data con-

tains deep structure, and exploiting this structure will yield improved performance

on machine learning tasks. To test this hypothesis in a non-connectionist setting,

we designed experiments to compare the performance of a standard (shallow) fea-

ture extractor directly with a deep feature hierarchy using the same extractor. As

described, our goal in choosing PCA was to have a well-understood feature extractor

that could be used to expose the differences between deep and flat feature extraction;

we have no expectation that it will produce optimal classification results. For our

purposes here, the differences between deep and flat are more important than the

absolute performances. In an application where performance is the primary goal, the

best feature extractor available should be used.

We used the custom dataset described in Section 3.5, in three different image

resolutions (128× 128, 256× 256, and 512× 512 pixels). For each image resolution,

we did experiments using both 5 × 2 cross-validation, and 10-fold cross-validation.

Five-by-two has some nice theoretical properties, but due to the relatively small size

of our dataset, the accuracy achievable by 10-fold cross-validation was higher. We

report the results for both methods.

For each experiment, a dataset was split into “train” and “test” sets using one of

the validation methods, and the training set was used to generate two feature spaces.
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The first used Flat PCA to generate 16 features, and the second used DPPCA to

generate 16 features. The dimensionality of the resultant feature space was the same

for both techniques. Due to the length of our data vectors and the computational

resources available to us at the time, operations on the full covariance matrix proved

intractable. To work around this, we used an iterative PCA algorithm [4] to generate

only the first 16 eigenvectors.

The training data was then projected into both 16-dimensional feature spaces,

and the projected training data was used to train two standard classifiers. Once the

classifiers were trained, the testing data was projected into each feature space and

presented to the corresponding classifier to evaluate its performance.

We used two classifiers, a simple Nearest Neighbor classifier and a Support Vector

Machine. As with the choice of feature extractor, we chose simple, widely-used,

deterministic classification algorithms. While we performed a few experiments to

make sure we had reasonable parameters for the SVM (i.e., kernel type, degree, etc.),

we make no claim that these classifiers will yield the highest possible performance on

the task. Again, the goal was to use simple algorithms to make the difference between

the deep and flat feature extraction as clear as possible.

Finally, we performed the same experiments on a randomly permuted version of

the dataset (see 4.4.1). This permutation effectively erases any local structure in the

185



CHAPTER 7. DEEP PARTITIONED PCA

Width Validation Classifier Flat Deep
128 10-fold KNN 52.56% 53.20%
128 10-fold SVM 45.40% 48.09%
128 5x2 KNN 43.84% 44.93%
128 5x2 SVM 37.77% 39.63%
256 10-fold KNN 51.26% 52.08%
256 10-fold SVM 45.04% 46.71%
256 5x2 KNN 42.33% 43.54%
256 5x2 SVM 36.28% 37.83%
512 10-fold KNN 50.83% 52.60%
512 10-fold SVM 43.59% 46.57%
512 5x2 KNN 43.87% 45.03%
512 5x2 SVM 36.61% 38.47%

Table 7.1: Classification accuracy on the MNIST dataset. Each score is averaged over the
samples created by the indicated validation technique. Bold numbers indicate
that the advantage a technique showed was significant (p ≥ .95 using two-sided
paired Wilcoxon).

data, while preserving global statistical properties. This was done to test whether

the deep architecture was truly making use of local structure or not.

7.4 Results and Discussion

We ran both 10-fold and 5×2 cross-validation in combination with each image size

and classifier. The results of these experiments are summarized in Table 7.1 by giving

the mean accuracy achieved by each group of 10 experiments (one per validation fold).

As can be seen in this table, Deep Partitioned PCA achieves a higher mean accuracy

than Flat PCA in all cases; the overall mean improvement achieved by DPPCA is

1.16%. While this difference is small, it is highly significant; a two-sided paired
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Width Validation Classifier Deep:Flat Wins Margin
128 10-fold KNN 50%:20% 2.94%:4.08%
128 10-fold SVM 90%:10% 3.14%:1.66%
128 5x2 KNN 60%:20% 1.93%:0.33%
128 5x2 SVM 80%:10% 2.45%:1.00%
256 10-fold KNN 50%:30% 3.24%:2.70%
256 10-fold SVM 60%:40% 6.03%:4.93%
256 5x2 KNN 70%:20% 1.87%:0.49%
256 5x2 SVM 70%:30% 2.82%:1.43%
512 10-fold KNN 50%:30% 4.90%:2.18%
512 10-fold SVM 50%:30% 8.17%:3.81%
512 5x2 KNN 80%:20% 1.57%:0.50%
512 5x2 SVM 80%:20% 2.53%:0.83%

Average 65.83%:23.33% 3.47%:2.00%

Table 7.2: Percentage of validation runs in which one technique out-performed the other.
In cases where performance was the same, no winner is listed. The margin is
the amount that the winning technique won by, averaged over the instances in
which that technique won.

