
DECOMPOSABLE NEURO SYMBOLIC REGRESSION WITH UNCERTAINTY

AWARENESS

by

Giorgio L. Morales Luna

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

Doctor of Philosophy

in

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

August 2025

©COPYRIGHT

by

Giorgio L. Morales Luna

2025

All Rights Reserved

ii

ACKNOWLEDGEMENTS

This research was supported by the Data Intensive Farm Management project (USDA-

NIFA-AFRI 2016-68004-24769 and USDA-NRCS NR213A7500013G021). Computational

efforts were performed on the Tempest HPC System, operated by University Information

Technology Research Cyberinfrastructure at MSU.

I would like to express my deepest gratitude to Dr. John Sheppard, my advisor and

committee chair, for his guidance and mentorship throughout this intense and crucial chapter

of my life. I am also grateful to my fellow members of the Numerical Intelligent Systems

Laboratory at Montana State University for their valuable comments and suggestions. I

extend my sincere thanks to the members of my thesis committee, Dr. Joseph Shaw, Dr.

Sean Yaw, and Dr. Matthew Revelle, for their valuable feedback, time, and contributions to

the development of this dissertation.

Finally, I am immensely thankful to my beloved wife, Flor, for her support, patience,

and inspiration throughout the dissertation process, and for standing by me through the

ever-changing and challenging years of my Ph.D. journey. I am also profoundly thankful to

my parents, Jorge and Sandra, for their unconditional love and constant presence in my life;

they have always been my foundation and greatest source of strength.

iii

TABLE OF CONTENTS

1. INTRODUCTION .. 1

1.1 Motivation .. 2
1.1.1 Symbolic Regression .. 2
1.1.2 Uncertainty Quantification ... 4
1.1.3 Precision Agriculture ... 6

1.2 Research Questions .. 8
1.3 Overview... 9
1.4 Contributions .. 11
1.5 Organization ... 15

2. BACKGROUND... 17

2.1 Transformer .. 17
2.1.1 General Architecture.. 17
2.1.2 Input Embedding and Positional Encoding.. 19
2.1.3 Attention .. 20
2.1.4 Encoder and Decoder Stacks .. 23

2.2 Genetic Algorithms.. 24
2.2.1 Representation and Initialization .. 24
2.2.2 Fitness Evaluation ... 26
2.2.3 Selection ... 26
2.2.4 Crossover .. 27
2.2.5 Mutation... 28
2.2.6 Replacement.. 28
2.2.7 Termination .. 29

2.3 Genetic Programming .. 30
2.3.1 Representation and Initialization .. 30
2.3.2 Crossover .. 32
2.3.3 Mutation... 33

2.4 Summary .. 34

3. MULTI-SET SYMBOLIC SKELETON PREDICTION ... 36

3.1 Problem Definition .. 37
3.2 Set Transformer... 41

3.2.1 Set Attention Blocks .. 43
3.2.2 Set Transformer Architecture ... 45

3.3 Multi-Set Transformer .. 47
3.3.1 Multi-Set Transformer Architecture .. 47

iv

TABLE OF CONTENTS – CONTINUED

3.3.2 Multi-Set Transformer Training .. 51
3.3.3 Dataset Generation.. 54
3.3.4 Avoiding Invalid Operations ... 60

3.4 Experimental Results ... 68
3.5 Summary .. 71

4. DEEP EVOLUTIONARY SYMBOLIC REGRESSION ... 73

4.1 Background... 73
4.2 Proposed Method .. 77

4.2.1 Problem Definition .. 78
4.2.2 Opaque Model Training ... 78
4.2.3 Univariate Symbolic Skeleton Prediction ... 79
4.2.4 Merging Univariate Symbolic Skeletons ... 82

4.2.4.1 Merging Skeleton Expressions ... 83
4.2.4.2 Selecting Combined Skeleton Expressions .. 87
4.2.4.3 Cascade Merging ... 90
4.2.4.4 Underlying Function Estimation ... 91

4.2.5 Skeleton Performance Evaluation .. 91
4.3 Experimental Results ... 93

4.3.1 Synthetic Datasets ... 93
4.3.2 Univariate Skeleton Prediction Performance .. 95
4.3.3 Underlying Function Estimation Performance .. 97

4.4 Discussion ..100
4.4.1 Univariate Skeleton Predictions Results..101
4.4.2 Underlying Function Estimation Results ..104

4.5 Summary ...106

5. UNCERTAINTY MANAGEMENT...108

5.1 Background..110
5.1.1 Prediction Interval Learning ..110
5.1.2 Uncertainty Minimization..113

5.2 Prediction Interval-Generation Neural Networks ...115
5.2.1 Dual Accuracy-Quality-Driven Loss Function ...117
5.2.2 Batch Sorting ...121
5.2.3 Self-adaptive Coefficient ..121
5.2.4 Parameter and Hyperparameter Selection...124
5.2.5 PI Aggregation Using MC-Dropout..124
5.2.6 Comparison to QD-Ens and QD+..125

v

TABLE OF CONTENTS – CONTINUED

5.3 Adaptive Sampling with Prediction-Interval Neural Networks127
5.3.1 Prediction Interval Generation...128
5.3.2 Potential Epistemic Uncertainty ..129
5.3.3 Batch Sampling ..131

5.4 Integrating Symbolic Regression into Adaptive Sampling...................................136
5.5 Experimental Results ..138

5.5.1 Prediction-Interval Learning ..139
5.5.1.1 Experiments with Synthetic Data ..139
5.5.1.2 Benchmarking Experiments ...141

5.5.2 Syntehtic Datasets for Adaptive Sampling ..146
5.5.3 Adaptive Sampling ...148
5.5.4 Symbolic Regression and Adaptive Sampling ..152

5.6 Discussion ..154
5.6.1 Prediction-Interval Learning Results ..155
5.6.2 Adaptive Sampling Results..160
5.6.3 Symbolic Regression and Adaptive Sampling Results161

5.7 Summary ...163

6. REAL-WORLD APPLICATION — PRECISION AGRICULTURE165

6.1 Background..167
6.1.1 On-Field Precision Experimentation...167
6.1.2 Crop Yield Prediction ...171

6.1.2.1 Dataset ..172
6.1.2.2 Yield Prediction Model ...174
6.1.2.3 Hyper3DNetReg Architecture ..176

6.1.3 Fertilizer Management Zones Clustering ...179
6.1.3.1 N-response Curve Generation ..182
6.1.3.2 Functional Principal Component Analysis ..185
6.1.3.3 Management Zone Clustering ..186

6.2 Prediction Intervals for Crop Yield Prediction ..188
6.3 Parametric N-response Curve Learning ..192
6.4 Adaptive Sampling with Simulated Field Data ...198

6.4.1 Simulated Field Data for Adaptive Sampling ..198
6.4.2 Adaptive Sampling Experiments ..202

6.5 Summary ...203

7. CONCLUSIONS ..206

7.1 Contributions ...206

vi

TABLE OF CONTENTS – CONTINUED

7.2 Future Work...212
7.3 Concluding Remarks ...215

REFERENCES CITED...216

APPENDIX: SeTGAP Comparison Results ..234

vii

LIST OF TABLES

Table Page

1. Table 3.1 Vocabulary used to pre-train the Muli-Set Transformer. 50

2. Table 3.2 Un-normalized sampling probabilities of the unary
and binary operators. .. 55

3. Table 3.3 Types of forbidden combinations of operators. 56

4. Table 3.4 Comparison of the number of trainable parame-
ters of the different transformer-based SR methods...................................... 69

5. Table 3.5 Comparison of target and estimated skeletons on
100 validation skeletons. .. 72

6. Table 4.1 Equations used for experiments .. 94

7. Table 4.2 Comparison of skeleton prediction results for
problem E2... 97

8. Table 4.3 Skeleton evaluation performance comparison 98

9. Table 4.4 Comparison of predicted expressions with rounded
numerical coefficients..100

10. Table 4.5 Extrapolation MSE Comparison ..101

11. Table 4.6 MSE comparison using SeTGAP with noisy data........................102

12. Table 5.1 PI metrics evaluated on the synthetic dataset
using 5× 2 cross-validation. ..141

13. Table 5.2 PI metrics evaluated on the benchmark datasets
using 10-fold cross-validation. ...145

14. Table 5.3 Functions and noise terms of the 1-D problems...........................147

15. Table 5.4 AUUC comparison for the 1-D problems153

16. Table 5.5 Statistical significance tests between ASPINN
and the compared methods. ..153

17. Table 5.6 Evolution of the identified expressions during the
AS process...155

18. Table 6.1 Hyper3DNetReg architecture...177

viii

LIST OF TABLES – CONTINUED

Table Page

19. Table 6.2 PI metrics evaluated on the yield prediction datasets.191

20. Table 6.3 Comparison of skeleton prediction results for
Field A..196

21. Table 6.4 AUUC comparison for the simulated field site202

22. Table 6.5 Statistical significance tests between ASPINN
and the compared methods. ..202

23. Table A.1 Comparison of skeleton prediction results (E1–E9)......................235

24. Table A.2 Comparison of skeleton prediction results (E10–E13)236

25. Table A.3 Comparison of predicted expressions — Iteration 1236

26. Table A.4 Comparison of predicted expressions — Iteration 2237

27. Table A.5 Comparison of predicted expressions — Iteration 3238

28. Table A.6 Comparison of predicted expressions — Iteration 4239

29. Table A.7 Comparison of predicted expressions — Iteration 5240

30. Table A.8 Comparison of predicted expressions — Iteration 6241

31. Table A.9 Comparison of predicted expressions — Iteration 7242

32. Table A.10Comparison of predicted expressions — Iteration 8243

33. Table A.11Comparison of predicted expressions — Iteration 9244

34. Table A.12Comparison of predicted expressions — Iteration 10245

35. Table A.13Comparison of expressions learned by SeTGAP
Under Noisy Conditions..246

ix

LIST OF FIGURES

Figure Page

1. Figure 1.1 Overview of the proposed SR framework with
uncertainty awareness.. 12

2. Figure 2.1 Transformer model architecture [181]. 18

3. Figure 2.2 Multi-head self-attention [181]. .. 22

4. Figure 2.3 High-level flowchart of the genetic algorithm
using one-point crossover and randomized mutation [144]. 25

5. Figure 2.4 Sub-tree crossover example. Nodes with bold
edges indicate the selected crossover points. Note that the
crossover points need not occur at the same level in the two parents............. 33

6. Figure 3.1 An example of a set X with 200 samples and a
fixed value x2 = 5, and the corresponding response y................................... 38

7. Figure 3.2 An example of an MSSP problem. ... 41

8. Figure 3.3 An example of a MSSP problem using the
Multi-Set Transformer. ... 48

9. Figure 3.4 Modification of the Multi-Set Transformer out-
put generation during training. .. 53

10. Figure 3.5 Example of a randomly generated expression. 56

11. Figure 3.6 Example of four input–response pairs sets gen-
erated from e(x) = c1 x

log(c2x2+c3)
+ c4.. 59

12. Figure 3.7 A generation example using function f(x) =
−3.12x

sin(1.45x)−2.2. (Top) Generated data on the entire domain

[−10, 10]. (Bottom) Detailed view of how singularities are avoided. 67

13. Figure 3.8 Learning curves obtained from training the
Multi-Set Transformer. .. 70

14. Figure 4.1 Multi-set symbolic skeleton prediction example.
The analyzed variable is x1. The remaining variables, x2
and x3 are held constant in each input set. ... 80

x

LIST OF FIGURES – CONTINUED

Figure Page

15. Figure 4.2 Example of a selected subtree of e2(xq) within
a sum merging with one or more subtrees from e1(xS),
illustrating four out of the nine possible cases. .. 87

16. Figure 4.3 Skeleton prediction example for variable x2 on
problem E2... 96

17. Figure 5.1 An example of our PI-generation method on a
synthetic dataset [128]. ...116

18. Figure 5.2 L3 penalty calculation, (a) without batch sort-
ing; (b) with batch sorting [128]. ..122

19. Figure 5.3 Epistemic uncertainty minimization through AS........................128

20. Figure 5.4 PIs generated at location xp. (a) Data points
located at xp only. (b) PI width is affected by epistemic
uncertainty. (b) PI width is mainly due to aleatoric uncertainty.131

21. Figure 5.5 MSSP example for solving a 1-D problem.138

22. Figure 5.6 Performance of the PI generation methods on
the synthetic dataset. ...142

23. Figure 5.7 Box plots of the MPIWval and MSEval scores
of DualAQD, QD+, QD-Ens, and MC-Dropout-PI PI
generation methods on the tested datasets: (a) Synthetic.
(b) Boston. (c) Concrete. (d) Energy. (e) Kin8nm. (f)
Power. (g) Protein. (h) Yacht. (i) Year..144

24. Figure 5.8 MPIW and PICP learning curves obtained for
the Power dataset using DualAQD. (a) η = 0.01. (b) η = 0.1.146

25. Figure 5.9 Initial cos, hetero, and cosqr datasets and the
ideal 95% PIs calculated from εa(x) across the domain.147

26. Figure 5.10 cosqr problem. (a) An initial generated dataset
and the ideal 95% PIs calculated from εa(x) across the
domain. (b) Initial PIs estimated using DualAQD.148

27. Figure 5.11 Adaptive sampling process using ASPINN on
the cos problem...151

xi

LIST OF FIGURES – CONTINUED

Figure Page

28. Figure 5.12 Adaptive sampling process using ASPINN on
the hetero problem..152

29. Figure 5.13 Adaptive sampling process using ASPINN on
the cosqr problem. ..152

30. Figure 5.14 Evolution of the mean PI
(it)
δ and its standard

deviation for the 1-D problems..153

31. Figure 5.15 Comparison of f̂it(x) vs. f̃it(x) throughout the
AS process for problem cos. (a) it = 1. (b) it = 5. (c)
it = 10. (d) it = 15. (e) it = 20. (f) it = 25. (g) it = 30.
(h) it = 35. (i) it = 40. (j) it = 45. (k) it = 50.156

32. Figure 5.16 Comparison of f̂it(x) vs. f̃it(x) throughout the
AS process for problem hetero. (a) it = 1. (b) it = 5. (c)
it = 10. (d) it = 15. (e) it = 20. (f) it = 25. (g) it = 30.
(h) it = 35. (i) it = 40. (j) it = 45. (k) it = 50.157

33. Figure 5.17 Comparison of f̂it(x) vs. f̃it(x) throughout the
AS process for problem cosqr. (a) it = 1. (b) it = 5. (c)
it = 10. (d) it = 15. (e) it = 20. (f) it = 25. (g) it = 30.
(h) it = 35. (i) it = 40. (j) it = 45. (k) it = 50.158

34. Figure 6.1 Steps of the OFPE framework..168

35. Figure 6.2 Yield prediction model using different output
window sizes: (a) 5× 5, (b) 3× 3, and (c) 1× 1 [129].175

36. Figure 6.3 Hyper3DNetReg architecture with a 5×5×8×1
input and a 5× 5× 1 output [129]. ...178

37. Figure 6.4 Yield prediction example of Field A for the year
2020. (a) Ground-truth yield map. (b) Predicted yield
map using our Hyper3DNetReg with WY = 5. (c) Square
error map. (d) Structural similarity map [129]...179

38. Figure 6.5 Generation of a 5×5 array of N-response curves
generated around a field point at coordinates (lat, lon) [124].184

39. Figure 6.6 N-response curves aggregation for a field point
at coordinates (lat, lon) [124]. ...185

xii

LIST OF FIGURES – CONTINUED

Figure Page

40. Figure 6.7 Results obtained for Field A. (a) Delineated
management zones and (b) Aligned approximated N-response
curves for each MZ (N-rate xNr vs. relative yield ry) [124].187

41. Figure 6.8 Results obtained for Field B. (a) Delineated
management zones and (b) Aligned approximated N-response
curves for each MZ [124]. ..188

42. Figure 6.9 Uncertainty maps comparison for Field A.190

43. Figure 6.10 µω vs. ω comparison on the yield prediction
datasets. ..191

44. Figure 6.11 Example of fitted N-response curves using the
identified skeleton for each MZ..196

45. Figure 6.12 Comparison between NN-generated N-response
curves r̃ and fitted curves r̂ from (a) MZ 1, (b) MZ 2, (c)
MZ 3, and (d) MZ 4. Equation r̂ at the bottom of each plot.197

46. Figure 6.13 Evolution of the mean PI
(it)
δ for the simulated

field site. ...203

xiii

LIST OF ALGORITHMS

Algorithm Page

1. Algorithm 3.1 Multi-Set Transformer Training ... 57

2. Algorithm 3.2 Multi-Set Transformer Data Generation 58

3. Algorithm 3.3 Avoiding Invalid Operations .. 64

4. Algorithm 3.4 Modifying Single-Bounded Operations 65

5. Algorithm 3.5 Modifying Double-Bounded Operations................................ 65

6. Algorithm 3.6 Handling Operations with Singularities 66

7. Algorithm 4.1 Univariate Skeleton Generation ... 83

8. Algorithm 4.2 Recursive Skeleton Merging ... 88

9. Algorithm 4.3 Skeleton Combination with Genetic Programming 89

10. Algorithm 5.1 DualAQD method..123

11. Algorithm 5.2 ASPINN’s potential epistemic uncertainty132

12. Algorithm 5.3 ASPINN’s batch sampling method......................................135

13. Algorithm 5.4 MSSP applied to 1-D problems...139

14. Algorithm 6.1 N-response Curve Skeleton Generation195

xiv

ABSTRACT

One of the fundamental goals of science is to discover laws that provide causal
explanations for the observable world. Such discoveries may stem from distilling experimental
data into analytical equations that allow interpretation of their underlying natural laws.
This process is known as equation learning or symbolic regression (SR). However, most
SR methods prioritize minimizing prediction error over identifying the governing equations,
often producing overly complex or inaccurate expressions. Notably, they struggle to identify
the functional form that explains the relationship between each variable and the system’s
response. To address this challenge, this dissertation presents a decomposable SR method
that generates interpretable multivariate expressions by leveraging transformer models,
genetic algorithms (GAs), and genetic programming (GP).

In particular, our interpretable SR method distills a trained “opaque” regression model1

into mathematical expressions that serve as explanations of its computed function. It
employs a Multi-Set Transformer model to generate multiple univariate symbolic skeletons
that characterize how each variable influences the opaque model’s response. The performance
of the generated skeletons is evaluated using a GA-based approach to select a subset of high-
quality candidates before incrementally merging them via a GP-based cascade procedure
that preserves their original skeleton structure. The final multivariate skeletons undergo
coefficient optimization via a GA. We evaluated our method on problems with controlled and
varying degrees of noise, demonstrating lower or comparable interpolation and extrapolation
errors compared to two GP-based and two neural SR methods. Unlike these methods, our
approach consistently learned expressions that matched the original mathematical structure.

Complementing this effort, we explore the role of uncertainty quantification in enhanc-
ing symbolic model reliability. We investigate the use of prediction interval-generation neural
networks to model total and potential epistemic uncertainty, and introduce an adaptive
sampling strategy designed to minimize it. By integrating an uncertainty-aware sampling
process guided by Gaussian process surrogates, we aim to reduce uncertainty not only in
model predictions but also in the symbolic expressions extracted from them. This broader
perspective highlights the importance of uncertainty awareness in SR, especially when
symbolic models are intended for decision-making under limited or costly experimentation,
such as in precision agriculture and other scientific domains.

1We prefer this term over “black-box”: www.acm.org/diversity-inclusion/words-matter

https://www.acm.org/diversity-inclusion/words-matter

1

CHAPTER ONE

INTRODUCTION

The important thing in science is not so much to obtain new facts as to

discover new ways of thinking about them

- Sir William Bragg

Deep learning-based systems have gained significant attention and success in various

domains due to their ability to learn complex non-linear functions. However, these systems

are often described as “opaque models”1 in the literature, emphasizing the high complexity

of the functions they learn and their many required parameters. This aspect poses challenges

in terms of interpretability and traceability from a human standpoint [105]. The term

“opaque models” signifies that despite their accuracy in making predictions, these model’s

inner workings and decision-making processes remain obscure and difficult to comprehend.

This lack of transparency limits their usefulness in applications that require a thorough

understanding of the underlying processes that govern the studied phenomena.

Such understanding holds significant importance within the realm of physical sci-

ences [22, 103]. Scientists employ a systematic approach that involves observing, refining,

and testing models to understand and describe the behavior of phenomena and instantiations

of the physical world. As such, one of the objectives is to obtain explanatory and causal

models that shed light on the underlying mechanisms at play [143, 157]. The ultimate

goal is to uncover and formalize general equations, laws, and parameterizations that govern

these phenomena [22, 27]. Traditionally, scientific progress has relied on human expertise,

1We prefer this term over “black-box”: www.acm.org/diversity-inclusion/words-matter

https://www.acm.org/diversity-inclusion/words-matter

2

intuition, and theoretical frameworks to derive these fundamental principles [89]. However,

the advent of algorithmic approaches presents a paradigm shift in scientific inquiry. These

data-driven algorithms can identify patterns, relationships, and regularities that might elude

human perception alone and are capable of extracting valuable insights and models directly

from empirical observations [148], potentially leading to accelerated scientific progress and

novel insights in the physical sciences and other disciplines.

1.1 Motivation

Motivation for this dissertation stems from three key areas: symbolic regression,

uncertainty quantification, and precision agriculture, which are discussed below.

1.1.1 Symbolic Regression

Symbolic regression (SR) emerges as a powerful technique within the context of data-

driven approaches for scientific inquiry. It offers a promising avenue for the automated

discovery of explanatory and causal models from observed data, and an alternative to the

use of opaque models. SR, also known as equation learning, aims to identify mathematical

equations or symbolic expressions that capture the underlying relationships and dynamics

of the studied phenomena [24]. One of the main advantages of the expressions learned

by an SR model is that they can be easily analyzed by humans [49]. They allow for the

identification of cause-effect relationships between the inputs and outputs of a system, which

is one of the aims of the thriving area of explainable artificial intelligence (XAI) [105]. These

techniques not only capture the behavior of empirical data through analytical equations, but

also offer several practical advantages. They facilitate the incorporation of prior or expert

knowledge during the learning process by specifying preferred operators or constraints [11].

Additionally, they reduce computational complexity during inference and often demonstrate

stronger extrapolation capabilities compared to opaque models [113].

3

XAI aims to develop intelligent systems that can articulate the rationale behind their

actions or recommendations in ways that are understandable to humans [105]. Explanations

are essential for ensuring transparency [42], enhancing the reliability and credibility of opaque

models [18], and, in certain contexts, are even regarded as a human right [192]. XAI generally

encompasses two key approaches: explainability and interpretability.

Explainability refers to uncovering the internal logic and mechanisms of a machine

learning model. For example, layer-wise relevance propagation (LRP) [10] decomposes a

deep neural network’s output into relevance scores for individual input features (e.g., image

pixels), using the model’s weights and activations to backtrack the influence of inputs through

the network layers. Interpretability, in contrast, aims to help humans identify cause-effect

relationships between the system’s inputs and outputs. SR can serve both of these XAI goals.

From an interpretability perspective, SR seeks to uncover mathematical relationships that

reveal how input variables influence a system’s response. From an explainability standpoint,

SR can be used to approximate the internal function computed by an opaque model using

transparent, human-readable expressions, thereby revealing its decision logic.

Symbolic regression methods have been successfully applied to real-world problems such

as dynamical system modeling [161], astrophysics [35, 37], and fluid mechanics [154]. These

methods have achieved performance metrics comparable to state-of-the-art opaque models,

showcasing their potential in accurately capturing the complexities of observed data [139].

However, most existing SR approaches focus primarily on minimizing prediction error rather

than extracting the true governing equations of a system [13].

This focus on predictive accuracy often results in generated equations that may exhibit

high complexity, effectively approximating the observed data but failing to correspond to

the underlying equations [24]. This tendency toward complexity over parsimony can hinder

generalization, as the model may become excessively tailored to the training data, thereby

limiting its ability to adapt to new, unseen scenarios.

4

SR is an NP-hard problem whose complexity grows with the number of observations,

operators, and variables involved [176, 183]. As such, brute-force approaches become

infeasible. Many SR methods are largely based on population-based algorithms, especially

genetic programming (GP) [139]. Nevertheless, a notable drawback of GP-based SR

methods is that they suffer from slow computation. The inherent complexity of the search

space, coupled with the expensive iterative calls to numerical optimization routines after

each generation, contributes to the computational inefficiency of GP-based methods [139].

Furthermore, these methods do not consider past experiences, as they require learning each

problem from scratch. As such, the obtained models do not benefit from additional data

or insights from different equations, hindering their capacity for improvement and limiting

their generalization capabilities [15, 82].

In response to these limitations, recent advancements have seen the emergence of deep

learning-based SR methods as a promising alternative. Some of these methods utilize pre-

trained transformer neural network models that generate symbolic expressions through a

single forward pass and, possibly, a single call to a numerical optimization routine [13, 15, 82,

179]. Notably, deep learning-based SR methods offer a substantial time speedup compared

to GP-based approaches, overcoming the computational inefficiencies associated with the

latter. Despite the time advantage, there remains a gap in terms of prediction accuracy

between the two paradigms [82]. In addition, their end-to-end approach, which processes

all variables simultaneously, often fails to capture the functional form between each variable

and the system’s response correctly [125].

1.1.2 Uncertainty Quantification

Motivated by the challenges discussed above, we recognize that symbolic regression

benefits from robust uncertainty quantification techniques to enhance the accuracy and

reliability of model discovery. For instance, uncertainty can be mitigated through suitable

5

experimentation and informed data acquisition strategies. In general, effective uncertainty

management is essential for enhancing trust in AI-powered systems and ensuring their

practical adoption. This need is further emphasized by numerous reports indicating that

current deep learning (DL) techniques often produce unstable predictions, which can arise

unpredictably rather than solely in worst-case scenarios [32]. What is more, in many cases,

the reliability of model predictions is as important as the predictions themselves, particularly

in high-stakes environments where incorrect decisions may have significant consequences. As

a result, DL models are frequently regarded as unreliable in applications where uncertainty is

inherent in the data or the underlying system, including weather forecasting [197], electronic

manufacturing [158], and precision agriculture [116]. In this context, reliability refers to a

model’s ability to perform consistently across real-world settings [173].

One of the limitations of conventional prediction models is that they only provide

deterministic point estimates without any additional indication of their approximate

accuracy [54]. Reliability and accuracy of the generated point predictions are affected by

factors such as the sparsity of training data or target variables affected by probabilistic

events [84]. One way to improve the reliability and credibility of such complex models is

to quantify the uncertainty in the predictions they generate [167]. This uncertainty can be

quantified using prediction intervals (PIs). PIs offer a bounded region, defined by an upper

and a lower bound, within which a prediction is expected to lie with a given probability [85].

PIs not only add transparency to the model’s output but also allow users to assess the degree

of trust they can place in individual predictions.

We focus on the use of PIs for neural networks (NNs), as they are the opaque models

employed throughout this dissertation. Obtaining PIs for NN predictions is particularly

challenging since NNs lack an explicit mathematical formulation for uncertainty estimation.

As a result, designing methods that enable NNs to produce high-quality PIs (i.e., intervals

that are both sufficiently narrow and capture most of the probability density) is an open

6

and non-trivial problem. Key challenges include designing suitable loss functions and

architectural modifications that enable meaningful interval learning, and addressing the

trade-off between prediction interval width and probability coverage.

One of the motivations for accurately quantifying uncertainty is that, by doing so, we

may develop experimentation techniques that aim to reduce it. This is important given

that, in various scientific and engineering fields, the development of accurate predictive

models frequently relies on experimentation. Conducting these experiments can be costly

and time-consuming, making it important to adopt strategies that extract the most

valuable information from each experiment. Therefore, we focus on adaptive sampling (AS)

techniques, which offer a promising solution by selecting samples intelligently that contribute

most to improving model accuracy and reducing uncertainty [39].

The central idea is to guide data acquisition toward regions of the input space where

predictions are less reliable, allowing the model to refine its understanding where it is most

uncertain. This uncertainty-driven sampling is particularly relevant when dealing with

epistemic uncertainty, the type of uncertainty arising from limited knowledge or insufficient

data. Thus, in this dissertation, we examine how epistemic uncertainty, once quantified via

prediction intervals, can be strategically reduced using AS. In addition, we aim to explore

how AS can be used not only to reduce the uncertainty of predictions but also to improve

the reliability of the symbolic expressions learned through SR.

1.1.3 Precision Agriculture

Another source of motivation arises from the field of Precision Agriculture (PA). PA

is a management technique that leverages various Information Technologies (ITs) to gather

spatial and temporal information from fields. This information aids in making informed

management decisions, facilitating the improvement of crop and livestock management

practices while promoting sustainability [60]. Accurate and reliable predictions are critical

7

in PA, especially when advising decisions that directly affect profitability and environmental

sustainability. For instance, selecting the optimal nitrogen fertilizer rate involves assessing

how different rates affect crop yield, economic returns, and environmental impact [69].

Nevertheless, in real-world agricultural systems, such predictions are inherently un-

certain due to variability in weather, soil conditions, and management practices. Thus,

beyond accurate yield estimation, it is crucial to quantify the uncertainty associated with

these predictions to assess the risk and confidence of each recommendation. Providing such

uncertainty estimates helps farmers make informed, risk-aware decisions and avoid over- or

under-application of inputs. To this end, we adapt our proposed techniques for prediction

PI generation and adaptive sampling to address real-world problems in agriculture.

Moreover, our research focus on the analysis of nitrogen fertilizer-yield response (N-

response) curves. An N-response curve is defined as a curve that exhibits the various values

taken by the estimated crop yield to all admissible values of the N fertilizer rate (N-rate) [123].

These curves are largely used by agronomists to determine the economic optimum nitrogen

rate (EONR), which represents the nitrogen rate at which crop yield increase is not large

enough to pay for additional fertilizer [118]. The exploration of N-response curves is therefore

of great importance for optimizing nitrogen fertilizer usage, improving agricultural efficiency,

and maximizing economic returns for farmers.

Traditionally, the estimation of the EONR is achieved by assuming pre-selected

parametric yield response functions and fitting them to observed crop yield data [20, 80, 188].

In addition, the issue of the variability in the functional form of the N-response curves

within each field has received limited attention in previous studies [69]. The assumption

that the N-response curves of all sites within a field correspond to a single functional form

with the same parameters implies that the field is homogeneous and behaves similarly

at every location. Nevertheless, recent works indicate that the functional form of the N-

response curves exhibits variability across each field due to different terrain characteristics

8

and soil composition [69, 130]. Based on this, we proposed in [123] an interpretable method

that allows for the identification of the features with the greatest impact on the shape of

N-response curves at each location of the field. This approach facilitates a site-specific

understanding of the relevance of each feature (e.g., precipitation, terrain slope, terrain

aspect) over the responsivity of the field to the fertilizer. However, it does not provide a

thorough interpretation of the mathematical relationship between the input features and

the field’s responsivity to the N-rate. To the best of our knowledge, no method has been

proposed that learns from data the mathematical functional forms that describe site-specific

N-response curves, which at the same time are dependent on other features that may affect

the yield response.

1.2 Research Questions

Based on the motivation discussed in the previous section, we formulate the core

research questions of this dissertation.

1. Symbolic regression

• How do we design an SR method that improves with experience and focuses on

learning one or multiple underlying equations of a system?

• How do we train a deep learning model to learn symbolic skeletons given multiple

sets of input–response pairs, where all sets correspond to the same functional form

but use different equation constants?

• How do we merge univariate symbolic skeletons, where each describes the

relationship between a single variable and the system’s output, into a single

multivariate equation that approximates the underlying equation of the system?

9

• How do end-to-end SR methods that predict the full multivariate expression

directly compare to decomposable SR regression methods, which learn subexpres-

sions as building blocks, in terms of their ability to learn underlying equations?

2. Uncertainty Quantification

• How to produce high-quality PIs using NNs?

• How to mitigate epistemic uncertainty using adaptive sampling techniques?

• How does adaptive sampling support the discovery of mathematical expressions

that are both accurate and certain?

3. Real-world application

• How to quantify uncertainty in crop yield prediction?

• How do SR methods learn parametric mathematical expressions that describe

site-specific N-response curves?

• How can AS techniques enhance experimental design for N rate selection, with

the goal of reducing uncertainty and improving crop growth modeling?

1.3 Overview

This dissertation introduces a method called SeTGAP (Symbolic Regression using

Transformers, Genetic Algorithms, and genetic Programming). Given a multivariate

regression problem that can be expressed in terms of a mathematical equation, SeTGAP

identifies univariate symbolic skeleton expressions for each explanatory variable, which are

later merged to approximate the true underlying equation of the system. Note that a

symbolic skeleton expression is an abstract representation of a mathematical expression that

captures its structural form without identifying specific numerical values.

10

We hypothesize that SeTGAP generates functions that are more similar to the systems’

underlying functions in comparison to other SR methods. This comparison is carried out

by calculating the mean squared error (MSE) obtained by the learned functions using in-

domain and out-of-domain data. Thus, a generated function closer to the system’s underlying

function is expected to yield lower MSE values when using in- and out-of-domain data.

Achieving high certainty in the mathematical expressions learned by SR methods is

essential for enabling informed and trustworthy decision-making in scientific and engineering

domains. However, the experimentation required to build such accurate models can be costly

and time-consuming. Therefore, uncertainty quantification becomes a critical component

of interpretable and actionable modeling. To address this, we introduce a method called

Dual Accuracy-Quality-Driven (DualAQD) for generating high-quality prediction intervals

using companion neural networks. One network focuses on minimizing the target error,

while the other learns to generate reliable PIs. DualAQD allows not only to make accurate

predictions but also to express a calibrated level of confidence around those predictions,

which is particularly valuable when guiding decision-making or further data collection.

Building on this, we introduce an adaptive sampling approach aimed at reducing

epistemic uncertainty in predictive models; that is, the component of total uncertainty that

can be reduced by acquiring more information or improving the prediction model. Given that

neural networks are the opaque models used throughout this dissertation, we propose a metric

for estimating potential epistemic uncertainty by leveraging prediction interval-generation

NNs. We hypothesize that our adaptive sampling approach, called ASPINN (Adaptive

Sampling with Prediction-Interval Neural Networks), reduces epistemic uncertainty more

effectively compared to alternative methods. This comparison is carried out by estimating

the mean epistemic uncertainty across the input domain after each iteration of the sampling

process using synthetic problems that enable analytical quantification of uncertainty levels.

The proposed methods interact in an iterative learning cycle designed to improve both

11

predictive certainty and functional interpretability, as illustrated in Fig. 1.1. Initially, an

opaque predictive function f̂it is trained using the available data Dit =
(
X

(it)
obs ,y

(it)
obs

)
at

iteration it = 0. To uncover the functional structure underlying f̂it, SeTGAP is employed

to generate an interpretable expression f̃it. To quantify the uncertainty associated with the

opaque model predictions f̂it(x), a companion prediction-interval model f̂PI,it, trained using

DualAQD, generates calibrated prediction intervals f̂PI,it(x). Building upon the generated

PIs, ASPINN is used to identify regions of the input space where new samples would most

effectively reduce epistemic uncertainty. New data points are then acquired, incorporated

into the training set, and the process is repeated. It is hypothesized that, as the iterations

progress and epistemic uncertainty is minimized, the symbolic expressions f̃it will converge

toward more accurate and consistent mathematical models.

1.4 Contributions

This dissertation makes a number of contributions to the fields of symbolic regression

and uncertainty quantification. Our specific contributions are summarized as follows:

• We present a decomposable SR method called SeTGAP that learns univariate skeleton

subexpressions using a pre-trained transformer model. These subexpressions are then

merged incrementally into multivariate expressions that approximate the system’s

underlying equation, employing GA- and GP-based techniques while preserving the

originally identified skeleton structures.

• We introduce an SR problem called multi-set symbolic skeleton prediction (MSSP). It

receives multiple sets of input–response pairs, where all sets share the same functional

form but use different equation constants, and outputs a common skeleton expression.

• We present a novel transformer network model called “Multi-Set Transformer” to

solve the MSSP problem. The model is pre-trained on a large corpus of synthetic

12

Figure 1.1: Overview of the proposed SR framework with uncertainty awareness.

symbolic skeleton expressions, from which training data is dynamically produced using

a specialized data generation framework.

13

• We present a new method for assessing the accuracy of a given univariate skeleton

expression in comparison to the underlying function.

• We present a loss function called DualAQD used to train a PI-generation NN. It is

designed to solve a multi-objective optimization problem: minimizing the mean PI

width while ensuring PI integrity using constraints that maximize the probability

coverage implicitly.

• We introduce a PI-generation framework that uses two companion NNs: one that

produces accurate target estimations, and another that generates high-quality PIs,

avoiding the common trade-off between target estimation accuracy and quality of PIs.

• We present an AS method called ASPINN. At each iteration, it builds a Gaussian

Process from calculated potential epistemic uncertainty levels. The GPR, a surrogate

for the NN models, estimates potential epistemic uncertainty changes across the domain

after sampling specific locations. An acquisition function then uses the GPR to select

sampling locations, aiming to minimize global epistemic uncertainty.

• We introduce a novel metric based on NN-generated PIs to quantify potential levels of

epistemic uncertainty across the input domain.

• We demonstrate that our PI-generation method, DualAQD, produces informative PIs

that effectively capture spatial variations in uncertainty across agricultural fields.

• We apply SeTGAP during the AS process to assess how the learned mathematical

expressions are affected under varying uncertainty levels.

• We apply SeTGAP in a crop production setting to enhance the understanding of how

different regions of the field show different responsivity to the N fertilizer. Thus, we

generate mathematical expressions that describe site-specific N-response curves.

14

• We demonstrate that our adaptive sampling approach, ASPINN, addresses the

challenge of data acquisition in real agricultural environments effectively. Through

simulations based on field-derived symbolic models, ASPINN converges faster to

minimal epistemic uncertainty levels compared to competing methods.

The SeTGAP methodology has been described in the following article:

• Giorgio Morales and John W. Sheppard. Decomposable symbolic regression using

Multi-Set Transformers and genetic programming (submitted), 2025

Our univariate skeleton generation method using a novel Multi-Set Transformer has

been published in the following article:

• Giorgio Morales and John W. Sheppard. Univariate skeleton prediction in multivariate

systems using transformers. In European Conference on Machine Learning and

Knowledge Discovery in Databases, pages 107–125, Vilnius, Lithuania, 2024

Our articles related to uncertainty quantification are listed below, with their intersection

with SR to be explored in future work:

• Giorgio Morales and John W. Sheppard. Adaptive sampling to reduce epistemic

uncertainty using prediction interval-generation neural networks. In AAAI Conference

on Artificial Intelligence, volume 39, pages 19546–19553, 2025

• Giorgio Morales and John W. Sheppard. Dual accuracy-quality-driven neural network

for prediction interval generation. IEEE Transactions on Neural Networks and

Learning Systems, 36(2):2843–2853, 2025

The list of published articles related to the PA application is as follows:

15

• Giorgio Morales and John W. Sheppard. Counterfactual analysis of neural networks

used to create fertilizer management zones. In International Joint Conference on Neural

Networks, Yokohama, Japan, June 2024

• Giorgio Morales and John W. Sheppard. Counterfactual explanations of neural

Network-Generated response curves. In International Joint Conference on Neural

Networks, Queensland, Australia, June 2023

• Giorgio Morales, John W. Sheppard, Paul Hegedus, and Bruce D. Maxwell. Improved

yield prediction of winter wheat using a novel two-dimensional deep regression neural

network trained via remote sensing. Sensors, 23(1):489, January 2023

• Giorgio Morales, John W. Sheppard, Amy Peerlinck, Paul Hegedus, and Bruce D.

Maxwell. Generation of site-specific nitrogen response curves for winter wheat using

deep learning. In International Conference on Precision Agriculture, 2022

• Giorgio Morales and John W. Sheppard. Two-dimensional deep regression for early

yield prediction of winter wheat. In SPIE Future Sensing Technologies 2021, volume

11914, pages 49–63, November 2021

1.5 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we cover the

necessary information to make the reader familiar with the various topics discussed in this

work, including transformer neural networks, genetic algorithms, and genetic programming.

Chapter 3 introduces our Multi-Set Transformer network for solving the multi-set

skeleton prediction problem. We provide details on the architecture of the model and

present detailed insights into the equation generation and data sampling methodologies used

to pre-train the model. In Chapter 4, we focus on SeTGAP, our novel multivariate SR

16

method based on transformers, GAs, and GP. In particular, we provide details on the use

of the pre-trained Multi-Set Transformer for univariate skeleton prediction, followed by an

evolutionary-based technique to merge the generated skeletons into multivariate expression

candidates. Furthermore, we describe the experimental results comparing the performance

of SeTGAP with that of other GP-based and neural SR methods

Chapter 5 addresses uncertainty quantification and adaptive sampling techniques aimed

at improving the reliability of prediction models across the input domain. It begins by

introducing our dual-network approach, DualAQD, for generating high-quality PIs. Building

on these PIs, the chapter presents ASPINN, an adaptive sampling strategy that leverages

PI-based estimates of epistemic uncertainty to guide data acquisition. The chapter includes

experiments on synthetic and benchmark datasets to evaluate the quality of the generated

PIs, as well as controlled simulations to assess ASPINN’s effectiveness in reducing uncertainty

compared to baseline methods. The chapter concludes with an investigation of how varying

uncertainty levels influence the symbolic expressions learned by SeTGAP.

Chapter 6 presents our real-world application in precision agriculture. We begin by

defining key agricultural concepts relevant to our study, including the On-Farm Precision

Experimentation framework, crop yield prediction, and fertilizer management zones. Here,

we employ our PI-generation method, DualAQD, to construct uncertainty maps that

highlight regions of the field with varying levels of predictive uncertainty. We then apply

SeTGAP to learn site-specific nitrogen response curves, using a clustering-based approach

to define fertilizer management zones. Leveraging the previously derived symbolic skeleton

expressions, we generate a simulated field environment that enables the evaluation of different

sampling strategies, including our adaptive sampling method, ASPINN. Finally, we briefly

conclude and discuss future work in Chapter 7.

17

CHAPTER TWO

BACKGROUND

In this chapter, we introduce the main concepts and methods that form the foundation

for the work presented in later chapters.

2.1 Transformer

Transformers are a type of deep learning architecture introduced by Vaswani et al. [181].

They revolutionized various natural language processing tasks [21, 90], and became the

foundation for many subsequent advances in the field. Their success and effectiveness in

handling sequential data have led to their adoption and impact in various other domains,

such as computer vision [46], speech and audio processing [87], and drug discovery [66].

At its core, the transformer architecture is designed to process sequential data, such

as sentences in natural language, by leveraging the concept of self-attention mechanisms.

Traditional sequence-to-sequence models like recurrent neural networks (RNNs) [28] process

input sequentially, which can lead to difficulties in handling long-range dependencies and can

be computationally inefficient due to their sequential nature. Conversely, the transformer

addresses these issues by employing a multi-head self-attention mechanism. This mechanism

enables the model to weigh the importance of different positions in the input sequence when

encoding each symbol or token in the sequence. This allows the model to focus on relevant

parts of the input and capture dependencies between distant tokens effectively.

2.1.1 General Architecture

The original transformer model [181] consists of an encoder–decoder architecture, as

shown in Figure 2.1. The encoder maps an input sequence of symbol representations x =

{x1, . . . , xn} (where n is the length of the sequence) to a sequence of d-dimensional latent

18

Figure 2.1: Transformer model architecture [181].

continuous representations z = {z1, . . . , zd}. Note that n is not fixed and it may vary for

each input sequence. Then, z, also known as the context vector, is processed by the decoder

to generate the output sequence y = {y1, . . . , ym} (i.e., the context vector length d and the

output length m may differ from the input length n) one element at a time. The output

generation process is auto-regressive [65], which means that the model generates the first

token y1 based on the input and then uses the generated token as input to predict the

next token y2, and so on until the entire output sequence is generated. Additional details

about the encoder and the decoder, as well as other blocks shown in Figure 2.1 (e.g., input

19

embedding and multi-head attention), are provided in the subsequent subsections.

2.1.2 Input Embedding and Positional Encoding

On the left side of Figure 2.1, the model inputs are affected by two processes before

being fed into the encoder; i.e., input embedding and positional encoding. The former

transforms each token xi into a din-dimensional embedding vector using an embedding matrix

E ∈ Rdin×NV , where NV is the size of the vocabulary. The embedding for token xi is denoted

as ei ∈ Rdin . Essentially, a vocabulary is a set of all unique words or tokens that appear in

the dataset being processed. Its purpose is to assign a unique numerical identifier (index)

to each token, allowing the transformer model to work with discrete representations of data.

The embedding matrix E is learned during training in such a way that similar tokens are

represented closer to each other in the embedding space. For example, in the context of

natural language processing, the use of learned embeddings allows the model to discern and

capture aspects of grammatical and syntactical structures within sentences [119].

On the other hand, positional embedding is required due to the fact that transformers

lack inherent positional information, unlike traditional approaches such as RNNs. Thus,

positional encoding vectors are added to the input embeddings ei to distinguish tokens’

positions in the original sequence. In the standard positional encoding, such as the one used

by Vaswani et al. [181], the positional encoding vector for each token in the input sequence

is determined based on a fixed mathematical function:

PE(pos, 2i) = sin
(pos

L2i/din

)
,

PE(pos, 2i+ 1) = cos
(pos

L2i/din

)
,

where pos denotes the position of the token in the input sequence, i is the dimension index

of the positional encoding vector, din is the dimensionality of the model input, and L is a

scaling factor, commonly set to 10,000 in practice. We denote the vector we obtain after

20

applying input embedding and positional encoding as v = {v1, . . . , vn}, where vi ∈ Rdin .

Nevertheless, instead of using a fixed mathematical function to compute the positional

encoding vectors, the encoding vectors could be learned as part of the training process. In

other words, the model itself learns the positional encoding values that best suit the task

and the data it is trained on. Learning positional encoding involves treating the positional

encoding vectors as learnable parameters. During training, the model updates the positional

encoding vectors along with other parameters using backpropagation and gradient descent

techniques. By allowing the model to learn the positional encodings, it can adapt to the

specific patterns and dependencies present in the data, potentially leading to improved

performance on the task at hand [61].

2.1.3 Attention

The attention mechanism is the component responsible for capturing relationships

between different positions in the input sequence. The key idea behind this mechanism

is to compute attention weights that indicate the importance of each position with respect

to a given query position. The attention mechanism is based on the use of queries, keys,

and values. Queries are used to extract information from other tokens, keys determine the

relevance of each token to the queries, and values provide the context-aware representations

for each token. These components mirror the process of information retrieval in systems

like search engines, where queries are used to retrieve relevant information (values) based on

their similarity to the search terms (keys).

In particular, transformers use self-attention mechanisms; that is, the keys, values, and

queries come from the same place [104]. This allows the model to capture dependencies and

relationships between different positions within the same input sequence. Consider the input

vector v; that is, the resulting vector resulting after applying input embedding and positional

encoding to the input sequence x. To perform attention, the sequence v is transformed into

21

three different representations: queries (Q), keys (K), and values (V). These transformations

are done using learnable linear projections such that:

Q = v ×WQ,

K = v ×WK ,

V = v ×W V ,

where WQ ∈ Rdin×dk , WK ∈ Rdin×dk , W V ∈ Rdin×dv are learnable weight matrices. Notice

that the linear projections obtained for the queries and keys have the same dimension dk,

while the dimension of the values, dv, is not necessarily the same.

The attention scores are calculated by measuring the similarity between the queries

and keys. This is carried out using a scaled dot-product, which consists of computing the

dot products of the queries with all the keys, followed by a scaling operation to avoid overly

large values. Then, the softmax function is applied along the rows to obtain normalized

attention weights for each token in the input sequence. Note that the softmax activation

function defined for each element of a vector q = {q0, ..., qc} is defined as:

σ(qi) =
eqi∑
j e

qj

so that it produces a valid probability distribution over the vector elements. Finally, the

scaled dot-product combines the attention scores with the values V to produce the final

attention output:

Attention(Q,K, V) = σ

(
QK⊤
√
dk

)
V.

Furthermore, instead of using a single self-attention function, Vaswani et al. [181],

introduced the concept of multi-head self-attention. This is an extension of the standard

attention mechanism that allows the model to attend to different semantic information from

22

Figure 2.2: Multi-head self-attention [181].

different subspaces of the input data. It requires multiple sets of learnable query, key, and

value linear projections, known as “heads,” which operate in parallel. Let Qi, Ki, and Vi

denote the query, key, and value matrices obtained for the i-th head, and WQ
i ∈ Rdin×dk ,

WK
i ∈ Rdin×dk , W V

i ∈ Rdin×dv denote their corresponding linear projections. Thus, the

output of the i-th head, headi, is calculated as follows:

headi = Attention(Qi, Ki, Vi) = Attention(v ×WQ
i ,v ×WK

i ,v ×W V
i). (2.1)

Finally, the outputs from all the attention heads are concatenated and linearly transformed

to generate the final multi-head attention output, as depicted in Figure 2.2:

MultiHead(v) = Concat (head1, . . . , headh) WO, (2.2)

where h is the total number of heads, and WO ∈ Rhdv×din is a learnable projection matrix.

23

2.1.4 Encoder and Decoder Stacks

The encoder consists of a stack of N identical blocks, as illustrated in Figure 2.1.

The encoder block starts with a multi-head self-attention layer, as described in Eq. 2.2. The

output of the self-attention layer is added to the original input embeddings to form a residual

connection [68], which helps mitigate the vanishing gradient problem during training. Layer

normalization [9] is then applied to normalize the summed outputs.

The next component in the encoder block is a position-wise feedforward neural network.

It processes each position produced after layer normalization independently through two

linear transformations separated by a non-linear activation function such as the Rectified

Linear Unit (ReLU), which is defined by ReLU(q) = max(0, q). Thus, the function of a

position-wise feedforward network given the element q that belongs to the input vector q

can be written as:

FFN(q) = max (0, q W1 + b1)W2 + b2,

where W1 and W2 are learnable weight matrices, and b1 and b2 are learnable bias vectors

associated with the first and second linear transformations, respectively. Similar to the

previous step, the output of the feedforward network is added to the previous output and

normalized using layer normalization.

Similarly, the decoder block is composed of M identical blocks. While each encoder

block contains two main layers (i.e., multi-head self-attention and a position-wise feedforward

network), each decoder block includes a third layer called “encoder–decoder attention” that

allows us to attend to the representations generated by the encoder stack. This layer

emulates the common encoder–decoder attention mechanisms found in sequence-to-sequence

models [194]. The decoder block starts with a masked multi-head self-attention layer. Unlike

the encoder, the decoder’s self-attention mechanism is “masked” to prevent the attention

from attending to future positions in the output sequence during training. The masking

24

ensures that the model can only attend to tokens that have already been generated in the

output sequence up to the current position, maintaining the autoregressive property of the

generation process we mentioned in Sec. 2.1.1. The masked multi-head self-attention layer is

followed by the encoder–decoder attention layer, which, in turn, is followed by the position-

wise feedforward neural network. Similar to the case of the encoder block, each layer in the

decoder block is affected by a residual connection and layer normalization.

2.2 Genetic Algorithms

Genetic algorithms (GAs) are a class of optimization algorithms inspired by the concept

of “survival of the fittest” [71]. They are particularly useful for solving complex optimization

problems where traditional methods may be less effective. For instance, when derivatives

are unavailable and the fitness landscape suffers from ill-conditioned parts, which are regions

where small changes in the input variables lead to significant changes in the objective

function, making it more challenging to find an optimal solution. In this section, we delve

into the fundamental principles of genetic algorithms, including the key components and

detailed explanations of each step in the algorithmic framework.

Genetic algorithms operate on a population of potential solutions represented as

individuals or chromosomes. Each chromosome encodes a candidate solution to the problem

at hand. The algorithm evolves this population over successive generations, applying genetic

operators such as selection, crossover, and mutation to create offspring that can replace all

or part of the population and improve the overall performance iteratively. This process is

depicted in Figure 2.3.

2.2.1 Representation and Initialization

The choice of representation for individuals in a GA is a critical decision that influences

the algorithm’s performance [101]. The representation should be designed to effectively

25

Figure 2.3: High-level flowchart of the genetic algorithm using one-point crossover and
randomized mutation [144].

capture the problem’s structure and characteristics. Common representations include:

• Binary Strings: Used for problems with binary decision variables, where each bit in

the string represents a variable’s value (0 or 1).

• Real-Valued Vectors: Suitable for continuous optimization problems, where each

element in the vector corresponds to a variable’s value.

• Permutations: Ideal for problems involving sequences, such as the traveling salesperson

problem [52, 138], where the order of elements matters.

• Tree Structures: Applied to problems that can be represented as hierarchical structures,

such as the mathematical expression trees in symbolic regression [23, 191] (see Sec. 2.3).

Furthermore, the process of initializing the population sets the stage for the GA’s

exploration. An appropriate initialization method should strike a balance between diversity

and quality of the individuals of the population. Common approaches include random

initialization, where individuals are generated with random values, and heuristic-based

initialization, where prior knowledge of the problem is used to create initial solutions [52].

26

2.2.2 Fitness Evaluation

The fitness function quantifies how well an individual solution performs concerning

the problem’s objectives. The fitness function encapsulates domain-specific knowledge and

defines the optimization problem. In practice, designing an appropriate fitness function

is often the most challenging aspect of applying GAs to real-world problems, as it should

accurately reflect the problem’s goals and constraints.

Many strategies prioritize minimizing the number of fitness function evaluations.

The computational cost of a GA is typically assessed by the number of fitness function

calls needed to achieve an optimal or sufficiently accurate solution [94]. This focus on

minimizing evaluations is crucial when calls are resource-intensive, such as generating

complex construction elements or executing time-consuming simulation models to assess GA-

generated parameters [152]. Thus, efficient use of fitness function evaluations is essential in

optimizing computational processes.

2.2.3 Selection

In order to facilitate the convergence towards optimal solutions, it may be beneficial

to choose the top-performing offspring solutions to become parents in the next generations.

This process is known as selection and relies on the fitness values within the population.

Common selection strategies include:

• Roulette wheel selection: Individuals are selected with probabilities proportional to

their fitness scores.

• Tournament selection: Randomly chosen subsets of individuals to compete, and the

winners become parents.

• Rank-based selection: Individuals are ranked by their fitness, and selection is based

probabilistically on their rank.

27

These strategies seek a balance between favoring high-fitness individuals (exploitation)

and exploring the diversity of the population.

2.2.4 Crossover

Crossover, also known as recombination, simulates genetic recombination observed in

biological organisms [172]. It is a fundamental genetic operator in GAs. Different crossover

operators define how genetic material from two or more parent individuals is combined to

generate offspring. The most widely used crossover operators are the following:

• One-Point Crossover: A random crossover point is chosen, and genetic material is

swapped between parents at that point. The intuition behind using such an operator

is that both parents could present effective segments of solutions, and when combined,

they might surpass the performance of the original parents. One-point crossover can

be represented as:

Offspring1 = Parent1[: k] + Parent2[k :]

Offspring2 = Parent2[: k] + Parent1[k :],

where k is a randomly chosen crossover point.

• Two-Point Crossover: Two random crossover points are selected, and the genetic

material between these points is exchanged.

• Binomial/Multinomial Crossover: Genetic material is exchanged randomly, with each

gene having an equal probability of being inherited from either parent.

The choice of crossover operator depends on the problem structure and the desired

balance between exploration and exploitation.

28

2.2.5 Mutation

Mutation introduces small, random changes in the population’s individuals. The

strength of this disturbance is called mutation rate. It is a critical source of genetic diversity

within the population and reduces premature convergence to suboptimal solutions. Mutation

operators are specific to the chosen representation.

In binary strings, a mutation operation might flip a bit at a random position, while

in real-valued vectors, it might add a small random value to a component. The bit flip

mutation can be expressed as:

xi[b] =

1− xi[b], with probability Pmutate

xi[b], with probability 1− Pmutate

,

where xi[b] represents the b-th bit of the i-th individual of the population. In addition,

Pmutate represents the mutation rate, which controls the likelihood of mutation occurring.

Mutation is vital for exploring the solution space and can be particularly useful

when dealing with rugged fitness landscapes, which present multiple local minima, creating

complex and challenging optimization environments where traditional optimization methods

struggle. Note that mutation operators should avoid bias. That is, in unconstrained solution

spaces without plateaus, the mutation operator should not introduce any directional bias,

ensuring a neutral exploration [94]. However, in the context of constrained solution spaces,

a certain degree of bias can be beneficial [93].

2.2.6 Replacement

Replacement determines how the next generation is formed based on parents and

offspring. Various replacement strategies exist, each influencing the GA’s exploration and

exploitation balance. Common replacement strategies include [40]:

29

• Generational Replacement: The entire population is replaced by the offspring. It

promotes exploration as the entire population is renewed.

• Steady-State Replacement: A subset of the population is replaced by the offspring,

maintaining some continuity with the previous generation. It can be useful for

preserving good solutions.

Some GAs incorporate elitism, where a fraction of the best-performing individuals

from the current generation is preserved in the next generation to ensure that high-quality

solutions are not lost.

2.2.7 Termination

The termination condition defines when the GA concludes its execution. Proper

termination criteria are essential for controlling the algorithm’s runtime and ensuring

convergence. Some of the most common termination criteria are given below:

• Maximum Number of Generations: The algorithm stops after a predefined number of

generations. Note that the cost of fitness function evaluations can impose limitations

on the duration of the optimization process.

• Fitness Threshold: If a solution with a fitness exceeding a certain threshold is found,

the algorithm terminates.

• Stagnation: The algorithm terminates if the fitness of the population does not

significantly change over a certain number of generations.

• Time Limit: The algorithm stops after running for a specified duration.

30

2.3 Genetic Programming

Genetic Programming (GP) is an evolutionary algorithm that extends the principles

of GAs to evolve computer programs or mathematical expressions to solve problems. GP

was invented by John Koza in 1988 [91, 92], representing a pioneering step in the field

of automated program synthesis. The problem of symbolic regression was introduced by

Koza [92] as an application of GP where the objective is to discover mathematical expressions

that best fit observed data automatically. In this context, the programs to be optimized are

syntax trees consisting of functions and operations over input features and constants [191].

Below, we provide details of the fundamental components of Genetic Programming.

Note that certain components, such as selection, replacement, and fitness, remain essentially

the same as those explained in the previous section and are therefore not elaborated on here.

2.3.1 Representation and Initialization

In GP, solutions are commonly represented as hierarchical tree structures, where each

tree corresponds to a computer program. The variables and constants in a program serve

as the endpoints of the tree structure and are referred to as “terminals”. On the other

hand, internal nodes within the tree represent mathematical operations and are known as

“non-terminals”. Collectively, the permissible functions and terminals constitute what is

termed the primitive set within a GP system. In addition, it is worth noting that there

exist alternative representations in the form of linear GP, where solutions are expressed

as linear sequences. In this alternative paradigm, variables, constants, and mathematical

operations are arranged linearly, offering a different perspective on solution encoding. In

this work, we represent tree expressions in “prefix” notation, which is a common choice in

the GP literature [151]. For example, the mathematical expression 3x +
√
x+ 2, given in

the common “infix” notation, would be represented as {add, mul, 3, x, sqrt, add, x, 2} in the

31

prefix notation.

GP initiates the process with a population of randomly generated trees. The population

size and the depth of these initial trees significantly influence the exploration of the solution

space. The depth of a node is defined as the count of edges that must be traversed when

starting from the tree’s root node to reach that particular node; thus, a tree’s depth

corresponds to the depth of its deepest leaf node. The following are some of the most

commonly used initialization techniques:

• Full Initialization: This method creates trees of a fixed depth, ensuring that all

branches of the tree are fully expanded [92].

• Grow Initialization: This method adds nodes (i.e., terminals or non-terminals) to the

tree recursively until a branch selects a terminal or reaches the specified maximum

depth. This allows for the possibility of incomplete branches, which refers to portions

of the tree that may not extend to the maximum depth, resulting in variable tree

structures. This technique encourages the creation of diverse and variable tree

structures, facilitating a more extensive exploration of the solution space [92].

• Ramped Half-and-Half Initialization: This technique combines both Full and Grow

initialization methods. It generates individuals with depths ranging from minimal to

a predefined maximum. Half of the population is created using the full method, and

the other half uses the grow method. This approach provides a better balance between

exploration and exploitation [92].

• Semantic Initialization: Semantic initialization focuses on generating individuals that

are already functional or close to functional. It uses domain-specific knowledge to

create initial individuals, enhancing the chances of generating high-quality solutions

from the beginning [120].

32

2.3.2 Crossover

Genetic Programming (GP) distinguishes itself from other evolutionary algorithms

primarily through its unique implementation of crossover and mutation operators. Subtree

crossover is the most prevalent form in GP, where two parents are involved. Each parent’s

tree undergoes random independent selection of a crossover point, defined by a node of the

expression tree. Subsequently, an offspring is created by substituting the subtree rooted

at the crossover point in one parent with a copy of the corresponding subtree from the

other parent, as shown in Figure 2.4. This procedure maintains the integrity of the original

individuals, allowing them to contribute to multiple offspring programs if selected repeatedly.

Crossover points are often chosen non-uniformly, favoring functions over leaves to counter

the tendency of exchanging minimal genetic material [92].

Sub-tree crossover faces issues that constrain its effectiveness. For instance, it often

results in offspring with vastly different behaviors compared to their parents. This is

due to the exchanged sub-trees originating from different positions, and having varying

sizes, shapes, and functionalities. Such significant changes in input context can lead to

poor solutions [108]. Additionally, sub-tree crossover is related to code bloat; that is,

the uncontrollable increase in the average tree size during evolution without substantial

improvements in fitness [4]. Alternative techniques such as biased sampling and semantic

crossover [177] have been proposed. Semantic crossover aims to maintain the semantics or

functionality of the parent programs to a higher degree. It attempts to select subtrees that,

when exchanged, retain similar functionality. This is achieved through various mechanisms,

such as choosing crossover points accordingly. Biased sampling refers to a selective approach

where certain parts of parent trees are more likely to be chosen for crossover, often based on

their fitness or other heuristics, aiming to guide the genetic operators toward more promising

regions of the search space. This strategy enhances the exploitation of high-performing

building blocks during crossover, potentially improving the convergence speed and the quality

33

Figure 2.4: Sub-tree crossover example. Nodes with bold edges indicate the selected crossover
points. Note that the crossover points need not occur at the same level in the two parents.

of solutions in the evolving population.

2.3.3 Mutation

Mutation is one of the fundamental genetic operators in GP, serving as a mechanism to

introduce genetic diversity into the population of candidate programs or solutions. It helps

maintaining the exploration capabilities of the evolutionary process. Unlike crossover, which

combines genetic material from two parents, mutation acts unilaterally on a single program.

Mutation involves the random modification of a parent program by altering one or more

components within it. These components can be individual nodes within the program’s tree-

34

like structure. The objective of mutation is to create small, often random changes to the

program’s structure or functionality while preserving some aspects of the original solution.

This randomness allows GP to explore a broader space of potential solutions.

Several mutation operators have been proposed over the years, with some of the most

common and successful techniques outlined below:

• Point Mutation: Point mutation randomly selects a single node within the program

and alters it. This can involve replacing the node with another of the same type or a

different type [92].

• Subtree Mutation: Subtree mutation selects a random subtree within the parent

program and replaces it with a newly generated subtree. This can lead to more

significant structural changes [6].

• Hoist Mutation: Hoist mutation focuses on functions within the program. It randomly

selects a subtree representing a function and elevates it to a higher level in the program’s

hierarchy, simplifying the structure [88].

• Shrink Mutation: Shrink mutation reduces the program’s size by replacing a subtree

with a terminal node. This helps control program size and complexity [5].

2.4 Summary

This chapter has provided a comprehensive overview of the foundational concepts and

methods crucial to understanding the subsequent chapters of this dissertation proposal.

First, we introduced the transformer architecture, a groundbreaking deep learning model

introduced by Vaswani et al. [181]. The transformer has not only revolutionized natural

language processing tasks but has also found applications in diverse domains such as

computer vision and symbolic regression. The chapter delved into the core components of

35

the Transformer, including its general architecture, input embedding, positional encoding,

and attention mechanisms.

Furthermore, the chapter introduced genetic algorithms and genetic programming

as evolutionary optimization techniques, shedding light on their fundamental principles,

representations, initialization strategies, crossover and mutation operators, and other key

aspects. These insights lay the groundwork for the subsequent chapters, where we will apply

and extend these concepts to address specific challenges in our research domain.

36

CHAPTER THREE

MULTI-SET SYMBOLIC SKELETON PREDICTION

The aim of this chapter is to introduce a new problem termed multi-set symbolic

skeleton prediction (MSSP). This problem is derived from the symbolic skeleton prediction

(SSP) problem that has been previously explored by existing research [13, 15, 149, 179].

To provide a foundation for our extension, we first establish the definition of the symbolic

skeleton prediction problem. Subsequently, we will elaborate on the extensions made to

define our multi-set symbolic skeleton prediction problem.

The symbolic skeleton prediction problem takes in a set of NR input–response pairs

(X,y) = {(xi, yi)}NR

i=1 from a sensitive system. In this context, a sensitive system refers to a

system whose behavior is responsive to variations in input conditions. Each input vector xi

is t-dimensional (xi ∈ Rt). The objective is to produce a symbolic skeleton ê that describes

the functional form of the system. Let f denote the underlying function of the system; i.e.,

yi = f(xi). κ(·) represents a skeleton function that replaces the numerical constants of a

given symbolic expression by the placeholder c; e.g., κ(3x2 + e2x − 4) = c1 x
2 + ec2 x + c3.

Thus, the objective is to return a symbolic skeleton ê such that κ (f) ≈ ê.

Some SR methods implement SSP as one of their main steps. In particular,

the outline of these methods consists of using SSP to predict the symbolic skeleton

that describes the data, and then using an optimization method, such as the Broy-

den–Fletcher–Goldfarb–Shannon (BFGS) algorithm [51], to estimate the numerical values

of the constant placeholders of the generated skeleton. For example, Petersen et al. [149]

proposed a reinforcement learning framework that uses RNNs to generate candidate

skeletons, which are then fitted using the BFGS algorithm. The policy employed by this

framework is designed to generate better-performing skeletons at each iteration. Other

37

approaches are based on the use of large language models. Valipour et al. [179] presented

a three-step SR method. The process involves acquiring an order-invariant embedding of

the input dataset through a T-net [26], which is a type of network structure that uses

max-pooling aggregation layers to provide order-invariance over its arbitrarily-sized input.

Then, it generates a symbolic skeleton using a generative pre-trained transformer (GPT)

language model [17], and subsequently optimizes constant values to complete the equation

skeleton using BFGS. Similarly, Bigglio et al. [15] presented an SR method based on the use

of transformer models. Nevertheless, unlike the approach of Valipour et al. of employing a

separate order-invariant embedding component, they utilized a transformer encoder based

on the Set Transformer [102], which inherently encodes the information from the input set

in a permutation-invariant manner.

