
MULTI- AND MANY-OBJECTIVE FACTORED EVOLUTIONARY ALGORITHMS

by

Amy Peerlinck

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

Doctor of Philosophy

in

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

May 2023

©COPYRIGHT

by

Amy Peerlinck

2023

All Rights Reserved

ii

DEDICATION

This dissertation is dedicated to every little girl who was told she was not good enough
and to my parents because they told me I was.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. John Sheppard, for his continued support and

making this dissertation possible. I am grateful to have been pushed to become a better

researcher, teacher, and person. Thanks to all of my committee members over the years for

the help you have given: Dr. Stephyn Butcher, who provided me with code and assistance;

Dr. Sean Yaw for his insightful comments and questions; Dr. Mary-Ann Cummings for

her assistance in all aspects of life; and Dr. David Millman for his patience with my

mathematical equations. I would also like to thank my labmates, with a special thanks

to Jordan Schupbach, for his endless patience and vast statistical knowledge, Elliott Pryor,

for his contribution to the variable grouping research, and Giorgio Morales Luna, for the

creation of the Hyper3DNet. I extend my thanks to all the people I have had the pleasure of

working with, notably, Dr. Shane Strasser, who laid the groundwork for my research in his

own dissertation; and Drs. Bruce Maxwell and Paul Hegedus, for answering my questions

on all aspects of agriculture. I could not have made it through this dissertation without my

family and friends. Specifically, I want to thank my parents, Luc Peerlinck and Iris Scheirs,

for their support of my journey despite its many twists and turns, including a move to a

different continent. I am deeply grateful to Rani Van Cauwenbergh for her listening ear

whenever I needed it, and to Matteo Björnsson for being my voice of reason. Lastly, I would

not have made it without the love and support of my surrogate pets and their owners.

This work was funded in part by NSF grant 1658971 and USDAGrant NR213A750013G021.

iv

TABLE OF CONTENTS

1. INTRODUCTION .. 1

1.1 Motivation .. 2
1.2 Research Questions .. 6
1.3 Contributions .. 6
1.4 Organization ... 8

2. BACKGROUND... 10

2.1 Population-Based Algorithms ... 10
2.1.1 Genetic Algorithm ... 10
2.1.2 Differential Evolution... 11
2.1.3 Particle Swarm Optimization.. 12

2.2 Multi-Objective Optimization... 15
2.2.1 Classic Approaches .. 15
2.2.2 Pareto Optimization .. 16
2.2.3 Evaluation Metrics... 17
2.2.4 Pareto-Based Approaches ... 20

2.2.4.1 Pareto-Based Sorting ... 21
2.2.4.2 Indicator Based Search... 24
2.2.4.3Decomposition-based Approaches ... 25
2.2.4.4Reference Direction Based Approaches .. 26

2.2.5 MOO Benchmark Problems.. 28
2.3 Many-Objective Optimization... 29

2.3.1 Identified Problem Areas.. 29
2.3.2 Scalable MaOO Benchmark Problems ... 30

2.4 Multi-Objective Combinatorial Optimization... 32
2.4.1 Problem Areas... 33
2.4.2 MOCO Benchmark Problems ... 34

2.5 Co-operative Co-evolutionary Algorithms .. 35
2.6 Factored Evolutionary Algorithms .. 36

3. MULTI-OBJECTIVE FACTORED EVOLUTIONARY ALGORITHM..................... 38

3.1 Related Work and Motivation... 38
3.1.1 Subpopulations in Multi-Objective Optimization 39
3.1.2 The Multi-Objective Knapsack Problem.. 41

3.2 Multi-Objective Factored Evolutionary Algorithm ... 42
3.3 Multi-Objective Knapsack Problem Experiments ... 47

3.3.1 Experimental Approach ... 48

v

TABLE OF CONTENTS – CONTINUED

3.3.1.1Multi-Objective Knapsack Problem... 48
3.3.1.2Hyperparameter Tuning ... 49
3.3.1.3 Evaluation Metrics... 50

3.3.2 Results.. 51
3.3.3 Discussion ... 53

3.4 Concluding Remarks .. 57

4. INFLUENCE OF VARIABLE GROUPING ON LARGE-SCALE OPTI-
MIZATION .. 59

4.1 Problem Decomposition ... 59
4.1.1 Static and Random Grouping ... 60
4.1.2 Variable Interaction ... 60

4.2 Related Work and Motivation... 61
4.3 Decomposition Methods ... 63

4.3.1 Overlapping Differential Grouping .. 64
4.3.2 Tree Based Grouping ... 64

4.4 Experimental Approach ... 66
4.5 Results.. 69
4.6 Discussion ... 73
4.7 Concluding Remarks .. 75

5. INFLUENCE OF VARIABLE GROUPING ON MULTI-OBJECTIVE
OPTIMIZATION.. 77

5.1 Related Work and Motivation... 77
5.2 Decomposition Methods ... 80

5.2.1 Linear and Random Grouping .. 80
5.2.2 Differential Grouping ... 81

5.3 Experimental Approach ... 82
5.4 Results.. 83

5.4.1 Single Population Experiments ... 83
5.4.2 Disjoint Variable Grouping Experiments ... 86
5.4.3 Overlapping Variable Grouping Experiments ... 90

5.5 Discussion ... 96
5.6 Concluding Remarks ...105

6. SOLUTION SET REDUCTION ...108

6.1 Related Work and Motivation..108

vi

TABLE OF CONTENTS – CONTINUED

6.2 Objective Archive Management ...110
6.3 Experimental Approach ..114
6.4 Results...115

6.4.1 Convergence vs. Diversity ...116
6.4.2 Environmental Selection Results ..119
6.4.3 NSGA3 Results ..128

6.4.3.1 External Archive Solutions ..128
6.4.3.2Direct Solution Set Reduction ...132

6.5 Discussion ..139
6.6 Concluding Remarks ...140

7. REAL WORLD APPLICATION - PRECISION AGRICULTURE141

7.1 On-Farm Precision Experimentation ..141
7.1.1 Data-Intensive Farm Management ...142
7.1.2 Fertilizer Prescription Maps ..143

7.2 Related Work and Motivation..144
7.3 Trial Design ...146

7.3.1 Trial Design Objective Functions ...147
7.3.2 Genetic Algorithm and Weighted Sum ...152

7.3.2.1 Experimental Approach ..152
7.3.2.2Results...153

7.3.3 Experimental Prescription Maps with an Ethical Objective157
7.3.3.1 Experimental Approach ..157
7.3.3.2Results...159
7.3.3.3Discussion ..160

7.4 Optimal Prescription Maps ...163
7.4.1 Optimal Prescription Objective Functions ..164
7.4.2 Yield Prediction Dataset Reduction ...165

7.4.2.1Dataset Reduction Approaches ..165
7.4.2.2Results...166
7.4.2.3Discussion ..167

7.4.3 Optimal Prescriptions with Ethical Objectives..169
7.4.3.1 Experimental Approach ..170
7.4.3.2Results...171
7.4.3.3Discussion ..173

7.5 Concluding Remarks ...176

vii

TABLE OF CONTENTS – CONTINUED

8. CONCLUSION..178

8.1 Contributions ...178
8.2 Future Work...181

REFERENCES CITED...184

APPENDICES ...202

APPENDIX A : Multi-Objective Continuous Benchmark Functions.........................203
APPENDIX B : Large-Scale Continuous Benchmark Functions206
APPENDIX C : Solution Set Reduction Radar Graphs...208

viii

LIST OF TABLES

Table Page

2.1 List of multi-objective optimization benchmark functions in
alphabetical order with the corresponding papers they were
used in and their most notable features. .. 29

2.2 List of multi-objective optimization benchmark functions in
alphabetical order with the corresponding papers they were
used in and their most notable features. .. 32

3.1 Hypervolume results. Underlined results indicate statisti-
cally significant results... 51

3.2 Spread indicator results. Underlined results indicate statis-
tically significant results. ... 52

3.3 Size of the non-dominated solution sets. ... 52

3.4 Adjusted coverage results... 53

3.5 Single balanced knapsack 3 objectives coverage results 53

3.6 Single balanced knapsack 5 objectives coverage results................................. 54

3.7 Multi knapsack 3 objectives coverage results. .. 54

3.8 Multi knapsack 5 objectives coverage results. .. 55

4.1 Summary of groupings made by each algorithm... 69

4.2 Comparison of different optimization methods on CEC 2010
benchmark functions. Bold values indicate best results that
were significantly better (Wilcoxon Rank-Sum p-value < 0.05) 70

4.3 Comparison of different optimization methods on F17 and
F20 with double the number of function evaluations. Bold
values indicate best results that were significantly better
(Wilcoxon Rank-Sum p-value < 0.05) ... 73

5.1 Characteristics of the DTLZ benchmark suite [65]. 83

5.2 Average adjusted coverage: single-population. ... 85

5.3 Average adjusted coverage: CC-NSGA2.. 87

5.4 Average adjusted coverage: CC-SPEA. ... 88

ix

LIST OF TABLES – CONTINUED

Table Page

5.5 Average adjusted coverage: CC-MOEA/D. ... 89

5.6 Grouping summary with three, five, and ten objectives after
applying DG to each objective. .. 92

5.7 Average adjusted coverage: F-NSGA2. ... 93

5.8 Average adjusted coverage: F-SPEA2. .. 94

5.9 Average adjusted coverage: F-MOEA/D... 95

5.10 Average adjusted coverage: DTLZ1 and DTLZ3.. 97

5.11 Average adjusted coverage: DTLZ4 and DTLZ7.. 98

5.12 NSGA2 Hypervolume (HV) results. .. 99

5.13 SPEA2 Hypervolume (HV) results. ...100

5.14 MOEA/D Hypervolume (HV) results. ...101

5.15 NSGA2 Spread Indicator (SI) results. ..102

5.16 SPEA2 Spread Indicator (SI) results. ..103

5.17 MOEA/D Spread Indicator (SI) results. ..104

6.1 Chosen parameter combinations (k and l) for each problem.120

6.2 Average solution set size for NSGA2, E-OAM, and S-OAM
with different overlap sizes (indicated by the percentages)...........................121

6.3 Hypervolume for NSGA2, OAM, and ES. Bold indicates
statistical significance with α = 0.05..122

6.4 Spread for NSGA2, OAM, and ES. Bold indicates statistical
significance with α = 0.05. ..122

6.5 NSGA3 partitioning results...129

6.6 Adjusted coverage (AC) and solution set size for NSGA3
and E-OAM-NSGA2...130

6.7 Hypervolume and spread for NSGA3. ..131

x

LIST OF TABLES – CONTINUED

Table Page

7.1 Chosen values for all hyper parameters. The parameters
are population (Pop), offspring created (OS), crossover rate
(CR), mutation rate (MR), and tournament size (TS).153

7.2 Average fitness score of the best maps after ten runs of the
GA for scramble and swap mutation, using equal width and
equal sample binning, on three different fields. The jump
weight is set to w = 0.5. ..157

7.3 Hypervolume (HV) and spread (S) results for the final non-
dominated set found by each algorithm, as well as for the
union front (X∗), where all three solution sets are combined
and evaluated for non-domination. All results were found to
be statistically significantly different based on the Kruskal-
Wallis and Wilcoxon rank sum tests with α = 0.005, with
the exception of the S results for NSGA2 and F-NSGA2 for
Henrys and Sec35Mid. ..161

7.4 Coverage C(row, column) for the three algorithms for each
of the fields, where the algorithm indicated on the left
is measured with respect to how much it “covers” the
algorithms across the top. Bold text indicates which
algorithm had the most coverage in the pairwise comparison.......................162

7.5 Adjusted coverage results, where each algorithm’s non-
dominated set is compared to the union front. ...162

7.6 Estimated total applied fertilizer across the field for each
prescription type in pounds of nitrogen..163

7.7 Predicted Net Return in USD ($) based on the yield
predicted by the CNN for the different types of experimental
prescription maps...173

7.8 Optimal prescriptions: Hypervolume (HV), spread (S),
and adjusted coverage (AC) results for each algorithm on
field Sec35Mid. ...173

7.9 Optimal prescriptions: Hypervolume (HV), spread (S),
and adjusted coverage (AC) results for each algorithm on
field Henrys. ...174

xi

LIST OF TABLES – CONTINUED

Table Page

7.10 Estimated applied fertilizer across the field for each pre-
scription type for field Sec35Mid using a Random Forest
(RF) and Convolutional Neural Network (CNN) for yield
predictions...174

7.11 Estimated applied fertilizer across the field for each pre-
scription type for field Henrys using a Random Forest (RF)
and Convolutional Neural Network (CNN) for yield predictions...................175

A.1 List of DTLZ multi-objective optimization benchmark functions.204

A.2 List of DTLZ multi-objective optimization benchmark functions.205

B.1 List of CEC 2010 LSO benchmark functions. Dimension
D = 1000, group size m = 50, P : random permutation of
{1, 2, . . . , D}, Frot refers to rotation of the variables based
on a D ×D orthogonal matrix [143]. ...207

xii

LIST OF FIGURES

Figure Page

2.1 High-level flowchart of the genetic algorithm using one-
point crossover and randomized mutation. .. 12

2.2 Differential Evolution [112]. ... 13

2.3 Particle xi velocity (vi) update process using local (pi) and
global (pg) best at iteration t to find the particle position
at iteration t+ 1 [155]. .. 14

2.4 NSGA2 selection procedure [36]. .. 23

2.5 Boundary intersection approach [175]. .. 26

2.6 Example of a normalized reference plane for a three-
objective function with four divisions (p = 4) using Das-
Dennis [29] on each axis and the resulting 15 reference
points [34]... 27

2.7 Association of reference points to population members [34]. 28

3.1 The modified compete step as performed on variable x3

in the Multi-Objective Factored Evolutionary Algorithm.
The dotted outline shows the selected solution from the
subpopulation’s non-dominated solution set. Both the
entire solution and the solution where only x3 is replaced
are included in the temporary archive... 46

3.2 The modified share step of MOFEA. For each subpop-
ulation, a random global solution is selected (without
replacement) from the current iteration’s set of found non-
dominated solutions. ... 47

3.3 Visual representation of the non-dominated population
found by each of the algorithms for the three objective
versions of the two types of knapsack problems. .. 56

4.1 Sample tree decomposition for function F20 with five variables. 66

4.2 Convergence plots for first trial of each method. Learning
terminates when max function evaluations (3× 106) are reached 72

4.3 Convergence plots for F17 and F20 with 6× 106 function evaluations 73

xiii

LIST OF FIGURES – CONTINUED

Figure Page

5.1 Example collapsing groups after applying differential group-
ing along three objectives for ten variables. ... 82

6.1 Visual representation of the OAM process to create the
objective archives. ..113

6.2 Five-objective HV results for OAM with different k and l
parameter values. ...116

6.3 Ten-objective HV results for OAM with different k and l
parameter values. ...117

6.4 Five-objective S results for OAM with different k and l
parameter values. ...118

6.5 Ten-objective S results for OAM with different k and l
parameter values. ...119

6.6 DTLZ5 five objectives NSGA2 single run. ..124

6.7 DTLZ5 five objectives NSGA2 external archive. ...125

6.8 DTLZ5 ten objectives NSGA2 single run. ..126

6.9 DTLZ5 ten objectives NSGA2 external archive. ...127

6.10 Reduction size of NSGA3 solution sets for the DTLZ
problems using different k and l parameters with varying
levels of overlap (40%, 60%, and 80%). ..132

6.11 Reduction size of NSGA3 solution sets for the WFG
problems using different k and l parameters with varying
levels of overlap (40%, 60%, and 80%). ..133

6.12 DTLZ5 five objectives NSGA3 ..135

6.13 DTLZ5 ten objectives NSGA3 ..136

6.14WFG3 five objectives NSGA3 ...137

6.15WFG3 ten objectives NSGA3 ...138

7.1 DIFM process for field profit maximization. ...143

xiv

LIST OF FIGURES – CONTINUED

Figure Page

7.2 Example of a prescription map for experimental fertilizer
application. Different colors represent different fertilizer rates.144

7.3 Example of different bin discretization types using a his-
togram representation of the yield values. The vertical red
lines indicate bin boundaries using each discretization type.........................149

7.4 Example of four consecutive cells in a field with large and
small jumps. The values are in pounds of fertilizer/acre..............................151

7.5 Field “sre 1314” results for 500 generations of the GA with
equally weighted objectives using the two different mutation
types and equal sample binning, with tournament size 3.
The left y-axis shows the fitness score values, while the right
y-axis details the variance value. ...155

7.6 Field “sre 1314” results for 500 generations of the GA with
a stronger focus on the jump score using the two different
mutation types and equal sample binning, with tournament
size 3. The left y-axis shows the fitness score values, while
the right y-axis details the variance value. ...156

7.7 Yield prediction results averaged across the entire field
based on the four different prescription maps, each focusing
on different objectives. The results are connected to show
how they are positioned relative to each other..160

7.8 Yield prediction data flow. The original data points are
used to train a predictive machine learning model. We
can then use the trained model to predict yield by sending
through adjusted data points. ...166

7.9 The three different types of sampling approaches..167

7.10 Total yield prediction results for the entire fields using the
different methods. ..168

7.12 Average of the difference in predicted yield per cell.170

7.13 Net return for the four different prescription maps for field
Sec35Mid. ..172

xv

LIST OF FIGURES – CONTINUED

Figure Page

7.14 Net return for the four different prescription maps for field
Henrys. ..172

C.1 DTLZ6 5 objectives NSGA2 ES ..210

C.2 DTLZ6 5 objectives NSGA2 OAM ..211

C.3 DTLZ6 5 objectives NSGA3 ...212

C.4 DTLZ6 10 objectives NSGA2 ES...213

C.5 DTLZ6 10 objectives NSGA2 OAM...214

C.6 DTLZ6 10 objectives NSGA3..215

C.7 WFG3 5 objectives NSGA2 ES ...216

C.8 WFG3 5 objectives NSGA2 OAM ...217

C.9 WFG3 10 objectives NSGA2 ES ...218

C.10WFG3 10 objectives NSGA2 OAM..219

C.11WFG7 5 objectives NSGA2 ES ...220

C.12WFG7 5 objectives NSGA2 OAM ...221

C.13WFG7 5 objectives NSGA3 ..222

C.14WFG7 10 objectives NSGA2 ES ...223

C.15WFG7 10 objectives NSGA2 OAM..224

C.16WFG7 10 objectives NSGA3...225

xvi

LIST OF ALGORITHMS

Algorithm Page

3.1 Multi-Objective Factored Evolutionary Algorithm....................................... 44

4.1 Differential Grouping... 62

4.2 Tree Based Grouping... 66

6.1 Objective Archive Management...112

6.2 Diversify Archive ...114

6.3 Find Overlapping Solutions...115

xvii

ABSTRACT

Multi-Objective Optimization (MOO) is the problem of optimizing two or more
competing objectives, where problems dealing with more than three competing objectives
are termed as Many-Objective (MaOO). Such problems occur naturally in the real world.
For example, many engineering design problems have to deal with competing objectives, such
as cost versus quality in product design. How do we handle these competing objectives? To
answer this question, population-based meta-heuristic algorithms that find a set of Pareto
optimal solutions have become a popular approach. However, with the increase in complexity
of problems, a single population approach may not be the most efficient to solve MOO
problems. For this reason, co-operative co-evolutionary algorithms (CCEA) are used, which
split the population into subpopulations optimizing over subsets of variables that can now
be optimized simultaneously. Factored Evolutionary Algorithms (FEA) extends CCEA by
including overlap in the subpopulations.

This dissertation extends FEA to MOO, thus creating the Multi-Objective FEA
(MOFEA). We apply MOFEA to different problems in the MOO family with positive results;
these problems include combinatorial and continuous benchmarks as well as problems in the
real-world domain of Precision Agriculture. Furthermore, we investigate the influence of
different grouping techniques on continuous large-scale, MOO, and MaOO problems to help
guide research to use the appropriate techniques for specific problems. Based on these results,
we find that some MaOO problems lead to large sets of non-dominated solutions. From
this, an Objective Archive Management (OAM) strategy is presented that creates separate
archives for each objective based on performance and diversity criteria. OAM successfully
reduces large solution sets to a more manageable size to help end-users make more informed
decisions.

The presented research makes four main contributions to the field of Computer Science:
the creation of a new Multi-Objective framework to create and use subpopulation in a
co-operative manner including the ability to use overlapping populations, the analysis of
different grouping strategies and their influence on continuous optimization in both large-
scale and multi-objective optimization, the introduction of a post-optimization solution
set reduction approach, and the inclusion of an environmental objective into a real-world
Precision Agriculture application.

1

CHAPTER ONE

INTRODUCTION

Many quantitative problems that occur in disciplines such as physics, engineering,

and economics can be defined through mathematical principles; solving these problems is

commonly referred to as “optimization” [161]. When problems have more than one goal to be

solved, we say we are solving multiple “objectives”. Multi-Objective Optimization (MOO)

is the area of research that aims to find solutions for problems with multiple, competing

objectives [33]. For example, an engineer designing a car needs to take different aspects into

account such as comfort, speed, cost effectiveness, and safety; but increasing speed could

come with a decrease in safety, thus creating a trade-off between the objectives. When we

deal with problems that have more than three objectives, the problems are termed as Many-

Objective Optimization (MaOO) problems [84]. MaOO is a subset of MOO, therefore when

we refer to MOO, this includes MaOO problems.

Solving MOO problems means finding a set of potential solutions, since, due to their

competing nature, the best solution for one objective will not necessarily be the best solution

for the other objective(s). One class of commonly used algorithms to solve MOO problems are

meta-heuristic algorithms, which keep a solution or set of solutions and adjust these solutions

in an attempt to improve them [134]. More specifically, population-based algorithms have

become the norm to solve MOO problems [33]. The use of a population of potential solutions

offers a natural way to keep track of a set of solutions, where different parts of the population

can explore different parts of the objective space, thus exploring the trade-off between

objectives. However, there are many unanswered questions in the field of MOO. With the

need to explore the objective space to find a good spread of solutions for all objectives,

2

comes the potential of slow convergence towards the set of optimal solutions. Balancing

this trade-off is a prominent problem in MOO, especially as the number of variables and

objectives increases.

To deal with a large number of decision variables, known as Large-Scale Optimization

(LSO), Co-operative Co-Evolutionary Algorithms (CCEAs) have been proposed [22, 97, 117].

CCEAs divide the variables into variable groups and optimize the variable groups separately

before combining them again to form a complete solution. The chosen variable grouping

strategy can have a strong influence on the optimization process of CCEAs, and has become

its own research area [85, 140]. In this dissertation we aim to explore different aspects of

CCEAs in the context of Large-Scale MOO and MaOO through empirical analysis.

1.1 Motivation

Industrial problems, such as engineering design, economics, and electricity distribution,

have been at the forefront of multi-objective optimization (MOO) research since it manifested

itself as a research field of interest in the 80s [32]. However, since then, many more real world

applications have entered the realm of multi-objective optimization. This includes medical

decision making, land use planning, and supply chain management [136]. Furthermore, with

the increase in computational power and the prevalence of computers in every day life, the

dimensionality of the problems as well as the amount of available data keeps growing. This

increase in data can mean an increase in decision variables to be solved, resulting in large

scale optimization (LSO) problems. Population-based algorithms have become the primary

way MOO and LSO problems are solved [32, 170]. Current research has been focusing on

developing new multi-objective evolutionary algorithms (MOEAs) and applying them to

specific problems, such as autonomous vehicle navigation and city planning [24, 27].

When looking at LSO from the perspective of single-objective optimization, a common

approach, when using population-based algorithms, is to decompose the problem into smaller

3

groups that are then optimized separately and combined to find the final solution [170].

Such approaches are widely known as co-operative co-evolutionary algorithms (CCEA) [117].

Research has indicated that the decomposition strategy is vital in the performance of the

algorithm for continuous optimization. A popular approach for problem decomposition is to

apply random grouping, which dynamically assigns variables to a random group of fixed size

at each iteration [169]. This results in groups of equal size and an equal division of variables

into the subpopulations, which may not be the most effective representation for a given

problem. A popular alternative to random grouping that alleviates the equal splitting of

variables is known as variable interaction learning. In this case, variables are determined to

be interacting by calculating interaction effects (e.g., by using derivatives) and variables that

are found to be interacting are then grouped together. Based on these interactions, problems

can be categorized depending on the level of separability of the interaction. If none of the

variables interact, a problem is fully separable. Conversely, if interaction is found between

all variable pairs, this is a fully non-separable problem. Lastly, if some variables are found

to be interacting, but others are not, this is known as partial separability.

One of the most popular approaches to perform variable decomposition is known as

Differential Grouping (DG), which uses the derivative of a function to determine interaction

between variables [107]. This results in disjoint subpopulations, which indicates DG may

not be capable of accurately representing problems with indirect variable interactions , i.e.,

variables that are not interacting directly, but that have a third, shared variable they

each interact with [140]. If a variable is only optimized in relation to the variables it

directly interacts with, the influence of indirect interactions may not be taken into account.

This is not a problem if the representation of the problem is an accurate depiction of the

corresponding variable interaction; however, if the grouping is not accurate, this could result

in a lack of exploration of the solution space [132]. To this end, the Factored Evolutionary

Algorithm (FEA) was introduced, which includes overlap in the subpopulations, meaning a

4

single variable can belong to more than one group [138].

DG inspired many extensions [91, 109, 141]; however, limited research has been

performed on which grouping approach is useful in which scenarios. Even though there

has been research looking at the effectiveness of grouping strategies on different functions, it

is as of yet unclear how important the accuracy of variable interaction representation actually

is. For example, if an overlapping architecture ensures that all variables are connected, is

this sufficient to explore the feasible solution space? And what type of functions benefit

from which decomposition approach? Even though the variable decomposition approach is

widespread in LSO, comparatively, it has seen limited research in the field of MOO [145].

How does variable grouping affect large-scale multi-objective optimization? Could adding

overlap to subcomponents improve MOO results? When is a decomposition approach the

right choice?

There has been a lot of work done to apply evolutionary algorithms to MOO and LSO

problems. There have been several surveys on different aspects of these issues [97, 114, 145].

While some of them focus on specific subproblems in the field of MOO, others try to create

a more comprehensive overview. However, these surveys generally agree that as the number

of objectives increases (resulting in Many-Objective Optimization), appropriate exploration

of the objective space becomes more difficult. If we consider the added difficulty of having

multiple objectives on top of dealing with a large decision space, applying a decomposition

strategy has two important benefits: the ability to apply distributed computing and an

improved exploration of the subspaces [132]. Furthermore, the objective space suffers from

the curse of dimensionality: as the number of objectives increases, the number of non-

dominated solutions increases exponentially [70]. This can result in solution sets with

thousands of solutions, which are nigh impossible for a human end-user to process. To

help the end-user make an informed decision, there are two common approaches: using

reference directions to guide the algorithm’s search early on [34] or reduce the solution-

5

set post-optimization [142]. However, both of these approaches require knowledge of the

problem, either to define the appropriate reference directions or to choose the appropriate

reduction algorithm to apply. Therefore, we propose a new post-optimization solution set

reduction technique that does not require such knowledge.

Lastly, we apply these concepts to fertilizer prescription optimization in the field of

Precision Agriculture (PA) and evaluate the effectiveness of the different algorithms in this

real-world setting. PA is a subfield of agricultural research that uses different technologies to

help improve crop and livestock management while increasing sustainability practices. More

specifically, we investigate site-specific farming using variable rate application technology.

This means that the field is divided into smaller plots and different rates of inputs (e.g.,

fertilizer, herbicide, seeding) are prescribed and applied to these smaller plots to optimize

yield. There are two different types of prescriptions: experimental and optimal prescriptions.