Width Flat MSE Deep MSE Flat Accuracy Deep Accuracy
128 6.53 6.96 44.89% 46.47%
256 14.08 13.90 43.73% 45.04%
512 29.92 29.51 43.73% 45.67%

Table 7.3: Mean squared reconstruction error and average classification accuracy for the
different techniques and image sizes. The results are averaged over all experi-
ments on images with the indicated resolution.

Wilcoxon test yields a p-value of p = 1.86× 10−7 for the null hypothesis that the two

methods produce equivalent results.

The absolute values of the accuracies are low in all cases, though well above ran-

dom chance for a 10 class problem. This seems to be due largely to the difficulty of the

problem and the small number of samples; as a baseline, we performed experiments

using simple CNNs, and were unable to obtain accuracy above 48% (Table 7.5). It is
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Flat Flat Deep Deep
Width Original Permuted Original Permuted

128 43.84% 44.07% 44.93% 35.89%
256 42.33% 41.02% 43.54% 31.11%
512 43.87% 43.25% 45.03% 28.59%

Table 7.4: Classification error on randomly permuted images. Results reported using 5x2
validation and the nearest neighbor classifier; results for other methods were
similar.

Flat PCA Deep PCA CNN
43.84% 44.93% 48%

Table 7.5: Classification error on original images. Results reported using 5x2 validation.
Nearest neighbor classifier was used for both PCA based methods.

possible that with more parameter tuning we could do better, but it seems likely that

no technique will perform much better for this data. Our technique offers relatively

competitive performance despite using a simple, non-connectionist architecture. Ad-

ditionally, it is far more computationally efficient; the Convolutional Networks took

several orders of magnitude longer to train (both methods were able to take advantage

of GPU processing, so neither had an advantage in parallelism).

Additionally, while object recognition is known to be a hard problem, it is likely

that we could achieve better results using something other than PCA to do feature ex-

traction, since PCA tends to work best for vision problems after lots of pre-processing

(e.g., see the original Eigenfaces work [137]). Most work with CNNs also does more

preprocessing than we used here; in particular, local contrastive normalization would

likely improve the performance of either technique. As previously stated, we wanted
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a simple, general algorithm for our feature extractor, with as little preprocessing as

possible. Our goal was to examine the role of deep structure in learning, not create

a state-of-the-art classifier system.

Looking at the p-values for each experiment individually (highlights in the last

column of Table 7.1), we see that the 5 × 2 cross-validation gives much better sig-

nificance. In fact, in all but one of the 5 × 2 experiments, DPPCA was better by a

statistically significant margin ( p ≥ 0.95 ). In the one instance where it failed to

meet this significance, it was only off by about 2% (p = 0.93). The 10-fold cross-

validation runs, on the other hand, had poor significance results but higher absolute

performance scores. This result should not be surprising given the small size of the

dataset; the 10-fold method has more training data, so it can achieve better perfor-

mance, but much less testing data, which handicaps its ability to produce a wide and

consistent margin.

While DPPCA is better on average for every cross-validation run, it was not

always better for every single training fold. Table 7.2 shows how often each algorithm

beat the other during each 10-experiment validation run, as well as the margin of

that victory. In cases where the two algorithms tied, neither was counted as winning.

We note that DPPCA not only wins more frequently, but when it wins it does so by

a larger margin.
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Due the relatively small data sets, we saw a large variance between different

test/train splits; there could be as much as a 15% difference in accuracy (the same

for both techniques) between the different splits of a single 10-fold cross-validation

run. This behavior suggests that the number of training samples was a limiting

factor in the final performance of the classifiers. Additionally, the average accuracy

achieved during the 10-fold cross-validation experiments was around 10% higher than

that achieved during the 5 × 2 cross-validation experiments, which lends support to

this hypothesis. The difference between the classification accuracy achieved by the

“flat” and “deep” methods was rarely more than a few percent, but it also showed a

very small variance, proving to be quite stable across all the different experiments.