Chu et al. [30] pointed out that current SR methods based on large language models

encounter challenges in scalability when dealing with multivariate equations. Therefore,

they proposed to tackle the multivariate SR problem as a sequence of single-variable SR

problems, which are combined in a bottom-up fashion. The process begins by selecting one

control variable, generating a single-variable skeleton, and estimating the constant values

using BFGS. Single-variable skeletons are generated using GP or a Monte Carlo tree search

approach (MCTS) [171]. Then, variables are gradually added one by one while repeating

the process until a symbolic expression involving all relevant variables is generated.

3.1 Problem Definition

Similar to the work presented by Chu et al. [30], in this dissertation, we tackle the SR

problem by decomposing it into single-variable sub-problems. In order to do so, we deviate

from the SSP paradigm employed by previous approaches. We explain the rationale behind

this decision through the use of an example:

Consider a system whose response y depends on two stimuli x = [x1, x2] governed by the

38

Figure 3.1: An example of a set X with 200 samples and a fixed value x2 = 5, and the
corresponding response y.

underlying function y = f(x) = sin
(

x1

10x2
+ π

2

)2
. For this example, suppose we have access

to an oracle system, meaning it provides outputs for given inputs without explicitly revealing

the function f . In practice, however, such direct access is rarely available, and we must infer

the equation from an observed dataset instead. We analyze the relationship between x1 and

y by following the approach in [30], where unexamined variables are held fixed. To generate

data, we sample a random set X of n points, allowing x1 to vary while keeping x2 fixed at

a random value of 5. The corresponding response vector y is then obtained by querying

the oracle system with X. Figure 3.1 illustrates the generated dataset. Then, the set of

input–response pairs (X,y) is fed into an SSP model to obtain a symbolic skeleton. In this

example, we used the pre-trained SSP model proposed by [15], which produces the skeleton:

c1 x
2
1 + c2.

Note that the obtained skeleton describes a quadratic function, which does not

correspond to the functional form of the underlying function f , a sine squared function.

This is expected considering that function f closely resembles a quadratic function within

39

the selected region of the input domain (i.e., x1 ∈ [−10, 10]) when the variable x2 is fixed to

the value 5. What is more, existing methods tend to select the least complex solution from

a pool of equally performing candidate solutions, thus following Occam’s razor [22]. In this

context, the complexity of a skeleton could be related to the number of terms and operators

used in it. As such, a skeleton of the form c1x
2
1 + c2 would be preferred over a skeleton of

the form sin(c1x
2 + c2)

2. Nevertheless, if the variable x2 had been fixed to a different value

(e.g., x2 = 0.1), then the sine squared skeleton would have been correctly identified.

The fixed values of the remaining variables could project the function into a space where

the functional form is not easily identifiable, which could be worsened due to the limited

range of values that the analyzed variable can take. As a consequence, we argue that the

SSP problem would benefit from the injection of additional context data. Specifically, when

analyzing the variable xv, we could employ multiple sets of input–response pairs, each of

which is constructed using different fixed values for the remaining variables x \ {xv}. The

key idea is to process the information from the multiple sets simultaneously to produce a

symbolic skeleton that is common to all input sets. We refer to this new problem as multi-set

symbolic skeleton prediction (MSSP).

More formally, we are given a data set (X,y) where X ∈ RNR×t and y ∈ RNR×1.

Suppose we analyze the relationship between the v-th input variable, xv (i.e., v ∈ [1, . . . , t]),

and the response variable y. We construct a collection of NS sets, denoted as D ={
D(1), . . . ,D(NS)

}
. Each set D(s) comprises n input–response pairs such that D(s) =(

X
(s)
v , f

(
X(s)

))
=
(
X

(s)
v ,y(s)

)
, where X(s) ∈ Rn×t, y(s) ∈ Rn, and X

(s)
v denotes the v-

th column of X(s) (i.e., the data corresponding to the xv variable). X(s) is constructed so

that the variables in x \ {xv} are assigned random values and held fixed for all samples.

X(s) can be constructed by selecting n samples from X that satisfy the criterion that xv

is allowed to vary while the remaining variables in x\{xv} are held fixed. The corresponding

response values form the set y(s), which is directly obtained from the observed data. If

40

X is not large enough, X(s) can be generated and its response values can be obtained as

y(s) = f(X(s)) by querying the system as an oracle. However, using a system in this way is

rarely possible. Instead, an opaque model f̂ (e.g., a neural network) trained to approximate

f (i.e., f̂(x) ≈ f(x)) can be used to estimate the response values for X(s). More details on

this opaque model and its relevance to our SR problem will be provided in Chapter 4.

Since the variables in x \ {xv} have been fixed to constant values to construct each set

D(s), the underlying function that explains the relationship between X
(s)
v and y(s) could be

expressed solely in terms of variable xv. As such, the underlying function of the s-th set

is denoted by f (s)(xv). It is important to note that functions f (1)(xv), . . . , f
(NS)(xv) have

been derived from the same function f(x) and only differ in their coefficient values due to

the selection of different values for the variables in x \ {xv} for each constructed set. As a

consequence, if we apply the skeleton function κ(·) to functions f (1)(xv), . . . , f
(NS)(xv), they

would produce the same target symbolic skeleton e(xv), in which the constant values have

been replaced by placeholders; i.e., e(xv) = κ
(
f (1)(xv)

)
= κ

(
f (2)(xv)

)
= · · · = κ

(
f (NS)(xv)

)
.

Then, the collection D is fed as an input to the MSSP problem. The objective is

to generate skeleton ê(xv) that characterizes the functional form of all input sets, and

approximates the target skeleton e(xv); i.e., ê(xv) ≈ e(xv). For the sake of generality,

we define the MSSP problem as follows:

Definition 1. The Multi-Set Symbolic Skeleton Prediction (MSSP) problem takes an input

consisting of a collection of NS sets, denoted as D =
{
D(1), . . . ,D(NS)

}
. Each set D(s)

comprises n input–response pairs such that D(s) =
(
X

(s)
v ,y(s)

)
, where X

(s)
v ∈ Rn and y(s) ∈

Rn. The underlying function of the s-th set is denoted by f (s); i.e., y(s) = f (s)
(
X

(s)
v

)
. The

underlying functions of all input sets are assumed to share a common unknown symbolic

skeleton, denoted as e. Thus, the objective of the MSSP problem is to generate a symbolic

skeleton ê ≈ e that characterizes the functional form of all input sets.

41

Figure 3.2: An example of an MSSP problem.

Figure 3.2 depicts an example of the type of problems we attempt to solve. In this

example, each set D(s) was generated using the expressions that are shown on the left side

of the figure. Note, however, that the MSSP solver only has access to the sets of generated

data D(s) but not to the information regarding the expressions or processes that were used to

generate such data. The proposed approach is an integral component of the SR framework

proposed in Chapter 4. Within this framework, a series of single-variable skeletons will be

generated and subsequently merged to produce a comprehensive multivariate expression. In

this chapter, we will focus on developing a method to solve the MSSP problem.

3.2 Set Transformer

In this section, we discuss the Set Transformer [102] that we utilize as a basis to develop

our Multi-Set Transformer for MSSP. In Section 2.1, we described the transformer model

as a highly effective tool for processing sequential data. However, it faces challenges when

42

dealing with set-structured data [102]. In various real-world applications, data are naturally

represented as sets rather than sequences. For instance, in point cloud data, the points

represent a set of spatial coordinates; in graph data, nodes and their connections form a set

of elements. These types of data are applicable in multiple instance learning scenarios [132,

140, 165], where an input consists of a collection of instances, and the corresponding target

is a label assigned to the entire set. Other statistical problems such as population statistic

estimation and outlier detection can also be viewed as set-input problems [45, 196].

The transformer is designed to handle sequences with fixed orderings, where each

element’s position is crucial to understanding the data’s meaning. In contrast, sets are

collections of elements without any inherent order, and their permutations do not alter

the underlying semantics. This inherent permutation invariance poses a significant obstacle

for traditional sequence models when processing sets [45, 196]. In order to address the

limitations of conventional approaches, Lee et al. [102] presented an attention-based neural

network module called Set Transformer that is based on the transformer model described in

Section 2.1. This method introduces modifications to the transformer architecture, enabling

it to handle sets without assuming a fixed ordering of elements.

A model designed for set-input problems must meet two essential criteria to handle

sets effectively: First, it should be capable of processing input sets of varying sizes. Second,

it should exhibit permutation invariance. The latter means the output of the function

represented by the model remains the same regardless of the order in which the elements of

the input set are presented. More formally, Zaheer et al. [196] described this type of function

as permutation invariant:

Definition 2. Let X denote the space from which individual elements are drawn (e.g., if

the elements are real-valued vectors of dimension d, then X = Rd). Consider a function

u : X → Y with input set x = {x1, . . . , xn}, where xi ∈ X ; i.e., the input domain is the

power set X = 2X . The function u operates on sets and must be permutation invariant to

43

the order of elements in its input, meaning that for any permutation π it holds that:

u({x1, . . . , xn}) = u({xπ(1), . . . , xπ(n)}),

where π ∈ Sn and Sn represents the set of all permutations of indices {1, . . . , n}.

The Set Transformer consists of two main parts: an encoder ϕ and a decoder ψ. The

process starts by encoding the set elements in an order-agnostic manner. As such, the

encoding for each element should be the same regardless of its position in the set. Then, ψ

aggregates the encoded features and produces the desired output. Let us consider an input

set S = {s1, . . . , sn}, where each element is din-dimensional (S ∈ Rn×din). Therefore, the

output T produced by the Set Transformer, whose computed function is denoted as g, is:

T = g(S) = ψ (ϕ ({s1, . . . , sn})) . (3.1)

Typically, the desired order-agnostic property is achieved by making ϕ to act on each

element of a set independently (i.e., g(S) = ψ ({ϕ(s1), . . . , ϕ(sn)})) [196]. Nevertheless, the

Set Transformer uses self-attention mechanisms to encode the entire input set simultaneously

so that it is capable of recognizing interactions among the set instances. In order to do so,

the multi-head attention mechanism explained in Section 2.1.3 is adapted.

3.2.1 Set Attention Blocks

Let us consider two matrices A,B ∈ Rn×din representing two sets whose elements are

din-dimensional vectors. In Eq. 2.1, we presented the expression used to obtain the output

of the i-th head of the multi-head self-attention mechanism in the transformer model. We

modify this expression slightly, no longer considering a self-attention scenario; that is, the

queries, keys, and values do not come from the source necessarily. Instead, we consider the

44

case that the key and value matrices always come from the same source, which is represented

by B, while the query matrix is represented by A. Thus, the output of the i-th head of the

multi-head attention of the Set Transformer is given by:

headi = Attention(A×WQ
i , B ×WK

i , B ×W V
i).

As such, based on Eq. 2.2, the output of the multi-head attention layer of the Set Transformer

is expressed as follows:

MultiHead(A,B) = Concat (head1, . . . , headh) WO.

Based on the modified multi-head attention layer, we define a multi-head attention

block (MAB) that, similar to the transformer encoder block, includes residual connections

and layer normalization:

MAB(A,B) = LayerNorm(H + FFN(H)),

H = LayerNorm(A+ MultiHead(A,B)).

Then, using the MAB, we define the set attention block (SAB) as follows:

SAB(A) = MAB(A,A), (3.2)

applying self-attention between the elements of set A and produces a set of equal size. Note

that the output of the previous operation computes pairwise interactions among the elements

of A; therefore, a stack of multiple SAB operations would encode higher-order interactions.

One drawback of the use of SABs is that the attention mechanism is performed between

two identical sets with n elements, which leads to a quadratic time complexity O(n2). In

order to alleviate this issue, Zaheer et al. [196] introduced the induced set attention block

45

(ISAB). Let I ∈ Rm×din denote a matrix of “inducing points” consisting of m din-dimensional

vectors (recall din represents the size of the input embeddings) whose values are learned

during the training process. Here, m is a tunable hyperparameter and its value is chosen to

be significantlly smaller than n (m≪ n). Thus, an ISAB with m inducing points is defined

as:

ISABm(A) = MAB(A,H) ∈ Rn×din ,

H = MAB(I, A) ∈ Rm×din .

(3.3)

This could be interpreted as if the input set A was projected into a lower-dimensional

space and then reconstructed to produce outputs with the desired dimensionality. Since

the attention mechanism in Eq. 3.3 is computed between a set of size m and a set of size n,

its associated time complexity is O(mn). Furthermore, Lee et al. [102] proved that the SAB

and ISAB blocks are universal approximators of permutation invariant functions.

3.2.2 Set Transformer Architecture

Having defined the MAB, SAB, and ISAB blocks in the previous section, we explain

how they are used to build the architecture of the Set Transformer. As shown in Eq. 3.1,

the Set Transformer starts by processing the input set S using the encoder ϕ. Recall that S

is an input set of n din-dimensional elements. Here, din denotes the length of each element

within the input set after undergoing pre-processing procedures such as input embedding

(see Section 2.1.2). Then, ϕ : Sn×din → Zn×d maps the original input space to a latent space

using a stack of SABs or ISABs. For instance:

Z = ϕ(S) = ISABm(ISABm(Embbeding(S))),

represents an encoder with ℓ = 2 stacks. In general, ℓ is a hyperparameter and its value

is decided depending on the complexity of the problem. In addition, Embedding(·) is the

46

input embedding layer described in Section 2.1.2. Note that the Set Transformer, unlike the

conventional transformer, does not require the use of a positional encoding layer given that

the position of the elements in the input set S is not relevant for the final decision.

The next step is for the decoder ψ to aggregate the latent features Z into a set of k

vectors, which are then processed by a feedforward layer to obtain the final outputs Y . Thus,

ψ : Zn×d → Yk×dout (k dout-dimensional outputs) such that:

Y = ψ(Z) = FFN(SAB(PMAk(Z))), (3.4)

where PMAk(·) is a pooling by multi-head attention (PMA) layer that aggregates the latent

features by applying multi-head attention on a learnable set of k seed vectors V ∈ Rk×d. In

particular, PMAk is defined as:

PMAk(Z) = MAB(V,FFN(Z)).

From Eq. 3.4, note that a SAB block was used to process the outputs of the PMA layer in

order to model the interactions among the k outputs.

It is important to clarify that the Set Transformer was designed to produce fixed-size

outputs. This setting can be used for applications such as population statistic estimation

(e.g., retrieving a unique value that presents the median of an input set), unique character

counting (i.e., obtaining the number of unique characters in a set of images), or k-amortized

clustering where the objective is to produce k pairs of output parameters of a mixture of

Gaussians. In the following section, we explain the reasons why the direct use of the Set

Transformer architecture is not feasible for the problem setting of interest in this dissertation.

47

3.3 Multi-Set Transformer

This section is dedicated to outlining the approach we suggest for solving the MSSP

problem. Our method draws inspiration from the Set Transformer. Nevertheless, note that

the Set Transformer was originally designed to serve a different purpose from the task we

are currently undertaking. Thus, we propose a Multi-Set Transformer model, which presents

modifications to address the limitations of the Set Transformer and adapt it to the specific

requirements of our research.

The most evident limitation of the Set Transformer, in the context of the present

problem, resides in its encoder structure, which is specifically designed to process a single

input set, as shown in Eq. 3.1. This is important because the input of the MSSP problem

is defined as a collection of NS input sets (NS > 1). Hence, the encoder of our Multi-Set

Transformer is designed to process multiple input sets simultaneously. This aspect represents

the main difference with respect to the SSP method proposed by Bigglio et al. [15], whose

encoder only processes single input sets. Furthermore, the Set Transformer’s output is k-

dimensional; that is, its size is fixed depending on the problem. Conversely, the objective

of the MSSP problem is to generate a symbolic skeleton string whose length is not known

a priori and depends on each input collection. Therefore, the decoder of the Multi-Set

Transformer is designed as a conditional-generative structure as it generates output sequences

(i.e., the skeleton string) based on the encoded context.

3.3.1 Multi-Set Transformer Architecture

Recall from Definition 1 that each input set D(s) =
(
X

(s)
v ,y(s)

)
=
{(
x
(s)
v,i , y

(s)
i

)}n

i=1

(where s ∈ [1, NS]) is defined as a set of n input–response pairs. The first step involves

arranging D(s) in a manner analogous to the input structure of the Set Transformer, which

consisted of a matrix S where each row represented a din-dimensional element of the input

48

Figure 3.3: An example of a MSSP problem using the Multi-Set Transformer.

set (Eq. 3.1). Let us denote the s-th input of our proposed Multi-Set Transformer as S(s) ∈

Rn×din such that its i-th row, s
(s)
i , consists of the concatenation of the input value x

(s)
v,i and

its corresponding output y
(s)
i ; i.e., s

(s)
i =

[
x
(s)
v,i , y

(s)
i

]
. Hence, S(s) is defined as a matrix with

din = 2 columns. This process is depicted in Figure 3.3, as well as the main components of

the Multi-Set Transformer architecture. Note that all input sets shown in this example were

generated using the equation y = 1
x
√
2π
e−

1
2
(r
x
)2 and a different r value was used for each set

D(s). Thus, their common target symbolic skeleton can be expressed as c
x
e

c
x2 .

Our Multi-Set Transformer comprises two primary components: an encoder and a

decoder. The purpose of the encoder is to map the information of all input sets into a unique

latent representation Z. To do so, an encoder stack ϕ, similar to the one used in the Set

Transformer (see Section 3.2.2), transforms each input set S(s) into a latent representation

Z(s) ∈ Rd (where d is context vector length or the “embedding size”) individually. Our

49

encoder, denoted as Φ, comprises the use of the encoder stack ϕ to generate NS individual

encodings Z(1), . . . , Z(NS), which are then aggregated into a unique latent representation Z:

Z = Φ
(
S(1), . . . ,S(NS), θe

)
= ρ

(
ϕ
(
S(1), θe

)
, . . . , ϕ

(
S(NS), θe

))
= ρ

(
Z(1), . . . , Z(Ns), θe

)
,

(3.5)

where ρ(·) is a pooling function, and θe represents the trainable weights of the encoder

stack. We define ϕ as a stack of ℓ ISAB blocks so that it encodes high-order interactions

among the elements of an input set in a permutation-invariant way. Furthermore, unlike

the Set Transformer’s encoder, we include a PMA layer in ϕ to aggregate the features

extracted by the ISAB blocks, whose dimensionality is n × d, into a single d-dimensional

latent vector. Finally, the function ρ(·) that is used to aggregate the latent representations

Z(s) is implemented using an additional PMA layer.

On the other hand, the objective of the decoder, denoted as ψ, is to generate sequences

conditioned on the representation Z generated by Φ. This objective is aligned with that of

the standard transformer decoder (see Section 2.1.4); thus, the same architecture is used for

our Multi-Set Transformer. Specifically, ψ consists of a stack of M identical blocks, each of

which is composed of three main layers: a multi-head self-attention layer, an encoder–decoder

attention layer, and a position-wise feedforward network.

Let ê = {ê1, . . . , êNout} denote the output sequence produced by the Multi-Set

Transformer, which represents the symbolic skeleton as a sequence of indexed tokens in

prefix notation. For instance, the skeleton c
x
e

c
x2 would be expressed as the sequence of

tokens {mul, div, c, x, exp, div, c, square, x} in prefix notation. In addition, each token in

this sequence is transformed into a numerical index according to a pre-defined vocabulary

that contains all unique symbols that appear in the dataset being processed. The

vocabulary used in this work is provided in Table 3.1. According to this, the previous

sequence in prefix notation would be expressed as the following sequence of indices:

50

Table 3.1: Vocabulary used to pre-train the Muli-Set Transformer.

Token Meaning Index

SOS Start of sentence 0
EOS End of sentence 1
c Constant placeholder 2
x Variable 3
abs Absolute value 4
acos Arc cosine 5
add Sum 6
asin Arc sine 7
atan Arc tangent 8
cos Cosine 9
cosh Hyperbolic cosine 10
div Division 11
exp Exponential 12
log Logarithmic 13
mul Multiplication 14
pow Power 15
sin Sine 16
sinh Hyperbolic sine 17
sqrt Square root 18
tan Tangent 19
tanh Hyperbolic tangent 20
-3 Integer number 21
-2 Integer number 22
-1 Integer number 23
0 Integer number 24
1 Integer number 25
2 Integer number 26
3 Integer number 27
4 Integer number 28
5 Integer number 29
E Euler’s number 30

{0, 14, 11, 2, 3, 12, 11, 2, 18, 3, 1}.

During inference, each element êi (i ∈ [1, Nout]) is generated in an auto-regressive

manner. Specifically, the decoder ψ produces a probability distribution over the elements of

the vocabulary as follows:

σ (ψ (Z, θd|ê1, . . . , êi−1)) = P (êi|ê1, . . . , êi−1,Z) ,

51

where θd represents the trainable weights of the decoder stack. This distribution is obtained

by applying a softmax function σ to the decoder’s output. The element êi is thus selected

from the obtained probability distribution by using one of the following strategies: sampling

decoding or greedy decoding [63]. The former samples a token from the distribution to

allow diversity in the generated sequence, while the latter selects the token with the highest

probability for a deterministic output. Hence, the generation process can be written as:

êi = sample (σ (ψ (Z, θd|ê1, . . . , êi−1))) ,

which is also depicted in Figure 3.3 using an auto-regressive loop between the output and

the decoder stack. The decoder keeps generating new sequence elements until the “end-of-

sentence” token (EOS) is produced (êi = 1, according to Table 3.1) or the maximum output

length allowed, denoted as Nmax, is reached (Nout = Nmax).

3.3.2 Multi-Set Transformer Training

We aim to build a Multi-Set Transformer model that, once trained, generates a symbolic

skeleton ê when given an input set collection D. The estimated skeleton ê aims to resemble

its corresponding target skeleton e closely. Hence, a trained Multi-Set Transformer model

can be viewed as a problem-independent MSSP solver in the sense that it does not need to

be trained on data specific to each set collection D to retrieve an estimated skeleton.

To do so, we train our Multi-Set Transformer on a dataset of synthetically generated

MSSP problems. Let Db = {D1, . . . ,DB} denote a training batch with B samples, each

of which represents a collection of NS input sets; i.e., Dj =
{
D

(1)
j , . . . ,D

(NS)
j

}
, where j ∈

[1, . . . , B]. In addition, Eb = {e1, . . . , eB} is the corresponding set of target skeletons, each

of which represents a sequence of variable length; i.e., ej =
{
ej,1 . . . , ej,Nj

}
and Nj = |ej|.

The function computed by the model is denoted as g(·), and Θ denotes its weights. Note

that Θ = [θe, θd] encompasses the weights of the encoder and the decoder stacks. Given

52

an input set collection Dj, g(Dj,Θ) computes the estimated skeleton êj with length Nout, j.

Thus, this model is trained to generate accurate estimated skeletons so that êj ≈ ej.

In the previous section, we explained how the model generates sequences autonomously

by using its own predictions as conditional inputs during inference. Conversely, during

training, the model aims to minimize the discrepancy between its predictions and the true

target skeletons using a technique called “teacher forcing” [190]. This strategy consists

of providing the model with past elements of the target skeleton sequence as inputs for

generating subsequent tokens. More specifically, the normalized probability distribution

produced by the decoder ψ for the i-th element of the predicted skeleton sequence of the

j-th sample would be expressed as:

σ (ψ (Zj, θd|ej,1, . . . , ej,i−1)) = P (êj,i|ej,1, . . . , ej,i−1,Zj) .

This process is depicted in Figure 3.4, which differs from the generation process shown in

Fig. 3.3 in that the autoregressive loop does not feed the previously generated tokens into

the decoder. Instead, it feeds the previous i− 1 tokens of the target skeleton ej.

To generate accurate skeletons êj that are close to their corresponding targets ej, we

minimize the discrepancy between them, which is computed using the cross-entropy loss

function. It is important to note that the length of the symbolic skeleton sequence êj,

obtained after using the teacher forcing strategy, may differ from the length of ej. This

divergence in sequence lengths poses a challenge in calculating a loss function that enables

element-wise comparison, as is the case of the cross-entropy function. Nevertheless, note

that while teacher forcing does not guarantee that êj and ej have the same length, it can

encourage length similarity indirectly. This is due to the fact that the model learns to

associate the length of the target skeleton with its own generation process during training.

In cases where êj and ej differ in length, one common approach is to use padding and

53

Figure 3.4: Modification of the Multi-Set Transformer output generation during training.

masking to ensure that the loss is only calculated for valid tokens. Hence, we add padding

tokens to the shorter sequence, so both sequences have the same length Tj = max(Nj, Nout, j).

We choose a padding token value of 0, representing the “start-of-sentence” token (SOS) as

per Table 3.1. This value lacks meaningful content and serves the purpose of padding within

the sequence. The next step is to create a binary mask ωj = {ωj,1, . . . , ωj,Tj
} with values 0

for padding positions and 1 for non-padding positions, such that:

ωj,i =

0, if ej,i = 0 and êj,i = 0

1, otherwise

.

Thus, our optimization objective is defined as the cross-entropy loss between the padded

target and predicted skeleton sequences, which is calculated using their corresponding

probability distributions over the set of possible tokens:

L = − 1

B

B∑
j=1

Tj∑
i=1

ωj,i P (ej,i) logP (êj,i|ej,1, . . . , ej,i−1,Zj) . (3.6)

54

Hence, our optimization problem can be expressed as

Θ = argmin
Θ

L.

3.3.3 Dataset Generation

Here, we explain how to generate the synthetic equations and corresponding data used

to train our Multi-Set Transformer. We build upon the generation method proposed by

Biggio et al. [15], which, in turn, was based on that by Lample and Charton [98]. We start

by generating expression trees whose number of non-leaf nodes (i.e., nodes that represent

mathematical operators) is sampled between 3 and 7. Each operator is assigned a probability

score of being sampled (see Table 3.2). These values were chosen arbitrarily with the main

objective of generating sound and not-too-complex mathematical expressions. For instance,

the probability score assigned to the basic operators add, mul, and div is 10, which is higher

than other complex operators, such as tanh, whose score is 2. By doing so, we reduce the

chance of generating expressions that only contain complex operations.

In addition, we forbid certain combinations of operators during the generation process

to avoid numerical inconsistencies or redundancy. For example, we avoid embedding the

operator log within the operator exp, or vice versa, since such composition could lead to

direct simplification (e.g., log (exp(x)) = x). We also avoid some combinations of operators

that would generate extremely large values (e.g., exp (exp(x)) and sinh (sinh(x))). Table 3.3

shows the two types of forbidden operators. Type 1 represents all possible combinations of

operators exp and log, including the cases where the operators are repeated (i.e., exp (exp(·))

and log (log(·))). Similarly, Type 2 represents all possible combinations of operators exp,

pow(·, 3), pow(·, 4), pow(·, 5), sinh, cosh, and tanh, including repetitions. It is worth

mentioning that Biggio et al. used 13 operators for generating random expressions and

did not forbid specific combinations of operations. Conversely, our approach incorporates 19

55

Table 3.2: Un-normalized sampling probabilities of the unary and binary operators.

Operator Arity Probability

abs 1 2
acos 1 2
add 2 10
asin 1 2
atan 1 2
cos 1 4
cosh 1 3
div 2 10
exp 1 4
log 1 4
mul 2 10
pow 2 4
sin 1 4
sinh 1 3
sqrt 1 4
tan 1 4
tanh 1 2

operators, thereby introducing an augmented level of complexity.

Each generated tree is traversed to derive a mathematical expression in prefix notation.

We employ a pre-order traversal scheme, wherein the root node is visited before traversing

its left and right subtrees recursively. The expression is then transformed from prefix to infix

notation, which is simplified using SymPy1, a symbolic manipulation library. The simplified

expression is transformed again into an expression tree. Then, each non-numerical node of

the tree is multiplied by a unique placeholder and then added to another unique placeholder.

An exception applies to the exp, sinh, cosh, and tanh operators, whose arguments are not

affected by additive placeholders. This is because adding a constant to their arguments would

lead to direct simplification (e.g., c1e
c2 x+c3 = (c1e

c2)ec3 x). Figure 3.5 illustrates the random

expression generation process. Note that Biggio et al. also proposed to include unique

placeholders in the generated expressions; however, they included only one placeholder at a

time (additive or multiplicative). In contrast, by including multiple placeholders in a single

1https://www.sympy.org/

https://www.sympy.org/

56

Table 3.3: Types of forbidden combinations of operators.

Combination Operators
exp

Type 1 log

exp

pow(·, 3)
pow(·, 4)

Type 2 pow(·, 5)
sinh

cosh

tanh

Figure 3.5: Example of a randomly generated expression.

expression, our approach generates more general expressions.

Each generated expression is stored in prefix notation. To prevent overly complex

expressions, we impose a restriction on their maximum element count to ensure it remains

below 20, as suggested by Lample and Charton [98] and Biggio et al. [15]. Our training

dataset encompasses 1 million expressions while our validation set consists of 100,000

expressions. They can be viewed as sets of pre-generated expressions, with their constant

values being randomly sampled each time they are accessed during the training process.

57

Algorithm 3.1 Multi-Set Transformer Training

Input: Pre-generated expressions Q; initialized model g; number of input sets NS ; number of

samples per input set n; batch size B

Output: Trained model g

1: function TrainModel(Q, g, NS , n, B)

2: for each t ∈ range(1, maxEpochs) do

3: Batches← getBatches(NT , B)

4: for each batch ∈ Batches do

5: EB, ÊB ← [], []

6: for each j ∈ batch do

7: Dj , ej = generateSets(Q[j], NS , n)

8: êj = forward(g,Dj , ej)

9: EB.append(ej)

10: ÊB.append(êj)

11: L← L(EB, ÊB)

12: update(g, L)

13: return g

Algorithm 3.1 shows the basic training routine of the Multi-Set Transformer. This algorithm

takes as inputs the set of pre-generated expressions, denoted as Q, the initialized model g,

the number of input sets per data collection NS, the number of samples per input set n, and

the size of the mini-batches. Here, the function getBatches shuffles a list comprising indices

ranging from 1 to |Q| (e.g., |Q|= 106), and returns it in batches of B elements. Then,

the function generateSets(Q[j], NS, n) takes the j-th expression in Q and generates the

skeleton ej and corresponding data collection Dj. This generation procedure is explained

in detail in Algorithm 3.2. The estimated skeletons êj are obtained using the function

forward(g,Dj, ej), which processes the input Dj and target ej through the network g using

the training configuration explained in Figure 3.4. Function L(EB, ÊB) represents the loss

function (Eq. 3.6) while update(g, L) encompasses the conventional backpropagation and

gradient descent processes used to update the weights of model g.

As previously mentioned, Algorithm 3.2 obtains the actual skeletons ej and corre-

sponding data Dj for training. It takes as input a pre-generated expression ex (Q[j]

58

Algorithm 3.2 Multi-Set Transformer Data Generation

Input: Pre-generated expression ex; number of input sets NS ; number of samples per input set n

Output: Collection D of NS sets; common skeleton e

1: function generateSets(ex, NS , n)

2: c, nc ← getConstants(ex)

3: nf ← randInt(2, nc)

4: ex← selectConstants(ex, c, nf)

5: D← []

6: s← 1

7: while s ≤ NS do

8: f (s) = sampleConstants(ex)

9: X
(s)
v ← sampleSupport(n)

10: X
(s)
v , f (s),Xsing = avoidNaNs(X

(s)
v , f (s))

11: temp = κ(f (s))

12: if s = 1 then

13: e = temp

14: else

15: while temp ̸= e do ▷ Verify that all sets correspond to the same skeleton

16: continue

17: y(s) = f (s)
(
X

(s)
v

)
18: D.append

(
(X

(s)
v ,y(s))

)
19: s← s+ 1

20: return D, e

in Algorithm 3.1) with labeled additive and multiplicative placeholders. The function

getConstants(ex) returns c, the list of constant placeholders in ex, and nc = |c|.

The number of constants we use from ex, nf , is decided randomly (2 ≤ nf ≤ nc).

Then, the function selectConstants(ex, c, nf) retrieves a new expression with nf constant

placeholders randomly selected. Note that the constant placeholders that were not selected

are replaced by the values 0, in the case of additive placeholders, and 1, in the case of

multiplicative placeholders. For instance, consider ex = c1 + c2 tan (c3 + c4x), where nc = 4.

Suppose we randomly select nf = 3 constants; then, we could obtain the following expression:

ex = c1+tan (c4x); i.e., c2 = 1 and c3 = 0. Hence, expressions with slightly different skeletons

are generated at each epoch despite corresponding to the same pre-generated expressions,

59

Figure 3.6: Example of four input–response pairs sets generated from e(x) = c1 x
log(c2x2+c3)

+c4.

thus adding more diversity to the training data. It is worth pointing out that the approach

by Biggio et al. consists of sampling skeleton expressions with up to three constants. We

argue that this entails an important limitation on the type of skeletons that can be generated.

For instance, the skeleton c ecx

sin(cx)+c
could not be handled by their approach.

Once the expression ex has been defined, we generate the underlying functions

f (s) corresponding to each of the NS sets. This is achieved by using the function

sampleConstants(ex), which samples the values of each constant in ex from a uniform

distribution U(−10, 10) independently. For each set, n input points X
(s)
v are sampled via

sampleSupport(n), also from U(−10, 10). Although the range [−10, 10] is arbitrary, it is

used consistently across all sets and expressions to ensure uniformity.

In addition, the function avoidNaNs(X
(s)
v , f (s)) may modify some of the coefficients in

f (s) or sample additional X
(s)
v values to avoid numerical inconsistencies. It also returns the

variable Xsing that specifies the x positions at which the function f (s)(x) would output

60

undefined values. For example, if f (1) =
√

2x and the minimum value in X(1) is −10,

avoidNaNs modifies f (1) so that there are no negative numbers inside the square root

operation: f (1)(x) =
√

2x+ 20. Operations such as division and tan exhibit singularities at

specific input values (e.g., division by zero), which, if encountered within X
(s)
v , are replaced by

values that prevent undefined results or extremely large values. Figure 3.6 shows an example

of four sets of input–response pairs generated from the symbolic skeleton c1
x

log(c2x2+c3)
c4.

Here, the division and log operations may produce undefined values for certain input and

coefficient values; however, avoidNaNs prevents this from happening, obviating the need

for protected operators. More details about the avoidNaNs function are provided in the

following section. Note that Biggio et al. suggested dropping out the input–response pairs

that lead to undefined values. A major drawback of this approach is that it is possible to

generate functions whose outputs are predominantly undefined; e.g., log(x− 8) is undefined

for x ∈ [−10, 8]. Therefore, removing input–response pairs with undefined values would lead

to creating unrepresentative input sets with varying lengths.

Notice that after using the avoidNaNs function, the skeleton f (s) may have been altered.

Thus, we include in Line 15 a while loop that prevents the algorithm from continuing until it

generates a function with the same skeleton e as that of the previous function f (s−1). Each

function f (s) is evaluated on the input values X
(s)
v to obtain the corresponding responses

y(s). As such, the algorithm returns the common skeleton e alongside a collection of NS sets{(
X(1),y(1)

)
, . . . ,

(
X(NS),y(NS)

)}
, each consisting of n input–response pairs.

3.3.4 Avoiding Invalid Operations

In this section, we present a detailed description of the function avoidNaNs(x, f)

introduced in Algorithm 3.2. This function modifies certain coefficients within the function

f or generates supplementary support values within the vector x to avoid numerical

inconsistencies. We classify the operators that may generate undefined values as follows:

61

• Single-bounded operators: These operators have bounded numerical arguments due to

the mathematical constraints imposed on their domains. We consider the following

single-bounded operators:

– Logarithm (log): It cannot process inputs lower than or equal to 0:

Domain (log(x)) = {x ∈ R | x > 0}.

– Square root (sqrt): Bounded on its left side to avoid generating complex numbers:

Domain (sqrt(x)) = {x ∈ R | x ≥ 0}.

– Exponential (exp): Bounded on its right side to avoid extremely large values. A

maximum input of 7 was selected manually to keep the output scale comparable

to other operators and their combinations.

Domain (exp(x)) = {x ∈ R | x ≤ 7}.

• Double-bounded operators: Unlike the single-bounded operators, the numerical

arguments of these operators are bounded on their left and right sides:

– Arcsine (asin): It takes a value between −1 and 1 as its input and returns the

angle whose sine is equal to that value:

Domain (asin(x)) = {x ∈ R | −1 ≤ x ≤ 1}.

– Arccosine (acos): Like arcsine, it also takes a value between −1 and 1 as its input:

Domain (acos(x)) = {x ∈ R | −1 ≤ x ≤ 1}.

62

• Operators with singularities: Operators like the tangent (tan) or division (div) can

exhibit singularities at specific input values. For instance, the tangent function becomes

undefined when its input equals an odd multiple of π/2 (e.g., tan(−π/2), tan(π/2)),

resulting in an asymptotic behavior where the function approaches infinity.

Algorithm 3.3 shows the method proposed to address the NaN (“not a number”) values

arising from the aforementioned functions, which we refer to as “special functions”. Here,

f.args returns a vector containing the numerical arguments of function f . Consider the

function f(x) = asin (log(x)) + x2 + 3; in this case, f.args = [asin (log(x)) , x2, 3]. If

f is considered as an expression tree, f.func returns the name of the operator located at

the top of the tree. In the previous example, f.func = add. The algorithm analyzes each

argument of f separately (Line 4). A given argument of f , denoted as arg, can be considered

as a sub-expression tree. Hence, the function containSpecialF(arg) (Line 5) traverses the

sub-expression tree and returns a true value if any special function is found within.

If the current sub-expression tree contains a special function, we check if the top

operator of the subtree is special using function isSpecialF(arg.func) (Line 7). If not,

we move down to a deeper level of the subtree using recursion (Line 8). Otherwise, the

arguments of the sub-expression arg may need to be modified to avoid undefined values.

Before doing so, in Line 11, we verify if there is another special function contained inside

the current subtree, in which case we explore a deeper level of the subtree using recursion

(Line 12). Note that we apply the containSpecialF(arg.args[0]) function given that arg is

guaranteed to represent a special function and, as such, it is a unary function with a single

argument. Consider the example introduced in the above paragraph. When analyzing the

first argument, arg = asin (log(x)), we verify that the top operator of the current subtree

is special (i.e., arg.func = asin). Thus, we may need to modify its inner argument, log(x),

to produce valid input values between −1 and 1. Notice that the inner argument log(x)

constitutes a sub-expression tree that contains a special function, log, whose corresponding

63

inner argument, x, needs to be modified to produce valid input values greater than 0.

The function represented by the inner argument of the current function arg is denoted

as innArg (Line 13). The function arg is then evaluated on the input values x and the

obtained values are stored in the vector vals (Line 14). The function containNaNs(vals)

returns a true value in the event that one or more undefined values are found within the

vector vals. This criterion also encompasses instances where the absolute values of numbers

are exceedingly large (e.g., > 105). If an undefined value is found, a modification of the

inner argument or the input vector x is needed. To do so, we first evaluate the function

represented by innArg on the input values x and store the outcomes in the variable innArg

(Line 16). In the case that the function arg is single-bounded, the domain of function

innArg is modified accordingly using modifySBounded(arg, vals, innArg, innVals) (Line 18).

Likewise, if arg is double-bounded, the domain of innArg is modified accordingly using

modifyDBounded(arg, innArg, innVals) (Line 20). In the case that arg represents a function

with singularities, a new input vector x with resampled values is obtained using the function

avoidSingularities(x, arg,Xsing) (Line 22), where Xsing is a variable that will store all

positions at which the function produces undefined values and is initialized as an empty

list. The inner argument of function arg is then replaced with the modified function innArg

(Line 24). Finally, the arguments of the original function f are replaced with the modified

arguments stored in the list newArgs (Line 26).

Algorithm 3.4 shows the implementation of the function modifySBounded. Here, the

method by which the inner argument of the function arg is altered depends on whether it is

bounded on its left or right side. The function getSBound(arg) returns the bound type and

the corresponding bound value. The bound type is equal to “min” if arg is bounded on its

left side, and “max” otherwise. In the first case, we count the number of NaN values present

in vals using the function countNaNs(vals). If the count of NaN values exceeds the count

of non-NaN values, both innArg and innVals are substituted with their respective negations

64

Algorithm 3.3 Avoiding Invalid Operations

Input: Support points x; function f ; initial singularity set Xsing; samples per input set n

Output: Updated x, f , and Xsing

1: function avoidNaNs(x, f,Xsing = [])

2: args← f.args

3: newArgs← []

4: for each arg ∈ args do

5: if containSpecialF(arg) then

6: // If the operator at the top of the current sub-expression tree is special

7: if ! isSpecialF(arg.func) then

8: x, arg,Xsing← avoidNaNs(x, arg,Xsing)

9: else

10: // Check if there’s another special function inside the current function

11: if containSpecialF(arg.args[0]) then

12: x, arg,Xsing← avoidNaNs(x, arg,Xsing)

13: innArg← arg.args[0]

14: vals← arg(x)

15: if containNaNs(vals) then

16: innVals← innArg(x)

17: if isSingleBounded(arg) then

18: innArg← modifySBounded(arg, vals, innArg, innVals)

19: else if isDoubleBounded(arg) then

20: innArg← modifyDBounded(arg, innArg, innVals)

21: else ▷ Operations with singularities

22: x,Xsing← avoidSingularities(length(x), arg,Xsing)

23: arg.args[0]← innArg ▷ Update function

24: newArgs.append(arg)

25: f.args← newArgs

26: return x, f,Xsing

(Line 6). This approach helps in cases where all of the inner argument values are less than

the given bound of arg. By negating innArg and, consequently, innVals, all inner argument

values become greater than the bound, ensuring that they fall within the valid input domain

of arg. If after this operation there are values in innVals that are still lower than the

bound, we add a horizontal offset as shown in Line 9. For example, if arg(x) = sqrt(x)

and x ∈ [−10, 10], the modified inner argument is given by innArg = x + 10; therefore, the

65

Algorithm 3.4 Modifying Single-Bounded Operations

Input: Function arg and its evaluated values vals; inner argument innArg and its evaluated

values innVals

Output: Updated inner argument innArg

1: function modifySBounded(arg, vals, innArg, innVals)

2: boundType,bound← getSBound(arg)

3: if boundType = “min” then

4: NaNs← countNaNs(vals)

5: if NaNs > length(vals)−NaNs then

6: innArgs, innVals← −innArgs,−innVals
7: if any (innVals < bound) then

8: minVal← minimum(innVals)

9: innVals← innVals + (bound−minVal)

10: else

11: innArg← innArg/maximum(|innVals|) ∗ bound
12: return innArg

Algorithm 3.5 Modifying Double-Bounded Operations

Input: Function arg; inner argument innArg and its evaluated values innVals

Output: Updated inner argument innArg

1: function modifyDBounded(arg, innArg, innVals)

2: minBound,maxBound← getDBound(arg)

3: innArg← (innArg− minimum(innVals)) /(maximum(innVals)− minimum(innVals))

4: innArg← innArg ∗ (maxBound−minBound) + minBound

5: return innArg

modified function arg(x) = sqrt(x + 10) produces defined numbers for all values of x. On

the other hand, if arg is bounded on its left side, we simply scale its inner argument as

shown in Line 11 so that it does not produce values greater than the maximum bound.

Furthermore, Algorithm 3.5 presents the implementation details of the function

modifyDBounded, which is utilized for modifying double-bounded functions, Here, the inner

argument innArg is scaled in such a way that its minimum and maximum values are equal

to the minimum and maximum bounds of the input domain of function arg.

Finally, Algorithm 3.6 details our approach for preventing the generation of NaN values

66

Algorithm 3.6 Handling Operations with Singularities

Input: Support’s desired length, len; function arg; initial singularity set Xsing

Output: Updated inner argument innArg

1: function avoidSingularities(len, arg,Xsing)

2: arg2← 1/arg

3: xs← linspace(−10, 10, 1000) ▷ Declare initial potential x values

4: ys← arg2(xs)

5: sing← whereIsZero(xs, ys) ▷ Find x values where arg2(xs) ≈ 0

6: Xsing.append(sing)

7: Xsing← sort(Xsing)

8: pairs← validIntervals(−10, 10,Xsing)
9: // Generate points within the list of valid intervals

10: newX← []

11: totalL← calcLength(pairs) ▷ Calculate the total length across all valid intervals

12: for each (start, end) in pairs do ▷ Generate equidistant points within the current interval

13: Npoints← len(end− start)/totalL

14: points← []

15: step← (end− start)/(Npoints− 1)

16: for each j ∈ [1,Npoints] do

17: points.append(start + (j − 1) ∗ step)
18: newX.append(points)

19: return newX,Xsing

when the top operator of the sub-expression tree arg exhibits singularities at specific input

values. The function avoidSingularities(len, arg,Xsing) receives as arguments the desired

length of the support set, len; the currently analyzed sub-expression, arg; and a list of input

values Xsing that produced undefined values in previously evaluated sub-expressions and

that we should avoid. In this work, we consider that the operators that exhibit singularities

are those that imply a division by zero at one or more positions, such as division or tangent.

Hence, in Line 2, we take the inverse of arg to find the x values at which arg2(x) = 1
arg(x)

≈ 0,

which is equivalent to finding the values at which arg(x) is undefined; i.e., arg(x) ≈ ∞. We

generate the vector xs using the function linspace(−10, 10, 1000), which returns 1000 evenly

spaced numbers between −10 and 10. As explained in Section 3.3.3, this range was chosen

67

Figure 3.7: A generation example using function f(x) = −3.12x
sin(1.45x) − 2.2. (Top) Generated

data on the entire domain [−10, 10]. (Bottom) Detailed view of how singularities are avoided.

to ensure consistency across all generated expressions. Then, xs is evaluated on arg2 so that

ys = arg2(x). These vectors are used to find the values of xs at which ys is close to zero.

Specifically, the function whereIsZero(xs, ys) returns a vector sing containing the values of

xs at which ys crosses the horizontal axis, indicating it is close to a singularity point. The

vector sing is then added to Xsing, which contains singularity points of previously analyzed

sub-expressions that we should avoid when analyzing the current sub-expression.

Furthermore, the function validIntervals(−10, 10, Xsing) returns a list of pairs that

indicate intervals of values between −10 and 10 that do not produce NaN values. For

example, if two singular values were encountered at x = 2 and x = 5, the function

validIntervals(−10, 10, [2, 5]) would return the list [(−10, 1.95), (2.05, 4.95), (5.05, 10)]

68

indicating that the intervals (−10, 1.95), (2.05, 4.95) and (5.05, 10) are free of NaN values.

Note that we used a threshold of 0.05 to avoid getting too close to the singular points.

Once we find the valid input intervals for the current sub-expression, we populate the vector

of input values, newX. To do this, we generate equidistant points within each interval so

that the total number of generated points is len and the number of points generated within

each interval is proportional to the length of the interval (Lines 10–19). Fig. 3.7 depicts an

example of how data are generated using the underlying function f(x) = −3.12x
sin(1.45x) − 2.2.

The figure at the bottom shows in detail that the avoidSingularities function finds two

singular points within the zoomed-in range, whose positions are highlighted by the red dotted

line. From this, the valid intervals are calculated avoiding getting too close to the singular

points. The limits of the valid intervals are represented by the black dashed lines.

3.4 Experimental Results

A training dataset2 consisting of one million pre-generated expressions (|Q|= 106) has

been created to train the Multi-Set Transformer. These expressions allow up to one nested

operation and contain a maximum of five unary operators. We also generated an independent

validation set consisting of 105 expressions. For the model architecture, due to the memory

limit of the available graphic processing units (GPU)3 and the high computational expense

associated with training a single model, we used a one-factor-at-a-time approach to choose

the following hyperparameters:

• Number of input sets: NS = 10.

• Number of input–response pairs in each input set: n = 3000.

• Optimizer: Adadelta [198] with an initial learning rate of 0.0001.

2The code and datasets are available at https://github.com/NISL-MSU/MultiSetSR
3Four NVIDIA H100 GPUs at the Tempest Research Cluster: https://montana.edu/uit/rci/tempest/

https://github.com/NISL-MSU/MultiSetSR
https://montana.edu/uit/rci/tempest/

69

Table 3.4: Comparison of the number of trainable parameters of the different transformer-
based SR methods.

SR Transformer Model

NeSymReS [15]

E2E [82]

Multi-Set Transformer (ours)

Parameters

26,395,708

93,451,508

23,094,304

• Batch size: B = 16.

• Architecture:

– Number of ISAB blocks in the encoder: ℓ = 3.

– Number of decoder blocks: M = 5.

– Embedding size: d = 512.

– Number of heads: h = 8.

Table 3.4 compares the number of trainable parameters across different transformer-

based SR methods. Although E2E and NeSymRes address SSP problems (i.e., single-set

inputs), their complexity exceeds that of the Multi-Set Transformer, which simultaneously

processes multiple sets. Since E2E and NeSymRes solve a different problem type, their model

outputs are not directly comparable to those of the Multi-Set Transformer. In Chapter 4, we

analyze the SR frameworks in which these models were introduced and compare the complete

mathematical expressions they generate.

Figure 3.8 depicts the training and validation curves obtained after training the Multi-

Set Transformer during 33 epochs on dataset Q. No signs of overfitting were observed,

suggesting that the model complexity is appropriate for solving the MSSP problem. Although

the curve trend indicates a potential early convergence stage, training was halted due to

computational constraints, requiring approximately two weeks for 33 epochs.

70

Figure 3.8: Learning curves obtained from training the Multi-Set Transformer.

To demonstrate the performance of the Multi-Set Transformer, we randomly select

100 skeletons from the validation set. For each skeleton, we generate NS = 10 input-

–response sets using Algorithm 3.2 and feed them into the trained model. Table 3.5 compares

the predicted skeletons with their target counterparts, highlighting incorrect predictions.

Some predicted skeletons are not highlighted despite differing from the target skeletons. For

example, in case 53, the model predicts ê = c1 + 1/sin(c2 + x1), while the target skeleton is

e = c1 + 1/cos(c2 + x1). However, these expressions are mathematically equivalent since the

subexpression sin(c+x1) can be rewritten as cos((c+ 3π/2) +x1) = cos(c′ +x1) by applying

a phase shift. A similar equivalence holds for cases 75 and 83.

It is worth noting that the results in Table 3.5 correspond to a single sequence produced

by the Multi-Set Transformer. In Chapter 4, we describe how to generate multiple distinct

skeleton candidates using a diverse beam search strategy [182]. Additionally, the NS

input sets are sampled multiple times to enhance variability in the resulting skeletons. By

generating multiple and diverse skeleton candidates, we increase the likelihood of recovering

one or multiple skeletons with the correct mathematical structure.

71

3.5 Summary

In this chapter, we introduced a new problem termed Multi-Set Symbolic Skeleton

Prediction. MSSP is an extension of the Symbolic Skeleton Prediction problem previously

explored in existing research. The MSSP problem involves analyzing multiple sets of input-

response pairs simultaneously. Assuming that all input sets have been generated from

functions that share the same functional form, the objective is to generate a univariate

symbolic skeleton that characterizes the underlying functional form of all input sets.

We tackle the MSSP problem using a novel transformer architecture called Multi-Set

Transformer, which comprises an encoder and a decoder. The encoder maps information from

multiple input sets into a shared latent representation, while the decoder generates symbolic

skeletons as sequences conditioned on this representation. The chapter provides a detailed

overview of the model architecture, including its internal components, mechanisms, and

training process. Additionally, we described the construction of our large synthetic dataset

and the process of generating training data from it. Experimental results demonstrated that

the proposed method effectively recovers skeletons that approximate the target skeletons

shared across all input–response sets. This capability makes the Multi-Set Transformer well-

suited for tackling multivariate symbolic regression in a decomposable manner; that is, by

analyzing one variable at a time, as discussed in the next chapter.

72

Table 3.5: Comparison of target and estimated skeletons on 100 validation skeletons.
√ e(x) √ ê(x) # e(x) ê(x)

1 c1 c2 + |x1|+ c3 c1 c2 + |x1|+ c3 51 c1 + (c2 + x1)4 c1 + (c2 + x1)4

2 c1 + tan(c2x1)/x1 c1 + tan(c2x1)/x1 52 c1 + (c2 + x1)3 c1 + (c2 + x1)3

3 c1 + log(c2x1 + c3)√ c1 + log(c2x1 + c3)√ 53 3c1x1 + c+ 1/x1
3c1x1 + c2

4 c1x1 + c2 c3 + x1 + c4 c1x1 + c2 c3 + x1 + c4 54 c1 + cosh(c2x1 + c3) c1 + cosh(c2x1 + c3)

5 c1 exp(x1) + c2 c1 exp(x1) + c2 55 2c1 + 1/(c2 + x1)
2c1 + 1/(c2 + x1)

6 c1 tan(c2 + x1) + c3 c1 tan(c2 + x1) + c3 56 3c1x1 + c2 3c1x1 + c2
7 c1 + tanh(c2|c3 + x1|)√ c1 + tanh(c2 + |c3 + x1|)√ 57 c1 + 1/sin(c2 + x1) c1 + 1/cos(c2 + x1)

8
c1tanh(c2 c3x1 + c4

+c5) + c6

c1tanh(c2 c3x1 + c4
+c5) + c6

58 c1(c2 + x1)2 + c3 c1(c2 + x1)2 + c3

9 c1 + c2/|c3 + x1| c1 + c2/|c3 + x1| 59 c1 + sin(c2x1)2 c1 + sin(c2x1)2

10 c1cosh(c2x1 + c3) + c4√ c1cosh(c2x1 + c3) + c4√ 60 c1 + x1 + tan(c2 + x1) c1 + x1 + tan(c2 + x1)

11 c1 c2 + x1 + c3 c1 c2 + x1 + c3 61 c1 + c2 cos(c3x1 + c4)/x1 c1 + c2 cos(c3x1 + c4)/x1

12 c1 + cosh(c2x1 + c3) c1 + cosh(c2x1 + c3) 62 c1 + tanh(c2|x1|+c3) c1 + tanh(c2|x1|+c3)

13 c1 + c2/tanh(c3x1) c1 + c2/tanh(c3x1) 63 c1 + c2/(c3x1 + c4)2 c1 + c2/(c3x1 + c4)2

14 c1 exp(c2 sin(c3x1)) + c4
c2 sin(c3x1)c1 + c4 64 4c1 sin(c2x1 + c3) + c4 4c1 sin(c2x1 + c3) + c4

15 c1(c2 + x1)3 + c3 c1(c2 + x1)3 + c3 65 c1 exp(c2 sin(c3x1 + c4)) + c5 c1 exp(c2 sin(c3x1 + c4)) + c5
16 c1 exp(c2 sin(c3x1)) + c4 c1 exp(c2 sin(c3 + x1)) + c4 66 c1(c2 + x1)3 + c3 c1(c2 + x1)3 + c3

17 c1(c2 + x1)2 + c3 c1(c2 + x1)2 + c3 67
c1(c2 log(c3x1 + c4)

+c5)2 + c6

c1(c2 log(c3x1 + c4)
+c5)2 + c6

18 c1 + (c2 + x1)4 c1 + (c2 + x1)4 68 c1 exp(x1) + c2 c1 exp(x1) + c2
19 c1tanh(c2|x1|+c)3 + c4√ c1tanh(c2|x1|+c)3 + c4√ 69 c1 + log(c2x1 + c3) c1 + log(c2x1 + c3)

20 c1 c2 + x1 + c3 c1 c2 + x1 + c3 70 4c1x√ 1 + c2 4c1x√ 1 + c2
21 c1 exp(c2x1) + c3√ c1 exp(c2x1) + c3√ 71 c1cosh(c2 c3x1 + c4) + c5 c1cosh(c2 c3x1 + c4) + c5

22
c1sinh(c2 c3x1 + c4

+c5) + c6√

c1sinh(c2 c3x1 + c4
+c5) + c6√

72 c1 + log(c2x1 + c3)4 c1 + log(c2x1 + c3)4

23 c1 + c2/(c3 c4 + x1 + c5) c1 + c2/(c3 c4 + x1 + c5) 73 c1 + c2 log(c3x1 + c)/x1 c1 + c2 log(c3x1 + c)/x1

24 c1cosh(c2|c3 + x1|+c4) + c5 c1cosh(c2|c3 + x1|+c4) + c5 74 c1x1 + c2 tan(c3x1) + c4 c1x1 + c2 tan(c3x1) + c4
25 c1 exp(c2|c3 + x1|) + c c1 exp(c2|c3 + x1|) + c 75 c1 cos(c2x1 + c3) + c4 c1 sin(c2x1 + c3) + c4

26
c1 tan(x1)+

c2tanh(c3x1 + c4) + c5

c1 tan(x1)tanh(c3x1

+c4) + c5
76 c1 + x1 exp(c2x1)

√
c1 + exp(c2x1)

√
27 c1(c2 + x1)2 + c3 c1(c2 + x1)2 + c3 77 c1 sin(c2√ c3x1 + c4) + c5 c1 cos(c2√ c3x1 + c4) + c5
28 c1 + c2/(c3(c4 + x1)2 + c5) c1 + c2/(c3(c4 + x1)2 + c5) 78 c1 tan(c2 c3x1 + c4 + c5) + c6 c1 tan(c2 c3x1 + c4 + c5) + c6

29 c1 + 1/(c2 + tanh(c3x1))√ √ c1 + tanh(c2x1) 79
c2/(c3

c1+
+ log(c4x1 + c5))

c1(c2 + log(c3x1 + c4)) + c5

30 c1 c2 + c3/(c4x1 + c5) + c c1 c2 + c3/(c4x1 + c5) + c 80 2c1x1 + c2 + x1
2c1x1 + c2 + x1

31 c1 tan(c2x1 + c3) + c4 c1 tan(c2x1 + c3) + c4 81 c1 + 1/(c2 + sin(c3x1)) c1 + 1/(c2 + sin(c3x1))

32 c1 cos(c2x1) + c3 c1 cos(c2x1) + c3 82 c1 cos(c2x1) + c3√ c1 cos(c2x1) + c3√
33 2c1x1 + c2 2c1x1 + c2 83

c1 cos(c2 c3x1 + c4
+c5) + c6

c1 cos(c2 c3x1 + c4
+c5) + c6

34 3c1 + c2/(c3 + x1)
3c1 + c2/(c3 + x1) 84 4c1 + c2/(c3 + x1)

4c1 + c2/(c3 + x1)

35 c1sinh(c3x1) + c4√ c1sinh(c3x1) + c4√ 85 2c1 + x1 log(c2x1)
2c1 + x1 log(c2 + x1)

36
c1sinh(c2 c3x1 + c4

+c5) + c6

c1cosh(c2 c3x1 + c4
+c5) + c6

86 4c1x1 + c2 4c1x1 + c2

37 c1 + exp(c2 sin(x1)) c1 + exp(c2 sin(x1)) 87 c1 exp(sin(x1)) + c2 c1 exp(sin(x1)) + c2
38 c1cosh(c2|c3 + x1|+c4) + c5 c1cosh(c2|c3 + x1|+c4) + c5 88 c1 + cos(c2sinh(c3x1 + c4)) c1 + cos(c2sinh(c3x1 + c4))

39 4c1x1 + c2 4c1x1 + c2 89 c1 + c2/(c3(c4 + x1)3 + c5) c1 + c2/(c3(c4 + x1)3 + c5)

40 c1 + sin(c2 + x1)4 c1 + sin(c2 + x1)4 90 c1 sin(c1 + c2/(c3 + x1)) + c4 c1 sin(c1 + c2/(c3 + x1)) + c4
41 3c1x1 + c2 3c1x1 + c2 91 c1 + c2 cos(x1)/x1 c1 + c2 cos(x1)/x1

42 c1tanh(c3x1 + c4) + c5 c1tanh(c3x1 + c4) + c5 92 c1 + c2sinh(c3x1)/x1 c1 + c2sinh(c3x1)/x1

43
c1(c2 + x1)

cosh(c3x1 + c4) + c5

c1(c2 + x1)
cosh(c3x1 + c4) + c5

93 c1 + x1|c2 + x1| c1 + x1|c2 + x1|

44
c1+

c2/(c3 + log(c4x1 + c5))
c1+

c2/(c3 + log(c4x1 + c5))
94 c1x1 + c2

√
c3 + x1 + c4 c1x1 + c2

√
c3 + x1 + c4

45 c1 log(c2x1 + c3) + c4 c1 log(c2x1 + c3) + c4 95 c1 + cos(c2sinh(c3x1 + c4)) c1 + cos(c2sinh(c3x1 + c4))

46 c1x1sinh(c2x1) + c3 2c1x1sinh(c2x1) + c3 96 c1(c2 + x1)tanh(c3x1 + c4) + c5 c1(c2 + x1)tanh(c3x1 + c4) + c5
47 c1 + c2 sin(c3x1)/x1 c1 + c2 sin(c3x1)/x1 97 c1 + c2/(c3x1 + c4)3 c1 + c2/(c3x1 + c4)3

48 c1 + 1/cos(c2 + x1)√ c1 + 1/cos(c2 + x1)√ 98 c1x1 + c2 + cos(c3 + |c4 + x1|) c1x1 + c2 + cos(c3 + |c4 + x1|)
49 c1 + c2/ c3x1 + c4 c1 + c2/ c3x1 + c4 99 c1 cos(x1)2 + c2 c1 cos(x1)2 + c2

50
c1 tan(c2(c3 + x1)2

+c4) + c5

c1 tan(c2(c3 + x1)2

+c4) + c5
100

√
c1 + exp(c2 c3x1 + c4) c1 + exp(c2

√
c3x1 + c4)

73

CHAPTER FOUR

DEEP EVOLUTIONARY SYMBOLIC REGRESSION

In this chapter, we introduce a novel SR method we termed Symbolic Regression

using Transformers, genetic Algorithms, and genetic Programming (SeTGAP). SeTGAP

addresses multivariate SR problems by first extracting univariate symbolic skeletons using

a Multi-Set Transformer, then merging them into a single multivariate structure using

evolutionary techniques, and finally fitting their coefficients to approximate the true

underlying equation of the observed data. We begin with an overview of related work,

outline the overall workflow of SeTGAP, and present experimental results comparing its

performance with other SR methods.

4.1 Background

Symbolic regression involves the process of acquiring a model representing data in the

form of a mathematical expression. However, the general SR problem remains unsolved

and becomes increasingly complex as the number of observations, operators, and variables

involved increases [176]. Moreover, SR has been proven to be NP-hard [183], further

emphasizing the computational challenges associated with solving it. As such, brute-force

approaches become infeasible, even for medium-sized datasets.

SR is commonly tackled using GP-based methods [95]. They evolve a population

of tree-like individuals using operations like selection, crossover, and mutation to improve

their fitness over multiple generations. Each individual, or program, represents a symbolic

expression that maps the inputs to the output, and its fitness function determines how well

it fits the data set being modeled. Variations of this approach attempt to design improved

operators and fitness functions to reduce the complexity of the search [67, 111, 139, 161].

74

Two significant challenges of GP for SR are code growth, also known as “code bloat”,

and the huge search space [4]. Bloat refers to the uncontrollable increase in the average tree

size during evolution without substantial improvements in fitness. This is problematic as it

not only leads to a computationally expensive evolution of large programs but also hinders

the generalization ability of the solutions [41, 150]. Note, however, that the primary goal of

this dissertation is not to achieve perfect generalization, but to interpret the functional form

learned by an opaque model. Improved generalization may follow naturally from identifying a

simpler mathematical model, which is inherently less prone to overfitting. On the other hand,

the huge search space in GP is attributed to the variability in program lengths permitted

during the evolutionary process. Consequently, this allows for the generation of multiple

solution trees representing mathematically equivalent functions [44]. In other words, there

exist many redundant solutions with the same phenotype but different genotypes. However,

GPs tend to generate a greater number of large solution trees compared to smaller ones,

according to the nature of program search space theory [99]. The high complexity of large

solutions makes them hard to interpret and entails poor generalization performance.

In most GP-based symbolic regression methods, the fitness of a program is determined

by its overall output and not by the intermediate outputs of its subexpressions. This implies

that a program’s subexpressions are only optimized indirectly. Arnaldo et al. [8] pointed

out that the indirect subexpression optimization approach may result in suboptimal fitness

optimization because it does not focus on evolving and learning suitable building blocks.

Therefore, they proposed to optimize the generated programs before the selection step by

optimizing the fitness contributions of its subexpressions. Specifically, the subexpressions of a

program are identified and then combined using multiple linear regression (MLR) considering

the target variable of the model as the response variable. In other words, MLR is used to place

optimal coefficients in front of each subexpression before combining them and evaluating the

program’s output, which is then used to calculate its fitness value.

75

GP has also been combined with deep learning techniques for SR. For example,

Mundhenk et al. [131] proposed a neural-guided GP that uses a recurrent neural network

(RNN) to generate the initial population of a GP component. After the GP is executed, its

top samples are used to retrain the RNN, which gradually learns to generate better initial

populations. It is also possible that RNNs may be used to solve the SR problem directly.

For instance, Petersen et al. [149] presented a gradient-based approach that utilizes RNNs

in a reinforcement learning framework. Here, an RNN emits a distribution of mathematical

expressions, which are then sampled and evaluated based on their fitness to the dataset.

The fitness serves as the reward signal to train the RNN using a risk-seeking policy gradient

algorithm, progressively adjusting the likelihood of expressions in accordance with their

rewards to prioritize better-performing expressions. In addition, conventional feedforward

NNs can be used to discover some properties of the data. Udrescu and Tegmark [176]

proposed a recursive algorithm called AI Feynmann that uses NNs to identify properties

such as symmetry, separability, and compositionality. This method uses other techniques

such as dimensional analysis, polynomial fitting, and brute force algorithms that exploit the

properties discovered by the NNs to define sub-problems that are easier to solve.

Several methods have proposed training NNs and gradually pruning irrelevant parts of

them until a simple equation can be distilled from the network weights [113, 159, 175, 189]

Martius and Lampert [113] proposed an NN architecture called EQL (which stands for

“equation learning”) that represents multiple symbolic expressions within its architecture.

The training objective is to reduce the prediction error and gradually prune irrelevant parts

of the network using regularization techniques until a simple equation can be extracted from

the network. One of its limitations is that singularities in some operators or their gradients

(e.g. division and logarithm) lead to unstable optimization. Sahoo et al. [159] built on

the work of Martius and Lampert [113] and proposed the use of regularized operators that

required additional parameters that avoid large gradients. These parameters are continuously

76

reduced using a hard-coded schedule. Conversely, Werner et al. [189] introduced a learnable

parameter that replaced the need to define a problem-dependent schedule. In addition,

they proposed a modified version of the EQL architecture, called iEQL (which stands for

“informed equation learning”), that uses skip connections and allows incorporating expert

knowledge to better guide the search. Domain knowledge is incorporated by assigning

complexity factors to each operator. Hence, operators with less preference are given

higher complexity factors. The complexity of a candidate equation generated by iEQL is

subsequently computed as a weighted sum, where the weights correspond to the complexity

factors assigned to each operator. This evaluation takes into account both the number of

operators in the equation and their associated complexity factors. Thus, equations with

lower complexity are prioritized in the selection process. Experimental results on two real-

world applications indicated that iEQL did not outperform the results obtained by GP-based

techniques, although the equations it learned were notably more interpretable.