Experimental prescriptions are intended to gather data on a specific field, and this data can

then be used to create optimized fertilizer prescriptions. PA research has found that site-

specific optimization is beneficial for farming profit [79], but yield is not the only variable

to be taken into account when creating these prescriptions. Furthermore, agriculture is

the primary source of nitrogen pollution, due to the use of nitrogen as crop fertilizer and

the presence of nitrogen in animal manure [30]. We aim to address this environmental

issue by including fertilizer minimization as an objective when creating fertilizer prescription

maps. Additionally, we also wish to minimize rate jumps between consecutive cells to reduce

wear and tear on machinery, effectively reducing waste. All of these different problems and

objectives makes it a prime candidate for applying a MOO approach, and allows us to show

that environmental concerns can be addressed using MOO.

6

1.2 Research Questions

We recap the core research questions of the thesis; chapters will provide more details

on the research performed.

1. Many-objective optimization

• How does the use of overlapping subpopulations in co-operative co-evolutionary

methods affect Many-Objective Optimization?

• How can we reduce large non-dominated solution sets to a more manageable size

for the end-user?

2. Influence of different grouping methods on optimization

• How do different grouping strategies influence optimization?

• In which situations is a variable-decomposition approach the appropriate choice

(e.g., number of objectives, size of the problem, nature of the problem)?

3. Real world applications

• How do we apply different MOO techniques to the real-world problem of creating

fertilizer prescription maps?

• How does adding in environmental concerns, such as nitrogen seeping into the

soil and thus the waterways, affect the optimization of the fertilizer prescription

maps?

1.3 Contributions

The contributions of our work to the field of evolutionary computation and multi-

objective optimization are as follows:

7

• We introduce the Multi-Objective Factored Evolutionary Algorithm (MOFEA). MOFEA

is a co-operative co-evolutionary approach to multi-objective optimization that not only

allows for distinct subpopulations, but includes the use of overlapping subpopulations.

When defining MOFEA, we enable the use of co-operative co-evolutionary MOEAs as

a part of the general framework. In other words, using distinct subpopulations does

not impact MOFEA. Furthermore, we show how the proposed framework is applicable

to any MOEA by applying it to three popular MOEAs.

• We apply MOFEA to the classic multi-objective knapsack (MOKS) problem and find

that using overlapping subpopulations improves results as compared to NSGA2 and

CC-NSGA2. We also propose a different MOKS problem that maximizes profit while

minimizing weight, volume, and the difference in weight/volume of the items in the

knapsack. This problem was found to be more difficult to solve than the classic

problem. We apply the same algorithms and once again find that overlap is beneficial

for the optimization process. These experiments show the benefit of using overlapping

subpopulations in MOO through empirical analysis.

• We study different factor architectures for large-scale continuous optimization prob-

lems. More specifically, we extend DG to create overlapping groups and we create a

random grouping approach that uses a tree-graph to create connected groups through

overlap. We confirm the benefit of using overlapping subpopulations with single-

objective optimization, and we also find that identifying variable interaction may not

be necessary when creating overlapping groups, as long as the overlap connects all the

variables.

• Based on the results for LSO and the benefit found by applying MOFEA to the

MO-KS, we examine variable grouping for continuous LSMOO to gain deeper insight

into the effects of variable grouping. In our empirical analysis, we find that overlap

8

often improves results compared to the single population MOEAs and CCMOEAs.

Furthermore, we notice certain function-specific trends that can help future research

identify the right approach to use for problems with specific characteristics.

• We also propose using MOFEA to solve the following problem posed by Li et al.

[85]: they found that when applying DG along different objectives, different groups

were created for each objective, thus creating groups that contain the same variables.

The authors note that no appropriate solution to this problem had been proposed.

The capability of using overlapping subpopulations in MOFEA directly addresses this

issue.

• During our variable grouping experiments for LSMOO, we found that the non-

dominated solution set can contain thousands of solutions as the number of objectives

increases to five and ten. Because of this, we propose a novel approach to help reduce

the solution set size. The Objective Archive Management (OAM) strategy provides a

multi-faceted approach to solution set reduction.

• Finally, we show the benefit of the MOFEA framework in a real-world application

by including environmental objectives when creating fertilizer prescription maps. We

use MOO to help mitigate negative environmental impacts of fertilizer application in

agriculture. This furthers the field of multi-objective optimization by showing, through

empirical analysis, that MOO approaches have real-world benefit.

1.4 Organization

The remainder of this dissertation is organized as follows. We start by giving

fundamental background information on the fields of multi- and many-objective optimization,

multi-objective combinatorial optimization, and co-operative co-evolutionary algorithms

in Chapter 2. Chapter 3 introduces the multi-objective factored evolutionary algorithm

9

(MOFEA), a framework for co-operative co-evolution in multi-objective optimization that

allows for overlapping subpopulations. Chapter 4 explores the effects of variable grouping

in large-scale optimization, while Chapter 5 looks at variable decomposition for multi- and

many-objective optimization problems. Chapter 6 addresses the issue of large non-dominated

solution sets in many-objective optimization through the Objective Archive Management

strategy. Lastly, we apply MOFEA to generate fertilizer prescription maps in Precision

Agriculture (Chapter 7) before summarizing our main contributions and proposing future

work in Chapter 8.

10

CHAPTER TWO

BACKGROUND

This chapter lays out the foundational work and concepts that are used in this

dissertation. We start by exploring basic definitions used in large-scale and multi-objective

optimization as well as popular approaches and common evaluation metrics. We then

move on to many-objective optimization and multi-objective combinatorial optimization.

Lastly, we provide background information on the co-operative co-evolutionary and factored

evolutionary algorithms.

2.1 Population-Based Algorithms

Before diving into multi-objective optimization (MOO) and its specific algorithms,

we describe three commonly used population-based algorithms: Genetic Algorithm [62],

Differential Evolution (DE) [137], and Particle Swarm Optimization [41]. Several years

after the introduction of DE in 1997, there was a boom in the creation of novel nature-

inspired meta-heuristic algorithms [103, 168, 180]. However, most research still uses classic

approaches to solve different problems, where the above three algorithms are currently the

most commonly used population-based approaches (based on their impact score) [45].

2.1.1 Genetic Algorithm

The Genetic Algorithm (GA) is motivated by the concept of “survival of the fittest”

[62]. The GA is a form of stochastic search, in that it uses randomness to explore the search

space. A population of candidate solutions is initialized and subsequently modified using

selection, crossover, and mutation operators to create offspring, which can then replace all

or part of the population. This general flow can be seen in Figure 2.1.

11

The population consists of a set of chromosomes, each representing a possible solution,

and a chromosome consists of genes, which represent variables or sets of variables, where the

actual values of the variables are known as alleles. The simplest form of representation for

genes in chromosomes is a bit string, but a gene can also be represented by integers, real

numbers, permutations, trees, etc. A chromosome, or solution, is evaluated by calculating

its fitness. Once the fitness for each solution has been calculated, the selection of parents for

offspring production is performed. There are different parent selection procedures available,

but generally, fitter individuals are preferred to be parents. The selected parents can then be

recombined via crossover to create two new candidate solutions. A simple implementation

of crossover, known as one-point crossover, picks a random point in the chromosome and

combines the first part of the first parent with the second part of the second part and vice

versa. The second operator, mutation, only adjusts a small part of the chromosome to help

introduce diversity into the population. It randomly decides which genes of a chromosome

to change; the exact implementation of different mutation operators depends on the variable

representation. Both of these genetic operators are performed based on an operator rate,

determined by the user as a parameter.

2.1.2 Differential Evolution

DE is a simple parallel direct search method that also uses mutation and crossover

operations but in a different way than the GA [137]. A population of vectors is initialized

randomly across the entire decision space using a uniform probability distribution. For each

vector in the population, where the chosen vector is called the target vector Xt, the following

process takes place. DE performs mutation by adding the weighted difference between two

randomly chosen vectors, Xa and Xb to a third randomly chosen vector Xc (Xa ̸= Xb ̸= Xc):

Xm = Xa + F · (Xb −Xc), (2.1)

12

Figure 2.1: High-level flowchart of the genetic algorithm using one-point crossover and
randomized mutation.

where F is a user chosen scale factor. The resulting mutated vector Xm is then combined

with the target vector Xt through crossover to create the trial vector Xr. DE sometimes

refers to this procedure as parameter mixing. Crossover chooses certain values of each vector

to switch, or cross over, between the two vectors, thus resulting in two new vectors. However,

in DE only the altered trial vector is kept as offspring. After mutation and crossover are

performed, selection decides whether the new trial vector is to be kept. Its fitness is compared

to the target vector’s to determine whether or not it should replace the target vector. This

entire process can be seen in Figure 2.2.

2.1.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is based on the social behavior of flocking birds

[41]. Here, solutions are called particles, which belong to a swarm and whose state is updated

using velocity vectors. A particle is updated using the following general equation:

xi(t+ 1) = xi(t) + vi(t+ 1),

13

Figure 2.2: Differential Evolution [112].

where vi(t + 1) refers to the velocity at timestep t + 1 and xi(t) is the particle’s current

position. This velocity vector is dependent on the fitness of previous states of the particles,

effectively guiding them to the “fittest solution.” The global best velocity implementation of

PSO is calculated as follows:

vi(t+ 1) = ωvi(t) + c1r1(xpbest − xi(t)) + c2r2(xgbest − xi(t)), (2.2)

where ω is the inertia weight, which was introduced to adjust how much influence the previous

velocity has on the velocity in the next time step. Parameters c1 and c2 are the cognitive

and social acceleration coefficients respectively, and r1 and r2 are randomly generated values

14

Figure 2.3: Particle xi velocity (vi) update process using local (pi) and global (pg) best at
iteration t to find the particle position at iteration t+ 1 [155].

between 0 and 1. These values determine the influence of the local (xpbest) and global (xgbest)

best positions on the current particle’s velocity. The initial particle population, or swarm, is

initialized randomly across the search space. The position of each particle is then updated

based on the previously mentioned velocity vector (Figure 2.3).

To control stability and deter a particle from rapid acceleration, velocity clamping or

constriction is implemented. Velocity clamping can be used to limit the potential velocity of

a particle by assigning a minimum and maximum value. The previously mentioned inertia

weight also adjusts the particle velocity. Lastly, constriction uses a coefficient to adjust

the entire velocity equation. These strategies limit the scope of the search and balance

exploration and exploitation in the search process.

15

2.2 Multi-Objective Optimization

Multi-Objective Optimization is the process of optimizing multiple objectives simulta-

neously [70]. Formally, without loss of generality, assume we wish to minimize M objectives.

Then MOO consists of solving

min
x∈X

f(x) = {f1(x), f2(x), . . . , fM(x)}

with M ≥ 2 objective functions fi : Rn → R that have conflicting goals, fi ∈ FM where

FM represents the objective space, and x = [x1, x2, . . . , xn]
⊤ denotes the decision variables,

where X ∈ Rn is the solution space.

Like any optimization problem, MOO problems can be subject to constraints. The

general constrained MOO can then be defined as follows:

min
x∈X

f(x) = {f1(x), f2(x), . . . , fM(x)}

s.t. gj(x) ≤ 0, j = 1, . . . , J,

hm(x) = 0,m = 1, . . . ,M,

xL
i ≤ xi ≤ xU

i , i = 1, . . . , N.

Many MOEA’s are able to handle constraints without needing to be adjusted for said

constraints [6, 175]. On top of this general capability, several frameworks have been proposed

to handle constrained MOO with any MOEA as the base algorithm [73, 119].

2.2.1 Classic Approaches

A simple approach to solving MOO problems is to transform the multiple objectives

into a single objective [33]. As a result, single-objective methods can be applied directly.

Two common approaches are weighted sum and the ϵ-constraint method, where the former

16

transforms the problem through aggregation and the latter transforms all objectives except

one into constraints. The weighted sum approach assigns weights to each objective function,

where the weights sum to 1. For example, if there are three objective functions (M = 3)

f1(x1, x2), f2(x1, x2), and f3(x1, x2), these can be combined into a single objective as follows,

f(x1, x2) = α1f1(x1, x2) + α2f2(x1, x2) + α3f3(x1, x2),

where,
∑3

i=1 αi = 1. The simplicity of the weighted sum method makes it a popular choice;

however, it may not be the best approach for more complex methods. The ϵ-constraint

method is more robust. The general strategy is to take one objective while adding limits,

defined by ϵ, to the other objectives. The downside of the ϵ-constraint method (as well

as the weighted sum) is that there is no guarantee to find a uniformly distributed set of

solutions across the different objectives. It is also difficult to determine the optimal ϵ values;

this usually requires prior knowledge or extensive tuning. Plus, in order to obtain a set of

solutions using the weighted sum or ϵ-constraint methods, the algorithms need to be run

several times with different settings.

2.2.2 Pareto Optimization

When exploring algorithms that are generalized for any MOO problem, a trend has

emerged that favors Pareto-based solutions [145, 153, 171]. This means tracking the Pareto

front of possible solutions along the different dimensions in the solution space [135]. Pareto

dominance and Pareto optimality are then used to determine solution quality. Some of the

core concepts dealing with Pareto fronts are defined as follows.

Definition 1 (Pareto-Dominance) Assuming minimization, a point x∗ ∈ X dominates

another point x ∈ X (x∗ ≻ x) if ∀fi ∈ FM , ∀x ∈ X ,x ̸= x∗, fi(x
∗) ≤ fi(x), and ∃fj ∈

FM , fj(x
∗) < fj(x).

17

It then follows that x∗ is said to be non-dominated or Pareto optimal if no other feasible

solution dominates it. The implication of this definition is that, when improving an objective

component of an “optimal” solution, at least one other component will be degraded.

Definition 2 (Pareto Optimal Set) The Pareto optimal set (PS∗) is the set of non-

dominated solutions with respect to the solution space X .

Definition 3 (Pareto Optimal Front) The Pareto optimal front (PF ∗) is the set of

points mapped from the Pareto optimal set onto the objective space FM to form the boundary

of the set of non-dominated solutions.

MOO-focused algorithms that use Pareto techniques search for the Pareto optimal front;

the resulting Pareto front is called the approximate Pareto front.

2.2.3 Evaluation Metrics

How do we measure the quality of the solution set found by different MOO algorithms?

In general, MOO metrics can be categorized in two ways: 1) by looking at which aspects of

a solution set the metric is addressing, or 2) by how many solution sets a metric evaluates,

i.e., does it look at a single solution set (unary) or does it compare two solution sets (binary)

[122]. In the first category, there are three aspects of a solution set that can be evaluated:

• Cardinality: Number of proposed solutions.

• Accuracy: How close the approximation solution set is to the actual Pareto optimal

front.

• Diversity: Distribution (relative distance) and spread (range of values) of the solution

set.

A survey by Riquelme et al. found the following six metrics to be the most commonly

used across MOO articles published from 2005-2013 [122]. We list the six metrics with

18

information on the two categories of evaluation: first, whether it is a unary or binary metric,

and second, which aspects of a solution the metric investigates.

1. Hypervolume (HV): Unary, cardinality, accuracy, diversity

2. Generational Distance (GD): Unary, accuracy

3. Inverse Generational Distance (IGD): Unary, accuracy, diversity

4. ∆-indicator: Unary, diversity

5. Epsilon family (ϵ): Binary, cardinality, accuracy, diversity

6. Coverage (C): Binary, cardinality, accuracy, and diversity

By far the most popular metric is the HV indicator. Its popularity is likely because

it is the only unary metric that explores all three aspects of the given solution set. Given

M objectives, a set of points X ∈ RM , representing the approximate Pareto front, and a

reference point r ∈ RM , the HV of X is the measure of the region dominated by X and

bound by r [11]. This is in contrast to measures such as Generational Distance or Inverse

Generational Distance, which require the true Pareto Front to be known. Since we do not

necessarily know the true Pareto Front when dealing with real-world problems, the HV is a

natural choice to gain insight in the size of the covered objective space [183]. The biggest

downside to HV is its computational cost; to address this issue a recursive strategy to

calculate HV was introduced, known as the Walking Fish Group (WFG) HV [157]. For k

points in the Pareto front X, let

HV (X) =
k∑

i=1

ExcHyp(pi, {pi+1, . . . , pk})

19

where ExcHyp(pS) is called the “exclusive hypervolume” and is defined as

ExcHyp(p,S) = HV (S ∪ {p})−HV (S).

GD and IGD are unary in the sense that they only look at one approximation set;

however, both metrics require knowledge of the Pareto optimal front, or a reference set

as a substitute [68]. GD considers the average distance between the members of the

approximation set X = {x1, x2, . . . , x|X|} and their closest solutions in the optimal front

or reference front R = {r1, r2, . . . , r|R|}:

GD(X) =
1

|X|

 |X|∑
i=1

dpi

1/p

,

where di is the distance from xi to the nearest reference point in R, and p is an integer

parameter, often set to p = 1. If p = 2, the Euclidean distance is used as the distance

metric. IGD looks at the minimum distance from the approximate set to all solutions in the

optimal front:

IGD(X) =
1

|R|

 |R|∑
j=1

d̂pj

1/p

,

where d̂j is the distance from rj to the nearest objective vector in X.

The last of the unary metrics is the spread indicator S, which is defined as follows [69]:

S =
M∑
i=1

[
max
x∈X
{fi(x)} −min

x∈X
{fi(x)}

]
.

Thus S corresponds to the sum of the width for each objective, indicating how wide the

solutions are spread across the objective space, i.e., a measure of distance instead of volume.

There are two metrics that compare two Pareto front approximations directly: the ϵ

20

and the coverage metric. Calculating ϵ gives a factor by which one approximation set X′ is

worse than another X′′ considering all objectives. If trying to minimize a problem with k

objectives, an objective vector x′ ∈ X′ ϵ-dominates another objective vector x′′ ∈ X′′ if and

only if

∀i ≤M : x′
i ≤ ϵ · x′′

i ,

where ϵ > 0 [182]. By this definition, Iϵ(X′, X′′) determines the minimum value of ϵ by

which each objective vector in X′′ is ϵ-dominated by at least one objective vector in X′.

The coverage C of two fronts, denoted as X′ and X′′, can be calculated as follows [184]:

C(X′,X′′) =
|{x′ ∈ X′ : ∃x′′ ∈ X′′ : x′′ ⪰ x′}|

|X′|
.

This returns a value between 0 and 1, where 0 indicates that no solutions inX′ are dominated

by or equal to any solutions in X′′, and 1 indicating that all solutions in X′ are dominated

by X′′ . Since the reverse is not a symmetric measure, the metric is calculated for both

combinations: C(X′,X′′) and C(X′′,X′).

2.2.4 Pareto-Based Approaches

The idea of using Pareto-optimal solutions to find a non-dominated solution set has

been growing in popularity, and several different algorithms have been proposed. Generally

viewed as the first MOEA, the Vector Evaluated Genetic Algorithm (VEGA) was introduced

by Schaffer in 1984 [128]. It evaluates solutions for a single objective at a time, which leads

to locally non-dominated solution for each objective. However, evaluating solutions in this

way ignores non-dominated solutions that are not optimal for any of the objectives [1]. Since

then, approaches that better explore the objective space have been proposed. In general,

four different types of algorithms are distinguished: Pareto-based sorting, indicator based

sorting, decomposition-based approaches, and reference direction-based exploration. Each

21

of these approaches have at least one popular algorithm that has been shown to work well

on different types of problems.

2.2.4.1 Pareto-Based Sorting Pareto-based sorting algorithms order individuals based

on Pareto dominance; this ordering is algorithm dependent. There are two popular

algorithms that perform such an ordering: Strength Pareto Evolutionary Algorithm (SPEA)

[183] and Non-Dominated Sorting Genetic Algorithm (NSGA) [135]. Originally, SPEA

used a population Pt and an archive of non-dominated solutions P ′
t , where t indicates the

generation; each member i in the population is assigned a strength value Si based on the

number of population members that are dominated by or equal to the individual, divided

by the population size plus one [187]. This strength value also serves as the fitness value

for archive members. Each population member is then assigned a fitness Fi by summing

over the strength values of the archive members that dominate the individual, plus one.

However, this means that individuals in the population that are dominated by the same

archive members, have the exact same fitness. To address this issue, SPEA was adjusted in

2001 to create SPEA2 [185].

In SPEA2, the strength value is adjusted to include both the archive and the population

and is based on how many solutions an individual dominates across these two solutions sets:

Si =
|{j|j ∈ Pt ∪ P ′

t ∧ i ≻ j}|
|Pt|+ 1

.

The “raw” fitness value Ri sums over its dominators’ strength values in the archive and

general population:

Ri = 1 +
∑

j∈Pt∪P ′
t ,j≻i

Sj.

In addition to this adjusted strength value, density information is included based on the

k-nearest neighbors to distinguish between individuals with the same raw fitness value. The

22

k-th element’s distance is represented by σk
i , and k =

√
|Pt|+ |P ′

t |. An individual’s density

Di is then calculated as follows:

Di =
1

σk
i + 2

.

The final fitness value is then calculated as Fi = Ri +Di.

Furthermore, the non-dominated archive now has a fixed size. This means three different

scenarios can occur based on the number of non-dominated solutions. Either the number

of non-dominated solutions is exactly the size of the archive, the number is smaller, or the

number is larger. If it is smaller, the archive is filled out with dominated solutions based

on their fitness value. If the archive needs to be truncated this is done through an iterative

process based on the distance between individuals, removing the individuals with the smallest

distances.

The concept of Non-Dominated Sorting was introduced by Srinivas et al. in 1994 [135],

and improved in 2002 by Deb et al. to create the Non-Dominated Sorting Genetic Algorithm

II (NSGA2) [36]. NSGA2 is an elitist GA that uses a crowding distance measure to maintain

diversity in the next generation. Figure 2.4 shows how the population is sorted to perform

selection for the next generation. The parent population Pt and the offspring population Qt

are combined into one population Rt = Pt ∪ Qt. Rt is sorted based on the non-domination

principle, and individuals are assigned to different solution sets Fj based on how good the

solution is. If an entire set of solutions is larger than the remaining slots for the next

population, a second elimination is performed for that set based on crowding distance. In

Figure 2.4, this is shown for the third solution set F3. The crowding distance is calculated

for each individual in F3, and the solutions with the largest crowding distance are chosen for

the next generation. The crowding distance measure for an individual CDi is based on the

cardinality of the solution set and its distance to the solution boundary, where a boundary

23

Figure 2.4: NSGA2 selection procedure [36].

solution is defined as having the highest (Fmax
j) and lowest (Fmin

j) objective values.

CDi =

|Fj |∑
n=1,n̸=i

||F i
j − F n

j ||
Fmax
j − Fmin

j

Boundary solutions’ crowding distance is set to infinity so they will always be selected.

Lastly, Particle Swarm Optimization (PSO) was adjusted to the multi-objective case

to create multi-objective PSO (MOPSO) [23]. The algorithm starts by initializing a

population in the same way regular PSO does but evaluates each particle based on the

multiple objectives. The non-dominated solutions from the initial population are put into an

archive. After the position evaluation, hypercubes representing the explored search space are

created. The particles are then located within these hypercubes to define particle coordinates

according to the values of the objective functions. Then, the algorithm iterates through

velocity updates, and positional adjustments. A particle’s velocity is updated using Equation

2.2, except that the global best is replaced by a particle from the non-dominated repository.

The repository particle is chosen in the following way. Each hypercube is evaluated by

counting the number of particles it contains. Hypercubes with more than one particle get a

24

fitness value by dividing a chosen value z by the number of particles the hypercube contains.

Roulette-wheel selection based on these fitness values selects the hypercube from which

a random particle is selected. These particle update steps are repeated until a stopping

criterion is met.

2.2.4.2 Indicator Based Search In this type of algorithm, an MOO evaluation measure

is used to sort individuals. The hypervolume-based algorithm Hypervolume Estimation

Algorithm for Multi-objective Optimization (HypE) is the most broadly used example of

this type of algorithm [4]. The idea is to use the HV indicator to guide the search through

selection of the population (mating selection) and of the archive (environmental selection)

by assigning hypervolume-based fitness values.

HypE slices the solution space recursively into hyperrectangles to determine which

solutions are non-dominated. The number of recursions is decided by the number of

objectives. For each objective, the solutions are ordered by their fitness value for the

objective at hand and the space is sliced according to the objective axis. Within this

hyperrectangle subspace, solutions are filtered out based on their dominance levels, and

slicing is performed along the next objective axis, until each objective has been processed.

Once recursion is finished, the HV is calculated for the filtered solutions. However, the HV

calculations themselves are still expensive, so the authors propose a Monte Carlo simulation

to approximate the HV value for problems with more than three objectives. This is done by

defining a sampling space from which a set number of objective vectors are sampled uniformly

at random. For each partition, the number of samples that lie within it are counted and

this number is multiplied by the volume of a sampling box. The authors define the sampling

box as the axis-aligned minimum bounding box containing the previously defined subspaces.

The resulting HV -based fitness values are then used to select parents for mating as well as

to select the next population of individuals.

25

2.2.4.3 Decomposition-based Approaches Zhang proposed the first multi-objective

evolutionary algorithm based on decomposition (MOEA/D). MOEA/D uses a set of weight

vectors to guide the search by decomposing the MOO problem into several scalar optimization

subproblems [175]. The algorithm was created such that any problem decomposition

approach can be applied, e.g., weighted sum (Section 2.2.1), Chebyshev, or Boundary

Intersection (BI). Chebyshev scalarization uses the following approach:

min gch(x|λ, z∗) = max
1≤i≤M

{λi|fi(x)− z∗i |}, (2.3)

where λ is a weight vector, x are the variables to be optimized, and z∗ is a reference point

[175]. Each optimal solution for Equation 2.3 is a Pareto optimal solution for the original

objective functions. The weight vector λ can then be optimized in lieu of the variables xx,

since there exists a weight vector λ that optimizes Equation 2.3 for each Pareto optimal

point x∗. MOEA/D initializes N uniformly spread weight vectors λ1 . . . λN . Each weight

vector λi has a neighborhood of its closest weight vectors, measured using Euclidean distance.

Chebeshev scalarization does not create a smooth aggregation function for continuous MOO

problems. To alleviate this issue, several different BI approaches have been proposed. BI

approaches try to find intersection points of the top-most boundary and a set of lines; i.e., if

the set of lines is spread evenly, the intersection points should provide a good approximation

to the total Pareto front. BI uses an equality constraint z∗ − f(x) = dλ which ensures that

the objectives f(x) fall within the attainable objective set while still pushing f(x) to the

boundary of said objective set (Figure 2.5). Zhang et al. added a penalty factor θ to handle

this equality constraint, thus creating Penalty-based Boundary Intersection (PBI).

Each generation of MOEA/D performs the following steps. For each weight vector

λi (representing a scalarized subproblem), two parents are chosen randomly from its

neighborhood to mate, after which mutation is performed. Then, the resulting solution

26

Figure 2.5: Boundary intersection approach [175].

is repaired if necessary based on problem-specific heuristics. The fitness values of the

resulting offspring are compared to the currently saved fitness values, and if the fitness for

any objective is better, the saved fitness value is replaced. The variable values (corresponding

to the replaced fitness values) are then used to update the neighboring solutions. The found

solutions for each subproblem are added to the non-dominated archive if it is not dominated

by any other members of the archive.