Thus, we expect that a larger data set would show improved accuracies for both flat

and deep methods, but we do not expect the difference between flat and deep would

be impacted greatly.

Table 7.3 shows the average mean-squared reconstruction error (MSE) that results

from projecting into and then out of each feature space, along with the average

accuracy for each method. These results do not show any significant difference in

MSE between the flat and deep techniques. As expected, increasing the length of the

raw data vectors while leaving the dimensionality of the generated feature space fixed

leads to higher MSE. Higher classification accuracy without higher MSE suggests that

the deep technique is doing a better job of keeping “meaningful” features.
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Table 7.4 shows the results of randomly permuting the data before applying the

learning process. The fact that permutation makes no significant difference for Flat

PCA is exactly what we would expect; since PCA works by looking an global sta-

tistical properties, the order in which the features appear makes no difference in the

projected data. In the case of the deep technique, however, there is a significant

difference; performance on the permuted dataset is far worse than on the unmodified

images.

7.5 Conclusions

The central result of this work is that spatial partitioning and deep architec-

tures can yield improved results even without connectionist models, and that this

performance still seems to be due to a bias assuming the presence of spatially local

structure. While many authors have claimed that deep techniques can learn abstract

features, it has never been demonstrated that this property holds even without com-

plex connectionist models. We have demonstrated that this property is, at least in

part, created directly by the structure of the deep spatially local partitioning, and

not just by the interactions of non-linearities in a multi-layer connectionist network.

Both our deep and flat techniques have the same length output, and the same total

amount of input data, meaning that neither one has an information-theoretic advan-
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tage in its representational power. Additionally, removing the local structure from

the data via random permutation results in a significant performance loss for the deep

technique only, once again demonstrating that the spatial bias is having the impact

we predicted.

These experiments provide further evidence that our original hypotheses hold. In

particular, they continue to provide evidence that images have spatial structure that

fits the local structure bias reasonably well, and they confirm that we can use parti-

tioning to take advantage of this structure even in models which are non-connectionist

and entirely linear.
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Spatial-biased Random Forests

8.1 Motivation

While the approaches discussed in the previous sections apply the ideas of spatially

local structure to models beyond CNNs, they all still take the basic approach of

operating on spatially partitioned sub-vectors in a hierarchical fashion. Our next

step was to apply the same bias to a technique not related to CNNs in any way, to

demonstrate that a spatial bias can still improve performance.

For this set of experiments, we chose Random Forests (RFs) (see Section 2.3.5

for a full description). In particular, we used the style of random-projection Random

Forest described in [134] as Randomer Forests (RerFs). We will refer to our modified

technique as Spatial-biased projective random forests, or SBPRFs.
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For the sake of clarity and consistency, we will use Breiman’s terminology [12]

and call the basic, single-index random forest algorithm “Forest-RI” (i.e., Forest us-

ing Random Indexes). We will sometimes refer to the RandomerForest algorithm as

“Forest-RP” (Forest using Random Projections), and our novel spatially-biased algo-

rithm as “Forest-RS” (Forest using Random Structured projections) when doing so

will make things easier to understand.

Like PCA, Random Forests are a well-known and widely studied technique with

many nice theoretical properties. There are a wide variety of problems for which

Random Forests outperform other learning algorithms [16, 33], but computer vision

problems do not generally fall into this class. Therefore, we were interested to see

how much performance benefit there was in applying a spatial bias to random forests

for these tasks.

It is worth noting that classic RFs that select a single feature to use as a split-

ting criterion struggle with problems that require examination of multiple features

simultaneously (such as XOR or parity problems); RerFs use a linear combination of

a random subset of features at each node, which gives them much greater flexibility

in this type of task.

Even with random projections, however, RFs do not have a good mechanism for

handling certain types of invariance. By contrast, one of the strengths of CNNs is that

the repeated pooling steps introduces a significant degree of spatial invariance, which
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is useful in some types of vision tasks. Tasks like handwritten digit classification

or face recognition often have significant pre-processing done to ensure that spatial

invariance is not required (i.e., each image is scaled and centered the same way),

but more challenging tasks like general object recognition do not offer this type of

preprocessing (CIFAR and ImageNet are examples of this type of problem). This

means that RFs, even with a spatial bias, are not currently good candidates for these

problems. Our goal in this work is to show that RFs can be made to take advantage

of spatially local information; we view the introduction of spatial invariance to be an

important direction for future work.