One of the main limitations of most SR approaches is that they do not leverage

past experiences and, as such, each problem is learned from scratch. The inability to

incorporate insights from different equations or domains restricts their ability to adapt and

learn from diverse sources of information, hindering their capacity for improvement over

time. Transformer-based methods have been proposed recently as an alternative. Biggio

et al. [15] introduced the use of pre-trained transformer models for symbolic regression. A

large dataset of multivariate equations is generated to pre-train a transformer neural network

whose architecture is based on a set transformer [102]. This transformer acts as a general-

purpose model that predicts the symbolic skeleton from a corresponding set of input–output

pairs. The constants of the generated skeleton are then fitted using a non-convex optimizer,

such as the BFGS algorithm [51]. Empirical results suggested that the obtained models

improve over time with more data and compute time.

Additionally, Kamienny et al. [82] pointed out that the loss function minimized by

77

the BFGS algorithm can be highly non-nonconvex, and thus the correct constants of the

skeletons are not guaranteed to be found. Therefore, they avoided performing skeleton

prediction as an intermediary step and proposed a transformer neural network that estimates

the full mathematical expression directly. As an optional step, the constants learned by the

transformer can be refined by feeding them to a non-convex optimizer. Experimental results

have been shown to perform better than those obtained by previous NN-based methods and

reduced the accuracy gap with respect to those obtained by state-of-the-art population-

based methods. In addition, Bertschinger et al. [13] proposed an SR neuro-evolution

approach that trains a population of transformer models using two objective functions:

prediction error and symbolic loss. Since previous methods have shown scalability issues

when dealing with high-dimensional equations with many variables, Chu et al. [30] proposed

a method that decomposes multi-variable symbolic regression into a sequence of single-

variable SR problems, combined in a bottom-up manner. The four-step process involves

learning a data generator using NNs from observed data, generating variable-specific samples

with controlled input variables, applying single-variable symbolic regression to estimate

mathematical expressions, and iteratively adding variables until completion.

4.2 Proposed Method

We consider a system with response y ∈ R and t explanatory variables x = {x1, . . . , xt}

(x ∈ Rt). We assume that its underlying function f(x) = f(x1, . . . , xt) can be constructed

using a finite number of unary (e.g., sin and log) and binary (e.g., +,−,×,÷) operations.

The response is expressed as y = f(x) + εa, where εa is a random variable representing

the error term due to irreducible aleatoric uncertainty [75, 136]. Below, we define the SR

problem formally and describe our SeTGAP methodology for solving it.

78

4.2.1 Problem Definition

Let us define our SR problem formally:

Definition 3. Given a dataset (X,y), with inputs X = {x1,x2, . . . ,xNR
} ⊆ Rt and

corresponding target responses y = {y1, y2, . . . , yNR
} ⊆ R, the symbolic regression problem

seeks to discover a function f̃ : Rt → R that approximates the unknown underlying function

f(x). The function f̃ is represented as a composition of a finite number of unary and binary

operators, such that f̃(x) ≈ f(x) while capturing its functional structure and behavior.

Thus, f̃(x) can be expressed as f̃(x) = f(x) + εa + εe, where εe is the error due to

epistemic uncertainty, which is attributable to a lack of knowledge about f and can be

reduced by acquiring additional information and improving the predictive model. In this

context, solving the SR problem implies minimizing εe by selecting a suitable representation

for f̃(x) that aligns with function f(x), and identifying an optimal set of parameters θf̃ for

such representation. While accurate uncertainty quantification at a given location x is an

important aspect, it is not the focus of this chapter. This issue is addressed in Chapter 5,

where we introduce a prediction interval generation method and an adaptive sampling

technique aimed at reducing epistemic uncertainty through strategic data collection.

4.2.2 Opaque Model Training

In this dissertation, we consider the case where the underlying function f is approx-

imated by an opaque model, such as a neural network, trained on observed data. Let

X = {x1, . . . ,xNR
} be a data set with NR samples, where each sample is denoted as

xj = {xj,1, . . . , xj,t}, and y = {y1, . . . , yNR
} is the set of corresponding target observations. A

regression model, whose function is denoted as f̂(·;θNN) (where θNN represents the weights

of the network), is constructed to capture the association between X and y. A target estimate

for an input xj is computed as ŷ = f̂(x, θNN) or, simply, ŷ = f̂(x).

79

Here, we consider the simple case in which the parameters θNN are obtained by

minimizing the mean squared error of the predictions; that is, θ∗
NN = argmin

θNN

1
NR

∑NR

j=1(ŷj−

yj)
2. While alternative loss functions may enhance predictive performance, our focus is not

on improving the opaque model itself, but on extracting interpretations from a model that

has already been trained. We use neural networks to generate the function f̂ due to their

ease of training and high accuracy; however, other opaque regression models, such as random

forests or gradient boosting machines, could also be applied.

4.2.3 Univariate Symbolic Skeleton Prediction

We deviate from SR approaches that prioritize the minimization of the prediction error

of the learned functions. We argue that a correctly identified functional form f̃ inherently

leads to a low estimation error and emphasizes interpretability and faithfulness to the

underlying system’s governing principles. Existing works on Symbolic Skeleton Prediction

(SSP) [13, 15, 149, 179] attempt to address this issue by generating multivariate symbolic

skeletons that describe the behavior of f .

Given a mathematical expression, its symbolic skeleton is an expression that replaces the

numerical constants with placeholders. For example, if f(x) = 5 log x1 (sin(x22) + 1)− 4, its

skeleton is expressed as e(x) = κ(f(x)) = c1log x1 (sin(x22) + c2) + c3, where κ(·) represents

the skeleton function and ci are placeholders. In this work, we show that SSP methods

struggle to identify the correct functional form of all variables in a system. Thus, we introduce

a method for generating univariate skeletons for each variable in a multivariate system by

framing the task as a sequence of multi-set symbolic prediction problems. While the MSSP

was addressed in Chapter 3, here we leverage it to decompose the multivariate system into

variable-specific representations. Each univariate skeleton captures how the corresponding

variable contributes to or interacts with the system’s overall response. Following the previous

example, its univariate skeletons are: e(x1) = κ(f(x);x1) = c4(log x1) + c5, and e(x2) =

80

Figure 4.1: Multi-set symbolic skeleton prediction example. The analyzed variable is x1.
The remaining variables, x2 and x3 are held constant in each input set.

κ(f(x);x2) = c6 sin(x22) + c7. Here, the skeleton function κ(·;xv) considers the remaining

variables x \ xv irrelevant when describing the functional form between xv (v ∈ [1, . . . , t])

and the system’s response. In this case, the placeholders ci may represent numeric constants

or functions of other variables.

We analyze each variable xv separately. To do this, Ns artificial sets of input–response

pairs {(X̃(1), ỹ(1)), . . . , (X̃(Ns), ỹ(Ns))} are generated. To isolate the influence of variable xv,

the set X̃(s) (s ∈ [1, . . . , Ns]) is constructed such that the variable xv (i.e., the v-th column

X̃
(s)
v) is allowed to vary while the other variables are fixed to random values. Specifically,

the s-th synthetic set is denoted as X̃(s) = {x̃(s)
1 , . . . , x̃

(s)
n } and it consists of n samples. The

value of the v-th dimension of the j-th sample is obtained by sampling from the distribution

U(xmin
v , xmax

v) whose lower and upper bounds, xmin
v and xmax

v , respectively, are calculated

from the observed data. The values assigned to the remaining dimensions are sampled

independently using similar uniform distributions; however, the same value is shared across

all samples (i.e., x̃
(s)
1,k = x̃

(s)
2,k = · · · = x̃

(s)
n,k, ∀k ∈ [1, t] and k ̸= i). Thus, ỹ(s) denotes the

estimated response of inputs X̃(s) using the trained model f̂ as ỹ(s) = f̂(X̃(s)).

Fixing the columns corresponding to the variables x\xv ensures that ỹ(s) depends only

on the column X̃
(s)
v . However, this process may project the function into a space where its

81

functional form becomes less recognizable. To address this, the influence of xv on the system’s

response is analyzed using Ns sets of input–response pairs, each reflecting a different effect

of the variables x \ {xv}. As such, each set (X̃(s), ỹ(s)) is generated independently by fixing

x \ {xv} at different values. The relationship between each X̃
(s)
v and ỹ(s) can be described

by a univariate function f
(s)
v . Note that functions f

(1)
v , . . . , f

(NS)
v have been derived from the

same function f(x) and should share the same symbolic skeleton e(xv), which is unknown.

Note that predicting a skeleton ê(xv) that describes the shared function form of input

D̃v = {D̃(1)
v , . . . , D̃

(Ns)
v } (i.e., ê(xv) ≈ e(xv)), s.t. D̃

(s)
v = (X̃

(s)
v , ỹ(s)), illustrated in Fig. 4.1,

represents a multi-set symbolic skeleton prediction problem. The MSSP problem was tackled

in Chapter 3 by designing a Multi-Set Transformer, whose function and parameters are

denoted by g(·) and Θ, respectively. It was trained on a dataset of synthetically generated

MSSP problems to produce accurate estimated skeletons. Given an input collection D̃v, the

estimated skeleton obtained for variable xv is computed as ẽ(xv) = g(D̃v,Θ).

Since our method derives univariate skeletons based on multiple sets of input–estimated

response pairs, it is important to use a prediction model that learns a function f̂ that is as

close as possible to f so that it accurately estimates how the real system would respond

to the synthetic inputs in X̃(s). As a consequence, our analysis can be regarded as an

interpretability method that generates univariate symbolic skeletons as interpretations of

the function approximated by the regression model.

Furthermore, we generate up to ncand distinct candidate skeletons rather than a single

one, as described in Algorithm 4.1. We generate a D̃v collection and feed it into g to

obtain nB skeletons using a diverse beam search (DBS) strategy [182] to promote variability

among the nB generated skeletons. Beam search is a heuristic search algorithm that explores

a fixed number of the most likely sequences at each decoding step. DBS extends this by

partitioning the beams into groups and promoting diversity across them through dissimilarity

penalties. This process is repeated ncand times, yielding a total of ncandnB skeletons. Each

82

repetition generates a new D̃v collection using different combinations of fixed values of x \

{xv}, increasing input diversity and potentially leading to different skeletons. Then, we

discard identical or mathematically equivalent skeletons. For example, c1 sin(c2xv + c3) is

equivalent to c4 cos(c5xv + c6) if c1 = c4, c2 = c5, and c3 = c6 − π/2.

If the generated skeleton list, genSksv, exceeds ncand elements, we evaluate their

performance and select the top ncand candidates. To do this, an additional collection D̃v is

generated. Since a skeleton expression for variable xv is expected to describe the functional

form of all sets in D̃v, we choose a random set D̃
(test)
v = (X̃

(test)
v , ỹ(test)) ⊂ D̃v and use it to fit

the coefficients of each skeleton êk(xv), where k ∈ {1, . . . , |genSksv|}. The coefficient fitting

problem is described as follows. Let fest(xv) = setConstants(êk(xv), c) be the function

obtained when replacing the nc coefficients in êk(xv) with the numerical values in a given

set c ∈ Rnc . Then, the objective is to find an optimal set c∗ that maximizes the Pearson

correlation between fest(X̃
(test)
v) and the estimated response ỹ(s):

c∗ = argmax
c

corr(fest(X̃
(test)
v), ỹ(test)),

Note that in generating D̃v, we fixed the values of x\xv, so we assume that all coefficients in

c are numerical values. These learned coefficients are then discarded, as they serve only

to evaluate the fit of a univariate skeleton to the data. This problem is solved using

a genetic algorithm (GA) [71]. The individuals of our GA are arrays of nc elements

that represent potential c sets. Then the optimization process is carried out by function

fitCoefficients(êk(xv), D̃
(test)
v). This optimization process is repeated for all system

variables to derive their univariate skeleton expressions with respect to the system’s response.

4.2.4 Merging Univariate Symbolic Skeletons

Having identified a set of univariate skeleton candidates for each variable, the next step

is to merge the identified univariate skeleton candidates to produce multivariate skeleton

83

Algorithm 4.1 Univariate Skeleton Generation

Input: Index v of current variable; samples per input set n; number of input sets NS ; opaque

model f̂ ; Multi-Set Transformer g; number of skeleton candidates ncand; beam size nB

Output: Generated list of candidate skeletons for the v-th variable genSksv; corresponding

correlation values corrValsv

1: function generateUnivSks(v, n,Ns, f̂ , g, ncand, nB)

2: genSksv ← []

3: for each i ∈ (1, ncand) do

4: D̃v ← generateCollection(v, n,Ns, f̂)

5: genSksv.append(g(D̃v,Θ;nB))

6: genSksv ← removeDuplicates(genSksv) ▷ genSksv = {ê1(xv), . . . , ê|genSksv |(xv)}
7: D̃

(test)
v ← generateCollection(v, n,Ns, f̂)

8: corrValsv ← zeros(|genSksv|)
9: for each k ∈ (1, ncand) do

10: corrValsv[k]← fitCoefficients(êk(xv), D̃
(test)
v)

11: genSksv ← sortSkeletons(genSksv, corrValsv)

12: if |genSksv|> ncand then

13: genSksv, corrValsv ← genSksv[1 : ncand], corrValsv[1 : ncand]

14: return genSksv, corrValsv

expressions. This process is carried out incrementally in a cascade fashion until a final

expression incorporating all variables is formed.

4.2.4.1 Merging Skeleton Expressions Given two skeleton expressions, multiple math-

ematically valid ways to combine them may exist. Here, we explore how to generate such

combinations. We start with the following proposition:

Proposition 1. Let f(x) be a scalar-valued function defined using a finite composition of

real-valued unary and binary operators applied to scalar sub-expressions. Then, f(x) can

always be expressed as: f(x) = c0 +
∑

i ci,j
∏

j νi,j(Ti,j(x)), where c0, ci,j ∈ R, νi,j is a unary

operator (including the identity function I(f(x)) = f(x)), and Ti,j(x) is a sub-expression.

Moreover, each Ti,j(x) can be recursively decomposed in the same structure as f , continuing

until the decomposition reduces to variables or constants.

84

Proof. We prove the proposition by structural induction on the composition of operations

that define f(x). We begin with the base cases. If f(x) is a constant, the required form is

satisfied trivially by setting c0 = c with no additional terms. If f(x) = xi is a single-variable

function, the structure is preserved by setting c0 = 0, c1,1 = 1, and T1,1(x) = xi.

For our inductive hypothesis, assume the decomposition holds for functions h(x) and

u(x), composed of unary or binary operations. That is, each can be written in the form

h(x) = c′0 +
∑

i c
′
i,j

∏
j ν

′
i,j(T

′
i,j(x)) and u(x) = c′′0 +

∑
i c

′′
i,j

∏
j ν

′′
i,j(T

′′
i,j(x)), with terms T ′

i,j

and T ′′
i,j themselves recursively decomposable in the same way.

To complete the inductive step, we consider the result of applying unary or binary

operations to such functions. For a unary operation f(x) = ν(h(x)), the expression satisfies

the required structure by treating the composition as a single term (i = 1, j = 1) where

T1,1(x) = h(x), ν1,1 = ν, c0 = 0, and c1,1 = 1. Since h(x) itself satisfies the recursive form

by the inductive hypothesis, f(x) does as well.

Now consider a binary operation f(x) = h(x) ◦ u(x), where ◦ is a binary operator. For

◦ = +, substituting the expressions and grouping constants and summation terms yields:

f(x) = (c′0 + c′′0) +
∑
i

c′i,j
∏
j

ν ′i,j(T
′
i,j(x)) +

∑
i

c′′i,j
∏
j

ν ′′i,j(T
′′
i,j(x)).

This matches the desired structure f(x) = c0 +
∑

i ci
∏

j νi,j(Ti,j(x)), where c0 = c′0 + c′′0, and

the summation terms come directly from the sub-expressions of h(x) and u(x).

For ◦ = ·, the product expansion gives:

f(x) = c′0c
′′
0 + c′0

∑
i

c′′i,j
∏
j

ν ′′i,j(T
′′
i,j(x)) + c′′0

∑
i

c′i,j
∏
j

ν ′i,j(T
′
i,j(x))

+
∑
i,j

c′i,jc
′′
i,j

∏
j

ν ′i,j(T
′
i,j(x))

∏
j

ν ′′i,j(T
′′
i,j(x)).

Each term fits into the structure f(x) = c0 +
∑

i ci
∏

j νi,j(Ti,j(x)): the constant term can be

85

expressed as c0 = c′0 ·c′′0; the second and third terms are sums over products of unary operator

applications, consistent with the required form; and the fourth term comprises products of

sub-expressions from h(x) and u(x), which can be grouped as new terms
∏

j νi,j(Ti, j(x)).

For other scalar-valued binary operations that are algebraically reducible, such as

subtraction and division, we use the identities h(x)−u(x) = h(x)+(−u(x)) and h(x)/u(x) =

h(x)·u(x)−1. Negation and inversion are unary operations, and since the unary case has been

established, the result follows. Binary operations that involve non-scalar interactions (e.g.,

convolution or vector operations) are beyond the scope of this structural decomposition.

Thus, any function f(x), defined by finite compositions of unary and binary operations,

can always be expressed in the required form. Since the base case holds and the inductive

step is proven, the proposition is established by structural induction.

Let e1(xS) and e2(xq) be two candidate skeletons to be merged. Here, S is an index

set, S ⊂ {1, . . . , t}, specifying the variables that e1 depends on; i.e., xS = {xr|r ∈ S}. In

contrast, xq is a variable distinct from those in xS (q /∈ S). Following from Proposition 1,

the skeletons can be expressed using the same mathematical structure as e1(xS) = c0 +∑
i ci,j

∏
j νi,j(Ti,j(xS)) and e2(xq) = c′0 +

∑
i c

′
i′,j′
∏

j′ ν
′
i′,j′(T

′
i′,j′(xq)). Below, we explain how

the subtrees of both expressions can be merged recursively.

The key idea is that a constant placeholder in e1(xS) may be replaced by a subtree

of e2(xq), and vice versa. Given two skeletons, e1(xS) = c1 T1(xS) and e2(xq) = c2 T2(xq),

a straightforward way to merge them is by recognizing that part of c1 may be a function

of xq, while part of c2 may be a function of xS. Thus, their combination, denoted by the

operation ▷◁, is given by e3(xS ∪ xq) = e1(xS) ▷◁ e2(xq) = c3(c4 + T1(xS))(c5 + T2(xq)).

Expanding this expression conforms to the expected functional form of a subtree stated in

Proposition 1. Note that the skeletons with respect to the corresponding initial variable

sets remain unchanged; that is, κ(e1(xS);xS) = κ(e3(xS ∪ xq);xS) = c1 T1(xS) and

κ(e2(xq);xq) = κ(e3(xS ∪ xq);xq) = cq T2(xq). Applying the same principle to a more

86

general case in which e1(xS) = c1 + c2
∏

j T1,j(xS) and e2(xq) = c3 + c4
∏

j′ T2,j′(xq), we

obtain e3(xS ∪ xq) = e1(xS) ▷◁ e2(xq) = c5 + c6
∏

j(c7,j + T1,j(xS))
∏

j′(c8,j′ + T2,j′(xS)).

Nevertheless, more combinations are possible if the candidate skeletons share functions with

compatible mathematical structures. For example, if e1(x1, x2) = c1 sin(c2 x1x2 + c3) and

e2(x3) = c4 sin(c5 x3 + c6), we could obtain e3(x1, x2, x3) = e1(x1, x2) ▷◁ e2(x3) = c7(c8 +

sin(c9 x1x2 + c11))(c11 +sin(c12 x3 + c13)), as shown before, but also e3(x1, x2, x3) = c13 sin(c14

x1x2 + c15x3) and e3(x1, x2, x3) = c16 sin(c17 x1x2x3 + c18), which yield to the same skeletons

with respect to the initial variable sets.

Algorithm 4.2 shows our recursive merging procedure, merge(ex1, ex2), which takes

as inputs two skeleton expressions ex1 and ex2. The lists of subtrees of both expressions

are retrieved by function getSubtreesLists(ex1, ex2), returning the one with fewer subtrees

first. We shuffle both lists to introduce variability in the process. If exShort lacks a constant

term, we add one to conform to the structure in Proposition 1 and ensure that it is the last

element. If both expressions represent sums, the algorithm iterates over the elements of

exShort, attempting to merge each with compatible subtrees from exLong; i.e., subtrees

that share the same unary or binary operator. The compatibility check is performed by

findComp, and a subset of matching subtrees is randomly selected for merging, as depicted

in Fig 4.2. If only one compatible subtree is selected, it is merged recursively with exShort[i].

However, if multiple subtrees are selected, the only way to maintain the original skeleton

structure is to treat their sum as a single, indivisible entity, effectively a constant term with

respect to xq, which is then multiplied by exShort[i] (Line 16). Then, the constant term

that appears at the end of exShort absorbs any remaining terms from exLong.

If neither expression is a sum or a product but they share the same function, the

function remains unchanged, and their inner arguments are merged recursively. For products,

if exShort consists only of symbols, the expressions are combined as explained previously

(Line 23). Otherwise, it iterates through the terms, merging them based on compatibility,

87

Figure 4.2: Example of a selected subtree of e2(xq) within a sum merging with one or more
subtrees from e1(xS), illustrating four out of the nine possible cases.

as was done for the sum case. However, unlike in the sum case, each subtree exShort[i] can

merge with only one subtree from exLong at a time, with a 0.5 probability of merging to

introduce variability. Finally, the function returns the merged expression, which integrates

elements from both inputs while preserving their initial structures.

4.2.4.2 Selecting Combined Skeleton Expressions Algorithm 4.2 generates a single

combination of skeletons. Here, we extend this process to construct a population of candidate

skeletons and select the top-performing one. Thus, we employ an evolutionary strategy to

assess the performance of each skeleton combination.

The population of skeletons, candSks, is constructed by repeatedly applying Algo-

rithm 4.2. Since the merging process involves randomized subtree selection and probabilistic

merging, each application of the algorithm may yield a different skeleton combination. The

process continues until a population size Pmax is reached or a patience criterion is met. As

such, if no new valid skeleton is found after a certain number of attempts, the generation

process halts, assuming that all viable combinations have been explored.

We aim to identify the most promising combination in candSks by evaluating how well

88

Algorithm 4.2 Recursive Skeleton Merging

Input: Skeleton expressions to be merged ex1 and ex2
Output: Random merged skeleton expression mergedEx

1: function merge(ex1, ex2)
2: exShort, exLong← getSubtreesLists(ex1, ex2) ▷ Return lists of subtrees in sum
3: exShort.shuffle(), exLong.shuffle()
4: if isSum(ex1) and isSum(ex2) then
5: for each i ∈ (1, |exShort|) do
6: if i = |exShort| and |exLong|> 0 then
7: exShort[i]← exShort[i] +

∑
j exLong[j]

8: else
9: args←findComp(exLong, exShort[i]) ▷ Find exLong args compatible w/exShort[i]
10: selectedArgs← sample(args, randInt(0, |args|))
11: if |selectedArgs|= 0 then continue

12: exLong.remove(selectedArgs)
13: if |selectedArgs|= 1 then
14: exShort[i]← merge(exShort[i], selectedArgs[0])
15: else
16: exShort[i]← exShort[i]

∑
j selectedArgs[j]

17: mergedEx←
∑

i exShort[i]
18: else
19: if ! isMult(ex1) then ▷ If compatible, merge inner arguments
20: mergedEx← ex1.func(merge(ex1.args, ex2.args))
21: else
22: if isAllSymbols(exShort) then
23: mergedEx← c1

∏
i(c2,i + exShort[i])

∏
j(c3,j + exLong[j])

24: else
25: mergedEx← null

26: for each i ∈ (1, |exShort|) do
27: if i = |exShort| and |exLong|> 0 then

28: mergedEx← exShort[i]
∏i−1

i′=0(c1,i′ + exShort[i′])
∏

j(c2,j + exLong[j])
29: else
30: args←findComp(exLong, exShort[i])
31: if |args|= 0 then continue

32: selectedArg← choice(args)
33: if random(0, 1) < 0.5 then continue

34: exLong.remove(selectedArg)
35: exShort[i]← merge(exShort[i], selectedArg)

36: if mergedEx is null then
37: mergedEx←

∏
i exShort[i]

38: return mergedEx

each skeleton can fit the test data. Algorithm 4.3 provides a high-level overview of this

process. We generate test data D̃(test) = (X̃(test), ỹ(test)). Unlike in Section 4.2.3, here the

columns in S ′ = {S ∪ q} (i.e., the indices of variables present in the combined skeletons)

89

Algorithm 4.3 Skeleton Combination with Genetic Programming

Input: Population of skeletons candSks; population size per skeleton rep; maximum number of

generations maxG; test data D̃(test)

Output: Selected skeleton and corresponding fitness value

1: function selectCombination(candSks, rep,maxG, D̃
(test)
S′)

2: Pop← []

3: for each s ∈ (1, |candSks|) do
4: exps← []

5: for i = 1 to rep do exps.append(assignValues(candSks[s]))

6: Pop.append(exps)

7: for each gen ∈ (1,maxG) do

8: fitnesses, bestFitnesperSk← evalCorr(Pop, D̃
(test)
S′)

9: Pop← evolveSks(Pop, fitnesses)

10: return candSks[argmax(bestFitnesperSk)], max(bestFitnesperSk)

are allowed to vary, while all other variables are fixed to random values. The set D̃
(test)
S′ =

(X̃
(test)
S′ , ỹ(test)) is then used for evaluation. Each skeleton in candSks is replicated rep times,

with randomly assigned coefficient values, to form an initial pool of expressions Pop.

The population then undergoes an evolution process for maxG generations. In each

iteration, the fitness of every expression in Pop is evaluated using evalCorr, which assesses

the Pearson correlation value between ỹ(test) and the output produced by the expression

when evaluated on X̃(test). The evolutionary step evolveSks updates the population

by selecting high-performing candidates and introducing variations through crossover and

mutation. Importantly, while coefficient values are subject to modification, the structure

of each skeleton remains unchanged. This is ensured by restricting crossover operations to

expressions derived from the same skeleton. Finally, the skeleton that corresponds to the

highest fitness across all evolved instances is selected as the best candidate.

This approach bears similarities to GP, with the distinction that the search for viable

symbolic skeletons is decoupled from the evolutionary optimization process. In particular,

rather than evolving the expressions dynamically, we first enumerate all admissible skeleton

90

combinations via Algorithm 4.2 and then apply a constrained form of genetic programming,

where the evolution process occurs with the structure of all mathematical expressions fixed

to the precomputed combined skeletons.

4.2.4.3 Cascade Merging The construction of multivariate skeletons follows an incre-

mental merging process in which univariate skeleton candidates are combined progressively.

For each variable xv Algorithm 4.1 generates up to ncand candidate skeletons genSksv along

with their corresponding correlation values corrValsv. To determine the merging order,

the variables are ranked according to the maximum correlation value obtained across their

generated skeletons. Variables with higher correlation scores are prioritized in the merging

order, as their generated skeletons exhibit stronger relationships with the data. This reduces

the risk of propagating structural uncertainty from variables with less reliable skeletons.

Let S denote the indices of the variables whose skeletons have already been merged.

Initially, S contains only the index of the variable that corresponds to the skeleton with

the highest correlation value. At each iteration, a new variable xq is selected according

to the ranking, and its univariate skeletons are merged with those corresponding to S.

Specifically, Algorithms 4.2 and 4.3 are applied to combine each skeleton generated for xS

with each skeleton generated for xq, producing at most n2
cand skeleton combinations. Since

Algorithm 4.3 returns both the selected merged skeleton and its fitness, we apply a greedy

selection strategy, retaining only the ncand highest-performing skeletons at each step. This

process repeats until skeletons incorporating all t variables have been generated.

We argue that our cascade approach ensures a structured integration of variables

into the final multivariate skeleton. Directly constructing a multivariate skeleton from

all univariate candidates would prioritize minimizing overall prediction error, potentially

obscuring individual contributions and leading to overfitting. Instead, incorporating one

variable at a time allows for a more interpretable learning process, where each newly added

91

variable’s effect is evaluated in the context of the previously analyzed ones.

4.2.4.4 Underlying Function Estimation Here, we utilize the Ne multivariate skeletons

ê1(x), . . . , ˆeNe(x) produced by our cascade merging procedure, where Ne ≤ ncand. The goal

is to construct functions f̃i(x) that approximate the underlying function f(x) based on the

corresponding skeleton êi(x), ∀i ∈ (1, . . . , Ne). This constitutes a coefficient fitting problem

similar to the one presented in Section 4.2.3. Unlike the previous sections, this optimization

task minimizes the mean squared error (MSE) of the response calculated by evaluating f̃i(x)

on the original dataset (X,y). This is possible because ê(x) contains all system variables

and there is no need to generate a synthetic set of estimated points using f̂ .

The new coefficient fitting problem consists of finding an optimal set of coefficient values

that minimizes the prediction MSE

c∗ = arg min
c

1

|X|
∑

(xj ,yj)∈(X,y)

(setConstants(êi(xj), c)− yj)2 ,

such that f̃i(x) = setConstants(êi(x), c∗). This optimization is carried out using the

GA-based function fitCoefficientsMSE(êi(xj), (X,y)) introduced in Section 4.2.3 but

modified to minimize MSE between the observed response and that generated by the learned

expression. Note that, while the current formulation focuses solely on minimizing the MSE,

future work will explore regularized optimization strategies that also account for model

complexity, encouraging parsimonious representations and improving generalization.

4.2.5 Skeleton Performance Evaluation

The performance of SR methods is usually assessed by the mean squared error achieved

by the learned expressions on benchmark data sets called fitness cases. Nevertheless, this

evaluation approach does not provide insights into how effectively the learned expressions

92

align with the underlying functional form of the system. To the best of our knowledge,

no previous work has addressed this evaluation problem. Recall that SeTGAP produces

as intermediate outputs a series of univariate skeletons with non-numerical coefficients that

describe the functional form between each variable and the system’s response. In this section,

we are interested in evaluating the suitability of the functional form of the estimated skeletons

and comparing them to those generated by other SR techniques.

We present a method to test the similarity between the underlying skeleton corre-

sponding to the variable xv, represented as e(xv) = κ(f(x), xv), and the estimated skeleton

ê(xv). We assign random numerical values to the coefficients of skeleton e(xv) using the

sampleConstants routine (see Algorithm 3.2) in order to obtain a function ftarget(xv).

Let fest(xv) = setConstants(ê(xv), c) denote the function obtained when replacing the

nc coefficients in ê(xv) with the numerical values in a given set c ∈ Rnc . If the functional

form of ê(xv) is mathematically equivalent to that of e(xv), then there exists a set of values

c so that the difference between ftarget(xv) and fest(xv) is zero for all values of xv. The

problem of finding the optimal set c∗ is expressed as:

c∗ =
1

|Xtest
v |

argmin
c

∑
xv∈Xtest

v

|ftarget(xv)− fest(xv)|2,

where Xtest
v is a test set of Ntest elements whose elements are drawn from a distribution

U(2xmin
v , 2xmax

v). Notice that the domain of Xtest
v is larger than that used for training

(i.e., [xmin
v , xmax

v]). The reasoning behind this is that if the estimated skeleton matches

the underlying functional form of the system, it should do so regardless of the variable

domain. Similar to Section 4.2.4.4, the optimization is carried out using the GA-based

function fitCoefficientsMSE(ê(xv), (X
test
v , fest(X

test
v))).

93

If ê(xv) and e(xv) are not equivalent, the error

r =
∑

xv∈Xtest
v

|ftarget(xv)− setConstants(ê(xv), c
∗)|2

is greater than 0. We use r as a performance metric that indicates the closeness between

ê(xv) and e(xv) given the sampled values of the constants of e(xv). Note, however, that if

ê(xv) and e(xv) are similar, the error r should be low regardless of the sampled values of

the constants of e(xv). For example, consider that e(xv) = sin(c1 xv + c2) + c3 and ê(xv) =

c3 cos(c4 xv + c5) + c6. Suppose that we sample the function ftarget(xv) = sin(3xv + 2) + 6

based on e(xv); thus, we find the numerical values of the constant placeholders of ê(xv) such

that fest(xv) = cos(−3xv−0.429)+6 is mathematically equivalent to fest(xv). If we sampled

another function ftarget(xv) = sin(−4xv−1)−0.5, it is possible to find an equivalent function

fest(xv) = cos(4 xv + 2.57)− 0.5. For the sake of generality, we repeat this process 30 times;

that is, we sample ten different ftarget(xv) functions and solve 30 optimization problems.

Finally, we report the mean and the standard deviation of the 30 resulting error metrics.

4.3 Experimental Results

In this section, we evaluate the performance of the intermediate univariate skeletons

produced by SeTGAP as well as their multivariate expressions generated. We compare these

results against other symbolic regression methods to assess the effectiveness of our approach.

4.3.1 Synthetic Datasets

We assessed SeTGAP’s performance using 13 synthetic SR problems generated by

equations inspired by previous works and equations proposed in this work, as reported in

Table 4.1. Note that previous works used narrow domain ranges for all variables (e.g., [−1, 1])

while we used extended ranges (e.g., [−5, 5] and [−10, 10]) to increase the difficulty of the

94

Table 4.1: Equations used for experiments

Eq. Underlying equation Reference Domain range

E1 (3.0375x1x2 + 5.5 sin(9/4(x1 − 2/3)(x2 − 2/3)))/5 [79] [−5, 5]2

E2 5.5 + (1− x1/4)2 +
√
x2 + 10 sin(x3/5) — [−10, 10]2

E3 1.5x1(1.5e + 5 cos(3x2))/10 [79] [−5, 5]2

E4 ((1− x1)2 + (1− x3)2 2+ 100(x2 − x1)2 2+ 100(x4 − x)2)/100003 Rosenbrock-4D [−5, 5]4

x1 ∈ [−10, 10], x2 ∈ [−5, 5],
E5 sin(x1 + x2x3) + exp (1.2x4) —

x3 ∈ [−5, 5], x4 ∈ [−3, 3]

E6 2tanh(x1/2) + |x2|cos(x /5)3 — [−10, 10]3

E7 2(1− x)/(sin(2π x1) + 1.5)2 [189] [−5, 5]2

E8 4 4 4 4x /(x1 + 1) + x /(x2 + 1)1 2 [174] [−5, 5]2

E9 2log(2x2 + 1)− log(4x1 + 1) [174] [0, 5]2

E10 sin(x1 e
x2) [14] x1 ∈ [−2, 2], x2 ∈ [−4, 4]

E11 x1
4log(x)2 [14] [−5, 5]2

E12 1 + x1 sin(1/x2) [14] [−10, 10]2

E13
√ 2x1 log(x)2 [14] x1 ∈ [0, 20], x2 ∈ [−5, 5]

problems. We adapted the benchmark equations proposed by Bertschinger et al. [14] (i.e.,

E10–E13) to a multivariate setting.

In all cases, the training datasets consisted of 10,000 points where each variable was

sampled using a uniform distribution. For the opaque models, f̂ , we trained feed-forward

NNs with varying depths: three hidden layers for problem E2; five hidden layers for problems

E1, E4, E5, and E7; and four hidden layers for the other cases. Each layer consisted of 500

nodes with ReLU activation (where ReLU(q) = max(0, q))). We used 90% of the samples for

training and 10% for validation.

95

4.3.2 Univariate Skeleton Prediction Performance

We used the pre-trained Multi-Set Transformer g described in Section 3.4. As such,

when generating the synthetic sets of points {X̃(1), . . . , X̃(NS)} used for univariate skeleton

prediction, we used the same hyperparameters used for training g; that is, NS = 10 input

sets, each consisting of n = 3000 data points.

Fig. 4.3 depicts an example of the skeleton prediction process on problem E2 using

the pre-trained Multi-Set Transformer g of SeTGAP. Here, NS = 10 synthetic datasets

X̃(s) ∈ R5000×3, where s ∈ [1, 10], have been generated. In this example, we aim to obtain

the skeleton for variable x2, ê(x2); thus, only x2 is allowed to vary within each set X̃(s)

while the others, x1 and x2, are held constant. The estimated response corresponding to

each set X̃(s) was obtained using the feedforward NN f̂ . As a reference, we also plotted

the real response that would have been obtained using the underlying function f . Recall

f is unknown during the skeleton prediction process. Notice that the outputs of f and f̂

are closely aligned, resulting in similar curve shapes across all cases. The only exception

is X̃(6), the highlighted plot, which shows a clear deviation. In this case, the behavior of

the estimated response differs from the real response in a small region of the domain due

to prediction uncertainties. Despite this behavior, the pre-trained Multi-Set Transformer g

produced the skeleton ê(x2) = c1
√
c2 x2 + c3 + c4, which is mathematically equivalent to the

target skeleton e(x2) = c1
√
x2 + c2 + c3.

We assessed skeleton performance using the method described in Section 4.2.5. The

optimization process was configured with a population size of 500 and terminated when the

objective function change remained below 10−6 for 30 consecutive generations. We employed

tournament selection, binomial crossover, and generational replacement, as this configuration

consistently yielded effective optimization results across all experiments in this study. The

GA-based optimization processes in the following section follow the same setup.

We compared the skeletons produced by SeTGAP’s Multi-Set Transformer to the ones

96

Figure 4.3: Skeleton prediction example for variable x2 on problem E2.

extracted from the expressions generated by four other methods: two GP-based methods

(PySR [34] and TaylorGP [67]) and two neural SR methods (NeSymReS [15] and E2E [82]).

The comparison is limited to neural SR methods with publicly available models, as training

large transformer-based architectures is computationally prohibitive. NeSymReS could not

be executed on E4 and E5 because its model was trained using expressions limited to three

variables. NeSymReS, E2E, and the Multi-Set Transformer were trained using vocabularies

with the same unary and binary operators: +,×, /, abs, acos, asin, atan, cos, cosh, exp,

log, pow2, pow3, pow4, pow5, sin, sinh, sqrt, tan, tanh. Thus, PySR and TaylorGP were

executed using the same set of operators. Our experimentation with the GP-based methods

involved a maximum of 10,000 iterations, though convergence was consistently achieved in

97

Table 4.2: Comparison of skeleton prediction results for problem E2

Method x1 x2 x3

PySR c1 + |c2 + |c3 + x1|| c1 c1 + c2 x3

TaylorGP c1 + c2 x1 c1 + c2 x2 c1 + c2 x3

NeSymReS c1 + c2 x1 c1 + exp(exp(c2 x2)) c1 + c2 x3

E2E c1 + c2 x1 + c3(c4 + c5 x1)
2 c1 + c2 (c3 + c4 x2) c1 + c2 x3 + c3(c4 + c5 cos(c6 + c7 x3))

SeTGAP c1 + c2(c3 + c4 x1)
2

√
c1 c2 x2 + c3 + c4 c1 + c2 sin(c3 x3 + c4)

Target e(x) c1 + (c2 + c3 x1)
2

√
c1 x2 + c2 + c3 c1 + c2 sin(c3 x3)

fewer iterations across all cases. Population sizes of 100, 200, 500, and 1000 were tested,

with no discernible advantage observed beyond a size of 500.

The compared methods produce multivariate expressions, from which the skeleton

variable corresponding to variable xv is obtained using the skeleton function κ(·, xv).

Table 4.2 shows the target and estimated skeletons corresponding to each variable for problem

E2. The skeletons obtained for the other problems are presented in Tables A.1 and A.2 of

Appendix A. The size of the test sets is set to Ntest = 3000. Using Ntest > 3000 did not

vary the obtained results. Table 4.3 reports the rounded mean and the standard deviation of

the error metrics obtained after 30 repetitions of the proposed evaluation. The bold entries

indicate the method that achieved the lowest mean error r and that its difference with respect

to the values obtained by the other methods is statistically significant according to Tukey’s

honestly significant difference test performed at the 0.05 significance level.

4.3.3 Underlying Function Estimation Performance

In this section, we assess SeTGAP’s performance by evaluating the learned mathe-

matical expressions on both in-domain and out-of-domain data, comparing the resulting

prediction errors with those of other SR methods.

SeTGAP’s hyperparameters include the beam size nB for beam search and the number

98

Table 4.3: Skeleton evaluation performance comparison

Eq. Var. PySR TaylorGP NeSymReS E2E SeTGAP

E1
x1 1.4± 0.8 1.4± 0.8 0.9± 0.7 0.2± 0.4 0.01± 0.02

x2 1.5± 0.9 1.5± 0.9 1.3± 0.8 1.5± 0.9 0± 0

E2

x1 303.5± 167.3 310.0± 170.1 310.0± 170.1 0± 0 0± 0

x2 5.4± 5.0 4.2± 5.3 4.6± 5.0 4.2± 5.3 0.02± 0.03

x3 1.7± 1.0 1.7± 1.0 1.7± 1.0 0.01± 0.02 0± 0

E3
x1 2×1012 ± 5×1012 939.4± 1419.9 1.9± 1.2 0.8± 1.8 0.8± 1.8

x2 1.3± 1.0 1.3± 1.0 0.8± 0.8 0± 0 0± 0

E4

x1 4576.2± 2695.7 4581.5± 2697.4 — 2.3± 3.6 1.1± 0.7

x2 79.6± 41.3 80.2± 40.8 — 0± 0 0± 0

x3 3995.5± 2815.6 4304.6± 2843.7 — 2.0± 4.0 1.0± 0.9

x4 74.5± 48.0 75.5± 47.0 — 0± 0 0± 0

E5

x1 0± 0 0.6± 0.05 — 0± 0 0± 0

x2 0± 0 1.5± 1.0 — 1.5± 1.0 0± 0

x3 0± 0 0.6± 0.05 — 0.6± 0.05 0± 0

x4 0± 0 487.4± 461.9 — 0.6± 0.8 0.6± 0.8

E6

x1 0.8± 0.08 0.8± 0.08 0.3± 0.01 0.04± 0 0± 0

x2 16.8± 12.2 16.8± 12.2 13.8± 11.1 1.3± 0.9 0± 0

x3 2.9± 1.3 1.9± 0.7 1.6± 0.9 1.6± 0.9 0± 0

E7
x1 29.5± 1.0 1.8± 2.0 1.8± 2.0 1.1± 1.3 0± 0

x2 63.6± 43.8 1.6± 1.0 42.4± 24.7 0± 0 0± 0

E8
x1 0.02± 0.01 0.04± 0.01 0.8± 1.2 0.02± 0.02 0± 0

x2 0.02± 0.01 0.04± 0.01 0.9± 1.3 0.02± 0.01 0± 0

E9
x1 271.3± 446.8 239.8± 428.2 375.1± 485.5 0± 0 0± 0

x2 0± 0 0.2± 0.09 2.7± 1.7 0.05± 0.01 0± 0

E10
x1 0± 0 0.6± 0.2 0± 0 0± 0 0± 0

x2 0± 0 0.4± 0.06 0± 0 0± 0 0± 0

E11
x1 0± 0 0± 0 0± 0 0± 0 0± 0

x2 0± 0 0± 0 0± 0 0± 0 0± 0

E12
x1 21.8± 13.1 0± 0 0± 0 0± 0 0± 0

x2 0± 0 2.4± 1.5 2.5± 1.6 0± 0 0± 0

E13
x1 0± 0 0.8± 0.5 0.7± 0.6 0.7± 0.8 0± 0

x2 0± 0 3.8± 3.5 0± 0 0± 0 0± 0

of univariate skeleton candidates ncand (see Algorithm 4.1). We set nB = 3 and ncand = 4,

as higher values did not yield more distinct skeletons across all tested problems. The GAs

in Secs. 4.2.3 and 4.2.4 share the same configuration but differ in loss functions: the former

maximizes Pearson correlation, while the latter minimizes MSE. Algorithm 4.3 uses the

99

number of instance expressions per candidate skeleton combination rep and the maximum

number of generations maxG, with values set to rep = 150 and maxG = 300. In addition,

the initial population candSks used in Algorithm 4.3 was generated with a maximum size

Pmax = 5000, though none of the cases reached this limit. This setup was chosen for its

consistent effective optimization results across all evaluated problems.

For each problem, SeTGAP generates up to ncand multivariate expressions, but for

brevity, we report only the one with the lowest MSE. These results are compared against

expressions obtained from the same SR methods considered in Section 4.3.2. Table 4.4

presents the learned expressions, with shaded cells indicating that the learned expression’s

functional form matches that of the underlying function. To ensure a fair comparison, the

evaluation was repeated nine additional times, each with a newly generated dataset using

a different random seed. The expressions obtained by all compared methods across all

problems and iterations are reported in Tables A.4–A.12 of Appendix A.

We evaluated the extrapolation capability of the learned expressions by testing them

on an extended domain range. The original domain range, referred to as the interpolation

range, for a variable xv is denoted as [xℓv, x
u
v], while its extrapolation range is defined as

[2xℓv, x
ℓ
v[∪]xuv , 2x

u
v]. Each extrapolation set comprised 10,000 points sampled uniformly

within this range. This evaluation was repeated for each of the 10 expressions learned by each

method. Table 4.5 presents the rounded mean and standard deviation of the extrapolation

MSE across these runs. Bold entries indicate the method that achieved the lowest mean

error and for which the difference relative to the other methods is statistically significant, as

determined by Tukey’s honestly significant difference test at the 0.05 significance level.

Finally, we tested SeTGAP under noisy conditions. We considered a normal error

term εa = N (0, σaσy) and four noise levels: σa = {0, 0.01, 0.03, 0.05}. Here, σy denotes

the standard deviation of the response variable so that the noise is scaled relative to the

dispersion of each problem. The obtained interpolation and extrapolation MSE are shown

100

Table 4.4: Comparison of predicted expressions with rounded numerical coefficients
Eq. PySR TaylorGP NeSymReS E2E SeTGAP

0.59x0x1+ 1.08(0.56x0x1 − 0.03x0 + 0.02x1− 0.61x0x1+
E1 0.61x0x1 0.64x0x1

2cos(0.01(x1 − x0 − 0.08)2) sin(0.01x0 + 8.6x0 + 0.45)− 0.01) 1.15 sin((2.24x0 − 1.5)(x1 − 0.68))

20.41x2+ 0.06x0 − 0.51x0 − 0.22x1 cos(0.18x2 √
2−0.5x0 + 0.001x1 −x0 + 0.40x2+ 0.06x0 − 0.5x0 + (3.37 0.1x1 + 1

E2 ||x0 − 3.51|−1.95| +1.43)− 0.01x1 + 0.01x2−
e−0.001x1+0.39x2 + 8.62 e + 5.88 −0.19)(sin(0.2x2) + 0.01) + 6.49

+4.11 3.25 cos(0.18x2 + 1.43) + 6.56

1.52x0+0.14e
x0 1.5x0E3 0.34ex0|sinh(0.47x0)| 0.23x0e 9.10e0.72x0 cos(0.15x1) 0.15e + 0.5 sin(3x1 − 4.71)

0.52 cos(3.45x1 + 0.05) + 0.11

4 20.001|8.99(−0.88x1 + (x0 + 0.01)2 0.01x0 − 0.02x0x1 − 0.001x0 + 0.01
20.21x0 − 0.18x1+

2E4 0.29x — 2 4 2
0 +0.62)2 + 9.72(−x3+ x1 + 0.01x2 + 0.01x3−

20.21x2 − 0.18x3 − 0.76
20.98(x2 + 0.01)2 + 0.01)2|+0.0023 (0.02x2 + 0.004)(x3 − 0.11)− 0.02

1.2x3e − 0.91 cos((2.62x0 + 0.15)
1.2x3 sin(0.87x3)E5 e + sin(x0 + x1x2) 0.51ex3e — 1.2x30.999e − sin(x0 + x1x2 + 9.42)

(24.66x1 + 1.24))− 0.05

x2)
sin(0.34x2

2)
0.01x1(−7.5 cos(15.41x1 + 0.21)−

E6 tanh(e − √ √ 2−0.39x0 + x1 sin(x0 − 0.001x2) cos(0.2x2 + 0.05)|x1|+ tanh(0.5x0)− |x2|+sin(|x2) x1
0.18) + 0.69 atan(0.75x0 + 0.05) + 0.47

2(0.56− 0.59x0)/(sinh(sinh √
2

(−0.03x1 − 0.03)(0.34x1 − 0.35)
2 0.12x0+x1 4.53−4.54x2

E7 |x1| − x 1
1

sinh(sin(6.28x1))))))
cos(3.1(−0.02x1−1)2)−0.31 4.54 sin(6.28x0+6.28)+6.81)

(tanh(e (41.59(1− 0.5 sin(6.74x0 + 0.23))2 + 40)

19.76(tanh(cosh(x0)− 1.04)+ 2− 4 3 2 −
−0.06|x02.73−0.14||0.59x1+0.1| 19.31x0+0.12x0+0.42x0+19.72E8 2 cos(sin(1.69x0)/(x0x1)) + 0.71 2.01− 1.05e

5.33tanh(cosh(x1)− 1.04))
5.44x4 2

1−0.09x1+5.34

2log(0.79)− 2− 0.60 log(13.36(0.004− x0)2 − log(13.95x0 + 3.48)+|x0|E9 log(x1+0.5
2) 1.12 log(|x1/x0|)− 1.37

0.5+2x0 −x12.36e (1− 0.13/(−0.06x1 − 0.02))2 + 0.8) |log(8.32x1 + 4.18)|−0.18

√ 1.03x1)−0.98 sin((0.06− 2.86e
x1) − |x1|E10 sin(x0e x0e sin(x0e

x1) 0.999x1)sin (x0e
(0.32x0 + 0.002))− 0.007

−0.74x0(−5.62 log(0.07|−6.94x1 + 0.13|
4 4E11 x0 log(x) 4x0 log(|x1|) x0 log(x) 2
1 1 1.998x0 log(x1)

+0.01)− 3.74)√
(x0 + |x1|−x0E12 sin()|x0|+0.99 (x0 + x1) sin(1/x1)x1/0.12 (0.79x0 − 0.04) sin(4.5/(3.4x1 + 0.08) x0 sin(1/x1) + 1
0.91) sin(0.73)

x1

√ √
9√ e x0 log(|x1|)+ (−90.0 +)

2 2 0.12|3.4x1+0.12|+0.04 √E13 x0 log(x1) 0.31x0 + 3.19 log(x1)− 3.25 2.0 x0 log|x1|
log(|x1|) + 0.58 (0.09− 0.1 log(0.17x0 + 3.29))

in Table 4.6, where shaded cells indicate an incorrectly identified functional form. The

learned expressions are provided in Table A.13 of Appendix A.

4.4 Discussion

In this section, we analyze the results presented above, discussing the effectiveness of

SeTGAP in both univariate skeleton prediction and underlying function estimation. We

examine the quality and reliability of the learned symbolic representations, highlighting the

101

Table 4.5: Extrapolation MSE Comparison

Eq. PySR TaylorGP NeSymRes E2E SeTGAP

E1 3.673e-01 ± 4.015e-01 1.221 ± 1.310 3.372 ± 3.486 1.217 ± 1.262e-01 1.182e-01 ± 8.567e-02

E2 9.899e+01 ± 6.470e+01 2.385e+02 ± 7.563e+01 8.589e+07 ± 1.909e+08 6.885e+01 ± 6.822e+01 8.391e-02 ± 7.624e-02

E3 2.068e+03 ± 6.194e+03 3.151e+04 ± 3.960e+03 4.653e+04 ± 9.214e+03 1.448e+05 ± 3.675e+05 1.028e+01 ± 1.789e+01

E4 2.206e+05 ± 9.044e+04 6.621e+03 ± 1.057e+03 — 8.762e+02 ± 2.323e+03 1.621 ± 1.887

E5 5.007e-02 ± 1.502e-01 2.224e+04 ± 2.985e+04 — 2.054e+03 ± 2.805e+03 5.492 ± 1.205e+01

E6 1.826e+01 ± 3.446e+01 1.161e+02 ± 3.858 1.892e+02 ± 4.071e+01 1.302e+02 ± 2.514e+01 3.832 ± 5.890

E7 5.707e+02 ± 1.110e+03 1.042e+03 ± 6.623 1.621e+03 ± 8.193e+02 1.781e+03 ± 5.259e+02 3.597e-02 ± 4.490e-02

E8 3.322e-04 ± 4.755e-04 1.175 ± 2.123 1.209e-01 ± 1.908e-02 1.323e-01 ± 3.846e-01 3.380e-08 ± 6.313e-08

E9 7.794e+02 ± 2.334e+03 3.013e-01 ± 1.501e-01 1.032 ± 4.763e-02 4.279e-01 ± 1.737e-01 2.721e-06 ± 4.089e-06

E10 7.266e-11 ± 1.539e-10 1.686e-01 ± 2.124e-01 0.000 ± 0.000 3.630e-01 ± 4.760e-02 3.717e-04 ± 5.617e-04

E11 1.942e-02 ± 5.825e-02 3.076 ± 8.020 0.000 ± 0.000 9.880e+01 ± 1.048e+02 9.358e-05 ± 2.807e-04

E12 8.048e-01 ± 2.413 2.965 ± 1.574 2.574e-02 ± 0.000 5.312 ± 1.662 1.109e-06 ± 2.219e-06

E13 2.722 ± 8.162 9.434 ± 2.311e+01 6.055e+01 ± 1.563e+01 1.829e+02 ± 3.300e+02 8.592e-07 ± 1.779e-06

strengths and limitations of the proposed approach compared to existing SR methods. The

discussion is structured into two subsections, corresponding to the key aspects evaluated in

the results section: univariate skeleton prediction (Section 4.3.2) and underlying function

estimation (Section 4.3.3).

4.4.1 Univariate Skeleton Predictions Results

Our method involves probing an opaque regression model, specifically a feedforward

neural network, by formulating an MSSP problem for each system variable and solving it

with a Multi-Set Transformer. This process produces univariate skeletons that describe the

functional relationship between each variable and the system’s response. After evaluation of

our univariate skeleton prediction method across the tested problems, we observed that it

generated skeletons that matched or were equivalent to the target skeleton for all variables

across all problems. For instance, for problem E11, the target skeleton for variable x2 is given

by e(x2) = c1 log(x42), and our method produces the skeleton êSeTGAP(x2) = c′1+c′2 log(c′3 x
2
2).

These skeletons are equivalent if c′1 = 0, c′2 = 2 c1, and c′3 = 1. From the skeleton performance

102

Table 4.6: MSE comparison using SeTGAP with noisy data

Eq.
Interpolation

(σa = 0)

Interpolation

(σa = 0.01)

Interpolation

(σa = 0.03)

Interpolation

(σ = 0.05)

Extrapolation

(σa = 0)

Extrapolation

(σa = 0.01)

Extrapolation

(σa = 0.03)

Extrapolation

(σa = 0.05)

E1 7.159e-03 1.259e-02 1.236e-01 5.455e-01 1.012e-01 4.433e-01 1.645 3.845

E2 7.024e-03 4.459e-03 1.563e-02 4.754e-02 1.300e-01 5.232e-02 1.017e-01 3.504e-01

E3 1.063e-03 1.022e-03 7.219e-03 2.003e-02 2.961e-01 2.055e+02 7.467e+01 1.652e+02

E4 1.158e-04 2.969e-03 2.061e-01 2.228e-02 4.121e-02 1.022e+01 7.420e+01 3.105e+01

E5 7.211e-06 6.807e-03 5.288e-01 1.694e-01 3.069e-01 1.097e+01 8.402e+01 2.312e+02

E6 5.619e-03 1.147e-02 1.726e-02 4.819e-02 4.508e-02 4.651 2.081e-01 5.598e-01

E7 2.655e-06 1.076e-02 6.822e-02 1.903e-01 6.447e-05 2.517e-01 1.247 3.520

E8 1.742e-06 2.413e-05 2.103e-04 5.828e-04 1.817e-10 1.686e-07 7.539e-09 1.672e-07

E9 4.907e-08 2.160e-04 1.943e-03 5.408e-03 2.780e-07 3.063e-04 2.756e-03 7.923e-03

E10 2.282e-06 3.298e-05 2.950e-04 8.192e-04 1.857e-03 2.233e-04 4.793e-04 3.379e-03

E11 1.178e-04 1.838e-02 1.654e-01 4.595e-01 9.308e-04 1.453e-01 1.308 3.632

E12 8.029e-06 4.938e-04 4.436e-03 1.232e-02 7.273e-06 1.031e-03 9.257e-03 2.571e-02

E13 2.583e-07 4.200e-03 3.991e-02 1.047e-01 1.015e-06 9.599e-03 9.348e-02 2.389e-01

evaluation shown in Table 4.3, we verified that our method consistently attained lower or

comparable error metrics compared to other SR methods. These results strongly support

our hypothesis that our method would generate univariate skeletons that are more similar

to those corresponding to the underlying equations in comparison to other SR methods.

Note that E2E produced the correct skeleton for at least one of the variables in most

of the cases. Recall that E2E generated expressions that minimize the prediction error;

thus, it did not prioritize identifying the correct functional form of the variables that do

not contribute substantially to the overall error. In addition, in some cases, E2E generated

skeletons that were equivalent to the target skeletons but larger than those produced by

SeTGAP. For example, in problem E4, E2E generated the skeleton êE2E(x1) = c1 + c2|c3 +

c4 x1 + c5 x
2
1 + c6 x

3
1 + c7 x

4
1| for variable x1, which is equivalent to the one produced by

SeTGAP, êSeTGAP(x1) = c1 + c2 x1 + c3 x
2
1 + c4 x

3
1 + c5 x

4
1.

Another advantage over the other neural SR methods is that SeTGAP’s Multi-

103

Set Transformer requires only 24.2 million parameters, while E2E requires 93.5 million.

NeSymReS, in comparison, requires 26.4 million parameters (i.e., 2.2 million more than

ours), and Table 4.3 shows that it failed to identify the correct functional form in most cases

and is limited to solving problems with up to three variables.

It is worth pointing out that in problems E5, E6, E8, E9, and E13, some compared

methods achieved low error metrics but are not comparable to the ones achieved by

our method. For example, in problem E6, E2E generated the skeleton êE2E(x1) =

c1 + c2 atan(c3 + c4 x1) for variable x1, which does not coincide with the functional form

of the underlying skeleton e(x1) = c1+tanh(c2 x1). However, E2E achieved low error metrics

because, during the coefficient fitting process, the GA found appropriate values for the

constant that multiplies the argument of the atan function, stretching or compressing the

curve, making it resemble the shape of tanh and minimizing the error. Hence, the skeleton

generated by E2E produced low error metrics and is considered to be similar to the target

skeleton. Conversely, the functional form of the skeleton generated by SeTGAP coincided

with that of the target skeleton exactly (i.e., êSeTGAP(x1) = c1 + c2 tanh(c3 x1)) and thus

produced significantly lower error.

One potential limitation of our approach, as well as any neural SR method, lies in

its ability to generate skeletons whose complexity is bounded inherently by the expressions

produced during the pre-training phase of the Multi-Set Transformer. For instance, we would

not be able to identify the skeleton c1+c2 x
2
2/sin(c3 e

c4 x2) as it requires eight operators, while

our training set was limited to expressions with up to seven operators. However, it is feasible

to overcome this limitation through transfer learning, so that the MST model can be trained

on more complex tasks, potentially enabling the recognition of such complex skeletons.

104

4.4.2 Underlying Function Estimation Results

SeTGAP can be viewed as a post-hoc interpretability method, as it extracts mathemat-

ical expressions that align with the functional response learned by a given opaque regression

model. Our decomposable approach learns and preserves functional relationships between

input variables and the system’s response, and increments them progressively, allowing for

an interpretable evolution. This prevents the resulting expressions from focusing solely on

error minimization, encouraging alignment with the true functional form instead.

From Table 4.4, we confirmed that SeTGAP successfully learned mathematical

expressions equivalent to the underlying functions in Table 4.1 across all tested problems. In

contrast, competing methods correctly identified the functions in no more than seven out of

the 13 cases. Notably, some methods only captured the functional form of the most influential

variables; i.e., those contributing most to the response value. For instance, E2E recovered

correctly the term 0.06x20 − 0.51x0 for x0 in E2 but failed for the remaining variables. It is

worth noting that E2E was the only method that produced expressions longer than reported,

requiring simplification via a symbolic manipulation library.

Table 4.5 confirms that SeTGAP achieved lower or comparable extrapolation MSE

values across all problems. These results suggest that other methods, which optimize

purely for in-domain MSE, tend to overfit the training data and learn expressions that lack

the structural flexibility needed for extrapolation. In contrast, SeTGAP’s decompositional

approach learns functional forms that better capture the underlying relationships, enabling

superior generalization outside the training domain. For example, in problem E8, most SR

methods effectively minimized prediction MSE. TaylorGP, prioritizing parsimony, evolved

the expression f̃(x) = 2, which effectively smooths out the data but does not provide a

meaningful solution. As such, the simplest solution is not always the best, as small variations

in the data may correspond to functional forms that may play an important role when

generalizing to unseen data. Table 4.5 also shows cases where NeSymRes achieved zero

105

extrapolation error across the 10 iterations for E10 and E11, while SeTGAP obtained low

but nonzero MSE values. This occurs because competing methods learned expressions that

matched the underlying functional form perfectly, avoiding the need for coefficient fitting.

PySR, for example, identified
√
x0 log(x21) for E13 in its first iteration, which contains no

numerical coefficients. In contrast, SeTGAP produced 2.000137
√
x0 log|x1|, where the fitted

coefficient introduced minor prediction errors.

Since all previous experiments were conducted on noiseless data, and SeTGAP was

the only method that consistently identified the correct functional form, we assessed its

robustness under varying noise levels, as shown in Table 4.6. As expected, interpolation and

extrapolation errors increased with higher noise levels.

Interpolation errors remained low across all cases, while extrapolation errors showed

a few exceptions due to poor coefficient fitting or incorrect functional form identification.

For example, E3 and E5 exhibited high extrapolation errors because their functions contain

exponential terms. Even when the learned expressions matched the expected functional form,

small coefficient errors in the exponential term led to significant deviations for larger values

of x1. A similar case was observed in E1, where extrapolation errors were high for σa≥0.03

despite correctly identifying the functional form. The ability to recover the correct functional

form in the presence of noise can be attributed to the fact that the NN f̂ used during inference

to generate the multiple input sets D̃v smooths the estimated response values, mitigating

the impact of noise. In the remaining cases, we observed two outcomes. SeTGAP correctly

identified the functional forms of individual variables, but noise hindered the detection of

relationships between variables. Otherwise, incorrect but reasonable univariate skeletons

were identified, leading to expressions with small errors; e.g., for E9 and σa = 0.05, SeTGAP

produced f̃(x) = 5.965
√

0.63 log(9.4x1 + 6.4) + 1− log(11.26x20 + 2.82)− 7.71.

A limitation of our approach is the computational cost due to multiple intermediate

optimization processes, making SeTGAP less efficient than end-to-end approaches like E2E.

106

However, in applications like scientific discovery, where the goal is to derive interpretable

and reliable mathematical expressions rather than simply optimizing predictive accuracy,

the additional computational effort is warranted.

4.5 Summary

In this chapter, a novel symbolic regression method named “Symbolic Regression using

Transformers, Genetic Algorithms, and Genetic Programming” is introduced. SeTGAP is

designed to address multivariate SR problems by probing trained opaque regression models

to distill them into multivariate mathematical expressions that allow us to interpret the

regression model’s functional form. The chapter presents the workflow of the SeTGAP

method, delves into the univariate skeleton prediction method, and describes how these

skeletons are then merged, serving as fundamental building blocks for the final expressions.

In particular, we explored the role of the Multi-Set Transformer model in generating

multiple univariate symbolic skeletons that characterize how each variable influences the

system’s response. A GA-based approach is employed to select the best skeleton candidates,

which are then incrementally merged using a GP-based cascade procedure that preserves

their original structure. The final multivariate skeletons undergo coefficient optimization via

GA to refine prediction accuracy while maintaining the learned functional form.

Furthermore, we introduce the first performance evaluation method for assessing how

well the functional form of the learned symbolic skeletons matches the system’s underlying

mathematical structure. Our experimental results demonstrate that, when compared to

two GP-based SR methods and two neural SR methods, SeTGAP consistently produced

univariate skeletons that are more similar to the target skeletons for all system variables

across all tested problems. As a result of identifying univariate expressions accurately, they

serve as reliable building blocks in SeTGAP’s merging process. Thus, we obtained full

multivariate expressions that matched the original mathematical structure in all cases, unlike

107

the compared methods. These results highlight the effectiveness of SeTGAP in learning

human-readable and structurally accurate symbolic representations of multivariate systems.

108

CHAPTER FIVE

UNCERTAINTY MANAGEMENT

In various scientific and engineering fields, the development of accurate predictive

models frequently relies on effective uncertainty quantification and strategic experimentation.

Uncertainty quantification is crucial in fostering confidence in AI-driven systems, especially

those built on inherently opaque models, whose internal mechanisms are not directly

interpretable. Without a clear understanding of how a model arrives at its predictions, users

may be reluctant to rely on its outcomes, particularly in high-stakes applications [156], or in

applications where uncertainty is inherent in the data or the underlying system, including

weather forecasting [197], electronic manufacturing [158], and precision agriculture [116]. By

rigorously quantifying the uncertainty associated with predictions, practitioners can better

assess the reliability of model outputs, identify regions of low confidence, and make more

informed decisions about when and how to trust the system.

Furthermore, experimental design aimed at reducing uncertainty offers another avenue

for improving the reliability of AI-assisted decision-making. However, such experiments

are often costly and time-consuming, highlighting the need to adopt strategies that extract

the most valuable information from each experiment. One notable example is precision

agriculture, where experimental results may require an entire growing season to manifest,

and only a portion of the field is allocated for such trials [100]. This is exacerbated by the fact

that data can often only be collected every other year, due to crop rotation. Thus, critical

decisions, such as those aimed at maximizing profit or minimizing environmental impact,

must be made under significant uncertainty. For instance, determining optimal fertilizer

application rates relies on accurately estimating nitrogen–yield response curves [20, 123].

These curves describe expected crop yields at specific field locations as a function of varying

109

fertilizer inputs. However, uncertainty across the input domain can distort the shape of these

curves, compromising their estimation and leading to unreliable fertilizer recommendations.