2.2.4.4 Reference Direction Based Approaches Similar to MOEA/D, NSGA3 is an

extension of NSGA2 that uses reference directions to guide the search through the objective

space. However, weight vectors are now used to guide the search as opposed to transforming

the objectives. This approach was created to better handle many-objective optimization

problems [34] (see Section 2.3). In NSGA3, predefined reference points are specified, i.e.,

weight vectors, where points corresponding to these reference points become the focus of

the algorithm. More specifically, NSGA3 replaces the crowding distance calculation of

NSGA2 with these reference points. The idea of non-domination levels is still applied as

27

Figure 2.6: Example of a normalized reference plane for a three-objective function with four
divisions (p = 4) using Das-Dennis [29] on each axis and the resulting 15 reference points
[34].

the first step; however, the selection of points from the lowest included non-domination level

is now based on reference points, which are placed on a normalized hyperplane. The most

common approach to create these reference directions is called the Das-Dennis approach,

a normal-boundary intersection approach that places uniformly spread reference points on

a normalized hyperplane based on a pre-defined number of partitions p [29]. If there are

M objectives, the hyperplane represents an M − 1-dimensional unit simplex. The number

of reference points H depends on the number of divisions p for each objective axis, where

H =
(
M+p−1

p

)
(Figure 2.6).

The resulting reference points are used to associate population members. Figure 2.7

shows the association process. A reference line is drawn from the origin to a reference point

(indicated by the dotted lines); the reference line is then used to calculate the distance to the

solution points, as shown by the solid lines drawn from the solution points to the reference

line. These distances determine which solutions are associated with which reference points,

which can then be used to make the selection of which solutions should be included in the

next generation.

The selection procedure uses a niche-preservation operation. For each reference point,

28

Figure 2.7: Association of reference points to population members [34].

the number of new population members associated with it are counted. The reference point

with the lowest count is identified. If this count is zero, the solutions in the last non-

domination front are checked to see if some are associated with this reference point, and

the closest one is added to the new population. If there are no associated solutions, the

reference point is taken out of consideration for the current generation. If there is at least

one solution already associated with the lowest-count reference point, a randomly associated

solution from the last front is chosen to be added to the new population. The niche count

for the reference point is updated, and the procedure is repeated until all empty solution

slots in the new population are filled. Once the population has been filled, the algorithm

proceeds as a normal evolutionary algorithm (EA), by performing crossover and mutation.

2.2.5 MOO Benchmark Problems

In MOO, several benchmark problems have been established by different research

groups, each with different characteristics. Table 2.1 gives an overview of some of the most

commonly used multi-objective continuous optimization problems, their notable features,

and which paper they were first introduced in. These functions are not scalable in the

29

Name Features Papers

dMOP1 dynamic Goh and Tan [54]

dMOP2 dynamic Goh and Tan [54]

dMOP3 dynamic Goh and Tan [54]

FDA1 dynamic Farina, Deb, and Amato [47]

FON severe parameter interaction, disconnected Van Veldhuizen [152]

KUR severe parameter interaction, disconnected Van Veldhuizen [152]

ZDT test suite 2-objective Zitzler, Deb, and Thiele [184]

Table 2.1: List of multi-objective optimization benchmark functions in alphabetical order
with the corresponding papers they were used in and their most notable features.

objective space. Our research aims to investigate the effects of many-objective spaces,

therefore we do not use these benchmark functions.

2.3 Many-Objective Optimization

Generally, problems with more than three objectives are referred to as many-objective

optimization (MaOO) problems [5]. This distinction is made, since problems with over three

objectives seem to increase in difficulty rapidly as the objectives keep growing, requiring

more sophisticated methods [67]. Such problems are becoming more prominent in real-world

applications; for example, search-based software engineering [120], hybrid car control [106],

and automotive engine calibration [95].

2.3.1 Identified Problem Areas

With an increase in competing objectives, the number of non-dominated solutions in

the Pareto front increases as well, complicating the search process and resulting in large

Pareto fronts. More specifically, the three main identified problems of interest are as follows

30

[70]:

1. Convergence and diversity are compromised. An increase in objectives often means

that almost all solutions in a population are non-dominated, leading to a deterioration

in selection pressure and thus convergence.

2. The curse of dimensionality arises in the objective space. As the number of objectives

increases, the number of solutions required to approximate the Pareto front increases

exponentially.

3. With a large number of solutions, visualization of solutions becomes more difficult or

even impossible, as does making a final solution choice (from the perspective of the

end-user).

The first two problem areas have been addressed in many different ways, mostly focusing

on adjusting algorithms to increase diversity or by adjusting the selection procedure [84].

A commonly used approach is to adjust the Pareto dominance relationship, for example,

by increasing the dominance degree. In other words, a non-dominated solution will now

dominate more solutions than classic Pareto dominance [174]. Such approaches offer ways

to balance convergence and diversity as the objectives increase, but they do not address

the issue of large non-dominated solution sets for the end-user to inspect. Most of the

research focusing on helping the decision maker in their choice for a final solution focuses on

dimensionality reduction to aid in visualization [26] or by incorporating preferences directly

into the search processes [56, 86, 154].

2.3.2 Scalable MaOO Benchmark Problems

The benchmark problems presented here are scalable in terms of both the number of

variables and the number of objectives to be optimized, lending themselves well to MaOO

and LSMOO research. Table 2.2 gives an overview of two of the most commonly used

31

many-objective continuous optimization benchmarks: the Deb, Thiele, Laumanns, & Zitzler

(DTLZ) functions and the Walking Fish Groups (WFG) functions. We summarize their

most important features and which paper they were first introduced in.

The following characteristics are used to describe each function:

1. Modality: Functions are multimodal when there are multiple local optima and

unimodal when there is a single global optimum. Different objectives in the same

function can have different modality.

2. Separability: Functions where all variables interact are non-separable, if there is no

interaction between variables, it is considered a separable problem. A question mark

indicates that the level of separability is unknown.

3. Bias: Functions where there is a large discrepancy between the distribution of solutions

in the search space and the distribution of solutions in the objective space [65].

4. Geometry: Shape of the Pareto optimal front, concave, convex, or linear (both concave

and convex); a front can also be disconnected or unknown (indicated through a question

mark).

The complete formulation of the DTLZ benchmark problems can be found in Appendix

A. The WFG benchmarks are made using the WFG toolkit, where a problem is defined

using a vector of parameters x, which are derived from a set of working parameters through

different transition vectors, as chosen by the user. These transition vectors are what add

complexity to each benchmark problem; Huband et al. [65] define two different types of

functions: shape functions and transformation functions. There are five different shape

functions: linear, convex, concave, mixed convex/concave, and disconnect; and there are

three types of transformations: bias, shift, and reduction.

32

Name Features Paper

DTLZ1 separable, multimodal, linear Deb, et al.[38]

DTLZ2 separable, unimodal, concave Deb, et al.[38]

DTLZ3 separable, multimodal, concave Deb, et al.[38]

DTLZ4 separable, unimodal, concave, biased Deb, et al.[38]

DTLZ5 unknown separability, unimodal, unknown geometry Deb, et al.[38]

DTLZ6 unknown separability, unimodal, unknown geometry, biased Deb, et al.[38]

DTLZ7 multimodal, seperable, disconnected Deb, et al.[38]

WFG1 separable, unimodal, convex, biased Huband, et al. [65]

WFG2 non-separable, multimodal, disconnected Huband, et al. [65]

WFG3 non-separable, unimodal, linear Huband, et al. [65]

WFG4 separable, multimodal, concave Huband, et al. [65]

WFG5 separable, deceptive modality, concave Huband, et al. [65]

WFG6 non-separable, unimodal, concave Huband, et al. [65]

WFG7 separable, unimodal, concave, biased Huband, et al. [65]

WFG8 non-separable, unimodal, concave, biased Huband, et al. [65]

Table 2.2: List of multi-objective optimization benchmark functions in alphabetical order
with the corresponding papers they were used in and their most notable features.

2.4 Multi-Objective Combinatorial Optimization

Multi-Objective Combinatorial Optimization (MOCO) is a subdomain of MOO looking

at discrete variable spaces [25]. In the single-objective space, there are three popular

combinatorial optimization problems: traveling salesperson (TSP) [75], knapsack [123], and

quadratic assignment (QAP) [82]. Each of these problems can be transformed into different

real-world applications. In order to demonstrate their importance, we provide an example

of such a real-world problem for each of these benchmarks.

33

1. TSP is a representation of the order picking problem, which collects a set of products

in a warehouse in a minimum amount of time [111].

2. The knapsack problem can be translated to solve traffic congestion in telecommu-

nication, i.e., how we allocate available bandwidth to services which have different

characteristics and quality requirements [48].

3. Hospital layout planning is an example of the QAP, where specific locations in the

hospital are allocated to clinics by minimizing the total distance travelled by patients

[43].

However, the single-objective versions of these problems are limiting, since there may be

other relevant objectives to be taken into account, resulting in multi-objective combinatorial

optimization. For example, in the case of the order picking problem, reducing the cost of

the picking process could be another relevant objective [25]. Due to its broad real-world

applicability, MOCO has become a specific area of interest in the MOO community.

2.4.1 Problem Areas

Many single-objective combinatorial optimization problems, including the three prob-

lems discussed above, have been proven to be NP-hard [159]. But even with their NP-hard

nature, exact solutions can be found for these problems if certain criteria are met (e.g., size

limitations). The same does not hold true for the multi-objective instances. Due to its

discrete nature, a linear programming weighted sum approach will not be able to provide all

feasible solutions within the objective space for MOCO [42]. Since the classic weighted sum

approach is unable to provide a complete picture of efficient solutions even in lower objective

spaces, it becomes even more important to explore different avenues. As discussed in the

previous section, meta-heuristic approaches are a popular method to solve MOO problems.

There are two different general classes of meta-heuristic approaches: local search in the

34

objective space and population-based search, where the population-based approach is more

common [7].

2.4.2 MOCO Benchmark Problems

In this section we define the three most common benchmark problems in MOCO [5]:

• Multi Objective Knapsack [67]

• Multi Objective Quadratic Assignment [77]

• Multi Objective Traveling Salesperson [94]

.

The Multi Objective Knapsack problem is defined as follows [67]

max f(x) = (f1(x), f2(x), . . . , fM(x))

s.t.
D∑
j=1

bijxj ≤ ci, i = 1, 2, . . . ,M

xj ∈ {0, 1}, j = 1, 2, . . . , D

where fi(x) =
∑D

j=1 aijxj, 1, 2, . . . ,M , x is a D-dimensional binary vector, bij represents the

weight of item j inside knapsack i, aij is the profit of item j inside knapsack i, and ci is the

capacity of knapsack i. This means that the multi-objective part of the problem is defined

as having M knapsacks across which D items need to be assigned according to capacity and

value.

Knowles and Corne [77] define the Multi Objective Quadratic Assignment Problem:

min
ck

(π) =
D∑
i=1

D∑
j=1

aijb
k
πiπj

, k = 1, 2, . . . ,M

35

where D represents the number of facilities and aij is defined by an N × N matrix that

contains the distance between locations i and j. Matrix B = (B1, . . . , BM) indicates an

mQAP with M flows where Bo = (boij), and boij denotes the k-th flow matrix from facility i to

j. Lastly, π is the permutation of D facilities, and πi is the i-th element of π and represents

an objective function o ∈ {1, 2, . . . ,M}.

Lastly, the Multi Objective Traveling Salesperson problem [94] is defined as finding a

tour to minimize cost:

min
ck

(ρ) =
D−1∑
i=1

ckρ(i),ρ(i+1) + ckρ(D),ρ(1), k = 1, 2, . . . ,M

where D denotes the number of cities visited, cki,j represents the cost k for traveling from

city i to city j, and ρ is the cyclic permutation of cities, also defined as a tour.

2.5 Co-operative Co-evolutionary Algorithms

Co-evolutionary algorithms divide the population into subpopulations; these subpop-

ulations either can represent part of the solution, or they can represent the entire solution

space but only optimize a single objective, thus lending themselves well to solving MOO

problems. Two different types of co-evolution exist: competitive and cooperative. The

competitive model generally follows the biological predator-prey or host-parasite model [81].

The predator (or host) tries to improve itself to better attack its prey (or to conquer the

parasites). In turn, the prey (or parasites) evolve to better protect themselves against these

attacks. This is done to set up an evolutionary arms race such that both populations continue

to improve, rather than stagnating into a “mediocre stable state” [81].

Cooperative co-evolutionary algorithms (CCEAs) were initially introduced by Potter

and De Jong [117]. CCEAs are based on symbiotic relationships found in nature, where

different species live together and improve each others’ standard of life. To mimic this,

36

a problem is divided into smaller components, each represented by a different population.

In this first version of CCEA, problems with n dimensions are decomposed into n one-

dimensional subproblems. These subpopulations are then evolved separately and recombined

after evolution to form a complete solution. An individual’s fitness is not only based on how

well it solves its own part of the problem; it also takes its ability to cooperate with other

solutions into account. This is done by injecting the subsolution’s variables into a global

solution and evaluating the fitness of this full solution.

2.6 Factored Evolutionary Algorithms

Classic CCEA only creates subpopulations that have disjoint sets of variables, i.e., there

is no overlap between subgroups (or factors). Haberman and Sheppard proposed including

overlap in subpopulations [58], which was then generalized by Strasser et al. to create

the Factored Evolutionary Algorithm (FEA), which has been shown to perform well on

combinatorial optimization problems such as NK-landscapes [138] and Bayesian network

abductive inference [50].

FEA initializes subpopulations based on a pre-defined factor architecture, where a

factor architecture represents the decomposition of the variables into subgroups. A global

solution representing all decision variables is initialized randomly. Then, the following three

steps are repeated until a stopping criterion is met: subpopulation optimization using the

base-algorithm, competition between overlapping subpopulations, and, finally, sharing of

the best sub-solutions. The compete step is executed to decide which variable values from

the overlapping population will be added to the global solution, where the current global

solution is used to evaluate the subpopulations. Evaluation of the subpopulation happens

by injecting the optimized partial solution into the global solution. The competition starts

by iterating over the function variables. Each subpopulation containing that variable is then

considered, where the relevant variable is substituted into the global solution and evaluated.

37

The subpopulation resulting in the best fitness for the global solution is saved. Once the

algorithm has iterated through the subpopulations for a specific variable, the global solution

is updated, and the process is repeated for the next variable.

Butcher et al. showed that the compete step in FEA can be considered as a form

of Pareto improvement [15]. In single population and disjoint subpopulation approaches,

the “hitchhiking” phenomenon is known to occur when trying to find the current best

solution. Hitchhiking refers to the scenario where the improved solution has a better fitness

score overall than the previous best, but in doing so, individual variables’ values could be

deteriorating. In terms of Pareto optimality, this means that one aspect is improving while

another declines, potentially negatively impacting the overall score and thus not achieving

Pareto improvement. The authors argued that when performing competition, each variable

is considered separately, and the global solution is only adjusted if the fitness score improves,

thus avoiding the hitchhiking pitfall and achieving a Pareto improvement. However, Pareto

improvements do not guarantee Pareto optimality, since Pareto optimality implies that there

are no more Pareto improvements to be made.

In the last step, the sharing function, the following are repeated for each subpopulation.

The variables Ri that are not included in the partial solution Si are set to be equal to those of

the global solution, i.e. Ri = G \ Si. The worst individual from the subpopulation is chosen

and its values are replaced by those found in the global solution. The worst individual’s

fitness is then reevaluated using these new values. These steps are repeated until a certain

number of FEA iterations have been completed or a convergence criterion is met.

38

CHAPTER THREE

MULTI-OBJECTIVE FACTORED EVOLUTIONARY ALGORITHM

This chapter introduces the novel Multi-Objective Factored Evolutionary Algorithm

Framework (MOFEA), which is based on the ideas presented by Strasser et al. in FEA [138].

We apply the proposed framework with NSGA2 [36] and present results on two variations

of the multi-objective knapsack (MOKS) benchmark with 1000 variables and three and five

objectives.

3.1 Related Work and Motivation

Our MOO research focuses on improving exploration in high-dimensional objective and

variable spaces. We use the classic MOKS problem, as well as a more complex variation of

MOKS, to evaluate the effectiveness of our proposed framework. Since a large amount of

research has been performed to improve exploration in different types of multi- and many-

objective optimization [7, 97, 145], we focus our related work discussion on two aspects:

the use of co-operative co-evolution in MOO and research looking at the MOKS problem

specifically.

Before diving into these specific aspects, we would like to note that there has been work

done that includes the idea of Pareto optimality to improve single-population optimization,

inspired by the FEA algorithm [15]. The authors proposed altering the g-best strategy

of PSO through the idea of Pareto efficiency. Instead of selecting the best individual

from the population to represent the g-best solution, the g-best solution was constructed

variable by variable. This was accomplished as follows: for each variable, each solution

in the population’s value for that variable was injected into the current g-best, and the

value was only changed if the fitness score improved, thus achieving Pareto improvement.

39

The resulting g-best solution is not an existing particle in the population, and was also

not injected back into the population. In this approach, the g-best solution served as a

communication mechanism to share information between the particles in the swarm, similar

to how information is shared in FEA.

3.1.1 Subpopulations in Multi-Objective Optimization

CCEA has been applied to MOO in several different studies, and the resulting

algorithms are called cooperative co-evolutionary multi-objective evolutionary algorithms

(CCMOEA) [100]. The first combination of the Multi-Objective Genetic Algorithm (MOGA)

[49] and CCEA [117] was presented by Keerativuttitumrong et al. [76]. They found that a

co-operative approach can have beneficial results for finding a well spread out Pareto front

when compared to the single population MOGA. This finding was confirmed in a follow-

up study, where CCEA was applied to four different base algorithms (MOGA, NSGA2, a

controlled elitist NSGA, and a niched Pareto genetic algorithm) and compared to single

population alternatives of each algorithm [100].

Another study had similar results when applying CCEA to a multi-objective particle

swarm optimizer (MO-PSO) [55]. Goh et al. found that their approach maintained

diversity while finding good approximations to the Pareto front, with the exception of

multi-modal problems. Dorronsoro et al. applied the co-operative co-evolutionary versions

of NSGA2, SPEA2, and the Multi-objective Cellular Genetic Algorithm (MOCGA) to

the combinatorial optimization problem of grid computing [39]. The authors found that

CC-SPEA2 outperformed CC-NSGA2 and CC-MOCGA as well as their single-population

alternatives. All of the above research confirms the benefit of using co-operative co-evolution

in MOO; however, groups generated for the CC methods are still disjoint, which could lead

to problems when dealing with partially separable functions.

A different subpopulation strategy used a one-on-one relationship between a subpopula-

40

tion and scalarized objectives [175]. The multi-guide particle swarm optimization (MGPSO)

algorithm was introduced by Scheepers et al. which introduced objective decomposition into

MOPSO [129]. They created subswarms, where each subswarm optimizes a single objective.

They found their approach to be competitive with other MOEA’s and provided a theoretical

stability analysis of their algorithm.

Liang et al. also used the idea of evolving a single subpopulation for a single objective,

using the Chebycheff approach to decompose the multi-objective problem into m single-

objective problems [90]. An external archive was kept that keeps track of how the best

solutions for each subpopulation are performing on all objectives. This external archive

was then used to create offspring for all subpopulations, thus ensuring that solutions from

one subpopulation are shared across all others. They applied their approach to two and

three objective MOO benchmarks and found that the proposed method performs well,

outperforming regular MOEA/D, NSGA2, SPEA2, CC-PSO, and CC-based Differential

Evolution on 25 out of 31 test problems.

Lastly, a competitive co-evolutionary algorithm based on objective decomposition was

proposed by Vu et al. [147]. The Dual-Population Competitive Co-Evolutionary Approach

(which the authors abbreviate as DPPCP) used each population to perform one of two tasks:

Pareto-based ranking to push the algorithm to convergence or objective-wise decomposition

to increase diversity. In other words, one subpopulation applied NSGA2, while the other

subpopulation applied MOEA/D. Each population kept their own archive and these archives

were used to create offspring. The common offspring were then used to update each

subpopulation using their respective approaches. DPPCP was applied to the standard

continuous MOO benchmark suite using two and three objectives and was compared to

NSGA2 and MOEA/D. DPPCP outperformed the other algorithms on 26 out of 32 problems

for hypervolume and inverted generational distance.

These objective decomposition approaches offer a way to solve many-objective opti-

41

mization problems more efficiently, but the results are dependent on the applied objective

decomposition strategy [175]. Additionally, when evolving subpopulations along different

objective directions, this could result in parts of the search-space remaining entirely

unexplored and in the algorithm getting stuck in local optima [146]. Furthermore, these

approaches can work with the proposed framework; MOEA/D can be used as the base-

algorithm, thus combining objective decomposition and variable decomposition.

3.1.2 The Multi-Objective Knapsack Problem

In an adjustment of the NSGA3 approach, Sahinkoc and Bilke used a fixed hyperplane

and used subpopulations to evolve along the different objectives [124]. The fixed hyperplane

was introduced to address the problem of the evenly spread reference points guiding the

solutions in the wrong direction. To accomplish this, an optimal solution for each single

objective was calculated and used as the fixed edge points of the hyperplane. They evaluated

their method on the many-objective knapsack, solving a 500 item knapsack problem with 6,

8, 10, 15, 20, and 30 objectives. They found that including a fixed hyperplane significantly

improved results for all NSGA3 implementations. The co-operative approach evolving along

the different objectives improved the results further, and their proposed algorithm had the

best performance on instances with a large number of objectives. The authors did note that

finding the optimal solutions beforehand may not always be feasible, but they claimed that

near optimal solutions would suffice.

Zouache et al. proposed a novel “cooperative” swarm intelligence algorithm for MOO;

however, the term “cooperative” here does not refer to CCEA but to the combination of

the firefly algorithm with particle swarm optimization (MOFPA) [188]. They applied their

approach to a knapsack with 250, 500, and 750 items, optimizing two, three, and four

objectives, resulting in 3 × 3 = 9 different knapsack problems. Their results indicated that

their proposed hybrid algorithm performed better in terms of coverage on all instances of the

42

knapsack problem studied when compared to NSGA2, MOEA/D, and SPEA-II. However,

the inverse generational distance metric, which compares the found Pareto front to the known

optimal Pareto front, was not significantly different across any of the algorithms.

Ishibuchi et al. looked at four MOEA’s performance on the multi-objective knapsack

problem [67]. NSGA2, MOEA/D, SMS-EMOA, and HypE were applied to the knapsack

problem with 2-10 objectives. NSGA2 was further adjusted to perform what the authors

call a focused search. This means that there is a separate population exploring each objective,

i.e., objective-wise decomposition, and the algorithm looks for non-dominated solutions near

the best solution for the objective at hand. However, there is one more population assigned

to look for non-dominated solutions around the center of the Pareto front as well. Two

different versions of this focused search were implemented: F100 and F90. In F100, NSGA2

optimized each of the subpopulations entirely separately and merged the found solutions

into one population at the very end. Alternatively, F90 used 90% of the computation time

to optimize the subpopulations. The found solutions were then merged into one population,

and NSGA2 was applied to this merged population for the remaining 10% of computation.

They found that while regular NSGA2 performed well on two-objective knapsack, the focused

search alternative of NSGA2 and MOEA/D performed well on the many-objective 10,000

item knapsack problems. The authors specifically noted that more focused research applying

NSGA2 to subpopulations is a worthwhile endeavor.

3.2 Multi-Objective Factored Evolutionary Algorithm

Instead of designing a novel meta-heuristic algorithm, we proposed an approach to

increase exploration of the search space that can be applied to any MOEA: the multi-

objective factored evolutionary algorithm (MOFEA). MOFEA is a framework that divides

the population into subpopulations with overlapping variables, it uses the chosen MOEA

to optimize the subpopulations and combines the resulting sets of non-dominated solutions

43

through competition and sharing. MOFEA is an extension of the FEA framework introduced

by Strasser et al. [138]. Furthermore, the use of sub-populations lends itself to parallellization

and can thus be used to reduce computation time, which is desirable when dealing with large-

scale MOO problems. We do not apply parallellization to the research in this dissertation,

so we cannot talk about the effects of distributed computing in regards to MOFEA.

Classic CCEA only creates subpopulations that have distinct variables, i.e., there is no

overlap between subpopulations. FEA uses overlapping subpopulations, which requires using

principles from both co-operative and competitive co-evolution. We define an individualX←

{x0, . . . , xn}, where n is the dimensionality of the problem. We define a set of subpopulation

S, ∀S ∈ S : S ← {U0, . . . ,Up}. Where p is the population size, and U represents a single

population member, where U ⊂ X as defined by the factor architecture. We have extended

FEA to use any MOEA algorithm; we show the pseudocode in Algorithm 3.1. Originally,

FEA kept a single global solution G; however, in MOO, the goal is to obtain an approximate

Pareto front. Therefore, we keep a set of global solutions G as well as an archive of all

non-dominated solutions. Initially, each subpopulation is assigned the same global solution

G to evaluate the total fitness of its individuals; however, as the algorithm progresses, a

random global solution G ∈ G out of the solution set is chosen for each subpopulation.

We denote the specific global solution of a subpopulation S as GS. Each subpopulation is

optimized using the MOEA of choice, which returns a set of non-dominated solutions N ′′. In

FEA, subpopulations representing the same variable compete to represent that variable in the

global solution G, which represents the full set of variables. In MOFEA, the “Compete” step

(lines 9–20) is altered by allowing each representing subpopulation to contribute three non-

dominated solutions to a temporary archive. All representing subpopulations are analysed

for each variable. First, a random non-dominated solution from N ′′ is selected and added

to the temporary archive. Next, the “best” solution according to the criteria (argmincriteria)

of the chosen MOEA is selected from N ′′. For NSGA2, SPEA2, and MOEA/D, the sorting

44

Algorithm 3.1 Multi-Objective Factored Evolutionary Algorithm

Input: number of variables n, population size p, number of objectives M , objective functions

F ← {f0, . . . , fM}, subpopulations S
Initialize: global solution G0 ← {x0, . . . , xn}, global solution set G ← {G0}, non-dominated

archive N ← {}

1: while stopping criterion is not met do

2: it = 0

3: for all S ∈ S do

4: if it = 0 then

5: GS ← G0

6: // Optimize subpopulation

7: N ′′
S ← MOEA(S, GS , F)

8: // Compete step

9: N ′ ← {}
10: for all i = 1 to n do

11: for all S ∈ S where U ∈ S : xi ∈ U do

12: N ′ ← N ′ ∪ random(N ′′
S))

13: X ← GS

14: N ′′ ← N ′′
S [argmincriteria])

15: N ′ ← N ′ ∪N ′′

16: Xi ← N ′′
i

17: N ′ ← N ′ ∪X

18: N ′ ← non-dominated(N ′)

19: G ← N ′

20: N ← N ∪N ′

21: // Share step

22: for all S ∈ S do

23: // update global solution

24: GS ← random(G)
25: S[argmaxcriteria]← GS

26: // Update archive

27: N ← non-dominated(N)

28: it++

return N

45

criteria are as follows:

• NSGA2: crowding distance,

• SPEA2: strength value,

• MOEA/D: decomposed fitness value.

The decision variable in GS of the relevant subpopulation is replaced by the decision variable

of the selected solution and is saved in a temporary solution setN ′. Furthermore, the original

chosen solution is also added to N ′. The procedure that adjusts GS is visualized in Figure

3.1. When dealing with disjoint subpopulations, i.e., there is no overlap, this means that

solutions from only one subpopulation will be added to N ′. We claim adding these three

different solutions toN ′ for evaluation helps improve exploration of the solution and objective

spaces.

N ′ is evaluated for non-dominance once all the variables and corresponding subpopu-

lations have been processed (line 18 in Algorithm 3.1), and N ′ is now used as the new set

of global solutions. For each subpopulation, a randomly chosen G ∈ G is injected into the

subpopulation. G is selected at random without replacement, unless there are less found

non-dominated solutions than there are subpopulations. In this case, the random selection

process will restart after all global solutions have been assigned at least once. The individuals

in the subpopulations are re-evaluated based on the new global solution, and the resulting

“worst” solution in each subpopulation (argmaxcriteria) is replaced by G, completing the

“Share” step (lines 23–25), as illustrated in Figure 3.2. This is one iteration of FEA. The

algorithm repeats until a stopping criterion is met.