8.2 SBPRFs

Standard RerFs work by using random projections of the data to generate node-

splitting candidates (see Section 2.3.5 for details). SBPRFs work according to the

same general tree-creation algorithm but with a modification to the way in which the

random projections are generated.

In a standard RerF, candidate projections are created by choosing features at

random from an n dimensional feature vector, with each feature having a likelihood

of being chosen of 1/k for some k much less than n. Each feature is then assigned

a weight in the range [−1, 1]. These random feature-weight sets can then be used
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as basis vectors; projecting data vectors onto these basis vectors is equivalent to

computing the weighted linear combination for that data vector, and produces a

scalar output. The scalar projection value is then considered as a candidate for

splitting the tree node, in the same way as for any other type of random forest.

In SBPRFs, the difference is that the features for each projection are chosen

using a different distribution. In a standard RerF, features are chosen according to a

uniform distribution. In a SBPRF, features are chosen according to a spatially-biased

distribution.

For spatial data (such as images), each candidate projection has a “center” location

sampled from a uniform distribution across each spatial dimension of the input (e.g.,

{X,Y } for a grayscale image, {X,Y,C} for a color image). This location is then used

as the mean of a Gaussian distribution from which features are sampled. The variance

of the Gaussian is a function of the tree-depth of the node; as depth increases, so does

variance (the variance is also scaled based on the size of each dimension, in the case

of not all spatial dimensions being equal in size). Note that samples drawn from the

Gaussian are also subject to the bounds of the actual data space, so the sampling

process on the whole does not represent a true Gaussian distribution but one which

is bounded by the edges of the image.

See Algorithm 8.5 for pseudocode showing how to create a candidate projection. v

will be determined by the data; for example, the CIFAR-10 dataset (see Section 3.3)
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contains 32 × 32 pixel images with 3 color values per pixel, so the result would be

something like v = {32, 32, 3} and n = 3. The order of the values will depend on the

way the values are laid out in memory (i.e. are the three color values for a given pixel

adjacent, or are we storing all the red values, followed by all the green values and all

the blue values).

The effect is that decision nodes near the root of a tree will tend to have projections

based on features tightly clustered in a small spatial region. As tree depth increases,

the features will tend to become more widely spread out, until eventually there is little

spatial bias remaining, and the sampling distribution begins to resemble a uniform

one again.

This sampling process tends to mean that each tree in the forest will, at its

root node, effectively focus its “attention” on a particular spatial region. This will

encourage the discovery of spatially local statistical relationships in the data. The

gradual increase of the spatial region size is necessary to allow the trees to eventually

capture statistical relationships that are non-local; if the sampling area is kept small

at all tree nodes, tree performance is decreased.

With a sufficient number of trees in the forest, the overall forest will still spread its

feature-samples across the data space in an approximately uniform way; the difference

is that the sampling is now heteroscedastic thanks to the per-node spatial bias.
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Algorithm 8.5 Pseudocode for an algorithm to generate a spatially biased random
projection. Can be used to generate the rows of the matrix A used in Algorithm 2.2.
a ∼ b indicates that a is sampled from b. Note that k may also be sampled from a
Gaussian distribution; α and β are tunable parameters.
Input: Spatial stride vector v with n elements, tree depth of the current node d,

scaling parameters α and β, non-zero components to generate k
Output: Output projection f

1: f ← 0
2: for each non-zero component do
3: for i = 1 to n do
4: µ ∼ Uniform(1, vi)
5: σ ← (αi + (βi · d)) · vi
6: repeat
7: idxi ∼ Gaussian(µ, σ)
8: until 1 ≤ idxi ≤ vi
9: end for

10: o← idx1
11: for i = 2 to n do
12: o← o · vi−1
13: o← o+ idxi
14: end for
15: fo ∼ Uniform(−1.0, 1.0)
16: end for
17: return f

8.3 Methodology

We chose two standard computer vision datasets to test the impact of spatially

biasing the random projections, namely the MNIST and SVHN datasets (described

in detail in 3.1 and 3.2 respectively). For each dataset, we used the provided test-

train split, to allow easy comparison of our results to those obtained by others using

different techniques. Our performance measure was classification accuracy on the

testing set.
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Experiments were performed using basic, single-index random forests (Forest-RI),

standard RerFs (Forest-RP) and SBPRFs (Forest-RS); several meta-parameters were

examined, and values were chosen experimentally (see Section 8.4 below).