This chapter focuses on uncertainty quantification and sampling techniques designed

to reduce uncertainty in the prediction models across the entire input domain. As briefly

introduced in Section 4.2, we distinguish between two main types of uncertainty: epistemic

and aleatoric. The former represents the portion of total uncertainty that can be reduced by

gathering more information or improving the prediction model. On the other hand, aleatoric

uncertainty is the inherent and irreducible component of uncertainty due to the random

nature of the data itself [75, 136]. The total uncertainty associated with a prediction (σ2
y)

encapsulates both the aleatoric (σ2
a) and epistemic (σ2

e) components; i.e., σ2
y = σ2

a + σ2
e . It

is important to clarify the distinction between these terms and the corresponding random

error terms εa and εe, introduced in Section 4.2. For instance, while σ2
a(x) represents the

aleatoric uncertainty at a given point, εa(x) denotes a single realization of that uncertainty.

Prediction intervals (PIs) offer a comprehensive representation of this total uncertainty

by estimating the upper and lower bounds within which a prediction is expected to fall with

a given probability [85]. To address the challenge of producing high-quality PIs that are

both sufficiently narrow and capture most of the probability density, we present a method

for automatically learning PIs alongside conventional target predictions in regression-based

neural networks. In particular, we train two companion neural networks: one that uses one

output, the target estimate, and another that uses two outputs, the upper and lower bounds

of the corresponding PI. The PI-generation network uses a novel loss function called “Dual

Accuracy-Quality-Driven” (DualAQD) that takes into account the output of the target-

estimation network and has two optimization objectives: minimizing the mean prediction

interval width and ensuring the PI integrity using constraints that maximize the prediction

interval probability coverage implicitly. Furthermore, we introduce a self-adaptive coefficient

that balances both objectives within the loss function, which alleviates the task of fine-tuning.

110

Furthermore, we present a method to reduce epistemic uncertainty through adaptive

sampling using PIs generated by neural networks. Our method, Adaptive Sampling with

Prediction-Interval Neural Networks (ASPINN), uses a dual NN architecture comprising a

target-estimation network and a PI-generation network that produces high-quality PIs that

reflect both aleatoric and epistemic uncertainties. Then, we introduce a novel metric based

on NN-generated PIs to quantify potential levels of epistemic uncertainty. At each iteration,

ASPINN builds a Gaussian Process (GPR)1 from calculated potential epistemic uncertainty

levels. The GPR, a surrogate for the NN models, estimates potential epistemic uncertainty

changes across the domain after sampling specific locations. An acquisition function then

uses the GPR to select sampling locations, aiming to minimize global epistemic uncertainty

throughout the input domain. Finally, we use the symbolic regression technique introduced

in Chapter 4, SeTGAP, to study how varying degrees of epistemic uncertainty observed

through the AS process affect the learned mathematical expressions that describe the data.

5.1 Background

This section reviews related work in the areas of prediction interval learning and

uncertainty minimization. We highlight key methodologies, examine their limitations, and

explore how they relate to the specific challenges addressed in this chapter.

5.1.1 Prediction Interval Learning

One of the more common approaches to uncertainty quantification for regression tasks

is via Bayesian approaches, such as those represented by Bayesian neural networks (BNNs),

which model the NN parameters as distributions. As such, they have the advantage

that they allow for a natural quantification of uncertainty. In particular, uncertainty is

1We use GPR to refer to Gaussian Process to avoid confusion with GP, which previously referred to
Genetic Programming.

111

quantified by learning a posterior weight distribution [25, 133]. The inference process involves

marginalization over the weights, which in general is intractable, and sampling processes

such as Markov chain Monte Carlo (MCMC) can be computationally prohibitive. Thus,

approximate solutions have been formulated using variational inference (VI) [16]. However,

Wu et al. [193] argued that VI approaches are fragile since they require careful initialization

and tuning. To overcome these issues, they proposed approximating moments in NNs to

eliminate gradient variance. They also presented an empirical Bayes procedure for selecting

prior variances automatically. Moreover, Izmailov et al. [76] discussed scaling BNNs to deep

neural networks by constructing low-dimensional subspaces of the parameter space. By

doing so, they were able to apply elliptical slice sampling and VI, which struggle in the full

parameter space. In addition, Lut et al. [110] presented a Bayesian-learning-based sparse

stochastic configuration network that replaces the Gaussian distribution with a Laplace one

as the prior distribution for output weights.

Despite the aforementioned improvements in Bayesian approaches, they still suffer from

various limitations. Namely, the high dimensionality of the parameter space of deep NNs,

including complex models such as CNNs, makes the cost of characterizing uncertainty over

the parameters prohibitive [195]. Attempts to scale BNNs to deep NNs are considerably

more expensive computationally than VI-based methods and have been scaled up to low-

complexity problems only, such as MNIST [47]. Conversely, non-Bayesian methods do not

require the use of initial prior distributions and biases to train the models [85]. Recent works

have demonstrated that non-Bayesian approaches provide better or competitive uncertainty

estimates than their Bayesian counterparts [85, 96, 142]. In addition, they are scalable to

complex problems and can handle millions of parameters.

MC-Dropout was proposed by Gal and Ghahramani [54] to quantify model uncertainty

in NNs. They cast dropout training in deep NNs as approximate Bayesian inference in deep

Gaussian processes. The method uses dropout repeatedly to select subsamples of active

112

nodes in the network, turning a single network into an ensemble. Hence, model uncertainty

is estimated by the sample variance of the ensemble predictions. MC-Dropout is not able

to estimate PIs themselves, as it does not account for data noise variance. Therefore, Zhu

and Laptev [202] proposed estimating PIs by quantifying the model uncertainty through

MC-Dropout, coupled with estimating the data noise variance as the mean squared error

(MSE) calculated over an independent held-out validation set.

Recently, several non-Bayesian approaches have been proposed for approximate un-

certainty quantification. Such approaches use models whose outputs provide estimations

of the predictive uncertainty directly. For instance, Schupbach et al. [162] proposed a

method that estimates confidence intervals in NN ensembles based on the use of U-statistics.

Other techniques estimate PIs by using ensembles of feedforward networks [86] or stochastic

configuration networks [109] and bootstrapping. Lakshminarayanan et al. [96] presented an

ensemble approach based on the Mean-Variance Estimation (MVE) method introduced by

Nix and Weigend [137]. Here, each NN has two outputs: one that represents the mean (or

target estimation) and the other that represents the variance of a normal distribution, which

is used to quantify the data noise variance. Other approaches use models that generate PI

bounds explicitly. Khrosavi et al. [85] proposed a Lower Upper Bound Estimation (LUBE)

method that uses a NN and a loss function to minimize the PI width while maximizing the

probability coverage using simulated annealing.

Similar approaches have attempted to optimize the LUBE loss function using methods

such as genetic algorithms [201] and particle swarm optimization [56]. Pearce et al. [142]

proposed a method called QD-Ens that consists of a quality-driven loss function similar

to LUBE but that is compatible with gradient descent. Then Salem et al. [160] proposed

QD+ which is based on QD-Ens, which uses exactly the same two penalty functions to

reduce the PI width and maximize the probability coverage. They used three-output NNs

and included a third penalty term that aims to decrease the mean squared error of the

113

target predictions and a fourth penalty term to enforce the point predictions to lay inside

the generated PIs. In our approach, we use only three penalty terms; the differences are

explained in Section 5.2.6. Finally, both QD-Ens and QD+ used an ensemble approach to

estimate the model uncertainty while we use a Monte Carlo approach on a single network.

5.1.2 Uncertainty Minimization

Adaptive sampling techniques offer a promising solution by selecting samples intelli-

gently that contribute most to improving model accuracy and reducing uncertainty [39].

Several methods have been proposed to reduce uncertainty through iterative sampling. The

majority of these methods have been developed within the framework of active learning

(AL) [12, 135] or in contexts where the objective is to identify the location of local or global

optima [70, 134]. Note that AS and AL fields do not completely overlap [39]. In AL, the

objective is to select training data within a limited budget to maximize model performance.

AL can be categorized into population-based AL, where the test input distribution is

known, and pool-based AL, where a pool of unlabeled samples is provided. The problem

configuration addressed in this chapter does not align with those categories as it is not limited

to predefined data pools or known distributions. Instead, it samples from an open domain

continuously, focusing on reducing epistemic uncertainty across the entire input space.

Our problem shares similarities with Bayesian Optimization (BO), where at each

iteration, data points are sampled at locations expected to yield significant improvements

in the objective function according to a specified acquisition function. BO methods build

a probabilistic model of the objective function, often a GPR, to select the most promising

points for evaluation [59]. Traditional BO methods explore the domain space sequentially;

however, Gonzalez et al. [64] proposed a batch sampling strategy for BO that accounts

for the interactions between different evaluations in the batch using a penalized acquisition

function. Some BO strategies focus on maximizing information gain. For instance, Wang

114

and Jegelka [187] introduced an acquisition function called max-value entropy search, which

balances exploration of areas with higher uncertainty in the surrogate model and exploitation

towards the believed optimum. In addition, Nguyen et al. [134] presented the predictive

variance reduction search strategy, which reduces uncertainty at perceived optimal locations,

leading to convergence when uncertainty at all perceived optimal locations is minimized.

In typical BO applications, the objective is to identify a single location that corresponds

to the local or global optimum of an objective function (arg max f(x)). In contrast, the

solution to our problem consists of an augmented dataset that yields minimum epistemic

uncertainty across the entire input space. In the fertilizer rate optimization problem

discussed at the beginning of the chapter, and revisited in Section 6.1.1, finding the rate that

produces the higher estimated yield value does not necessarily coincide with the economic

optimum nitrogen rate (EONR). The EONR is the N rate beyond which there is no actual

profit for the farmers, and its calculation depends on the shape of the nitrogen-yield response

curves [20]. Therefore, the epistemic uncertainty across all admissible N rates should be

reduced to provide reliable EONR recommendations for future growing seasons.

Similarly, active learning is closely related to our problem. The primary distinction is

that AL, given known input distributions (population-based AL) or a set of unlabeled points

(pool-based AL), aims to select the minimum number of training examples to maximize

model performance [39]. In contrast, our approach is agnostic of the input distribution and

is not restricted to a fixed pool of training candidates. Furthermore, our focus on reducing

uncertainty only considers model prediction improvement as a side-effect. What is more, it

allows for repetitive sampling at a single location.

Despite the distinction above, some AL techniques can be adapted to our problem. In

particular, we are interested in methods that decompose uncertainty into its aleatoric and

epistemic components. A common approach is to use MC-Dropout [54] (see Section 5.2.5)

to quantify epistemic uncertainty in NNs as the sample variance of the ensemble predictions.

115

Furthermore, Valdenegro-Toro and Mori [178] used a variance attenuation (VA) loss function

to disentangle the epistemic and aleatoric components from the outputs of ensemble models.

However, Zhang et al. [200] pointed out that VA-based methods overestimate aleatoric

uncertainty. In response, they presented a denoising approach that involves incorporating a

variance approximation module into a trained prediction model to identify the aleatoric

uncertainty. Finally, Berry and Meger [12] proposed using an ensemble of normalizing

flows (NFs), created using dropout masks, to estimate both aleatoric and epistemic

uncertainty. To demonstrate their results, they suggested an AL framework that compares

various uncertainty estimation methods. These methods are used to sample multiple-point

candidates and select those with the highest epistemic uncertainty.

5.2 Prediction Interval-Generation Neural Networks

One of the limitations of conventional neural networks is that they only provide

deterministic point estimates without any additional indication of their approximate

accuracy [54]. Reliability and accuracy of the generated point predictions are affected by

factors such as the sparsity of training data or target variables affected by probabilistic

events [84]. Here, reliability is defined as the ability for a model to work consistently across

real-world settings [173]. One way to improve the reliability and credibility of such complex

models is to quantify the uncertainty in the predictions they generate [167]. This uncertainty

can be quantified using PIs, which provide an estimate of the upper and the lower bounds

within which a prediction will fall according to a certain probability [85]. Hence, the amount

of uncertainty for each prediction is provided by the width of its corresponding PI.

Recently, some NN-based methods have been proposed to solve the PI generation

problem [56, 85, 142, 160, 169, 201]. These methods train NNs using loss functions that aim to

balance at least two of the following three objectives: minimizing mean PI width, maximizing

PI coverage probability, and minimizing the mean error of the target predictions. Although

116

Figure 5.1: An example of our PI-generation method on a synthetic dataset [128].

the aforementioned works have achieved promising results, there exist some limitations that

need to be addressed. For instance, they rely on the use of deep ensembles; however,

training several models may become impractical when applied to complex systems and large

datasets [57]. Furthermore, their performance is sensitive to the selection of multiple tunable

hyperparameters whose values may differ substantially depending on the application. Thus,

fine-tuning an ensemble of deep NNs becomes a computationally expensive task. Finally,

methods that generate PI bounds and target estimations simultaneously have to deal with

a trade-off between the quality of generated PIs and the accuracy of the target estimations.

Pearce et al. [142] coined the term High-quality (HQ) principle, which refers to the

requirement that PIs be as narrow as possible while capturing some specified proportion of

the predicted data points. Following this principle, we pose the PI generation problem for

117

regression as a multi-objective optimization problem. This approach, which we discuss in

this section, involves training two NNs: one that generates accurate target estimations and

one that generates narrow PIs (see Fig. 5.1). The first NN is trained to minimize the mean

squared error of the target estimations. We introduce a loss function for the second NN

that, besides the generated PI bounds and the target, considers the output of the first NN

as an additional input. It minimizes the mean prediction interval width and uses constraints

to ensure the integrity of the generated PIs while implicitly maximizing the probability

coverage. In addition, we present a method that updates the coefficient that balances the

two optimization objectives of our loss function. Our method avoids generating unnecessarily

wide PIs by using a technique that sorts the mini-batches at the beginning of each training

epoch according to the width of the generated PIs.

5.2.1 Dual Accuracy-Quality-Driven Loss Function

Let Xb = {x1, . . . ,xN} be a training batch with N samples where each sample xi ∈ Rt

consists of t covariates. Furthermore, let yb = {y1, . . . , yN} be a set of corresponding target

observations where yi ∈ R. We construct a NN regression model that captures the association

between Xb and yb. More specifically, f̂(·) denotes the function computed by the NN, and

θf denotes its weights. Hence, given an input xi, f(xi,θf) computes the target estimate ŷi.

This network is trained to generate accurate estimates ŷi with respect to yi. We quantify this

accuracy by calculating the mean squared error of the estimation MSEest = 1
N

∑N
i=1(ŷi−yi)2.

Thus, f̂ is conventionally optimized as follows:

θf̂ = argmin
θf̂

MSEest.

Note that our focus is on learning prediction intervals, not on optimizing predictive

performance. Therefore, to ensure a fair comparison across all experiments and methods, we

118

consistently use simple MSE minimization, even though overall performance could potentially

benefit from regularization techniques.

Once network f̂(·) is trained, we use a separate NN whose goal is to generate prediction

intervals for yb given data Xb. Let f̂PI(·) denote the function computed by this PI-generation

NN, and θf̂PI
denotes its weights. Given an input xi, f̂PI(xi,θf̂PI

) generates its corresponding

upper and lower bounds, ŷui and ŷℓi , such that [ŷℓi , ŷ
u
i] = f̂PI(xi,θf̂PI

). Note that there is no

assumption of ŷℓi and ŷui being symmetric with respect to the target estimate ŷi produced by

network f̂(·). We describe its optimization procedure below.

We say that a training sample xi ∈ Xb is covered (i.e., we set ki = 1) if both the

predicted value ŷi and the target observation yi fall within the estimated PI:

ki =

1, if ŷℓi < ŷi < ŷui and ŷℓi < yi < ŷui

0, otherwise.

(5.1)

Then, using ki, we define the prediction interval coverage probability (PICP) for Xb as the

percent of covered training samples with respect to the batch size N : PICP =
∑N

i=1 ki/N .

The HQ principle suggests that the width of the prediction intervals should be

minimized as long as they capture the target observation value. Thus, Pearce et al. [142]

considered the mean prediction interval width of captured points (MPIWcapt) as part of

their loss function:

MPIWcapt =
1

ϵ+
∑

i ki

N∑
i=1

(ŷui − ŷℓi) ki, (5.2)

where ϵ is a small number used to avoid dividing by zero. However, we argue that minimizing

MPIWcapt does not imply that the width of the PIs generated for the non-captured samples

will not decrease along with the width of the PIs generated for the captured samples2.

2We provide a toy example demonstrating this behavior in the following link https://github.com/
NISL-MSU/PredictionIntervals/tree/master/src/PredictionIntervals/models/QD toy example.ipynb

https://github.com/NISL-MSU/PredictionIntervals/tree/master/src/PredictionIntervals/models/QD_toy_example.ipynb
https://github.com/NISL-MSU/PredictionIntervals/tree/master/src/PredictionIntervals/models/QD_toy_example.ipynb

119

Furthermore, consider the case where none of the samples are captured by the PIs, as likely

happens at the beginning of the training. Then, the penalty is minimum (i.e., MPIWcapt =

0). Hence, the calculated gradients of the loss function forces the weights of the NN to

remain in the state where ∀i, ki = 0, which contradicts the goal of maximizing PICP .

Instead of minimizing MPIWcapt directly, we let

PIpen =
1

N

N∑
i=1

(|ŷui − yi|+|yi − ŷℓi |), (5.3)

which we minimize instead. This function quantifies the width of the PI as the sum of

the distance between the upper bound and the target and the distance between the lower

bound and the target. We argue that PIpen is more suitable than MPIWcapt given that it

forces ŷui , yi, and ŷℓi to be closer together. For example, suppose that the following case is

observed during the first training epoch: yi = 24, ŷi = 25, ŷui = 0.2, and ŷℓi = 0.1. Then

MPIWcapt = 0 given that the target is not covered by the PI, while PIpen = 47.7. As a

result, PIpen will penalize this state while MPIWcapt will not. Thus, we define our first

optimization objective as:

min
θf̂PI

L1 = min
θf̂PI

PIpen.

However, minimizing L1 is not enough to ensure the integrity of the PIs. Their integrity

is given by the conditions that the upper bound must be greater than the target and the

target estimate (ŷui > yi and ŷui > ŷi) and that the target and the target estimate, in turn,

must be greater than the lower bound (yi > ŷℓi and ŷi > ŷℓi). Note that if the differences

(ŷui − yi) and (yi − ŷℓi) are greater than the maximum estimation error within the training

batch Xb (i.e., (ŷui − yi) > maxi|ŷi − yi| and (ŷui − yi) > maxi|ŷi − yi|, ∀i ∈ [1, . . . , N]), it is

implied that all samples are covered (ki = 1, ∀i ∈ [1, . . . , N]).

Motivated by this, we include an additional penalty function to ensure PI integrity and

maximize the number of covered samples within the batch simultaneously. Let us denote the

120

mean differences between the PI bounds and the target estimates as du =
∑N

i=1(ŷ
u
i − yi)/N

and dℓ =
∑N

i=1(yi − ŷℓi)/N . Let ξ = maxi|ŷi − yi| denote the maximum distance between a

target estimate and its corresponding target value within the batch (ξ > 0). From this, our

penalty function is defined as follows:

P = eξ−du + eξ−dℓ , (5.4)

Here, if the PI integrity is not met (i.e., du < 0 or dℓ < 0) then their exponent magnitude

becomes larger than ξ, producing a large penalty value. Moreover, these terms encourage

both du and dℓ not only to be positive but also to be greater than ξ. This implies that the

distance between the target yi and any of its bounds will be larger than the maximum error

within the batch, ξ, thus the target yi will lie within the PI. As a consequence, we define our

second optimization objective as follows:

min
θf̂PI

L2 = min
θf̂PI

P.

Then our Dual Accuracy-Quality-Driven loss function is given by

LossDualAQD = L1 + λL2, (5.5)

where λ is a self-adaptive coefficient that controls the relative importance of L1 and L2.

Hence, our multi-objective optimization problem can be expressed as:

θf̂PI
= argmin

θf̂PI

LossDualAQD.

For simplicity, we assume that f̂(·) and f̂PI(·) have L layers and the same network

architecture except for the output layer. Network f̂(·) is trained first. Then, weights θf̂PI

121

are initialized using weights θf except for those of the last layer: θ
(0)

f̂PI
[1 : L−1] = θf̂ [1 : L−1].

Note, that, in general, DualAQD can use different network architectures for f̂(·) and f̂PI(·).

However, assuming both networks share the same architecture in the first L−1 layers enables

the use of transfer learning, allowing us to initialize f̂PI with the pretrained weights of f̂

and thereby accelerate the training process.

5.2.2 Batch Sorting

Function L2 minimizes the term P (Eq. 5.4), forcing the distance between the target

estimate and its PI bounds to be larger than the maximum absolute error within its

corresponding batch. This term assumes there exists a similarity among the samples within

a batch. However, consider the case depicted in Fig. 5.2 where we show four samples that

have been split randomly into two batches. In Fig. 5.2a, the PIs of the second and third

samples already cover their observed targets. According to L2, these samples will yield high

penalties because the distances between their target estimates and their PI bounds are less

than ξ(1) and ξ(2), respectively, forcing their widths to increase unnecessarily.

Thus, we introduced a method called “batch sorting”, which consists of sorting the

training samples with respect to their corresponding generated PI widths after each epoch.

By doing so, the batches will process samples with similar widths, avoiding unnecessary

widening. For example, in Fig. 5.2b, the penalty terms are low given that d
(1)
u , d

(1)
ℓ > ξ(1) and

d
(2)
u , d

(2)
ℓ > ξ(2). Note that, during testing, the PI generated for a given sample is independent

of other samples and, as such, batch sorting becomes unnecessary during inference.

5.2.3 Self-adaptive Coefficient

The coefficient λ of Eq. 5.5 balances the two optimization objectives L1 and L2. In this

section, we propose that, instead of λ being a tunable hyperparameter with a fixed value

throughout training, it should be adapted throughout the learning process automatically.

122

Figure 5.2: L3 penalty calculation, (a) without batch sorting; (b) with batch sorting [128].

Typically, the PICP value improves as long as the MPIW value increases; however,

extremely wide PIs are not useful. We usually aim to obtain PIs with a nominal probability

coverage no greater than (1 − α). A common value for the significance level α is 0.05, in

which case we say that we are 95% confident that the target value will fall within the PI.

Let PICP
(ep)
train denote the PICP value calculated on the training set Xtrain after the

ep-th training epoch. If PICP
(ep)
train is below the confidence target (1 − α), more relative

importance should be given to the objective L2 that enforces PI integrity (i.e., λ should

increase). Likewise, if PICP
(ep)
train is higher than (1−α), more relative importance should be

given to the objective L1 that minimizes MPIW (i.e., λ should decrease).

This intuition is formalized by defining the cost C that quantifies the distance from

PICP
(ep)
train to the confidence target (1 − α): C = (1 − α) − PICP (ep)

train. Then, λ is increased

or decreased proportionally to the cost function C after each training epoch as:

λ(ep) = λ(ep−1) + η · C, (5.6)

where λ(ep) is the value of the coefficient λ at the ep-th iteration (we consider that λ(0) = 1),

123

Algorithm 5.1 DualAQD method

Input: Training dataset (Xtrain,ytrain); target prediction NN f̂ ; PI-generation NN f̂PI; significance

level α; adaptive coefficient η

Output: Trained PI-generation NN f̂PI

1: function TrainNNwithDualAQD(Xtrain,ytrain, f̂ , f̂PI, α, η)

2: λ← 1

3: for each t ∈ range(1, maxEpochs) do

4: if t > 1 then

5: Batches← batchSorting(Xtrain,ytrain,widths)

6: else

7: Batches← shuffle(Xtrain,ytrain)

8: for each batch ∈ Batches do

9: x, y ← batch

10: ŷ ← f̂(x)

11: ŷu, ŷℓ ← f̂PI(x)

12: loss← DualAQD(λ, y, ŷ, ŷu, ŷℓ)

13: update(f̂PI, loss)

14: PICP
(ep)
train,widths

(ep) ← metrics(Xtrain,ytrain)

15: C ← ((1− α)− PICP
(ep)
train) ▷ Update coefficient λ

16: λ = λ+ η · C
17: return f̂PI

and η is a tunable scale factor (see Algorithm 5.1).

Note that Algorithm 5.1 takes as inputs the data Xtrain and corresponding targets ytrain

as well as the trained prediction network f̂ , the untrained network f̂PI, the significance level

α, and the scale factor η. Function batchSorting(Xtrain,ytrain,widths(t−1)) returns a list

of batches sorted according to the PI widths generated during the previous training epoch

(see Section5.2.2). Function DualAQD(λ, y, ŷ, ŷu, ŷℓ) represents the DualAQD loss function

(Eq.5.5) while update(f̂PI, loss) encompasses the conventional backpropagation and gradient

descent processes used to update the weights of network g. Function metrics(Xtrain,ytrain)

passes Xtrain through g to generate the corresponding PIs and their widths, and to calculate

compares the output to ytrain to calculate the PICP
(ep)
train value using ytrain.

124

5.2.4 Parameter and Hyperparameter Selection

The PI-generation NN is trained on the training set Xtrain during T epochs using

LossDualAQD as the loss function. After the ep-th training epoch, we calculate the

performance metrics zep = {PICP (ep)
val ,MPIW

(ep)
val } on the validation set Xval, also referred

to as a “calibration set” [7]. Thus, we consider that the set of optimal weights of the network,

θf̂PI
, will be those that maximize performance on the validation set. The remaining question

is what are the criteria to compare two solutions zi and zj.

Taking this criterion into account, we consider that a solution zi dominates another

solution zj (zi ⪯ zj) if the following conditions are met:

• PICP
(i)
val > PICP

(j)
val and PICP

(i)
val ≤ (1− α).

• PICP
(i)
val == PICP

(j)
val < (1− α) and MPIW

(i)
val < MPIW

(j)
val

• PICP
(i)
val ≥ (1− α) and MPIW

(i)
val < MPIW

(j)
val

Hence, if α = 0.05, we seek a solution whose PICPval value is at least 95%. After exceeding

this value, zi is said to dominate another solution zj only if it produces narrower PIs.

A grid search is used to tune the hyperparameter η for training (Eq. 5.6). For each

value, an NN is trained using 10-fold cross-validation, and the average performance metrics

on the validation sets are calculated. Then, the hyperparameters are selected using the

dominance criteria explained above.

5.2.5 PI Aggregation Using MC-Dropout

A model trained using LossDualAQD generates PI estimates based on the training data;

however, model uncertainty remains unaccounted for. Unlike previous work that used explicit

NN ensembles [96, 142], we employ a Monte Carlo-based approach. Specifically, we use MC-

Dropout [170], which consists of using dropout layers that ignore each neuron of the network

according to some probability or dropout rate. Then, during each forward pass with active

125

dropout layers, a slightly different network architecture is used and, as a result, a slightly

different prediction is obtained. According to Gal and Ghahramani [54], this process can be

interpreted as a Bayesian approximation of the Gaussian process.

In particular, this approach consists of performing M forward passes through the

network with active dropout layers. Given an input xi, the estimates ŷ
(m)
i , ŷ

u(m)
i , and ŷ

ℓ(m)
i

are obtained at the m-th iteration. Hence, the expected target estimate ȳi, the expected

upper bound ȳui , and the expected lower bound ȳℓi are calculated as the following averaged

values: ȳi = 1
M

∑M
m=1 ŷ

(m)
i , ȳui = 1

M

∑M
m=1 ŷ

u(m)
i , ȳℓi = 1

M

∑M
m=1 ŷ

ℓ(m)
i .

5.2.6 Comparison to QD-Ens and QD+

Here we consider the differences between our method (DualAQD) and the two methods

QD-Ens [142] and QD+ [160]. The loss functions used by QD-Ens and QD+ are as follows:

LossQD =MPIWcapt+

δ
N

α(1− α)
max(0, (1− α)− PICP)2.

LossQD+ = (1− λ1)(1− λ2)MPIWcapt+

λ1(1− λ2) max(0, (1− α)− PICP)2+

λ2MSEest+

ξ

N

N∑
i=1

[
max(0, (ŷui − ŷi) + max(0, (ŷi − ŷℓi)

]
,

where δ, λ1, λ2, and ξ are hyperparameters used by QD-Ens and QD+ to balance the learning

objectives. The differences compared to our method are listed in order of importance from

highest to lowest:

• QD-Ens and QD+ use objective functions that maximize PICP directly aiming to a goal

of (1−α) at the batch level. We maximize PICP indirectly through L2, which encourages

the model to produce PIs that cover as many training points as possible. This is achieved

126

by producing PIs whose widths are larger than the maximum absolute error within each

training batch. Then the optimal weights of the network are selected as those that produce

a coverage probability on the validation set of at least (1− α).

• PICP is not directly differentiable as it involves counting the number of samples that lay

within the predicted PIs; however, QD-Ens and QD+ force its differentiation by including

a sigmoid operation and a softening factor (i.e., an additional hyperparameter). On the

other hand, the loss functions of DualAQD are already differentiable.

• Our objective L1 minimizes PIpen, which is a more suitable penalty than MPIWcapt.

• Our objective L2 maximizes PICP and ensures PI integrity simultaneously. QD+ uses a

truncated linear constraint and a separate function to maximize PICP .

• NN-based PI generation methods aim to balance three objectives: (1) accurate target

prediction, (2) generation of narrow PIs, and (3) high coverage probability. QD-Ens uses

a single coefficient δ within its loss function that balances objectives (2) and (3) and does

not optimize objective (1) explicitly, while QD+ uses three coefficients λ1, λ2, and ξ to

balance the three objectives. All of the coefficients are tunable hyperparameters. Our loss

function, LossDualAQD, uses a balancing coefficient whose value is not fixed but is adapted

throughout the training process using a single hyperparameter (i.e., the scale factor η).

• Our approach uses two companion NNs f̂(·) and f̂PI(·) that optimize objective (1) and

objectives (2) and (3), respectively, to avoid the trade-off between them. Conversely, the

other approaches optimize a single NN architecture.

• We use MC-Dropout to account for model uncertainty. By doing so, we need to train only

a single model instead of an ensemble of models, as in QD-Ens and QD+. Also, QD+

requires fitting a split normal density function [185] for each data point to aggregate the

PIs produced by the ensemble, thus increasing the complexity of their learning process.

127

5.3 Adaptive Sampling with Prediction-Interval Neural Networks

Here, we examine a system defined by an input vector x ∈ Rt and a scalar response

y ∈ R. The system’s underlying function f : X → Y maps the input value space and

the response value space such that y = f(x) + εa(x), where εa(x) is a random variable

representing the error term that is a function of the system’s aleatoric uncertainty, σ2
a(x).

Let Dit = (X
(it)
obs ,y

(it)
obs) represent the dataset at the it-th iteration with nit observations,

where X
(it)
obs = {x1, . . . ,xnit

} and y
(it)
obs = {y1, . . . , ynit

}. A prediction model f̂it : X → Y with

parameters θf is trained by minimizing the mean squared error of the estimation:

min
θf

1

nit

∑
(xi,yi)∈Dit

(f̂it(xi)− yi)2.

We aim to identify a batch X
(it)
acq = {xit,1, . . . ,xit,B} of B recommended sampling

locations for the next iteration. These locations are chosen to minimize the epistemic

uncertainty across the entire input space given a model f̂it trained on Dit. The epistemic

uncertainty, σ2
e(xp), arises from the lack of knowledge about f and is due to the limitations

of the prediction model trained on the observed dataset.

Preferences over potential sampling locations are encoded by an acquisition function

αit(x). Suppose J(Dit) is a function that reflects the total potential epistemic uncertainty

across the input domain. Then function αit(x) is designed to reflect the expected decrease

in epistemic uncertainty E[J(Dit)− J(Dit ∪ (x, y))] after making an observation at location

x. Fig. 5.3 depicts an instance of our problem. Here, x∗ represents the selected sampling

position at each iteration (i.e., B = 1). For the general case where B > 1, the decision

on where to sample the k-th element of the batch, xit,k, depends on the estimated effect of

the previous k − 1 samples of the same batch. This requires the design of a batch sampling

strategy, which will be explored later in this chapter.

128

Figure 5.3: Epistemic uncertainty minimization through AS.

In the following, we describe the components of our ASPINN method. We lay out

the steps to derive a metric that reflects the epistemic uncertainty associated with an input

value based on PIs. The metric is then used to design an acquisition function that allows

for the selection of a batch of sampling locations, which are expected to minimize the global

epistemic uncertainty during the next AS iteration.

5.3.1 Prediction Interval Generation

We generate PIs for quantifying the total uncertainty associated with a given sample,

thus accounting for both aleatoric and epistemic uncertainty. We employ an NN-based

PI generation method called DualAQD [128], described in Section 5.2. This method uses

two companion NNs: a target-estimation NN and a PI-generation NN, whose computed

functions are here denoted as f̂it(·) and f̂PI, it(·), respectively. Network f̂it(·) is trained on Dit

to minimize the estimation error so that ŷ = f̂it(x) and ŷ ≈ y. Network f̂PI, it(·) produces

129

two outputs [ŷℓ, ŷu] = f̂PI, it(x), which correspond to the PI lower and upper bounds. Note

that f̂PI, it(x) makes no assumptions about the underlying uncertainty distribution.

Network f̂PI, it(·) is trained using the DualAQD loss function to produce high-quality

PIs that are as narrow as possible while capturing some specified proportion of the predicted

data points (e.g., 95%). However, the model should produce wider PIs for out-of-distribution

(OOD) samples since these samples are not well-represented in the training set, leading to

higher associated epistemic uncertainty. To address this, the bias weights of f̂PI, it(·) are

initialized to generate wide PIs, similar to the approach proposed by Liu et al. [107]. The

rationale is that these bias weights will decrease during training for in-distribution samples,

resulting in narrower PIs, but will remain high for OOD samples, ensuring appropriately

wider PIs to reflect the increased uncertainty.

5.3.2 Potential Epistemic Uncertainty

Let σ2
e(xp) represent the epistemic uncertainty at a certain location xp ∈ X . The PI

lower and upper bounds generated by the network f̂PI, it(·) at xp are denoted as ŷℓit(xp) and

ŷuit(xp), respectively. We claim that using PIs alone does not provide sufficient information

to determine σ2
e(xp). Consider xp as an OOD sample. We may state that the total

uncertainty associated with xp is primarily due to epistemic uncertainty given the lack of

knowledge of the prediction model about the system’s behavior in this region of the input

domain. Nevertheless, we cannot estimate the aleatoric uncertainty around xp until we gather

observations in such a domain region. Alternative methods can be used but they require

making assumptions about the noise distribution [163], training an ensemble of models [12],

or using additional trainable modules [200]. As a consequence, the total uncertainty conveyed

by the generated interval [ŷℓit(xp), ŷ
u
it(xp)] cannot be split effectively into its epistemic and

aleatoric components without further information.

Instead of attempting to provide a metric that accurately estimates σ2
e(xp), we introduce

130

a metric that reflects the potential levels of epistemic uncertainty. Let N (xp) = {x ∈

X
(it)
obs | ∥x − xp∥2≤ θ} denote a neighborhood that considers all samples whose Euclidian

distance to xp is less than a hyperparameter threshold θ. The set of pairs R(N (xp)) =

{(x, y) | (x, y) ∈ Dit,x ∈ N (xp), ŷ
ℓ(x) ≤ y ≤ ŷu(x)} is created using the samples in N (xp)

whose response values fall within their corresponding PI. Thus, we present the metric Qit(xp):

Qit(xp)=

min
(x,y)∈R(N (xp))

(ŷu(x)−y)+

min
(x,y)∈R(N (xp))

(y−ŷℓ(x))

if N (xp) ̸=∅

ŷuit(xp)− ŷℓit(xp) if N (xp)=∅

(5.7)

The local neighborhood of xp may contain important contextual information that an

analysis at a single location xp cannot capture. For instance, Fig.5.4a illustrates an interval

PI(xp) = [ŷℓit(xp), ŷ
u
it(xp)] generated at a single location. Suppose Qit(xp) is calculated using

PI(xp) only (i.e., θ = 0). Since a single point lies within the interval, Qit(xp) is equal to

the PI width, indicating that the epistemic uncertainty at xp can potentially be completely

reduced. Fig.5.4b depicts a case in which the PI shown in Fig.5.4a is located in a region of

the domain with low data density. As such, there exists an epistemic component that entails

that the PI width could be reduced by acquiring more data in this region.

Conversely, Fig.5.4c shows a similar PI in a high data density context. Here, a reduction

in PI(xp) will also lead to a decrease in the PI widths of adjacent locations, provided that the

uncertainty at xp is not independent of its surroundings. However, model f̂PI, it(·) is trained

to produce narrow PIs while maintaining a nominal coverage (e.g., 95%). Thus, it will not

reduce PI(xp) if this reduction would result in several samples near the PI bounds being

excluded from their intervals. Notice that if θ > 0, then Qit(xp) ≈ 0, indicating minimal

potential epistemic uncertainty around xp.

Algorithm 5.2 describes the function PotEpistUnc that calculates the potential

131

Figure 5.4: PIs generated at location xp. (a) Data points located at xp only. (b) PI width
is affected by epistemic uncertainty. (b) PI width is mainly due to aleatoric uncertainty.

epistemic uncertainty at each candidate position for sampling. It takes as inputs the dataset

Dit = (X
(it)
obs ,y

(it)
obs) available during the it-th iteration of the AS process, the PI-generation

NN f̂PI, it(·) trained on Dit, the set Xtest of all candidate positions for sampling (i.e., the

input space), and the neighbor distance threshold θ. For each candidate position xp, the

algorithm constructs a neighborhood N (xp) consisting of all samples in X
(it)
obs within a radius

of θ with respect to xp. If N (xp) is empty, the potential epistemic uncertainty is given by

the PI width ŷuit(xp)− ŷℓit(xp). Otherwise, it builds the set of input–response pairs R(N (xp))

using the samples in N (xp) whose response values fall within their corresponding PI. From

the data points in R(N (xp)), the potential epistemic uncertainty Qit(xp) is calculated as the

sum of the minimum distance between the predicted upper bounds and the observed values,

and the minimum distance between the observed values and the predicted lower bounds.

5.3.3 Batch Sampling

When multiple locations are sampled at each iteration, decisions for the entire batch

are made based on the current model without observing any data from the batch until the

next iteration. Hence, it is necessary to simulate the decisions that would be made under the

equivalent sequential policy (i.e., when B = 1) [64]. In other words, the decision of selecting

132

Algorithm 5.2 ASPINN’s potential epistemic uncertainty

Input: Dataset during the i-th iteration Dit; PI-generation NN f̂PI, it; set of candidate positions

for sampling Xtest; radius θ

Output: Potential epistemic uncertainty Qit

1: function PotEpistUnc(Dit, f̂PI, it,Xtest, θ)

2:
(
X

(it)
obs ,y

(it)
obs

)
← Dit

3: Qit ← zeros(size(Xtest))

4: for xp ∈ Xtest do

5: N (xp)← {x ∈ X
(it)
obs | ∥x− xp∥2≤ θ}

6: if N (xp) ̸= ∅ then
7: R(N (xp))← [] ▷ xp’s neighbors falling within the PIs

8: Y u
sub, Y

ℓ
sub ← [], []

9: for x ∈ N (xp) do

10: ŷℓ(x), ŷu(x)← git(x)

11: if ŷℓ(x) ≤ y ≤ ŷu(x) then ▷ (x, y) ∈ Dit

12: R(N (xp)).append((x, y))

13: Y u
sub.append(ŷ

u(x))

14: Y ℓ
sub.append

(
ŷℓ(x)

)
15: (Xsub , Ysub)← R(N (xp))

16: Qit(xp)← min(Y u
sub − Ysub) + min(Ysub − Y ℓ

sub)

17: else

18: ŷℓ(xp), ŷ
u(xp)← git(xp)

19: Qit(xp)← ŷuit(xp)− ŷℓit(xp)

20: return Qit

the k-th element of the it-th batch, xit,k, should incorporate the estimates of change in

uncertainty after sampling at the previous locations xit,1:k−1 = {xit,1, . . . ,xit,k−1}. In that

case, following a greedy sampling strategy, we have:

xit,k = argmax
xp∈X

αit(xp |xit,1:k−1). (5.8)

We consider an acquisition function that estimates the reduction in the total potential

epistemic uncertainty across the domain when making an observation at a given location xp:

αit(xp |xit,1:k−1) = J (Dit,k−1)− J(Dit,k−1 ∪ (xp, f̂it(xp))).

133

Dit,k−1 is the dataset Dit augmented with the first k − 1 samples of the batch and their

corresponding estimated response values. The potential epistemic uncertainty at x during

the it-iteration after sampling the first k elements of the batch is denoted as Qit,k(x). Thus,

the total potential epistemic uncertainty is calculated as J(Dit,k) =
∑

x∈X Qit,k(x), where

J(Dit,0) = J(Dit) and Qit,0(x) = Qit(x).

Thus, J(Dit) is computed based on Qit(x), which is derived from the outputs produced

by NNs f̂it(·) and f̂PI, it(·) (Eq. 5.7), trained on Dit. To calculate J(Dit,k−1 ∪ (xp, f̂it(xp)))

in a similar manner, it is necessary to train both NNs on the augmented dataset Dit,k−1 ∪

(xp, f̂it(xp)). According to Eq. 5.8, this operation would need to be repeated ∀xp ∈ X and

∀k ∈ [1, . . . , B] and, as such, becomes impractical. Therefore, motivated by most BO-based

approaches, we use a GPR as a surrogate model. The objective is to simulate, with low

computational cost, how the potential epistemic uncertainty would be affected throughout

the entire domain after observing a sample at a given position.

Let us define a GPR p(f̂it) = GP(µit,Kit) that serves as a surrogate model for f̂it(·) and

its associated epistemic uncertainty during the it-th iteration. This GPR is characterized

by the mean function µit and the positive-definite covariance matrix Kit. Functions µit and

Kit are initialized based on the estimations generated by f̂it(·) and f̂PI, it(·), trained on Dit.

For the mean function, we consider µit(x) = f̂it(x). On the other hand, the

diagonal elements of Kit reflect the uncertainty in the predictions f̂it(x) due to epistemic

uncertainty. Since this uncertainty varies across the domain, it represents heteroscedastic

noise. Considering that the uncertainty at a given position may be correlated with nearby

positions, Kit is structured as a matrix with non-zero off-diagonal elements. Thus, the scale

of Kit depends on location and is calculated according to the potential epistemic uncertainty:

Kit(x,x
′) =

Qit(x), if x = x′

ρ(x,x′)
√
Qit(x)Qit(x′), otherwise,

134

where ρ(x,x′) indicates the correlation between positions x and x′. We use the radial basis

function (RBF) such that ρ(x,x′) = e−
∥x−x′∥2

2r2 , where r is a tunable hyperparameter.

Given we want to assess the impact of observing a data point at a given position

xp, we condition the GPR on the data point (xp, f̂it(xp)), resulting in a GPR posterior

p(f̂it|(xp, f̂it(xp))) whose covariance matrix is denoted as Kit(x,x
′ |xp). In general,

the covariance matrix when sampling the k-th element of the batch is denoted as

Kit(x,x
′ |xit,1, . . . ,xit,k) and Qit,k = diag (Kit(x,x

′ |xit,1, . . . ,xit,k)).

Given xp, the covariance matrix is updated as follows:

Kit(x,x
′ |xp) = Kit(x,x

′)−Kit(x,xp)Kit(xp,xp)
−1Kit(xp,x

′).

Hence, the updated GPR variance at xp collapses to zero after observing a data point at

that position. Note that this would only happen when Qit(xp) reflects the level of epistemic

uncertainty exclusively. In practice, this assumption may not hold. Nevertheless, it allows

us to construct a heuristic that guides the search toward locations where new observations

would potentially cause the greatest uncertainty reduction. The next sampling location is

selected using Eq. 5.8 based on the total potential epistemic uncertainty after observing a

data point at xp, which is given by:

J
(
Dit ∪ (xp, f̂it(xp))

)
=
∑

diag (Kit(x,x
′ |xp)) .

ASPINN’s batch sampling strategy is shown in Algorithm 5.3. It takes as inputs the

set Xtest of all candidate positions for sampling, their corresponding potential epistemic

uncertainty values Qit during the it-th iteration of the AS process, the batch size B, and the

kernel length r. In Lines 3–11, the algorithm initializes the covariance matrix Kit of a GPR

surrogate model. The diagonal of Kit is set to be equal to Qit. Since the uncertainty at a

given position may be correlated with nearby positions, Kit is structured as a matrix with

135

Algorithm 5.3 ASPINN’s batch sampling method

Input: Set of candidate positions for sampling Xtest; potential epistemic uncertainty Qit; batch

size B; kernel bandwidth r

Output: Recommended sampling locations X
(it)
acq

1: function sample(Xtest, Qit, B, r)

2: nQ ← size(Qit)

3: Kit ← zeros(nQ, nQ) ▷ Init GP’s covariance matrix

4: for i ∈ (0, nQ) do

5: for j ∈ (i, nQ) do

6: if i = j then

7: k ← Qit(Xtest[i])

8: else

9: ρ← RBF(Xtest[i],Xtest[j]; r) ▷ r: kernel size

10: k ← ρ
√

Qit(Xtest[i])Qit(Xtest[j])

11: Kit(i, j) = Kit(k, i) = k

12: X
(it)
acq ← []

13: while size(X
(it)
acq) < B do ▷ Batch sampling loop

14: ∆Jmax ← []

15: for xp ∈ Xtest do

16: K′
it←Kit(x,x

′)−Kit(x,xp)Kit(xp,xp)
−1

17: Kit(xp,x
′) ▷ ∀Kit(x,x

′) ∈ Kit

18: ∆J ←
∑

diag(K)−
∑

diag(K′)

19: if ∆J > ∆Jmax then

20: ∆Jmax ← ∆J

21: xt,k ← xp

22: Kbest ← K′
it

23: X
(it)
acq .append(xt,k)

24: Kit ← K′
it

25: return X
(it)
acq

non-zero off-diagonal elements. The off-diagonal elements combine the potential epistemic

uncertainty values at different positions based on their correlation value, which is calculated

using a radial basis function (RBF) with kernel bandwidth r.

Once Kit is initialized, we assess the potential uncertainty reduction when observing

each candidate position xp. Specifically, we condition the GPR on a data point at xp and

update its covariance matrix as shown in Line 16. The total potential epistemic uncertainty

136

across the domain, J(Dit), is determined by summing the diagonal elements Kit. The

estimated reduction in the total potential epistemic uncertainty, when making an observation

at xp, is thus calculated as the difference δJ between the sum of the diagonal elements of Kit

before and after the observation (Line 18). Therefore, the k-th element of the it-th batch,

xt,k, is selected as the position that yields the greatest δJ value.

5.4 Integrating Symbolic Regression into Adaptive Sampling

In this section, we incorporate the symbolic regression technique introduced in

Chapter 4, SeTGAP, into the adaptive sampling process to investigate its effectiveness in

data-scarce scenarios. We aim to evaluate how the learned mathematical expressions evolve

as the sampling strategy reduces epistemic uncertainty in the input domain. By iteratively

refining the dataset through uncertainty-aware sampling, we examine the impact of improved

data coverage on the accuracy and stability of the discovered symbolic models.

Recall that, at each AS iteration, we have access to the dataset Dit =
(
X

(it)
obs ,y

(it)
obs

)
and the corresponding trained model f̂it. Given that Xtest defines a fixed input domain

grid, the model prediction ŷ
(it)
test = f̂it(Xtest) represents the estimated response across that

domain. To derive a mathematical interpretation of the function computed by f̂it in the

form of a mathematical expression, we analyze the set D̂it =
(
Xtest, ŷ

(it)
test

)
, which pairs the

input domain with the model’s estimated response.

SeTGAP was originally designed to solve the multivariate SR problem in a decompos-

able way. When analyzing a specific variable, the approach generates multiple input–response

pairs by fixing the remaining system variables to randomly sampled values. Each resulting set

enables examining the relationship between the variable of interest and the system’s response

under varying contextual conditions. However, the experiments in this section focus on a one-

dimensional setting. In such cases, a symbolic skeleton prediction method [13, 15, 149, 179]

can be used to infer a univariate expression from a single input—response pair, capturing

137

the relationship between Xtest and ŷ
(it)
test. Alternatively, we can replicate the set D̂it NS times

to form a collection of sets suitable for processing by our Multi-Set Transformer g(·).

Nevertheless, to leverage SeTGAP’s multi-set symbolic skeleton prediction capabilities,

we adopt a different strategy. Consider the curve shown in Fig. 5.5, generated from the

function f(x) = 1
sin(x2)+5

. Rather than simply replicating D̂it NS times (with NS = 4 in

this example), we construct a collection of distinct sets D =
{
D(1), . . . ,D(NS)

}
by randomly

sampling subsets from the original input domain. Since each set in D is derived from the

same original curve, they all share a common symbolic skeleton. The task of the MSSP

solver is then to recover a skeleton ê that approximates this shared structure.

This strategy introduces diversity and contextual variation into the SR problem, which

helps mitigate the impact of localized uncertainty. For instance, certain regions may

exhibit distortions due to limited observations, as it likely happens at the boundaries of

the input domain, or increased noise, leading traditional approaches to overfit by generating

unnecessarily complex functions that model these artifacts. In contrast, by sampling distinct

subregions and seeking a shared symbolic structure across them, the MSSP framework

emphasizes the recovery of the underlying functional form rather than the noise-driven

anomalies of specific regions. This approach is most effective when the input domain is

broad enough to exhibit meaningful variation across subregions. That is, in cases with

limited domain coverage or low variability, alternative techniques may be more appropriate.

Algorithm 5.4 presents a variant of Algorithm 4.1, originally developed to extract

univariate skeletons in multivariate settings. Function generate1DExpr takes as input the

datasets Dit and D̂it, the Multi-Set Transformer g, the number of input sets NS, the number

of points per set n, and two hyperparameters, nB and ncand, which control the number of

skeleton candidates generated. On line 6, the function getRandomRange randomly selects

a portion of the input domain, between 80% and 100%, to construct the i-th input set.

Function selectAndInterpolate is then used to extract the subset of data points in D̂it that

138

Figure 5.5: MSSP example for solving a 1-D problem.

lie within the selected input range. If the number of points in this region is insufficient, linear

interpolation is applied to resample the data and produce exactly n points. The multiple

generated sets allow us to construct the collection D, which is processed by the model g

to generate nB outputs. This procedure is repeated ncand times to obtain a diverse set of

candidate skeletons. After generating ncand sets of skeletons, the coefficients of each candidate

are fitted to the observed data Dit using the GA-based optimizer fitCoefficients, which

minimizes the MSE between the fitted expression and the target values. The final output is

the fitted expression f̃ with the lowest error.

5.5 Experimental Results

This section presents experimental results organized into four main parts. First, we

evaluate the performance of the proposed DualAQD method in generating high-quality

prediction intervals. Second, we introduce the synthetic problems used for adaptive sampling,

which serve as the basis for the experiments in the following sections. Third, we assess

139

Algorithm 5.4 MSSP applied to 1-D problems

Input: Dataset during the i-th iteration Dit = (X
(it)
obs ,y

(it)
obs); input domain grid Xtest and its

estimated response ŷ
(it)
test; Multi-Set Transformer g; number of input sets NS ; number of

skeleton candidates ncand; beam size nB

Output: Estimated expression f̃(x)

1: function generate1DExpr(X
(it)
obs ,y

(it)
obs ,Xtest, ŷ

(it)
test, g,Ns, n, ncand, nB)

2: genSks← []

3: for each i ∈ (1, ncand) do

4: D← []

5: for each i ∈ (1, ncand) do

6: range← getRandomRange(Xtest)

7: X(s),y(s) ← selectAndInterpolate(Xtest, ŷ
(it)
test, range, n)

8: D.append
(
(X(s),y(s))

)
9: genSks.append(g(D,Θ;nB))

10: genSks← removeDuplicates(genSks)

11: MSEvals, genExps← zeros(|genSks|), zeros(|genSks|)
12: for each k ∈ (1, ncand) do

13: MSEvals[k], genExps[k]← fitCoefficients
(
êk(x),

(
X

(it)
obs ,y

(it)
obs

))
▷ Minimize MSE

14: f̃(x)← getTopExpr(genExps,MSEvals)

15: return f̃(x)

the effectiveness of our ASPINN method in adaptive sampling scenarios aimed at reducing

epistemic uncertainty. Finally, we analyze how applying ASPINN and reducing uncertainty

in the collected datasets influence the quality of the symbolic expressions learned by SeTGAP.

5.5.1 Prediction-Interval Learning

We present experiments organized into two parts. The first involves a synthetic dataset

designed with high fluctuations and extreme uncertainty, enabling analytical computation of

ideal PIs for direct comparison with those produced by the evaluated PI-generation methods.

The second part includes experiments on eight open-access benchmark datasets.

5.5.1.1 Experiments with Synthetic Data To illustrate the behavior of DualAQD and

compare it against alternative PI-generation methods, we designed a challenging synthetic

140

dataset with heteroscedastic noise. Specifically, consider a system with response y = f(x) +

εa, where the underlying function is f(x) = 5 cos(x) + 10, and εa denotes a heteroscedastic

aleatoric noise term defined as εa = (2 cos(1.2x) + 2) v with v ∼ N (0, 1). Using these

parameters, a dataset of 1000 points was generated.

Knowing the probability distribution of the noise at each position x allows us to

calculate the ideal 95% PIs (α = 0.05), [yu, yℓ], as follows:

yu(x) = y(x) + 1.96 εa, and yℓ(x) = y(x)− 1.96 εa,

where 1.96 is the approximate value of the 95% confidence interval of the normal distribution.

With this, a new metric, PIδ, was defined by summing the absolute differences between the

estimated bounds and the ideal 95% bounds for all the samples within a set X:

PIδ =
1

|X|
∑
x∈X

(
|yu(x)− ŷu(x)|+|yℓ(x)− ŷℓ(x)|

)
. (5.9)

We compared the performance of DualAQD using batch sorting and without using batch

sorting (denoted as “DualAQD noBS” in Table 5.1). All networks were trained using a fixed

mini-batch size of 16 and the Adadelta optimizer. Table 5.1 gives the average performance

for the metrics calculated on the validation sets, MSEval, MPIWval, PICPval, and PIδval,

and corresponding standard deviations. The DualAQD PI generation methodology was

also compared to three other NN-based methods: QD+ [160], QD-Ens [142], and a PI

generation method based on MC-Dropout alone [202] (denoted MC-Dropout-PI). For the

sake of consistency and fairness, the same configuration was used for all the networks trained

in these experiments (i.e., network architecture, optimizer, and batch size). For the case

of QD+, QD-Ens, and MC-Dropout-PI, it was found that batch sorting either helped to

improve their performance or there was no significant change. Thus, for the sake of fairness

141

Table 5.1: PI metrics evaluated on the synthetic dataset using 5× 2 cross-validation.

Method MSEval MPIWval PICPval(%) PIδval

DualAQD 5.27 ± 0.27 7.30 ± 0.29 95.5 ± 0.48 1.52 ± 0.13

DualAQD noBS 5.27 ± 0.27 9.16 ± 0.35 96.3 ± 0.77 3.08 ± 0.19

QD+ 5.28 ± 0.29 8.56 ± 0.14 95.5 ± 0.31 3.12 ± 0.24

QD-Ens 5.31 ± 0.26 10.17 ± 0.79 94.0 ± 1.57 4.88 ± 0.17

MC-Dropout-PI 5.22 ± 0.30 9.31 ± 0.27 93.3 ± 0.63 5.04 ± 0.08

and consistency, batch sorting was used for all compared methods. In addition, we tested

Dropout rates between 0.1 and 0.5. The obtained results did not indicate a statistically

significant difference; thus, we used a Dropout rate of 0.1 for all networks and datasets.

Note that the only difference between the network architecture used by the four methods

is that QD+ requires three outputs, QD-Ens requires two (i.e., the lower and upper bounds),

and MC-Dropout-PI requires one. For DualAQD and MC-Dropout-PI, we used F = 100

forward passes with active dropout layers. For QD+ and QD-Ens, we used an ensemble of

five networks and a grid search to choose the hyperparameter values. Fig. 5.6 shows the PIs

generated by the four methods from the first validation set together with the ideal 95% PIs.

5.5.1.2 Benchmarking Experiments We experimented with eight open-access datasets

from the UC Irvine Machine Learning Repository [43]:

• Boston: Predicts housing prices based on features such as crime rate, number of

rooms, and property tax in Boston suburbs.

• Concrete: Estimates the compressive strength of concrete from ingredients like

cement, water, and aggregate.

• Energy: Predicts the heating load requirements of buildings using architectural and

environmental features.

142

Figure 5.6: Performance of the PI generation methods on the synthetic dataset.

• Kin8nm: A synthetic dataset modeling the dynamics of an 8-link robot arm, with

highly non-linear input-output relationships.

• Power: Predicts the electrical energy output of a combined-cycle power plant from

ambient temperature, humidity, and pressure.

• Protein: Estimates the distance between amino acid residues in protein structures

using physicochemical properties.

• Yacht: Predicts the hydrodynamic resistance (drag) of sailing yachts based on hull

geometry and velocity.

• Year: Predicts the release year of songs from features extracted from raw music data.

For each dataset, we used a feed-forward neural network whose architecture was the

same as that described in Section 5.5.1.1. We used 10-fold cross-validation to train and

evaluate all networks. Table 5.2 gives the average performance for the metrics calculated

on the validation sets, MSEval, MPIWval, and PICPval, and corresponding standard

143

deviations. We applied z-score normalization to each feature in the training set while the

exact same scaling was applied to the features in the validation and test sets. Likewise,

min-max normalization was applied to the response variable; however, Table 5.2 shows the

results after re-scaling to the original scale. Similar to Section 5.5.1.1, all networks were

trained using a fixed mini-batch size of 16, except for the Protein and Year datasets that

used a mini-batch size of 512 due to their large size.

The bold entries in Table 5.2 indicate the method that achieved the lowest average

MPIWval value and that its difference with respect to the values obtained by the other

methods is statistically significant according to a paired t-test performed at the 0.05

significance level. The results obtained by DualAQD were significantly narrower than the

compared methods while having similar MSEval and PICPval of at least 95%. Furthermore,

Fig. 5.7 depicts the distribution of the scores achieved by all the compared methods on all

the datasets, where the line through the center of each box indicates the median F1 score,

the edges of the boxes are the 25th and 75th percentiles, whiskers extend to the maximum

and minimum points (not counting outliers), and outlier points are those past the end of

the whiskers (i.e., those points greater than 1.5 × IQR plus the third quartile or less than

1.5× IQR minus the first quartile, where IQR is the inter-quartile range).

Note that even though QD-Ens uses only one hyperparameter (see Section 5.2.6), it

is more sensitive to small changes. For example, a hyperparameter value of δ = 0.021

yielded poor PIs with PICPval < 40% while a value of δ = 0.02105 yielded too wide PIs

with PICPval < 100%. For this reason, the hyperparameter δ of the QD-Ens approach

was chosen manually while the scale factor η of DualAQD was chosen using a grid search

with values {0.001, 0.005, 0.01, 0.05, 0.1}. Fig. 5.8 shows the difference between the learning

curves obtained during one iteration of the cross-validation for the Power dataset using two

different η values (i.e., η = 0.01 and η = 0.1). The dashed lines indicate the training epoch

at which the optimal weights θg were selected according to the dominance criteria explained

144

Figure 5.7: Box plots of the MPIWval and MSEval scores of DualAQD, QD+, QD-Ens, and
MC-Dropout-PI PI generation methods on the tested datasets: (a) Synthetic. (b) Boston.
(c) Concrete. (d) Energy. (e) Kin8nm. (f) Power. (g) Protein. (h) Yacht. (i) Year.

145

Table 5.2: PI metrics evaluated on the benchmark datasets using 10-fold cross-validation.

MC-
Dataset Metric DualAQD QD+ QD-Ens

Dropout-PI

MPIWval 9.99±2.26 12.14±2.05 16.13±0.67 12.52±2.28

Boston MSEval 8.91±3.90 11.91±5.24 15.29±5.07 8.94±3.87

PICPval(%) 95.0±1.6 95.6±1.9 97.2±1.3 96.0±0.9

MPIWval 15.72±1.42 18.57±2.06 25.42±1.30 20.52±1.74

Concrete MSEval 22.45±4.79 26.65±8.02 29.30±5.25 22.71±4.96

PICPval(%) 95.2±0.5 95.2±1.3 97.9±1.6 95.7±1.2

MPIWval 1.41±0.12 2.94±0.05 10.99±1.47 3.81±0.21

Energy MSEval 0.25±0.05 0.31±0.08 0.35±0.25 0.26±0.05

PICPval(%) 96.5±0.6 99.0±1.0 100.0±0.0 99.5±0.6

MPIWval 0.280±0.01 0.311±0.01 0.502±0.01 0.336±0.01

Kin8nm MSEval 0.005±0.00 0.007±0.00 0.009±0.00 0.005±0.00

PICPval(%) 95.1±0.1 96.6±0.4 98.5±0.3 97.5±0.4

MPIWval 14.60±0.35 15.31±0.44 27.57±1.54 16.08±0.63

Power MSEval 15.23±1.34 16.43±1.34 17.14±1.11 15.26±1.31

PICPval(%) 95.2±0.1 95.7±0.3 99.6±0.2 96.4±0.5

MPIWval 13.02±0.26 13.05±0.14 15.79±0.24 15.95±0.20

Protein MSEval 14.79±0.40 17.51±0.59 18.35±0.87 15.05±0.42

PICPval(%) 95.0±0.1 95.4±0.4 95.1±0.5 94.8±0.1

MPIWval 1.56±0.42 4.10±0.17 10.99±1.47 4.74±1.20

Yacht MSEval 0.51±0.53 0.72±0.70 0.35±0.25 0.53±0.54

PICPval(%) 97.1±0.9 98.4±2.2 100.0±0.0 100.0±0.0

MPIWval 29.68±0.29 32.68±0.25 37.03±0.13 34.25±0.16

Year MSEval 73.26±0.76 104.8±8.1 78.12±0.87 73.13±0.69

PICPval(%) 95.1±0.1 95.4±0.9 37.03±0.1 93.82±0.0

in Section 5.2.4. On the other hand, the hyperparameters λ1 and λ2 of QD+ were chosen

using a random search since it requires significantly higher training and execution time.

146

Figure 5.8: MPIW and PICP learning curves obtained for the Power dataset using
DualAQD. (a) η = 0.01. (b) η = 0.1.

5.5.2 Syntehtic Datasets for Adaptive Sampling

We considered three synthetic 1-D problems for all AS problems considered in this

section: cos [128], hetero [38], and cosqr. All three problems are affected by heteroscedastic

noise, and their function equations are shown in Table 5.3. Unlike most AL and AS

approaches, we do not initiate the experiments from empty datasets. For each case, we

generated incomplete datasets as initial states, as shown in Fig. 5.9. The motivation for

this is to produce areas with low data density, which entails high epistemic uncertainty.

Thus, methods that estimate potential epistemic uncertainty more accurately and select

sampling locations designed to reduce such uncertainty should require fewer AS iterations to

approximate the ground-truth distribution of the problem. Below, we report the admissible

search space for each problem:

• cos: X =
{
−5 + 10(i−1)

99
, | i = 1, 2, . . . , 100

}
• hetero: X =

{
−4.5 + 9(i−1)

299
, | i = 1, 2, . . . , 300

}
• cosqr: X =

{
−10 + 20(i−1)

499
, | i = 1, 2, . . . , 500

}

147

Figure 5.9: Initial cos, hetero, and cosqr datasets and the ideal 95% PIs calculated from
εa(x) across the domain.

Table 5.3: Functions and noise terms of the 1-D problems.

Name Function f(x) Noise εa(x)

cos 10 + 5 cos(x+ 2) N (0, 2 + 2 cos(1.2x))

hetero 7 sin(x) N (0, 3 cos(x/2))

2 21 xcosqr 10 + 5 cos(x) N (0, (1−))5 2 100

For the case of the cos problem, we generate the initial set of observations X
(it=0)
obs by

uniformly sampling 200 elements from the discrete set X . The initial datasets corresponding

to the hetero problem are generated as recommended by Depeweg et al. [38]. In particular,

a mixture of three Gaussian is created with means µ1 = −4, µ2 = 0, and µ3 = 4 and

corresponding variances σ1 = 2
5
, σ2 = 0.9, and σ1 = 2

5
. Each Gaussian component is equally

weighted. We considered an initial dataset size of |X(it=0)
obs |= 200.

For the cosqr problem, the initial dataset is generated by first sampling 2,000 elements

from the discrete set X uniformly and then applying a series of masks to select specific ranges

of values. The process is as follows:

• Points in the intervals [−10,−8), [−5,−2), [3, 6), and [7, 10] are directly included.

• Additional points are selected from the intervals [−8,−5), [−2, 3), and [6, 7) with

specific sizes of 1, 10, and 3 elements, respectively.

148

Figure 5.10: cosqr problem. (a) An initial generated dataset and the ideal 95% PIs
calculated from εa(x) across the domain. (b) Initial PIs estimated using DualAQD.

By doing so, we aim to generate a complex dataset with different areas with low data

density, as depicted in Fig 5.10. Note that the low-density regions correspond to distinct

behaviors in both the function f(x) and the noise εa(x). This approach ensures that the

AS process remains focused on capturing meaningful variations in the data, rather than

merely estimating data density for selecting future sample locations. For example, the

intervals [−8,−5) and [6, 7) each contain only a single observed point. However, the former

covers an entire oscillation of the function, whereas the latter spans a much smaller range.

Consequently, when using a PI-generation neural network to analyze the unobserved areas,

there is a greater discrepancy between the estimated and ideal PIs in the first case. All PI-

generation NNs are trained using the DualAQD loss function (Section 5.2.1). Furthermore,

the initial dataset size for problem cosqr varies according to the selected initialization seed.

Specifically, the obtained sizes |X(it=0)
obs | for the ten AS iterations are: 1,102, 1,106, 1,123,

1,078, 1,114, 1,163, 1,084, 1,159, 1,079, and 1,104, respectively.

5.5.3 Adaptive Sampling

We compared ASPINN to three methods adapted for AS: Normalizing flows ensembles

(NF-Ensemble) [12], a standard GPR [58], and MC-Dropout [54]. For our experiments, we

considered three synthetic 1-D regression problems. We used synthetic problems given that,

149

in AS, we are required to sample at locations with high uncertainty that could not have

been observed previously. By utilizing problems with known underlying target and noise

functions, which are unknown to the AS methods, we can simulate and evaluate accurately

the performance improvements resulting from the decisions made by each method in previous

iterations. In addition to the results presented in this section, ASPINN was also applied to a

real-world multidimensional regression task, which will be discussed in detail in Chapter 6.