To show that this framework works for distinct subpopulations, we use the CCNSGA

approach as proposed in [100] as an example. The authors note two main adjustments to

NSGA to create the co-operative approach: 1) integration of NSGA into CCEA and 2) the

use of an elitist strategy to pass individuals to the next generation. The first adjustment

46

Figure 3.1: The modified compete step as performed on variable x3 in the Multi-Objective
Factored Evolutionary Algorithm. The dotted outline shows the selected solution from the
subpopulation’s non-dominated solution set. Both the entire solution and the solution where
only x3 is replaced are included in the temporary archive.

uses NSGA’s crowding distance to make a selection from the non-dominated solutions found

by each subpopulation to regulate size. The compete step of MOFEA does exactly that;

however, we generalized this approach by allowing for any selection criterion to be used

depending on the MOEA used to optimize the subpopulation. For the elitist strategy, the

authors aim to carry over non-duplicate non-dominated solutions to the next iteration. In

MOFEA, this is accomplished through the share step, where the unique non-dominated

individuals are inserted into the subpopulations for the next iteration.

47

Figure 3.2: The modified share step of MOFEA. For each subpopulation, a random global
solution is selected (without replacement) from the current iteration’s set of found non-
dominated solutions.

3.3 Multi-Objective Knapsack Problem Experiments

A popular benchmark problem that relates to many real world applications is the Multi-

Objective 0-1 Knapsack (MO-KS) problem [186]. This problem was proposed as a benchmark

for multi-objective combinatorial optimization (MOCO). It makes for a good benchmark

since it can be adapted in terms of number of objectives, constraints, and variables. However,

increasing the number of knapsacks does not necessarily relate to a real-world application

[74]. To this end, a different multi-objective knapsack problem exists that looks at a single

knapsack but minimizes the difference in resources (e.g. weight) in the knapsack, creating a

balanced knapsack [51]. Our preliminary results look at the three and five objective versions

of each of these multi-objective knapsack problems.

48

3.3.1 Experimental Approach

We applied the Non-Dominated Sorting Genetic Algorithm-II (NSGA2) to the proposed

MOFEA framework [36]. NSGA2 is a popular approach that has proven to work well

on problems with up to three objectives but starts declining in performance when the

objectives increase further. The same authors therefore proposed NSGA3, which uses

the aforementioned reference directions to increase performance [34]. Since we randomly

initialized our problem instances, we have no prior knowledge of the problem. Furthermore,

Carvalho and Britto found that the chosen reference points can positively or negatively

impact the results found by NSGA3, indicating that an automatically initialized set of

reference directions may not be a desirable approach [19]. Because of this, and in order

to more clearly show the benefit of the MOFEA framework, we used NSGA2 instead of

NSGA3 in our experiments.

3.3.1.1 Multi-Objective Knapsack Problem We adjusted the classic Multi Objective

Knapsack (MOKS) problem [67] by changing the objectives of a single knapsack instead of

defining multiple knapsacks. This adjustment was based on the problem defined by Fortin

et al. [51]. The MOKS problem tries to maximize value, minimize weight, and minimize

the difference in weight of the items in a single knapsack, while including constraints placed

on the volume and weight of the knapsack using the same method as the multi-knapsack

problem. An additional objective to balance the weights is defined as follows:

min
D∑

j,k=1,j ̸=k

|bjxj − bkxk|.

Fortin et al. call this type of multi-objective knapsack a balanced knapsack. To add two more

objectives, we extended this problem to include minimization of the overall volume vj of the

items in the knapsack and minimizing the difference in volume. In other words, instead of

49

optimizing multiple knapsacks simultaneously, we are trying to find the optimal combination

of items being added to a single knapsack but with multiple competing objectives in regards

to the items. An example of a real-world problem that could benefit from such a balancing

approach is the loading of a cargo plane; when there is a large discrepancy in item weights,

it makes it more difficult to balance the cargo hold.

In our experiments, we used a 1000 item knapsack to test the algorithms’ performance

at a larger scale. For the balanced knapsack, we looked at the three base objectives (value,

weight, and volume) and the extended five objective version (balanced weights and volume).

The original MOKS uses fully randomized initialization of the values and weights for all

knapsacks and constraints [186]. Therefore, we applied the same approach and initialized

the values, weights, and volume randomly as follows: ai = [0.1, 100], bi = [0.1, 5], and vi =

[0.1, 10]. For the classic knapsack problem, we initialized different sets of values and weights

based on the number of objectives and constraints, using the same values as above. For this

problem, we considered three and five objectives with a single weight constraint ck.

3.3.1.2 Hyperparameter Tuning We performed a grid search to tune NSGA2 using the

following parameter values:

• Algorithm runs: 50, 100, 200, 500

• Population size: 250, 500, 750, 1000

• Mutation rate: 0.10, 0.15, 0.20, 0.25

• Crossover rate: 0.85, 0.90, 0.95, 0.98

Based on this grid search, we found that running NSGA2 100 times with a population of 500

was the best combination. For the GA operators, we used tournament selection with k = 5

to select the parents, a mutation rate of 0.2 using bitflip mutation and a crossover rate of 0.95

50

with single-point crossover. The found hyperparameters were used in the FEA and CCEA

implementations of NSGA2 as well. Furthermore, the FEA and CCEA implementations

were run for 20 iterations, with two different sizes of subpopulations: 100 and 200, and a

20% overlap for F-NSGA2, i.e., 20 variables and 40 variables overlap for each subpopulation

of size 100 and 200 respectively.

3.3.1.3 Evaluation Metrics As discussed in Chapter 2 Section 2.2.3, the hypervolume

indicator (HV) is one of the most commonly used evaluation metrics in MOO [9]. Its

popularity is partially because the only information needed to calculate the HV of a Pareto

Front approximation is a single reference point. This is in contrast to measures such as

Generational Distance, which requires the true Pareto Front to be known. Since we do not

know the true Pareto Front for our problems, the HV is a natural choice to gain insight in

the size of the covered objective space [183].

To assess the diversity of the Pareto Front approximations, we used the spread indicator

S [69]. Lastly, to compare two Pareto fronts generated by different algorithms directly, we

calculated the coverage C of the fronts, denoted as X′ and X′′ [184]. We further adjusted

this metric to find relative coverage of the non-dominated sets as compared to the total non-

dominated set. The total non-dominated set, or union front X∗, is created by combining the

results from the set of algorithms g as

X∗ = nondom

(
g⋃

i=1

X′
i

)
.

X∗ can then be used to calculate what percentage of each base non-dominated set is included

in X∗: C(X′,X∗). To calculate what percent of X∗ consists of solutions from X′
i, we adjust

the coverage calculation as follows, creating Adjusted Coverage (AC):

AC(X′,X∗) =
|{x′ ∈ X′ : ∃x∗ ∈ X∗ : x∗ ⪯ x′}|

|X∗|

51

single knapsack multi knapsack

pop. 3 obj. 5 obj. 3 obj. 5 obj.

NSGAII 500 12.18 12.01 20.99 34.16

CC-NSGAII
100 12.24 10.87 17.30 28.76

200 9.42 10.40 15.99 28.31

F-NSGAII
100 12.28 11.92 23.09 39.63

200 12.22 11.97 22.72 38.56

Table 3.1: Hypervolume results. Underlined results indicate statistically significant results.

3.3.2 Results

We ran each algorithm ten times on each of the problem sets and averaged the ten runs

of the HV and spread indicator results, as well as the size of the non-dominated population

(Tables 3.1, 3.2 and 3.3). Furthermore, we performed an ANOVA test with α = 5%, followed

by a paired T-test with p = 0.05 to test statistical significance of the results. CC-NSGA2

results were not found to be significantly different when comparing variable group sizes of 100

and 200, with the exception of the three objective single knapsack problem. The opposite

is true for F-NSGA2 results, which were found to be significantly different from the other

algorithms’ results. Lastly, fewer statistically significant differences were found between the

differentHV results, whereas the spread indicator results were largely statistically significant.

To examine the coverage between different solution sets, we randomly pick a single

representative run of each algorithm to perform the coverage calculation. To ensure the

results are not biased, we perform this process 10 times and average the coverage comparisons

for the final results. We do this to avoid the combinatorial explosion that would result

from averaging all combinations of the runs. We present two different coverage results:

standard coverage and adjusted coverage. The adjusted coverage (Table 3.4) represents the

percentage of non-dominated solutions each algorithm contributed to the combined non-

52

single knapsack multi knapsack

pop. 3 obj. 5 obj. 3 obj. 5 obj.

NSGAII 500 38.03 38.24 29.55 32.09

CC-NSGAII
100 13.39 8.15 5.89 7.09

200 5.77 8.58 4.34 6.76

F-NSGAII
100 31.34 24.18 15.34 16.91

200 33.32 30.80 10.39 10.76

Table 3.2: Spread indicator results. Underlined results indicate statistically significant
results.

single knapsack multi knapsack

pop. 3 obj. 5 obj. 3 obj. 5 obj.

NSGA2 500 166 519 16 38

CC-NSGA2
100 482 521 21 61

200 156 476 28 53

F-NSGA2
100 642 1334 8 14

200 698 1383 5 9

Table 3.3: Size of the non-dominated solution sets.

dominated solution set. Tables 3.5–3.8 show a direct comparison between the algorithms’

non-dominated solution sets, where the row algorithm’s solution set covers x% of the column

algorithm’s solution set.

Finally, we visualized the three-objective versions of the balanced knapsack and the

multi knapsack problems in Figure 3.3. Each of these figures shows the final non-dominated

population of a randomly selected run of each of the algorithms, where the x-axis for the

single balanced knapsack and the x, y, and z-axes for the multi-knapsack show negative

53

single knapsack multi knapsack

pop. 3 obj. 5 obj. 3 obj. 5 obj.

NSGA2 500 0.64% 14.28% 0.00% 0.00%

CC-NSGA2
100 42.69% 16.90% 0.00% 0.00%

200 0.00% 11.70% 0.00% 0.00%

F-NSGA2
100 12.20% 32.85% 100.00% 98.67%

200 44.47% 24.26% 0.00% 1.13%

Table 3.4: Adjusted coverage results.

NSGA2 CC-NSGA2 F-NSGA2

pop. 500 100 200 100 200

NSGA2 500 N/A 83.50% 97.21% 28.14% 10.5%

CC-NSGA2
100 100.00% N/A 100.00% 97.85% 98.24%

200 25.56% 24.92% N/A 31.55% 5.03%

F-NSGA2
100 85.50% 81.47% 96.12% N/A 35.86%

200 95.76% 78.27% 99.47% 87.02% N/A

Table 3.5: Single balanced knapsack 3 objectives coverage results

values due to the transformation of the knapsack profit maximization to a minimization

problem.

3.3.3 Discussion

F-NSGA2 improved the hypervolume results for three of the four problems: the three-

objective balanced knapsack problem and the three- and five-objective multi-knapsack

problems. No statistically significant differences were found for the five-objective single

knapsack problem. When looking at the spread indicator results, however, we did find

54

NSGA2 CC-NSGA2 F-NSGA2

pop. 500 100 200 100 200

NSGA2 500 N/A 99.25% 99.51% 96.45% 76.19%

CC-NSGA2
100 76.24% N/A 99.02% 95.76% 96.90%

200 64.72% 96.14% N/A 73.48% 90.41%

F-NSGA2
100 65.06% 98.82% 94.69% N/A 64.42%

200 56.22% 100.00% 100.00% 73.29% N/A

Table 3.6: Single balanced knapsack 5 objectives coverage results.

NSGA2 CC-NSGA2 F-NSGA2

pop. 500 100 200 100 200

NSGA2 500 N/A 100.00% 100.00% 0.00% 0.00%

CC-NSGA2
100 0.00% N/A 59.57% 0.00% 0.00%

200 0.00% 100.00% N/A 0.00% 0.00%

F-NSGA2
100 100.00% 100.00% 100.00% N/A 100.00%

200 100.00% 100.00% 100.00% 0.00% N/A

Table 3.7: Multi knapsack 3 objectives coverage results.

statistically significant differences for all four problems, but single-population NSGA2 has a

higher spread indicator for each of them. However, when we look at our coverage results,

F-NSGA2 contributed a larger percentage to each problem’s combined Pareto front. Based

on these results, it appears that the spread indicator may have little influence on the quality

of the solution set. It is important to note that this is only based on an observed lack of

correlation between coverage and spread. These results are by no means conclusive, but

warrant further investigation.

A visual inspection of Figure 3.3a shows that both instances of F-NSGA2 and the 100-

55

NSGA2 CC-NSGA2 F-NSGA2

pop. 500 100 200 100 200

NSGA2 500 N/A 100.00% 100.00% 0.00% 1.87%

CC-NSGA2
100 9.40% N/A 80% 0.00% 0.00%

200 0.00% 80.00% N/A 0.00% 0.00%

F-NSGA2
100 100.00% 100.00% 100.00% N/A 100.00%

200 100.00% 100.00% 100.00% 2.50% N/A

Table 3.8: Multi knapsack 5 objectives coverage results.

population instance of CC-NSGA2 cover more of the space than regular NSGA2. Taking

into consideration that for this problem instance CC-NSGA2-100 and F-NSGA2-200 have

the highest contribution to the total non-dominated solution set, the visual representation

makes sense. CC-NSGA2-100 found solutions in a different part of the space than the other

algorithms, but its solutions are not as widely spread across the solutions space, whereas

F-NSGA2 has a significantly larger spread than CC-NSGA (Tables 3.1 and 3.2), potentially

accounting for its large contributions to the total non-dominated solution set. However,

NSGA2 has the largest spread indicator while contributing less than 1% of the non-dominated

solutions to the total front (Table 3.4).

Figure 3.3b shows a different story. With the exception of the two CC-NSGA2 instances,

each of the discovered non-dominated solutions is in a different part of the objective space.

When looking at Tables 3.4 and 3.7, the non-dominated solutions discovered by F-NSGA2

with subpopulation size 100 covers all other algorithms’ non-dominated solutions. The F-

NSGA2-100 solutions are represented by the green star shaped cluster at the very bottom

corner of the image. Since each objective was to be minimized, it makes sense that these

solutions, which have converged at the lowest values of the three knapsacks, are dominating

the other solutions. This is especially interesting given that the average number of non-

56

(a) Single balanced knapsack with three objectives.

(b) Classic multi knapsack problem with three objectives.

Figure 3.3: Visual representation of the non-dominated population found by each of the
algorithms for the three objective versions of the two types of knapsack problems.

57

dominated solutions found by F-NSGA2 for this problem is smaller than the other algorithms

(Table 3.3).

When considering the five-objective problems, F-NSGA2 with subpopulation size 100

once again contributed the largest percentage to the total Pareto front for both problems.

Interestingly, NSGA2’s results improved for the five-objective single knapsack, contrary to

the general trend found in the literature, where NSGA2’s performance is often found to

deteriorate as objectives increase. When looking at the direct coverage comparison for this

problem (Table 3.6), NSGA2 covers larger percentages of the solutions found by the four

other algorithms; however, it is only contributing 14.28% to the total front. The larger

contribution to the total Pareto front by F-NSGA2 could be explained by the larger number

of non-dominated solutions found by the algorithm as compared to NSGA2 (Table 3.3).

The last problem we evaluated was the five-objective multi knapsack. The F-NSGA2

with a subpopulation size of 100 was the main contributor to the total Pareto front, and

when looking at the pairwise comparison, both F-NSGA2 solution sets cover the three other

algorithms’ solution sets. Another interesting result is that CC-NSGA2 performed poorly on

both multi-knapsack problems, in that its results are not only 100% covered by F-NSGA2,

but by single population NSGA2 as well. Overall, both instances of F-NSGA2 did well on

all four benchmark problems, indicating that using overlapping subpopulations is beneficial

for multi-objective optimization. The use of a smaller subpopulation size in F-NSGA2 seems

especially beneficial for finding non-dominated solutions.

3.4 Concluding Remarks

We developed and presented a cooperative co-evolutionary framework for solving multi-

objective combinatorial optimization problems that divides the population in subpopu-

lations, which can be disjoint or overlapping, and allows usage of any population-based

multi-objective algorithm as the base algorithm. We applied our approach to two different

58

implementations of the multi-objective knapsack problem: the multi-knapsack problem,

where the number of objectives equals the number of knapsacks [186], and the balanced

single knapsack problem [51]. We compared overlapping and distinct subpopulations of

different sizes as applied to NSGA2, as well the single population version of NSGA2.

MOFEA using NSGA2 performed well on both types of knapsack problems, where the

discovered approximate Pareto front covers a high percentage of those found by the other

algorithms. TheHV results were similar across the different algorithms, where F-NSGA2 did

hold a small edge over the other results, which indicates that there is room for improvement.

We hope to gain more insight into the effects of using overlapping subpopulations by

using SPEA2 and MOEA/D as the base-algorithms for MOFEA in addition to NSGA2.

Furthermore, this research only considered static, pre-defined factor architectures. However,

the decomposition strategy could influence the results, which is why performing an in-depth

study of different decomposition techniques could provide better insight into how the factor

architecture used in MOFEA affects MOO problems. The next chapter does just that:

it explores the effect of overlapping subpopulations on both single- and multi-objective

continuous optimization problems using different variable grouping strategies.

59

CHAPTER FOUR

INFLUENCE OF VARIABLE GROUPING ON LARGE-SCALE OPTIMIZATION

Now that we have established that the MOFEA framework can help improve results

in MOO, we wanted to further investigate the effects of using overlapping subpopulations

on different problems and different algorithms. However, before diving into MOO-specific

research, we look at the effects of overlap on single-objective Large Scale Optimization (LSO)

using different grouping strategies. This was a logical first step, since many MOO problems

are of a large-scaled nature, and this research allows us to examine the effect of different

variable decomposition techniques without the added difficulty of multiple objectives.

4.1 Problem Decomposition

Before providing related work in the area of variable grouping, we give more background

information on different grouping strategies. There are three main approaches to variable

grouping in CCEA: static grouping, random grouping and grouping based on variable

interaction. Ma et al. [97] provide a comprehensive overview of different decomposition

strategies for CCEA. They note that dynamic group assignments based on variable

interaction learning improves CCEA results compared to random groupings. Five different

groups of interaction learning based decomposition are defined by Ma et al.: perturbation

(DG), statistical model (MEE), distribution model (FEA), approximate model, and linkage

adaptation. The latter two are not considered in this work since approximate modeling is

used for problems where evaluating the objective function is too expensive and needs to be

approximated [126], and linkage adaptation methods influence operators of EA’s directly.

For example, Schaffer and Morishima [127] add a punctuation flag to the chromosome to

indicate the crossover point, thus effectively grouping each chromosome.

60

4.1.1 Static and Random Grouping

An important aspect of cooperative co-evolutionary algorithms is the way the problem is

decomposed into subgroups or factors. CCEA started with static grouping, initially creating

n groups of one dimension for a problem with n variables. This was expanded to creating m

groups with s variables, where the variables are split up sequentially [150]. However, such

static groupings mean that if non-consecutive variables are interacting, they will not belong

to the same group. A first approach to solve this problem is to perform random grouping

of the variables [169, 170]. This is done by randomly selecting s population members to

belong to m groups, which can be a one-time static assignment, or dynamically altered each

generation. The number of groups m, and by consequence the number of members s in a

group, can be a fixed parameter or dynamically altered. If m is fixed: s = n/m, where n is

the total population size and the s variables are randomly chosen to belong to each group

[170]. When dynamically choosing the number of groups, the s parameter is randomly set

each co-operative co-evolutionary iteration [169]. A range of values for s needs to be set so

the grouping is feasible given the population size.

4.1.2 Variable Interaction

Random grouping does not guarantee that interacting variables will be grouped

together. This is where studying variable interaction could provide a solution. Chen et al.

[20] explored a Variable Interaction Learning (VIL) approach to problem decomposition [21]

in an attempt to determine if correctly identifying variable interaction improves performance.

VIL uses a bottom-up approach to finding variable interaction, merging interacting variables

into groups based on random permutations of the variables. They concluded that when the

problem decomposition identified at least 10% of the total number of interactions, CCEA

benefits from the decomposition strategy.

Omidvar et al. [108] also showed that finding an underlying structure of interaction to

61

create the factors improves CCEA’s performance when compared to random grouping. In

order to decompose variables automatically into groups for CCEA, Omidvar et al. introduced

Differential Grouping (DG) [107]. DG is based on a process of identifying partial separability,

allowing variables that are directly interacting to belong to the same group, while minimizing

interdependence between groups (Algorithm 4.1). Interaction is determined by measuring

how much the function changes between pairs of points. ∆1 is measured by changing the

value of variable xi and evaluating the function at both points. Then, variable xj is altered to

a different value, where j ̸= i, and compute ∆2 is computed by re-evaluating the function at

the points from ∆1. If |∆1−∆2| > ϵ, the variables are said to interact, and the corresponding

variable xj is removed from the set of remaining decision variables and added to the group

of interacting variables for xi. The ϵ parameter plays an important role in determining

interactions: a smaller ϵ will detect weaker interactions. The authors prove that xi and

xj are not independent if the difference between ∆1 and ∆2 is large enough, based on the

specified parameter ϵ.

4.2 Related Work and Motivation

Several extensions have been proposed to the DG algorithm. In 2017, Omidvar, et

al. [109] extended DG to set the ϵ threshold automatically, creating DG2. This extended

version also reduced the number of fitness evaluations necessary to find the groups of

interacting variables. A second approach to adjust the ϵ threshold parameter automatically

was introduced by Sun et al. in recursive DG [141]. Recursive DG looked at a pair of

sets of variables and divided each set recursively to increase efficiency. Yang et al. [167]

exploited gathered information about the interaction between variable groups to create

efficient recursive DG. DG has also been adapted to become a graph-based approach to

better suit LSO problems by Ling et al. [92]. They constructed a graph where each decision

variable is a vertex, and weighted edges are defined based on pairwise interaction calculated

62

Algorithm 4.1 Differential Grouping

Input: function f , lower bounds lb, upper bounds ub, number of dimensions n, threshold ϵ

Initialize: Variable indeces dims ← {1, 2, . . . , n}, set of variables with no interactions

sepvars← {}, groups of interacting variables groupso ← {}

1: for all i ∈ dims do

2: grp← {i}
3: for all j ∈ dims, j ̸= i do

4: p1 ← lb× ones(1, n)

5: p2 ← p1
6: p2(i)← ub

7: ∆1 ← f(p1)− f(p2)

8: p1(j)← 0

9: p2(j)← 0

10: ∆2 ← f(p1)− f(p2)

11: if |∆1 −∆2| > ϵ then

12: grp← grp ∪ j

13: dims \ j // Removes seen variables from variable indeces.

14: if |grp| = 1 then

15: sepvars← sepvars ∪ grp

16: else

17: groupso ← groupso ∪ {grp}
return groupso ∪ {sepvars}

using DG. After graph construction, connected components are found using a depth-first

search algorithm. The authors found that their graph-based approach improved solution

quality for CCEA’s on LSO.

Another commonly used method for identifying variable interaction is called Maximum

Entropic Epistasis (MEE) [140]. The MEE approach identified direct and indirect variable

interaction based on Mutual Information (MI) [40]. Sun et al. compared MEE and DG in

their abilities to determine variable interaction. They concluded that MEE finds a more

accurate decomposition. However, MEE was not applied to decompose a problem into

subgroups, nor was it applied to decomposition for CCEA. Rather, their approach was used

with the Separability Prototype for Automatic Memes (SPAM) framework [18], which used

63

variable interaction to select the appropriate operators to guide the search. The original

SPAM framework and the adjusted version using MEE (SPAM-MEE) were compared to

covariance matrix adaptation—evolutionary strategy (CMA-ES) [60]. The results showed

that SPAM-MEE outperforms SPAM consistently and performed similarly to CMA-ES.

Chen et al. looked at the influence of variable interaction groups on CCEA for single-

objective optimization [20]. Their study created variable groups through variable interaction

and used three different versions of the found decomposition: groups representing the found

interaction structure, groups only keeping part of the interaction structure, or random

groups without variable interaction. The results indicated that learning the correct variable

interaction structure improved results; however, the results generally improved more if the

problem decomposition only partially adhered to the found interaction structure. Given that

an exact match was found to be unnecessary, we believe an overlapping structure could have

similar benefits, since the overlap would account for unidentified interactions between groups.

In other words, using an overlapping structure that connects all variables may mitigate the

need for variable interaction learning.

4.3 Decomposition Methods

We present our new decomposition approaches for FEA architectures: Overlapping

Differential Grouping (ODG) and a tree based decomposition (Tree), where both methods

can produce overlapping variable decompositions. ODG is an extension of DG [108] that

continues to consider variables that have been marked as interacting instead of removing

them (as in DG) allowing for overlapping groups. Tree based decomposition considers

variables as nodes in a tree, and creates factors based on adjacent nodes in the tree.

64

4.3.1 Overlapping Differential Grouping

All of the versions of DG discussed in Section 4.2 are intended to identify disjoint factors

in large-scale optimization. Here we present an alternative approach that adjusts DG to allow

factors to overlap: Overlapping Differential Grouping (ODG). To find overlapping factors,

instead of removing a variable once it has been found to interact, that variable remains in

the set of decision variables. This allows a variable to be marked as interacting with multiple

other variables: which leads to overlapping factors. This means that the interaction step

of DG will be performed on all decision variables; however, for each such variable, only

subsequent variables are compared, i.e., we add the condition j > i to line 3 in Algorithm

4.1. This is because interactions with all prior variables have already been considered, and

do not need to be considered again. Additionally, ODG removes line 13 from Algorithm

4.1 since we wish to evaluate interaction for each variable pair to create overlapping groups.

Specifically, the pseudocode line corresponds to

dims \ j

which removes members of that group from future consideration.

4.3.2 Tree Based Grouping

In the original FEA work by Strasser, factor graphs were constructed to connect

variables through a function called the “factor potential” [139]. The factor potential defines

the strength of relationship between states for a variable. Variable groups are then created

based on the connection of the factor potential to the related variables. In the continuous

case, we could think of the factor potential as the strength of the variable interactions,

connecting variables if they have a strong enough interaction. However, we believe that

calculating variable interaction to build interaction graphs may not be necessary as long as

65

all variables are connected to each other either directly or indirectly, and overlap of variables

allows for such an indirect connection of variables. Inspired by this idea, we created tree-

based grouping (Tree).

We consider each variable as a vertex in a graph, and connect them in a tree T . Factors

are then constructed to be adjacent nodes in the tree. For purposes of our experiments, we

use a random tree, but we note that any tree could be used. We believe that, as long as

the factor architecture is connected, the origin of the underlying tree (whether random or

interaction-based) is not important. The goal is to enable communication between the factors

so that the interacting effects propagate through the tree structure during optimization.

The algorithm is described more formally in Algorithm 4.2. This algorithm iterates

over each node in the tree and creates a factor consisting of the variable i and the variables

connected to it in the tree T.neighbors(i). This method constructs a simple tree-based

architecture that has a connected factor architecture. In a connected factor architecture, any

factor must be able to connect to any other factor through a sequence of overlapping factors.

More specifically, we can envision a factor architecture to consist of a graph where each vertex

in the graph corresponds to a factor, and an edge is created between two factors whenever

the intersection of the variable sets in these factors is non-empty. The resulting factor

decomposition is said to be connected if the resulting graph is connected. An illustration

of such a graph and the corresponding factors is shown in Figure 4.1 We note that tree-

based grouping results in a connected factor decomposition where this property does not

necessarily hold for ODG. We would also like to point out that there exists a Tree for which

the resulting architecture would have a group that contains all variables; namely, if there is

a “central” node that connects to all other nodes directly. If this were to occur we could

1) remove the variable group containing all variables, leaving groups of variable pairs where

each pair contains the central node, or 2) generate a different Tree to create new groups.