In all cases, the learning algorithm is recursive, with each node of the tree taking a

training set (consisting of the training examples assigned to that node by its parent, or

the full set of examples assigned to the tree if it is the root node). A set of c candidate

splitting projections are generated, using either a single randomly selected feature

(Forest-RI), unbiased random projections (Forest-RP) or spatially biased random

projections (Forest-RS); for the latter two techniques, each projection has (on average)

k non-zero components. For each candidate, the data are sorted according to the

projected value, and mid-points between each pair of adjacent values are considered

as possible split points. The optimal split point is determined by computing a utility

value for each possible split point; for our experiments, we used information gain as

our utility estimate, though other measures of purity can be used. We tried Gini

impurity, but found that information gain performed slightly better on our data.

The termination criteria for the recursive tree-building algorithms were: having

a completely pure sample (i.e., all examples are the same class), having fewer than

nmin total samples, or failure to find any split that improves utility by more than ϵ.

In practice, we found there was no benefit from using non-zero values of ϵ for our

data.
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8.4 Results and Discussion

8.4.1 Parameter Tuning

We experimented with several parameters for our algorithms to find values that

produced good results. As with our other experiments, this was not an exhaustive

search, since we are more interested in the relative performance of the spatial and non-

spatial techniques. For the parameters shared by multiple algorithms, all algorithms

showed the same trends. This allowed us to use the same values for all versions,

resulting in a fair comparison without disadvantaging any algorithm.

For all types of forests, each tree was trained using a randomly chosen subset of

the available training examples; the size of this subset is a parameter of the algorithm.

Experimentally, values that were too low resulted in underfitting regardless of forest

size, and values that were too high resulted in performance that did not scale as well

with increasing forest size. In effect, if each tree trains on the full set, there is less

independence between the members of the ensemble, so adding more members has less

benefit. For the results reported here, each tree was trained with 70% of the training

examples. This is a similar number to what others have suggested is reasonable [12].

For all types of forests, increasing the number of candidates splits c to be consid-

ered at each node tended to improve performance up to some point of diminishing

returns. For the experiments reported here, we used a value of 200.
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For the MNIST dataset, the minimum number of examples needed before a node

was split (nmin) was set to 1, meaning the algorithm ran until nodes were pure or

no candidate split was able to reduce entropy. Higher values were found to hurt

performance across all techniques. For the SVHN dataset, we used a value of 3 for

computational reasons; with nmin = 1, the larger forests outgrew the 1Tb of main

memory available on our systems.

For both Forest-RP and Forest-RS, the average number of non-zero projection

components k was set to 3, as this seemed optimal for both techniques on our data.

Higher values were computationally more expensive, and significantly higher values

were found to negatively impact the generalization of both techniques, though the

effect was stronger for Forest-RP than for Forest-RS. In fact, larger values for this

parameter frequently resulted in both Forest-RP and Forest-RS performing worse

than Forest-RI on novel testing data, though Forest-RS continued to out-perform

Forest-RP.

For Forest-RS, there were additional parameters controlling how the variance of

the Gaussian used to select features behaved. The results were not particularly sensi-

tive to small changes, but we did try a range of values. For the experiments reported

here, the variance was calculated as:

σ = (0.05 + (0.015 · d)) · w
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MNIST SVHN
Forest-RI 0.967 0.701
Forest-RP 0.971 0.706
Forest-RS 0.974 0.722

Table 8.1: Classification accuracy for random forest variants on MNIST and SVHN data.
Forest-RI uses one feature to split nodes, Forest-RP uses a random weighted
combination of features, and Forest-RS uses a spatially biased random weighted
combination of features.

where d is the tree depth of the current node, and w is the width of the current image

dimension (in our experiments, the images used were square, so width and height

were equivalent). This resulted in fairly tight clusters near the root of the tree, and

widely spread ones near the leaves. Sample coordinates outside the image boundaries

were re-sampled from the same distribution until valid coordinates were obtained.

8.4.2 Performance Analysis

Table 8.1 shows the final classification accuracy on testing data of each ensemble

using the parameters described above. The MNIST results come from a forest of 1008

trees, and the SVHN results come from a forest of 384 trees.