For ASPINN, we trained feed-forward NNs with varying depths: two hidden layers with

100 units for problems cos and hetero; and three hidden layers with 500, 100, and 50 units,

respectively, for cosqr. The networks f̂it and f̂PI, it share the same architecture except for

the last layer, as f̂it uses one output, while f̂PI, it uses two outputs. Furthermore, ASPINN

uses two hyperparameters: the neighbor distance threshold θ and the kernel length r. We

performed a grid search with the values θ = [0.1, 0.15, 0.2, 0.25] and r = [0.1, 0.15, 0.2, 0.25],

and selected θ = 0.25 and r = 0.15 for all experiments. DualAQD, the PI-generation method

used by ASPINN, uses a hyperparameter η as a scale factor to adapt the coefficient that

balances the two objectives of the DualAQD loss function (see Section 5.2.3). We chose a

scale factor η = 0.1. Using other η values (i.e., {0.001, 0.005, 0.01, 0.05, 0.1}), we achieved

similar results but with slower convergence rates.

For MC-Dropout, we used the same architecture as the target-estimation NN in

ASPINN. For NF-Ensemble, we used flows with 200 hidden units for problems cos and

hetero and 300 hidden units for problem cosqr. We employed ensembles consisting of five

models trained during 30,000 epochs. For the standard GPR, we used the same RBF kernel

used by ASPINN. We utilized an inference implementation based on black-box matrix-matrix

multiplication [58] that uses 3000 training epochs.

Our objective is to reduce the epistemic uncertainty with as few AS iterations as

possible. These experiments consider a fixed batch size B = 5. Based on Eq. 5.9, we

define the performance metric PI
(it)
δ to quantify epistemic uncertainty relative to the ground

150

truth at the it-th iteration:

PI
(it)
δ =

1

|X |
∑
x∈X

(
|yu(x)− ŷuit(x)|+|yℓ(x)− ŷℓit(x)|

)
.

Here, yℓ(x) and yu(x) represent the ideal lower and upper PI bounds, respectively, calculated

from the aleatoric noise function: yu(x) = f(x) + 1.96 εa(x) and yℓ(x) = f(x)− 1.96 εa(x).

This metric is applicable to problems with normally distributed aleatoric noise, which is the

case for the problems evaluated in this section. However, none of the tested methods make

assumptions about the noise distribution. Note that if PI
(it)
δ = 0, the estimated PIs match

the ideal intervals, implying that the model’s epistemic uncertainty has been minimized, and

the total uncertainty is purely aleatoric. A non-zero PI
(it)
δ indicates a discrepancy between

the estimated and ideal PIs, suggesting the presence of epistemic uncertainty. The greater

the PI
(it)
δ , the higher the epistemic uncertainty. To ensure fairness, ŷℓit(x) and ŷuit(x) are

generated by an independent NN, f̂PI, it(·), trained on the dataset Dit produced by each

compared method at each iteration. Regardless of the uncertainty estimation model used

by each method, we trained an additional PI-generation NN using the DualAQD loss to

maintain a consistent uncertainty metric across all comparisons.

It is worth mentioning that other works have used different evaluation approaches.

For instance, Berry and Meger [12] employed an approach where they sampled 50 random

locations from the domain. For each location, they generated 1000 samples using the ground-

truth distribution and 1000 samples using the distribution predicted by each method. They

then calculated the Kullback-Leibler divergence between the ground truth and the model-

generated distributions. However, we believe this approach does not provide a consistent

basis for evaluation, as each method employs different mechanisms for estimating uncertainty.

For our experiments, the AS process was executed for each problem for 50 iterations.

Although some methods may converge earlier, evaluating all methods over the same number

151

Figure 5.11: Adaptive sampling process using ASPINN on the cos problem.

of steps provides a standardized basis for assessing their sampling efficiency. This process

is repeated 10 times, initializing the problems with a different seed each time. Figures 5.11,

5.12, and 5.13 illustrate the results obtained by ASPINN for problems cos, hetero, and

cosqr, respectively. The figures show the problems’ initial state along with the augmented

datasets obtained during iterations it = 5, it = 20, and it = 35. They also display

the calculated potential epistemic uncertainty Qit(x) for all values of the input domain.

Figure 5.14 shows the evolution of the mean PI
(it)
δ value and its corresponding standard

deviation, calculated across the values obtained from the 10 repetitions at each it.

In addition, we calculated the area under the uncertainty curve (AUUC) for each

learning curve. For each problem, Table 5.4 gives the average AUUC for the four methods

and corresponding standard deviations. The bold entries indicate the method that achieved

the lowest average AUUC value and that its difference with respect to the values obtained

by the other methods is statistically significant according to a paired t-test performed at the

0.05 significance level. Table 5.5 presents the p-values from the paired t-tests comparing

ASPINN with the other methods. Here, the upward-pointing arrow (↑) indicates that

152

Figure 5.12: Adaptive sampling process using ASPINN on the hetero problem.

Figure 5.13: Adaptive sampling process using ASPINN on the cosqr problem.

ASPINN performed significantly better (i.e., p-value < 0.05).

5.5.4 Symbolic Regression and Adaptive Sampling

To evaluate the effectiveness of symbolic regression within our adaptive sampling

framework, we analyze how the learned symbolic expressions evolve over AS iterations

153

Figure 5.14: Evolution of the mean PI
(it)
δ and its standard deviation for the 1-D problems.

Table 5.4: AUUC comparison for the 1-D problems

Problem MCDropout GP NF-Ensemble ASPINN

cos 112.57±24.20 123.87±26.22 113.39±19.49 97.26±7.87

hetero 113.80±13.38 110.21±13.59 106.44±16.26 85.95±9.11

cosqr 30.39±3.56 23.12±5.55 25.60±2.67 17.13±1.42

Table 5.5: Statistical significance tests between ASPINN and the compared methods.

Compared Method cos hetero cosqr

NF-Ensemble 4.4E-2 (↑) 6.4E-3 (↑) 5.3E-6 (↑)

GP 5.4E-3 (↑) 8.6E-4 (↑) 7.7E-3 (↑)

MC-Dropout 3.8E-2 (↑) 5.7E-4 (↑) 3.1E-6 (↑)

and assess whether they converge toward the underlying data-generating functions. These

experiments aim to determine whether the integration of uncertainty-aware sampling and

symbolic regression can lead to interpretable models that progressively approximate the true

functional form, even in data-scarce regimes.

At each AS iteration, it, we applied SeTGAP to recover a symbolic expression f̃it

that approximates and explains the predictive function of the trained NN f̂it. Specifically,

we applied an adapted version of SeTGAP, as described in Algorithm 5.4. This approach

operates by constructing a collection of subdomain datasets from Dit =
(
X

(it)
obs ,y

(it)
obs

)
, where

each subdomain contains a random portion of the input domain. This allowed us to take full

advantage of SeTGAP’s multi-set skeleton prediction configuration. As such, SeTGAP was

154

tasked with recovering a symbolic skeleton expression that generalizes across the subdomain

variations. Using the identified skeleton, a full mathematical expression was then derived.

To ensure consistency with the Multi-Set Transformer’s training regime (see Sec-

tion 3.4), we used NS = 10 input sets or subdomains per MSSP instance, each containing

n = 3000 points. Across all experiments, the Multi-Set Transformer was configured with a

beam size nB = 3, generating ncand = 5 skeleton candidates per instance. Increasing these

values was found to offer no additional benefit in terms of discovering distinct top-performing

candidates. Each skeleton was subsequently fitted to the observed dataset Dit, and the final

expression was selected based on the lowest mean squared error.

Table 5.6 summarizes the expressions recovered by SeTGAP at AS iterations it ∈

{1, 5, 10, . . . , 50} for each tested problem. At each iteration, the dataset X
(it)
obs is augmented

using ASPINN, following the configuration detailed in Section 5.5.3. For each expression, we

also report the predicted MSE on the entire dataset, computed using the learned expression

f̃it. Highlighted cells indicate that the identified expression matches the functional form

of the underlying function f . These results demonstrate that as more informative samples

are acquired through the adaptive sampling process, the learned symbolic models become

increasingly aligned with the ground truth.

Finally, Figs. 5.15–5.17 compare the predicted curves obtained from the model f̂it with

those generated by the corresponding symbolic expressions f̃it at each iteration. Early

iterations often yield inaccurate or overfitted expressions due to sparse data coverage, but as

AS progresses, the symbolic models stabilize and converge toward compact expressions that

match the true function in both form and performance.

5.6 Discussion

In this section, we analyze the results and performance of DualAQD for prediction-

interval generation (Section 5.5.1), ASPINN for adaptive sampling (Section 5.5.3), and the

155

Table 5.6: Evolution of the identified expressions during the AS process

cos hetero cosqr
it

f̃it MSE f̃it MSE f̃it MSE

1

√
5.153 sin(62.757 1− 0.032x+ 5.994)

1.502
3.940x tanh(0.006x− 6.212)

1.508
0.145x sin(2.643x+ 6.235)+

0.325

+9.933 +10.742 tanh(1.777x− 0.123) 0.564 sin(1.732x+ 10.919)

5 10.001− 5.037 sin(1.002x+ 12.989) 1.585 7.261 sin(0.998x− 6.327)− 0.276 1.358 20.012− 0.983 sin(0.197x + 4.911) 0.222

10

√
8.973 1− 0.971 sin(0.974x+ 6.555)

1.768 7.203 sin(1.0x+ 18.809)− 0.261 1.300
−1.271 sin(1.201x+ 6.256)2−

0.409

+2.123 0.495 sin(3.242x+ 10.966) + 0.655

−0.016x2 sin(2.849x+ 1.598)+

15
5.616 sin(0.508x− 3.803)2+

1.811 7.123 sin(x− 18.942)− 0.025 1.256 0.053x sin(1.122x− 0.075) 0.277

2.295 sin(0.973x+ 10.024) + 7.281
+0.762 sin(1.745x+ 4.757)

20 10.002− 4.987 sin(0.995x− 5.861) 1.866 7.202 sin(0.999x− 18.820)− 0.190 1.232 20.993 sin(0.199x + 1.612) + 0.003 0.220

25 10.004− 5.001 sin(0.996x− 5.860) 1.967 7.149 sin(0.999x− 18.831)− 0.128 1.185 20.994 sin(0.200x + 1.608) + 0.004 0.222

30 10.037− 4.998 sin(0.996x− 6.696) 1.988 7.217 sin(0.999x− 0.033)− 0.218 1.206 20.991 sin(0.199x + 1.623) 0.223

35 9.987 + 5.014 sin(0.999x+ 16.138) 2.061 7.138 sin(1.000x+ 18.835)− 0.093 1.223 2−0.997 sin(0.200x + 17.315) 0.221

40 10.002 + 5.003 sin(0.997x− 15.285) 2.043 7.128 sin(1.000x+ 18.838)− 0.071 1.216 20.986 sin(0.198x + 1.688) + 0.004 0.223

45 10.011 + 5.043 sin(1.000x− 9.003) 2.051 −7.097 sin(1.000x− 3.131)− 0.074 1.237 21.0 sin(0.200x + 1.612) + 0.002 0.228

50 10.055− 5.005 sin(0.999x+ 12.997) 2.055 −7.150 sin(1.000x+ 15.689)− 0.135 1.244 0.990 sin(0.199x2 − 17.217) + 0.004 0.231

integration of SeTGAP and ASPINN (Section 5.5.4), while highlighting their strengths,

limitations, and implications for uncertainty-aware modeling.

5.6.1 Prediction-Interval Learning Results

The LossDualAQD function was designed to minimize the estimation error and produce

narrow PIs simultaneously while using constraints that maximize the coverage probability

inherently. From Tables 5.1 and 5.2, we note that DualAQD consistently produced

significantly narrower PIs than the compared methods, according to the paired t-test

performed at the 0.05 significance level, except for the Protein dataset, where QD+ obtained

comparable PI widths. Simultaneously, we yielded PICPval values of at least 95% and

156

Figure 5.15: Comparison of f̂it(x) vs. f̃it(x) throughout the AS process for problem cos.
(a) it = 1. (b) it = 5. (c) it = 10. (d) it = 15. (e) it = 20. (f) it = 25. (g) it = 30. (h)
it = 35. (i) it = 40. (j) it = 45. (k) it = 50.

157

Figure 5.16: Comparison of f̂it(x) vs. f̃it(x) throughout the AS process for problem hetero.
(a) it = 1. (b) it = 5. (c) it = 10. (d) it = 15. (e) it = 20. (f) it = 25. (g) it = 30. (h)
it = 35. (i) it = 40. (j) it = 45. (k) it = 50.

158

Figure 5.17: Comparison of f̂it(x) vs. f̃it(x) throughout the AS process for problem cosqr.
(a) it = 1. (b) it = 5. (c) it = 10. (d) it = 15. (e) it = 20. (f) it = 25. (g) it = 30. (h)
it = 35. (i) it = 40. (j) it = 45. (k) it = 50.

159

better or comparable MSEval values. In addition, the PIδval values reported in Table 5.1

demonstrate that DualAQD is the method that best adapts to the highly varying uncertainty

levels of our synthetic dataset. Thus, the PI bounds generated by DualAQD were the closest

to the ideal 95% PIs.

Notice that DualAQD obtains lower MSEval values than QD+ consistently despite the

fact that QD+ also includes an objective function that minimizes the error of the target

predictions. The reason is that our method uses a NN (i.e., f(·)) that is specialized in

generating accurate target predictions, and its optimization objective does not compete

with others. Conversely, QD+ uses a loss function that balances four objective functions:

minimizing the PI widths, maximizing PI coverage probability, minimizing the target

prediction errors, and ensuring PI integrity. The NN used by QD-Ens, on the other hand,

only generates the upper and lower bounds of the PIs. The target estimate is then calculated

as the central point between the PI bounds. As a consequence of not using a NN specialized

in minimizing the target prediction error, QD-Ens achieved the worst MSEval values of the

compared methods, except for the Year dataset.

One of the advantages of using DualAQD over QD+ and QD-Ens is that we achieved

better PIs while requiring less computational complexity. That is, our method requires

training only two NNs and uses MC-Dropout to account for the model uncertainty while

QD+ and QD-Ens require training ensembles of five NNs. In addition, QD+ requires extra

complexity given that it uses a split normal aggregation method that involves an additional

fitting process for each data point during testing. Note that using deep ensembles of M

models is expected to perform better or similar to MC-Dropout when using M forward

passes [97]. In other words, using an ensemble of five NNs, as QD and QD+ do, is

expected to perform better than using five forward passes through the NN using MC-

Dropout. Nevertheless, during inference, we are able to perform not only five but 100 passes

through the NN without significantly adding computational cost. Our method becomes

160

more practical in the sense that, even when it uses the rough estimates of model uncertainty

provided by MC-Dropout, it is still able to generate significantly higher-quality PIs.

In Fig. 5.8, we see the effect of using different scale factors η to update the balancing

coefficient λ of LossDualAQD. DualAQD produced wide PIs at the beginning of the training

process in order to ensure PI integrity; as a consequence, the PICPtrain and PICPval values

improved drastically. Once the generated PIs were wide enough to cover most of the samples

in the training set (i.e., PICPtrain ≈ 1), DualAQD focused on reducing the PI widths until

PICPtrain reached the nominal probability coverage α. The rate at which PICP andMPIW

were reduced was determined by the scale factor η.

Furthermore, Fig. 5.8a (η = 0.01) and Fig. 5.8b (η = 0.1) show that both models

converged to a similar MPIWval value (∼ 15) despite having improved at different rates. It

is worth noting that we did not find a statistical difference between the results produced by

the different η values that were tested on all the datasets (i.e., η ∈ [0.001, 0.1]), except for the

case of Kin8nm. When various η values were considered equally as good for a given dataset,

we selected the η value that yielded the lowest average MPIWval, which was η = 0.01

for Boston, Concrete, and Yacht, η = 0.005 for Kin8nm, and η = 0.05 for the rest of the

datasets. This is significant because it shows that the sensitivity of our method to the scale

factor η is low, unlike the hyperparameters required by QD-Ens (Section 5.5.1.2). What is

more, our method requires a single hyperparameter, η, while QD-Ens requires two: λ and a

softening factor used to enforce differentiability of its loss function; and QD+ requires four:

λ1, λ2, and λ3, and the same softening factor used by QD-Ens. DualAQD does not need an

additional softening factor given that its operations are differentiable.

5.6.2 Adaptive Sampling Results

When evaluating ASPINN on the tested 1-D problems, as shown in Fig. 5.14, we

observed that it produced learning curves with faster convergence rates and lower standard

161

deviation than the other methods. Although the confidence bands exhibit some overlap,

this is attributed to outliers with high PI
(it)
δ values generated by other methods (e.g., GP),

which increase the variance. Nevertheless, the learning curves for ASPINN consistently

remain below those of the other methods across all iterations and have narrower confidence

bands. Thus, the difference in AUUC values is shown to be statistically significant according

to the t-test, as shown in Table 5.4. Also from Fig. 5.14, we notice that ASPINN generated

constantly decreasing and smoother learning curves. Conversely, other methods, such as MC-

Dropout, tend to oversample certain regions of the input domain, which results in overfitting

in those regions while causing a poor fit in others, producing unstable learning curves.

One limitation of our approach is that it does not handle multi-modal aleatoric noise

inherently. Multi-modal noise indicates that the data variability comes from different

underlying sources, each contributing to a different mode in the noise distribution. In such

cases, it would be necessary to use a PI-generation method capable of producing multiple

upper and lower bounds based on the identified number of modes. In the presence of multiple

PIs, we would need to adapt the epistemic uncertainty metric accordingly and execute the

remaining steps similarly. Another limitation, which also applies to the compared methods,

is the computational cost when dealing with high-dimensional problems due to the need to

evaluate all potential locations in the input space.

5.6.3 Symbolic Regression and Adaptive Sampling Results

We evaluated the performance of SeTGAP adapted for solving 1-D problems under

conditions of epistemic uncertainty. The results presented in Table 5.6 demonstrate that the

estimated mathematical expressions began consistently matching the true functional form

of the target function by iteration it = 20 across all tested cases. Notably, although the

correct symbolic structure was occasionally identified at earlier stages (e.g., at it = 5), these

early discoveries tended to be unstable, as subsequent iterations often produced alternative

162

expressions. This instability highlights the inherent challenge of model identification when

domain coverage is limited or when predictive uncertainty remains high.

In the early iterations of the AS process, the observed data are sparse and unevenly

distributed across the input domain. For instance, Fig.5.17.b illustrates the prediction

generated by the model f̂it at it = 5, where limited observations in the central region of

the domain result in a relatively smooth estimated response by the model f̂it. In such cases,

SeTGAP can recover occasionally a correct or near-correct functional form because the

prediction lacks fine-grained variations that would otherwise complicate the model discovery

task. However, as sampling proceeds and additional points are collected in previously

underrepresented regions, local variations in the curve predicted by f̂it begin to emerge,

as shown in Fig.5.17.c for it = 10. These local fluctuations can mislead the SR process,

causing the symbolic models to temporarily favor more complex or distorted expressions

that attempt to capture these finer structures.

This evolution highlights a key strength of integrating SeTGAP into the adaptive

sampling framework. As the AS process strategically targets regions of high epistemic

uncertainty, the overall domain coverage improves, progressively eliminating major gaps

and inconsistencies in the input space. Consequently, SeTGAP gains access to increasingly

informative and representative subsets of the domain, allowing it to generate symbolic models

that are not only more accurate but also more stable over time. The convergence toward

simpler, correct symbolic expressions in later iterations reflects the systematic reduction of

epistemic uncertainty and the stabilization of the learned system behavior.

Importantly, this convergence is achieved despite the persistent presence of aleatoric

uncertainty in the observations, highlighting the robustness of the approach. However, it is

important to note that this was facilitated in these experiments by the specific characteristics

of the aleatoric noise εa used during data generation, as summarized in Table 5.3. Although

εa was heteroscedastic, meaning its variance depended on the input x, its mean was zero

163

across the domain. Under these conditions, a sufficiently trained neural network model

f̂it approximates the conditional expectation E[y|x], which coincides with the underlying

function f(x). As a result, the model captures the mean behavior of the system, enabling

SeTGAP to recover the correct functional form. In contrast, if the observational noise were

biased (i.e., nonzero mean) or introduced systematic distortions, f̂it would converge to a

shifted version of f(x), potentially preventing symbolic recovery of the true structure.

In certain cases, SeTGAP uncovered the correct underlying functional form even

when the prediction model f̂it exhibited notable inaccuracies. Continuing the analysis of

Fig. 5.17.b, we observe that the prediction produced by f̂it=5 deviates significantly from the

expected behavior in the region x ∈ [−7,−5], primarily due to sparse data coverage in that

interval. Despite this local error, SeTGAP was able to identify the correct symbolic skeleton

and, after fitting it to the available observations, produced a response closely resembling

the true function. This robustness arises from SeTGAP’s multi-set strategy, which involves

randomly sampling diverse subregions across the domain under the assumption that they

share a common functional form. In this example, the majority of sampled subregions

exhibited a strong sin(x2) behavior, allowing the symbolic regression process to prioritize

consistent patterns over localized uncertainties and diminishing the impact of poorly sampled

regions during skeleton discovery.

5.7 Summary

This chapter addresses the critical challenge of uncertainty quantification and reduction

in predictive modeling, with a focus on improving reliability in scenarios where data collection

is costly or limited. Reliable prediction under uncertainty is essential for informed decision-

making in high-stakes domains where model outputs influence critical actions and outcomes.

The chapter introduces two complementary strategies: learning high-quality prediction

intervals to represent total uncertainty, and adaptive sampling methods designed to reduce

164

epistemic uncertainty by strategically choosing new data points to sample. Furthermore,

it explores the integration of symbolic regression within the proposed adaptive sampling

framework, enabling the discovery of interpretable mathematical expressions that become

increasingly accurate and stable as uncertainty is reduced. These methods are motivated by

the need for predictive models that not only perform well on average but also transparently

express confidence levels across the input space.

To this end, the chapter presents DualAQD, a loss function for training companion

neural networks that produce accurate target estimates and high-quality PIs. DualAQD

improves over existing approaches by balancing two key objectives, minimizing interval

width and maintaining target coverage probability, through a self-adaptive coefficient that

reduces the need for hyperparameter tuning. Furthermore, the chapter presents ASPINN, an

adaptive sampling framework that uses PI-based metrics to estimate and minimize epistemic

uncertainty iteratively. Experiments demonstrate that DualAQD consistently yields tighter

and more reliable PIs compared to state-of-the-art baselines. ASPINN, in turn, accelerates

learning and avoids overfitting by maintaining balanced data acquisition across the domain.

To assess the interpretability and informativeness of the resulting models, we integrated

symbolic regression into the adaptive loop using a modified version of our SeTGAP method.

This integration allowed us to monitor the evolution of symbolic interpretations during

the AS process. While early expressions were unstable due to localized uncertainty or

sparse data, the method reliably converged to the correct symbolic skeletons as epistemic

uncertainty decreased. By unifying uncertainty quantification, adaptive sampling, and

symbolic regression, our approach facilitates both efficient data acquisition and scientific

insight, making it broadly applicable to domains where accurate, interpretable modeling

must be achieved with limited experimental effort.

165

CHAPTER SIX

REAL-WORLD APPLICATION — PRECISION AGRICULTURE

In recent years, the field of agriculture has been undergoing a significant transformation,

driven by the convergence of cutting-edge technologies [74, 141, 180, 184] and a growing

need for more sustainable and efficient farming practices [69, 114]. Precision agriculture

(PA), a data-driven approach to farming, has emerged as a pivotal solution to address the

challenges faced by the agricultural industry. At the heart of PA lies the ability to analyze and

leverage data to optimize almost every aspect of farming, optimizing the use of the available

farming resources (e.g., water, nutrients, and pesticides), minimizing environmental impact,

and maximizing profit [31, 115, 164].

In order to accomplish these objectives, models are created that establish relationships

between input covariate factors, which are gathered from a range of sensors and advanced

agricultural machinery, and outcome variables, such as crop yield [129]. Subsequently, these

models are used to predict and analyze how outcome variables change across different rates

of spatially variable input factors. Thus, the purpose of these models is to provide valuable

insights for making informed and optimal decisions in agricultural management [144, 145,

146]. A critical aspect in the development of these models and simulations is On-Farm

Precision Experimentation (OFPE), a framework that yields site-specific data about how

fields respond to various management practices [33, 69].

Within the realm of PA, one approach has been relatively underutilized despite its

potential to aid the objectives of the field: Symbolic Regression. At its core, SR seeks

to discover mathematical equations that encapsulate the underlying dynamics of a given

system. These equations, which aim to be concise and interpretable tools, not only offer

the means to make accurate predictions and informed decisions but also provide important

166

insights into the system. In the context of PA, one of the most important challenges is to

model the response of crops to certain input covariate factors precisely. Among these, the

nitrogen fertilizer rate (N-rate) and seeding rate receive particular attention due to their

crucial role in crop management and the optimization of resource utilization [19, 114].

SR, with its potential to be used as a scientific discovery tool, offers a promising solution

to this problem. This chapter explores the application of SR methods to PA, explicitly

focusing on modeling and interpreting site-specific N-response curves, with the expectation

that the developed methods can also generalize to other inputs, such as seed rate. Specifically,

the main objective consists of the discovery of accurate, data-driven mathematical equations

that encapsulate N-response dynamics of a constructed fertilizer management zone (MZ).

By taking advantage of the power of advanced machine learning techniques and the low-cost

data available to the farmers (e.g., open-source satellite imagery and data gathered from

farmers’ equipment), we aim to equip farmers with valuable tools for informed decision-

making, resource optimization, and sustainable farming practices.

Furthermore, despite the growing sophistication of modeling techniques in PA, un-

certainty remains a critical factor. In practice, limited data availability, high variability

in field conditions, noisy sensor data, and the complexity of biological processes introduce

significant uncertainty into yield predictions and response models. As a result, quantifying

and managing this uncertainty becomes essential to ensure the reliability of model outputs

and the decisions derived from them. Uncertainty quantification enables practitioners to

identify low-confidence regions within a field, anticipate risk, and allocate resources more

strategically. This is particularly important in site-specific management, where decisions

such as fertilizer application rates must be tailored to local conditions with high confidence.

To address this need, this chapter also demonstrates how the uncertainty management

techniques introduced in Chapter 5 can be applied within the context of precision agriculture.

Thus, we generate prediction interval maps for crop yield using DualAQD, allowing farmers to

167

visualize spatial patterns of prediction uncertainty and make decisions accordingly. Second,

we apply ASPINN, our adaptive sampling method, to a simulated field site from a given

MZ to demonstrate how targeted data acquisition can reduce epistemic uncertainty in crop

modeling. These contributions aim to enhance the interpretability and trustworthiness of

data-driven tools in PA, offering new avenues for reliable, site-specific decision-making.

6.1 Background

In this section, we briefly outline key agricultural concepts relevant to our work, and

the techniques used for yield prediction and management zone analysis, which are essential

for enabling the application of SR methods in the experiments conducted in this chapter.

6.1.1 On-Field Precision Experimentation

The PA application discussed in this chapter was developed within the context of an

On-Field Precision Experimentation project. The OFPE methodology [69] is a flexible,

data-driven framework that supports sustainable and profitable agricultural management

by combining precision agriculture tools with adaptive, field-scale experimentation. It

enables the implementation of on-farm trials that capture spatial and temporal variability

in crop responses to varying input rates, such as fertilizer and seed rates. Unlike traditional

approaches, OFPE explicitly quantifies uncertainty in management outcomes and presents

it as probabilities of achieving improvements over farmers’ existing practices.

OFPE operates through a repeatable, model-based process that leverages both open-

source data and information collected directly from farmers’ operations. Its primary goals are

to generate field-specific crop response models, develop input recommendations that account

for local variability, and offer farmers probabilistic assessments of different management

strategies. The framework ultimately supports adaptive management by continuously

refining recommendations based on updated observations, thereby aligning agricultural

168

Figure 6.1: Steps of the OFPE framework.

decision-making with the evolving dynamics of each field.

The steps of the OFPE framework are outlined below and further explained in the

following sections. As illustrated in Fig. 6.1, these steps form an iterative process.

• Field Experimentation Setup:

– Data Infrastructure: Establish a database for managing field-specific data.

– On-Farm Experimentation: Design experiments to study the interaction between

crops, environment, and agronomic inputs.

• Data Collection: Apply experiments using PA equipment and gather data from both

field sensors and open-source repositories.

• Data Aggregation: Combine on-farm and remote sensing data on a grid to produce

analysis-ready datasets.

• Ecological Modeling: Train statistical and machine learning models to estimate crop

responses based on environmental and input variables.

• Results:

– Simulation: Simulate outcomes under various weather and economic scenarios.

169

– Optimization: Identify site-specific optimal input rates based on predefined goals.

• Decision Making and Iteration: Deploy selected strategies while continuing experimen-

tation to refine future recommendations.

Data Infrastructure: The OFPE methodology begins with the development of a

centralized data management system to store and organize the spatiotemporal data collected

through precision agriculture tools and open-source repositories. A secure spatial database

was used to integrate farm-specific information (e.g., field boundaries, yield, protein

levels, and input data) with external sources such as vegetation indices, weather, and

soil characteristics. This system provides the digital infrastructure needed to support the

analysis, modeling, and simulation of crop responses under varying conditions.

Experimentation: Field-specific experiments are designed to test different agronomic

input rates, such as nitrogen fertilization or seeding density, across entire fields in

representative patterns. The design is flexible to accommodate both research goals and

equipment constraints. These on-field experiments are essential for generating the data

required to model spatially varying crop responses [19]. Over time, the methodology aims

to reduce the experimental footprint while maintaining statistical rigor. Farmers review and

adjust the experimental designs before implementation to ensure agronomic relevance.

Data Collection: Once field experiments are implemented using variable rate application

technology, actual input application data are retrieved from farm equipment and added to

the database. Crop response data, such as yield or protein content, are collected at harvest

using combine-mounted monitors.

Data Aggregation: All collected data must be aligned and harmonized into georeferenced

datasets. This process involves resolving inconsistencies in spatial resolution across datasets

170

to reduce uncertainty during analysis. For the development of OFPE, a standard 10-meter

resolution was adopted, though this can be adjusted depending on equipment and field

characteristics.

Data Analaysis: At the core of OFPE is the development of ecological models that

quantify the relationship between crop responses, agronomic inputs, and environmental

covariates. Due to the spatial and temporal variability in crop responses, no single model

type suffices for all fields or years. Hence, models are selected on a per-field, per-year

basis to address the bias–variance tradeoff and capture heteroscedastic behavior. The

methodology avoids assuming fixed functional forms to reduce uncertainty and improve

predictive performance. Since various types of prediction models can be considered, the

model selection process aims to identify the best-performing model for each specific context.

Optimization: Since only one rate can be applied at a given location during an

experiment, the optimal agronomic input rate must be inferred from the model rather than

observed directly. Optimization goals are defined based on the user’s priorities, which may

be single-objective (e.g., maximizing protein for export markets) or multi-objective (e.g.,

balancing profit and environmental sustainability) [145]. The most common single-objective

scenario involves maximizing net return by finding the rate at which added input cost

no longer yields proportional profit. For sustainability-focused applications, optimization

incorporates environmental costs, such as nitrogen losses through leaching or denitrification,

and seeks to balance economic return with input minimization [146]. The result is a Pareto

set of solutions that trade off between competing objectives.

Simulation: Due to the inherent uncertainty in weather and soil conditions, simulation

is used to assess the robustness of management recommendations across possible future

scenarios. Since optimal input rates may vary significantly across different weather years

171

or price regimes, simulating outcomes under varying conditions provides a more reliable

decision-support framework. This allows users to evaluate how a given strategy performs

not only under average conditions but also under best- and worst-case scenarios, ultimately

supporting more resilient on-farm decision making.

Decision Making and Iteration: In the final stage, farmers review the probabilistic

outcomes generated by simulations and decide on an implementation strategy. They can

fully deploy the selected management strategy, repeat full experimentation, or combine the

two by deploying optimized rates while conducting additional low-density experiments. This

mixed approach is encouraged, as ongoing experimentation enhances the statistical power of

field-specific models and allows for refinement over time.

6.1.2 Crop Yield Prediction

PA has benefited recently from the confluence of the growing availability of sensors that

can accurately and continuously collect information about fields [74, 184], the boom of ma-

chine learning, and the development of accessible and fast computational resources [141, 180].

In this context, crop yield prediction is one of the most beneficial areas of PA. It provides

farmers with tools to make informed decisions, such as designing marketing plans [72] or

determining the nitrogen fertilizer rates (N) needed to maximize farmer net return [19, 114].

The crop yield prediction task can be automated by using machine learning-based

approaches. They generate computational models that attempt to approximate the field’s

behavior based on the observed relationships between multi-source covariate factors and crop

yield, as noted in the simulation step of the OFPE framework (Section 6.1.1). Regardless of

the data selected as explanatory variables, machine learning-based approaches pose the yield

prediction problem as a regression task. As such, regression models are trained to estimate

the crop yield response in terms of production, for example, bushels per acre (bu/ac), as

accurately as possible. By doing so, the output model is treated as an implicit function of

172

the input variables whose functional form is learned based on observed data. Previous works

have proposed the use of regression models that process the information of each field site

and (possibly) from its surroundings to estimate its corresponding yield value. Here, a field

site is a small georeferenced region (e.g., a field site may represent an area of 10× 10 m).

Yield values of neighboring regions are mutually dependent. Thus, it is natural to

consider a crop yield prediction model that analyzes spatial neighborhoods of field sites [147].

What is more, it is feasible to consider a prediction model whose outputs correspond to the

predicted yield values of all the sites within these neighborhoods, not only to the center of

the neighborhood. Given that we are considering the use of models with two-dimensional

(2D) inputs and 2D outputs, we refer to this problem as a two-dimensional regression.

Here, we discuss a yield prediction method we introduced in [129], which employs a

Convolutional Neural Network (CNN) called Hyper3DNetReg. Hyper3DNetReg processes

input data in the form of a multi-channel data cube, representing a small neighborhood

of points in the field, where each channel corresponds to a different feature (e.g., nitrogen

rate applied). Given a two-dimensional input with multiple channels, the network produces

a two-dimensional raster output, with each pixel representing a predicted yield value for

its corresponding input location. This approach is field-specific, meaning the models are

trained on data from a given field and used to predict future yield maps for the same crop

in that field using data from different years than those used for training. The motivation

behind Hyper3DNetReg was that its two-dimensional output structure would enhance yield

prediction accuracy compared to methods that generate single-output predictions, with

accuracy assessed based on the ability to reproduce yield values from combine yield monitors.

6.1.2.1 Dataset For the experiments in [129], data were collected from four winter wheat

dryland fields across two farms in Montana, each with distinct climates and soils. However,

for the sake of brevity, this chapter focuses on two fields from different farms, referred to as

173

Field “A” and “B.” Yield maps were acquired during the harvest season, which corresponded

to the month of August for all years of the study. Site-specific yield values were measured

in bushels per acre (bu/ac) by a yield monitor mounted on a combine harvester. Every

three seconds while traveling through the field, the yield monitor measured the volume rate

of harvested material and integrated this flow rate to generate an estimate of the total

amount of harvested material during that interval. The generated yield data values were

then georeferenced using an onboard GPS. Finally, grid-like yield maps with equally spaced

points were aggregated at a scale of 10 m. Considering that multiple points could be found

within a 10× 10m cell, we used the median to represent the yield value of that cell.

While the yield value represents the response variable in our regression problem, the

explanatory variables correspond to a combination of remotely sensed data and on-ground

data. Among the remotely sensed data, we considered SAR satellite images acquired by

Sentinel-1. Sentinel-1 images contain two bands acquired using Vertical Transmit-Vertical

Receive Polarization (VV) and Vertical Transmit-Horizontal Receive Polarization (VH).

These images were obtained at the Ground Range Detected (GRD) level, which includes four

pre-processing steps: speckle noise reduction, thermal noise removal, radiometric calibration,

and ortho-rectification [50]. The resulting images have a spatial resolution of 10 m.

Besides the Sentinel-1 images, the collected dataset consists of a set of six raster features:

nitrogen rate applied (lbs/ac), annual precipitation (mm), slope (degrees), elevation (m),

topographic position index (TPI), and terrain aspect (radians). The nitrogen rate applied

is gathered from the farmer’s application equipment and aggregated to the 10 m scale in

the same manner as to yield responses, while precipitation is gathered at a 1 km scale from

NASA’s Daymet V3 dataset and georeferenced to pixels via the intersection of 10 m points

within the ∼ 1 km pixels. The amount of precipitation is measured during the current water

year; that is, from November 1st to March 30th. Topographic variables are gathered at

a 10 m scale from the USGS Digital Elevation Model. Thus, our resulting input can be

174

viewed as an image data cube with eight channels in total, where each pixel has a resolution

of 10×10 m (i.e., the same resolution as our yield maps). It is of particular importance to

note that the nitrogen fertilizer was top-dress applied in March and the Sentinel-1 images

were selected from the same month. Thus, we used data acquired in March to predict crop

combine yield monitor values in August of the same year. Data were collected across three

growing seasons (2016, 2018, and 2020).

In summary, the list of explanatory variables is as follows:

1. xNr: Nitrogen rate (lb/ac).

2. xS: Topographic slope (degrees).

3. xE: Topographic elevation (m).

4. xTPI : Topographic position index.

5. xA: Topographic aspect (radians).

6. xP : Precipitation from the prior year (mm).

7. xV V and xV H : Backscattering coefficients derived from Sentinel-I images.

Given that each field is represented with one large raster image, we must divide it into

small 2D patches that our CNN regression model will process. To do this, we extract square

patches using a 5× 5 pixel window with a maximum overlap of 19 pixels (75% of the pixels

of the window) so that we collect a sufficient number of training samples. Accordingly, the

number of patches extracted from Field A in 2016, 2018, and 2020 was 484, 497, and 617,

respectively, while Field B yielded 408, 316, and 317 patches for the same years.

6.1.2.2 Yield Prediction Model Let X and Y denote the input and target output of our

prediction model, respectively. X is an image data cube of W ×W pixels with n channels,

where each channel corresponds to a different covariate. According to the dataset description

given in Section 6.1.2.1, we set W = 5 and n = 8 for the datasets used in this work. Output

Y is a two-dimensional image of WY ×WY pixels (WY ≤ W) that corresponds to the ground-

175

Figure 6.2: Yield prediction model using different output window sizes: (a) 5× 5, (b) 3× 3,
and (c) 1× 1 [129].

truth yield observed during the harvest season. Here, the value of the (i, j)–th pixel of Y is

the observed yield, corresponding to the (i+ W−WY

2
, j + W−WY

2
)–th pixel of X.

Our regression models are trained to capture the association between the target Y and

the input X using a CNN architecture called Hyper3DNetReg. Let the function computed

by Hyper3DNetReg and its corresponding weights be denoted by f̂(·) and θ, respectively.

Thus, the predicted yield Ŷ given input X is calculated as Ŷ = f̂(X). We implemented

models using three output window sizes (i.e., WY = 5, 3, 1), as depicted in Fig. 6.2, to

evaluate the impact of WY on the effectiveness of Hyper3DNetReg. The output windows

shown in Fig. 6.2.b and Fig. 6.2.c represent the predicted yield of the area enclosed by the

dotted squares within the input images.

176

6.1.2.3 Hyper3DNetReg Architecture Hyper3DNetReg is a 3D—2D CNN architecture;

that is, it incorporates three-dimensional and two-dimensional convolutional layers. It

is based on our previously proposed network, Hyper3DNet [121], which was designed

for hyperspectral classification and processes hyperspectral data cubes as input. Thus,

Hyper3DNetReg adapts the Hyper3DNet architecture for 2D regression. Notably, two-

dimensional inputs with multiple channels can be interpreted as data cubes (Fig. 6.2), as is

the case with hyperspectral images. This allows us to leverage the 3D convolutional filters of

Hyper3DNet to capture both spatial information from input neighborhoods and interactions

between input covariates.

Table 6.1 shows the architecture of the Hyper3DNetReg network. Note that the general

input shape of the network is (5, 5, n, 1), which indicates that the input consists of a single

data cube with a width and height of five pixels, and n input channels (i.e., the number of

covariates). The Hyper3DNetReg network can be divided into two main modules: 3D feature

extractor and 2D encoder. The former consists of four densely connected blocks [73] with

3D convolutional layers that are interconnected using skip connections to ensure maximum

information flow throughout the network. The skip connections allow concatenating the

outputs (using “CONCAT” layers) of the two preceding layers along the fourth dimension.

Each convolutional layer is followed by a rectified linear unit activation layer, denoted as

“ReLU” (where ReLU(x) = max(0, x)), and a batch normalization layer, denoted as “BN”.

The second module of the network, the 2D encoder, consists of five 2D separable

convolution layers [168] (denoted as “SepConv2D”). These layers perform 2D convolution

operations while minimizing the number of trainable parameters [29]. Since the 3D feature

extractor outputs a tensor with three spatial dimensions, it must be reshaped into a 3D

tensor suitable for processing by the SepConv2D layers. To mitigate overfitting, we include

dropout units between layers in the 2D encoder. During training, these units randomly set

elements of the preceding tensor to zero with a probability of 0.5 [170]. The final layer

177

Table 6.1: Hyper3DNetReg architecture.

Layer Name Kernel Size Padding Size Output Size

Input — — (5, 5, n, 1)

Conv3D + ReLU + BN (3, 3, 3) (1, 1, 1) (5, 5, n, 32)

Conv3D + ReLU + BN (3, 3, 3) (1, 1, 1) (5, 5, n, 32)

CONCAT — — (5, 5, n, 64)

Conv3D + ReLU + BN (3, 3, 3) (1, 1, 1) (5, 5, n, 32)

CONCAT — — (5, 5, n, 96)

Conv3D + ReLU + BN (3, 3, 3) (1, 1, 1) (5, 5, n, 32)

CONCAT — — (5, 5, n, 128)

Reshape — — (5, 5, 128 · n)
Dropout (0.5) — — (5, 5, 128 · n)

SepConv2D + ReLU + BN (3, 3) (1, 1) (5, 5, 512)

SepConv2D + ReLU + BN (3, 3) (1, 1) (5, 5, 320)

Dropout (0.5) — — (5, 5, 320)

SepConv2D + ReLU + BN (3, 3) (1, 1) (5, 5, 256)

Dropout (0.5) — — (5, 5, 256)

SepConv2D + ReLU + BN (3, 3) (1, 1) (5, 5, 128)

SepConv2D + ReLU + BN (3, 3) (1, 1) (5, 5, 32)

if WY = 5 or WY = 3:

Conv2D + ReLU (3, 3)

(1, 1),

(0, 0),

if WY = 5

elif WY = 3

(WY , WY , 1)

elif WY = 1:

Conv2D + ReLU (3, 3) (0, 0) (3, 3, 1)

Reshape — — (9, 1)

FC — — WY

depends on the output type: if the output is a 2D patch (WY = 3 or 5), a 2D convolutional

layer reduces the number of channels to one and adjusts the output window size if needed;

otherwise, if the output is a single predicted value (WY = 1), a fully connected layer produces

the final prediction. Fig. 6.3 illustrates the network architecture for a 2D output.

For example, Fig. 6.4.b shows a predicted yield map for Field A in 2020, generated using

a Hyper3DNetReg model trained on data from 2016 and 2018. This map was produced by

applying a sliding window of 5 × 5 pixels (W = 5) across the entire field to estimate yield

178

Figure 6.3: Hyper3DNetReg architecture with a 5×5×8×1 input and a 5×5×1 output [129].

values at each cell. We set the output window size to WY = 5, constructing the final

yield map by averaging the overlapping regions of neighboring predicted patches. Fig. 6.4.a

presents the observed yield map after harvest, which serves as a reference for computing

the square error map and structural similarity map against the predicted yield map, shown

in Fig. 6.4.c and d, respectively. The error map was computed as the squared difference

between the predicted and observed maps, from which we derive the root mean squared

error (RMSE). The structural similarity map was obtained by calculating the structural

similarity index metric (SSIM)[186] across all field locations. The SSIM index, a local metric

for comparing the similarity between two small windows, ranges from −1, indicating perfect

anti-correlation, to 1, indicating identical windows. In this example, we computed the SSIM

179

Figure 6.4: Yield prediction example of Field A for the year 2020. (a) Ground-truth yield
map. (b) Predicted yield map using our Hyper3DNetReg with WY = 5. (c) Square error
map. (d) Structural similarity map [129].

index using an 11-pixel window, with the average index value reported at the top of Fig. 6.4.c.

In [129], we conducted an extensive comparison across multiple prediction methods,

additional winter wheat fields, and other Hyper3DNetReg configurations using WY = 1 and

3. Our results showed that Hyper3DNetReg with WY = 5 consistently achieves lower RMSE

values and higher SSIM scores. As shown in Fig. 6.4, the predicted yield map exhibits low

error values across the field. The structural similarity map confirms that regions of high and

low predicted yield align well with actual high- and low-yield areas in the observed data.

6.1.3 Fertilizer Management Zones Clustering

In PA, management zones (MZs) are distinct sub-regions in a field with similar yield-

influencing factors [83]. Different MZs account for the variability of factors within the field

(e.g., soil composition) and, thus, vary in their requirements for specific treatments. These

zones are areas with relative homogeneity where specific crop management practices are

implemented, aiming to optimize crop productivity and reduce the environmental impact

by reducing the overall fertilizer applied [36, 48]. Identifying MZs helps to constrain and

180

homogenize the optimal treatment recommendations obtained during the optimization step

of the OFPE framework discussed in Section 6.1.1.

Several methods have been proposed for the delineation of MZs. Some of them

rely on historical yield data solely [2, 78] while others use information extracted from

remote sensing data exclusively [55, 62]. Alternatively, certain approaches employ a

combination of covariate factors, encompassing various soil properties, environmental factors,

and topographic information [3, 112, 155, 166]. Most of these methods are based on

unsupervised learning techniques; specifically, clustering methods such as k-means [77] and

fuzzy c-means [3, 53, 155, 166], and principal component analysis (PCA) [112, 155, 166].

In addition, MZ delineation methods based on supervised learning, such as random forests

(RFs) and support vector machines (SVMs) [55, 112] have emerged recently.

All previous works produce management zones using factors that are directly or

indirectly related to crop productivity; that is, factors influencing the estimated total crop

yield and the economic returns derived from it. In this context, we published in [124]

the first work, to the best of our knowledge, that explicitly considers fertilizer responsivity

as the main driver for defining MZs. Here, fertilizer responsivity refers to how the field

reacts to different fertilizer rates, characterized by the shape of the response curve that

describes yield variations as a function of applied nutrients. One of the key objectives of

using MZs is to equip farmers with the necessary tools to make informed decisions about

crop management, such as determining the appropriate amount of fertilizer required in each

zone. As a consequence, our efforts should be directed toward establishing management

zones where all included sites display comparable responsivity to varying fertilizer rates [78].

Note that this approach can be applied with any type of input responsivity that may be

affected by multiple covariate inputs.

Fertilizer responsivity can be characterized using nitrogen fertilizer-yield response (N-

response) curves. These curves exhibit the estimated crop yield values corresponding to a

181

specific field site in response to all admissible fertilizer rates [123, 130]. For example, the

rate values typically range between 0 and 150 pounds per acre (lbs/acre) for winter wheat.

The shape of the N-response curve indicates the site’s responsiveness to fertilizer, with a flat

curve suggesting low responsivity and a steep curve suggesting high responsivity. Thus, in

this section, we discuss the MZ clustering method we proposed in [124], which accounts for

within-field variability of fertilizer responsivity based on approximated N-response curves.

To do this, we derive non-parametric response curves from observed data. Most

response curves are generated based on parametric assumptions using methods such as

linear regression or quadratic plateau regression; however, our experience suggests that N-

response is much more complex than these models can capture. Our approach is based

on a neural network (our Hyper3DNetReg model) acting as a regression model to map the

covariate factors to crop yield, as suggested in [129]. Then, the network is used to generate

approximated N-response curves across a range of admissible fertilizer rates [123]. The

distinction in shape between two N-response curves is quantified by measuring the distance

between the corresponding transformed curves in a reduced space, calculated using functional

principal component analysis (fPCA) [153]. Hence, determining MZs relies on leveraging the

shape dissimilarity of N-response curves as the key distance metric in cluster analysis.

It is worth pointing out that none of the existing methods for determining MZs

attempted to provide explanations regarding the behavior of their results. This presents

a significant limitation, particularly within the context of the growing area of explainable

artificial intelligence. An approach to determining MZs that is inherently interpretable

should enable farmers to discern cause-and-effect relationships between their inputs and

outputs, enabling a more transparent decision-making process. Therefore, we used a post-

hoc interpretability method to facilitate understanding the impact of various covariates on

determining the MZ assignment for a given site. Specifically, we employed a counterfactual

explanation (CFE) method, adapted from previous work [123], that solves a multi-objective

182

optimization problem (MOO) using genetic algorithms. However, in this section, we focus

exclusively on the clustering method for defining management zones, as the counterfactual

explanation approach is not directly relevant to the application discussed in this chapter.

6.1.3.1 N-response Curve Generation N-response curves are one of the main tools used

by agronomists to estimate the economic optimum nitrogen rate (EONR); that is, the N

rate beyond which there is no actual profit for the farmers [20]. Over-application of N

fertilizer can result in environmental pollution and waste of resources [146], while under-

application can lead to reduced yields and economic losses [145]. Achieving the ideal balance

in N application is contingent upon understanding the complex dynamics of N-response

curves, which often exhibit non-linear and context-dependent behaviors. Another significant

input factor affecting crop response is the seeding rate [106], which is used to determine the

economic optimum seeding rate (EOSR). However, in the scope of this research, the fields

from which we extracted data did not employ variable seeding rates. As a consequence, we

face limitations in training accurate prediction models to approximate how different sections

of the field respond to varying seeding rates.

Traditional methods of modeling N-response have frequently relied on simple models

that fail to capture the complexities inherent to real-world agricultural systems. They

often assume the use of plateau-type, quadratic, and exponential functions to model the

relationship between N rate and crop yield [20, 80, 188]. Alternative approaches draw upon

basic agronomic principles, such as Liebig response functions [1], to capture the nitrogen-

yield relationship. It is worth pointing out that it has been shown that the selection of crop

yield data models may yield drastically different EONR estimations [117]; thus, selecting a

model that is faithful to the underlying dynamics of the field is a crucial task.

Conversely, our approach trains a regression CNN model to learn the mapping between

covariate factors and crop yield values from observed data. To address this regression task, we

183

use the Hyper3DNetReg architecture described in Section 6.1.2. Once trained, and assuming

it effectively captures the underlying causal structure of the problem, the model can be used

to generate approximate response curves. In previous work [123], we defined a response curve

as a tool that allows for the responsivity analysis of a sensitive system to a particular “active

feature”. In addition, other stimuli that may influence the relationship between the response

variable and the active feature were referred to as “passive features”. In the context of the

generation of N-response curves, the active feature corresponds to xNr (nitrogen rate), while

the seven remaining variables represent the set of passive features.

An input data cube is represented as X = {X1, . . . , Xn}, with X1 corresponding to the

xNr covariate, and the subsequent dimensions aligning with the remaining covariates based

on the order outlined in Section 6.1.2.1. Let us denote the trained model as f̂(·) so that,

given an input X, its estimated yield patch is denoted as Ŷ = f̂(X). We produce estimated

yield patches for all admissible values of xNr (bounded by xNr
min ≤ xNr ≤ xNr

max) and stack

them as a data cube R̂(X) (Fig. 6.5):

R̂(X) = {f̂(X|xNr = xNr
min), . . . , f̂(X|xNr = xNr

max)}, (6.1)

As such, the (i, j)-th cell of the data cube R̂(X) (where 1 ≤ i, j ≤ 5), denoted as R̂i,j(X),

represents the approximated response curve corresponding to the (i, j)-th cell of input X.

The example in Fig. 6.5 shows the response curve generation process of all pixels within

input X(lat,lon), which represents the 5×5–pixel patch generated around coordinates (lat, lon)

of the field. However, our goal is to generate N-response curves for all sites within the field.

To do so, we move a 5× 5–pixel sliding window throughout the entire field. Note that this

approach results in overlapping predicted yield patches for consecutive points. Therefore,

results obtained from neighboring points of the field must be aggregated.

Fig. 6.6 depicts the aggregation process of N-response curves obtained for a field point

184

Figure 6.5: Generation of a 5× 5 array of N-response curves generated around a field point
at coordinates (lat, lon) [124].

at coordinates (lat, lon). This process involves considering all valid neighboring 5× 5–pixel

patches; i.e., patches whose centers are located within the field and that contain the point at

(lat, lon), highlighted in red. The 9×9 window generated around the field point at (lat, lon)

is denoted as W(lat,lon). For each of the valid patches in W(lat,lon), a 5× 5 array of N-response

curves is generated using Eq. 6.1. Then, the N-response curves corresponding to the field

point at (lat, lon) are averaged, yielding a singular approximated N-response r(W(lat,lon)).

185

Figure 6.6: N-response curves aggregation for a field point at coordinates (lat, lon) [124].

This averaging process alleviates noisy outcomes and produces smoothed curves.

We state that the fertilizer responsivity of a given site is characterized by the shape

of its N-response curve. As such, when comparing the shape of two or more N-response

curves, the focus is not on their absolute estimated yield values. Hence, any vertical shifts

are eliminated to obtain the aligned approximate N-response curve r̃(W(lat,lon)) as follows:

r̃(W(lat,lon)) = r(W(lat,lon))−min(r(W(lat,lon))).

6.1.3.2 Functional Principal Component Analysis We compute the set R comprising

the aligned approximate N-response curves generated for all sites within the field. R

constitutes a set of functional data whose samples are approximated N-response curves.

Thus, fPCA can be applied to R to establish a distance metric conveying the difference in

shape between N-response curves, as suggested in [123].

Functional Principal Component Analysis extends traditional PCA to analyze and

represent variability in functional data [153]. As such, an N-response curve can be expressed

186

as a linear combination of functional principal components (fPCs). Each fPC encapsulates

a unique curve pattern, implying that curves with distinct shapes will be encoded using

different fPC values. In this work, we suggest approximating an N-response curve using

K = 3 fPCs, a choice justified by their ability to explain at least 99.5% of the variance of

Field A. Thus, the proposed distance metric between curves r1 and r2 is:

d(r1, r2) =

√√√√ K∑
k=1

(vk(r1)− vk(r2))
2, (6.2)

where vk(rj) is the value of the k-th principal component obtained after transforming rj.

6.1.3.3 Management Zone Clustering Using fuzzy c-means has become a prevalent

approach in management zone delineation methods [155, 166, 199]. In fuzzy c-means, each

data point is assigned a membership score indicating the extent to which it belongs to a

specific cluster. A cluster centroid is computed as the mean of all data points, weighted by

their respective cluster membership values.

Our approach consists of clustering all field sites based on their fertilizer responsivity

so that each cluster corresponds to a distinct MZ. The process involves generating aligned

approximate N-response curves for all field sites, followed by their transformation into a

reduced 3D space through fPCA. Hence, the difference in fertilizer responsivity between

curves (i.e., the difference in curve shape) is conveyed by their Euclidean distance in the

transformed space. Therefore, the fertilizer responsivity distance (Eq. 6.2) serves as the

distance metric for the fuzzy c-means algorithm.

Some approaches utilize indices such as the silhouette score, fuzziness performance

index, and normalized classification entropy to determine the optimal number of clusters [3,

53]. However, these indices might face challenges in situations where clusters lack clear

separation, as observed in the present context. Recall that all data points for clustering

187

(a) (b)

Figure 6.7: Results obtained for Field A. (a) Delineated management zones and (b) Aligned
approximated N-response curves for each MZ (N-rate xNr vs. relative yield ry) [124].

belong to the same field, leading to gradual changes in soil variability and, as a consequence,

gradual changes in fertilizer responsivity. In addition, in PA, it is a common practice to

specify between three and five MZs [55]. The decision to use up to five MZs is often influenced

by practical considerations, such as the limitations of variable rate application machinery and

the complexity of the field. For instance, using more than five zones may entail intricate zone

boundaries, posing challenges for certain variable rate technologies to distinguish between

closely situated zones. Following this convention, we chose a cluster count through visual

inspection that minimizes the creation of redundant or highly variable MZs.

The MZ clustering method was evaluated on Fields A and B. Field A was divided into

four MZs, whereas Field B was divided into three. This decision is justified by the fact that

Field B is more homogeneous than Field A, thus their corresponding N-response curves show

less variability. Note that an MZ does not need to form a contiguous region; rather, it may

consist of scattered areas across the field that exhibit similar fertilizer responsivity. Fig. 6.7

188

(a) (b)

Figure 6.8: Results obtained for Field B. (a) Delineated management zones and (b) Aligned
approximated N-response curves for each MZ [124].

shows the resulting MZs for Field A and Field B, respectively, along with fifty randomly

selected, aligned approximate N-response curves from each MZ. As illustrated in Fig.6.7.b

and Fig.6.8.b, the MZ delineation method effectively grouped N-response curves into clusters

with consistent curve shapes. The variation in curve profiles across clusters reveals distinct

patterns of fertilizer responsivity. Additionally, the approximate curves exhibit behavior

consistent with agronomic expectations; i.e., sigmoid-like curves that capture an apparent

yield loss after reaching a saturation point [188].

6.2 Prediction Intervals for Crop Yield Prediction

This section presents experiments aimed at producing prediction intervals for crop yield

predictions in real-world agricultural fields. By visualizing not only predicted yield values but

also the associated uncertainty across entire fields, these experiments enable the identification

of areas with high or low predictive confidence. We evaluate and compare several PI-

generation methods, highlighting their performance in capturing uncertainty in spatial crop

189

yield predictions. The resulting PI maps provide an interpretable and informative layer of

decision support, offering farmers insight into where predictions are most or least reliable.

For our experiments, we used data collected from Fields A and B. As previously

described, three crop years of data were collected for each field. The information from

the first two years was used to create the training and validation sets (90% of the data is

used for training and 10% for validation). We use the same four PI-generation methods used

for comparison in Section 5.5.1, namely, DualAQD [128], QD+ [160], QD-Ens [142], and

MC-Dropout-PI [202]. These methods were compared using the results from the test set of

each field, which consists of data from the last observed year and whose ground-truth yield

map is denoted as Y . The test set was used to generate a predicted yield map of the entire

field, Ŷ , and its corresponding lower and upper bounds, ŶL and ŶU , respectively.

Fig. 6.9 shows the ground-truth yield map for Field A (darker colors represent lower

yield values) along with the uncertainty maps obtained by the four compared methods and

their corresponding PICP and MPIW values. Field A is used as a representative field for

presenting our results, since we obtained similar results on the other fields. Here, we define

the uncertainty map U = Ŷ u − Ŷ ℓ as a map that contains the PI width of each point of the

field (darker colors represent lower PI width and thus lower uncertainty). That is, the wider

the PI of a given point, the more uncertain its yield prediction.

We used four metrics to assess the behavior of the four methods (Table 6.2). First, we

calculated the root mean square error (RMSEtest) between the ground-truth yield map Y

and the estimated yield map Ŷ . Then, we considered the mean prediction interval width

(MPIWtest) and prediction interval probability coverage (PICPtest). Note that k-fold or

k × 2 cross-validation cannot be used in this experimental setting. Thus, to help us explain

the advantages of our method over the others, we introduce a new metric that summarizes

the MPIWtest and PICPtest metrics shown in Table 6.2. Let MPIW test represent the mean

PI width after min-max normalization, using as upper bound the maximum MPIWtest value

190

Figure 6.9: Uncertainty maps comparison for Field A.

among the four methods in each field. Let µω denote the weighted geometric mean between

MPIW test and (1 − PICPtest) (i.e., the complement of the PI coverage probability) with

ω ∈ [0, 1] being the relative importance between both terms. Then

µω = (MPIW test)
ω(1− PICPtest)

(1−ω).

According to the HQ principle (Section 5.2) that aims to obtain narrow PIs and high

probability coverage, low µω values are preferable when comparing the performance of

different PI-generation methods. Fig. 6.10 shows the comparison of the µω metric obtained

for each method on the three tested fields for different ω values. In order to summarize the

behavior shown in Fig. 6.10 into a single metric, we calculated the integral µ =
∫ 1

0
µω dω.

Since we seek to obtain low µω values for various ω, low µ values are preferable. Bold entries

in Table 6.2 indicate the method with the lowest µ.

We see in Table 6.2 that DualAQD yielded better PICPtest values than the other

methods for Field A, while, for Field B, QD-Ens had the highest PICPtest value, albeit

at the expense of generating excessively wide PIs. What is more, Fig. 6.10 shows that

191

Figure 6.10: µω vs. ω comparison on the yield prediction datasets.

Table 6.2: PI metrics evaluated on the yield prediction datasets.
Field Method RMSEtest MPIWtest PICPtest (%) µ

DualAQD 15.44 53.75 92.8 .350

QD+ 17.73 54.27 89.5 .397
A

QD-Ens 15.55 53.99 92.3 .359

MC-Dropout-PI 15.27 51.68 91.8 .355

DualAQD 11.16 43.45 94.9 .221

QD+ 11.83 50.17 93.7 .261
B

QD-Ens 12.95 73.09 95.6 .306

MC-Dropout-PI 10.83 47.18 94.4 .241

DualAQD obtained lower µω values; as a consequence, it achieved the lowest µ value in each

field (Table 6.2), which implies that it offers a better width-coverage trade-off in comparison

to the other methods. Notice that Table 6.2 shows PICPtest values lower than 95% for

Field A. During training and validation, the coverage probability did reach the nominal

value of 95%. Since the distribution of the test set (2020) differs from the one seen during

training (2016 and 2018), the PICPtest values may not be equal to those obtained during

training. This illustrates the ability to show increased uncertainty when insufficient data

is available for making reliable predictions, thus further motivating our adaptive sampling

method (Section 5.1.2).

Fig. 6.9 shows that DualAQD was able to produce better distributed PIs for Field A

(i.e., with a wider range of values) while achieving slightly better PICPtest and MPIWtest

192

values than QD-Ens. This means that DualAQD is more dynamic in the sense that it outputs

narrower PIs when it considers there is more certainty and wider PIs when there is more

uncertainty. As a consequence, 54.4%, 44.3%, and 40.3% of the points processed by DualAQD

on Field A have a smaller PI width than QD+, QD, and MC-Dropout, respectively, while

still being able to cover the observed target values. Similarly, 88.7%, 65.3%, and 49.9% of

the points processed by DualAQD on Field B have a smaller PI width than QD+, QD, and

MC-Dropout while still covering the observed target values.

Finally, Fig. 6.9 shows that DualAQD indicates higher uncertainty in the lower region of

the field, which received an N rate value that was not used in previous years (i.e., it was not

available for training). Similarly, regions of high yield values are related to high nitrogen rate

values; however, considerably fewer training samples of this type exist, which would logically

lead to greater uncertainty. Thus, there is more uncertainty when predicting regions that

received high nitrogen rate values, and this is represented effectively by the uncertainty

map generated by DualAQD but not the compared methods. It is worth mentioning that

even though DualAQD showed some degree of robustness empirically when given previously

unseen samples, neural network-based PI generation methods do not offer any guarantee for

the model’s behavior for out-of-distribution samples.

6.3 Parametric N-response Curve Learning

In prior work [130], we proposed a counterfactual method that aims to identify the

features with the highest impact on N responsivity at a local and global scale by solving an

MOO problem using a GA-based approach. An impact on responsivity is related to a change

in which a given location (local scale) or the entire field (global scale) reacts to different N

rates. Based on this approach, we presented in [124], a post-hoc interpretability method that

generates CFEs that reveal the influence of covariate factors on MZ assignments.

Although these are considered explainable methods since they allow us to understand

193

the relevance of the input features, they do not provide a thorough understanding of the

mathematical behavior of the field’s N responsivity at various locations. What is more,

to the best of our knowledge, no previous work has studied the problem of learning the

mathematical expressions that describe site-specific N-response curves from data without

pre-specifying the functional form of these expressions.

Let y(lat,lon) represent the observed yield at a field site with coordinates (lat, lon).

Furthermore, let X(lat,lon) represent a set of multiple covariate factors that describe the state

of the field at position (lat, lon), and potentially its neighboring areas. The underlying

yield function of the field is denoted as f(·) and y(lat,lon) = f(X(lat,lon)). In practice,

f is a complex multivariate system with unknown functional form. Nevertheless, tasks

like N-rate optimization, which allows for profit maximization and environmental impact

maximization [69], do not require estimating the full functional form of f(X(lat,lon)). Instead,

N-rate optimization only analyzes the functional relationship between the N-rate variable and

the predicted yield values. This relationship is typically represented using N fertilizer-yield

response curves, also known as N-response curves, as explained in Section 6.1.3.1.

The experiments in this section aim to estimate the functional form of N-response

curves for one winter wheat dryland field, Field A. Traditionally, N-response curves are

modeled using a single parametric function for the entire field [20, 81]. However, previous

studies suggest that the functional form of these curves varies across different field regions

due to factors such as terrain slope and soil composition [123, 124]. In particular, our prior

research [124] provided evidence, some of which is revisited in Section 6.1.3, that fields

can be divided into MZs based on fertilizer responsivity, where the shape of the estimated

N-response curves differentiates field sites for clustering.

Building on the results from Section 6.1.3, which clusters Field A into four MZs, we

assume that all sites within a given MZ share the same functional form due to the shape

similarity of the curves within each cluster (Fig. 6.7). An N-response curve consists of input–

194

response pairs, where the nitrogen rate xNr serves as the input and relative yield ry as the

response. Consequently, estimating the functional form of N-response curves for an MZ can

be formulated as a multi-set symbolic skeleton problem (MSSP).

Given the pre-computed N-response curves for all field sites, R (Section 6.1.3.2), we

describe the procedure for generating skeleton expressions that capture the mathematical

behavior of the N-response curves associated with the z-th management zone (MZ), denoted

by Rz. This procedure is outlined in Algorithm 6.1 and builds upon the skeleton generation

method introduced in Algorithm 4.1. In Line 4, the function selectRandomCurves(Rz, Ns)

is used to randomly select Ns N-response curves, forming the collection D̃Rz . These selected

curves are then input to the Multi-Set Transformer g to generate nB skeletons via a diverse

beam search strategy. The curves are standardized using z-score normalization, and the

N rates are rescaled to the range [−10, 10] to match the input format required by the

Multi-Set Transformer. This process is repeated ncand times, each time with a newly

sampled D̃Rz composed of curves from different sites within the MZ, thereby enhancing input

diversity and promoting the discovery of more generalizable skeletons. Then, any duplicate

or mathematically equivalent skeletons are removed. The resulting list of skeletons is denoted

by genSksz = ê1(x
Nr), . . . , ê|genSksz |(x

Nr), where |genSksz|≤ ncandnB. These skeletons are

selected based on their ability to maximize the Pearson correlation with a randomly selected

test collection D̃
(test)
Rz

using the GA-based optimization function fitCoefficients.