66

Figure 4.1: Sample tree decomposition for function F20 with five variables.

Algorithm 4.2 Tree Based Grouping

Input: tree T , number of dimensions n

Initialize: Variable indeces dims← {1, 2, . . . , n}, variable groups groupso ← {}
1: for all i ∈ dims do

2: grp(i)← {i} ∪ {T.neighbors(i)}
3: groupso ← groupso ∪ {grp(i)}

return groupso

4.4 Experimental Approach

The purpose of this research is to compare the influence of the factor decomposition on

large-scale optimization. Thus, we hypothesize that the overlapping factor decomposition

will provide significant benefit to optimization quality specifically on problems with a non-

separable component. This is because the overlap inherently takes into account and manages

variable interactions during the compete and share steps. We further expect that these

interactions can be handled through sufficient iterations of the FEA algorithm to produce

good results. This belief is motivated by prior work in a distributed setting relating the

optimization process to a distributed consensus problem and showing that relaxed consensus

67

objectives can still lead to effective performance [14].

For our experimental set-up, we followed the guidelines in [143], performing 25 trials on

1000 dimensions. We held the number of function evaluations for most of our experiments to

3 × 106. Several different algorithms were compared: CCEA, FEA, and PSO; furthermore,

we used PSO as the base algorithm for both FEA and CCEA. For CCEA decomposition,

we used DG [108] and the original n 1-dimensional subproblem decomposition for PSO –

CPSO-S [150]. To decompose FEA, we compared the proposed DG-extension (ODG) as well

as the tree-based decomposition (Tree) using a random tree (Algorithm 4.2). In addition,

we used another tree-based method, Tree2, where we merged the smallest pairs of factors

from the Tree method iteratively until the total number of factors is 500. This helped

determine the effect of factor decomposition and number of factors. Since we used PSO

as the base algorithm for both FEA and CCEA methods, we also compared our results to

single-population PSO.

For the canonical PSO experiments we used a population size of 1000 and used

3000 iterations in order to generate the same number of function evaluations. For PSO

hyperparameters we set c1 = c2 = 1.49445 and the inertia weight ω = 0.729, following work

in [178]. We also decided to use the gBest topology.

Five CEC’ 2010 LSO benchmark functions [143] were used to test our methods, since

these were used in early experiments with DG [107, 108]. There are 20 functions split into

five different categories: 1) separable, 2) single-group shifted and m-rotated, 3) D/2m group

shifted and m-rotated, 4) D/m group shifted and m-rotated, and 5) non-separable functions.

D corresponds to the number of dimensions, and m determines how many variables are in a

single group. These benchmark functions are all scalable, meaning the number of dimensions

can be chosen. Fully separable and non-separable functions are defined as having one-

dimensional non-interacting sub-vectors and having every pair of decision variables interact

respectively. Li, et al. [89] define partially additively separable functions as having the

68

following general form, where xi are mutually exclusive decision vectors of fi and m is the

number of independent factors:

f(x) =
m∑
i=1

fi(xi) .

The parameter m determines the rotation matrix to adjust the degree of separability for the

partially non-separable functions; and “shifted” refers to the use of a shift vector to shift the

global optimum. For our experiments, we ran the algorithms on one benchmark function

from each of the five categories for 1000 dimensions and set m = 50; each function has a

global minimum value of 0. The specific functions studied are:

1. F3: Separable—Shifted Ackley

2. F5: Single-group m-nonseparable—Shifted m-rotated non-separable Rastrigin

3. F11: D/2m-group m-nonseparable—Shifted m-rotated Ackley

4. F17: D/m-group m-nonseparable—Shifted m-dimensional Schwefel’s 1.2

5. F20: Fully nonseparable—Shifted Rosenbrock.

The definitions of these five functions can be found in Appendix B.

To examine the effect of the factor architecture in more detail, we created a manual

grouping for function F20, because F20 comes from the fully non-separable group of

functions. We note from the problem definition of fully non-separable problems that each

variable i interacts with i−1 and i+1. So we manually crafted a factor architecture covering

these interactions in order to examine the benefit of a factor architecture that matches the

interactions within the problem.

For consistency, hyperparameters were held constant across functions and methods. We

set 15 PSO iterations, and in earlier experiments, we did not see an influence of performance

on PSO population size, so we set it to the smallest value: 10 particles per subswarm for all

69

Function DG ODG Tree Tree2

F3
Number of Factors 1000 1000 1000 500

Average Factor Size 1 1 2.99 5.99

F5
Number of Factors 951 1000 1000 500

Average Factor Size 1.05 2.23 2.99 5.99

F11
Number of Factors 513 1000 1000 500

Average Factor Size 1.95 13.21 2.99 5.98

F17
Number of Factors 40 1000 1000 500

Average Factor Size 25 24.25 2.99 5.99

F20
Number of Factors 266 1000 1000 500

Average Factor Size 3.76 43.42 2.99 5.99

Table 4.1: Summary of groupings made by each algorithm.

FEA and CCEA trials. In DG and ODG, we set ϵ to 10−3 for consistency across the different

methods and functions. We did not tune them individually because we sought to test the

influence of the overlap rather than find the best performing configuration.

4.5 Results

Because of the generality of the FEA framework, we applied the framework to all of the

architectures. We present metrics characterizing the different factor architectures generated

for our experiments in Table 4.1. It is interesting to note that as the non-separability of the

function increases, the factor size of ODG also increases. This is because ODG detects the

variable interactions and groups them together; the more variable interactions, the larger

the interaction groups.

We ran experiments as outlined in Section 4.4. Table 4.2 shows the mean value of

the objective function found during optimization, averaged over 25 trials, and the standard

70

Function DG CPSO-S ODG Tree Tree2 PSO Manual

F3
Mean 5.79E-05 5.93E-05 5.92E-05 1.37E+00 1.79E+01 2.16E+01

std 8.23E-06 9.08E-06 9.52E-06 4.24E-01 4.91E+00 8.43E-03

F5
Mean 8.05E+09 5.95E+08 1.22E+09 5.53E+08 5.56E+08 3.63E+10

std 2.58E+09 1.30E+08 4.15E+08 1.12E+08 1.27E+08 2.31E+09

F11
Mean 2.08E+02 2.00E+02 2.04E+02 2.20E+02 2.22E+02 2.37E+02

std 4.52E-01 1.07E-02 3.67E-01 1.46E+00 2.48E-01 5.86E-02

F17
Mean 1.77E+06 2.58E+06 1.57E+06 1.75E+06 1.37E+06 3.29E+07

std 1.07E+05 1.74E+05 7.79E+04 1.42E+05 1.04E+05 1.91E+06

F20
Mean 6.10E+09 7.36E+01 4.58E+06 1.18E+04 1.41E+06 6.82E+12 4.60E+03

std 4.74E+09 2.31E+01 7.81E+06 2.62E+03 6.91E+05 1.71E+11 2.17E+03

Table 4.2: Comparison of different optimization methods on CEC 2010 benchmark functions.
Bold values indicate best results that were significantly better (Wilcoxon Rank-Sum p-value
< 0.05)

deviation of the returned values for each of the functions. Entries highlighted in bold are

statistically significantly better than the other algorithms, tested using Wilcoxon’s Rank-

Sum Test at a confidence level of 95%. Note that when multiple entries are bolded for a

function, the corresponding methods were found to be statistically the same as one another.

For example, for the fully separable function F3, the three methods—DG, CPSO-S, ODG—

were found to be statistically equivalent but significantly better than Tree, Tree2, and PSO.

Observing the results in Table 4.2, we see that the overlapping methods typically

outperform DG on the non-separable functions. This indicates that the overlapping

decomposition provides significant benefit. They typically also have lower standard

deviations, indicating more consistent and stable performance when compared to DG. On

every function with a non-separable component, FEA methods perform competitively.

We plotted the convergence curves for the first trial of each method. These results can

71

be seen in Figure 4.2. Based on these results, we make a number of interesting observations.

First, we see rapid convergence for the three best algorithms on F3, which makes sense

given the fact F3 is fully separable. Thus we would not expect overlap to provide any

benefit. However, as soon as variable interaction is introduced (as shown in the remaining

four plots), DG suffers. We found that the type of factor architecture does, in fact, have

an effect on performance, given the fact the “best” architecture varies across the functions

studied.

Finally, we see that, on functions F17 and F20, none of the methods converge well

within the limited number of function evaluations. Based on this, we ran a second set of

experiments and allowed the functions to run for double the number of function evaluations

(6 × 106). We ran 10 trials of each method and present the results in Table 4.3. If we

also consider Figure 4.3, we see that most of the algorithms seem to have converged on

F20, but it appears that they have not yet converged on F17, so there could be more

benefit to continuing evaluation. The results improved significantly for all except DG on

F17, and Single and Tree performance improved significantly on F20; however, the relative

performance of each method did not change on F20. Specifically, if we rank the performance

after 6 million fitness evaluations, we see that the rank is the same as when we stop at

threemillion fitness evaluations. For the F20 trials using the manual grouping we used the

standard 3×106 function evaluations, and we found an average over 25 trials of 4.597E+03.

This improved upon the next best score produced by FEA by over a factor of two. It is

worth noting that CPSO-S performed best on F20. In particular, CPSO-S performed over

two orders of magnitude better than the next best algorithm (Tree). Potential reasons are

discussed in the next section.

72

Figure 4.2: Convergence plots for first trial of each method. Learning terminates when max
function evaluations (3× 106) are reached

73

Figure 4.3: Convergence plots for F17 and F20 with 6× 106 function evaluations

Function DG CPSO-S ODG Tree Tree2 Manual

F17
Mean 1.68E+06 1.56E+06 9.82E+05 1.02E+06 1.07E+06

std 4.28E+04 1.37E+05 6.42E+04 9.30E+04 1.12E+05

F20
Mean 4.25E+09 6.24E+01 4.26E+06 6.21E+03 9.94E+05 4.43E+03

std 2.83E+09 7.45E+01 8.29E+06 8.12E+02 4.35E+05 1.38E+03

Table 4.3: Comparison of different optimization methods on F17 and F20 with double the
number of function evaluations. Bold values indicate best results that were significantly
better (Wilcoxon Rank-Sum p-value < 0.05)

4.6 Discussion

Our results confirm that proper problem decomposition is important for large scale

optimization. Canonical PSO performed the worst on every function, typically by several

orders of magnitude. This indicates that problem decomposition improves optimization

performance on these large-scale optimization problems. Even so, the basic decomposition

74

performed by DG was not shown to be particularly effective on several of the functions

studied.

In general, the introduction of overlapping factors in the problem decomposition helped

with optimization on non-separable problems. The poor performance of the Tree algorithms

on F3, which was completely separable, was expected since these methods always produce

overlapping factors. Since F3 is fully separable, the overlap does not provide any benefit,

and instead increases the difficultly of solving the sub-problems by increasing their factors’

dimensionality. We also note that ODG performed very well on this function in that it was

able to recognize the fully separable nature, thus reducing to DG.

On the other hand, the benefit of the overlap is prominent in F20. The FEA methods

show improvement by many orders of magnitude over that of CCEA using DG. F20 is a

fully non-separable problem indicating that overlap may be beneficial. If we look at F17,

we also see a similar result where the overlapping methods perform significantly better than

the non-overlapping methods, further supporting the benefit of overlap on non-separable

problems.

It is worth noting that, as expected, the factor architecture seems to be important

at determining optimization success. This observation is prominent in the improvement

on F20. By addressing the underlying variable interactions present in the function with a

manually defined factor architecture, the results were improved by a factor of two. Despite

the improvements shown by choosing the correct factor architecture, it is interesting that

Tree and Tree2 both produce architectures that lead to high quality results despite not

addressing any underlying properties of the function. That implies that having overlapping

factors is a great benefit to optimization regardless of architecture, but improvement can be

extended further with the “right” factor architecture.

We also note that using variable interaction as the basis for problem decomposition

may not be beneficial in creating an appropriate factor architecture. ODG considers these

75

interactions and is capable of determining separability, but it does not always outperform

the random architectures Tree and Tree2. It is possible that ODG does not capture these

interactions fully, or there may be other properties of the problem decomposition, such as

whether all variables are connected through overlap, that play a larger role.

A consistent and unexpected result is the performance of CPSO-S on all functions.

CPSO-S was the simplest version of CCEA with PSO and was not expected to perform well

on non-separable problems because it does not consider any form of variable interaction.

However, CPSO-S was competitive across all functions. In particular, it achieved the lowest

scores on F11 and F20. We believe this could be explained by considering the hitchhiking

phenomenon, which occurs when a solution on a whole improves the fitness score, but single

variables’ values are deteriorating in the process [15]. Using single variable groups could

bypass this problem since each variable is now optimized separately. Additionally, the FEA

implementation of CPSO only changes the global solution if the value improves the fitness

score, leading to a Pareto improved solution. Note that this result can also be a byproduct

of the challenges associated with using fitness evaluations as the means for making results

comparable, as pointed out by Engelbrecht [44]. In particular, across the various factor

architectures, not all fitness evaluations are created equal.

4.7 Concluding Remarks

Overall, we found that applying decomposition strategies is beneficial for many different

problems in different areas of large-scale and multi-objective optimization, where different

strategies appear to be better suited for certain problems. For LSO, we extended Differential

Grouping to create overlapping groups and created a tree based decomposition approach.

The different PSO implementations were tested using five representative functions from the

set of CEC’2010 benchmark functions using the proposed guidelines [143]. Results showed

that overlap can be beneficial for optimization of non-separable problems, or problems with a

76

non-separable component. Furthermore, the LSO results indicated that variable interaction

learning may not be necessary when creating a connected architecture. Having confirmed

the benefit of overlapping groups on LSO, we now move on to exploring the effects of variable

grouping on MOO.

77

CHAPTER FIVE

INFLUENCE OF VARIABLE GROUPING ON MULTI-OBJECTIVE OPTIMIZATION

In the previous chapter we discovered that finding variable interaction may not

be necessary as long as a connected factor architecture is created through overlap. In

this chapter we further investigate the influence of variable grouping by looking at how

overlap influences multi- and many-objective optimization. For this research, we looked

at three different, commonly used MOEA’s to gain insight into the MOFEA framework:

the Non-Dominated Sorting Genetic Algorithm II (NSGA2) [36], the Strength Pareto

Evolutionary Algorithm (SPEA2) [185], and the Multi-Objective Evolutionary Algorithm

with Decomposition (MOEA/D) [175]. We also used three different grouping strategies to

create disjoint and overlapping groups: linear [149], random [170], and differential grouping

[108].

5.1 Related Work and Motivation

The related work section of Chapter 3 presented research using the idea of subpopula-

tions in MOO. In this section, we focus on research that investigates the influence of variable

decomposition on MOO more directly through different variable interaction strategies.

Two separate surveys on LSMOO were published in 2021 [63, 146]. These surveys

categorized three different ways to solve LSMOO problems: decomposition, reduction, and

search strategy adaptation. In decomposition-based approaches, there are two common

ways to decompose a problem: by creating different variable subpopulations in the manner

of Co-operative Co-Evolutionary Algorithms (CCEA) [17, 117] or through decomposition of

the problem itself [98, 175]. The latter form often uses Decision Variable Analysis (DVA)

to help create the appropriate weight vectors for decomposition [96, 177]. According to

78

Tian et al., the second approach, which aims to reduce the variable space through problem

transformation or dimensionality reduction, resulted in a higher likelihood of getting stuck

in local optima [146]. The third category looks at adapting the search operators of MOEA’s;

this is a useful practice but need not be kept separate from CCEA’s. When decomposing

the variable space into subgroups to be optimized separately, we can apply any MOEA to

the subpopulation to perform optimization. Therefore, reference-direction-based or genetic-

operator-adjusting approaches can still be applied when creating subpopulations for CCEA.

Similar to FEA, the idea of combining competitive and cooperative methods was used by

Goh and Tan [54] who combined the power of the two types of co-evolutionary algorithms to

create a new competitive-cooperative co-evolutionary algorithm (COEA). In their algorithm,

each subpopulation competed to represent a specific factor. The resulting factors then

cooperated to find a better overall solution. This particular process enabled the algorithm

to find interdependencies among the different subpopulations, where similar subpopulations

represent similar factors. The competitive pressure also enabled a structure to emerge,

which obviated the need for an algorithm such as DG. COEA was used for multi-objective

optimization (MOO), and more specifically dynamic MOO. Their results showed that while

their approach did improve optimization for dynamic environments, there were no significant

improvements with static MOO.

Xu et al. also looked at improving dynamic MOO through co-evolutionary algorithms

[163]. In their proposed CCEA adaptation, decision variables were partitioned into two

subcomponents according to environmental sensitivities of each variable. In other words,

since not all variables are equally affected by changes in the environment, the authors

proposed grouping variables based on their level of influence: weak or strong. If a variable

was strongly influenced by the environment, more resources were assigned to optimizing those

variables. The results showed that the proposed environmental decomposition is beneficial

for dynamic MOO problems.

79

Cao et al. adapted graph-based DG (gDG) [91] to be applied to multi-objective LSO

problems to create Multi-Objective gDG (MOgDG)[17]. MOgDG first performed what

the authors called property analysis, which identified whether a variable is diversity- or

convergence-related based on the effect it has on the solution. DG was then used to construct

a correlation matrix, which is called the variable interaction stage. Lastly, a graph was

created and variables in the same connected subcomponent, determined through breadth-

first or depth-first search, were put in the same group. The authors found that using their

graph-based decomposition in combination with the CCEA version of NSGA2 and MOEA/D

improved results on the DTLZ and WFG benchmark functions, where CC-MOEA/D had

the overall best performance.

Zheng et al. also used a graph-based decomposition strategy to address the problem

of water distribution network (WDN) design [179]. Their approach was problem specific:

WDN’s commonly have trees, blocks, and bridges in their network that correlate directly to

specific parts of the WDN. Based on these naturally occurring structures, the network was

decomposed into subnetworks which were then optimized separately using a multi-objective

DE approach. They found that their approach significantly increased computational

efficiency for WDN.

The above works indicate that, thus far, research on creating variable groupings for

LSMOO has focused on novel strategies applied to specific algorithms. To the best of

our knowledge, no direct comparison of different variable grouping approaches has been

performed. We aim to address this knowledge gap through analysis of different decomposition

strategies. Furthermore, most research using variable grouping focuses on two- and three-

objective problems, whereas we scale up to five and ten objectives.

Lastly, in previous work by Li et al., DTLZ was found to have different variable

interactions along the different objectives [85]. These different variable interaction groups

create overlap in the variable space; however, no work has been performed to take this overlap

80

into account directly when solving these benchmark functions. We aim to address this issue

using the MOFEA framework.

5.2 Decomposition Methods

For this analysis, we compared the three most commonly used approaches: linear

grouping, random grouping, and differential grouping, each with distinct and overlapping

structures. In this section, we explain the specific grouping implementations and the

adjustments to create overlapping groups.

5.2.1 Linear and Random Grouping

Linear grouping divides variables into groups based on their position in the variable

space [149]. Say we have 100 variables (x0 . . . x99) and we want each variable group gi to

consist of ten variables: g0 = {x0 . . . x9}, g1 = {x10 . . . x19}, . . . , assuming some “cannonical”

ordering of the variables. To extend this to the case of overlapping groups, a parameter offset

size is provided. For example, if the offset equals 5, the groups become: g0 = {x0 . . . x9},

g1 = {x5 . . . x14}, g2 = {x10 . . . x19}, etc.

When creating random groupings, a pre-defined number of variable groups is created,

and variables are spread evenly across the groups through random selection [170]. We

extend the random grouping approach to create overlapping groups by iterating over the

groups in the order they were created and adding variables from consecutive groups to

a new group. Suppose we have the same parameters as above, but random grouping

created the following groups: g0 = {x0,x3, x12,x54,x66, x70, x71, x79,x92, x93}, g1 =

{x5, x22, x31, x33, x40, x45, x73, x81, x85, x88}, The overlapping variables will be chosen

randomly from consecutive groups to form a new group. If we set the overlap size to be the

same as the group size, this would result in five variables being chosen from g0 and five from

g1. For example, g10 = {x0,x3, x22,x54,x66, x73, x81, x85, x88,x92}. The next overlapping

81

group would then be created by choosing variables from groups g1 and g2, and so on. This

results in a connected architecture as defined previously.

5.2.2 Differential Grouping

In our experiments, we applied DG to create both distinct and overlapping groups

for MOO. To create variable groups through differential grouping, we used two different

methods:

1. the MOgDG approach as proposed by Cao et al. [17],

2. an approach where we collapsed the groups created along each objective, i.e., we applied

differential grouping to each objective separately and then combined the resulting

groups (Figure 5.1).

The collapsing groups approach works as follows. Figure 5.1 shows a problem with three

objectives and ten variables. In this example, we randomly chose variables to belong to

interaction groups to mimic applying DG along different objectives. The resulting groups

are indicated using different shades of grey. For Obj 1 this resulted in the following groups:

{{x1, x2, x5, x9}, {x3, x7, x8}, {x4, x6, x10}}. The solid lines show the group boundaries for the

relevant objective, and the dotted lines indicate the group boundaries for the other objectives

projected onto the relevant objective. For example, in Figure 5.1, objectives one and two

group variables x1 and x2 in the same group; however, for the third objective, x1 and x2

are in different groups. Based on the third objective’s variable groups, we “extended” the

boundary to the other two objectives to create collapsed groups, this now splits up variables

x1 and x2 for the first two objectives as well. For the overlapping groups, we applied DG

along each objective separately and kept the variable groups created along the objectives.

82

Figure 5.1: Example collapsing groups after applying differential grouping along three
objectives for ten variables.

5.3 Experimental Approach

We applied NSGA2, SPEA2, and MOEA/D with different factor architectures to the

DTLZ benchmark suite withM objectives. This test-suite was chosen because of its ability to

scale both the number of variables and the number of objectives to the desired sizes, as well as

their availability in the pymoo library, ensuring correct implementation of the functions [6].

Table 5.1 shows the four characteristics of the DTLZ functions as defined in [65]. Modality is

Unimodal (U) or Multimodal (M). Separability is separable (S) or unknown (?). A function

is biased (Y) when there is a large discrepancy between distribution of solutions in the

variable and objective spaces. Geometry is linear, concave, unknown (?) or disconnected.

In our experiments we set the number of objectives (M) to equal three, five, and ten for

each of the DTLZ problems. We evaluated the results using three metrics: hypervolume

(HV), spread (S), and adjusted coverage (AC). For each algorithm, the average HV and S

were calculated across ten runs for each problem. The Wilcoxon rank-sum test with α = 5%

was performed to assess statistical significance. The HV and S results are presented for all

83

Modality Separability Bias Geometry

D1 M S N linear

D2 U S N concave

D3 M S N concave

D4 U S Y concave

D5 U ? N ?

D6 U ? Y ?

D7 U&M ? N disconnected

Table 5.1: Characteristics of the DTLZ benchmark suite [65].

grouping strategies per algorithm, and are discussed next.

5.4 Results

For clarity, the coverage calculations and results are presented separately for each of

the different decompositions: single population, disjoint, and overlapping decompositions. In

our experiments, we selected a single run at random out of the set of runs for each algorithm

to combine into the union front X∗ and calculate AC, as explain in Chapter 3. We repeated

this step k = 10 times and averaged the results to get the final AC for each algorithm on a

single problem. In each of these sections, we also explain the experimental set-up in more

detail for the different algorithm implementations.

5.4.1 Single Population Experiments

We compared the three different single-population multi-objective evolutionary algo-

rithms: MOEA/D, SPEA2, and NSGA2. The purpose of these experiments is to provide

a baseline for comparison with the CCEA-based methods. We ran each algorithm with a

84

population of 500 individuals for 200 generations, which we approximate as 100, 000 fitness

evaluations per algorithm run, and we repeated this 10 times. For each of the algorithms,

the choice of the hyperparameters and mutation and crossover strategies were based on the

original literature [36, 175, 185]. Since the main focus of the research is the influence of

variable grouping on the algorithms, we are able to evaluate this influence regardless of the

used hyperparameters. However, this means we cannot draw conclusions regarding specific

algorithm performance; we can only make claims on the influence of variable grouping.

With regards to MOEA/D, the authors note that the decomposition strategy may impact

the results significantly. To this end, we considered both Chebyshev decomposition and PBI

decomposition with penalty factor θ = 5 as suggested by the authors (as explained in Chapter

2 Section 2.2.4.3) [175]. It is important to note the hyperparameter settings could introduce

bias into the results, since not all algorithms were tuned for these benchmarks. For example,

in the original MOEA/D paper, the algorithm was only applied to DTLZ1 and DTLZ2, and

in the original SPEA2 paper, the algorithm was not applied to the DTLZ benchmark suite,

only to the ZDT benchmarks [184]. Thus we acknowledge that we cannot draw general

performance-based conclusions from these experiments with untuned hyperparameters.

AC results of the single-population experiments are shown in Table 5.2. Note that

NSGA2 consistently contributed the largest percentage of non-dominated solutions to the

union front on the different benchmark functions. There was one exception: three-objective

DTLZ7, where MOEA/D with PBI had the largest percentage of non-dominated solutions.

Interestingly, this was also the only case in which using PBI decomposition had a clear

improvement in terms of AC. This is in contrast to the idea that more sophisticated

scalarization should improve results [175]; however, we only used a single penalty value

of θ = 5, which is likely to impact results. Based on these results, we opted to use the

Chebyshev decomposition in subsequent experiments for all problems except DTLZ7. A

second notable result is that SPEA2 always contributed the fewest non-dominated solutions,

85

Problem M
MOEA/D

SPEA2 NSGA2
PBI CH

DTLZ1

3 0.20±0.010 0.19±0.011 0.11±0.010 0.50±0.007

5 0.21±0.003 0.20±0.010 0.16±0.003 0.43±0.010

10 0.21±0.003 0.21±0.003 0.16±0.003 0.43±0.010

DTLZ2

3 0.10±0.034 0.20±0.104 0.17±0.094 0.53±0.124

5 0.20±0.024 0.26±0.042 0.09±0.022 0.45±0.051

10 0.20±0.021 0.22±0.016 0.13±0.014 0.45±0.027

DTLZ3

3 0.07±0.045 0.47±0.344 0.03±0.026 0.43±0.280

5 0.20±0.009 0.22±0.010 0.15±0.004 0.43±0.015

10 0.20±0.008 0.20±0.007 0.15±0.006 0.45±0.021

DTLZ4

3 0.01±0.020 0.03±0.041 0.06±0.014 0.90±0.045

5 0.13±0.041 0.17±0.058 0.00±0.001 0.71±0.040

10 0.16±0.017 0.17±0.004 0.13±0.004 0.54±0.011

DTLZ5

3 0.08±0.020 0.31±0.060 0.04±0.054 0.57±0.040

5 0.11±0.011 0.16±0.006 0.11±0.012 0.62±0.008

10 0.14±0.013 0.15±0.005 0.11±0.005 0.59±0.012

DTLZ6

3 0.22±0.005 0.23±0.007 0.14±0.014 0.41±0.020

5 0.21±0.062 0.21±0.062 0.15±0.048 0.43±0.172

10 0.25±0.102 0.25±0.103 0.19±0.079 0.30±0.284

DTLZ7

3 0.41±0.032 0.22±0.034 0.00±0.000 0.37±0.021

5 0.20±0.009 0.20±0.008 0.11±0.028 0.49±0.018

10 0.17±0.004 0.17±0.004 0.13±0.003 0.53±0.010

Table 5.2: Average adjusted coverage: single-population.