In all cases, Forest-RS outperforms Forest-RP, which in turn outperforms Forest-

RI. This ordering was extremely consistent across our tuning experiments so long

as projective methods were not given too many non-zero components. For the null

hypothesis that two techniques were equivalent, a paired Wilcoxon signed rank test

gave a likelihood of p ≤ 2× 10−16 for all pairs using the data from Figure 8.1.

202



CHAPTER 8. SPATIAL-BIASED RANDOM FORESTS

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 10  20  30  40  50  60  70  80  90  100

C
la

ss
if
ic

a
ti

on
 A

cc
u
ra

cy

Ensemble Size

Random Forest Size vs Accuracy

Forest-RI
Forest-RP
Forest-RS

Figure 8.1: Plot of classification accuracy vs number of trees in the forest for the MNIST
dataset.
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Figure 8.2: Plots of classification accuracy vs number of trees in the forest for the MNIST
dataset. The first plot shows behavior for small ensemble sizes, the second
plot zooms out to show the behavior for large ensemble sizes.
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The performance of all techniques is better on MNIST than SVHN, which is

not surprising given that SVHN is a harder problem. None of these techniques is

competitive with CNNs on these datasets, but again this is unsurprising given that

decision trees have no mechanism for handling several types of invariance that CNNs

allow to some degree, including translation, scale, and local-contrast.

Figure 8.1 shows the performance of ensembles of varying sizes on the MNIST

dataset. For each ensemble size value, 20 sample forests containing that many random

trees were tested, and their performance was averaged. This was done for each size

in the range of 1 to 100.

Figure 8.2 contains similar plots, but with different ranges to examine the behavior

at different scales. We can see that for very small ensembles (less than 5 trees), Forest-

RS does not perform as well as the other methods. For ensembles larger than 5 trees,

the ordering of the techniques is once again consistently in line with the final results.

This suggests that part of the performance advantage of the Forest-RS technique

may be that the individual trees are slightly weaker but have greater independence,

resulting in more power from combining them.

The second plot in Figure 8.2 shows the behavior for very large numbers of trees.

The plot starts at an ensemble size of 50, so the range of accuracies represented is much

narrower than in the other plots. This plot shows that performance improvement

mostly levels off after the first 200 or so trees, increasing only very slowly after that.
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After about 500 trees, the remaining fluctuations appear to be mostly noise, though

it is possible that on average some very slow improvement will continue to occur.

This is in line with other work on random forests, which often suggests that there

is no upper bound to how many trees can productively be combined. In particular,

the claim is sometimes made that random forests are immune to overfitting, because

increasing the complexity of the model (by adding more trees) will never cause the

expected performance to decrease.

Our results support this idea to the extent that more trees will never reduce

expected performance. However, in our experiments it also became clear that this

claim relies on a very narrow definition of “overfitting.” In particular, increasing the

power of the individual trees in the ensemble can result in lower overall performance,

regardless of how many trees are in the ensemble; we saw this when using values of k

greater than 3 for both the Forest-RP and Forest-RS models.

Additionally, the test-set performance of our forests was often considerably lower

than their train-set performance; for the MNIST dataset, the forest classified the

training data with zero error, and for the SVHN dataset, the forest classified the

training data with more than 98% accuracy, as compared to the testing data accura-

cies reported in Table 8.1. This indicates that the model on the whole is fitted better

to the training data than the testing data, which is an alternative (and broader)

definition of “overfitting.”
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8.5 Conclusions

Overall, these results demonstrate that it is possible to introduce a spatial bias into

random forests, and to do so without a strongly defined spatial partitioning scheme.

Even with a relatively weak form of spatial bias, incorporating such a bias improves

the performance of random forests on spatial data. Additionally, the weaker bias

means that unlike many of the previously presented methods, applying this method

to randomly permuted data should result in it being mathematically equivalent to the

Forest-RP algorithm; this means it will have lower performance than on the spatial

data, but it should not fall below the performance of the baseline method. This sug-

gests that this type of bias is more robust to the possible absence of spatial structure,

which is a potential advantage over CNNs and other fixed-partition methods.
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Conclusions

9.1 Overview

This dissertation began with the hypothesis that Convolutional Neural Networks

have an inductive bias which assumes the presence of spatially local structure. Through

experimental and theoretical analysis, we demonstrated that image data does exhibit

this type of structure, and that Convolutional Neural Networks rely heavily on its

presence.