For our experiments, we set nB = 3 and ncand = 5, as higher values did not yield more

distinct skeletons across all tested problems. Table 6.3 shows the skeletons derived by the

MST for each MZ. Furthermore, we evaluated the suitability of the obtained skeletons for

each MZ and compared them to two traditional N-response models: quadratic-plateau [20]

and exponential [81]. For each method, field site, and MZ, we fit the skeleton’s coefficient

values to minimize the distance to the corresponding N-response curve. To do this, we use

the GA-based optimization function r̂
(z)
j = fitCoefficientsMSE(ê(xNr), r̃

(z)
j) modified to

195

Algorithm 6.1 N-response Curve Skeleton Generation

Input: Aligned N-response curves of the z-th MZ, Rz; number of input sets NS ; Multi-Set

Transformer g; number of skeleton candidates ncand; beam size nB

Output: Generated list of candidate skeletons for the z-th MZ genSksz; corresponding correlation

values corrValsz

1: function generateNrespSks(Rz, Ns, g, ncand, nB)

2: genSksz ← []

3: for each i ∈ (1, ncand) do

4: D̃Rz ← selectRandomCurves(Rz, Ns)

5: genSksz.append(g(D̃Rz ,Θ;nB))

6: genSksz ← removeDuplicates(genSksz) ▷ genSksz = {ê1(xNr), . . . , ê|genSksz |(x
Nr)}

7: D̃
(test)
Rz

← selectRandomCurves(Rz, Ns)

8: corrValsz ← zeros(|genSksz|)
9: for each k ∈ (1, ncand) do

10: corrValsz[k]← fitCoefficients(êk(x
Nr), D̃

(test)
Rz

)

11: genSksz ← sortSkeletons(genSksz, corrValsz)

12: if |genSksz|> ncand then

13: genSksz, corrValsz ← genSksz[1 : ncand], corrValsz[1 : ncand]

14: return genSksz, corrValsz

return the fitted function r̂
(z)
j that minimizes the MSE error with respect to the j-th aligned

curve in R, r̃
(z)
j . We report the mean error r̄ obtained considering all sites within each MZ:

r̄ =
1

|Rz|
∑

r̃
(z)
j ∈Rz

∣∣∣r̂(z)j − r̃
(z)
j

∣∣∣ .
Unlike traditional approaches that assume a single form for the entire field, modeling

each MZ with a distinct functional form is agronomically justified, as different regions often

exhibit varying soil types and terrain characteristics. This hypothesis is supported by the

results in Table 6.3, which show that using tailored skeletons leads to lower fitting errors,

indicating their greater suitability for modeling the field’s N-response curves.

Fig. 6.11 shows two fitted curves for each of the four MZs in Field A, derived from the

skeleton expressions identified by our symbolic regression approach. Additionally, Fig. 6.12

196

Table 6.3: Comparison of skeleton prediction results for Field A

Method MZ Functional Form r̄ Method MZ Functional Form r̄

Quadratic-plateau Nrc1 + c2 (min(x , c3) + c3)
2 0.0695 Quadratic-plateau Nrc1 + c2 (min(x , c3) + c3)

2 0.1028

Exponential 1 c1(1− exp(c2 + c3 x
Nr)) + c4 0.2303 Exponential 3 c1(1− exp(c2 + c3 x

Nr)) + c4 0.1965

SeTGAP c1 + c2 tanh(c3 + c4 x
Nr)) 0.0620 SeTGAP Nrc1 + c2 x + c3 cos(c4 + c5 x

Nr) 0.0683

Quadratic-plateau Nrc1 + c2 (min(x , c3) + c3)
2 0.0725 Quadratic-plateau Nrc1 + c2 (min(x , c3) + c3)

2 0.0615

Exponential 2 c1(1− exp(c2 + c3 x
Nr)) + c4 0.1825 Exponential 4 c1(1− exp(c2 + c3 x

Nr)) + c4 0.2249

SeTGAP c1 + c2 tanh(c3 + c4 x
Nr) 0.0355 SeTGAP c1 + c2 exp(c3 sin(c4 + c5 x

Nr)) 0.0448

Figure 6.11: Example of fitted N-response curves using the identified skeleton for each MZ.

compares these fitted curves against the corresponding aligned N-response curves. The close

agreement in shape between the reference and fitted curves confirms that the identified

functional forms were appropriate for all cases. It is worth noting that although Fig. 6.7b

reveals distinct fertilizer response patterns between the N-response curves of MZ 1 and MZ

2, both can be described by the same skeleton expression: c1 + c2 tanh(c3 + c4,x
Nr).

197

Figure 6.12: Comparison between NN-generated N-response curves r̃ and fitted curves r̂
from (a) MZ 1, (b) MZ 2, (c) MZ 3, and (d) MZ 4. Equation r̂ at the bottom of each plot.

198

6.4 Adaptive Sampling with Simulated Field Data

Motivated by the fertilizer management zones analysis discussed in Section 6.1.3, this

section introduces a multi-dimensional problem that simulates an agricultural field site. Note

that actual real-world data cannot be considered for a comparative AS study. There are

multiple reasons for this. First, a given field site receives a single experimental rate during

the fertilization stage and its effects are observed during the harvest season (e.g., five months

for winter wheat). Second, additional samples at the same site require collecting data over

multiple years. Third, when comparing different AS methods, each may recommend distinct

experimental rates, which cannot be implemented simultaneously within a single growing

season. Fourth, real-world conditions, such as unforeseen environmental factors and concept

drift, introduce additional complexity that prevents the isolation of the effects attributable

to the AS strategies. Therefore, simulations based on the characteristics of a real field offer

a controlled environment in which different AS methods can be evaluated under identical

conditions, enabling fair and consistent comparisons.

6.4.1 Simulated Field Data for Adaptive Sampling

In Section 6.1.3, the functional forms of N-response curves for different MZs within an

actual winter wheat field were derived as symbolic skeleton expressions using the SeTGAP

methodology introduced in Chapter 4. As previously defined, a symbolic skeleton expression

is a representation of a mathematical expression that does not specify numerical values.

The experiments presented in this section simulate a field site whose behavior is modeled

based on the symbolic skeleton extracted from MZ 2 of Field A (Table 6.3). For instance,

the relationship between yield, y, and N rate, xNr, at a given site is given by the skeleton

y = c1 + c2 tanh(c3 + c4 x
Nr), (6.3)

199

where c1–c4 are placeholder constants. Based on this skeleton, we consider the yield function:

y = f(x) =
xP

15
+

(
xA

π
+ 1

)
tanh

(
0.1xNr

3xV H + 2

)
+ εa(x), (6.4)

where x = [xP ,xA,xV H ,xNr] comprises the following site-specific covariates: annual

precipitation (mm), terrain aspect (radians), Sentinel-1 backscattering coefficient from

the Vertical Transmit-Horizontal Receive Polarization band, and applied N rate (lbs/ac),

respectively. The aleatoric noise is modeled as εa(x) = N (0, (xP + xNr)/150).

Let us justify the selection of these underlying and noise functions. From comparing

Equations 6.3 and 6.4, it is observed that the constant placeholders were assigned the

following values: c1 = xP

15
, c2 = (x

A

π
+ 1), c3 = 0, and c4 = (0.1

3xV H+2
). Below, we analyze

each of these expressions. It is important to clarify that our goal is not to derive precise

functional expressions for the coefficients c1–c4 in order to model the underlying function

of the field accurately. Rather, our aim is to design a yield function that exhibits behavior

consistent with agronomic principles, informed by past observations of an actual field.

In previous work [123], we utilized counterfactual explanations to analyze the influence

of a set of “passive features” over the shape of the response curves generated for the

response variable and a selected “active feature.” In the context of this work, we are

interested in the analysis of N-response curves, which allow for the analysis of the site-

specific responsivity to all admissible values of the N fertilizer rate, which serves as the

selected “active feature.” Nevertheless, the shape of the N-response curves may be influenced

not only by the relationship between the response variable and the active feature but also

by other factors, termed “passive features.” In this case, we consider the variables xP , xA,

and xV H as passive features that may affect a field site’s responsivity.

In [123], we studied an early-yield prediction dataset of winter wheat. The findings

indicate that, although precipitation xP is a critical factor for crop production, it has minimal

200

impact on N responsivity. This suggests that xP is independent of the other features and

only shifts the N-response curves vertically without altering their shape. In Eq. 6.3, c1 acts as

an independent term responsible for vertical shifts, which is why it is modeled as a function

of xP . In addition, variables xA and xV H were identified as having a significant impact on

the shape of N-response curves, making them key factors in this study.

Furthermore, c2 stretches the N-response curves vertically. We argue this behavior

corresponds to that of the terrain aspect xA (i.e., the slope orientation). In terrain with

varying elevations located in the Northern Hemisphere, regions that are facing north and

east have limited sunlight during the day and are more prone to snow retention. These are

factors that may affect the responsiveness of the fertilizer. For instance, we observed that

regions facing north (xA = 0) correspond to flatter N-response curves than those facing south

(xA = π). Our simulated field site is being modeled as a field site that is located within

a sub-region of an actual field whose xA values vary between π/4 and π/2. Within this

sub-region, we found that considering c2 = (x
A

π
+ 1) adjusts reasonably well to the variation

in vertical stretching of the estimated N-reponse curves.

Coefficient c3 causes horizontal shifts, which are not observed in the estimated N-

response curves obtained for the studied area. Hence, for the sake of simplicity, we select c3

to be equal to 0. Finally, c4 controls the horizontal stretching of the curve. A lower c4 value

causes the output of the function to increase more gradually as x increases. Conversely, a

higher value of c4 leads to a steeper increase, causing the function to reach its saturation point

more rapidly. Dry soil has a lower capacity to retain and absorb nutrients and, thus, reaches

the saturation point more quickly than moist soil when applying N fertilizer. Therefore, we

model c4 as an inverse function of xV H : c4 = (0.1
3xV H+2

).

On the other hand, the heteroscedastic aleatoric noise is modeled as εa(x) = N (0, (xP +

xNr)/1500). This formulation reflects the observation that both precipitation (xP) and

nitrogen fertilizer rate (xNr) contribute to variability in agricultural yield. Increased

201

precipitation can introduce uncertainty through effects such as runoff and fluctuating

soil moisture, which influence nutrient availability and plant health. Similarly, nitrogen

application does not always yield consistent improvements; excessive levels may lead to

diminishing returns, nutrient imbalances, or plant stress. These nonlinear and site-specific

responses introduce additional uncertainty, particularly at higher fertilizer rates.

Although the yield regression problem includes four explanatory variables, only the

nitrogen rate xNr is controllable by the farmers. Consequently, the AS process focuses on the

xNr axis to identify the optimal experimental rate for reducing epistemic uncertainty. Each

field site within an MZ receives a single fertilizer treatment (B = 1). The AS process spans 50

iterations, with each iteration representing a distinct year or growing season, characterized

by a randomly sampled precipitation value xP ∼ U(75, 150). All methods use the same

sequence of precipitation values to ensure a fair comparison. The variable xA, which encodes

topographic features, is assumed constant across iterations, whereas xV H , representing soil

moisture, is modeled as a function of both precipitation and topographic aspect.

We considered xP ∈ [75, 150], xA ∈ [π/4, π/2], xV H ∈ [0.5, 1], and xNr ∈

[0, 30, 60, 90, 120, 150]. These values were selected to reflect realistic conditions based on past

observations from the sub-region of the field used to model our simulated field site. During

each iteration of the process, we sample a new precipitation value such that xP
t ∼ U(75, 150).

Similarly, we accounted for variations in the terrain aspect by modeling xA
t as U(π/4, π/2).

This assumption reflects slight alterations in the landscape each growing season, influenced

by factors such as weather conditions and the use of heavy machinery.

Variable xV H is associated with soil moisture content, where lower values correspond

to drier soil conditions. Given the absence of additional variables to model soil moisture

accurately and since this is beyond the scope of our study, we developed a simplified moisture

function that incorporates precipitation and terrain aspect. In particular, we consider xV H
t =

xP
τ

150
xA
t , reflecting that higher precipitation and terrain aspect values result in greater soil

202

Table 6.4: AUUC comparison for the simulated field site

MCDropout GP NF-Ensemble ASPINN

614.68± 112.48 593.54± 107.42 730.80± 74.63 496.85±71.65

Table 6.5: Statistical significance tests between ASPINN and the compared methods.

Compared Method p-value

NF-Ensemble 1.3E-4 (↑)

GP 4.4E-2 (↑)

MC-Dropout 6.7E-3 (↑)

moisture content. Based on this parameterization, the initial dataset X
(τ=0)
obs is generated by

randomly sampling 50 data points, each representing a distinct growing season.

6.4.2 Adaptive Sampling Experiments

We applied the AS process ten times. At each iteration, we used a unique initialization

seed and evaluated the epistemic uncertainty along the allowed N rates for winter wheat

(i.e., 0, 30, 60, 90, 120, and 150 lbs/ac) under the current field conditions. Table 6.4

presents the average AUUC values and corresponding standard deviations, highlighting the

best-performing method in bold. Figure 6.13 depicts the evolution of the mean PI
(it)
δ values,

calculated based on the results from the ten repetitions. Finally, we assessed the differences in

AUUC values achieved by ASPINN across the ten AS iterations compared to those obtained

by the other methods. Table 6.5 reports the p-values from the paired t-tests comparing

ASPINN with the alternative approaches. The results indicate that the differences in AUUC

values are statistically significant (i.e., p-value < 0.05).

The experiments conducted on the simulated field data exhibit consistent behavior

with the results from the 1-D problems In particular, Table 6.4 demonstrates that ASPINN

203

Figure 6.13: Evolution of the mean PI
(it)
δ for the simulated field site.

achieves the lowest AUUC values, and the differences between ASPINN and the compared

methods are statistically significant. Given that the precipitation values vary at each

iteration, the resulting learning curves are expected to exhibit multiple peaks and valleys

rather than a smooth, consistently decreasing trend, as observed in Fig 6.13. This variability

arises because higher precipitation values are associated with increased uncertainty levels,

leading to more pronounced fluctuations in the learning curves. Considering that the

sequence of precipitation values is not the same for all AS repetitions, Fig 6.13 reports only

the mean curve and not the confidence bands. This is because the PI
(t)
δ values obtained

by a method across different iterations are generated from contexts that could correspond

to extreme opposites, leading to high variance values that do not necessarily reflect the

method’s performance. Despite this behavior, we observed that ASPINN consistently

produced learning curves that remained below those of the compared methods.

6.5 Summary

This chapter demonstrated the practical application of the core areas studied in this

dissertation: symbolic regression, prediction-interval generation, and adaptive sampling,

within the context of precision agriculture. We worked with real-world on-farm experimental

data of winter wheat to explore how these techniques can improve both the interpretability

204

and efficiency of agronomic decision-making. The chapter builds upon the OFPE framework

and addresses key challenges in modeling crop responses, managing uncertainty, and guiding

data collection under resource constraints.

The chapter outlined the theoretical and methodological foundations that support this

application, including the principles of OFPE, the importance of crop yield prediction, and

the design of MZ clustering algorithms based on the shape dissimilarity of N-response curves.

To address the need for uncertainty quantification in crop yield modeling, we incorporated

PI-generation techniques, enabling field-wide visualization of predictive uncertainty. Our

approach, DualAQD, demonstrated a consistent ability to produce narrower intervals while

maintaining high coverage, outperforming other state-of-the-art approaches.

The proposed SR framework advances the current state of PA by offering a data-driven

yet interpretable alternative to opaque models, capturing complex local variations in N-

response without predefining functional forms. Then, we applied our symbolic regression

method, SeTGAP, to model N-response curves at the MZ level. These MZs were derived

based on shape dissimilarities in fertilizer responsivity rather than yield productivity. These

MZ-specific symbolic expressions captured diverse crop responses across spatial subregions,

offering interpretable and data-driven alternatives to traditional parametric models. The

resulting equations not only reflect localized agronomic dynamics but also serve as functional

foundations for further analysis and simulation.

Finally, we addressed the challenge of data acquisition in real agricultural environments

by evaluating adaptive sampling strategies in a controlled simulation based on symbolic

skeletons learned from the field. Simulated yield responses allowed fair comparison of AS

methods under identical conditions. Our approach, ASPINN, converged faster to minimum

epistemic uncertainty levels than other methods, demonstrating its capacity to prioritize

informative sampling under uncertain and variable environmental conditions. Together,

these findings show how the methods introduced throughout this dissertation can be

205

deployed in real-world scenarios to support transparent, data-efficient, and uncertainty-aware

agricultural decision-making.

206

CHAPTER SEVEN

CONCLUSIONS

For our concluding remarks, we summarize the contributions of the dissertation and

identify directions for future work.

7.1 Contributions

This dissertation addressed the central challenge of producing interpretable data-driven

models through the lens of symbolic regression. SR represents a promising avenue for

building interpretable models, a key aspect of modern machine learning. By seeking to

uncover mathematical equations that represent the relationships between input variables

and their response, resulting equations offer transparency and clear insights into model

behavior. This interpretability is vital in various domains, including healthcare, finance, and

scientific research, where understanding the underlying mechanisms is essential for informed

decision-making and building trust in machine learning-based systems. In addition, SR plays

a crucial role in scientific discovery by enabling researchers to unveil fundamental laws and

relationships governing natural phenomena. However, despite its appeal, symbolic regression

remains a difficult problem due to the vastness of its search space, the need for generalization,

and the tendency to overfit when models are not adequately regularized or guided.

To tackle these challenges, we presented a decomposable neuro SR approach called

SeTGAP. The core contribution of this work was the formulation of the SR problem as

a Multi-Set Symbolic Skeleton Prediction problem, which enables the decomposition of a

complex multivariate system into univariate skeletons that can be independently predicted

and subsequently recombined into a full multivariate model. As such, SeTGAP constitutes

a post-hoc interpretability tool since, given an opaque model that approximates the system’s

207

behavior, it distills mathematical expressions that serve as interpretations of the functional

relationships between input variables and the system’s response embedded within the opaque

model’s learned function.

To address the MSSP problem, we proposed the Multi-Set Transformer, a specialized

neural network architecture based on the transformer model. This architecture is designed to

process multiple input–response sets simultaneously and infer a symbolic skeleton expression

that captures the underlying mathematical structure shared across all sets. Trained on a large

corpus of synthetically generated expressions, the Multi-Set Transformer serves as a general-

purpose model that can be applied to new regression problems without requiring retraining.

Hence, when presented with an observed dataset and an opaque predictive model, the Multi-

Set Transformer generates univariate symbolic skeletons that approximate the functional

relationships between each input variable and the system’s response. Experimental results

showed that this method consistently recovered the correct functional form of all system

variables across all tested problems. To support this evaluation, we presented a skeleton

performance evaluation methodology based on genetic algorithms that tests how well a given

skeleton’s functional form matches the system’s underlying functional form. In contrast,

compared methods, including evolutionary approaches and end-to-end neural models, often

prioritized global error minimization or focused on only the most influential variables, leading

to incomplete or inaccurate structural representations.

The predictive modeling of univariate skeletons was complemented by a symbolic

merging algorithm designed to recombine the predicted univariate expressions into a coherent

and accurate multivariate model. This merging step was implemented as a cascade process

using evolutionary techniques; specifically, genetic programming and genetic algorithms

guided by structural constraints. Notably, the merging process was not treated as a generic

search, but rather as a structurally-aware operation that preserves the internal structures

of the subexpressions discovered during the univariate skeleton prediction. By maintaining

208

these discovered components, the method avoids redundant rediscovery and ensures that

the final multivariate expressions remain interpretable and modular. Among all tested SR

approaches, SeTGAP was the only method that consistently reconstructed the expected

functional forms of the underlying generating functions across all evaluated problems.

Further experiments demonstrated its robustness, as SeTGAP continued to identify the

correct functional structures even under varying levels of noise, highlighting its reliability in

uncovering meaningful symbolic interpretations.

While our symbolic regression approach demonstrates a certain level of robustness to

aleatoric uncertainty (i.e., noise inherent in the data), we recognize that the accurate recovery

of symbolic representations is influenced by both aleatoric and epistemic uncertainty. Under-

standing and quantifying these two types of uncertainty is essential, especially in application

domains where ensuring the reliability of AI-powered systems is critical. Therefore, this

dissertation also tackles the challenge of uncertainty quantification and management in

regression models. In many scientific and engineering contexts, understanding the confidence

of a model’s predictions is as important as the predictions themselves. To this end, we

introduced DualAQD, a neural-network-based method for prediction interval generation.

DualAQD employs two companion networks: one dedicated to estimating the target response

and another responsible for producing high-quality PIs. The training objective uses a

custom loss function that simultaneously minimizes the mean prediction interval width

while enforcing coverage constraints to maximize the prediction interval coverage probability

implicitly. Empirical results across multiple datasets revealed that DualAQD consistently

maintained a nominal coverage level while producing significantly narrower intervals than

three state-of-the-art PI-generation methods, all without compromising prediction accuracy.

The uncertainty modeling capabilities achieved with DualAQD were leveraged in the

development of an adaptive sampling strategy called ASPINN. The primary motivation

behind ASPINN lies in the practical challenges of many real-world systems where data

209

collection is costly, time-consuming, or constrained by limited resources. In such scenarios,

it becomes critical to identify sampling locations that most effectively reduce model

uncertainty. ASPINN addresses this by focusing on epistemic uncertainty reduction in

regression problems, using NN-generated PIs to guide adaptive data acquisition. Specifically,

ASPINN estimates potential epistemic uncertainty by evaluating the distance between

the predicted PI bounds and the observed data, both at candidate locations and their

neighborhoods. This local discrepancy informs where the model lacks information and is

likely to benefit from new data. To make batch acquisitions, ASPINN employs a Gaussian

Process as a surrogate model of the neural networks trained at each iteration of the adaptive

sampling process. This enables the formulation of an acquisition function that selects a

diverse and informative set of new sampling points. Experimental results demonstrated that

ASPINN consistently outperforms state-of-the-art methods in convergence rate, achieving

lower epistemic uncertainty with fewer samples across the tested problems.

A practical application of the developed methods was demonstrated in the domain of

precision agriculture. In this setting, accurately modeling the effect of nitrogen application on

crop yield under varying environmental conditions (e.g., precipitation, terrain, soil moisture)

is important for confidently designing optimization strategies that maximize profit while

minimizing environmental impact. To apply symbolic regression meaningfully, we employed

a zone-based modeling strategy where fields are divided into management zones based on

the fertilizer responsivity similarity rather than raw productivity. This responsivity-based

clustering enabled the identification of functionally coherent subregions that are suitable for

local model learning. Symbolic regression was then applied independently in each MZ using

SeTGAP’s MSSP pipeline. This approach yielded interpretable and low-complexity models

that captured the functional behavior of crop response to N fertilizer rate in each region.

Furthermore, we assessed the applicability of our uncertainty management techniques

in the context of PA. In agricultural systems, where ground truth data are scarce and

210

environmental factors can be highly heterogeneous, it is important to understand the

reliability of model predictions. Therefore, we incorporated PI generation into the crop yield

prediction process by applying DualAQD in 2-D regression convolutional neural networks.

This enabled spatially explicit visualization of predictive uncertainty across the field, allowing

farmers and stakeholders to assess not just expected yields but also the associated confidence.

Our results indicated that DualAQD outperformed other methods by maintaining high

probability coverage while offering significantly narrower PIs, making it well-suited for

guiding interventions and management practices in heterogeneous field conditions.

Adaptive sampling holds significant promise for precision agriculture, where experi-

mental results often take an entire growing season to materialize, and trials are typically

confined to only a portion of the field. This challenge is further exacerbated by constraints

such as delayed data collection due to crop rotation practices. These limitations motivate

the adoption of efficient sampling strategies to minimize the time and resources required for

reliable experimentation. In this context, we tested the performance of our adaptive sampling

technique, ASPINN, in a controlled simulation of adaptive sampling on an agricultural

site. By simulating crop yield responses based on symbolic skeletons that model an MZ

extracted from real field data, we created an evaluation framework to compare different

sampling strategies under fair conditions. ASPINN showed the fastest convergence to

minimal epistemic uncertainty levels across all trials, demonstrating its ability to prioritize

data acquisition in regions where uncertainty reduction is most beneficial.

To summarize, the contributions presented in this dissertation include the following:

• We developed SeTGAP, a decomposable symbolic regression framework that learns

univariate skeleton expressions via a pre-trained transformer model and incrementally

merges them into multivariate expressions using structurally guided evolutionary

techniques. It preserves interpretability and reduces the search space effectively.

211

• We introduced the Multi-Set Symbolic Skeleton Prediction problem, which enables the

extraction of a shared symbolic structure from multiple input–response sets governed

by the same underlying functional form but differing in parameterization.

• We designed and pre-trained the Multi-Set Transformer model, a novel transformer-

based architecture tailored to solve the MSSP problem. The model was pre-trained on

a large corpus of synthetic symbolic skeleton expressions, with training data produced

dynamically during the training process using a specialized data generation framework.

• We introduced a symbolic skeleton performance metric that quantifies the fidelity of

predicted univariate skeletons in relation to the true underlying functions.

• We presented DualAQD, a loss function and training scheme that uses two companion

neural networks: one for accurate prediction and another for PI generation, designed

to minimize interval width and implicitly maximize PI coverage simultaneously.

• We designed ASPINN, an adaptive sampling framework that produces potential

epistemic uncertainty estimates from NN-generated PIs to guide data acquisition. It

selects informative and diverse sampling points by using Gaussian Process surrogates.

• We demonstrated DualAQD’s effectiveness in crop yield prediction, where it provides

high-quality prediction intervals that enable spatial visualization of uncertainty across

agricultural fields, supporting risk-aware decision-making in agricultural management.

• We applied SeTGAP to study functional variation in fertilizer nitrogen responsivity

across the fields, allowing the discovery of interpretable mathematical expressions that

parameterize site-specific N-response curves within management zones.

• We evaluated ASPINN’s performance in an agricultural simulation, where it was shown

to accelerate uncertainty reduction under realistic field constraints, outperforming

212

existing sampling methods in convergence rate and sample efficiency.

7.2 Future Work

Several research questions remain open and will be explored in future work. In

particular, we plan to investigate the components of SeTGAP and their roles in the successful

recovery of the underlying function. One key area of interest is the influence of the number of

input sets, denoted byNS, on the accuracy of the predicted univariate skeletons in the context

of the multi-set symbolic skeleton prediction problem. In this dissertation, experiments were

limited to NS = 10 and test problems with up to four input variables. However, during

univariate skeleton prediction, where the goal is to model the relationship between a specific

variable and the system’s response, it is reasonable to hypothesize that higher-dimensional

systems may require more input sets to capture the variable’s functional form adequately

across a sufficiently diverse range of conditions influenced by the remaining variables. Future

experiments will vary NS across problems of increasing dimensionality to systematically

quantify its effect on prediction accuracy and generalization.

We will investigate how the order of skeleton merging affects the learned expressions

and their predictive performance. In the current design, skeletons are merged based on

their individual performance, with less reliable skeletons merged later to minimize error

propagation. However, this approach does not account for potential interdependencies

between variables. For example, if two variables interact strongly, merging their skeletons

early might improve the accuracy of the modeled interaction. We plan to explore alternative

merging heuristics, including strategies informed by variable interaction analysis.

We intend to expand SeTGAP’s expressiveness by supporting more complex functional

constructs beyond unary and binary operators. This includes differential operators, integral

transforms (such as Fourier and Laplace transforms), and wave transforms; i.e., mathematical

tools that frequently arise in signal processing, dynamical systems, and quantum physics.

213

While these extensions would increase the search space significantly, we plan to adapt

the Multi-Set Transformer architecture to accommodate domain-specific prior knowledge,

helping to constrain and guide the exploration. This will enable a human-in-the-loop

symbolic regression framework, in which experts can specify known or preferred functional

forms, operators, or constraints to bias the search toward plausible hypotheses. This

capability will ensure that the generated expressions remain aligned with domain-specific

knowledge. In parallel, we aim to augment the framework with robust uncertainty

quantification mechanisms. By integrating efficient uncertainty estimates into the symbolic

regression process, we will enable a more rigorous assessment of the quality and stability of

the identified skeleton expressions and their combinations throughout the merging process.

Future work will also broaden the application of SeTGAP to problems in scientific

discovery across various domains. In optics, for instance, symbolic regression could be

used to derive analytical expressions for calibrating microbolometer thermal images, which

are critical for improving temperature measurements and compensating for sensor non-

linearities. In physics, symbolic regression offers a promising path for discovering or

approximating governing equations for complex phenomena. For example, it could help

uncover interpretable models of neutrino oscillation behavior based on data from next-

generation telescopes and simulations. As high-quality experimental and synthetic datasets

continue to grow, symbolic regression methods such as SeTGAP have the potential to play

a key role in advancing theoretical insights and facilitating data-driven discovery.

In the presented experiments, the PI-generation model used in DualAQD was trained

with the same architecture as the target-prediction model, except for the final layer, to facili-

tate the use of transfer learning and accelerate the learning process. Future work will explore

the impact of employing specialized architectures for the PI-generation model. Moreover,

DualAQD can be extended to handle more complex uncertainty scenarios, particularly in

multi-modal settings where aleatoric uncertainty arises from distinct, overlapping sources

214

of variability. In such cases, a single PI may be insufficient to characterize the range of

plausible outcomes. To address this, future work will focus on adapting DualAQD to generate

multiple intervals that reflect the multi-modal structure of the data. One possible direction

is to incorporate neural architectures that predict the parameters of a mixture of probability

distributions, allowing the model to represent several distinct modes in the output space.

Another approach is to use latent variable models enhanced with attention mechanisms to

learn context-dependent representations that help identify and separate the different sources

of variability. These enhancements would enable DualAQD to generate multiple PIs per

input when needed, offering a faithful representation of uncertainty in systems where noise

is inherently multi-modal.

Furthermore, to strengthen the theoretical grounding of DualAQD, we plan to

explore the incorporation of principles from conformal prediction. Conformal methods

offer distribution-free, finite-sample guarantees for PIs and can complement DualAQD’s

architecture by providing rigorous confidence levels under minimal assumptions. This

integration could help quantify uncertainty with provable guarantees, making the framework

more reliable while still producing narrow PIs, especially in applications where rigorous

statistical bounds are required to validate empirical findings or support theoretical insights.

Future work on ASPINN will focus on dealing with multi-modal scenarios and improving

scalability. Similar to DualAQD, ASPINN is limited by its inability to handle multi-modal

aleatoric noise natively. As such, future extensions will adapt ASPINN to support more

complex uncertainty modeling by leveraging advances developed for DualAQD in handling

multi-modal noise. In particular, ASPINN’s potential epistemic uncertainty metric would

be revisited to support multiple PIs per input and guide sampling accordingly.

Another limitation involves the computational cost of evaluating epistemic uncertainty

across the entire input space, which becomes prohibitive as dimensionality increases. To

mitigate this, we aim to explore dimensionality reduction techniques and surrogate models

215

that can approximate the epistemic uncertainty landscape more efficiently. Additionally, we

will explore surrogate modeling approaches, such as sparse Gaussian processes, which model

uncertainty over fewer representative points to reduce computational cost. Diffusion models

may also be used to learn smooth latent representations of the data distribution; in this

lower-dimensional latent space, sampling and uncertainty estimation can be performed more

efficiently while preserving the structure of the original problem. Together, these strategies

aim to make ASPINN practical and effective even in challenging high-dimensional settings.

7.3 Concluding Remarks

This dissertation investigated the discovery of mathematical expressions as interpretable

models to advance transparency and trust in AI-driven systems. While symbolic regression

was employed to derive human-understandable representations of complex systems, com-

plementary techniques for uncertainty quantification and adaptive sampling were developed

to enhance the trustworthiness of opaque models. The methods developed here highlight

that model interpretability, uncertainty quantification, and adaptive sampling are not

isolated challenges but deeply interconnected aspects of building trustworthy models.

Throughout, the emphasis has been on creating solutions that are both practical for real-

world applications, such as precision agriculture, and grounded in theoretical principles.

The ideas presented here suggest several directions for future work. For instance, our

symbolic regression strategies could be extended to address more complex systems, while

uncertainty quantification and adaptive sampling techniques may be adapted to multi-modal

and high-dimensional settings. Further study is needed to better understand the interactions

between these elements. The broader goal is to advance machine learning models that are

not only powerful but also interpretable, reliable, and adaptable to the needs of scientific

discovery and practical applications.

216

REFERENCES CITED

[1] Christopher Ackello-Ogutu, Quirino Paris, and William A. Williams. Testing a von
Liebig crop response function against polynomial specifications. American Journal of
Agricultural Economics, 67(4):873–880, 1985.

[2] A. Ali, R. Martelli, E. Scudiero, Lupia F., Falsone G., Rondelli V., and L. Barbanti. Soil
and climate factors drive spatio-temporal variability of arable crop yields under uniform
management in northern Italy. Archives of Agronomy and Soil Science, 69(1):75–89,
2023.

[3] Abid Ali, Valda Rondelli, Roberta Martelli, Gloria Falsone, Flavio Lupia, and Lorenzo
Barbanti. Management zones delineation through clustering techniques based on soils
traits, NDVI data, and multiple year crop yields. Agriculture, 12(2), 2022.

[4] Maryam Amir Haeri, Mohammad Mehdi Ebadzadeh, and Gianluigi Folino. Statistical
genetic programming for symbolic regression. Applied Soft Computing, 60:447–469,
2017.

[5] Peter J. Angeline. An investigation into the sensitivity of genetic programming to the
frequency of leaf selection during subtree crossover. In Annual Conference on Genetic
Programming, pages 21—-29, 1996.

[6] Peter J. Angeline. Subtree crossover: Building block engine or macromutation? In
Annual Conference on Genetic Programming, pages 9–17, Stanford University, CA,
USA, 13-16 July 1997.

[7] Anastasios N Angelopoulos, Amit Pal Kohli, Stephen Bates, Michael Jordan, Jitendra
Malik, Thayer Alshaabi, Srigokul Upadhyayula, and Yaniv Romano. Image-to-image
regression with distribution-free uncertainty quantification and applications in imaging.
In International Conference on Machine Learning, volume 162, pages 717–730, 17–23
Jul 2022.

[8] Ignacio Arnaldo, Krzysztof Krawiec, and Una-May O’Reilly. Multiple regression
genetic programming. In Genetic and Evolutionary Computation, pages 879––886,
2014.

[9] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv,
abs/1607.06450, 2016.

[10] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-
Robert Müller, and Wojciech Samek. On pixel-wise explanations for non-linear
classifier decisions by layer-wise relevance propagation. PLOS ONE, 10(7):1–46, 07
2015.

217

[11] Tommaso Bendinelli, Luca Biggio, and Pierre-Alexandre Kamienny. Controllable
neural symbolic regression. In International Conference on Machine Learning,
ICML’23, 2023.

[12] Lucas Berry and David Meger. Normalizing flow ensembles for rich aleatoric
and epistemic uncertainty modeling. AAAI Conference on Artificial Intelligence,
37(6):6806–6814, Jun. 2023.

[13] Amanda Bertschinger, James Bagrow, and Joshua Bongard. Evolving Form and
Function: Dual-Objective Optimization in Neural Symbolic Regression Networks. In
Genetic and Evolutionary Computation Conference, pages 277–285, July 2024.

[14] Amanda Bertschinger, Q. Tyrell Davis, James Bagrow, and Joshua Bongard. The
metric is the message: Benchmarking challenges for neural symbolic regression. In
Machine Learning and Knowledge Discovery in Databases, pages 161–177, 2023.

[15] Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista
Parascandolo. Neural symbolic regression that scales. In International Conference on
Machine Learning, volume 139, pages 936–945, 2021.

[16] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational Inference: A review
for statisticians. Journal of the American Statistical Association, 112(518):859–877,
2017.

[17] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates, Inc., 2020.

[18] Vanessa Buhrmester, David Münch, and Michael Arens. Analysis of explainers of
black box deep neural networks for computer vision: A survey. Machine Learning and
Knowledge Extraction, 3(4):966–989, 2021.

[19] David S. Bullock, Maria Boerngen, Haiying Tao, Bruce Maxwell, Joe D. Luck, Luciano
Shiratsuchi, Laila Puntel, and Nicolas F. Martin. The data-intensive farm management
project: Changing agronomic research through on-farm precision experimentation.
Agronomy Journal, 111(6):2736–2746, 2019.

[20] Donald G. Bullock and David S. Bullock. Quadratic and quadratic-plus-plateau models
for predicting optimal nitrogen rate of corn: A comparison. Agronomy Journal,
86(1):191–195, 1994.

218

[21] Guendalina Caldarini, Sardar Jaf, and Kenneth McGarry. A literature survey of recent
chatbots. Information, 13(1), 2022.

[22] Gustau Camps-Valls, Andreas Gerhardus, Urmi Ninad, Gherardo Varando, Georg
Martius, Emili Balaguer-Ballester, Ricardo Vinuesa, Emiliano Diaz, Laure Zanna,
and Jakob Runge. Discovering causal relations and equations from data. ArXiv,
abs/2305.13341, 2023.

[23] Eduardo G. Carrano, Carlos M. Fonseca, Ricardo H. C. Takahashi, Luciano C. A.
Pimenta, and Oriane M. Neto. A preliminary comparison of tree encoding schemes
for evolutionary algorithms. In IEEE International Conference on Systems, Man and
Cybernetics, pages 1969–1974, 2007.

[24] William G. La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabŕıcio Olivetti de França,
Marco Virgolin, Ying Jin, Michael Kommenda, and Jason H. Moore. Contemporary
symbolic regression methods and their relative performance. In Neural Information
Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and
Benchmarks 2021, December 2021, virtual, 2021.

[25] Lucy R Chai. Uncertainty estimation in bayesian neural networks and links to
interpretability. Master’s thesis, Department of Engineering, University of Cambridge,
2018.

[26] R. Qi Charles, Hao Su, Mo Kaichun, and Leonidas J. Guibas. Pointnet: Deep learning
on point sets for 3D classification and segmentation. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 77–85, 2017.

[27] Boyuan Chen, Kuang Huang, Sunand Raghupathi, Ishaan Chandratreya, Qiang Du,
and Hod Lipson. Automated discovery of fundamental variables hidden in experimental
data. Nature Computational Science, 2(7):433–442, Jul 2022.

[28] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
RNN encoder–decoder for statistical machine translation. In Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar,
October 2014.

[29] F. Chollet. Xception: Deep learning with depthwise separable convolutions. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1800–1807,
2017.

[30] Xieting Chu, Hongjue Zhao, Enze Xu, Hairong Qi, Minghan Chen, and Huajie Shao.
Neural symbolic regression using control variables. ArXiv, abs/2306.04718, 2023.

[31] I. Cisternas, I. Velásquez, A. Caro, and A. Rodŕıguez. Systematic literature review of
implementations of precision agriculture. Computers and Electronics in Agriculture,
176:105626, 2020.

219

[32] Matthew J. Colbrook, Vegard Antun, and Anders C. Hansen. The difficulty of
computing stable and accurate neural networks: On the barriers of deep learning and
smale’s 18th problem. National Academy of Sciences, 119(12):e2107151119,
2022.

[33] S. Cook, M. Lacoste, F. Evans, M. Ridout, M. Gibberd, and T. Oberthür. An on-
farm experimental philosophy for farmer-centric digital innovation. In International
Conference on Precision Agriculture, 2018.

[34] Miles Cranmer. Interpretable machine learning for science with PySR and Symboli-
cRegression.jl. ArXiv, abs/2305.01582, 2023.

[35] Miles Cranmer, Alvaro Sanchez-Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer,
David Spergel, and Shirley Ho. Discovering symbolic models from deep learning with
inductive biases. In Neural Information Processing Systems, 2020.

[36] N. Davatgar, M.R. Neishabouri, and A.R. Sepaskhah. Delineation of site-specific
nutrient management zones for a paddy cultivated area based on soil fertility using
fuzzy clustering. Geoderma, 173–174:111–118, 2012.

[37] Ana Maria Delgado, Digvijay Wadekar, Boryana Hadzhiyska, Sownak Bose, Lars
Hernquist, and Shirley Ho. Modelling the galaxy–halo connection with machine
learning. Monthly Notices of the Royal Astronomical Society, 515(2):2733–2746, 07
2022.

[38] Stefan Depeweg, Jose-Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen
Udluft. Decomposition of uncertainty in Bayesian deep learning for efficient and risk-
sensitive learning. In International Conference on Machine Learning, volume 80, pages
1184–1193, 10–15 Jul 2018.

[39] Francesco Di Fiore, Michela Nardelli, and Laura Mainini. Active learning and bayesian
optimization: A unified perspective to learn with a goal. Archives of Computational
Methods in Engineering, April 2024.

[40] Jason G. Digalakis and Konstantinos G. Margaritis. An experimental study of
benchmarking functions for genetic algorithms. International Journal of Computer
Mathematics, 79(4):403–416, 2002.

[41] Stephen Dignum and Riccardo Poli. Generalisation of the limiting distribution of
program sizes in tree-based genetic programming and analysis of its effects on bloat. In
Genetic and Evolutionary Computation, pages 1588—-1595. Association for Computing
Machinery, 2007.

[42] Virginia Dignum. Responsible Artificial Intelligence: How to Develop and Use AI in a
Responsible Way. Springer Verlag, 2019.

220

[43] Dheeru Dua and Casey Graff. UCI machine learning repository, 2019.
https://archive.ics.uci.edu/ml/index.php.

[44] M. Ebner. On the search space of genetic programming and its relation to nature’s
search space. In IEEE Congress on Evolutionary Computation, volume 2, pages 1357–
1361, 1999.

[45] Harrison Edwards and Amos Storkey. Towards a neural statistician. In International
Conference on Learning Representations, Toulon, France, 2017.

[46] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra
Malik, and Christoph Feichtenhofer. Multiscale vision transformers. In IEEE/CVF
International Conference on Computer Vision, pages 6824–6835, October 2021.

[47] Sebastian Farquhar, Michael A. Osborne, and Yarin Gal. Radial bayesian neural
networks: Beyond discrete support in large-scale bayesian deep learning. In Silvia
Chiappa and Roberto Calandra, editors, International Conference on Artificial
Intelligence and Statistics, volume 108, pages 1352–1362, 26–28 Aug 2020.

[48] R. B. Ferguson, G. W. Hergert, J. S. Schepers, C. A. Gotway, J. E. Cahoon, and T. A.
Peterson. Site-specific nitrogen management of irrigated maize. Soil Science Society
of America Journal, 66(2):544–553, 2002.

[49] Renato Filho, Anisio Lacerda, and Gisele Pappa. Explaining symbolic regression
predictions. In IEEE Congress on Evolutionary Computation (CEC), pages 1–8, 2020.

[50] Federico Filipponi. Sentinel-1 GRD preprocessing workflow. In International Electronic
Conference on Remote Sensing, 2019.

[51] Roger Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York,
NY, USA, second edition, 1987.

[52] B. Freisleben and P. Merz. A genetic local search algorithm for solving symmetric
and asymmetric traveling salesman problems. In IEEE International Conference on
Evolutionary Computation, pages 616–621, 1996.

[53] Jon J. Fridgen, Newell R. Kitchen, Kenneth A. Sudduth, Scott T. Drummond,
William J. Wiebold, and Clyde W. Fraisse. Management zone analyst (mza). Agronomy
Journal, 96(1):100–108, 2004.

[54] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Repre-
senting model uncertainty in deep learning. In International Conference on Machine
Learning, pages 1050–1059, 20–22 Jun 2016.

[55] Diego José Gallardo-Romero, Orly Enrique Apolo-Apolo, Jorge Mart́ınez-Guanter, and
Manuel Pérez-Ruiz. Multilayer data and artificial intelligence for the delineation of
homogeneous management zones in maize cultivation. Remote Sensing, 15(12), 2023.

221

[56] Inés M. Galván, José M. Valls, Alejandro Cervantes, and Ricardo Aler. Multi-objective
evolutionary optimization of prediction intervals for solar energy forecasting with
neural networks. Information Sciences, 418-419:363–382, 2017.

[57] M.A. Ganaie, Minghui Hu, A.K. Malik, M. Tanveer, and P.N. Suganthan. En-
semble deep learning: A review. Engineering Applications of Artificial Intelligence,
115:105151, 2022.

[58] Jacob R. Gardner, Geoff Pleiss, David Bindel, Kilian Q. Weinberger, and Andrew Gor-
don Wilson. GPyTorch: Blackbox matrix-matrix gaussian process inference with gpu
acceleration. In International Conference on Neural Information Processing Systems,
pages 7587—-7597, Red Hook, NY, USA, 2018.

[59] Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023.

[60] Robin Gebbers and Viacheslav I. Adamchuk. Precision agriculture and food security.
Science, 327(5967):828–831, 2010.

[61] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
Convolutional sequence to sequence learning. In International Conference on Machine
Learning, ICML’17, pages 1243–1252, 2017.

[62] Claudia Georgi, Daniel Spengler, Sibylle Itzerott, and Birgit Kleinschmit. Automatic
delineation algorithm for site-specific management zones based on satellite remote
sensing data. Precision Agriculture, 19(4):684—-707, November 2017.

[63] Ning Gong and Nianmin Yao. A generalized decoding method for neural text
generation. Computer Speech & Language, 81:101503, 2023.

[64] Javier Gonzalez, Zhenwen Dai, Philipp Hennig, and Neil Lawrence. Batch bayesian op-
timization via local penalization. In International Conference on Artificial Intelligence
and Statistics, volume 51, pages 648–657, Cadiz, Spain, 09–11 May 2016.

[65] Alex Graves. Generating sequences with recurrent neural networks. ArXiv,
abs/1308.0850, 2013.

[66] Daria Grechishnikova. Transformer neural network for protein-specific de novo drug
generation as a machine translation problem. Scientific Reports, 11(1):321, Jan 2021.

[67] Baihe He, Qiang Lu, Qingyun Yang, Jake Luo, and Zhiguang Wang. Taylor genetic
programming for symbolic regression. In Genetic and Evolutionary Computation
Conference, pages 946––954, 2022.

[68] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

222

[69] Paul Hegedus, Bruce Maxwell, John Sheppard, Sasha Loewen, Hannah Duff, Giorgio
Morales, and Amy Peerlinck. Towards a low-cost comprehensive process for on-farm
precision experimentation and analysis. Agriculture, 13(3), 2023.

[70] Philipp Hennig and Christian J. Schuler. Entropy search for information-efficient global
optimization. J. Mach. Learn. Res., 13:1809—-1837, jun 2012.

[71] John H. Holland. Genetic algorithms. Scientific American, July 1992.

[72] T. Horie, M. Yajima, and H. Nakagawa. Yield forecasting. Agricultural Systems,
40(1):211–236, 1992.

[73] G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger. Densely connected
convolutional networks. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 2261–2269, July 2017.

[74] E.R. Hunt and Craig S. T. Daughtry. What good are unmanned aircraft systems for
agricultural remote sensing and precision agriculture? International Journal of Remote
Sensing, 39(15–16):5345–5376, 2018.

[75] Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in
machine learning: An introduction to concepts and methods. Machine Learning,
110(3):457–506, March 2021.

[76] Pavel Izmailov, Wesley Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov,
and Andrew Wilson. Subspace inference for bayesian deep learning. In Uncertainty in
Artificial Intelligence Conference, pages 1169–1179, Jul 2020.

[77] S. Hamed Javadi, Angela Guerrero, and Abdul M. Mouazen. Clustering and smoothing
pipeline for management zone delineation using proximal and remote sensing. Sensors,
22(2):645, January 2022.

[78] D. B. Jaynes, T. C. Kaspar, T. S. Colvin, and D. E. James. Cluster analysis of
spatiotemporal corn yield patterns in an Iowa field. Agronomy Journal, 95(3):574–586,
2003.

[79] Ying Jin, Weilin Fu, Jian Kang, Jiadong Guo, and Jian Guo. Bayesian symbolic
regression. ArXiv, abs/1910.08892, 2020.

[80] Lucie A. Kablan, Valérie Chabot, Alexandre Mailloux, Marie-Ève Bouchard, Daniel
Fontaine, and Tom Bruulsema. Variability in corn yield response to nitrogen fertilizer
in eastern canada. Agronomy Journal, 109(5):2231–2242, 2017.

[81] Shunkei Kakimoto, Taro Mieno, Takashi Tanaka, and David Bullock. Causal forest
approach for site-specific input management via on-farm precision experimentation.
Computers and Electronics in Agriculture, 199:107164, 2022.

223

[82] Pierre-Alexandre Kamienny, Stéphane d'Ascoli, Guillaume Lample, and Francois
Charton. End-to-end symbolic regression with transformers. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Neural Information Processing
Systems, volume 35, pages 10269–10281, 2022.

[83] R. Khosla, K. Fleming, J. A. Delgado, T. M. Shaver, and D. G. Westfall. Use of site-
specific management zones to improve nitrogen management for precision agriculture.
Journal of Soil and Water Conservation, 57(6):513–518, 2002.

[84] Abbas Khosravi, Saeid Nahavandi, Doug Creighton, and Amir F. Atiya. Comprehen-
sive review of NN-based prediction intervals and new advances. IEEE Transactions on
Neural Networks, 22(9):1341–1356, 2011.

[85] Abbas Khosravi, Saeid Nahavandi, Douglas C. Creighton, and Amir F. Atiya. Lower
upper bound estimation method for construction of neural network-based prediction
intervals. IEEE Trans. Neural Networks, 22(3):337–346, 2011.

[86] Abbas Khosravi, Saeid Nahavandi, Dipti Srinivasan, and Rihanna Khosravi. Con-
structing optimal prediction intervals by using neural networks and bootstrap method.
IEEE Transactions on Neural Networks and Learning Systems, 26(8):1810–1815, 2015.

[87] Sehoon Kim, Amir Gholami, Albert Shaw, Nicholas Lee, Karttikeya Mangalam,
Jitendra Malik, Michael W Mahoney, and Kurt Keutzer. Squeezeformer: An efficient
transformer for automatic speech recognition. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh, editors, Neural Information Processing Systems,
volume 35, pages 9361–9373, 2022.

[88] K.E. Kinnear. Evolving a sort: lessons in genetic programming. In IEEE International
Conference on Neural Networks, volume 2, pages 881–888, 1993.

[89] David Klahr and Herbert A. Simon. Studies of scientific discovery: Complementary
approaches and convergent findings. Psychological Bulletin, 125(5):524–543, 1999.

[90] Blanka Klimova, Marcel Pikhart, Alice Delorme Benites, Caroline Lehr, and Christina
Sanchez-Stockhammer. Neural machine translation in foreign language teaching and
learning: a systematic review. Education and Information Technologies, 28(1):663–682,
Jan 2023.

[91] John R. Koza. Hierarchical genetic algorithms operating on populations of computer
programs. In International Joint Conference on Artificial Intelligence, volume 1, pages
768—-774, 1989.

[92] John R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[93] O. Kramer and H.-P. Schwefel. On three new approaches to handle constraints within
evolution strategies. Natural Computing, 5(4):363–385, Nov 2006.

224

[94] Oliver Kramer. Genetic Algorithm Essentials. Springer International Publishing, 2017.

[95] Gabriel Kronberger, Bogdan Burlacu, Michael Kommenda, Stephan M. Winkler, and
Michael Affenzeller. Symbolic Regression. Chapman and Hall/CRC, New York, August
2024.

[96] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and
scalable predictive uncertainty estimation using deep ensembles. In Advances in Neural
Information Processing Systems, volume 30, 2017.

[97] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and
scalable predictive uncertainty estimation using deep ensembles. In 31st Int. Conf.
on Neural Information Processing Systems, page 6405–6416, 2017.

[98] Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In
International Conference on Learning Representations, 2020.

[99] W. B. Langdon, T. Soule, R. Poli, and J. A. Foster. The Evolution of Size and Shape.
In Genetic Programming. The MIT Press, 07 1999.

[100] Patrick G. Lawrence, Lisa J. Rew, and Bruce D. Maxwell. A probabilistic Bayesian
framework for progressively updating site-specific recommendations. Precision Agri-
culture, 16(3):275–296, June 2015.

[101] Joon-Yong Lee, Min-Soeng Kim, Cheol-Taek Kim, and Ju-Jang Lee. Study on encoding
schemes in compact genetic algorithm for the continuous numerical problems. In SICE
Annual Conference, pages 2694–2699, 2007.

[102] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye
Teh. Set transformer: A framework for attention-based permutation-invariant neural
networks. In International Conference on Machine Learning, volume 97, pages 3744–
3753, 09–15 Jun 2019.

[103] Kin Long Kelvin Lee and Nalini Kumar. Artificial intelligence for scientific discovery
at high-performance computing scales. Computer, 56(4):116–122, 2023.

[104] Zhouhan Lin, Minwei Feng, Ćıcero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen
Zhou, and Yoshua Bengio. A structured self-attentive sentence embedding. In
International Conference on Learning Representations, 2017.

[105] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. Explainable AI:
A review of machine learning interpretability methods. Entropy, 23(1), 2021.

[106] Laura E. Lindsey, Allen W. Goodwin, S. Kent Harrison, and Pierce A. Paul. Optimum
seeding rate and stand assessment of soft red winter wheat. Agronomy Journal,
112(5):4069–4075, 2020.

225

[107] Siyan Liu, Pei Zhang, Dan Lu, and Guannan Zhang. PI3NN: Out-of-distribution-
aware prediction intervals from three neural networks. In International Conference on
Learning Representations, 2022.

[108] M. Lones. Enzyme Genetic Programming. PhD thesis, Department of Electronics,
University of York, 2004.

[109] Jun Lu, Jinliang Ding, Xuewu Dai, and Tianyou Chai. Ensemble stochastic
configuration networks for estimating prediction intervals: A simultaneous robust
training algorithm and its application. IEEE Transactions Neural Networks and
Learning Systems, 31(12):5426–5440, 2020.

[110] Jun Lu, Jinliang Ding, Changxin Liu, and Tianyou Chai. Hierarchical-bayesian-based
sparse stochastic configuration networks for construction of prediction intervals. IEEE
Transactions on Neural Networks and Learning Systems, 33(8):3560–3571, 2022.

[111] Nour Makke and Sanjay Chawla. Interpretable scientific discovery with symbolic
regression: A review. ArXiv, abs/2211.10873, 2022.

[112] Sedigheh Maleki, Alireza Karimi, Amin Mousavi, Ruth Kerry, and Ruhollah
Taghizadeh-Mehrjardi. Delineation of soil management zone maps at the regional
scale using machine learning. Agronomy, 13(2), 2023.

[113] Georg Martius and Christoph H. Lampert. Extrapolation and learning equations.
ArXiv, abs/1610.02995, 2016.

[114] B. Maxwell, P. Hegedus, P. Davis, A. Bekkerman, R. Payn, J. Sheppard, N. Silverman,
and C. Izurieta. Can optimization associated with on-farm experimentation using
site-specific technologies improve producer management decisions? In International
Conference on Precision Agriculture, 2018.

[115] A. McBratney, B. Whelan, Tihomir Ancev, and J. Bouma. Future directions of
precision agriculture. Precision Agriculture, 6:7–23, 2005.

[116] Esther D. Meenken, Christopher M. Triggs, Hamish E. Brown, Sarah Sinton, Jeremy
Bryant, Alasdair D.L. Noble, Martin Espig, Mostafa Sharifi, and David M. Wheeler.
Bayesian hybrid analytics for uncertainty analysis and real-time crop management.
Agronomy Journal, 113(3):2491–2505, 2021.

[117] J. J. Meisinger, J. S. Schepers, and W. R. Raun. Crop Nitrogen Requirement and
Fertilization, chapter 14, pages 563–612. John Wiley & Sons, Ltd, 2008.

[118] Fernando E. Miguez and Hanna Poffenbarger. How can we estimate optimum fertilizer
rates with accuracy and precision? Agricultural & Environmental Letters, 7(1):e20075,
2022.

226

[119] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. In Yoshua Bengio and Yann LeCun, editors,
International Conference on Learning Representations, 2013.

[120] Alberto Moraglio, Krzysztof Krawiec, and Colin G. Johnson. Geometric semantic
genetic programming. In Carlos A. Coello Coello, Vincenzo Cutello, Kalyanmoy Deb,
Stephanie Forrest, Giuseppe Nicosia, and Mario Pavone, editors, Parallel Problem
Solving from Nature - PPSN XII, pages 21–31, 2012.

[121] G. Morales, J. Sheppard, B. Scherrer, and J. Shaw. Reduced-cost hyperspectral
convolutional neural networks. Journal of Applied Remote Sensing, 14(3):036519, 2020.

[122] Giorgio Morales and John W. Sheppard. Two-dimensional deep regression for early
yield prediction of winter wheat. In SPIE Future Sensing Technologies 2021, volume
11914, pages 49–63, November 2021.

[123] Giorgio Morales and John W. Sheppard. Counterfactual explanations of neural
Network-Generated response curves. In International Joint Conference on Neural
Networks, Queensland, Australia, June 2023.

[124] Giorgio Morales and John W. Sheppard. Counterfactual analysis of neural networks
used to create fertilizer management zones. In International Joint Conference on
Neural Networks, Yokohama, Japan, June 2024.

[125] Giorgio Morales and John W. Sheppard. Univariate skeleton prediction in multivariate
systems using transformers. In European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 107–125, Vilnius, Lithuania, 2024.

[126] Giorgio Morales and John W. Sheppard. Adaptive sampling to reduce epistemic
uncertainty using prediction interval-generation neural networks. In AAAI Conference
on Artificial Intelligence, volume 39, pages 19546–19553, 2025.

[127] Giorgio Morales and John W. Sheppard. Decomposable symbolic regression using
Multi-Set Transformers and genetic programming. In European Conference on Machine
Learning and Knowledge Discovery in Databases (submitted), Porto, Portugal, 2025.

[128] Giorgio Morales and John W. Sheppard. Dual accuracy-quality-driven neural network
for prediction interval generation. IEEE Transactions on Neural Networks and
Learning Systems, 36(2):2843–2853, 2025.

[129] Giorgio Morales, John W. Sheppard, Paul Hegedus, and Bruce D. Maxwell. Improved
yield prediction of winter wheat using a novel two-dimensional deep regression neural
network trained via remote sensing. Sensors, 23(1):489, January 2023.

[130] Giorgio Morales, John W. Sheppard, Amy Peerlinck, Paul Hegedus, and Bruce D.
Maxwell. Generation of site-specific nitrogen response curves for winter wheat using
deep learning. In International Conference on Precision Agriculture, 2022.

227

[131] T. Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio Santiago, Daniel Fais-
sol, and Brenden Petersen. Symbolic regression via neural-guided genetic programming
population seeding. In Neural Information Processing Systems, 2021.

[132] Kajsa Møllersen, Jon Yngve Hardeberg, and Fred Godtliebsen. A probabilistic bag-
to-class approach to multiple-instance learning. Data, 5(2), 2020.

[133] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science
& Business Media, 2012.

[134] Vu Nguyen, Sunil Gupta, Santu Rana, My Thai, Cheng Li, and Svetha Venkatesh.
Efficient Bayesian Optimization for Uncertainty Reduction Over Perceived Optima
Locations. In 2019 IEEE International Conference on Data Mining (ICDM), pages
1270–1275, November 2019.

[135] Vu-Linh Nguyen, Sébastien Destercke, and Eyke Hüllermeier. Epistemic Uncertainty
Sampling. In Petra Kralj Novak, Tomislav Šmuc, and Sašo Džeroski, editors, Discovery
Science, pages 72–86, Cham, 2019. Springer International Publishing.

[136] Vu-Linh Nguyen, Mohammad Hossein Shaker, and Eyke Hüllermeier. How to measure
uncertainty in uncertainty sampling for active learning. Machine Learning, 111(1):89–
122, January 2022.

[137] D.A. Nix and A.S. Weigend. Estimating the mean and variance of the target probability
distribution. In IEEE International Conference on Neural Networks, volume 1, pages
55–60, 1994.

[138] I. M. Oliver, D. J. Smith, and J. R. C. Holland. A study of permutation crossover
operators on the traveling salesman problem. In International Conference on Genetic
Algorithms on Genetic Algorithms and Their Application, pages 224—-230, USA, 1987.

[139] Patryk Orzechowski, William La Cava, and Jason H. Moore. Where are we now?
A large benchmark study of recent symbolic regression methods. In Genetic and
Evolutionary Computation Conference, page 1183–’1190, 2018.

[140] Soumyasundar Pal, Antonios Valkanas, Florence Regol, and Mark Coates. Bag graph:
Multiple instance learning using bayesian graph neural networks. In AAAI Conference
on Artificial Intelligence, volume 36, pages 7922–7930, June 2022.

[141] D. Patŕıcio and R. Rieder. Computer vision and artificial intelligence in precision
agriculture for grain crops: A systematic review. Computers and Electronics in
Agriculture, 153:69 – 81, 2018.

[142] Tim Pearce, Alexandra Brintrup, Mohamed Zaki, and Andy Neely. High-quality
prediction intervals for deep learning: A distribution-free, ensembled approach. In
35th Int. Conf. on Machine Learning, pages 4072–4081, 2018.

228

[143] Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press,
USA, 2nd edition, 2009.

[144] A. Peerlinck. Multi- and Many-Objective Factored Evolutionary Algorithms. PhD
thesis, Gianforte School of Computing, Montana State University, 2023.

[145] Amy Peerlinck, Giorgio Morales, John Sheppard, Paul Hegedus, and Bruce Maxwell.
Optimizing nitrogen application to maximize yield and reduce environmental impact in
winter wheat production. In International Conference on Precision Agriculture, 2022.

[146] Amy Peerlinck and John Sheppard. Addressing sustainability in precision agriculture
via multi-objective factored evolutionary algorithms. In Metaheuristics International
Conference, pages 391–405, 2023.

[147] Amy Peerlinck, John Sheppard, and Bruce Maxwell. Using deep learning in yield
and protein prediction of winter wheat based on fertilization prescriptions in precision
agriculture. In International Conference on Precision Agriculture, 2018.

[148] Jonas Peters, Dominik Janzing, and Bernhard Schlkopf. Elements of Causal Inference:
Foundations and Learning Algorithms. The MIT Press, 2017.

[149] Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago,
Soo K Kim, and Joanne T Kim. Deep symbolic regression: Recovering mathematical
expressions from data via risk-seeking policy gradients. In Proc. of the International
Conference on Learning Representations, 2021.

[150] Riccardo Poli, William B. Langdon, and Stephen Dignum. On the limiting distribution
of program sizes in tree-based genetic programming. In Marc Ebner, Michael O’Neill,
Anikó Ekárt, Leonardo Vanneschi, and Anna Isabel Esparcia-Alcázar, editors, Genetic
Programming, pages 193–204, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[151] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A Field Guide to
Genetic Programming. Lulu Enterprises, UK Ltd, 2008.

[152] Kamrul Hasan Rahi, Hemant Kumar Singh, and Tapabrata Ray. Partial evaluation
strategies for expensive evolutionary constrained optimization. IEEE Transactions on
Evolutionary Computation, 25(6):1103–1117, 2021.

[153] J. Ramsay and B. Silverman. Functional Data Analysis. Springer, 2005.

[154] Patrick A. K. Reinbold, Logan M. Kageorge, Michael F. Schatz, and Roman O.
Grigoriev. Robust learning from noisy, incomplete, high-dimensional experimental data
via physically constrained symbolic regression. Nature Communications, 12(1):3219,
05 2021.

229

[155] Javier Reyes, Ole Wendroth, Christopher Matocha, and Junfeng Zhu. Delineating site-
specific management zones and evaluating soil water temporal dynamics in a farmer’s
field in Kentucky. Vadose Zone Journal, 18(1):180143, 2019.

[156] Cynthia Rudin. Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence, 1(5):206–
215, 2019.

[157] Jakob Runge, Sebastian Bathiany, Erik Bollt, Gustau Camps-Valls, Dim Coumou,
Ethan Deyle, Clark Glymour, Marlene Kretschmer, Miguel D. Mahecha, Jordi Muñoz-
Maŕı, Egbert H. van Nes, Jonas Peters, Rick Quax, Markus Reichstein, Marten
Scheffer, Bernhard Schölkopf, Peter Spirtes, George Sugihara, Jie Sun, Kun Zhang,
and Jakob Zscheischler. Inferring causation from time series in earth system sciences.
Nature Communications, 10(1), 2019.

[158] Annachiara Ruospo and Ernesto Sanchez. On the reliability assessment of artificial
neural networks running on AI-oriented MPSoCs. Applied Sciences, 11(14), 2021.

[159] Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for
extrapolation and control. In International Conference on Machine Learning, pages
4442–4450, 10–15 Jul 2018.

[160] Tárik Salem, Helge Langseth, and Heri Ramampiaro. Prediction intervals: Split normal
mixture from quality-driven deep ensembles. In Jonas Peters and David Sontag, editors,
36th Conf. on Uncertainty in Artificial Intelligence, volume 124, pages 1179–1187, 03–
06 Aug 2020.

[161] Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental
data. Science, 324(5923):81–85, 2009.

[162] Jordan Schupbach, John W. Sheppard, and Tyler Forrester. Quantifying uncertainty
in neural network ensembles using u-statistics. In International Joint Conference on
Neural Networks, pages 1–8, 2020.

[163] Maximilian Seitzer, Arash Tavakoli, Dimitrije Antic, and Georg Martius. On the
pitfalls of heteroscedastic uncertainty estimation with probabilistic neural networks.
In International Conference on Learning Representations, 2022.

[164] U. Shafi, R. Mumtaz, J. Garćıa-Nieto, S. Hassan, S. Zaidi, and N. Iqbal. Precision
agriculture techniques and practices: From considerations to applications. Sensors,
19(17), 2019.

[165] Zhuchen Shao, Hao Bian, Yang Chen, Yifeng Wang, Jian Zhang, Xiangyang Ji, and
yongbing zhang. Transmil: Transformer based correlated multiple instance learning
for whole slide image classification. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S.
Liang, and J. Wortman Vaughan, editors, Neural Information Processing Systems,
volume 34, pages 2136–2147. Curran Associates, Inc., 2021.

230

[166] B. Shashikumar, S. Kumar, K. George, and A. Singh. Soil variability mapping
and delineation of site-specific management zones using fuzzy clustering analysis in
a Mid-Himalayan watershed, india. Environment, Development and Sustainability,
25(8):8539—-8559, 2022.

[167] Durga L. Shrestha and Dimitri P. Solomatine. Machine learning approaches for
estimation of prediction interval for the model output. Neural Networks, 19(2):225–235,
2006.

[168] L. Sifre. Rigid-Motion Scattering For Image Classification. PhD thesis, Ecole
Polytechnique, 2014.

[169] Eli Simhayev, Gilad Katz, and Lior Rokach. Piven: A deep neural network for
prediction intervals with specific value prediction. cs.LG, abs/2006.05139, 2020.

[170] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(56):1929–1958, 2014.

[171] Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. Symbolic physics learner:
Discovering governing equations via monte carlo tree search. In International
Conference on Learning Representations, 2023.