86

but its contribution did often improve as the number of objectives increased. This makes

sense, since an increase in objectives often means there are more non-dominated solutions

to be found. These results confirm a known difficulty of many-objective optimization and

emphasizes the importance of performing more research into reducing the number of non-

dominated solutions making it into temporary and final solution sets.

5.4.2 Disjoint Variable Grouping Experiments

Next, we examined the effects of disjoint groupings using two different variable grouping

strategies: linear and random. We applied these strategies to all three base algorithms.

We based the number of generations for CCMOEA on the group size of the method

used. Both linear and random grouping use a static group size; to determine this size we ran

preliminary experiments with different group sizes (50, 100, 200, and 250) and found that

ten groups of 100 variables had the most promising results. Based on the number of groups,

we determined the number of generations to run CCMOEA to be 20, using a population

size of 500 for each subpopulation, to approximate the same 100, 000 function evaluations as

used for the single population algorithms.

When applying the two different DG methods (MOgDG and collapsing DG) to create

disjoint groups, one of two scenarios occurred: 1) all variables ended up in their own group,

or 2) all variables were contained in a single group of all variables. This confirmed the

results found by Cao et al.. We tried applying single-variable grouping optimization, but

this resulted in a high computational overhead and large memory usage, making it infeasible

to run these experiments in a reasonable timeframe, reducing the approach’s usefulness for

real-world applications. Therefore, we only present results for linear and random grouping

used with co-operative co-evolution since the only usable DG results corresponded to the

single-population case (already reported in Section 5.4.1).

We compared the different co-operative co-evolutionary approaches to the single

87

NSGA2

Problem M Single Linear Random

DTLZ1

3 0.00±0.000 0.49±0.016 0.51±0.016

5 0.00±0.000 0.00±0.000 0.00±0.000

10 0.00±0.000 0.42±0.054 0.58±0.054

DTLZ2

3 0.86±0.031 0.07±0.016 0.07±0.026

5 0.69±0.034 0.15±0.016 0.16±0.019

10 0.60±0.011 0.19±0.010 0.21±0.006

DTLZ3

3 0.00±0.000 0.53±0.019 0.47±0.019

5 0.00±0.004 0.50±0.014 0.49±0.015

10 0.51±0.225 0.22±0.094 0.27±0.132

DTLZ4

3 0.99±0.010 0.00±0.002 0.01±0.012

5 0.94±0.022 0.00±0.000 0.06±0.022

10 0.89±0.002 0.00±0.000 0.10±0.002

DTLZ5

3 0.93±0.028 0.04±0.017 0.03±0.011

5 0.14±0.139 0.14±0.156 0.72±0.122

10 NEM NEM NEM

DTLZ6

3 0.00±0.000 0.34±0.019 0.66±0.019

5 0.00±0.010 0.43±0.096 0.56±0.101

10 NEM NEM NEM

DTLZ7

3 0.00±0.000 0.43±0.014 0.57±0.014

5 0.00±0.000 0.48±0.023 0.52±0.023

10 0.00±0.000 0.42±0.012 0.58±0.012

Table 5.3: Average adjusted coverage: CC-NSGA2.

88

SPEA2

Problem M Single Linear Random

DTLZ1

3 0.00±0.000 0.49±0.016 0.51±0.016

5 0.00±0.000 0.00±0.000 0.00±0.000

10 0.00±0.000 0.42±0.054 0.58±0.054

DTLZ2

3 0.86±0.031 0.07±0.016 0.07±0.026

5 0.69±0.034 0.15±0.016 0.16±0.019

10 0.60±0.011 0.19±0.010 0.21±0.006

DTLZ3

3 0.00±0.000 0.53±0.019 0.47±0.019

5 0.00±0.004 0.50±0.014 0.49±0.015

10 0.51±0.225 0.22±0.094 0.27±0.132

DTLZ4

3 0.99±0.010 0.00±0.002 0.01±0.012

5 0.94±0.022 0.00±0.000 0.06±0.022

10 0.89±0.002 0.00±0.000 0.10±0.002

DTLZ5

3 0.70±0.097 0.14±0.066 0.17±0.051

5 0.01±0.004 0.00±0.002 0.99±0.005

10 NEM NEM NEM

DTLZ6

3 0.00±0.000 0.39±0.103 0.61±0.103

5 0.00±0.000 0.03±0.054 0.97±0.054

10 NEM NEM NEM

DTLZ7

3 0.00±0.000 0.43±0.014 0.57±0.014

5 0.00±0.000 0.48±0.023 0.52±0.023

10 0.00±0.000 0.42±0.012 0.58±0.012

Table 5.4: Average adjusted coverage: CC-SPEA.

89

MOEA/D

Problem M Single Linear Random

DTLZ1

3 0.00±0.000 0.49±0.016 0.51±0.016

5 0.00±0.000 0.00±0.000 0.00±0.000

10 0.00±0.000 0.42±0.054 0.58±0.054

DTLZ2

3 0.86±0.031 0.07±0.016 0.07±0.026

5 0.69±0.034 0.15±0.016 0.16±0.019

10 0.60±0.011 0.19±0.010 0.21±0.006

DTLZ3

3 0.00±0.000 0.53±0.019 0.47±0.019

5 0.00±0.004 0.50±0.014 0.49±0.015

10 0.51±0.225 0.22±0.094 0.27±0.132

DTLZ4

3 0.99±0.010 0.00±0.002 0.01±0.012

5 0.94±0.022 0.00±0.000 0.06±0.022

10 0.89±0.002 0.00±0.000 0.10±0.002

DTLZ5

3 0.97±0.017 0.02±0.015 0.01±0.006

5 0.01±0.002 0.18±0.127 0.81±0.125

10 NEM NEM NEM

DTLZ6

3 0.00±0.000 0.39±0.060 0.61±0.060

5 0.01±0.003 0.33±0.186 0.66±0.183

10 NEM NEM NEM

DTLZ7

3 0.00±0.000 0.43±0.014 0.57±0.014

5 0.00±0.000 0.48±0.023 0.52±0.023

10 0.00±0.000 0.42±0.012 0.58±0.012

Table 5.5: Average adjusted coverage: CC-MOEA/D.

90

population implementation for each algorithm separately (Tables 5.3–5.5). This enabled

us to check the influence of applying different (disjoint) variable grouping strategies to the

base algorithms. For DTLZ5 and DTLZ6 with ten objectives, over 15, 000 non-dominated

solutions were found for each algorithm run; due to computational resource limitations, this

means we were unable to calculate adjusted coverage. This is indicated in the tables by

NEM (Not Enough Memory). For each of the algorithms, using the co-operative approach

resulted in improved results for DTLZ1, DTLZ3, DTLZ6, and DTLZ7. When looking at the

characteristics of the functions in Table 2.2, we can see that the three multi-modal functions

are the ones for which including a grouping strategy improved the results. The fourth

function, DTLZ6, is unimodal, but it is the only function that has unknown Pareto optima

with bias. In the MOEA/D results for DTLZ1 with three objectives, the single population

algorithm had good coverage but with a large standard deviation, indicating that there was

at least one outlier.

5.4.3 Overlapping Variable Grouping Experiments

We apply the same strategy to determine the number of generations for FEA as we

did for CCMOEA. For linear and random grouping with overlap, since we have a fixed

number of 19 groups, we reduced the population size to 250 to reduce the number of function

evaluations. However, DG dynamically assigns groups, which means we had to adjust the

number of generations and the population size based on the number of groups created by

DG. This resulted in a small number of generations and smaller population sizes for MOFEA

with DG as the grouping strategy to assure a similar number of fitness evaluations would be

performed for each run of the algorithm.

Table 5.6 shows the number of groups found for each problem’s different objectives

as well as the group sizes. The large number of subpopulation pairs that contain the

same variables, in combination with the small factor and overlap sizes, could explain why

91

MOgDG and the collapsing of groups would result in fully separable or fully non-separable

groupings when not maintaining the objective split. For example, for DTLZ1, there are

three factors that contain 900 or more variables, and all other generated factors only contain

2–10 variables. However, there are 155 pairs that contain at least one overlapping variable.

This indicates that most factors overlap, which would result in most if not all variables

appearing to interact with each other, leading to a fully non-separable architecture when

not allowing for overlap. The only problem that we found to be fully non-separable when

applying DG is DTLZ7; all variables appeared to be interacting for each of the objectives.

Because this effectively reduced the grouping to a single population, we did not run DG

experiments on DTLZ7. When running our experiments for the ten-objective problems, we

found that running FEA with the factor architecture generated using DG was too slow to

run successfully for all problems but DTLZ1. In Tables 5.7–5.9, these results are indicated as

not available (N/A), not to be confused with NEM that indicates we were unable to calculate

the adjusted coverage due to memory limits.

Adding in overlap improved results compared to the single population for the problems

where using a distinct grouping approach was beneficial. For the problems where single

population NSGA2 remained the most effective approach, the inclusion of overlap also

helped, but with no statistically significant difference. But, whereas the distinct groupings

made little to no contribution to the total front, the FEA approach contributed new solutions

to the front. This indicates that FEA may be exploring different parts of the variable

and objective space, thus improving exploration as desired. Furthermore, we found that

using differential grouping to create the overlapping factor architecture achieved the largest

improvement in results for several problems, but this came with a trade-off in computational

cost since DG created between 18 and 800 factors with a large amount of overlap (Table 5.6).

Since we did not perform any parallelization or multi-processing, this resulted in runtimes

92

M

Problem Characteristics 3 5 10

DTLZ1

factors 37 202 152

Avg factor size 54 20 59

pop. pairs w/ overlap 155 1455 2128

Avg overlap size 6.5 4 17

DTLZ2

factors 24 286 294

Avg factor size 83 10 27

pop. pairs w/ overlap 84 627 2104

Avg overlap size 12 5 13

DTLZ3

factors 18 34 57

Avg factor size 111 118 67

pop. pairs w/ overlap 46 217 2368

Avg overlap size 22 28 15

DTLZ4

factors 20 32 72

Avg factor size 100 125 125

pop. pairs w/ overlap 74 151 767

Avg overlap size 14 40 47

DTLZ5

factors 26 182 283

Avg factor size 77 22 25

pop. pairs w/ overlap 98 1391 1749

Avg overlap size 10 4 12

DTLZ6

factors 34 151 781

Avg factor size 59 4 12

pop. pairs w/ overlap 143 1506 18488

Avg overlap size 7 4 2

DTLZ7
factors 1 1 1

Avg factor size 1000 1000 1000

Table 5.6: Grouping summary with three, five, and ten objectives after applying DG to each
objective.

93

NSGA2

Problem M Single Lin. Ov. Rand. Ov. DG

DTLZ1

3 0.33±0.431 0.13±0.096 0.20±0.139 0.35±0.231

5 0.00±0.000 0.39±0.179 0.18±0.262 0.43±0.192

10 0.00±0.000 0.16±0.034 0.00±0.000 0.84±0.034

DTLZ2

3 0.81±0.069 0.03±0.016 0.07±0.056 0.09±0.043

5 0.76±0.252 0.07±0.091 0.02±0.025 0.15±0.142

10 0.72±0.041 0.18±0.032 0.10±0.063 N/A

DTLZ3

3 0.00±0.000 0.46±0.042 0.01±0.028 0.53±0.056

5 0.00±0.000 0.81±0.051 0.12±0.036 0.07±0.033

10 0.11±0.201 0.78±0.174 0.11±0.046 N/A

DTLZ4

3 0.83±0.124 0.09±0.091 0.00±0.008 0.08±0.053

5 0.32±0.156 0.11±0.063 0.02±0.020 0.55±0.098

10 0.42±0.326 0.08±0.059 0.50±0.309 N/A

DTLZ5

3 0.87±0.071 0.01±0.016 0.06±0.085 0.07±0.023

5 0.11±0.039 0.00±0.003 0.17±0.260 0.73±0.241

10 0.06±0.018 0.76±0.141 0.18±0.141 N/A

DTLZ6

3 0.00±0.000 0.42±0.059 0.00±0.000 0.58±0.059

5 0.01±0.022 0.87±0.102 0.06±0.052 0.06±0.051

10 0.05±0.031 0.81±0.103 0.14±0.086 N/A

DTLZ7

3 0.00±0.000 1.00±0.000 0.00±0.000 N/A

5 0.00±0.000 1.00±0.000 0.00±0.000 N/A

10 0.00±0.000 1.00±0.000 0.00±0.000 N/A

Table 5.7: Average adjusted coverage: F-NSGA2.

94

SPEA2

Problem M Single Lin. Ov. Rand. Ov. DG

DTLZ1

3 0.00±0.000 0.22±0.047 0.15±0.048 0.62±0.047

5 0.00±0.001 0.16±0.076 0.06±0.079 0.79±0.116

10 0.00±0.001 0.27±0.050 0.00±0.000 0.73±0.050

DTLZ2

3 0.23±0.248 0.14±0.061 0.23±0.139 0.40±0.203

5 0.49±0.010 0.07±0.011 0.07±0.030 0.37±0.029

10 0.58±0.090 0.20±0.047 0.22±0.102 N/A

DTLZ3

3 0.00±0.000 0.72±0.043 0.07±0.033 0.21±0.044

5 0.00±0.003 0.43±0.086 0.25±0.114 0.32±0.057

10 0.00±0.015 0.42±0.091 0.57±0.100 N/A

DTLZ4

3 0.37±0.161 0.13±0.098 0.15±0.102 0.36±0.077

5 0.15±0.071 0.09±0.017 0.27±0.062 0.49±0.030

10 0.26±0.206 0.21±0.088 0.53±0.134 N/A

DTLZ5

3 0.23±0.128 0.13±0.076 0.29±0.204 0.36±0.165

5 0.02±0.014 0.20±0.405 0.00±0.003 0.77±0.393

10 0.02±0.013 0.91±0.206 0.07±0.203 N/A

DTLZ6

3 0.00±0.000 1.00±0.000 0.00±0.000 0.00±0.000

5 0.00±0.000 0.00±0.000 0.22±0.204 0.78±0.204

10 0.00±0.000 0.83±0.166 0.17±0.166 N/A

DTLZ7

3 0.00±0.000 1.00±0.000 0.00±0.000 N/A

5 0.00±0.000 1.00±0.000 0.00±0.000 N/A

10 0.00±0.000 1.00±0.000 0.00±0.000 N/A

Table 5.8: Average adjusted coverage: F-SPEA2.

95

MOEA/D

Problem M Single Lin. Ov. Rand. Ov. DG

DTLZ1

3 0.03±0.045 0.35±0.119 0.30±0.122 0.33±0.083

5 0.04±0.056 0.22±0.096 0.18±0.184 0.55±0.250

10 0.04±0.056 0.22±0.113 0.25±0.159 0.48±0.266

DTLZ2

3 0.08±0.102 0.15±0.147 0.25±0.163 0.52±0.192

5 0.42±0.088 0.09±0.046 0.26±0.066 0.23±0.044

10 0.49±0.047 0.14±0.032 0.37±0.060 N/A

DTLZ3

3 0.02±0.037 0.48±0.074 0.01±0.019 0.50±0.078

5 0.24±0.126 0.64±0.118 0.04±0.025 0.08±0.037

10 0.36±0.158 0.38±0.178 0.26±0.136 N/A

DTLZ4

3 0.03±0.066 0.11±0.107 0.45±0.091 0.41±0.086

5 0.15±0.142 0.11±0.038 0.30±0.064 0.44±0.094

10 0.20±0.208 0.06±0.031 0.74±0.188 N/A

DTLZ5

3 0.05±0.133 0.03±0.047 0.46±0.121 0.47±0.123

5 N.E.M. N.E.M. N.E.M. N.E.M.

10 N.E.M. N.E.M. N.E.M. N/A

DTLZ6

3 0.00±0.000 0.34±0.044 0.00±0.000 0.66±0.044

5 N.E.M. N.E.M. N.E.M. N.E.M.

10 N.E.M. N.E.M. N.E.M. N/A

DTLZ7

3 0.00±0.000 1.00±0.009 0.00±0.009 N/A

5 0.00±0.000 0.94±0.060 0.06±0.060 N/A

10 0.00±0.000 0.97±0.031 0.03±0.031 N/A

Table 5.9: Average adjusted coverage: F-MOEA/D.

96

of twelve hours or more for a single experiment for three objectives. 1

5.5 Discussion

Table 5.11 shows the average AC across the three different algorithms for the

decomposition methods that improved over their single population versions. We only show

results for DTLZ1, DTLZ3, DTLZ4, and DTLZ7, since, for DTLZ2, no decomposition

approach covered the majority of the union front when compared to their single population

implementation, and we did not have enough computational resources to calculated the

AC for DTLZ5 and DTLZ6. The coverage results differed greatly across the problems,

and there was considerable variance for several solution sets. A possible explanation for

this phenomenon is the use of function evaluations as the stopping criterion. Due to the

stochastic aspect of population-based algorithms, the number of generations it takes for an

algorithm to converge can vary widely. Since we chose a relatively small number of function

evaluations (to enable running a large number of experiments), it is likely that the algorithms

did not converge at the same rate across different iterations, resulting in non-trivial levels

of variance in the final non-dominated archives. The coverage results also indicate that

different algorithms explore different parts of the non-dominated space, as shown by the fact

that a single algorithm’s non-dominated solution set rarely contributed to the majority of

the union front. The only exceptions to this were DTLZ2 and 3-objective DTLZ4, where

single population NSGA2 performed well.

We present the hypervolume results in Tables 5.12–5.14 and spread in Tables 5.15–5.17.

When considering HV , we see that all approaches performed well on DTLZ1, most likely

due to the linear geometry of the Pareto front, making it one of the easier problems to

solve. However, the spread results for DTLZ1 are very low for each algorithm. That said,

1 We cannot compare runtimes accurately since, among other reasons, we were using different machines
to perform different sets of experiments [80].

97

DTLZ1

Algorithhm Grouping 3 5 10

NSGA2
Rand 0.08±0.014 0.02±0.011 0.02±0.010

DG 0.26±0.065 0.06±0.007 0.09±0.036

SPEA2
Lin 0.21±0.011 0.14±0.009 0.05±0.007

DG 0.25±0.045 0.41±0.014 0.40±0.018

MOEA/D
Lin. Ov. 0.20±0.054

DG 0.37±0.016 0.44±0.032

DTLZ3

Algorithhm Grouping 3 5 10

NSGA2

Lin 0.13±0.015 0.12±0.008

Rand 0.10±0.007

Lin. Ov. 0.11±0.016 0.18±0.025

DG 0.14±0.040

SPEA2

Lin 0.20±0.023 0.15±0.005 0.26±0.008

Rand 0.21±0.034 0.15±0.005 0.26±0.007

Lin. Ov. 0.18±0.029 0.13±0.007

MOEA/D

Rand 0.12±0.009 0.21±0.013

Lin. Ov. 0.11±0.011 0.10±0.038

DG 0.14±0.013

Table 5.10: Average adjusted coverage: DTLZ1 and DTLZ3.

single population algorithms had a low HV for DTLZ3, DTLZ6, and DTLZ7, but these were

the problems for which spread was higher. This seems to indicate that when more diverse

solutions were found, they were located in regions of the objective space that did not add to

98

DTLZ4

Algorithm Grouping 3 5 10

NSGA2

Single 0.91±0.027 0.28±0.063 0.46±0.071

Rand. Ov. 0.25±0.121

DG 0.35±0.042

SPEA2
Rand. Ov. 0.12±0.026

DG 0.07±0.034 0.12±0.044

MOEA/D
Rand. Ov. 0.02±0.013 0.16±0.025

DG 0.25±0.043

DTLZ7

Algorithm Grouping 3 5 10

NSGA
Rand 0.21±0.010 0.19±0.008 0.23±0.015

Lin. Ov. 0.20±0.010 0.17±0.010 0.09±0.028

SPEA
Rand 0.05±0.018 0.18±0.014 0.26±0.018

Lin. Ov. 0.16±0.007 0.14±0.013 0.21±0.017

MOEA/D
Rand 0.19±0.005 0.18±0.008 0.18±0.031

Lin. Ov. 0.20±0.010 0.14±0.032 0.04±0.017

Table 5.11: Average adjusted coverage: DTLZ4 and DTLZ7.

an improved Pareto front approximation.

Single population NSGA2 outperformed the other algorithms significantly on DTLZ2.

DTLZ2 is a unimodal, concave problem that is considered to be separable. Given this,

it makes sense that a single population approach would perform well, since creating

separate subproblems could introduce more complexity than is necessary, resulting in slower

convergence. When multi-modality was introduced in DTLZ3, we found that the results

99

NSGA2

Problem M Single Linear Lin. Ov. Random Rand. Ov. DG

DTLZ1

3 0.989±0.018 0.996±0.002 0.995±0.005 0.995±0.003 0.999±0.001 0.999±0.001

5 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000

10 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000 N/A

DTLZ2

3 0.999±0.000 0.173±0.015 0.999±0.001 0.140±0.030 0.997±0.003 0.999±0.000

5 0.992±0.007 0.227±0.035 0.991±0.005 0.191±0.036 0.977±0.018 0.996±0.003

10 0.986±0.004 0.494±0.072 0.984±0.007 0.471±0.031 0.926±0.016 N/A

DTLZ3

3 0.410±0.016 0.988±0.003 0.989±0.002 0.990±0.001 0.818±0.045 0.991±0.001

5 0.339±0.039 0.999±0.000 0.999±0.000 0.999±0.000 0.735±0.041 0.702±0.054

10 0.270±0.037 0.999±0.000 0.999±0.000 0.999±0.000 0.660±0.057 N/A

DTLZ4

3 0.999±0.002 0.147±0.018 0.998±0.003 0.220±0.010 0.999±0.001 0.999±0.000

5 0.991±0.000 0.000±0.000 0.994±0.005 0.381±0.043 0.999±0.000 0.999±0.000

10 0.989±0.000 0.000±0.000 0.991±0.008 0.457±0.068 0.999±0.000 N/A

DTLZ5

3 0.999±0.000 0.159±0.019 0.995±0.003 0.172±0.017 0.994±0.003 0.999±0.001

5 0.946±0.013 0.216±0.043 0.665±0.073 0.491±0.277 0.878±0.022 0.984±0.007

10 0.931±0.014 0.540±0.071 0.862±0.018 0.617±0.045 0.859±0.017 N/A

DTLZ6

3 0.172±0.021 0.999±0.000 0.999±0.000 0.999±0.000 0.319±0.025 0.999±0.000

5 0.104±0.025 0.999±0.000 0.999±0.000 0.999±0.000 0.273±0.017 0.315±0.088

10 0.096±0.016 0.999±0.000 0.999±0.000 0.999±0.000 0.221±0.070 N/A

DTLZ7

3 0.177±0.002 0.721±0.003 0.725±0.006 0.726±0.004 0.606±0.010 N/A

5 0.049±0.016 0.726±0.005 0.726±0.004 0.726±0.003 0.462±0.019 N/A

10 0.002±0.001 0.711±0.002 0.710±0.003 0.719±0.002 0.125±0.031 N/A

Table 5.12: NSGA2 Hypervolume (HV) results.

were much less straightforward. Grouping strategies improved HV , but not necessarily

spread. But when considering AC, the different versions of SPEA2 contributed the most

non-dominated solutions for all three instances of DTLZ3. This makes it difficult to draw any

100

SPEA2

Problem M Single Linear Lin. Ov. Random Rand. Ov. DG

DTLZ1

3 0.996±0.008 0.998±0.001 0.999±0.001 0.998±0.001 0.999±0.000 0.999±0.000

5 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000

10 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000 N/A

DTLZ2

3 0.981±0.003 0.277±0.017 0.996±0.001 0.295±0.021 0.997±0.001 0.999±0.000

5 0.978±0.001 0.398±0.037 0.960±0.018 0.460±0.019 0.983±0.009 0.999 0

10 0.977±0.004 0.541±0.042 0.912±0.022 0.683±0.027 0.964±0.012 N/A

DTLZ3

3 0.261±0.025 0.903±0.008 0.916±0.012 0.949±0.013 0.612±0.025 0.620±0.020

5 0.236±0.006 0.912±0.007 0.928±0.009 0.981±0.004 0.621±0.020 0.716±0.014

10 0.192±0.026 0.946±0.011 0.973±0.011 0.994±0.003 0.546±0.017 N/A

DTLZ4

3 0.973±0.002 0.184±0.003 0.990±0.014 0.266±0.072 0.999±0.000 0.999±0.000

5 0.968±0.005 0.000±0.000 0.992±0.000 0.481±0.042 0.999±0.002 0.999±0.000

10 0.939±0.013 0.000±0.000 0.975±0.012 0.534±0.045 0.999±0.001 N/A

DTLZ5

3 0.983±0.005 0.255±0.010 0.979±0.020 0.292±0.009 0.998±0.001 0.998±0.001

5 0.972±0.009 0.373±0.023 0.559±0.177 0.525±0.162 0.980±0.006 0.963±0.008

10 0.974±0.006 0.473±0.048 0.632±0.039 0.843±0.074 0.944±0.021 N/A

DTLZ6

3 0.193±0.014 0.999±0.000 0.999±0.000 0.999±0.000 0.365±0.018 0.400±0.018

5 0.201±0.015 0.998±0.000 0.998±0.000 0.999±0.000 0.377±0.028 0.377±0.037

10 0.160±0.019 0.998±0.000 0.998±0.000 0.999±0.000 0.352±0.069 N/A

DTLZ7

3 0.033±0.009 0.735±0.004 0.732±0.001 0.732±0.003 0.271±0.086 N/A

5 0.011±0.006 0.734±0.002 0.733±0.001 0.734±0.003 0.077±0.024 N/A

10 0.001±0.002 0.728±0.002 0.726±0.002 0.731±0.001 0.014±0.007 N/A

Table 5.13: SPEA2 Hypervolume (HV) results.

conclusions on which decomposition method would be best to solve problems with a multi-

modal, concave Pareto front; however, it appears that SPEA2 might be the appropriate base

algorithm to use.

101

MOEA/D

Problem M Single Linear Lin. Ov. Random Rand. Ov. DG

DTLZ1

3 0.999±0.000 0.999±0.001 0.999±0.000 0.999±0.001 0.999±0.000 0.999±0.000

5 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000

10 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000 N/A

DTLZ2

3 0.987±0.001 0.305±0.021 0.999±0.001 0.319±0.016 0.999±0.001 0.999±0.000

5 0.993±0.003 0.279±0.062 0.997±0.003 0.542±0.018 0.999±0.001 0.998±0.000

10 0.986±0.007 0.413±0.083 0.999±0.000 0.464±0.105 0.999±0.001 N/A

DTLZ3

3 0.538±0.011 0.967±0.018 0.989±0.002 0.975±0.012 0.935±0.015 0.990±0.001

5 0.496±0.051 0.999±0.000 0.999±0.000 0.999±0.001 0.929±0.011 0.887±0.020

10 0.444±0.053 0.999±0.001 0.999±0.000 0.998±0.003 0.844±0.019 N/A

DTLZ4

3 0.978±0.031 0.137±0.069 0.991±0.008 0.273±0.074 0.999±0.000 0.993±0.012

5 0.996±0.004 0.281±0.068 0.999±0.001 0.499±0.032 0.999±0.000 0.999±0.000

10 0.978±0.030 0.002±0.002 0.992±0.014 0.422±0.132 0.999±0.000 N/A

DTLZ5

3 0.980±0.002 0.261±0.024 0.997±0.001 0.294±0.013 0.999±0.000 0.999±0.000

5 0.933±0.031 0.219±0.026 0.643±0.081 0.312±0.296 0.989±0.009 0.985±0.010

10 0.922±0.032 0.312±0.043 0.775±0.061 0.317±0.087 0.953±0.015 N/A

DTLZ6

3 0.122±0.046 0.999±0.000 0.999±0.000 0.999±0.000 0.741±0.011 0.999±0.000

5 0.112±0.038 0.999±0.000 0.999±0.000 0.999±0.000 0.317±0.027 0.306±0.118

10 0.150±0.071 0.999±0.000 0.999±0.000 0.999±0.000 0.229±0.028 N/A

DTLZ7

3 0.179±0.017 0.745±0.004 0.746±0.002 0.745±0.001 0.547±0.043 N/A

5 0.053±0.013 0.730±0.002 0.736±0.008 0.742±0.001 0.183±0.134 N/A

10 0.023±0.006 0.713±0.005 0.711±0.002 0.737±0.001 0.006±0.008 N/A

Table 5.14: MOEA/D Hypervolume (HV) results.