We devised a mathematical framework for describing this type of bias, which both

encompassed existing methods and suggested ways of introducing local structure as-

sumptions into other methods. We then applied this insight to a variety of different

techniques. We used a spatially partitioned training scheme to improve the perfor-
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mance and convergence speed of Restricted Boltzmann Machines, and showed that

Deep Belief Networks trained this way retain spatial structure at all levels of depth,

while traditionally trained ones do not.

We also created a Deep Partitioned Principal Component Analysis algorithm,

which demonstrated that similar behavior can be produced by a non-connectionist

model, even when the model is completely linear. Finally, we introduced a stochastic

spatial bias into random forests, and demonstrated that we can make use of a spatial

bias even without a fixed spatial partitioning the inputs.

9.2 Main Contributions

9.2.1 Local Structure

In Chapter 4, we defined the concept of local structure as a statistical property

of subspaces in a dataset. We provided both intuitive conceptual descriptions and

formal statistical ones for how local structure can be defined and what it looks like.

We then described the special case of spatially local structure, in which the features

of a data vector have some natural spatial organization to them. In this case, we can

describe statistical information local to particular spatial regions of our input vectors.

This formulation allows us to apply spatial statistics techniques to our data, as well
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as offering a framework for describing the architecture and behavior of techniques like

Convolutional Neural Networks.

We also defined a formalism for feature-space partitioning and described a number

of different types of partitioning functions that can be used for different types of

problems.

Finally, we described some statistical tools that can be used to analyze spatially

local structure in data. We then applied these tools to our data (described in Chap-

ter 3), and examined the results. Finally, we described a way to destroy spatial

structure by applying a random permutation to the feature ordering of data vectors,

and showed that our analytic tools demonstrated that these “permuted” datasets no

longer contained spatially local structure.

9.2.2 Spatial Bias in Convolutional Neural Net-

works

In Chapter 5, we used both the original and permuted versions of several image

datasets to train basic multi-layer-perceptron style networks, showing that both ver-

sions of the data produced the same results. This demonstrated that the random

permutation had not impacted the overall learnability of the data. When we trained

Convolutional Neural Networks on the same data, however, we demonstrated that
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while they were able to significantly outperform the fully connected networks on the

original data, they were unable to learn effectively from the permuted data. In fact,

since the final layers of a Convolutional Neural Network form a fully connected net-

work, the use of convolutional layers appears to be worse than the identity function,

actively hurting the ability of the top layers to learn on the permuted data.

This confirms that Convolutional Neural Networks rely on the existence of spa-

tially local structure, while fully-connected networks do not. It also helps confirm

that the analytical tools presented in the previous chapters are measuring the same

kind of local structure that Convolutional Neural Networks take advantage of.

9.2.3 Partitioned Training of RBMs and DBNs

In Chapter 6, we introduced a method for training Restricted Boltzmann Machines

based on a spatial partitioning of the input data, and showed that this training method

resulted in faster convergence and lower reconstruction error rates in comparison to

the standard training method. We also showed that, much like Convolutional Neural

Networks, this performance advantage only applied to data with spatial structure.

We then used this partitioned training method to train successive layers of a Deep

Belief Network, and showed that such a network again outperforms a naïvely trained

one on spatial data. We also showed that the hidden node activations of each layer in

a partition-trained network retained spatial patterns, while the Deep Belief Network
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trained using the traditional algorithm did not display local structure in its hidden

nodes.

9.2.4 Deep Partitioned PCA

In Chapter 7, we introduced a hierarchical, spatially partitioned variation on

Principal Component Analysis. As with the other spatial models, we showed that

this technique produced better features for classification than traditional, non-spatial

Principal Component Analysis. Also as with the other spatial models, we showed that

the spatial algorithm had significantly lower performance on randomly permuted data,

while the non-spatial algorithm did not.

What makes this result interesting is that the technique presented is entirely linear,

and is not a connectionist model. This demonstrates that the ability to make use of

spatially local information is not simply an emergent feature of complex connectionist

architectures and composed non-linear functions.

9.2.5 Spatial-biased Random Forests

In Chapter 8, we introduced a spatially biased variation on the Random Forest

ensemble learning algorithm. This model differed from the others in that there was

no fixed partitioning of data, but rather a stochastic partitioning generated on a per-
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node basis. Since standard random forests already make use of a stochastic per-node

partitioning, the only change we made in our method was to the distribution used for

generating the partitions. Where standard random forests use a uniform distribution,

we used a Gaussian distribution with a randomly chosen mean.