[172] Gilbert Syswerda. Simulated crossover in genetic algorithms. In Foundations of Genetic
Algorithms, volume 2, pages 239–255. Elsevier, 1993.

[173] Dustin Tran, Jeremiah Liu, Michael W Dusenberry, Du Phan, Mark Collier, Jie Ren,
Kehang Han, Zi Wang, Zelda Mariet, Huiyi Hu, et al. Plex: Towards reliability using
pretrained large model extensions. CoRR, abs/2207.07411, 2022.

[174] Leonardo Trujillo, Luis Muñoz, Edgar Galván-López, and Sara Silva. neat genetic
programming: Controlling bloat naturally. Information Sciences, 333:21–43, 2016.

[175] Ho Fung Tsoi, Vladimir Loncar, Sridhara Rao Dasu, and Philip Harris. Symbolnet:
Neural symbolic regression with adaptive dynamic pruning for compression. Machine
Learning: Science and Technology, 2025.

[176] Silviu-Marian Udrescu and Max Tegmark. AI Feynman: A physics-inspired method
for symbolic regression. Science Advances, 6(16):eaay2631, 2020.

[177] Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, R. I. McKay, and Edgar
Galván-López. Semantically-based crossover in genetic programming: Application
to real-valued symbolic regression. Genetic Programming and Evolvable Machines,
12(2):91–119, Jun 2011.

231

[178] M. Valdenegro-Toro and D. Mori. A deeper look into aleatoric and epistemic
uncertainty disentanglement. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pages 1508–1516, Los Alamitos, CA, USA, jun 2022.

[179] Mojtaba Valipour, Bowen You, Maysum Panju, and Ali Ghodsi. Symbolicgpt: A
generative transformer model for symbolic regression. In Neural Information Processing
Systems: Workshop on Efficient Natural Language and Speech Processing, 2022.

[180] T. Van Klompenburg, A. Kassahun, and C. Catal. Crop yield prediction using machine
learning: A systematic literature review. Computers and Electronics in Agriculture,
177:105709, 2020.

[181] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Neural Information Processing Systems, volume 30, 2017.

[182] Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R. Selvaraju, Qing Sun, Stefan
Lee, David Crandall, and Dhruv Batra. Diverse beam search: Decoding diverse
solutions from neural sequence models. ArXiv, abs/1610.02424, 2018.

[183] Marco Virgolin and Solon P Pissis. Symbolic regression is NP-hard. Transactions on
Machine Learning Research, 2022.

[184] M.C. Vuran, A. Salam, R. Wong, and S. Irmak. Internet of underground things in
precision agriculture: Architecture and technology aspects. Ad Hoc Networks, 81:160
– 173, 2018.

[185] Kenneth F. Wallis. The Two-Piece Normal, Binormal, or Double Gaussian Distribu-
tion: Its Origin and Rediscoveries. Statistical Science, 29:106–112, 2014.

[186] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment:
From error visibility to structural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004.

[187] Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient bayesian
optimization. In International Conference on Machine Learning, volume 70, pages
3627–3635, 2017.

[188] K. B. Watkins, J. A. Hignight, R. J. Norman, T. L. Roberts, N. A. Slaton, C. E.
Wilson, and D. L. Frizzell. Comparison of economic optimum nitrogen rates for rice
in arkansas. Agronomy Journal, 102(4):1099–1108, 2010.

[189] Matthias Werner, Andrej Junginger, Philipp Hennig, and Georg Martius. Informed
equation learning. ArXiv, abs/2105.06331, 2021.

232

[190] Ronald J. Williams and David Zipser. A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1(2):270–280, 1989.

[191] M.-J. Willis, H.G. Hiden, P. Marenbach, B. McKay, and G.A. Montague. Genetic
programming: an introduction and survey of applications. In International Conference
On Genetic Algorithms In Engineering Systems: Innovations And Applications, pages
314–319, 1997.

[192] Michael Winikoff and Julija Sardelić. Artificial intelligence and the right to explanation
as a human right. IEEE Internet Computing, 25(2):116–120, 2021.

[193] Anqi Wu, Sebastian Nowozin, Edward Meeds, Richard Turner, José Hernández-Lobato,
and Alexander Gaunt. Deterministic variational inference for robust Bayesian neural
networks. In International Conference on Learning Representations, 2019.

[194] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol
Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural machine
translation system: Bridging the gap between human and machine translation. ArXiv,
abs/1609.08144, 2016.

[195] J. Yao, W. Pan, S. Ghosh, and F. Doshi-Velez. Quality of uncertainty quantification for
bayesian neural network inference. In International Conference on Machine Learning:
Workshop on Uncertainty & Robustness in Deep Learning, 2019.

[196] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander J Smola. Deep sets. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[197] Ashkan Zarnani, Soheila Karimi, and Petr Musilek. Quantile regression and clustering
models of prediction intervals for weather forecasts: A comparative study. Forecasting,
1(1):169–188, 2019.

[198] Matthew D. Zeiler. ADADELTA: An adaptive learning rate method, 2012.
arXiv:1212.5701.

[199] Mojtaba Zeraatpisheh, Esmaeil Bakhshandeh, Mostafa Emadi, Tengfei Li, and Ming
Xu. Integration of PCA and fuzzy clustering for delineation of soil management zones
and cost-efficiency analysis in a citrus plantation. Sustainability, 12(14), 2020.

[200] Wang Zhang, Ziwen Martin Ma, Subhro Das, Tsui-Wei Lily Weng, Alexandre
Megretski, Luca Daniel, and Lam M. Nguyen. One step closer to unbiased aleatoric

233

uncertainty estimation. AAAI Conference on Artificial Intelligence, 38(15):16857–
16864, Mar. 2024.

[201] Xiaoyu Zhang, Zhe Shu, Rui Wang, Tao Zhang, and Yabing Zha. Short-term load
interval prediction using a deep belief network. Energies, 11(10), 10 2018.

[202] Lingxue Zhu and Nikolay Laptev. Deep and confident prediction for time series at
Uber. In IEEE Int. Conf. on Data Mining Workshops (ICDMW), pages 103–110,
2017.

234

APPENDIX: SETGAP COMPARISON RESULTS

235

T
ab

le
A

.1
:

C
om

p
ar

is
on

of
sk

el
et

on
p

re
d

ic
ti

on
re

su
lt

s
(E

1–
E

9)

M
e
t.

P
ro

b
.

P
y
S
R

T
a
y
lo
rG

P
N
e
S
y
m
R
e
S

E
2
E

M
S
T

T
a
rg

e
t
e
(x
)

V
a
r. x

1
c 1
x

1
c 1
x

1
c 1
x

1
+
co
s(
c 2
(c

3
+
c 4
x

1
)2
)

c 1
+
c 2
x

1
+
c 3
si
n
((
c 4

+
c 5
x

1
)2
)

c 1
+
c 2
x

1
+
c 3
si
n
(c

4
+
c 5
x
1)

c 1
x

1
+
c 2

si
n
(c

3
(c

4
+
x

1
))

E
1

x
2

c 1
x

2
c 1
x

2
c 1
x

2
+
co
s(
c 2
(c

3
+
x

2
)2
)

c 1
+
c 2
(c

3
+
c 4
x

2
)

c 1
+
c 2
x

2
+
c 3
si
n
(c

4
+
c 5
x

2
)
c 1
x

2
+
c 2

si
n
(c

3
(c

4
+
x

2
))

x
1

c 1
+
|c

2
+
|c

3
+
x

1
||

c 1
+
c 2
x

1
c 1

+
c 2
x

1
c 1

+
c 2
x

1
+
c 3
(c

4
+
c 5
x

1
)2

c 1
+
c 2
(c

3
+
c 4
x

1
)2

c 1
+
(c

2
+
c 3
x

1
)2

c 2
x
2

√
√

E
2

e
x

2
c 1

c 1
c 1

+
e

c 1
+
c 2
(c

3
+
c 4
x

2
)

c 1
c 2
x

2
+
c 3

+
c 4

c 1
x

2
+
c 2

+
c 3

x
3

c 1
+
c 2
x

3
c 1

+
c 2
x

3
c 1

+
c 2
x

3
c 1

+
c 2
x

3
+
c 3
(c

4
+
c 5
co
s(
c 6

+
c 7
x

3
))

c 1
+
c 2
si
n
(c

3
x

3
+
c 4
)

c 1
+
c 2
si
n
(c

3
x

3
)

c 1
ex

1
|si
n
h
(c

2
x

1
)|

c 2
x
1

c 1
e

c 2
x
1

c 1
e

c 3
x
1

c 1
+
c 2
e

c 3
x
1

c 1
+
c 2
e

c 3
x
1

x
1

c 1
+
c 2
e

E
3

x
2

c 1
c 1

c 1
co
s(
c 2
x

2
)

c 1
+
c 2

co
s(
c 3

+
c 4
x

2
)

c 1
+
c 2

co
s(
c 3

+
c 4
x

2
)

c 1
+
c 2

co
s(
c 3
x

2
)

2
2

2
3

4
2

4
x

1
c 1

+
c 2
x

1
c 1
x

1
—

c 1
+
c 2
|c

3
+
c 4
x

1
+
c 5
x

1
+
c 6
x

1
+
c 7
x

1
|

c 1
(c

2
x
1
+
c 3
)4
+
c 4

c 1
+
c 2
x

1
+
c 3
x

1
+
c 4
x

1

2
2

x
2

c 1
+
c 2
x

2
c 1

—
c 1

+
c 2
|c

3
+
c 4
x

2
+
c 5
x

2
|

c 1
(c

2
x
2
+
c 3
)2
+
c 4

c 1
+
c 1
x

2
+
c 3
x

2
E
4

2
2

3
4

2
4

x
3

c 1
+
c 2
x

3
c 1

—
c 1

+
c 2
|c

3
+
c 4
x

3
+
c 5
x

3
+
c 6
x

3
+
c 7
x

3
|

c 1
(c

2
x
3
+
c 3
)4
+
c 4

c 1
+
c 2
x

3
+
c 3
x

4
+
c 4
x

3

2
2

x
4

c 1
+
c 2
x

4
c 1

—
c 1

+
c 2
|c

3
+
c 4
x

4
+
c 5
x

4
|

c 1
(c

2
x
4
+
c 3
)2
+
c 4

c 1
+
c 2
x

4
+
c 3
x

4

x
1

c 1
+
si
n
(c

2
+
c 3
x

1
)

c 1
—

c 1
+
c 2
co
s(
c 3

+
c 4
x

1
)

c 1
si
n
(c

2
x
1
+
c 3
)
+
c 4

c 1
+
si
n
(c

2
+
c 3
x

1
)

x
2

c 1
+
si
n
(c

2
+
c 3
x

2
)

c 1
—

c 1
+
c 2
x

2
c 1
si
n
(c

2
x
2
+
c 3
)
+
c 4

c 1
+
si
n
(c

2
+
c 3
x

2
)

E
5

2
3

x
3

c 1
+
si
n
(c

2
+
c 3
x

3
)

c 1
—

c 1
+
c 2
x

3
+
c 3
x

3
+
c 4
x

3
c 1
si
n
(c

2
x
3
+
c 3
)
+
c 4

c 1
+
si
n
(c

2
+
c 3
x

3
)

c 2
x
4

si
n

(c
2
x
4
)

x
4
e

—
c 3
x
4

c 2
x

4
c 2
x
4

x
4

c 1
+
e

c 1
e

c 1
+
c 2
e

c 1
e

+
c 3

c 1
+
e

x
1

c 1
c 1

c 1
+
c 2
x

1
c 1

+
c 2
at
an
(c

3
+
c 4
x

1
)

c 1
+
c 2
ta
n
h
(c

3
x

1
)

c 1
+
ta
n
h
(c

2
x

1
)

E
6

x
2

c 1
c 1

c 1
+
x

2
si
n
(c

2
/(
c 3

+
x

2
))

c 1
+
c 2
x

2
+
c 3
x

2
co
s(
c 4

+
c 5
x

2
)

c 1
+
c 2
|x

2
|

c 1
+
c 2
|x

2
|

2
√

√
2

x
3

ta
n
h
(e
xp
(x

3
))

c 1
si
n
(c

2
x

3
)/
(c

3
x

3
+
si
n
(
x

3
))

c 1
c 1

c 1
co
s(
c 2
(c

3
+
x

3
)2
)
+
c 4

c 1
+
c 2
(c
os
(c

3
x

3
))

2
x

1
c 1

+
x

1
c 1

c 1
+
c 2
x

1
c 1

+
c 2

si
n
(c

3
+
c 4
x

1
)2
+
c 5

si
n
(c

6
+
c 7
x

1
)
c 1

+
c 2
/(
c 3

+
si
n
(c

4
x

1
+
c 5
))

c 1
/(
c 2

+
si
n
(c

3
x

1
))

E
7

√
si

n
h

(s
in

(c
2
x
2
))
))
)

2
2

2
2

x
2

c 1
/s
in
h
(s
in
h
(t
an
h
(e

c 1
x

2
+
|x

2
|

(c
1
+
x

2
)/
(c

2
+
co
s(
c 3
(c

4
+
c 5
x

2
)3
))

c 1
(c

2
+
c 3
x

2
)2

c 1
+
c 2
x

2
c 1

+
c 2
x

2

c 1
co

s(
c 2
/x

1
)

4
4

4
x

1
c 1

+
ta
n
h
(c

2
+
co
sh
(x

1
))

c 1
e

c 1
+
c 2
ec

3
|c

4
+
c 5
x

1
|

c 1
+
c 2
/(
c 3
x

1
+
c 4
)

c 1
+
c 2
x

1
/(
c 3

+
c 4
x

1
)

E
8

c 1
+
co
s(
ta
n
(t
an
h
(c

2
/x

2
))
)

c 1
+
co
s(
1/
x

2
)

c 3
|c
4
+
x
2
|

4
4

4
x

2
2

c 1
c 1

+
c 2
e

c 1
+
c 2
/(
c 3
x

1
+
c 4
)

c 1
+
c 2
x

2
/(
c 3

+
c 4
x

2
)

2
2

2
2

x
1

lo
g(
c 1
/(
c 2

+
c 3
x

1
))

c 1
+
lo
g(
c 2
/|
x

1
|)

lo
g(
c/
|x

1
|)

c 1
+
c 2

lo
g(
c 3

+
c 4
x

1
+
c 5
x

1
)

c 1
+
lo
g(
c 2
x

1
+
c 3
)

c 1
+
c 2

lo
g(
c 3

+
c 4
x

1
)

E
9

2
x

2
lo
g(
c 1

+
c 2
x

2
)

c 1
ex
p
(c

2
x

2
)

lo
g(
c
|x

2
|)

c 1
+
c 2

lo
g(
c 3

+
c 4
/(
c 5

+
c 6
x

2
+
c 7
x

2
))

c 1
+
lo
g(
c 2

+
c 3
x

2
)

c 1
+
lo
g(
c 2

+
c 3
x

2
)

236

Table A.2: Comparison of skeleton prediction results (E10–E13)

Prob. Var. PySR TaylorGP NeSymReS E2E MST Target e(x)

E10
x1 sin(c1 x1) c1 x1√ sin(c1 x1) c1 + c2 sin(c3 + c4 x1) c1 + c2 sin(c3 x1) sin(c1 x1)

x2 sin(c1 e
x2) c2c1 e

|x2| sin(c1 e
x2) c1 + c2 sin(c3 + c4 e

c5 x2) c1 + sin(c2 e
c3 x2) sin(c1 e

x2)

E11
x1 c1 x1 c1 x1 c1 x1 c1 x1 c1 + c2 x1 c1 x1

x2
4c1 log(x2) c1 log(|x2|) 4c1 log(x2) c1 + c2 log(c3 + c4 |c5 + c6 x2|) 2c1 + c2 log(c3 x2)

4c1 log(x2)

E12
x1 c1 + sin(x1) |x1| c1 + c2 x1 c1 + c2 x1 c1 + c2 x1 c1 + c2 x1 c1 + c2 x1

x2 c1 + c2 sin(c3/x2)
c1 sin(c2/x2)+
√
x2 sin(c3/x2)√

c1 sin(1/x2)+

x2 sin(1/x2)
c1 sin(c2/(c3 + c4 x2)) c1 + c2 sin(c3/x2)

c1+

c2 sin(1/x2)

E13
x1 c1

√
x1 c1 + c2

√
x1e c1 + c2 x1 c1 + c2 log(c3 + c4 x1) c1 + c2

√
c3 + x1 c1

√
x1

x2
2c1 log(x2)

c1 + log(|x2|)+
c2 log(|x2|)

2c1 log(x2) c1 + c2/(c3 + c4 |c5 + c6 x2|) c1 + c2 log(c3 (c4 + x2)
2) 2c1 log(x2)

Table A.3: Comparison of predicted expressions — Iteration 1
Eq. PySR TaylorGP NeSymReS E2E SeTGAP

0.59x0x1+ 1.08(0.56x0x1 − 0.03x0 + 0.02x1− 0.61x0x1+
E1 0.61x0x1 0.64x0x1

2cos(0.01(x1 − x0 − 0.08)2) sin(0.01x0 + 8.6x0 + 0.45)− 0.01) 1.15 sin((2.24x0 − 1.5)(x1 − 0.68))

20.41x2+ 0.06x0 − 0.51x0 − 0.22x1 cos(0.18x2 √
2−0.5x0 + 0.001x1 −x0 + 0.40x2+ 0.06x0 − 0.5x0 + (3.37 0.1x1 + 1

E2 ||x0 − 3.51|−1.95| −0.001x1
+1.43)− 0.01x1 + 0.01x2−

e+0.39x2 + 8.62 e + 5.88 −0.19)(sin(0.2x2) + 0.01) + 6.49
+4.11 3.25 cos(0.18x2 + 1.43) + 6.56

1.52x0+0.14e
x0 1.5x0E3 0.34ex0|sinh(0.47x0)| 0.23x0e 9.10e0.72x0 cos(0.15x1) 0.15e + 0.5 sin(3x1 − 4.71)

0.52 cos(3.45x1 + 0.05) + 0.11

4 20.001|8.99(−0.88x1 + (x0 + 0.01)2 0.01x0 − 0.02x0x1 − 0.001x0 + 0.01
20.21x0 − 0.18x1+ 2E4 0.29x — 2 4 2

0 +0.62)2 + 9.72(−x3+ x1 + 0.01x2 + 0.01x3−20.21x2 − 0.18x3 − 0.76
20.98(x2 + 0.01)2 + 0.01)2|+0.0023 (0.02x2 + 0.004)(x3 − 0.11)− 0.02

1.2x3e − 0.91 cos((2.62x0 + 0.15)
1.2x3 sin(0.87x3)E5 e + sin(x0 + x1x2) 0.51ex3e — 1.2x30.999e − sin(x0 + x1x2 + 9.42)

(24.66x1 + 1.24))− 0.05

x2)
sin(0.34x2

2)
0.01x1(−7.5 cos(15.41x1 + 0.21)−

E6 tanh(e − √ √ 2−0.39x0 + x1 sin(x0 − 0.001x2) cos(0.2x2 + 0.05)|x1|+ tanh(0.5x0)− |x2|+sin(|x2) x1 0.18) + 0.69 atan(0.75x0 + 0.05) + 0.47

2(0.56− 0.59x0)/(sinh(sinh √ 2 (−0.03x1 − 0.03)(0.34x1 − 0.35)
2 0.12x0+x1 4.53−4.54x2

E7 |x1| − x 1
1

sinh(sin(6.28x1))))))
cos(3.1(−0.02x1−1)2)−0.31 4.54 sin(6.28x0+6.28)+6.81)

(tanh(e (41.59(1− 0.5 sin(6.74x0 + 0.23))2 + 40)

19.76(tanh(cosh(x0)− 1.04)+ 2− 4 3 2 −
−0.06|x02.73−0.14||0.59x1+0.1| 19.31x0+0.12x0+0.42x0+19.72E8 2 cos(sin(1.69x0)/(x0x1)) + 0.71 2.01− 1.05e

5.33tanh(cosh(x1)− 1.04))
5.44x4 2

1−0.09x1+5.34

2log(0.79)− 2− 0.60 log(13.36(0.004− x0)2 − log(13.95x0 + 3.48)+|x0|E9 log(x1+0.5
2) 1.12 log(|x1/x0|)− 1.37

0.5+2x0 −x12.36e (1− 0.13/(−0.06x1 − 0.02))2 + 0.8) |log(8.32x1 + 4.18)|−0.18

√ 1.03x1)−0.98 sin((0.06− 2.86e
x1) − |x1|E10 sin(x0e x0e sin(x0e

x1) 0.999x1)sin(x0e
(0.32x0 + 0.002))− 0.007

−0.74x0(−5.62 log(0.07|−6.94x1 + 0.13|
4 4E11 x0 log(x) 4x0 log(|x1|) x0 log(x) 2
1 1 1.998x0 log(x1)

+0.01)− 3.74)√
(x0 + |x1|−x0E12 sin()|x0|+0.99 (x0 + x1) sin(1/x1)x1/0.12

(0.79x0 − 0.04) sin(4.5/(3.4x1 + 0.08) x0 sin(1/x1) + 1
0.91) sin(0.73)

x1√ √
9√ e x0 log(|x1|)+ (−90.0 +)

2 2 0.12|3.4x1+0.12|+0.04 √
E13 x0 log(x1) 0.31x0 + 3.19 log(x1)− 3.25 2 x0 log|x1|

log(|x1|) + 0.58 (0.09− 0.1 log(0.17x0 + 3.29))

237

T
ab

le
A

.4
:

C
om

p
ar

is
on

of
p

re
d

ic
te

d
ex

p
re

ss
io

n
s

—
It

er
at

io
n

2

E
q
.

P
Y
S
R

T
a
y
lo
rG

P
N
E
S
Y
M

R
E
S

E
2
E

S
e
T
G
A
P

E
1

0 .
60

7x
0
x
1

0.
59

7x
0
x
1

0.
58

6x
0
x
1

+
co

s
(0
.5

93
(x

0
−

0.
97

9x
1
)2

)

√
(0
.0

81
x
0
−

17
.9

75
)(

0.
05

1
0.

00
8x

1
+

1
+

0.
00

6)

co
s(

1.
74

4(
0.

04
5(

0.
00

1|
15

81
02

01
.6

01
(0
.2

92
x
0

+
1)

3

+
0.

01
6|

+
1)

2
+

1)
0
.5
−

0.
00

7)
+

(2
.7

09
x
0
−

0.
01

4)

(0
.2

23
x
1

+
0.

00
2)

0.
61
x
0
x
1
+

1.
04

1
si

n
((

2.
24

3x
0
−

1.
51

2)
(x

1
−

0.
66

9)
+

0.
00

5)

E
2

0 .
72

6x
0
−

0.
75

9x
2

+
12
.9

44
ta

n
h

(0
.1

07
x
2
)−

4.
57

2
+

11
.2

25
e−

0
.0
9
9
x
0

√ √
2.

95
(

e
lo
g
(2
x
1
)
+

0.
20

6
+
e−

0
.2
9
4
x
0

+
et

a
n
h
(x

2
)
+
et

a
n
h
(l
o
g
(x

0
))

+

si
n
0
.5

(1
.8

21
((
−
el
o
g
(x

0
ta
n
h
(x

0
)+

x
1
)0

.5

−
e−

0
.2
9
4
x
0
)0

.5
+

0.
17

9)
0
.5

+
et

a
n
h
(x

2
)
+
et

a
n
h
(l
o
g
(x

0
))

+
si

n
0
.5

(x
2
)

+
e−

0
.2
9
4
x
0
)

+
e−

0
.2
9
4
x
0
)0

.5

−
x
0

+
0.

00
1e

0
.5
9
7
x
1

+
es

in
(0
.1
7
5
x
2
)
+

7.
26

7

−
0.

00
2x

1
+

((
0.

01
6x

0
+

0.
00

4)
(1
.2

31
x
0
−

9.
40

7)
+

si
n

(0
.2

35
x
2
−

0.
03

1)
−

0.
00

7)

(0
.0

04
x
0

+
0.

08
7x

1
−

0.
08

1x
2

+
3.

31
6)

+
6.

19

2
√

−
0.

49
7x

0
+

0.
06

3x
0

+
(0
.6

48
0.

1x
1

+
1+

0.
00

2)
(4
.9

13
si

n
(0
.2

05
x
2
)

+
0.

00
3)

+
6.

49
7

E
3

0.
15
e1

.5
x
0

+
0.

5
co

s
(3
.0
x
1
)

−
x
0
−

(−
x
0
−

0.
86

8(
ex

0
)0

.5
+
ex

0
)0

.5
+

ex
0
−

co
s

(c
os

0
.5

(x
1

x
0
))

+
0.

09
2

0.
58

1e
x
0
−

0.
46

3
si

n
(1
.1

04
(0
.0

03
x
1

+
1)

2
)

√
0.

17
7

(0
.5

8e
3
.1
3
2
x
0

+
1+

0.
48

6
co

s
(4
.7

06
(x

1
+

0.
01

6)
2
−

0.
06

6)
−

0.
10

4

0.
15

1e
1
.4
9
9
x
0

+
0.

49
9

si
n

(3
x
1

+
1.

57
4)

E
4

0 .
09

1
co

sh
(x

2
)

+
co

sh
(0
.0

64
x
2 0
−

0.
05

2x
1
−

0.
05

2x
3

+
1.

15
4)
−

1.
91

4

√
x
0

lo
g

(x
0
)

+
x
2
−
et

a
n
h
(l
o
g
(x

2
))

—
0 .

00
2|

31
.1

63
x
3

+
5.

52
4(
x
0

+
0.

02
3)

4
+

5.
49

8(
0.

98
5x

1
−

(x
2
−

0.
03

8)
2

+
0.

04
2)

2
−

1.
46

4|

−
0.

02
x
2 0
x
1
−

0.
00

4x
2

4
+

0.
01
x

2
0

0
+

0.
01
x
1

−
0.

02
x
2 2
x
3

+
0.

01
x
4 2

+
0.

01
x
2 3

+
0.

01

E
5

e1
.2
x
3

x
0
.5

x
3

e
x
3
)

3
+

si
n
0
.5

(0
.0

56
e

—
0.

96
e1

.2
1
8
x
3

+
0.

92
7

si
n

(2
21
.7

95
x
1

+
27
.6

68
)
−

0.
00

4
e1

.2
x
3
−

si
n

(x
0

+
x
1
x
2

+
9.

43
)

E
6

co
s
(0
.2
x
2 2
)

co
s
(1
.9
2
7
ta
n
h
(t
a
n
h
(0
.2
8
1
x
1
))
)

+
ta

n
h

(x
0
)

4
.8
3
1
si
n
(x

2
)

ta
n

h
(x

0
)

+
0.

32
7

+
x
2

0.
14

9x
0

+
x
1

si
n

(0
.2

9x
1

+
x
2

x
1
)

(5
.9

71
|0
.1

69
x
1
−

0.
00

5|
+

0.
14

)

co
s(

(1
.5

31
−

17
.0

89
x
2
)(
−

0.
01

2x
2
−

0.
00

9)
)+

0.
8

ar
ct

an
(0
.6

95
x
0

+
0.

19
6)
−

0.
01

−
(0
.9

97
|x

1
|+

0.
00

8)
si

n
(0
.2

01
x
2 2
−

1.
61

1)
+

ta
n

h
(0
.4

92
x
0
)
−

0.
00

8

E
7

−
x
2 1

si
n

h
(0
.4

92
co

s
(6
.2

74
x
0

+
1.

57
4)

+

0.
77

8)
+

1.
04

9

−
0.

97
4x

2 1
+
|x

1
|0.

5
+

0.
00

8
0
.2
8
9
x
0
+
x
2 1

co
s
(2
.6
6
7
(0
.1
3
1
x
1
−
1
)2
)−

2
.0
4
4

(0
.0

09
si

n
(7
.7

46
x
0

+
0.

02
5)

+
7.

45
4)

(0
.0

02
(0
.0

55
x
0
−

1)
3
−

0.
86

3(
x
1
−

0.
00

1)
2

+
0.

69
6)
/(

6.
13

si
n

(7
.7

46
x
0

+
0.

02
5)

+
9.

52
)

2
.7
8
5
x
2 1
+
0
.0
5
si
n
(6
.2
8
3
x
0
−
3
.1
4
9
)−

2
.7
9
3

2
.7
7
si
n
(6
.2
8
3
x
0
−
3
.1
4
9
)−

4
.1
6
7

E
8

2 .
03

6
co

sh
(t

an
h

(x
0
))

+

3.
34

co
sh

(t
an

h
(t

an
h

(x
1

ta
n

h
(x

1
))

))
−

5.
5

ta
n
h
(x

1
)

co
s
(t
a
n
h
(x

0
))

si
n
(
x
0

x
1
)

co
s

(
x
0

)
+

0.
62

9

−
1.

35
ar

ct
an

(−
0.

09
6|

2.
43

3x
1

+
(0
.3

28
x
0
−

0.
01

)

(−
2.

09
4x

1
+

(0
.0

08
−

1.
79

6x
0
)(

0.
46

5
−

13
.8

1x
1
)

(−
0.

83
5x

1
−

0.
03

8)
+

0.
12

8)
+

0.
11

3|
−

0.
04

)
−

0.
03

5

2
−

1
2
.1
6
2

−
0
.0
2
6
x
1
+
0
.1
3
2
x
2

4
+
0
.0
8
4
x

4
+
1
2
.0
0
8
x

+
1
2
.1
4
4
−

1
1

1

1
4
.3
7
3

1
4
.1
1
3
x
4 0
+
0
.2
3
2
(−

x
0
)2
+
1
4
.3
6
1

E
9

ta
n

(1
.0

44
co

s
(0
.6

27
x
0
)

+
0.

24
2)

+

0
.5

ta
n

(c
os

(e
co

s
(0
.8
9
3
x
1

))
)
−

2.
11

7

−
0.

90
6

lo
g

(|x
0
|)

+
lo

g
(|x

1
|)

ta
n

h
(x

1
)
−
|x

0
+

0.
11

9|
0
.5

lo
g

(|
x
1

x
0
|)
−

1.
27

2
(1
.9
−
0
.6

lo
g
(1
3
.2
1
4
(x

0
+
0
.0
0
1
)2
+
0
.6
))
(0
.2
3
x
1
+
0
.2
3
1
)−

0
.6

0
.2
3
x
1
+
0
.2
3
1

−
lo

g
(3

0.
04

2x
2 0

+
7.

50
9)

+

|lo
g

(1
3.

19
x
1

+
6.

59
)|+

0.
13

E
10

si
n

(x
0
ex

1
)

si
n

(x
0
ex

1
)

si
n

(x
0
ex

1
)

−
0.

02
x
0
−

0.
98

2
si

n
((

29
.6

12
x
0

+
0.

10
6)

(1
0.

59
2e

0
.5
7
1
x
1

−
0.

03
3)

(0
.0

17
co

s
(0
.0

7e
0
.9
0
2
x
1
−

4.
53

)
+

0.
00

2)
)
−

0.
00

3

si
n

(x
0
ex

1
)

E
11

2x
0

lo
g

(x
2 1
)

4x
0

lo
g

(|x
1
|)

x
0

lo
g

(x
4 1
)

x
0
(6
.6

69
lo

g
(0
.1

9(
|2

2.
15

8x
1

+
0.

25
5|

+
0.

11
1)

0
.5

−
0.

01
)

+
0.

1)

2x
0

lo
g

(x
2 1
)

E
12

x
0

si
n

(1
.0 x
1
)

+
1.

0
0.

75
2x

0
ta

n
h

(0
.9
8
5

x
1

)
+

0.
75

2
(x

0
+
x
1
)

si
n

(
1 x
1
)

0.
99

7
−

7.
62

si
n

((
0
.1
3
1
x
0
−
0
.0
0
1
)(
0
.0
0
4
x
1
−
6
.7
)

6
.6
6
1
x
1
+
0
.1
3
7

)
x
0

si
n

(
1 x
1
)

+
1.

0

E
13

x
0
(t
a
n
(s
in
h
(s
in
h
(c
o
sh

(t
a
n
h
(0
.3
0
9
co

sh
(x

1
))
))
))
+
7
.7
0
3
)

x
0
+
8
.7
6
6

√ 2
x
0

lo
g

(|x
1
|)

0.
23

1x
0

+
lo

g
(x

2 1
)

(0
.0

91
lo

g
(0
.1

74
x
0

+
0.

77
2)

+
0.

08
6)

(2
7.

6
lo

g
(0
.7

11
(x

1
+

0.
04

3)
2

+
0.

13
)
−

0.
09

9)

√
2.

0
x
0

lo
g

(|x
1
|)

238

T
ab

le
A

.5
:

C
om

p
ar

is
on

of
p

re
d

ic
te

d
ex

p
re

ss
io

n
s

—
It

er
at

io
n

3
E
q
.

P
Y
S
R

T
a
y
lo
rG

P
N
E
S
Y
M

R
E
S

E
2
E

S
e
T
G
A
P

0.
60

7x
0
x
1
+

0.
25

5x
0
(2
.3

99
x
1

+
0.

03
4)

+
0.

60
7x

0
x
1
+

E
1

0.
6x

0
x
1

0.
58

6x
0
x
1

+
co

s
(0
.5

85
(0
.9

91
x
0
−
x
1
)2

)

1.
1

co
s

(−
2.

25
x
0
x
1

+
1.

5x
0

+
1.

5x
1

+
0.

57
1)

1.
11

co
s

(3
08

9.
01

4x
0

+
10

35
.3

98
)
−

0.
00

6
1.

12
3

si
n

((
2.

24
3x

0
−

1.
49

6)
(x

1
−

0.
65

4)
+

0.
01

4)

(0
.7

76
−

0.
11

1x
0
)(

0.
17

1x
1

+
(0
.1

74
x
0

+
0.

01
9)

−
si
n
(0

.1
2
8
x
0
)

ee
+

(0
.0

01
x
2
−

0.
07

)(
−

0.
49

9x
0

+
0.

04
2

co
s(

1.
68

9x
1

+
50
.3

88
)

−
0.

5x
0

+
0.

06
2x

2 0
+

E
2

−
0.

50
3x

0
+

0.
00

1x
1

+
0.

21
1x

2
+

8.
60

7
−
x
0

+
0.

38
4e

0
.0
2
4
x
1

+
es

in
(0
.1
7
5
x
2
)
+

6.
81

3
√

ta
n
h
(x

2
)

e
√

1.
21

4e
+

ta
n

h
(x

1

x
2
)

+
42
.2

71
)

+
0.

01
7)
−

2.
93

co
s(

(2
.1

84
x
1

+
86
.2

43
)

(3
.1

63
0.

1x
1

+
1

+
0.

00
1)

si
n

(0
.2
x
2
)

+
6.

51
3

(0
.0

25
si

n
(0
.1

16
x
2
−

0.
03

8)
+

0.
01

6)
)

+
6.

62

0.
15
e1

.4
9
9
x
0
+

0.
34

6e
x
0

lo
g
(1
.3

48
|(−

0.
24

7x
0

+
ex

0
0.

11
3e

1
.5
9
4
x
0
+

E
3

0.
58

2e
x
0
−

0.
74

9
si

n
(0
.5

7(
1
−

0.
00

1x
1
)2

)
0.

15
1e

1
.4
9
7
x
0
−

0.
5

si
n

(3
.0

04
x
1
−

7.
85

4)

0.
49

7
co

s
(3
.0

01
x
1

+
1
.5
5
7

)
0
.5
|s
in

(x
1
)|
0
.5

x
0
+
2
2
.2
9
1

−
0.

24
7e

)0
.5
|)

+
0.

10
7

0.
51

1
co

s
(3
.0

8(
x
1

+
0.

03
2)

2
+

0.
00

8)
+

0.
13

6

−
0.

00
4x

0
−

0.
02
x
2 0
x
1
+

2
2
.6
2
8
x
1
si
n
(x

2
)

−
0.

02
x
2
(

x
2

+
x
3
)−

1
1

0.
01

7(
−
x
0
)2

+
0.

00
9(
−
x
0
)4

+
0.

00
8(
−
x
1
)2

+
E

4
x
0

+
x
2
−
|x

0
|4
|x

2
|4

+
0.

77
8

—
0.

0

0.
00

7(
x
1
−

13
.4

01
)(

co
sh

(x
0
)

+
co

sh
(x

2
))

0.
01

(−
x
2
)4

+
0.

01
1(
−
x
3
)2
−

(0
.0

13
x
2 2

+
0.

00
3)

(1
.5

75
x
3

+
0.

61
4)
−

0.
02

4

0.
87

1e
1
.2
5
3
x
3

+
0.

98
1

co
s(

88
.5

61
(0
.0

14
|3
.1

37
x
1
+

√
2e

x
3
−

lo
g
(3
ex

3
+

0.
85

6
e(

x
3
) |x

3
|−

1.
00

6e
1
.2
0
1
x
3

+
1.

00
6

si
n

(1
.0

08
x
0
+

E
5

e1
.2
x
3

+
si

n
(x

0
+
x
1
x
2
)

—
31

75
28

66
.2

96
(0
.1

04
ar

ct
an

(0
.0

87
x
2
+

√
lo

g
(2
.3

2e
x
3

+
0.

85
6

e(
x
3
) |x

3
|)
−

0.
26

)
−

0.
26

(1
.0

05
x
1
−

0.
00

6)
(x

2
+

0.
02

9)
+

12
.4

51
)
−

0.
00

7

5.
50

8)
−

1)
2
−

2.
46

5|
−

1)
0
.5
−

0.
00

6)
+

0.
13

(0
.0

02
si

n
(0
.8

16
x
1

+
0.

61
6)

+
0.

15
1)

2
x
1
si
n
(x

2
)

E
6

|x
1
|c

os
(0
.2
x

)
+

ta
n

h
(0
.5

02
x
0
)

+
co

s
(x

2
)

+
ta

n
h

(x
0
)

0.
14

4x
0

+
x
1

si
n

(0
.0

65
x
1

+
x
2
)

2
2

x
2
ta
n
h
(x

1
)

x
1

1.
00

1
co

s
(0
.2
x
2

+
0.

01
)|x

1
|+

1.
0

ta
n

h
(0
.5
x
0
)

+
0.

00
2

(0
.0

36
x
1

+
co

s
(0
.7

11
(0
.0

14
−
x
2
)2
−

0.
57

3)
+

3.
99

5)

(0
.0

02
(1
−

0.
25

6
si

n
(0
.1

83
|−

32
.4

68
x
0
+

√
2

−
0
.7
4
3
si
n
(6
.2
7
8
x
0
))

+
1

co
sh

(1
.0

55
e

2
0
.0
7
2
x
0
+
x
2

−
0.

97
4x

+
|x

1
|

1
5
.1
8
x
2 1
−
5
.1
8

E
7

−
0.

41
2x

1
1

co
s
(3
.0
9
9
(0
.0
1
2
x
1
−
1
)2
)−

0
.2
5
2

0.
04

7x
1

+
14
.2

84
|−

0.
29

3)
)3
−

0.
02

6)
(−

0.
04

3x
0
+

5
.1
8
si
n
(6
.2
8
3
x
0
+
3
.1
4
2
)−

7
.7
7

19
.2

94
(x

1
+

0.
01

7)
2
−

0.
54

3)

2.
04

6
co

sh
(t

an
h

(x
0
))

+
(

x
0
)

2.
0
−

1
4
.4
8
5

1
1

si
n
(
x
1
)

0
.1
4
2
x
2
+
1
4
.3
7
(−

x
0
)4
+
1
4
.4
6
6
+

0
E

8
1.

14
8|
x
0
|4
|x

1
|4
−

0.
10

5
co

s
x
0

+
0.

69
0.

86
5

2.
04

6
ta

n
h

(
x
1

)
−

3.
19

6
1
3
.0
7
4

ta
n
h
(s
in
h
(1
.8
7
5
x
1
))

−
1
3
.0
8
1
x
4 1
−
1
3
.0
7
4

√
1.

17
2
|x

1
|−

1.
51

8
si

n
h

(s
in

h
(t

an
(t

an
h

(
√

(
)

−
0.

09
8
−

0.
05

2(
−

0.
00

3(
0.

02
9x

1
−

1)
3

+
0.

00
5+

−
0.

99
9

lo
g

(1
1.

66
8x

2 0
+

2.
91

)+
|lo

g
(0

.5
6
8

0
.2
8
6
|x

1
|

E
9

−
lo

g
(|x

0
|)

+
ta

n
h

(l
og

(|x
1
|))
−

|x
0
|
)|

lo
g

|x
0
|

1.
73

9e
co

s(
co

s(
0
.2
1
7
x
0
)
+

co
s

(t
an

h
(x

0
))

))
))

)
+

2.
23

2
6
.9
3

−
0
.0
0
1
x
0
−
5
1
.1
2
6
x
1
+
(3
.2
1
−
0
.0
8
5
|3
2
.0
8
1
x
0
−
1
.0
8
1
|)
(2
.0
6
8
x
1
−
6
9
.7
1
3
)+

1
2
6
.3
9
9
)

1.
00

6|
lo

g
(1

3.
4x

1
+

6.
83

4)
|−

0.
86

1

E
10

si
n

(x
0
ex

1
)

si
n

(x
0
ex

1
)

si
n

(x
0
ex

1
)

1.
0

si
n

(0
.0

35
x
0

(2
6.

26
e1

.1
6
x
1
−

0.
1)

)
−

0.
00

1
1.

0
si

n
(1
.0
x
0
ex

1
)

(0
.0

58
|1

5.
4

ar
ct

an
(0
.2

58
x
1

+
0.

00
8)
−

0.
00

9|
−

0.
00

5)
E

11
2x

0
lo

g
(x

2
)

4.
54

5x
0

lo
g

(|x
1
|)

4
x
0

lo
g

(x
)

2
1

1
2.

0x
0

lo
g

(x
1
)

(−
0.

00
6x

0
+

59
.4

si
n

(0
.1

68
x
0
−

0.
00

1)
+

0.
01

1)

(√
)

()
2.

77
lo

g
|x

0
+
x
1
|

()
(

(
))

()
E

12
x
0

si
n

1
.0

+
1

(x
0

+
x
1
)

si
n

1 x
1

7.
5

si
n

0.
00

1x
0

0.
1
−

2
4
.6

−
0
.1
5
9
x
1
−
0
.0
0
5

+
1.

0
1.

0x
0

si
n

1
x
1

x
1

+
1.

0
(

)
0
.5
(x

0
+
x
1
)

ta
n

h
x
1

2
2

√
√

1.
08

lo
g
(0
.0

2
(−
x
0
−

0.
82

5)
(−
x
1
−

0.
05

7)
2
)

2
lo

g
(|x

1
|)
|x

0
|

2
√

E
13

x
0

lo
g

(x
0.

24
1x

0
+

lo
g

(x
)

2
1

1
1.

0x
0

lo
g

(x
1
)

2
(−
x
1
−

0.
05

6)
+

0.
10

1)
+

0.
09

239

T
ab

le
A

.6
:

C
om

p
ar

is
on

of
p

re
d

ic
te

d
ex

p
re

ss
io

n
s

—
It

er
at

io
n

4
E
q
.

P
Y
S
R

T
a
y
lo
rG

P
N
E
S
Y
M

R
E
S

E
2
E

S
e
T
G
A
P

E
1

0 .
60

8x
0
x
1
+

1.
1

co
s

(1
.0

76
(1
.0

45
x
0
−

0.
69

7)
(2
x
1
−

1.
33

3)
−

1.
57

1)

0.
60

2x
0
x
1

0.
58

6x
0
x
1

+
co

s
(0
.5

86
(x

0
−

0.
98

8x
1
)2

)
0.

03
x
0
(1

9.
97

7x
1

+
0.

32
7)
−

1.
1

co
s

(3
1.

76
8x

1
+

2.
11

8)
+

0.
01

6

0.
60

7x
0
x
1
+

1.
1

si
n

((
2.

25
x
0
−

1.
48

9)
(x

1
−

0.
66

3)
)

E
2

(0
.1

98
x
1

+
2.

98
5)

si
n

(0
.2

01
x
2
)+

(
0
.1
6
2
x
0
)
−

4.
76
)

co
sh

0.
83

6e
ta
n
h
(2

.0
2
e

√
1.

93
6

x
0

(t
an

h
(x

0
)
−

0.
83

7)
+

1.
93

6(
lo

g
(e

x
2

+
11
.1

11
si

n
(c

os
(e

x
0
))

+

√ ∣
(

√
)∣

∣
∣

11
.1

11
∣x 0

x
2

+
3.

14
7
|x

0
|+

0.
98

4
∣))0.5

−
x
0

+
es

in
(x

2
)
+

7.
28

9

0.
07

5x
2 0
−

0.
44

3x
0

+
0.

01
4x

1
x
2
+

0.
00

2x
1
−

0.
00

2x
2 2

+
0.

08
3x

2
+

3.
07

si
n

(0
.2

27
x
2

+
0.

02
5)

+
6.

23

−
0.

5x
0

+
0.

06
3x

2 0
+

(
√

)
3.

14
8

(0
.1
x
1

+
1)

+
0.

01
2

si
n

(0
.2

04
x
2
)

+
6.

49
3

E
3

1
.7
5
3
x
0
−
5
.2
5
1

13
.4

57
e

c
o
sh

(t
a
n
h
(c

o
s
(1

.5
2
5
x
1
))
)

−
x
0

+
ex

0
−

√ ∣
√

√
∣

∣
∣

∣x 0−
ex

0
−

|x
0
|+

0.
78

5
|e

x
0
−

0.
08

3|
∣

0.
58

4e
x
0
−

0.
41

1

2
2

0.
10

7x
0

+
0.

15
6

(0
.3

18
x
0

+
1)

(x
0
−

0.
00

2)

2
(|0
.2

79
x
0

+
0.

57
8|

+
0.

13
3)
−

0.
50

1
si

n
(0
.0

91
x
0

+
3.

57
2x

1
−

1.
27

3)
+

0.
15

2

0.
14

7e
1
.5
0
8
x
0

+
0.

5
si

n
(2
.9

99
x
1

+
1.

57
1)

+
0.

00
2

E
4

0 .
09

1x
1

(c
os

(0
.6

43
x
0
)
−

1.
80

3)
−

0.
04

4x
3

co
sh

(0
.6

5x
2
)+

0.
09

1
co

sh
(x

0
)

+
0.

09
1

co
sh

(x
2
)
−

0.
02

7

x
2

ta
n
h
(x

2
)
+

√
lo

g
(|x

0
|)
|x

0
|−

1.
57

1

—

(
2

) 2
(0
.0

95
−

0.
00

1x
1
)

(0
.1

0.
55

9x
1
−

(x
0
−

0.
00

3)
+

0.
03

7

+
0.

07
3)

+
0.

03
6(
−

0.
52

4x
3

+
(0
.2

04
x
0
−

0.
00

1)
(0
.1

42
x
2

+
0.

01
3)

+

(0
.0

17
x
2

+
0.

00
1)

(3
2.

56
5x

2
+

1.
16

9)
+

0.
02

4)
2
−

0.
00

1

−
0.

02
x
2 0
x
1

+
0.

01
1x

4 0
+

0.
00

9x
2 1
+

2
2

4
0.

01
1x

3
−

0.
01

3
(−
x
0
)

+
0.

00
9

(−
x
2
)
−

(0
.0

35
x
2 2
−

0.
00

2)
(0
.5

84
x
3
−

0.
46

)
−

0.
01

6

E
5

e1
.2
x
3

+
si

n
(x

0
+
x
1
x
2
)

√
ex

3
|x

3
|+

ta
n

h
(0
.5

15
ex

3
−

√
0.

33
1

si
n

(
ex

3
|x

3
−

0.
66

2|
))

—

(
)

0.
96
e1

.2
1
x
3
−

0.
96

3
si

n
(−

0.
00

1x
0

0.
03

+
9
0
.6

0
.2
1
6
x
1
−
0
.2
3
5

+

0.
55

5x
1

+
0.

03
x
2

+
(0
.7

37
−

6.
77

8x
0
)

(0
.0

07
x
1
−

1.
38

)
+

0.
89

8)
+

0.
05

5

0.
99

7e
1
.2
0
1
x
3

+
0.

99
9

si
n

(x
0
+

1.
0x

1
x
2

+
0.

01
7)

+
0.

00
4

E
6

√ (x
2

2
1
)

co
s

(0
.2
x
2
)

+
ta

n
h

(0
.5
x
0
)

(
0
.5
)

−
lo

g
(|x

2
|)

+
|x

1
|

(c
os

(x
2
)

+
0.

60
4)

+

co
s

(x
2
)

+
ta

n
h

(0
.1

42
x
0
)

(
)

0.
17

3x
0

+
x
1

si
n

0.
28

4x
1

+
x
2

x
1

0.
01

1x
1
−

(1
.5

7
−

0.
00

1x
2
)

ar
ct

an
(−

0.
15

5x
0
+

(0
.0

55
si

n
(0
.1

73
x
1

+
0.

03
1)
−

0.
00

5) 2
(5

3.
8

co
s(

0.
17

1x
1
−

0.
17

2
(x

2
+

0.
07

5)
+

0.
01

1)
+

0.
00

6)
+

0.
00

4)
−

0.
00

6

0.
99

7
co

s
(0
.2

02
x
2 2

+
6.

23
6)
|x

1
|+

1.
0

ta
n

h
(0
.5
x
0
)

E
7

−
1
.0
x
2 1
+
co

s
(0
.0
1
1
x
1
si
n
(6
.2
8
3
x
0
))

si
n
(6
.2
8
3
x
0
)+

1
.5

2
0
.5

−
0.

97
4x

1
+
|x

1
|

0
.0
5
9
x
0
+
x
2 1

co
s
(1

.5
7
7
(−

0
.6
6
8
x
1
−
1
)3

)−
1
.8
6
2

(
2

)
11
.3

93
(x

1
−

0.
12

8)
+

11
.8

49

2
(−

0.
02

(−
0.

02
1

co
s(

12
54
.6

32
(1
−

0.
52

8x
0
)

+

0.
17

3)
−

1)
2
−

0.
02

2)

5
.9
4
x
2 1
−
5
.9
7
9

−
5
.9
4
1
si
n
(6
.2
8
3
x
0
−
6
.2
8
3
)−

8
.9
1
−

0.
00

4

E
8

(
√

)
4.

40
4

ta
n

h
co

sh
(0
.8

69
x
0
)

ta
n

h
(c

os
h

(x
1
))

ta
n

h
(c

os
h

(0
.8

69
x
1
))
−

2.
42

7

1
1

1.
10

8
|x

0
|4
|x

1
|4

((
)

x
0
)

si
n

co
s

x
1

x
0

+
0.

64
4

2.
0
−

0
.9

0
.0
0
6
|(3

.1
2
1
x
1
+
0
.1
1
) (
2
4
.0
1
8
(x

0
−
0
.0
0
3
)2
+
6
.0

)|+
0
.5

2.
0
−

1
5
.1
2
3

+
1
5
.1
2
9
−

1
5
.0
8
6

1
5
.0
3
9
x
4 1

1
5
.0
6
x
4 0
+
1
5
.0
9

E
9

√
1.

14
1

x
1

+
1.

14
1(
−

0.
89

5x
0
+

(0
.0

59
x
2 0
−

1.
08

)
ta

n
h

(3
.7

63
x
0
))

ta
n

h
(x

0
)

(
)

0.
26
x
1

+
lo

g
0
.9
8
4

|x
0
|
−

√ ∣
(

)
(∣

()
∣)∣

∣
0
.5
9
3

∣
+

lo
g
∣tanh

x
1
∣∣

∣log
|x

0
|

x
0
∣∣

(
)

0
.2
8
2
|x

1
|

lo
g

|x
0
|

(
2

)
−

0.
6

lo
g

10
.5

25
(0
.0

03
−
x
0
)

+
0.

6
+

1.
9
−

0
.6

0
.2
2
9
x
1
+
0
.2
3
5

−
1.

0
lo

g
(1

4.
15

6x
2 0

+
3.

53
9)

+

1.
0
|lo

g
(9
.4

99
x
1

+
4.

75
)|
−

0.
29

4

E
10

(
(

))
ta

n
h
(c

o
sh

(t
a
n
(e

e
x
1
+
0
.7
7
5
))
)

si
n

x
0
ex

1
ta

n
h

e
si

n
(x

0
ex

1
)

si
n

(x
0
ex

1
)

0.
00

1
−

1.
0

si
n

(0
.5

61
x
0
(−

0.
00

2+

(
)

1
7
.5

0
.0
0
9

))
−
8
8
.0
6
5
−

7
.6
2
9
x
0
+
1
9
.8
9
1

(0
.0
0
1
−
0
.0
2
5
x
1
)+

0
.3
6
4
(0
.0
0
8
x
1
−
1
)2
−
7
.5
1
4
(0
.7
3
2
x
1
−
1
)2
−
5
.1
7
2

1.
0

si
n

(1
.0
x
0
ex

1
)

E
11

2x
0

lo
g

(x
2 1
)

4x
0

lo
g

(|x
1
|)

x
0

lo
g

(x
4 1
)

2
−

2.
26

6x
0
(0
.0

18
−

0.
26

lo
g
(1

3.
78

4
(0
.0

02
−

(x
1
−

0.
02

4)
)2

+
0.

00
8)

)
2.

0x
0

lo
g

(x
2 1
)

E
12

(
)

x
0

co
s

1.
65

9
−

0
.0
8
8
x
0
x
1
+
x
0

x
0
x
1

+
1.

0
(

(
)

) √
x
0

ta
n

h
0
.6
6
4

x
1

+
1

|ta
n

h
(x

1
)|

()
(x

0
+
x
1
)

si
n

1 x
1

((
)

)
0.

99
8
−

6.
35

si
n

0.
00

6
+

0
.6
7
3

0
.1
7
3
x
1
+
0
.0
0
7

(−
0.

04
x
0
−

0.
00

2)
()

1.
0x

0
si

n
1 x
1

+
1.

0

E
13

√
x
0

lo
g

(x
2 1
)

√
2

lo
g

(|x
1
|)
|x

0
|

0.
23

4x
0

+
lo

g
(x

2 1
)

(
)

5.
75
−

8
.2
4

1
.2
6
5
(|
x
1
|+

0
.0
0
8
)0

.5
+
0
.1
3
5

(2
.7

2
lo

g
(0
.1

74
x
0

+
0.

99
1)

+
0.

18
8)

√
1 .

0x
0

lo
g

(x
2 1
)

240

T
ab

le
A

.7
:

C
om

p
ar

is
on

of
p

re
d

ic
te

d
ex

p
re

ss
io

n
s

—
It

er
at

io
n

5
E
q
.

P
Y
S
R

T
a
y
lo
rG

P
N
E
S
Y
M

R
E
S

E
2
E

S
e
T
G
A
P

E
1

0 .
60

8x
0
x
1
+

1.
1

si
n

(2
.2

5x
0

(x
1
−

0.
66

7)
−

1.
5x

1
+

1.
0)

0.
61

6x
0
x
1

0.
59
x
0
x
1
+

(
2
)

co
s

0.
58

4
(0
.9

89
x
0
−
x
1
)

0.
02

1x
0

(2
9.

33
2x

1
−

0.
19

4)
+

1.
1

co
s

(3
0.

94
9x

1
−

0.
04

9)
+

0.
01

0.
60

7x
0
x
1
−

1.
1

si
n

((
2.

25
2x

0
−

1.
49

2)
(x

1
−

0.
66

6)
+

9.
43

2)

E
2

−
0.

5x
0
−

(−
0.

17
9x

1
−

2.
98

4)
si

n
(0
.2
x
2
)

c
o
s
(c

o
s
(0

.1
1
1
x
0
))

+
ee

+
1.

04
1

−
0.

49
4x

0
−

0.
00

5x
1

+
0.

20
4x

2
+

8.
59

3
−
x
0

+
es

in
(x

2
)
+

7.
45

6
−

0.
05
e−

0
.1
0
2
x
1

−
0.

01
6x

0
+

0.
04

9x
2

+
(0
.0

86
x
0
−

0.
70

4)
(0
.7

5x
0
−

0.
01

5)
+

(0
.0

03
x
1

+
0.

05
2)

(−
0.

97
x
1
+

53
.2

si
n

(0
.2

21
x
2

+
0.

03
5)

+
0.

06
4)

+
6.

44
4

−
0.

5x
0

+
0.

06
3x

2 0
+

√
3.

16
0.

1x
1

+
1

si
n

(0
.2

02
x
2
)

+
6.

49
9

E
3

0.
15
e1

.5
x
0

+
0.

5
co

s
(3
.0
x
1
)

−
x
0

+
ex

0
−

√ ∣
√

√
∣

∣
ex

0
−
ex

0
∣

∣x 0+
0.

83
8

−
|x

0
| ∣

(
x
0

2
)

0.
58

5e
−

0.
43

7
si

n
1.

61
2

(0
.0

4x
1

+
1)

0.
22

4e
0
.1
8
8
x
0
+
(0
.0
0
4
x
0
+
0
.0
4
5
)(
2
2
.7
1
2
x
0
+
0
.0
0
9
x
1
−
5
.1
5
)

+
0.

51
4

co
s

(3
.1

52
x
1

+
0.

08
2)

+
0.

04
3

0.
15
e1

.5
x
0

+
0.

5
si

n
(3
.0
x
1

+
1.

57
1)

E
4

(c
os

h
(x

0
)

+
co

sh
(x

2
))

(−
0.

00
5x

1
−

0.
00

5x
3

+
0.

09
1)

(∣
∣

∣
∣) √

x
2

+
lo

g
∣x

0

ta
n
h
(x

2
)

ta
n
h
(x

0
)
∣
|x

0
|−

1.
79

7
—

0 .
00

2|
30
.7

3x
3

+
5.

33
4(
x
0

+
0.

01
9)

4
+

6.
81

1(
x
1
−

0.
92

(x
2
−

0.
02

1)
2

+
0.

02
8)

2
+

1.
18

5|

−
0.

02
x
2 0
x
1

+
0.

00
1x

2 0
+

0.
01
x
4 0
+

0.
01
x
2

2
−

0.
02
x

4
1

2
x
3

+
0.

01
x
2
+

2
0.

01
(−
x
3
)
−

0.
00

1

E
5

e1
.2
x
3

+
si

n
(x

0
+
x
1
x
2
)

ex
3
|x

3
|0.

5
+

0.
48

7
—

0 .
90

3e
1
.2
3
1
x
3

+
0.

10
5+

(
)

1.
0

co
s

0
.7
6
4

0
.0
6
2
si
n
((
−
0
.6
1
9
x
0
−
0
.0
7
9
)(
0
.3
4
4
x
1
−
0
.2
1
2
x
2
−
0
.8
5
7
))
−
0
.0
0
7

0.
97

7e
1
.2
0
1
x
3
+

1.
0

si
n

(x
0

+
x
1
x
2

+
18
.8

5)
+

0.
00

1

E
6

0 .
52

co
s

(0
.2
x
2 2
)

+
ta

n
h

(x
0
)

(
(

()
)

)
ta

n
co

s
ta

n
h

1
.9 x
1

+
0.

53
4

(
)

x
1
si
n
(x

2
)

|x
2
|0

.5

x
2
ta
n
h
(x

1
)
−

1.
18

5
co

s
e

()
−

0.
37

6x
0

+
x
1

si
n

x
0

x
1

(−
0.

00
1
|4
.5

47
x
1
−

0.
06

8|
−

0.
60

1)

(
3

)
ar

ct
an

8.
32
x
0
−

24
2.

53
7

(0
.0

16
x
0

+
1)

+
7.

10
5

+

(
2

)
0.

00
5

co
s

0.
66

7
(−
x
2
−

0.
16

2)
−

4.
35

2
−

0.
00

4

1.
0

co
s

(0
.2
x
2 2

+
6.

28
2)
|x

1
|+

1.
0

ta
n

h
(0
.5
x
0
)

E
7

4 .
26
x
2 1

(t
an

h
(s

in
(6
.2

83
x
0
)

+
1.

8)
−

1.
1)

+
0.

96
7

√
−
x
2 1

+
|x

1
|

−
3
9
6
7
.5
9
3
x
0
+
x
2 1

co
s
(6

5
7
5
7
.5
5
8
(−

x
1
−
0
.1
5
7
)3

)+
2
8
4
0
0
.5
1
8

(
2
)

0.
09
−

0.
08

3
(x

1
−

0.
00

2)

(
2

)
6.

72
4

(1
−

0.
75

6
si

n
(6
.1

1x
0
−

0.
01

2)
)

+
4.

0

(0
.9

27
−

0.
94

8x
2 1
)

(
−
1
.0

)
(s

in
(6
.2

83
x
0
)

+
1.

47
8)

+
0.

02
5

+
0.

02

E
8

si
n

h
(0
.4

06
co

sh
(t

an
h

(x
0

si
n

h
(t

an
h

(s
in

h
(x

0
))

))
)+

ta
n

h
(c

os
h

(0
.8

95
x
1
))

+
0.

69
)
−

3.
03

1

1

1.
07
|x

0
x
1
|4

si
n
(
x
0

x
1
)

co
s

(
x
0

)
+

0.
65

3

0.
53

6
−

0.
90

3
ar

ct
an

((
0.

04
6x

1
−

0.
99

1)

√
(−

0.
36

7
si

n
(2
.4

87
(−
|3

2.
35

8x
1

+
1.

7|
−

0.
01

7)
2

+
0.

00
6)

−
49
.4

)
+

0.
01

7|
(0
.0

53
(x

0
−

0.
00

7)
2

+
0.

01
6)

(0
.0

01
x
1

+
42

5.
69

6(
x
1

+
0.

01
1)

2
−

22
.8

05
)|−

0.
28

6)
)

1
5
.9
9
7

(0
.0
2
6
x
3
−
1
5
.9
9
8
x
4
−
1
5
.9
9
4
)
−

1
1

1
6
.5
8
7

(−
0
.0
0
1
x
0
+
0
.0
7
7
x
2
+
0
.0
1
2
x
3
+
1
6
.4
5
9
x
4
+
1
6
.5
8
3
)

+
2.

0
0

0
0

E
9

√
1 .

14
8x

1
+

co
sh

(1
.3

54
co

s
(x

0
)

co
s

(t
an

h
(x

0
))

)−

2.
20

2
co

sh
(1
.6

13
ta

n
h

(0
.4

81
x
0
))

−
lo

g
(|x

0
|)

+
ta

n
h

(l
og

(|x
1
|))
−

√ ∣
(

)∣
∣

0
.6
0
3
∣

∣log
|x

0
|
∣

(
)

0
.2
8
|x

1
|

lo
g

|x
0
|

(
2

)
−

0.
6

lo
g

12
.9

04
(x

0
+

0.
00

8)
+

0.
6

+
1.

9
−

0
.6

0
.2
2
7
x
1
+
0
.2
3
6

−
1.

00
1

lo
g

(1
8.

04
4x

2 0
+

4.
52

2)
+

0.
99

4
|lo

g
(1

8.
83
x
1

+
9.

24
)|
−

0.
70

5

E
10

si
n

(x
0
ex

1
)

(
√

)
ta

n
h

si
n

(e
x
1

si
n

(x
0
))
|c

os
(s

in
(x

1
))
|

si
n

(x
0
ex

1
)

0.
00

1
−

1.
0

si
n

(0
.2

57
x
0
·(

0.
1
−

3.
59

7e
1
.0
8
x
1
))

1.
0

si
n

(1
.0
x
0
ex

1
)

E
11

x
0
(0
.9

43
−

(√
)

2.
76

8
lo

g
lo

g
(c

os
h

(1
.3

03
ta

n
h

(0
.6

52
x
1
))

)
)+

3.
38

5x
0

lo
g

(l
og

(c
os

h
(x

1
))

)

3.
92

7x
0

lo
g

(|x
1
|)

x
0

lo
g

(x
4 1
)

0.
25

7x
0
(3

0.
0

lo
g
(0
.1

9

√ |21
.9

05
x
1

+
0.

10
2|

+
0.

00
1
−

0.
01

)
+

0.
01

)

2.
0x

0
lo

g
(x

2 1
)

E
12

()
1.

0x
0

si
n

1
.0 x
1

+
1.

0
1
.2
1
7
x
0

1
.2
2
9
x
1
+

0
.4
7
1

+
0.

96
1

x
1

()
(x

0
+
x
1
)

si
n

1 x
1

1
()

1.
0x

0
si

n
1 x
1

+
1.

0

E
13

√
x
0

lo
g

(x
2 1
)

√
2

lo
g

(|x
1
|)
|x

0
|

0.
25

2x
0

+
lo

g
(x

2 1
)

(0
.0

31
−

0.
44

lo
g
(2

3.
69

6(
−
x
1
−

0.
00

9)
2

(x
1

+
0.

20
1)

2
(0
.0

33
x
0

+
0.

08
6|

0.
50

1x
0
−

7.
82

3|
−

1)
2
+

0.
02

))
(−

0.
00

1x
0
−

8.
70

5)
(0
.0

32
x
0

+
0.

05
7)

√
1.

0
x
0

lo
g

(x
2 1
)

241

T
ab

le
A

.8
:

C
om

p
ar

is
on

of
p

re
d

ic
te

d
ex

p
re

ss
io

n
s

—
It

er
at

io
n

6
E
q
.

P
Y
S
R

T
a
y
lo
rG

P
N
E
S
Y
M

R
E
S

E
2
E

S
e
T
G
A
P

(
)

0.
02

4x
1

(2
5.

37
3x

0
−

0.
00

1x
1

+
0.

05
7)
−

0.
60

8x
0
x
1
−

2
E

1
0.

60
7x

0
x
1

0.
62
x
0
x
1

0.
66

7x
0
x
1

+
co

s
0.

06
6

(−
x
0
−

0.
86

9x
1
)

1.
1

co
s

(7
6.

2
ta

n
(2
.9

83
x
1
−

4.
27

2)
+

0.
76

7)
+

0.
00

2
1.

09
9

si
n

((
2.

24
x
0
−

1.
54

4)
(x

1
−

0.
67

)
−

9.
46

)

(3
5.

4
−

0.
00

1x
0
)

(0
.0

22
(0
.2

99
x
0
−

1)
2
+

−
0.

49
9x

0
+
et

a
n
h
(e

x
1
)
ta

n
h

(x
2
)+

(
0
.0
0
2
x
2

x
0
)

−
0.

5x
0

+
0.

06
3x

2 0
+

si
n

E
2

−
0.

49
7x

0
−

0.
00

2x
1

+
0.

20
8x

2
+

8.
57

1
93
.8

45
e

+
e

x
1
−

86
.6

01
(0
.0

13
x
1

+
0.

30
1)

(0
.3

19
si

n
((

0.
14

5x
1

+
3.

59
9)

√
lo

g
(c

os
h

(x
0
)

+
29
.1

44
)

+
3.

28
7

3.
16

2
0.