Linear and random decomposition approaches resulted in low HV for DTLZ2, DTLZ4,

and DTLZ5 (which are all unimodal) for each objective, although they did not improve as

the number of objectives increased. Random grouping had significantly better performance

102

NSGA2

Problem M Single Linear Lin. Ov. Random Rand. Ov. DG

DTLZ1

3 0.081±0.047 0.025±0.002 0.024±0.005 0.023±0.003 0.028±0.001 0.026±0.001

5 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

10 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 N/A

DTLZ2

3 0.157±0.156 1.620±0.038 0.222±0.053 1.717±0.009 0.137±0.124 0.047±0.024

5 0.006±0.004 1.689±0.029 0.838±0.170 1.714±0.010 0.257±0.451 1.674±0.007

10 0.000±0.000 1.580±0.083 1.190±0.070 1.715±0.005 0.001±0.002 N/A

DTLZ3

3 1.172±0.083 0.416±0.005 0.440±0.012 0.421±0.000 1.086±0.111 0.554±0.052

5 0.284±0.150 0.387±0.011 0.395±0.008 0.399±0.002 0.870±0.188 1.092±0.134

10 0.000±0.000 0.417±0.015 0.417±0.018 0.425±0.012 0.180±0.119 N/A

DTLZ4

3 0.104±0.121 1.344±0.059 0.156±0.044 1.714±0.012 0.155±0.030 0.049±0.017

5 0.004±0.000 0.000±0.000 0.151±0.050 1.723±0.003 0.390±0.030 0.034±0.034

10 0.004±0.000 0.000±0.000 0.101±0.030 1.492±0.137 0.485±0.029 N/A

DTLZ5

3 0.105±0.104 1.651±0.020 0.283±0.076 1.670±0.017 0.016±0.013 0.036±0.015

5 0.011±0.007 1.677±0.037 1.546±0.055 1.615±0.153 0.155±0.112 1.438±0.162

10 0.000±0.000 1.622±0.071 1.569±0.086 1.396±0.615 0.013±0.023 N/A

DTLZ6

3 0.836±0.116 0.002±0.000 0.002±0.000 0.002±0.000 1.148±0.156 0.040±0.047

5 0.106±0.041 0.017±0.002 0.145±0.082 0.003±0.001 0.891±0.105 1.051±0.252

10 0.000±0.000 0.007±0.004 0.131±0.088 0.011±0.009 0.133±0.147 N/A

DTLZ7

3 1.066±0.124 0.766±0.270 0.875±0.018 0.579±0.223 0.687±0.375 N/A

5 0.548±0.220 0.920±0.285 0.947±0.139 0.752±0.249 1.372±0.150 N/A

10 0.023±0.006 0.713±0.005 0.711±0.002 0.737±0.001 0.006±0.008 N/A

Table 5.15: NSGA2 Spread Indicator (SI) results.

on DTLZ7 for HV on all objectives and for spread on five- and ten-objective DTLZ7. Given

that DTLZ7 is known to have a disconnected geometry, this makes sense since overlap could

add connections between variables where there are none.

103

SPEA2

Problem M Single Linear Lin. Ov. Random Rand. Ov. DG

DTLZ1

3 0.038±0.020 0.027±0.001 0.027±0.001 0.026±0.001 0.028±0.000 0.028±0.000

5 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

10 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 N/A

DTLZ2

3 0.026±0.007 1.299±0.070 0.130±0.030 1.404±0.098 0.083±0.065 0.047±0.012

5 0.016±0.003 1.421±0.067 0.354±0.101 1.389±0.031 0.199±0.281 0.065 0.01

10 0.001±0.001 1.285±0.064 0.755±0.192 1.464±0.101 0.110±0.082 N/A

DTLZ3

3 0.912±0.113 0.323±0.009 0.366±0.019 0.375±0.016 1.429±0.048 1.558±0.023

5 0.615±0.061 0.277±0.010 0.326±0.013 0.358±0.010 1.162±0.113 1.351±0.120

10 0.524±0.115 0.328±0.022 0.367±0.013 0.393±0.014 0.422±0.172 N/A

DTLZ4

3 0.010±0.002 1.255±0.094 0.204±0.068 1.498±0.147 0.098±0.041 0.046±0.025

5 0.012±0.002 0.000±0.000 0.109±0.033 1.547±0.173 0.312±0.075 0.214±0.149

10 0.012±0.001 0.000±0.000 0.102±0.073 1.405±0.144 0.324±0.036 N/A

DTLZ5

3 0.031±0.005 1.168±0.102 0.221±0.077 1.320±0.090 0.030±0.019 0.024±0.004

5 0.011±0.004 1.241±0.075 1.122±0.239 1.493±0.085 0.174±0.060 0.296±0.207

10 0.001±0.001 1.334±0.062 1.329±0.080 0.111±0.054 0.105±0.064 N/A

DTLZ6

3 0.892±0.128 0.002±0.001 0.001±0.000 0.002±0.000 1.484±0.070 1.511±0.077

5 0.794±0.123 0.002±0.003 0.093±0.078 0.007±0.003 1.189±0.102 1.164±0.251

10 0.491±0.142 0.000±0.000 0.022±0.043 0.005±0.003 0.317±0.098 N/A

DTLZ7

3 0.617±0.059 1.272±0.017 1.254±0.062 1.326±0.031 0.929±0.122 N/A

5 0.714±0.068 1.470±0.121 1.487±0.079 1.561±0.017 1.238±0.161 N/A

10 0.716±0.063 1.425±0.074 1.425±0.140 1.490±0.036 1.336±0.060 N/A

Table 5.16: SPEA2 Spread Indicator (SI) results.

Overall, overlapping methods resulted in a good HV for most functions, with DTLZ7

being the only exception. The overlapping techniques appeared to be the most beneficial

for DTLZ4, DTLZ5, and DTLZ6, each with statistically significant results compared to the

104

MOEA/D

Problem M Single Linear Lin. Ov. Random Rand. Ov. DG

DTLZ1

3 0.118±0.002 0.028±0.001 0.028±0.000 0.028±0.001 0.029±0.000 0.025±0.000

5 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

10 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 N/A

DTLZ2

3 0.539±0.009 1.719±0.018 0.326±0.063 1.689±0.044 0.210±0.083 0.163±0.073

5 0.545±0.041 1.729±0.002 0.738±0.177 1.718±0.010 0.223±0.093 0.540±0.022

10 0.053±0.046 1.572±0.070 0.584±0.110 1.219±0.087 0.068±0.058 N/A

DTLZ3

3 1.639±0.225 0.395±0.018 0.447±0.013 0.407±0.010 0.846±0.047 0.555±0.086

5 1.506±0.106 0.393±0.004 0.410±0.016 0.380±0.023 1.133±0.053 1.380±0.077

10 0.236±0.236 0.330±0.051 0.380±0.045 0.380±0.034 0.306±0.165 N/A

DTLZ4

3 0.456±0.092 1.127±0.563 0.161±0.094 1.563±0.177 0.180±0.027 0.091±0.050

5 0.519±0.050 1.478±0.127 0.427±0.146 1.652±0.120 0.324±0.038 0.423±0.049

10 0.488±0.084 0.300±0.557 0.179±0.152 1.562±0.166 0.463±0.039 N/A

DTLZ5

3 0.576±0.024 1.717±0.012 0.544±0.070 1.713±0.014 0.131±0.011 0.155±0.035

5 0.254±0.148 1.496±0.119 1.512±0.122 1.621±0.112 0.484±0.043 0.434±0.089

10 0.003±0.005 1.375±0.210 1.404±0.134 1.588±0.114 0.009±0.010 N/A

DTLZ6

3 1.723±0.003 0.002±0.000 0.002±0.000 0.002±0.000 1.360±0.079 0.002±0.000

5 1.098±0.160 0.009±0.008 0.070±0.078 0.017±0.008 1.140±0.100 0.914±0.552

10 0.054±0.083 0.001±0.000 0.001±0.000 0.001±0.000 0.180±0.213 N/A

DTLZ7

3 1.374±0.017 1.320±0.006 1.328±0.007 1.289±0.030 1.331±0.058 N/A

5 1.571±0.070 1.477±0.108 1.547±0.104 1.260±0.310 1.027±0.394 N/A

10 1.576±0.159 0.604±0.461 0.430±0.335 1.063±0.287 0.458±0.336 N/A

Table 5.17: MOEA/D Spread Indicator (SI) results.

other results. More specifically, for DTLZ4, random overlap significantly improved HV for

each of the base-algorithms, as did DG for the three- and five-objective problems. In the

case of DTLZ5, DG significantly improved results for three and five objectives for NSGA2

105

and MOEA/D. Additionally, random overlap improved results for SPEA2 and MOEA/D for

all objectives. Lastly, linear overlap had significantly better results for all three algorithms

for all objectives when applied to DTLZ6. This is interesting since DTLZ5 and DTLZ6

have unknown geometries, and DTLZ4 and DTLZ6 include bias (Chapter 2 Section 2.3.2).

The results using overlapping subpopulations are consistent with results found by Pryor et

al. [118]; we find that linear and random overlap (which create connected groups) often

perform well even though they do not perform any type of variable interaction learning.

Unfortunately, the coverage results for DTLZ5 and DTLZ6 were inconclusive due to the

aforementioned memory shortage.

Last, we noticed some interesting time-related phenomena in the results that warrant

further investigation. Specifically, we observed that as the number of non-dominated

solutions grew (as in DTLZ5 and DTLZ6), all co-operative versions of MOEA/D slowed

down more than the other algorithms. We believe this may be the result of how the elite

population is updated by the algorithm, since the algorithm updates the elite population after

every offspring y′ is generated [175]. This seemed to result in larger sets of non-dominated

solutions as compared to the other algorithms.

5.6 Concluding Remarks

We identified certain function characteristics that seem to benefit from specific variable

grouping approaches. We summarize our findings per characteristic. When comparing multi-

and uni-modal functions, we found that uni-modal problems with more straightforward

geometries (DTLZ2 and DTLZ4) did not benefit much from variable grouping strategies.

When we considered different geometries more specifically we found the following trends:

1. Disconnected geometry (DTLZ7): Random grouping had signficantly better perfor-

mance.

106

2. Unknown geometries and/or bias (DTLZ4, DTLZ5, and DTLZ6): Overlapping groups

seemed to be the most beneficial approach, especially in the five and ten objective

cases.

Lastly, looking at the separability of functions, we confirm results by other authors:

1. Separable: Variable grouping improved results for some but not all separable functions,

indicating that other function characteristics may be more important when dealing with

fully separable problems.

2. Unknown separability (DTLZ5, DTLZ6, and DTLZ7): Overlapping groups generally

improved results, where three objective DTLZ5 was the only exception.

We confirmed the results of Li et al. [85], who found that certain problems in the

DTLZ test-suite are partially separable when applying DG to the separate objectives. To

address this partial separability, we used overlapping subpopulations through the MOFEA

framework. We showed that MOFEA is applicable to different algorithms, and offers

improvements over single population algorithms in different situations. Furthermore, we

found that DG had good results, but it was slower than the other grouping strategies. We

believe this is due to the number of groups created as well as the number of overlapping

variables, since more overlap means more iterations in the compete step of MOFEA.

Overall, random and linear overlap improved the results as compared to single and disjoint

populations in many cases, providing more support for the idea that a connected grouping

may be more important than accurate variable interaction learning.

Finally, we empirically confirmed that as the number of objectives increases, so does

the number of non-dominated solutions. For problems DTLZ5 and DTLZ6, the final non-

dominated solution sets contained thousands of solutions for the five- and ten-objective

versions of the problem. This raised the question how such large solution sets could be made

107

more manageable for a human end-user to make a decision on which solution to use; which

is the focus of the next chapter.

108

CHAPTER SIX

SOLUTION SET REDUCTION

In the previous chapter, the five and ten objective results for the DTLZ5 and DTLZ6

benchmark problems provided a good example of the curse of dimensionality that occurs

in MaOO. This led us to exploring ways to reduce the size of the final non-dominated

solution set, which is the primary focus of this chapter. Inspired by the idea of overlapping

subpopulations, we created the Objective Archive Management (OAM) strategy. We present

OAM as a novel solution set reduction approach and offer a visualization strategy of the

reduced solution sets in higher objective spaces.

6.1 Related Work and Motivation

To reduce the number of non-dominated solutions as the objective space increases,

decomposition-based approaches such as MOEA/D [175] and NSGA3 [34] are used widely.

However, these approaches rely on pre-defined reference vectors (using a weight vector) to

guide the search. Such approaches come with their own set of issues, the most prominent

being the decrease in diversity and the need to determine the appropriate weight vectors [70].

Several adjustments to these decomposition based methods have been proposed to address

these issues [28, 46, 59, 93, 115, 172].

To better address the issue of diversity loss in MaOO, methods adjusting the selection

criteria have been proposed. This is accomplished by changing the Pareto dominance rela-

tionship or creating a specialized fitness function, where the adjustments focus on achieving

a good balance between diversity and convergence. This has been accomplished through

methods such as α-dominance [66], dominance-ratio adjustment [125], objective reduction

based on dominance relations [12], maximum-vector-angle-first principle [162], generalized

109

Pareto optimality [181], and adjusted distribution estimation [166]. Similarly, using a

performance indicator to evaluate solutions can be an effective strategy. Hypervolume-based

evolutionary algorithms are the most common approach [35, 102], but the hypervolume

calculation has two serious drawbacks: its dependence on a reference point and the high

computational cost [26].

Archive maintenance tactics offer a different kind of solution to the problems found

in MaOO. In this approach, the focus lies on an external archive that maintains the set of

found non-dominated solutions. Archive management strategies often use ideas from the

aforementioned methods, for example, using the hypervolume indicator [78], reference-point

based archive management [10], and two-archive based methods where one archive focuses

on diversity (indicator-based) and the other on convergence (Pareto-based) [16, 156, 176].

Each of the aforementioned approaches offers ways to balance convergence and diversity

as the objectives increase, but they do not address the issue of large non-dominated solution

sets for the end-user to inspect. Most of the research focusing on helping the decision maker

in their choice for a final solution focuses on dimensionality reduction to aid in visualization

[26] or by incorporating preferences directly into the search processes [56, 86, 154]. However,

dimensionality reduction comes at the cost of information loss in the objective space, and

preferences are highly domain-specific.

There has been research in selecting a subset of solutions after the final non-dominated

solution set has been generated, but most research in this area has focused on using the

hypervolume metric to find the best solution subset [102, 131]. However, as previously

mentioned, the hypervolume indicator comes with two major drawbacks [26]. A more

promising approach was presented by Takagi et al., where they perform environmental

selection based on an MOEA’s chosen selection procedure [142]. The authors used NSGA2

as an example for their method. Given a solution set S that needs to be reduced to a

size k, the authors propose sorting S based on NSGA2’s environmental selection procedure:

110

the crowding distance. In other words, the crowding distance is calculated for each of the

solutions in S, and the k best solutions according to the crowding distance are selected to

create a new solution set. There are two downsides to this approach: it requires 1) a pre-

defined solution set size and 2) a specific algorithm to be selected to determine the type of

environmental selection to be applied. The latter means that expert knowledge is required

to make an appropriate choice [160].

With our approach, we focus on managing the number of non-dominated solutions

using a multi-archive approach to facilitate decision making for the end user. Our archive

management strategy creates separate archives of non-dominated solutions for each objective,

where each archive focuses on maintaining the best solutions for the relevant objective while

introducing diversity. We update the objective archives throughout the generations, and

after the final generation, we find the solutions that belong to multiple archives to create a

small final solution set to present to the end user.

It is important to note that creating a diverse set of non-dominated solutions is not

part of this research. We did not aim to improve the optimization process that tries to find

an approximation to the optimal Pareto front. Our aim is to reduce these solution sets, as

generated by any MOEA, for an end user that wishes to make as little decisions as possible

in regards to how to reduce a large non-dominated solution set. Furthermore, our approach

does not require reducing the number of objectives, defining a fixed size of the final solution

set, or the need for expert knowledge (either to determine reference vectors or for algorithm

selection). In other words, our algorithm can be used by people with limited to no knowledge

on MaOO.

6.2 Objective Archive Management

Since we are organizing a group of non-dominated solutions S (the archive) into

subgroups Si for each objective, we call our algorithm “objective” archive management

111

(OAM). Key to the approach is the management of diversity of the solutions in the archive(s).

Diversity is determined by creating a dissimilarity or distance matrix Md for the solutions’

variables (Mdvar) and fitness scores (Mdfit) separately. We refer to the form as being diverse

in the variable space and the latter as being diverse in the objective space.

Our approach is as follows. For each objectiveMi, we sort S according to that objective.

The first k% solutions of the sorted set are added to Si. Then the second k% of the original

solution set are selected, from which ℓ% diversity solutions are chosen; half of which are

diverse in the objective space, and half of which are diverse in the variable space. Selecting

for diversity in this way ensures that the chosen diversity solutions are still good solutions

for objective Mi. The objective archive solution selection process is shown in Figure 6.1 and

the general pseudocode is given in Algorithm 6.1.

In our experiments we used the cosine similarity metric to measure diversity due to

its useful qualities in high dimensional spaces. Specifically, cosine similarity distinguishes

different solutions from a directional perspective, making it a good choice to diversify the

search space [164]. We select the unique solutions with the highest dissimilarity score to

be added to the objective archive (Algorithm 6.2). We look at both variable and objective

diversity. Each solution s ∈ S consists of a set of variables X ← {x0, . . . , xn} and a set

of fitness scores F ← {f0, . . . , fM}, where n is the variable dimensionality, and M is the

number of objectives. The function “cosine distance” in Algorithm 6.2 refers to the pairwise

analysis of all s ∈ S in the variable (Line 5) or objective space (Line 8), resulting in a

symmetrical |S| × |S| distance matrix, from which we select the solutions with the largest

distance. In other words, for both the variable values and the objective values, we select the

solution pairs with the highest dissimilarity, check whether these solutions have been added

to the archive (from being part of a different pair of dissimilar solutions), and if not, add

the new solutions to the archive. By checking both objective and variable diversity, we aim

to account for biased problems. Biased problems have functions with a large discrepancy

112

Algorithm 6.1 Objective Archive Management

Input: Number of objectives M , non-dominated archive N , parameter best solutions k, parameter

diverse solutions ℓ

1: F ← {}

2: k ← ⌈k × |N |⌉

3: for all i = 0 to M do

4: Fi ← {}

5: N ′ ← sort(N , i)

6: Fi ← Fi ∪N ′[: k]

7: N ′′ ← diversify archive(N ′[k : 2k], ℓ) // Algorithm 6.2

8: Fi ← Fi ∪N ′′

return F

between the distribution of solutions in the search space and the distribution of solutions in

the objective space [64]. The collection of archives is referred to as the Objective Archive

(OA).

We can now use the created OA to reduce the non-dominated solution set into a more

manageable size. We do this by counting how many times each solution occurs in the M

objective archives (Algorithm 6.3). The user can then choose how many archives a solution

needs to belong to in order to be included in the final solution set. For example, if the user

wants as little choice as possible, the overlap count of a single solution should be close to the

number of objectives M . Note that if overlap is set equal to M , this means each solution is

in the top 2k% of the population for each objective.

The OAM approach can be applied in two different ways to any MOO or MaOO

algorithm. First, it can be used as an external archive throughout an algorithm’s

optimization process to improve the convergence/diversity trade-off as desired. Second, it

can be applied after an algorithm has terminated to reduce the solution set size. We refer

113

Figure 6.1: Visual representation of the OAM process to create the objective archives.

to the former as E-OAM (external OAM), and the latter as S-OAM (single OAM).

In E-OAM, the OA is updated continuously to include any newly found non-dominated

solutions, serving as an external archive. The OA can be kept as a storage mechanism without

injecting any solutions back into the algorithm, or it can be used to inject a reduced number

of non-dominated solutions (by finding the overlapping solutions) into the next generation of

the algorithm to help guide the search. In this paper, we only look at keeping and updating

an external archive, without injection, to create a final, reduced solution set. When applying

S-OAM, we generate the OA after the algorithm of choice has terminated. In other words,

an OA is created based on the final non-dominated solution set. The overlapping solutions

can then be found to reduce the number of solutions further to a more manageable size.

114

Algorithm 6.2 Diversify Archive

Input: Solution set S, ℓ diverse solutions

1: ℓ← ⌈ℓ× |S|⌉

2: S′ ← {}

3: Svar ← {X0, . . . , X|S|}

4: Sfit ← {F0, . . . , F|S|}

5: Mdvar ← cosine distance(Svar)

6: S′
var ← sort(Mdvar)

7: S′ ← S′ ∪ S′
var[: ℓ/2]

8: Mdfit ← cosine distance(Sfit)

9: S′
fit ← sort(Mdfit)

10: S′ ← S′ ∪ S′
fit[: ℓ/2]

return S′

6.3 Experimental Approach

In our studies, we applied NSGA2, MOEA/D, and SPEA2 to the DTLZ [37] and WFG

[65] benchmark suites. We found that single-population NSGA2 performed well on MaOO

problems (as compared to MOEA/D and SPEA2). As a result, we decided to use NSGA2

as our base algorithm; however, as previously stated, the OAM approach could be applied

to any algorithm. We compared OAM-NSGA2 to the environmental selection approach

in [142] and NSGA3 [34], implemented using the pymoo library [6]. NSGA3 is a popular

reference vector based approach created for MaOO that has been shown to perform well and

to produce small final non-dominated solution sets [162]. Each algorithm was run with a

population of 1000, for 100 generations. Through these studies, we found that functions

DTLZ5, DTLZ6, WFG3, and WFG7 produced large non-dominated solution sets. We

used these four functions for our experiments, each with five and ten objectives and with

115

Algorithm 6.3 Find Overlapping Solutions

Input: Objective archive OA, minimum overlap count oc

Initialize: Dictionary count ← {}, reduced solution set S ← {}

1: arch ← flatten(OA)

2: for all X ∈ arch do

3: count[X]← 0

4: for all i = 0 to M do

5: for all X ∈ OAi do

6: count[X] = count[X] + 1

7: for all x, c ∈ count do

8: if c ≥ oc then

9: S ← S ∪ {x}

return S

100 decision variables [65]. We performed 30 independent iterations of the algorithms on

each problem and report Hypervolume (HV) [157] and Spread (S) [3]. Furthermore we

visualize the obtained reduced solution sets through radar charts to obtain a more intuitive

understanding of the solutions being selected. The Wilcoxon rank-sum test with α = 0.05

was performed to assess statistical significance for all results.

6.4 Results

Our results consisted of four different sets of experiments. 1) We started by evaluating

the convergence-divergence trade-off in the OAM strategy by varying the k and l parameters.

2) We compared solution set reduction using OAM to environmental selection. 3) We

compared our external-archive approach using NSGA2 to NSGA3. And lastly, 4) we applied

116

Figure 6.2: Five-objective HV results for OAM with different k and l parameter values.

the single-archive OAM approach to the solution sets found by NSGA3.

6.4.1 Convergence vs. Diversity

We examined the influence of the convergence and diversity parameters k and ℓ on

the final OA quality. We ran experiments for all combinations of k = {0.25, 0.4, 0.5} and

ℓ = {0.2, 0.3, 0.4, 0.5}. To obtain the results shown in Figures 6.2 – 6.5, we used E-OAM

to maintain an external archive that was updated after each generation of NSGA2. At the

end of each generation, the non-dominated solutions found by NSGA2 were added to each

objective archive and re-evaluated for non-dominance before applying the OAM algorithm

117

Figure 6.3: Ten-objective HV results for OAM with different k and l parameter values.

to obtain the updated archive. We present HV and S for the resulting external archive at

each generation (without applying solution set reduction). We averaged the full runs of each

algorithm to generate the final graphs.

Following statistical hypothesis testing, we found that there was no significant difference

between the different parameter settings for HV and S on problems DTLZ5, DTLZ6, and

WFG3. When considering the graphs in Figures 6.2 – 6.5, we see that there are only

small differences between HV and S for those problems, and the convergence lines follow

similar trends. The same does not hold true for WFG7, where we do find statistically

118

Figure 6.4: Five-objective S results for OAM with different k and l parameter values.

significant differences between the different parameter settings. However, there is little to no

convergence for either HV or S for WFG7, regardless of the chosen k and ℓ parameters. This

indicates the problem lies with the performance of NSGA2.Since the OA is only updated

with solutions found by the underlying optimization algorithm, it is directly influenced by

that algorithm’s performance.

Table 6.1 shows the parameter combinations with the most promising results for each

of the problems. These were chosen based on which parameter combination had a good

balance between HV and S. But as mentioned previously, since the difference between the

values is small and not significant for three out of four problems, the choice of k and ℓ may

119

Figure 6.5: Ten-objective S results for OAM with different k and l parameter values.

only have a small influence when using an external archive. Generally, we can see that the

“best” results were achieved when retaining a larger percentage of the found non-dominated

solutions (i.e., a large k value).

6.4.2 Environmental Selection Results

In this section we considered the solution set reduction aspect of OAM compared to the

Environmental Selection (ES) [142]. In these experiments we performed reduction using both

OAM and ES on the same non-dominated solution set generated by NSGA2. We applied

OAM in two different ways (see Section 6.2):

120

Problem M k ℓ

DTLZ5
5 0.40 0.30

10 0.40 0.50

DTLZ6
5 0.50 0.40

10 0.50 0.20

WFG3
5 0.20 0.40

10 0.50 0.40

WFG7
5 0.50 0.20

10 0.50 0.40

Table 6.1: Chosen parameter combinations (k and l) for each problem.

1. E-OAM: We updated the Objective Archive after each generation of NSGA2 and

obtained the final solution set by finding the overlapping solutions of the external

archive.

2. S-OAM: We used the same parameters k and ℓ and generated an Objective Archive

based on the final non-dominated solution set generated by NSGA2. We then found

the overlapping solutions in the resulting archive.

We used the generated OA to find overlapping solutions to determine the reduced solution

set. We looked at the number of solutions generated by both E-OAM and S-OAM with

overlap equal to 60% and 80% of the number of objectives. The resulting solution set sizes,

as well NSGA2’s solution set size, are shown in Table 6.2. Since using 80% overlap results

in empty solution sets for some of the problems, we decided to use 60% overlap to generate

the final non-dominated solution sets.