We showed that spatially-biased random forests are able to out-perform otherwise

equivalent unbiased random forests when applied to spatial data. Unlike the other

techniques, this one uses a much weaker spatial bias; in fact, its performance on non-

spatial data will be the same as the unbiased version, so it can be considered more

robust against the absence of spatial information than the other spatial methods

described.

9.3 Future Work

The work presented in this dissertation represents only the beginnings of an in-

quiry into the inductive biases that have allowed Convolutional Neural Networks to

achieve such high performance on spatio-temporal learning tasks. As such, there

are a number of interesting directions for further inquiry, including the introduc-

tion of spatial bias into more models, the application of local structure learning to

non-spatio-temporal data, and the examination of additional biases present in Con-

volutional Neural Networks.
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9.3.1 Adding Spatial Bias to Existing Techniques

We have demonstrated several ways of adding spatial bias to existing techniques,

and shown in each case that they result in improved performance relative to non

spatially biased versions of the same techniques. In many ways, however, the work

performed so far is as much proof-of-concept as it is practical, since Convolutional

Neural Networks still have superior overall performance for the standard computer

vision tasks we examined.

We believe that in time the concept of feature-space partitioning may become

a powerful tool in the broader arsenal of machine learning, such that selecting a

partitioning scheme might be just one more choice made by an engineer, rather than

being viewed as a stand-alone technique. In the shorter term, however, there are both

many learning algorithms that might benefit from the introduction of spatial bias,

and many ways in which such bias could be introduced.

9.3.2 Applications to Non-spatio-temporal Data

The problems examined in this dissertation have been restricted to standard com-

puter vision benchmarking tasks performed mostly on standard datasets. This was

done because we were specifically targeting the tasks on which Convolutional Neural

Networks had demonstrated such success. Additionally, the use of standard datasets
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makes it easy for researchers familiar with these data understand our results and com-

pare them to other work. However, we believe that the broader idea of partitioned

learning need not be restricted to image tasks. A first step would be application to

other, non-image spatio-temporal data.

The more interesting (and more difficult) task is to discover ways of generating

useful partitioning schemes for data that is not inherently spatio-temporal in nature.

This will likely require significant theoretical and statistical work, as well as practical

experimental demonstrations. We believe that probabilistic graphical modeling and

latent variable analysis may be a promising starting point for such an analysis. Work

by Strasser et al. [128, 129] is one possible starting point.

If heuristics for partitioning arbitrary data could be created, it could enable per-

formance improvement for the broader space of machine learning problems, including

everything from multivariate discrete data to multi-view and heterogeneous data. It

is additionally worth noting that partitioning can also provide ways of increasing par-

allelization. In the past decade, an increasing fraction of the Moore’s Law increase in

transistor counts has been dedicated to improving parallelism, rather than increas-

ing clockspeed, so the ability to take advantage of this hardware is correspondingly

becoming more important in machine learning.

Finally, we have shown that under some circumstances partitioning can signifi-

cantly decrease time to convergence when it is applied to algorithms that scale poorly
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with things like clique size. For these techniques, simple increases in computational

power may never be sufficient to make them practical at big-data scales; feature-space

partitioning may be a way of helping these techniques scale more effectively.

9.3.3 Other Biases of Deep Learning

While our work presents strong evidence that Convolutional Neural Networks have

an inductive bias that assumes spatially local structure is present, this is by no means

the only inductive bias of the method. Given how successful the technique has been,

we believe further investigation is required to tease apart all of the different biases

that allow it to work so well.

For example, Convolutional Neural Networks frequently produce high-level fea-

tures that show high degrees of invariance to things like position and scale; the work

we presented in this dissertation does not have these properties. The ability to un-

derstand and model the way these invariances are introduced would again allow us

to introduce similar invariances into other techniques.

Additionally, other deep learning models could be examined for inductive biases.

For example, several deep recurrent network models have been demonstrated to have

useful and interesting properties, including Long Short-Term Memories [47, 48, 60]

and Neural Abstraction Pyramids [6, 7]. An examination what inductive biases enable
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these models to work would be of significant benefit to the field of machine learning

as a whole.
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