1x
1

+
1

si
n

(0
.2
x
2
)

+
6.

49
8

(0
.0

52
x
2
−

0.
00

4)
)

+
0.

06
1)

+
0.

16
3)

√
−
x
0

+
ex

0
−

|x
0
|−

0.
50

6+
1
.5
x
0

(
2
)

E
3

0.
15
e

+
0.

5
co

s
(3
x
1
)

x
0

)
0.

58
e
−

0.
46

4
si

n
1.

48
2

(−
0.

07
1x

1
−

1)
0.

21
2e

1
.3
7
9
x
0

+
0.

47
5

co
s

(3
.1

08
x
1
−

0.
00

4)
−

0.
01

3
0.

14
9e

1
.5
0
2
x
0
−

0.
5

si
n

(3
.0
x
1

+
4.

71
2)

(
√

ta
n

h
x
0
−
ex

0
+
|e

x
0
−

0.
97

7|
+

0.
97

7

0.
01

8(
0.

57
3x

1
−

(0
.0

33
x
0
−

0.
00

2)
(2

1.
56

9x
0
−

1.
00

5)
+

0.
03

6)
2
+

2
2

−
0.

00
4x

0
−

0.
02
x
0
x
1

+
0.

01
7

(−
x
0
)

+
√ ∣

(
√

) ∣
0
.0
0
5

(0
.0

9
−

0.
00

9x
1
)

co
sh

(x
0
)+

√
2.

72
|(0
.0

1
ar

ct
an

(−
(0
.0

79
e

1
8
.3
3
8
x
2
−
4
.7
3
5

∣ ∣x 2−
x
2

|x
0
|+

lo
g
(|
x
2
|)
+
0
.5
5
3
∣

−
19

9.
27

6)
E

4
lo

g
(|x

0
|)

∣
—

4
2

∣
ta
n
h
(x

2
)

∣
0.

00
9

(−
x
0
)

+
0.

00
8

(−
x
1
)

+
0.

01
x
4

2

0
.0
0
5

2
+

0.
01

1x
3
−

−
(0
.0

91
−

0.
00

9x
3
)

co
sh

(x
2
)

e
1
8
.3
3
8
x
2
−
4
.7
3
5
)

+
0.

00
1)

((
1.

85
1x

2
−

2.
37

2)

(0
.0

13
x
2 2

+
0.

00
3)

(1
.5

75
x
3

+
0.

61
4)
−

0.
02

3

(0
.2

83
x
3
−

0.
03

)
+

0.
25

((
x
2

+
0.

00
5)

2
−

0.
00

3)
2

+
0.

07
5)
|+

0.
00

1

0.
00

2x
2

+
1.

10
6e

1
.1
4
7
x
3

+
0.

77
4

co
s

(0
.0

02
x
1
)+

E
5

e1
.2
x
3

+
si

n
(x

0
+
x
1
x
2
)

ex
3
|x

3
|0.

5
+

ta
n

h
((
x
3
−

0.
89

1)
ex

3
+

1.
71

8e
x
3
)

—
0.

99
5e

1
.2
0
1
x
3

+
1.

0
si

n
(x

0
+
x
1
x
2
−

6.
28

3)
+

0.
00

2

0.
94

2
co

s
(2

8.
70

3x
2
−

0.
95

6)
−

0.
97

7

(
(

(2
)))

ta
n

1
.0
5
8
co

s
2
.5
2
8
ta
n
h

2.
53

5e
x
1

(
)

(
)

|x
2
|0

.5

E
6

−
1.

18
5

co
s
e

+
4
.8
5
4
si
n
(x

2
)

−
0.

36
8x

0
+
x
1

si
n

x
0
−

0.
00

1x
2

0.
93

2
2

x
2

x
1

0.
99

9
co

s
(0
.2
x
2
−

0.
01

1)
|x

1
|+

1.
0

ta
n

h
(0
.5
x
0
)

co
s

(0
.2
x
2 2
)

+
ta

n
h

(x
0
)

2
(

)
(

)
2

2
−
x
1
+

1
2

6.
28

4
(x

1
−

0.
00

7)
−

7.
49

−
0.

00
1

+
0
.9
9
9

1
.0
−
1
.0
x

0
.1
8
4
x
0
+
x
1

si
n
(6
.2
8
3
x
0
−
9
.4
2
4
)−

1
.5

E
7

si
n
(6
.2
8
3
x
0
)+

1
.5

(∣
(∣

√
∣)∣)

co
s
(1
.9
6
5
x
0
−
x
1
)−

1
.9
3

∣ 2
∣

−
lo

g
∣2

∣∣
(

2
)

lo
g
∣x

x
−

|x
1

(x
1
−

0.
07

3)
| ∣∣

−
0.

08
2

(0
.0

1x
1

+
si

n
(6
.4

57
x
0

+
0.

14
)
−

0.
70

5)
−

0.
09

8
2

1
1

(x
1
−

0.
97

7)
+

0.
01

8

si
n

h
(s

in
h

(s
in

h
(t

an
h

(s
in

h
(c

os
h

(
((

x
0
))

2.
06
−

−
1
6
.0
8
5

1
si
n

1.
10

2
|x

0
x
1
|

co
s

x
1

4
+

2.
0+

4
(1

6
.0
3
8
x

+
0.

64
3

1
+
2
.0
1
6
.0
9
)

E
8

ta
n

h
(x

0
ta

n
h

(x
0
))

)
x
0

3
0
.5

7
.9
1
8

6
.8
9
2
(0
.0
4
7
−
x
0
)2
(x

1
−
0
.0
0
3
)2
+
1
8
.2
4
((
1
−
0
.0
0
6
x
0
)2

)2
−
9
.2
7
co

s
(1
.3
2
9
x
1
−
4
4
.2
0
3
)+

1
0
.0
5
8

(0
.1
5
8
x
2 0
−
8
.0
6
7
x
4 0
−
7
.9
3
3
)

co
sh

(t
an

h
(x

1
ta

n
h

(x
1
))

)
−

0.
71

8)
))

))

2

−
0
.2
5
9
x
0

x
1
+
0
.7
2
7
−

0
.1
7
8
x
0

(x
1
+
1
.0
1
7
)
ta

n
h
(x

0
)

(
)

3
si

n
h

(s
in

h
(2
.7
e

2.
96

4
(0
.2
x
1
−

1)
+

4.
35

2−
2

√
√

−
1.

0
lo

g
(1

1.
24

1x
0

+
2.

80
9)

+
E

9
−

0.
68

3
lo

g
(|x

0
|)
−

1.
61

8
lo

g
0
.2
8
1
|x

1
|

|x
0
|+

|x
1
|

|x
0
|

(
2

)
−

1.
15

4)
)
−

1.
78

7
0.

79
2

lo
g

16
6.

83
1

(x
0
−

0.
05

2)
+

17
.6

1.
0
|lo

g
(9
.8

24
x
1

+
4.

91
4)
|−

0.
55

9

E
10

si
n

(1
.0
x
0
ex

1
)

si
n

(x
0
ex

1
)

si
n

(x
0
ex

1
)

1.
0

si
n

(0
.0

05
x
0

(1
67
.8

68
e1

.1
4
3
x
1
−

0.
01

))
+

0.
00

1
1.

0
si

n
(1
.0
x
0
ex

1
)

2.
45

8x
0

lo
g

(|x
1
|)

+
(1
.6

32
x
0
−

0.
90

8)
lo

g
(|x

1
|)+

0.
87

5
co

s(
3.

87
2x

0
+

(2
.7

32
x
0
−

2.
48

1)
2

4
(

(
2

)
)

E
11

2x
0

lo
g

(x
1
)

x
0

lo
g

(x
1
)

2
(2
.0

24
x
0
−

0.
00

6)
0.

75
lo

g
1.

92
6

(−
x
1
−

0.
00

5)
+

0.
05

+
0.

06
8

2.
0x

0
lo

g
(x

1
)

(∣
∣)

lo
g
∣ 0.75

4x
1

ta
n

h
(x

1
)
|x

0
|1.

5
+

0.
30

7∣ +
(4
.4

58
x
0
−

2.
48

1)
lo

g
(|x

1
|))

()
(

)
()

(
(

))
()

E
12

x
0

si
n

1
+

1.
0

0.
80

6x
0

si
n

1
.2
2
9

+
0.

80
6

(x
0

+
x
1
)

si
n

1
7.

12
si

n
0.

00
1x

0
0.

00
3

+
3
1
.2

+
0.

99
6

1.
0x

0
si

n
1

x
1

x
1

x
1

0
.1
7
3
x
1
+
0
.0
0
1

x
1

+
1.

0

(l
og

(|x
0
|)

lo
g

(|x
1
|)

+
ta

n
h

(l
og

(|x
1
|))

)
(0
.0

04
−

5.
12

lo
g
(0
.1

75
x
0

+
1.

10
9)

)
√

2
2

√
E

13
x
0

lo
g

(x
1
)

(l
og

(|x
0

ta
n

h
(l

og
(|x

1
|))

+
lo

g
(|x

1
|)
−

0.
13
|0.

5
)+

0.
24

5x
0

+
lo

g
(x

1
)

√ √
∣

∣
2.

0
x
0

lo
g

(|x
1
|)

∣
4
9
.1

∣
(0
.9

45
∣0.00

4
−

0
.3
2
6
x
1
−
0
.0
0
1
∣+0

.0
45
−

0.
89

8
−

3.
44

)

|ta
n

h
(x

0
ta

n
h

(l
og

(6
.1

62
|lo

g
(|x

1
|)|

))
)|0

.5
)

242

T
ab

le
A

.9
:

C
om

p
ar

is
on

of
p

re
d

ic
te

d
ex

p
re

ss
io

n
s

—
It

er
at

io
n

7

E
q
.

P
Y
S
R

T
a
y
lo
rG

P
N
E
S
Y
M

R
E
S

E
2
E

S
e
T
G
A
P

E
1

0 .
60

8x
0
x
1
+

1.
1

si
n

((
x
0
−

0.
66

7)
(x

1
−

0.
66

7)
)

0.
60

7x
0
x
1

(
2
)

0.
61
x
0
x
1
−

si
n

0.
00

1
(0
.9

65
x
0
−

1)
0.

59
8x

0
x
1
−

0.
00

4x
0

+
0.

00
1x

1
+

0.
14

3
0.

60
7x

0
x
1
+

1.
09

8
si

n
((

2.
24
x
0
−

1.
54

4)
(x

1
−

0.
67

))
−

0.
00

2

E
2

3 .
01

7
si

n
(0
.2
x
2
)+

3.
01

7
co

sh
(0
.1

62
x
0
−

0.
72

3)
+

2.
81

8

−
0.

49
9x

0
−

0.
00

8x
1

+
0.

20
7x

2
+

8.
58

6
96
.3

68
e0

.0
0
2
x
2

+
es

in
(x

0
x
1
)
−

89
.1

3
(0
.0

11
x
2

+
0.

44
5)

(0
.1

74
x
1
−

0.
05

1x
2

+
5.

52
)

(
2

)
0.

38
7

(0
.2

35
x
0
−

1)
+

si
n

(0
.2

25
x
2

+
0.

02
3)

+
0.

14
4

+
4.

88

−
0.

50
1x

0
+

0.
06

4x
2 0
+

(
0
.5

)
3.

16
6

(0
.1
x
1

+
1)

+
0.

00
1

si
n

(0
.2

01
x
2
)

+
6.

45
2

E
3

0.
15
e1

.5
x
0

+
0.

5
co

s
(3
.0
x
1
)

−
2x

0
+
ex

0
−

0.
36

3
(

)
0.

57
9e

x
0
−

0.
43

7
si

n
1.

63
3

(0
.0

43
x
1

+
1)

2
(7

.1
6
(0
.0
0
1
x
0
−
1
)2
+
0
.0
1
)(

0
.1
9
8
e1

.4
2
x
0
+
0
.5
1
9
co

s
(3
.0
3
7
x
1
−
0
.0
3
4
)−

0
.0
7
2
)+

0
.0
5
7

7
.1
6
(0
.0
0
1
x
0
−
1
)2
+
0
.0
1

0.
15

1e
1
.4
9
8
x
0
−

0.
5

si
n

(3
.0

01
x
1

+
4.

71
2)

E
4

−
0.

02
x
2 0
x
1
−

0.
02
x
2 2
x
3
+

0.
09

1
co

sh
(x

0
)

+
0.

09
1

co
sh

(x
2
)

√
0.

75
6x

2
ta

n
h

(x
2
)

+
0.

75
6

lo
g

(|x
0
|)
|x

0
|

—

(
) 2

0.
00

2|
5.

04
(x

0
+

0.
03

3)
2
−

0.
00

1
+

(
2

) 2
5.

21
0.

81
8x

1
+

0.
67
x
3
−

(x
2

+
0.

02
5)

+
0.

01
−

0.
11
|+

0.
00

1

2
4

2
−

0.
02
x
0
x
1

+
0.

01
x
2
−

0.
02

1x
3

(−
x
2
)

+

0.
00

5x
3

+
0.

01
(−
x
0
)4

+
0.

01
(−
x
1
)2
−

(0
.0

04
x
0
−

0.
70

8)
(0
.0

14
x
2 3
−

0.
01

9)
+

0.
02

8

E
5

e1
.2
x
3

+
si

n
(x

0
+
x
1
x
2
)

2e
x
3
−

lo
g
(|−

3e
x
3

+
lo

g
(|2
.2

87
ex

3
−

1.
44

7
lo

g
(|s

in
(x

3
)|)
|)

+
1.

44
7

lo
g

(|s
in

(x
3
)|)
|)

—
1 .

13
8e

1
.1
6
3
x
3
−

0.
12

3
+

0.
95

3
co

s(
22
.0

45
x
2
−

14
.0

32
+

1
.1
1

+
2
.1
1

−
0
.0
3
3

−
0
.7
4
2
x
0
+
0
.0
0
2
x
1
+
1
9
.2
5
6

(3
1
.8
5
4
x
2
+
0
.7
9
3
)(
0
.0
0
1
x
3
+
2
.2
6
)

3
.3
8
2
x
2
+
0
.1
4
7
)

0.
99

9e
1
.2
0
1
x
3

+
1.

0
si

n
(x

0
+
x
1
x
2
−

12
.5

66
)

+
0.

00
3

E
6

x
1

co
s

(0
.2
x
2 2
)

ta
n

h
(2

36
.5

82
x
1
)+

ta
n

h
(0
.4

96
x
0
)

x
1
si
n
(x

2
)

x
2
ta
n
h
(x

1
)

+
co

s
(x

2
)

+
ta

n
h

(x
0
)

(
)

−
0.

35
6x

0
+
x
1

si
n

x
0

x
1
−

0.
00

9x
2

0.
80

6
1.

0
co

s
(0
.2
x
2 2
−

6.
27

5)
|x

1
|+

1.
0

ta
n

h
(0
.5

01
x
0
)

E
7

(1
.8

63
x
2 1
−

1.
84

3)
(t

an
h

(s
in

h
(

si
n

(6
.2

81
x
0
))

+
1.

34
5)
−

1.
21

5)

(∣
(∣

√
∣)∣)

2
∣ 2

∣
x
−

lo
g

2 ∣x−
0.

82
8

2
∣∣

−
x
1

+
lo

g
∣ 1

1
|x

1
| ∣∣

0
.0
8
x
0
+
x
2 1

co
s
(2

.4
4
5
(0
.9
2
4
x
1
−
1
)2

)−
1
.9
1
6

(
)

0.
36

8
−

4
.7
8

8
.1
0
5
−
0
.2
9
1
x
1

(0
.3

38
x
1

+
23
.5

94
)

(0
.3

48
x
1
−

4.
63

7)

(
2

)
0.

13
6

(0
.0

19
−
x
1
)
−

0.
11

7

(
3

)
−

0.
21

9
(1
−

0.
32

9
co

s
(6
.1

86
x
0
−

7.
78

4)
)
−

0.
04

6

2
.9
0
7
x
2 1
−
2
.9
1
9

2
.9
0
4
si
n
(6
.2
8
3
x
0
+
3
.1
4
8
)−

4
.3
5
8

E
8

1.
64

4
lo

g
(0
.9

76
/(

co
s(

ta
n

h
(1
.0

94
x
0

ta
n

h
(s

in
h

(s
in

h
(x

0
))

))
)

co
s(

ta
n

h
(0
.8

12
si

n
h

(x
1
))

))
)

ta
n

h
((
x
0

+
0.

50
4)

ta
n

h
(x

0
))

+

ta
n

h
(x

2 1
−

0.
01

7)

((
)

x
0
)

si
n

co
s

x
1

x
0

+
0.

69
5

2.
1
−

0
.9

0
.0
3
|(
0
.3
0
9
x
0
+
0
.0
7
4
)(
0
.6
8
7
x
0
−
0
.0
5
9
)(
2
.0
8
6
x
1
−
0
.1
3
9
)(
1
7
.4
2
1
x
1
−
0
.4
2
9
)|
+
0
.6

2.
0
−

1
4
.0
3
3

1
3
.9
4
7
x
4

3
−
0
.1
2
2
x

+
1
4
.0
3
2
−

0
0

1
4
.4
3
8

1
4
.5
3
2
x
4 1
+
1
4
.4
3
4

E
9

0 .
22

6
co

s(
co

s(
x
0
))

+
si

n
h

(s
in

h
(s

in
h

(

0.
97

4
co

s(
0.

64
3x

0
)

+
0.

16
7)

))
−

8
.7
1
4

x
1
+
2
.5
3
7

(
)

0.
26
x
1

+
lo

g
0
.9
5
2

|x
0
|
−

√ ∣
(

)
(∣

()
∣)∣

∣ lo
g

0
.5
9
3

∣
+

lo
g
∣tanh

x
1
∣∣

∣
|x

0
|

x
0
∣∣

(
)

0
.2
7
4
|x

1
|

lo
g

|x
0
|

(
(

) 2
)

0
.1
2
9

2
2.

0
−

0.
6

lo
g

6.
86

2
1
−

−
0
.0
5
6
x
1
−
0
.0
2

(x
0
−

0.
00

9)
+

0.
8

−
1.

0
lo

g
(2
.7

85
x
2 0

+
0.

69
6)

+

1.
0
|lo

g
(1

3.
84

5x
1

+
6.

92
)|
−

2.
29

6

E
10

si
n

(1
.0
x
0
ex

1
)

si
n

(x
0
ex

1
)

si
n

(x
0
ex

1
)

−
0.

99
8

si
n

((
0.

21
4
−

33
.2

48
x
0
)

(0
.0

26
e1

.1
2
5
x
1

+
0.

00
1)

)
1.

0
si

n
(1
.0
x
0
ex

1
)

E
11

2.
0x

0
lo

g
(x

2 1
)

4x
0

lo
g

(|x
1
|)

x
0

lo
g

(x
4 1
)

√
0.

24
1x

0
(3

1.
0

lo
g
(0
.1

9
|2

5.
41

9x
1

+
0.

12
|+

0.
01

1

−
0.

01
)

+
0.

5)

4.
0x

0
lo

g
(|x

1
|)

E
12

()
x
0

si
n

1 x
1

+
1

x
0
ta
n
h
(x

2 1
)

x
1

+
1

()
(x

0
+
x
1
)

si
n

1 x
1

(
((

)
))

0.
62

9
−

4.
58

si
n
−

0.
00

7
+

9
.7
8

0
.0
1
4
−
3
.0
4
3
x
1

(0
.0

42
x
0

+
0.

00
1)

(1
.5

81
−

0.
00

6x
0
)

()
1.

0x
0

si
n

1 x
1

+
1.

0

E
13

√
x
0

lo
g

(x
2 1
)

√
2

lo
g

(|x
1
|)
|x

0
|

0.
23
x
0

+
lo

g
(x

2 1
)

(
)

−
0.

05
2

+
0
.0
0
4

−
0
.0
1
9
−

4
.4
8
6

(4
8.

80
2

lo
g
(0
.0

12
|0
.0

01
−

5
.9
8
x
0
−
6
8
.5

6
.1
5
6

(0
.2
4
3
x
1
−
0
.0
0
2
)(
0
.8
0
6
si
n
(0
.0
8
5
x
0
−
0
.1
6
8
)+

0
.0
5
4
)
|+

0.
02

5)
+

0.
04

)

√
2.

0
x
0

lo
g

(|x
1
|)

243

T
ab

le
A

.1
0:

C
om

p
ar

is
on

of
p

re
d

ic
te

d
ex

p
re

ss
io

n
s

—
It

er
at

io
n

8

E
q
.

P
Y
S
R

T
a
y
lo
rG

P
N
E
S
Y
M

R
E
S

E
2
E

S
e
T
G
A
P

E
1

0 .
60

9x
0
x
1

+
0.

93
1

co
s(

1.
48

8x
0
−

1.
12

6x
1

(2
x
0
−

3.
01

9)
−

1.
9x

1
+

0.
55

6)

0.
61

3x
0
x
1

(
)

0.
66

6x
0
x
1

+
co

s
0.

06
8

(−
x
0
−

0.
83
x
1
)2

(
(

)
)

(0
.0

01
x
0
−

1.
46

3)
si

n
0.

48
2

co
s

0
.1
2
1
x
0
+
7
8
.5
2
6

0
.0
0
7
x
0
+
0
.2
9
−

0.
00

4
+

(3
.2

22
x
0

+
0.

00
7)

(0
.1

86
x
1

+
0.

00
3)

0.
60

8x
0
x
1
+

1.
09

9
si

n
((

2.
25

1x
0
−

1.
52

)
(x

1
−

0.
65

5)
)

E
2

2 .
27

8
ta

n
h

(0
.3

56
x
2
)

+
6.

38
8

√
2

0
.5

(0
.0

16
x
0

+
e−

0
.4
0
2
x
0
)

+
0.

12
7

ta
n

h
(x

1
x
2
)

−
0.

50
6x

0
−

0.
00

1x
1

+
0.

20
6x

2
+

8.
57

5
es

in
(x

0
x
1
)
+

12
4.

32
9
−

11
6.

89
4e

−
0
.0
0
2
x
2

(0
.0

1x
0
−

0.
09

9)
(5
.4

34
x
0

+
0.

43
8)

+

3.
0

si
n

((
0.

00
1x

1
+

0.
02

)
(1

0.
39
x
2

+
0.

29
1)

)
+

6.
3

−
0.

5x
0

+
0.

06
2x

2 0
+

√
0.

1x
1

+
1

(3
.1

66
si

n
(0
.2

01
x
2
)
−

0.
03

3)
+

6.
54

1

E
3

0.
15
e1

.4
9
9
x
0
−

0.
50

2
co

s
(2
.9

99
x
1

+
3.

14
3)

(x 0 e
2
ta
n
h
(x

0
)) 0.5

−
0.

61
2
e

+
ex

0
0.

57
9e

x
0
−

0.
44

4
co

s
(0
.2

28
x
1
)

0.
14

3e
1
.4
9
7
x
0

+
0.

50
6

co
s

(3
.5

59
x
1

+
0.

06
1)

+
0.

04
3

0.
15
e1

.5
x
0

+
0.

5
co

s
(3
.0

01
x
1
)

E
4

(c
os

h
(x

0
)

+
co

sh
(x

2
))

(−
0.

00
5x

1
−

0.
00

5x
3

+
0.

09
1)

(
√

)
(
√

)
ta
n
h

lo
g
(

|x
0
||x

2
|)

−
si

n
(x

0
)

+
|x

2
|
e

—

2
0.

07
9|

0.
16

2
(−
x
1

+
0.

88
5(
x
0

+
0.

05
)

+
0.

03
1)

2
+

0.
12

3(
0.

13
5x

0
x
1

+
0.

00
4x

0
+

0.
01

1x
1
−

x
2 2
−

0.
02

2x
2

+
0.

88
4x

3
+

0.
02

4)
2

+
0.

52
3|
−

0.
04

8

2
4

2
−

0.
00

5x
0

+
0.

01
x
0
−

0.
02
x
1

(−
x
0
)

+

0.
01
x
2

4
1

+
0.

01
x
2
−

0.
02
x
3

(−
x
2
)2

+
0.

01
x
2 3

+
0.

01
5

E
5

e1
.2
x
3

+
si

n
(x

0
+
x
1
x
2
)

(∣
√

∣)
∣

∣
0.

85
5e

x
3

lo
g
∣2x 3

+
|ta

n
h

(e
2
x
3
)|

+
0.

74
8 ∣

—
1 .

39
2e

1
.0
8
5
x
3
+

(
)

0.
94

9
si

n
−

25
.8

75
x
2

+
10

0.
70

7
+

0
.0
0
7

0
.0
5
5
−
0
.1
x
1
−

0.
48

4

0.
99

9e
1
.2
x
3

+
1.

0
si

n
(x

0
+
x
1
x
2

+
12
.5

67
)

+
0.

00
3

E
6

(tan
h
(1

.7
6
1
ta

n
h
(s
in

(x
1
))
)
)

(
(4

.6
6
7
))

3
.9
1
5
co

s
x
1

co
s

ta
n
h

0.
27

9e
x
1

co
s

(0
.2
x
2 2
)

+
ta

n
h

(x
0
)

5
.6
5
lo
g
(|
x
1
|0

.5
)s

in
(x

2
)

co
s

(x
2
)

+
0.

42
2

+
x
2

(
)

0.
12

6x
0

+
x
1

si
n

0.
29

4x
1

+
x
2

x
1

(6
.0

48
|0
.1

68
x
1

+
0.

00
1|

+
0.

14
)

co
s

((
0.

21
−

17
.3

55
x
2
)

(−
0.

01
2x

2
−

0.
01

))
+

0.
8

ar
ct

an
(0
.6

99
x
0

+
0.

26
9)
−

0.
01

1.
0

co
s

(0
.2
x
2 2

+
12
.5

64
)
|x

1
|+

1.
0

ta
n

h
(0
.5

01
x
0
)

E
7

co
s

(x
1
)

+
si

n
h

(s
in

(6
.2

85
x
0
)+

co
s

(0
.3

5x
1
)

+
co

s
(0
.6

68
x
1
)
−

2.
28

8)

−
x
2 1

+
lo

g
(|x

2 1
−

lo
g

(|x
2

2
1
−

lo
g

(|x
1

+
0.

94
3|

)|)
|)

0
.0
4
2
x
0
+
x
2 1

co
s
(5

.4
1
9
(x

1
−
0
.5
1
7
)2

)−
1
.8
9
6

2
(−

10
.3

69
(1
−

0.
00

2x
0
)

(0
.3

46
x
1

+
(0
.0

1
−

0.
00

3x
1
)

(0
.0

29
x
0
−

0.
00

3)
+

0.
01

8)
2

+
1.

7)

(
2

)
0.

37
3

(s
in

(6
.3

98
x
0

+
0.

34
2)
−

0.
81

4)
+

0.
42

3
.7
6
7
−
3
.7
8
7
x
2 1

(3
.7
8
6
si
n
(6
.2
8
3
x
0
)+

5
.6
8
)

+
0.

00
3

E
8

lo
g
(0
.7

05
si

n
h

(1
.9

75

co
sh

(t
an

h
(x

0
))
−

1
.1
8
4

si
n
h
(c
o
sh

(x
1
))

))

1
0
.8
2
9
|x

0
|4

co
s
(t
a
n
h
(x

1
))

((
x
0
))

si
n

co
s

x
1

x
0

+
0.

64
4

2
2.

06
5(
−

1
−

0.
55

6/
(−

0.
36

1
(x

0
+

0.
02

8)

2
2

(0
.0

01
x
1
−

1)
(x

1
+

0.
04

6)
+

0.
40

9
co

s
(2
.2

71
x
1

+
0.

07
6)

−
1.

36
9)

)2
+

0.
00

1

1
4
.9
4
6

0
.1
2
1
x
3
−
1
5
.2
2
8
x
4
+
0
.1
7
6
(−

x
0
)2
−
1
4
.9
5
−

0
0

1
8
.5
1
3

0
.1
3
5
x
1
−
0
.3
2
2
x
3
+
1
8
.5
1
5
(−

x
1
)4
+
1
8
.5
1
5

+
2.

0
1

E
9

0 .
84

3e
1
.4
1
2
co

s
(x

0
)
+

lo
g

(x
1

+
0.

50
4)
−

3.
31

3+

0.
84

3
co

s
(c

os
(0
.8

66
x
0
))
−

0.
03

6
co

sh
(x

0
)

(
)

lo
g

0
.7
6
4

|x
0
|

+
ta

n
h

(x
1
)−

√ ∣
(

)
(∣

()
∣)∣

∣ lo
g

0
.7
9
2

∣
+

lo
g
∣tanh

x
1
∣∣

∣
|x

0
|

x
0
∣∣

(
)

0
.2
8
2
|x

1
|

lo
g

|x
0
|

−
6.

44
|0
.8

1
ar

ct
an

(0
.2

95
x
0

+
0.

00
4)

+
0.

00
1|

+

3.
33

+
9
6
.1

(0
.0
2
1
x
0
−
4
7
.1
9
9
)(
0
.0
6
2
x
1
+
0
.2
6
2
)(
0
.0
2
3
x
0
+
0
.6
9
2
x
1
+
2
.9
0
1
)

−
0.

99
9

lo
g

(3
.8

82
x
2 0

+
0.

96
3)

+

0.
99

9
|lo

g
(1

0.
17

3x
1

+
5.

05
2)
|−

1.
65

6

E
10

si
n

(x
0
ex

1
)

si
n

(x
0
ex

1
)

si
n

(x
0
ex

1
)

0.
99

4
si

n
((
−

5.
26
x
0
−

0.
00

8)
(0
.2

73
e0

.5
7
3
x
1

+
0.

00
6)

(−
0.

31
x
1

+
0.

11
8

lo
g

(0
.0

55
x
1

+
0.

75
6)
−

0.
78

2)
)

1.
0

si
n

(1
.0
x
0
ex

1
)

E
11

2x
0

lo
g

(x
2 1
)

4x
0

lo
g

(|x
1
|)

x
0

lo
g

(x
4 1
)

(0
.3

31
x
0

+
0.

00
1)

(2
0.

8

(
√

)
lo

g
0.

32
7
|2

0.
18
x
1

+
0.

19
8|

+
0.

00
9
−

0.
00

3
−

4.
11

)

2.
0x

0
lo

g
(x

2 1
)

E
12

co
s

0
.0
0
1

1
5
8
1
.4
9
4
x
1

c
o
sh

(x
1
)

+
c
o
sh

(x
1
)

x
0

si
n

x
1

+
1

0.
93

8
+

−
x
0
x
1
−
0
.3
4
4

−
x
2 1
−
0
.3
0
7

()
(x

0
+
x
1
)

si
n

1 x
1

(
(

))
7.

72
si

n
0.

00
3x

0
0.

00
8

+
6
.3
5

0
.1
7
3
x
1
+
0
.0
0
2

+

0.
07

8
|0
.0

06
x
1
−

0.
24

7|
+

0.
98

7

()
1.

0x
0

si
n

1 x
1

+
1.

0

E
13

√
x
0

lo
g

(x
2 1
)

0.
25

5x
0

lo
g

(|x
1
|)

+
2.

80
7

lo
g

(0
.9

43
|x

1
|)

√
|lo

g
(0
.8

26
|x

0
||l

og
(4
.9

02
|lo

g
(4
.9

02

|lo
g
(|x

1
|)|

)|)
|)

+
0.

13
|0.

5

0.
23

9x
0

+
lo

g
(x

2 1
)

(
√

)
0.

03
4
−

0.
05

2
|0
.6

03
x
0

+
1|

(0
.0

8
−

57
.9

lo
g

(|7
.0

9
|0
.1

62
x
1
−

0.
00

4|
−

0.
00

1|
))

√
1.

0
x
0

lo
g

(x
2 1
)

244

T
ab

le
A

.1
1:

C
om

p
ar

is
on

of
p

re
d

ic
te

d
ex

p
re

ss
io

n
s

—
It

er
at

io
n

9
E
q
.

P
Y
S
R

T
a
y
lo
rG

P
N
E
S
Y
M

R
E
S

E
2
E

S
e
T
G
A
P

E
1

0 .
60

7x
0
x
1
−

1.
1

co
s

(x
0

(2
.2

5x
1
−

1.
5)
−

1.
5x

1
+

2.
57

1)

0.
61

3x
0
x
1

(
2
)

0.
61
x
0
x
1

+
si

n
0.

00
2

(−
x
0
−

0.
69

8)
0.

02
1x

1
(2

9.
35

6x
0

+
0.

02
7)

+

1.
1

co
s

(3
0.

87
4x

1
−

1.
37

8)
−

0.
00

1

0.
60

8x
0
x
1

+
1.

1
si

n
((

2.
25

6x
0
−

1.
49

1)

(x
1
−

0.
65

5)
+

0.
04

7)
−

0.
00

1

E
2

0 .
17

8x
1

si
n

(0
.1

99
x
2
)

+
2.

98
3

si
n

(0
.2
x
2
)+

2.
98

3
lo

g
(c

os
h

(0
.4

64
x
0
−

1.
80

9)
+

5.
42

)

1

ta
n

h
(x

2
)

+
|(x

0
(−
x
0

+
(e

x
0
)4

+
lo

g
(5

5.
55

6
|x

0
|)

+
1.

70
4+

(
1
)

co
s
e1

.4
2
4
lo
g
(5
5
.5
5
6
|x

0
|)

4
))

(t
an

h
(x

0
))
|0.

5
+

1.
30

5|
−

0.
58

7x
0
+

1

0.
58

7
(e

x
0
)4

+
0.

58
7

lo
g

(5
5.

55
6
|x

0
|)

+
0.

58
7

co
s

(x
0
)

+
1|

0
.5

93
.7

28
e0

.0
0
2
x
2

+
es

in
(x

0
x
1
)
−

86
.4

34

0.
01

9x
1

+
(0
.0

07
x
0
−

0.
05

6)
(8
.9

15
x
0

+
0.

56
3)

+

(0
.4

37
x
1

+
8.

09
1)

(0
.3

71
si

n
(0
.1

94
x
2

+
0.

03
4)
−

0.
00

7)
+

6.
27

9

−
0.

49
9x

0
+

0.
06

4x
2 0
+

√
0.

1x
1

+
1

(3
.1

61
si

n
(0
.2
x
2
)

+
0.

01
1)

+
6.

46

E
3

0.
15
e1

.5
x
0

+
0.

5
co

s
(3
x
1
)

−
x
0

+
ex

0
+

co
s

(x
0
)
−

0.
81

5
0.

58
3e

x
0
−

0.
46

5
co

s
(0
.2

04
x
1
)

0.
04

2x
0
−

0.
00

4x
1

+
(0
.0

01
x
0

+
0.

21
6)

(2
.3

3
co

s(
3.

43

√
x
1

+
0.

07
5)
−

0.
07

)
+

0.
16

6
0.

77
9e

2
.9
5
4
x
0

+
1
−

0.
00

8

0.
15
e1

.5
x
0

+
0.

5
co

s
(3
.0
x
1
)

E
4

(0
.0

92
−

0.
00

8x
1
)

(c
os

h
(x

0
)

+
6.

47
8)

+

(0
.0

92
−

0.
00

9x
3
)

co
sh

(x
2
)
−

0.
64

3

x
0

+
0.

11
8x

2 2
−

0.
41

2
—

0 .
00

4|
2.

35
8(
x
3
−

0.
04

8)
2

+
2.

23
1(

(x
0

+
0.

02
8)

2
+

0.
03

9)
2
+

2.
17

7(
−

0.
92

1x
1

+
(x

2
+

0.
01

)2
+

0.
02

4)
2
−

0.
25

5|
+

0.
00

3

−
0.

02
x
2 0
x
1

+
0.

00
4x

2 0
+

0.
01
x
4 0

+
0.

01
x
2 1
−

0.
02
x
2 2
x
3

+
0.

01
x
4 2

+
0.

01
x
2 3
−

0.
00

9

E
5

0
.5

(e
2
.4
x
3
)

+
si

n
(x

0
+
x
1
x
2
)

(c
os

(s
in

(t
an

h
(1
.5

15
ex

3
))

)
+

ta
n

h
(1
.1

19
|(0
.7

99
co

s(
si

n
(t

an
h

(

(
0
.5
(x

3
))

1.
51

5e
x
3
))

)
+

0.
79

9
ta

n
h

0.
53

4e
)e

x
3
−
ex

3
|0.

5
))
ex

3

—

2
−

0.
00

1x
1

+
0.

00
2x

3
+

0.
02

3
(0
.0

24
−
x
3
)

+

1
.2
0
6
x
3

2
0.

94
7e

+
0.

93
3

co
s(

12
29

7.
63

5
(0
.4

04
x
1

+
1)

+

0
.5

0.
22

5
(0
.0

01
x
0
−

0.
00

1x
2

+
1)

−
15
.4

1)
+

0.
03

2

1.
00

1e
1
.2
x
3
+

1.
0

si
n

(x
0

+
x
1
x
2

+
12
.5

66
)
−

0.
00

8

E
6

9 .
71

5
co

s
(0
.2
x
2 2
)

(
)

co
s

5
.9
0
2

ta
n
h
(c
o
sh

(0
.0
9
5
x
1
))

+
ta

n
h

(x
0
)

7
.4
0
7
lo
g
(|
x
1
|0

.5
)s

in
(x

2
)

co
s

(x
2
)

+
ta

n
h

(x
0
)

+
x
2

(
)

0.
14

5x
0

+
x
1

si
n

0.
30

2x
1

+
x
2

x
1

(
)

(0
.0

35
x
1
−

0.
00

2)
(4
.9

84
ar

ct
an

(
−

0.
03
−

4
.4
6
2

−
0
.5
3
9
x
0
−
0
.1
1
8

(0
.0

04
x
0

+
0.

00
1)

)
−

0.
16

)
+

0.
92

9

−
1.

0
co

s
(0
.2
x
2 2
−

9.
42

5)
|x

1
|+

1.
0

ta
n

h
(0
.5
x
0
)

E
7

(2
.4

82
x
2 1
−

2.
46

7)

(
(

co
s
(6
.2
7
8
x
0
+
1
.5
7
))

)
co

s
0.

43
5e

−
1.

16

∣
√ ∣

| x
1
|+

∣
(−

0
.5
3
8
x

)∣∣
2
√

∣

2
∣x 1−

0
.4
7
9
ta
n
h

e
1

∣∣
∣

−
x

2
2

1
+

∣ ∣
−
x
1

+
lo

g
∣ x 1

+
2

∣
∣

x
1
+
0
.3
9
2

∣
∣

∣
−

0.
05

63
2x

0
−

0.
84

03
x
2 1

(
2
)

0.
09
−

0.
08

2
(x

1
+

0.
00

7)

(
2

)
6.

13
1

(0
.7

66
−

si
n

(6
.5

16
x
0

+
0.

21
6)

)
+

5.
0

8
.1
8
x
2 1
−
8
.2
4
7

(−
8
.1
8
5
si
n
(6
.2
8
3
x
0
−
6
.2
8
3
)−

1
2
.2
7
3
)
−

0.
00

6

E
8

0.
8

ta
n

(s
in

h
(t

an
h

(c
os

h
(0
.8

27

co
sh

(t
an

(t
an

h
(x

1
))

))
ta

n
h

(c
os

h
(x

0
))

))
)

co
sh

(t
an

h
(x

0
))
−

0.
95

7

(
(

(
√

)))
ta
n
h

ta
n
h

lo
g

0
.8
6
4

|x
0
||x

1
|

e

((
x
0
))

si
n

co
s

x
1

x
0

+
0.

63
4

2.
1
−

0
.9

0
.0
0
2
|(3

.0
8
7
x
1
−
0
.1
6
8
) (
3
7
.5
4
(x

0
+
0
.0
2
9
)3
+
6
.0

)|+
0
.6

1
6
.2
0
5

4
+

2.
0+

(−
0
.0
1
5
x
0
−
1
6
.2
0
7
x
0
−
0
.0
3
3
(−

x
0
)3
−
1
6
.2
0
6
)

1
1
.9
1
4

(0
.0
1
3
x
1
−
0
.1
1
8
x
2 1
−
0
.0
1
6
x
3 1
−
1
1
.8
1
7
x
4 1
−
1
1
.9
0
1
)

E
9

(
)

lo
g

x
1
+
0
.5

2
x
2 0
+
0
.5

−
lo

g
(|x

0
|)

+
ta

n
h

(x
1
)
−

0.
29

8−
√ ∣

(
)

√
∣

∣
0
.8
7
3

∣
∣log

|x
0
|

+
ta

n
h

(x
1
)
−
|x

0
| ∣

(
)

0
.2
8
1
|x

1
|

lo
g

|x
0
|

(
2

)
−

0.
6

lo
g

10
.0

53
(0
.0

09
−
x
0
)

+
0.

6
+

1.
9
−

0
.7

0
.2
7
4
x
1
+
0
.3
0
1

−
1.

00
1

lo
g

(1
3.

04
1x

2 0
+

3.
26

4)
+

0.
99

8
|lo

g
(7
.3

65
x
1

+
3.

64
7)
|−

0.
10

8

E
10

si
n

(x
0
ex

1
)

(√
)

si
n

(t
an

h
(x

0
))

co
s

|x
1
|

si
n

(x
0
ex

1
)

−
0.

99
4

si
n

((
3.

60
8x

0
+

0.
01

3)

(
)

−
0.

23
4e

(0
.5
9
5
−
0
.0
5
3
x
1
)(
1
.9
7
6
x
1
+
0
.0
6
1
)
−

0.
00

9
)
−

0.
00

1

1.
0

si
n

(1
.0
x
0
ex

1
)

E
11

2.
0x

0
lo

g
(x

2 1
)

4x
0

lo
g

(|x
1
|)

x
0

lo
g

(x
4 1
)

(2
.9

22
x
0

+
0.

00
6)

(4
.1

4
ar

ct
an

(0
.3

36
−

∣
∣

∣
8
4
.4

∣
0.

00
8
∣0.26

x
1

+
0.

69
5
−

3
.2
4
2
x
1
−
0
.0
7
1
∣)−

0.
04

7)

4.
0x

0
lo

g
(|x

1
|)

E
12

()
x
0

si
n

1 x
1

+
1.

0
(

)√ ∣
(√

)∣
x
0

∣
∣

0.
99

8x
0

si
n

x
1
(x

0
+
0
.0
4
8
)

∣log
|x

0
|
∣+0

.9
98

()
(x

0
+
x
1
)

si
n

1 x
1

0.
58

8
+

7.
1

si
n

(0
.0

58
−

(
)9.

5
1

1
0
3
.4
0
9

)
0
.0
1
−

1
3
.9
6
x
0
−
0
.0
7
1

(−
0
.0
0
1
x
0
+
1
0
.9
9
4
x
1
−
0
.0
5
9
)

()
1.

0x
0

si
n

1 x
1

+
1.

0

E
13

√
x
0

lo
g

(x
2 1
)

(√
)

(√
) 2

(
(√

)
)

x
0

lo
g

|x
1
|

+
0.

68
9

lo
g

|x
1
|

+
0.

44
6

+

lo
g

(|x
0
|)

lo
g

(|x
1
|)

+
lo

g
(|x

1
|)

+
lo

g
(|x

1
ta

n
h

(x
1
)|)

0.
24

3x
0

+
lo

g
(x

2 1
)

(0
.7

41
−

4.
65

ar
ct

an
(0
.1

75
x
0

+
0.

35
))

(1
.9

2−

√
0.

29
2

0.
00

1
+

1
0
.1
7
5
x
0
−

20
.8

)
0
.0
0
8
|2
.5
0
4
x
1
−
0
.0
5
1
|+

0
.0
0
3
)

(0
.1

74
e

(0
.0

08
lo

g
(0
.0

01
x
1

+
12
.9

)
+

0.
07

2)

√
2.

0
x
0

lo
g

(|x
1
|)

245

T
ab

le
A

.1
2:

C
om

p
ar

is
on

of
p

re
d

ic
te

d
ex

p
re

ss
io

n
s

—
It

er
at

io
n

10
E
q
.

P
Y
S
R

T
a
y
lo
rG

P
N
E
S
Y
M

R
E
S

E
2
E

S
e
T
G
A
P

2
2

1

0
.6
0
4
x
0
x
1
(x

0
x
1
)4

(
2
)

(2
3.

06
4x

0
−

0.
03

4)
(0
.0

26
x
1

+
0.

00
1)
−

0.
00

1
+

1.
09

si
n

(0
.1

58
x
0

0.
60

7x
0
x
1
+

E
1

0.
60

8x
0
x
1

√
0.

58
9x

0
x
1

+
co

s
0.

59
8

(0
.9

66
x
0
−
x
1
)

|x
0
x
1
|

+
(1
.8

72
x
1

+
0.

12
5)

(0
.0

03
|0
.0

21
x
1
−

2.
23

9|
+

81
.7

)
+

0.
02

1)
1.

09
9

si
n

((
2.

24
2x

0
−

1.
49

2)
(x

1
−

0.
68

5)
)

−
0.

00
8x

0
(0
.1

72
x
0
−

1.
60

7)
(0
.0

07
x
1
−

40
.2

99
)

+

x
0

+
2.

96
9

si
n

(0
.2
x
2
)+

−
0.

5x
0

+
0.

06
2x

2

si
n
(x

1
)

−
0
.0
0
4
x
2

0
+

E
2

−
0.

51
3x

0
−

0.
00

1x
1

+
0.

20
4x

2
+

8.
57

2
−
x
0

+
e

+
63
.8

76
−

56
.5

99
e

6.
26

+
(0
.0

08
x
1

+
0.

14
9)

√
co

sh
(0
.0

83
x
0
−

3.
51

9)
−

10
.3

02
3.

16
2

0.
1x

1
+

1
si

n
(0
.2

01
x
2
)

+
6.

50
1

(1
9.

2
si

n
((

0.
00

1x
2

+
0.

07
3)

(3
.0

77
x
2

+
0.

00
1)

)
+

0.
00

3)

−
x
0

ta
n

h
(0
.6

32
ex

0
−

1)
+
ex

0
−

1
.8
0
4
x
0
−

(
)

0.
00

3x
0

+
0.

06
e

2
E

3
0.

15
e1

.5
x
0

+
0.

5
si

n
(3
.0
x
1

+
1.

57
1)

0.
57

5e
x
0
−

0.
41

8
si

n
1.

45
1

(0
.0

52
x
1

+
1)

0.
14

7e
1
.5
0
7
x
0
−

0.
5

si
n

(3
.0

01
x
1

+
4.

71
2)

lo
g

(e
x
0
)
−

0.
68

2
0.

49
9

co
s

(0
.0

03
x
0
−

2.
98

5x
1

+
59
.5

57
)

+
0.

15
9 2

−
0.

16
5x

1
−

0.
16

5x
3

+
1.

56
4

lo
g
(

0.
84

3|
0.

07
x
3
−

0.
01

3(
0.

83
6x

1
−

(x
0

+
0.

05
9)

−
0.

02
x
2 0
x
1

+
0.

01
x
4

2
0

+
0.

01
x
1
+

E
4

2
))
−

0.
55

3)
x
0

+
x
2
−

2
—

2
(c

os
h

(s
in

h
(0
.0

83
x

(0
.0

04
x
1
−

1)
+

0.
03

9)
2
−

4
0.

01
x

2
0

2
+

0.
01
x
3
−

(
2

) 2
co

sh
(x

2
))

+
1.

56
4

co
s(
x
2
)

0.
01

0.
96
x
3
−

(x
2
−

0.
04

6)
+

0.
04

6
+

0.
01

7|
(0
.0

2x
2 2

+
0.

00
2)

(x
3

+
0.

21
2)

+
0.

00
9

0.
00

2x
2

+
0.

84
5e

1
.2
5
x
3
+
0
.0
0
8
a
rc
ta
n
(−

0
.0
6
5
x
0
+
0
.0
0
2
x
1
−
1
4
.7
6
1
) +

√
1.

0e
1
.2
x
3
+

2e
x
3
−

ta
n

h
(e

x
3

+
si

n
((

1.
59

8
−

0.
12

6
|x

3
|)

0.
99

3
co

s(
−

16
.9

85
x
2

+
(−

0.
00

8x
0
−

37
.1

02
)

1.
00

2e
1
.2
x
3
+

E
5

—
√

(
∣

∣
)

∣
0
.0
0
8

∣
si

n
(x

0
+
x
1
x
2
)

(e
x
3
−

0.
24

))
)
|x

3
+
ex

3
|−

0.
24

67
.0
∣0.92

5
+

−
0
.5
7
3
x
3
−
0
.0
1
5
∣−5

9.
1

+
0.

99
9

si
n

(x
0

+
x
1
x
2
−

6.
28

1)

0.
08

8
+

4
6
.3

0
.0
1
2
−
0
.0
0
1
x
0
)

+
0.

27
3

(−
0.

00
7x

1
−

0.
01

5)
(9
.1

91
co

s(
(0
.0

21
−

0.
90

6x
2
)(

21
.2

06

(
)

0.
99

8
co

s
(0
.2

01
x
2 2
−

18
.8

84
)
|x

1
|+

2
4
.9
5
si
n
(x

2
)

E
6

|x
1
|c

os
(0
.2
x

)
+

ta
n

h
(0
.5
x
0
)

co
s

(x
2
)

+
ta

n
h

(x
0
)

+
−

0.
36

8x
0

+
x
1

si
n

x
0

2
x
2

x
1

+
0.

00
5x

2
|3
.6

97
x
0

+
11
.0

42
(−
x
2
−

0.
07

7)
2

+
0.

68
9|

+
0.

00
8)

)
−

0.
12

1)
−

1.
0

ta
n

h
(0
.5

01
x
0
)

0.
21

9
ar

ct
an

(−
0.

48
9x

0
−

0.
09

4)
+

0.
56

6

2
√

1
2

−
x

+
0.

80
2

2
2

0.
00

3x
0

+
0.

14
4+

2
.1
1
9
−
2
.1
1
8
x

0
.1
6
6
x
0
+
x

|x
1

+
si

n
(x

0
)|

1
1
.0
0
5
x
2 1
−
0
.8
7
3

E
7

2
.1
1
8
si
n
(6
.2
8
3
x
0
)+

3
.1
7
6

1
(−

si
n
(6
.2
8
3
x
0
−
6
.2
8
3
)−

1
.5
0
7
)

+
0.

08
4

co
s
(2

.4
9
8
(0
.1
3
7
x
1
−
1
)2

)−
2
.0
7
3

0
.0
0
2
−
0
.0
0
5
(−

x
1
−
0
.0
1
4
)2

0
.0
0
6
−
0
.0
0
1
(−

si
n
(7
.3
4
3
x
0
+
3
.4
9
9
)−

0
.6
2
8
)2

lo
g
(t

an
(1
.4

42
(t

an
h

(c
os

h
(x

1
)

ta
n

h
(

(
)

((
x
0
))

−
1
1
.5
3
4

√
si
n

x
1

0
.9

4
+

2.
0−

(1
1
.5
4
2
x
1
+
1
1
.5
3
5
)

E
8

2.
03

7
ta

n
h

0.
52

1
|x

0
||
x
1
|

co
s

x
0

+
0.

64
2.

0
−

0
.0
0
6
|(
2
.0
6
8
x
0
−
0
.4
)(
3
.4
1
3
x
0
+
0
.2
2
9
)(
2
.0
7
3
x
1
+
0
.0
3
8
)(
3
.1
0
9
x
1
+
0
.2
0
6
)|
+
0
.5

√ co
sh

(x
0
))

)
ta

n
h

(c
os

h
(x

0
))

)0
.5

)
−

0.
63

5)
1
1
.5
3
4

(0
.0
4
5
x
0
+
0
.0
6
2
x
2 0
+
1
1
.4
7
4
x
4 0
+
1
1
.5
2
8
)

√
(

) 2
1.

14
8x

1
−

4.
72

3+
(√ ∣

∣)
√

(
)

−
0.

98
6

lo
g
(2

6.
49

5
−

0.
17

9
−

1

x
1

0
.6
9
1
x
1
+
7
.5
9
6

−
1.

0
lo

g
(1

0.
83

1x
2 0

+
2.

70
7)

+
∣∣

0
.2
8
4
|x

1
|

E
9

lo
g

∣ x 0∣
−

1.
48

6
|x

0
|+

0.
88

9
lo

g
|x

0
|

(
) 2

(
(4.

4
9

2
.2
9
6

))
1

2
−

0.
06

3
−

0
.6
9
1
x
1
+
0
.6
2
6

(0
.0

31
−
x
0
)

+
0.

22
4)
−

0.
08

7
1.

0
|lo

g
(2

1.
91

1x
1

+
10
.9

61
)|
−

1.
39

9
co

sh
x
0
ta
n
h

1
.8
4
9
−
0
.7
7
1
c
o
s
(x

0
)

(√
)

E
10

si
n

(x
0
ex

1
)

co
s

|x
1
|

ta
n

h
(t

an
h

(x
0
))

si
n

(x
0
ex

1
)

−
1.

0
si

n
(0
.0

26
x
0

(1
.0
−

36
.6

38
e1

.0
9
1
x
1
))
−

0.
00

1
1.

0
si

n
(1
.0
x
0
ex

1
)

(−
0.

21
4x

0
−

0.
00

1)
(6
.0

lo
g
(1

74
2.

4
E

11
2x

0
lo

g
(x

2
)

4x
0

lo
g

(|x
1
|)

4
1

x
0

lo
g

(x
1
)

4.
0x

0
lo

g
(|x

1
|)

(
) 2

0.
02
−

1
1
.2
4
4
x
1
+
0
.0
2
3

+
0.

01
)
−

50
.0

)

(
(

))
x
0

()
ta
n
h

()
lo

g
e

x
1

+
ta

n
h

x
0

1
.0

x
1

+
()

0.
99

6
−

7.
12

si
n

((
0.

01
+

()
E

12
1.

0x
0

si
n

+
1.

0
(x

0
+
x
1
)

si
n

1
1.

0x
0

si
n

1
x
1

x
1

x
1

+
1.

0
√ |ta

n
h

(x
1
)|

1
9
.5

0
.0
0
6
x
0
−
9
.7
4
1
x
1
−
0
.3
0
5
)

(0
.0

67
x
0

+
0.

00
1)

)

(
(√

))
(2
.2

7
−

0.
46

5(
0.

08
6(
|(9

2.
8

ar
ct

an
(0
.1

72
x
0

+
20
.7

1)
+

29
.3

)

lo
g

3.
71

1
si

n
h

|lo
g

(|c
os

h
(0
.3

81
x
1
)|)
|

√
2

√
E

13
2

lo
g

(|x
1
|)
|x

0
|

0.
23
x
0

+
lo

g
(x

1
)

(−
0.

01
5x

1
+

(0
.9

13
+

6
1
.0
8
1

x
1

)(
0.

05
6x

0
−

2.
91

6)
+

0.
73

6)
|+

0.
00

1)
0
.5

1.
0

x
0

lo
g

(x
2 1
)

(√
)

√
ta

n
h

e−
2
.0
3
2
co

sh
(0
.2
0
9
x
1
)
+

2.
45

2.
01

5
|x

0
|

−
1)

0
.5

)(
3.

87
lo

g
(|2

1.
92

8|
0.

02
7x

0
−

1|
0
.5
−

26
.9
|)

+
0.

05
)

246

T
ab

le
A

.1
3:

C
om

p
ar

is
on

of
ex

p
re

ss
io

n
s

le
ar

n
ed

b
y

S
eT

G
A

P
U

n
d

er
N

oi
sy

C
on

d
it

io
n

s

E
q
.

σ
a

=
0.

01
σ
a

=
0.

03
σ
a

=
0.

05

E
1

0.
60

8
x
0
x
1

+
1.

08
9

si
n

((
2.

26
3
x
0
−

1.
52

5)
(x

1
−

0.
66

5)
−

0.
01

1)
(0
.6

11
x
0

+
0.

00
1)

(x
1
−

0.
04

3)
−

0.
88

5
si

n
((

2.
25

3
x
0
−

1.
54

4)
(x

1
−

0.
72

1)
−

3.
21

4)
+

0.
00

6
0.

61
x
1
(x

0
−

0.
00

6)
−

0.
47

si
n

((
2.

38
1
x
0
−

1.
17

1)
(x

1
−

0.
79

8)
+

8.
50

1)
+

0.
00

6

E
2

√
2

0.
06

3
x
0
−

0.
49

9
x
0

+
(3
.0

78
0.

09
8
x
1

+
1

+
0.

06
2)

(s
in

(0
.1

99
x
2
)
−

0.
00

2)
+

6.
48

1

√
0.

06
3
x
2 0
−

0.
49

9
x
0

+
(3
.2

22
0.

09
9
x
1

+
1
−

0.
05

8)
(s

in
(0
.2

01
x
2
)
−

0.
00

7)
+

6.
51

1
−
(0
.5
0
7
x
0
−
6
.5
5
7
)(
0
.1
8
1
x
1
−
1
8
.5
6
6
)−

(0
.3
7
4
x

+
1
8
.8
9
3
si
n
(0
.1
9
8
x
2
))

lo
g
(x

1
+
1
9
.8
2
4
)

0
.1
8
1
x
1
−
1
8
.5
6
6

2 0

E
3

0.
14

3e
1
.5
1
6
x
0

+
0.

50
6

si
n

(2
.9

99
x
1

+
1.

57
2)

+
0.

00
9

1
.5
0
5
x
0

0.
14

8e
−

0.
49

8
si

n
(3
.0
x
1
−

1.
57

2)
+

0.
00

3
0.

14
9e

1
.5
0
2
x
0
−

0.
49

6
si

n
(3
.0
x
1
−

1.
58

1)
+

0.
00

3

E
4

4
2

2
2

0.
01
x
0
−

0.
02
x
0
x
1
−

0.
00

7x
0

+
0.

00
9x

1
+

0.
01

1x
4

2
−

0.
02
x

2
2
x
3
−

0.
02
x

2
2

2
+

0.
00

8x
3

+
0.

11
3

√
0.

01
x
4 0

+
0.

01
x
4

2
−

0.
02
x

2
2

2
x
3

+
0.

01
x
3

+
0.

24
2c

os
h

(1
0.

69
1
−

0.
01

6x
1
−

8.
18

6)
−

1.
47

3

4
2

4
2

0.
01
x
1
−

0.
02

1x
3
x
4

+
0.

01
x
3

+
0.

01
1x

4
+

0.
01
x
4
+

(0
.0

93
x
2 1

+
0.

00
7|
x
4

+
1|

)
si

n
(0
.2

48
x
2
−

2.
98

1)
+

0.
12

4

E
5

1.
00

4e
1
.1
9
9
x
3

+
0.

99
7

si
n

(1
.0
x
0

+
1.

0
x
1
x
2
)
−

0.
00

5

(−
(0
.0

15
si

n
(0
.5

08
x
2

+
1.

57
4)
−

0.
00

1)
(|4
.7

79
si

n
(1
.0
x
0

+
3.

14
1)
−

6.
28

3|
−

6.
28

3)
+

1
.2
0
2
|x

3
+
5
.2
8
2
|

(6
.2

26
si

n
(0
.5

08
x
2

+
1.

57
4)
−

6.
28

3)
(0
.0

02
e

+
0.

14
5

si
n

(1
.0
|x

1
−

6.
28

3|
−

1.
84

7)
+

0.
06

7
si

n
(1
.0
|x

1
+

6.
20

2|
−

4.
42

5)
|2
.6

49
si

n
(1
.0
x
0

+
3.

24
)
−

2.
09

7|
+

0.
00

5)
)/

(6
.2

26
si

n
(0
.5

08
x
2

+
1.

57
4)
−

6.
28

3)

0.
99

6e
1
.2
0
2
x
3

+
1.

0
si

n
(1
.0
x
0

+
1.

0
x
1
x
2
)

+
0.

00
4

E
6

1.
0

co
s(

0.
2
x
2 2

+
0.

00
8)
|x

1
|+

1.
0

ta
n

h
(0
.5
x
0
)

+
0.

00
5

co
s(

0.
19

9
x
2 2

+
0.

02
8)

(1
.0

01
|x

1
|−

0.
00

1)
+

1.
00

2
ta

n
h

(0
.4

86
x
0
)

+
0.

02
1.

0
co

s(
0.

2
x
2 2
)|x

1
|+

0.
99

7
ta

n
h

(0
.5

02
x
0
)

E
7

1
.0
0
1
x

−
0
.9
9
1
4

si
n
(6
.2
8
3
x
0
+
3
.1
5
)−

1
.5
0
1

+
0.

01
1

2 1
−
1
.0
0
1
x

+
1
.0
0
6

si
n
(6
.2
8
3
x
0
)+

1
.5
0
1

+
0.

00
7

2 1
2 1

x
−
0
.9
9
3

−
0.

98
2
si
n
(6
.2
8
3
x
0
+
3
.1
3
9
)−

1
.4
9
2

+
0.

01
9

E
8

1
1
.3
5
6

2
−

1
1
.3
1
3
x

−
0
.1
1
6
x

+
0
.0
4
7
x

+
0
.0
7
8
x
1
+
1
1
.3
5
2
−

1
0
.6
3
6

1
0
.8
0
4
x

−
0
.1
1
3
x

+
1
0
.6
4
6

2 1

2 0

3 1

4 0

4 1

1
5
.5
3
1

2
−

1
5
.4
1
4
x

−
0
.0
5
1
x

+
0
.1
6
5
x

+
0
.0
1
8
x
1
+
1
5
.5
1
7
−

1
2
.5
6
1

1
2
.5
2
3
x

−
0
.0
8
5
x

+
0
.0
6
2
x

+
0
.0
6
1
x
0
+
1
2
.5
5
3

2 1

2 0

3 1

3 0

4 1

4 0

2 0

3 1

3 0

4 1

4 0

1
2
.8
3
7

2
−

1
2
.9
5
6
x

+
0
.0
0
7
x

−
0
.1
2
5
x

+
1
2
.8
6
1
−

1
6
.1
9

1
6
.2
1
7
x

−
0
.0
0
7
x

+
1
6
.2
0
2

E
9

2
−

1.
0

lo
g
(4
.8

84
x
0

+
1.

22
)

+
|lo

g
(9
.4

15
x
1

+
4.

70
9)
|−

1.
35

2
−

1.
0

lo
g
(1

7.
00

4
x
0

+
4.

25
1)

+
0.

99
9|

lo
g
(1

0.
15

8
x
1

+
5.

07
2)
|−

0.
17

6

√
5.

96
5

0.
62

5
lo

g
(9
.3

6
x
1

+
6.

35
)

+
1−

0.
99

9
lo

g
(1

1.
25

9
x
2 0

+
2.

81
7)
−

7.
71

3

E
10

1.
0

si
n

(1
.0
x
0
ex

1
)

1.
0

si
n

(1
.0
x
0
ex

1
)

1.
0

si
n

(1
.0
x
0
e
x
1
)

E
11

2.
0
x
0

lo
g
(x

2 1
)

(4
.0

01
x
0
−

0.
00

4)
lo

g
(|x

1
|)

+
0.

00
3

(4
.0

01
x
0
−

0.
00

8)
lo

g
(|x

1
|)

+
0.

00
6

E
12

1.
0
x
0

si
n

(1
/x

1
)

+
1.

0
1.

0
x
0

si
n

(1
/x

1
)

+
1.

0
1.

0
x
0

si
n

(1
/x

1
)

+
1.

0

E
13

√
(1
.0

01
x
0
−

0.
00

1)
lo

g
(x

2 1
)

√
(0
.9

93
x
0
−

0.
00

2)
lo

g
(x

2 1
)

+
0.

02
9

√
(1
.0

01
x
0
−

0.
00

3)
lo

g
(x

2 1
)

	Titlepage
	Copyright
	Acknowledgements

	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	Chapter 1 — Introduction
	Motivation
	Symbolic Regression
	Uncertainty Quantification
	Precision Agriculture

	Research Questions
	Overview
	Contributions
	Organization

	Chapter 2 — Background
	Transformer
	General Architecture
	Input Embedding and Positional Encoding
	Attention
	Encoder and Decoder Stacks

	Genetic Algorithms
	Representation and Initialization
	Fitness Evaluation
	Selection
	Crossover
	Mutation
	Replacement
	Termination

	Genetic Programming
	Representation and Initialization
	Crossover
	Mutation

	Summary

	Chapter 3 — Multi-Set Symbolic Skeleton Prediction
	Problem Definition
	Set Transformer
	Set Attention Blocks
	Set Transformer Architecture

	Multi-Set Transformer
	Multi-Set Transformer Architecture
	Multi-Set Transformer Training
	Dataset Generation
	Avoiding Invalid Operations

	Experimental Results
	Summary

	Chapter 4 — Deep Evolutionary Symbolic Regression
	Background
	Proposed Method
	Problem Definition
	Opaque Model Training
	Univariate Symbolic Skeleton Prediction
	Merging Univariate Symbolic Skeletons
	Merging Skeleton Expressions
	Selecting Combined Skeleton Expressions
	Cascade Merging
	Underlying Function Estimation

	Skeleton Performance Evaluation

	Experimental Results
	Synthetic Datasets
	Univariate Skeleton Prediction Performance
	Underlying Function Estimation Performance

	Discussion
	Univariate Skeleton Predictions Results
	Underlying Function Estimation Results

	Summary

	Chapter 5 — Uncertainty Management
	Background
	Prediction Interval Learning
	Uncertainty Minimization

	Prediction Interval-Generation Neural Networks
	Dual Accuracy-Quality-Driven Loss Function
	Batch Sorting
	Self-adaptive Coefficient
	Parameter and Hyperparameter Selection
	PI Aggregation Using MC-Dropout
	Comparison to QD-Ens and QD+

	Adaptive Sampling with Prediction-Interval Neural Networks
	Prediction Interval Generation
	Potential Epistemic Uncertainty
	Batch Sampling

	Integrating Symbolic Regression into Adaptive Sampling
	Experimental Results
	Prediction-Interval Learning
	Experiments with Synthetic Data
	Benchmarking Experiments

	Syntehtic Datasets for Adaptive Sampling
	Adaptive Sampling
	Symbolic Regression and Adaptive Sampling

	Discussion
	Prediction-Interval Learning Results
	Adaptive Sampling Results
	Symbolic Regression and Adaptive Sampling Results

	Summary

	Chapter 6 — Real-world Application — Precision Agriculture
	Background
	On-Field Precision Experimentation
	Crop Yield Prediction
	Dataset
	Yield Prediction Model
	Hyper3DNetReg Architecture

	Fertilizer Management Zones Clustering
	N-response Curve Generation
	Functional Principal Component Analysis
	Management Zone Clustering

	Prediction Intervals for Crop Yield Prediction
	Parametric N-response Curve Learning
	Adaptive Sampling with Simulated Field Data
	Simulated Field Data for Adaptive Sampling
	Adaptive Sampling Experiments

	Summary

	Chapter 7 — Conclusions
	Contributions
	Future Work
	Concluding Remarks

	References Cited
	APPENDIX: SeTGAP Comparison Results