We applied ES to both the solutions found in the complete OA generated by E-OAM

before finding overlap and to the non-dominated solution set generated by NSGA2. We set

121

NSGA2 E-OAM S-OAM

Problem M 60% 80% 60% 80%

DTLZ5
5 931 46 0 144 35

10 887 100 31 354 111

DTLZ6
5 654 140 3 381 129

10 776 123 53 291 127

WFG3
5 643 36 0 49 49

10 837 47 33 478 297

WFG7
5 995 61 2 326 75

10 1000 474 119 285 251

Table 6.2: Average solution set size for NSGA2, E-OAM, and S-OAM with different overlap
sizes (indicated by the percentages).

the number of the selected solutions to be the same as the number created by the OAM

overlap. This means the number of solutions selected from the OA was the same as the

number of solutions generated by the E-OAM overlap, and the number of solutions selected

from NSGA2’s solution set was the same as those from S-OAM. Therefore, we denote the

two different ES-based selections as ES-E and ES-S respectively. The choice of parameters

k and ℓ (Table 6.1) was based on the results from the previous section (Figures 6.2 – 6.5).

We report HV and S for the original non-dominated solution set from NSGA2 as well as

for the different implementations of OAM and ES. We compared the quality of the selected

solutions through HV (Table 6.3), S (Table 6.4), and solution visualizations for the four

reduced solution sets (Figures 6.6 – 6.9).

E-OAM not only reduced the solution set to a more manageable size but improved HV

and S for most problems as compared to NSGA2’s non-dominated solution set. Considering

classic NSGA2 does not use any archive management strategy, this makes sense since we are

122

Problem M NSGA2 E-OAM ES-E S-OAM ES-S

DTLZ5
5 0.988 0.997 0.985 0.987 0.985

10 0.985 0.998 0.980 0.982 0.980

DTLZ6
5 0.912 0.968 0.879 0.912 0.880

10 0.915 0.920 0.880 0.914 0.881

WFG3
5 0.757 0.758 0.756 0.757 0.756

10 0.066 0.066 0.060 0.066 0.060

WFG7
5 0.106 0.201 0.093 0.105 0.093

10 0.062 0.190 0.144 0.062 0.049

Table 6.3: Hypervolume for NSGA2, OAM, and ES. Bold indicates statistical significance
with α = 0.05.

Problem M NSGA2 E-OAM ES-E S-OAM ES-S

DTLZ5
5 0.005 0.0151 0.006 0.003 0.001

10 0.006 0.034 0.007 0.004 0.000

DTLZ6
5 0.058 0.117 0.019 0.058 0.014

10 0.049 0.048 0.009 0.048 0.002

WFG3
5 0.011 0.006 0.007 0.006 0.000

10 0.006 0.270 0.190 0.006 0.001

WFG7
5 0.047 0.346 0.212 0.046 0.001

10 0.077 0.623 0.450 0.077 0.002

Table 6.4: Spread for NSGA2, OAM, and ES. Bold indicates statistical significance with
α = 0.05.

keeping track of all non-dominated solutions found when using the E-OAM approach. The

interesting part is that the reduced solution sets still improved HV and S for most problems,

123

compared to NSGA2, which only has significantly better results for S on the five-objective

WFG3.

When comparing ES to OAM, we see that for both the single use and external archive

approach, OAM has better performance than ES on all problems. In order to evaluate what

this means for the final non-dominated solution set, we used radar charts to visualize the

four different reduced solutions sets from a single, randomly selected, run of NSGA2 on five-

and ten-objective DTLZ5 (Figures 6.6 – 6.9). We created plots for all four problems, but

are only showing results for DTLZ5 in this chapter, the remainder of the plots can be found

in Appendix C.

Each radar chart shows a single solution set, where the sets contain approximately

45 and 140 solutions for five-objective DTLZ5 and 100 to 200 solutions for ten-objective

DTLZ5. Each solution within a solution set has a different line color. The center of the

radar is the origin of the graph and is equal to 0, which would be the ideal score for the

normalized objectives based on minimization. As we move toward the edge of the radar, the

value increases, which indicates a worse objective score, as indicated by the numbers on the

plot. Note that the range of numbers changes between plots, i.e., the maximum objective

values vary across plots. The objectives are spaced evenly along the perimeter of the circle;

the exact values for each objective are indicated using the blue dots, where a dot close to

the center of the graph indicates a more desirable objective score.

In these plots, we can see that the solutions selected from NSGA2’s final solution set

have lower objective scores overall, but there is not much diversity in the selected solutions,

especially when using ES. In the five-objective case, most solutions chosen from the single

run have a higher value for objective four, whereas the external archive solutions also include

solutions that have a lower value for objective four with a higher value for objective five.

Similarly, for ten-objectives, ES-S, ES-E, and S-OAM resulted in solutions with worse values

for objectives eight and nine, with little variety in the chosen solutions. E-OAM, on the other

124

(a) NSGA2 ES-S

(b) NSGA2 S-OAM

Figure 6.6: DTLZ5 five objectives NSGA2 single run.

125

(a) NSGA2 ES-E

(b) NSGA2 E-OAM

Figure 6.7: DTLZ5 five objectives NSGA2 external archive.

126

(a) NSGA2 ES-S

(b) NSGA2 S-OAM

Figure 6.8: DTLZ5 ten objectives NSGA2 single run.

127

(a) NSGA2 ES-E

(b) NSGA2 E-OAM

Figure 6.9: DTLZ5 ten objectives NSGA2 external archive.

128

hand, provided solutions that improve on objectives eight and nine at the cost of objective

ten, delivering more diverse solutions to choose from. This opens up more choices if the

end-user decides they care more about one objective or the other.

6.4.3 NSGA3 Results

Our final experiments considered two different aspects of the algorithm as compared to

and applied to NSGA3:

1. We compared the final results from NSGA3 to the final archive found by E-OAM with

NSGA2. In this way, we can evaluate how using an external archive updated with

OAM compares to using reference vectors for reducing the number of solutions.

2. We applied S-OAM to the final results set found by NSGA3 to further demonstrate its

applicability to reducing the size of any solution set.

Since NSGA3 relies on reference vectors to guide the algorithm through the search space,

we ran experiments with different numbers of partitions using the Das-Dennis approach to

generate different sized sets of reference vectors [29]. We tested three, four, six, and nine

reference vectors (Table 6.5). The population size was kept at 1000. This means that for the

ten objective problems, the number of reference vectors was larger than the population size,

which could affect NSGA3’s performance. Based on these results, we used four partitions

to generate the reference vectors for all problems since it performs well on HV and S and

creates smaller sized solution sets.

6.4.3.1 External Archive Solutions This section evaluated using OAM as an external

archive throughout the evolutionary process and compared the final non-dominated overlap-

ping solution set created by OAM-NSGA2 to the non-dominated solutions found by NSGA3.

In addition toHV and S (Table 6.7), we calculated adjusted coverage as presented in Chapter

3. Since we did not change the NSGA2 process, it came as no surprise that NSGA3 covered

129

Part. 3 4 6 9

DTLZ5

5

Size 12 26.5 45 131

HV 0.999 0.999 0.999 0.999

Spread 0.023 0.028 0.027 0.030

10

Size 126 265 506 1236

HV 0.999 0.999 0.999 0.995

Spread 0.052 0.053 0.049 0.067

DTLZ6

5

Size 35 70 210 680

HV 0.999 0.999 0.999 0.999

Spread 0.141 0.143 0.143 0.149

10

Size 220 714 1435 1649

HV 0.999 0.999 0.998 0.997

Spread 0.230 0.231 0.243 0.243

WFG3

5

Size 31 53 79 174

HV 0.863 0.869 0.897 0.892

Spread 0.457 0.542 0.468 0.533

10

Size 42 75 173 653

HV 0.129 0.188 0.270 0.136

Spread 0.738 0.887 1.822 0.891

WFG7

5

Size 35 70 210 710

HV 0.557 0.611 0.654 0.662

Spread 1.859 1.86 1.862 1.871

10

Size 220 715 1371 1622

HV 0.410 0.466 0.413 0.368

Spread 3.844 3.856 3.753 3.504

Table 6.5: NSGA3 partitioning results.

130

NSGA3 E-OAM

DTLZ5

5
AC 60.80% 39.20%

Size 25 38

10
AC 77% 23%

Size 266 90

DTLZ6

5
AC 85.50% 14.50%

Size 70 130

10
AC 83% 17%

Size 714 160

WFG3

5
AC 100% 0%

Size 80 34

10
AC 99% 1%

Size 188 48

WFG7

5
AC 100% 0%

Size 70 64

10
AC 100% 0%

Size 715 400

Table 6.6: Adjusted coverage (AC) and solution set size for NSGA3 and E-OAM-NSGA2.

most or all of the non-dominated solutions found by NSGA2 (Table 6.6). Using OAM as

an external archive alone has no influence on algorithm performance, so if NSGA2 does not

perform well, this directly influenced the solutions kept in the OA. When considering the

number of solutions found, E-OAM and NSGA3 were similar for the five-objective problem,

but E-OAM consistently resulted in smaller solution sets for the ten-objective problems.

Interestingly, when considering HV , we found no significant difference for the DTLZ

131

NSGA3

HV S

DTLZ5
5 0.999 0.028

10 0.999 0.053

DTLZ6
5 0.999 0.143

10 0.999 0.231

WFG3
5 0.897 0.542

10 0.270 1.822

WFG7
5 0.611 1.861

10 0.466 3.856

Table 6.7: Hypervolume and spread for NSGA3.

problems, but NSGA3 did significantly improve performance for both the five- and ten-

objective WFG problems (as compared to the E-OAM NSGA2 results reported in Table

6.3). This was not a surprise, considering previous research comparing NSGA3 and NSGA2

in many-objective spaces unanimously show that NSGA3 improves on NSGA2 [26, 34].

However, given this information, it is interesting to note that E-OAM-NSGA2 performed

reasonably well on the DTLZ problems. According to Huband et al., DTLZ5 and DTLZ6

are supposed to represent degenerate Pareto fronts [65], but this attribute no longer holds

true when the number of objectives is of size four or more. This could explain why a more

complex algorithm no longer adds much benefit.

When comparing the spread (S) results, we found that NSGA3 had significantly better

S for all problems. This makes sense when considering the use of reference vectors. The use

of such pre-defined directions means the algorithm is spreading out more evenly across the

search space, as compared to NSGA2, which uses no such guidance.

132

(a) DTLZ5 five objectives. (b) DTLZ5 ten objectives.

(c) DTLZ6 five objectives. (d) DTLZ6 ten objectives.

Figure 6.10: Reduction size of NSGA3 solution sets for the DTLZ problems using different
k and l parameters with varying levels of overlap (40%, 60%, and 80%).

6.4.3.2 Direct Solution Set Reduction In addition to the comparative analysis, we

applied S-OAM to the results found by NSGA3 to show its general applicability and to further

investigate the type of results that are selected when applying S-OAM. We investigated the

influence of the k and l parameters, as well as the amount of overlap, on the solution set size

(Figures 6.10 and 6.11).

As expected, Figures 6.10 and 6.11 show that the number of chosen solutions gradually

decreases as the parameters k and l get smaller for the ten objective problems. However, in

the five objective case, we do see stagnation early on when looking at 80% overlap. As k

133

(a) WFG3 five objectives. (b) WFG3 ten objectives.

(c) WFG7 five objectives. (d) WFG7 ten objectives.

Figure 6.11: Reduction size of NSGA3 solution sets for the WFG problems using different k
and l parameters with varying levels of overlap (40%, 60%, and 80%).

and l decrease, fewer solutions are being put in each objective archive. If we have a smaller

solution set to start with, as is the case for the five objective problems, applying a large

overlap parameter can lead to an empty solution set. For the ten objective instances, using

80% overlap still returns one to five solutions when both k and l are set to the smallest value

of 0.2. For DTLZ5 with five objectives, we see large jumps in size occurring when the value

for the k parameter decreases. We believe this is due to the small starting size of the archive

(on average 26.5 solutions are generated by NSGA3).

We created radar plots to visualize the selected solutions (Figures 6.12 – 6.15). We

134

used 60% overlap and set parameters k = 0.3 and l = 0.5 for 5 objectives, selecting 15−20%

of the total solutions, and k = 0.2 and l = 0.5 for 10 objectives, selecting 7 − 15% of the

total solutions. Once again, we created plots for all four problems, but results are only

shown for DTLZ5 and WFG3. The other plots can be found in Appendix C. We chose these

problems to visualize because we used DTLZ5 as the example when comparing OAM to ES,

and because WFG3 is one of the problems for which NSGA3 does significantly better in

terms of HV .

When considering the solution sets for both DTLZ5 and WFG3, we see that the full

solution set includes solutions with a high objective score for some of the objectives. For

all problems, OAM selects solutions that maintain the diversity of the NSGA3 solution set

but removes solutions that are very similar or that have worse objective scores without a

strong positive impact on the other objectives. For example, when we look at WFG3, the

starting solution set as found by NSGA3 explores solutions with a trade-off between the first

two objectives in the five objective case (Figure 6.14) and the first six objective in the ten

objective case (Figure 6.15). The selected OAM solutions still offer those trade-off options

but removed the solutions with the worst fitness functions. This results in solutions closer

to the center of the radar plot, which is more desirable.

Finally, when we consider the solution set generated by E-OAM for DTLZ5 (Figures

6.7 and 6.9) and compare it to the solutions found by NSGA3, we see that the E-OAM

solutions appear to be a subset of the NSGA3 solutions. Given what we know in terms

of HV and S for these results, this makes sense. E-OAM-NSGA2 generated less diverse

solutions, but the found solutions are similar in quality to the solutions in NSGA3 that are

closer to the center of the radar charts. This explains the similar HV scores for the two

algorithms. In other words, even though NSGA3 resulted in more diversity, this is likely

because NSGA3 was keeping solutions with a relatively large increase in one objective score

to gain a small decrease in another objective score. When applying OAM to the NSGA3

135

(a) NSGA3

(b) NSGA3 OAM

Figure 6.12: DTLZ5 five objectives NSGA3

136

(a) NSGA3

(b) NSGA3 OAM

Figure 6.13: DTLZ5 ten objectives NSGA3

137

(a) NSGA3

(b) NSGA3 OAM

Figure 6.14: WFG3 five objectives NSGA3

138

(a) NSGA3

(b) NSGA3 OAM

Figure 6.15: WFG3 ten objectives NSGA3

139

solution set, it removes many of these solutions while maintaining the increased diversity in

the NSGA3 solution set. What this indicates is that applying OAM resulted in selecting

solutions that perform well on all objectives given the original solution set. In other words,

if the original algorithm generates a diverse set of solutions, OAM is able to reduce this

solution set successfully to a smaller size while maintaining that diversity.

6.5 Discussion

In our experiments, we found that the OAM approach found more diverse solutions

than Environmental Selection [142]. Furthermore, the external archive approach improved

upon NSGA2’s final non-dominated solution set, yielding similar quality results to NSGA3

on problems DTLZ5 and DTLZ6. However, NSGA3 still had better performance on the

WFG3 and WFG7 problems. When we applied the OAM approach to the final solution set

found by NSGA3, OAM selected diverse solutions but with better overall fitness across the

selected solutions. In the five objective case, the solution sets were reduced from 60 − 100

solutions to 5 − 20 solutions. When reducing the 10-objective solution set, the number of

solutions went from a range of 300−500 to 15−25. Through visual assessment, we found that

the selected solutions struck a good balance between the different objectives as compared to

the full solution set. Lastly, we would like to note that the current version of the algorithm

allows the return of an empty solution set (as discussed in Section 6.4.3.2). This is a problem

that needs to be addressed, for example, by including an archive weighting technique and

returning the solutions with the highest weight if no solutions are being selected through

overlap. Overall, we conclude that using OAM for solution set size reduction performs well

regardless of which algorithm is used to create a non-dominated solution set.

140

6.6 Concluding Remarks

We introduced the Objective Archive Management (OAM) strategy to create a reduced

final solution to many objective optimization problems. OAM creates an archive for each

objective, effectively distributing the solutions into separate archives. Each of these objective

archives maintains the top k% solutions for the relevant objective. To maintain diversity, the

objective archives also included a diversity management technique that takes both variable

and objective space diversity into account. Once the Objective Archive is created, we count

how many times a solution occurs across the objective archives and add solutions that occur

in a minimum number of archives to the final, reduced solution set. We found that our

approach successfully reduced large solution sets to a more manageable size while maintaining

desirable properties. Our approach has several benefits compared to existing approaches: it

requires no pre-defined reference vectors, it can be applied to any algorithm or any solution

set, the end-user does not need MOEA specific knowledge, and it is easy to adjust the

diversity-convergence trade-off.

141

CHAPTER SEVEN

REAL WORLD APPLICATION - PRECISION AGRICULTURE

In addition to the benchmarks we investigated, we applied MOFEA to generate fertilizer

prescription maps as part of the On-Farm Precision Experimentation and Data-Intensive

Farm Management projects. These projects aim to assist farmers in their decision making

process by analysing specific fields to improve production. This chapter will go over the

general project structure and goals before showing how we used population-based algorithms

and different multi-objective optimization approaches to find experimental and optimal

prescription maps.

7.1 On-Farm Precision Experimentation

Precision Agriculture (PA) is an interdisciplinary field found at the intersection of

agriculture and technology. It is a rapidly growing research area that uses advanced

technologies to improve all aspects of agriculture. Commonly researched problems include

smart irrigation [52], crop monitoring through wireless sensor networks [130], remote sensing

for assessing crop condition and predicting yield response [99], and input optimization (e.g.,

fertilizer, herbicide, pesticide, or irrigation). The PA field gained traction in the 1980s with

the advent of the Global Positioning System (GPS), enabling machines to apply treatments

with requirements localized to each field [116]. This led to the creation and use of Variable

Rate Technology (VRT): machines that are able to switch the amount of fertilizer being

applied as they move across a field, known as Variable Rate Application (VRA). VRA

decreases the amount of fertilizer applied to a specific field while increasing profitability,

effectively also reducing environmental impact [79, 121]. VRA tries to determine the rate

of fertilizer to apply to different parts of a field based on a variety of factors, such as

142

precipitation, elevation, and previous years’ yield [101].

7.1.1 Data-Intensive Farm Management

The Data-Intensive Farm Management (DIFM) [13] initiative by the US Department

of Agriculture (USDA) is used as a basis for our study. DIFM uses farm and field-specific

data to optimize different aspects of farming to increase profit by gathering data from the

farmers as well as publicly available data, such as precipitation and satellite imagery. Figure

7.1 shows the overall workflow of the DIFM project. “Field information” refers to the

physical data we gather from the farms, which is put into a database. “Data organization

& analysis” refers to the upkeep of the database containing farm and field data as well as

any analysis that is performed directly on the stored data. We use the field-specific data

to train a yield prediction model in order to find accurate yield response curves. The yield

response can then be used to create optimal prescription maps (“Field profit maximization”).

Currently, the prescription maps we create prescribe fertilizer or seeding rate, but the process

could be used to create different types of prescription maps. After the farmers apply

the prescribed fertilizer, we gather more data from the field from the subsequent harvest

(“Yield, Protein, Net return”) and add this data back into the database. To create the best

possible prescription maps, we need as much field-specific data as possible. Only creating

optimal maps could limit the application rates; therefore, to analyse how a field responds to

different rates and gather more field data, we create experimental prescription maps. These

experimental trials are created based on previous years’ yield, and in some cases crop quality

(e.g. protein), levels. Figure 7.2 shows an example of a prescription map as used by the

DIFM project [13]. Experimental fertilizer rates are randomized and stratified across the

field to create a spatial and temporal database on how different parts of the field react to

different fertilizer rates over time (“Parameterization”). The gathered data is analysed in

order to find improved yield response curves. This creates a continuous feedback system,

143

Figure 7.1: DIFM process for field profit maximization.

where the gathered data for each field keeps growing, thus hopefully creating more accurate

models.

7.1.2 Fertilizer Prescription Maps

In order to evaluate the applicability of MOCO algorithms on a real world problem,

we considered the creation of fertilizer prescription maps for field-specific optimization.

The project workflow indicates that there are two different types of prescription maps:

experimental and optimal. The experimental prescriptions are combinatorial: we are looking

to find the optimal combination of a predefined set of input rates to apply to a field, and

these fertilizer rates are discrete values. In our case, each field is divided into strips based

on the width of the farming equipment, and each of these strips is divided into cells or

plots based on a length specification. Figure 7.2 shows an example of what this looks like.

The length of the plots varies from field to field based on farmer preference, but usually

ranges from 200 feet to 400 feet. Each plot in a field is prescribed a value out of a set of

input values, for example, a rate of 20, 40, 80, or 120 pounds of Nitrogen per acre. We

then try to spread these different rates across the plots to gather as much useful data as

144

Figure 7.2: Example of a prescription map for experimental fertilizer application. Different
colors represent different fertilizer rates.

possible from a field by measuring subsequent yield and crop quality. On the other hand, an

optimized map prescribes inputs (e.g., fertilizer) that results in an optimized net return for

the farmer. These prescribed values can be discrete if there is a set of values the prescription

should use. For example, if the farmer only wishes to apply rates of Nitrogen of certain values

(similar to the experimental prescriptions), this would result in a combinatorial optimization

problem. However, if there are no such predefined values, the problem becomes a continuous

optimization problem.

7.2 Related Work and Motivation

In recent years, MOO has been applied to four different aspects of PA: wireless sensor

networks [165], pesticide application [173], irrigation [87], and, lastly, fertilizer application,

which is what our research focuses on. Wireless sensor networks connect different measuring

instruments through a wireless network. These instruments are placed throughout fields to

145

gather pertinent data such as soil moisture, temperature, salinity, etc. The gathered data

can then be used to inform the farmer of crop quality and health [71]. MOO can be applied to

optimize communication between the nodes in the network, for example, to improve energy

efficiency while avoiding congestion [165]. Zhai et al. look to optimize pesticide application

of crops to minimize cost and maximize expected benefit [173]. Irrigation aims to address the

problem of water scarcity in agriculture by designing improved irrigation water allocation

schemes [87]. Its multi-objective nature is defined by simultaneously trying to optimize water

productivity, allocation equity, profit, economic benefit, blue water utilization, and leakage

loss.

The question of sustainability in agriculture has existed since the start of precision

agriculture as an area of study [8]. But addressing these sustainability issues in practice has

proven more difficult. VRA involves technology that allows farmers to apply different input

rates to different parts of the field to control their production and reduce cost more precisely

[121]. For example, using VRA, farmers are able to apply less fertilizer overall than if they

were to apply a uniform rate across an entire field, thus also improving their sustainability

practice [8].

Several studies have shown that VRA can help with sustainability [31, 158]; however,

this is not always the case. Some studies found that using VRA increases the cost for

the farmer [144]. To the best of our knowledge, only two studies have applied MOO

algorithms to VRA prescription maps to provide a set of potential prescriptions. Zheng

et al. apply a multi-objective fireworks optimization algorithm (MOFOA) for variable-rate

fertilization [180]. Their goal was to find the optimal fertilization for oil crops based on

yield, energy consumption, and spatial effects. The authors compare their algorithms to

NSGA2, Pareto-Frontier Differential Evolution [2], Differential Evolution-Multi-Objective

for Constrained Optimization [57], and Non-dominated Sorting Particle Swarm Optimization

[88]. The authors found that MOFOA finds a better Pareto front approximation than the

146

other algorithms. It is noted that MOFOA requires more tuning to get optimal results and

more function evaluations are involved for each generation.

The second study applying MOO to fertilizer application used an economic optimization

model to determine the fitness of fertilizer prescription maps and irrigation strategies for

optimal crop yield in western Switzerland [83]. This approach by Lehman et al. included

an economic model and different levels of price risks. The authors also integrated climate

change into their model to determine whether it has a negative impact on farming profit.

Their results found that climate change does increase income risk for farmers. While climate

change was used as a variable that influences farmer profit, the authors do not consider how

fertilizer application affects climate change. Furthermore, the authors mention their use of

a GA, but it is unclear how these different objectives are included in the GA.

7.3 Trial Design

A first problem that needed to be addressed in the Data-Intensive Farm Management

project was the creation of experimental trial designs for farmers to apply to their field to

gather information. By trial design, we refer to laying down experimental fertilizer rates on

a field in such a way that the different amounts of fertilizer are distributed evenly across the

field while balancing a farmers needs with creating an appropriate scientific experimental

design. Therefore, we need to take two different objectives into account. First, to maximize

the gathering of useful information, we want to create experimental prescription maps that

stratify fertilizer rates across yield bins, as yield is one of the primary concerns for farmers.

Additionally, when creating prescriptions for winter wheat, there is a potential protein

premium if the wheat produced has a minimum percentage of protein; to this end, we

can also create protein bins and stratify the fertilizer across both yield and protein data.

Second, the farmers we work with in Montana want to minimize applicator rate jumps

between consecutive plots to reduce strain on their application equipment. When applying

147

different fertilizer rates along a field, VRT is required. However, it takes a lot of effort for

the VRT machinery to apply a large amount of fertilizer on one plot and then switch to

a small amount of fertilizer for the next plot. Such big rate changes or jumps have the

potential to wear out the equipment more rapidly, thus increasing maintenance or repair

cost to the farmer. Eventually, we realized another interesting objective to include would be

minimization of overall fertilizer rate to reduce the impact on the environment. To create

these experimental maps, we started with a vanilla genetic algorithm using a weighted-sum

bi-objective function, maximizing stratification and minimizing jumps. When we added in

the third objective, we used NSGA2 as well as CCEA and FEA with NSGA2 as the base

algorithm to run experiments. We wanted to get potential results across the Pareto front

and evaluate how using subpopulations influences the results.

7.3.1 Trial Design Objective Functions

The experimental prescription map problem consists of optimizing the following

objective functions:

1. Minimize jumps in consecutive cells

2. Maximize stratification across the field

3. Minimize overall fertilizer rate

Stratification and jump minimization were the first two objectives to be used in the weighted-

sum Genetic Algorithm approach [113]. Adding in the third objective of overall fertilizer

minimization required a more sophisticated trade-off, which is why we explored the use of

NSGA2 and two different decomposition approaches to evaluate the three objective trial

design prescription maps.

For a set of predefined fertilizer rates, the stratification strategy tries to ensure that

each fertilizer rate is represented equally across k pre-determined yield bins. We considered

148

two different methods for discretization into bins: 1) by looking at the actual yield (yld)

values (called equal width binning), or 2) by splitting on the data points themselves (called

equal sample binning). The first method looks at the minimum and maximum yield and

protein values and creates an even split of these values based on the desired number of bins.

Without loss of generality, we consider yield. Then based on the number of bins k, we

calculate an offset as

offsetk =
1

k
(maxyld −minyld).

Thus, we get bin boundaries at

minyld, . . . ,minyld + j · offsetk, . . . ,maxyld.

Equal sample binning, where we split on m data points, does not take the yield or protein

values into account but aims to distribute an even number of points into each bin (i.e., m/k

points). The differences in binning strategies are illustrated in Figure 7.3. Depending on the

implemented bin discretization strategy, the stratification score calculation varies. When

splitting on the actual data values, there will be an even distribution of cells in each of

the bins. This means the target stratification will be the same for each bin combination.

However, when splitting on the yield values to create bins, it is likely there will be fewer cells

belonging to lower and higher bins due to the way the data is distributed, as can be seen

in Figure 7.3a. In this case, the number of cells belonging to each bin has to be counted to

determine how many cells each nitrogen rate should have for that specific bin.

Let l denote a specific yield bin, then #cellsl corresponds to the number of cells in the

field that map to a specific bin. We then determine the target stratification as

tstratl = #cellsl/k

149

(a) Equal Width Binning

(b) Equal Sample Binning

Figure 7.3: Example of different bin discretization types using a histogram representation
of the yield values. The vertical red lines indicate bin boundaries using each discretization
type.

150

since our goal is to distribute the fertilizer evenly over exactly k bins. The stratification

score looks for an even distribution of fertilizer rates across cells belonging to the same bins

k:

Fitnessstrat =

∑k
l=1 |tstratl − astratl| −minstrat

maxstrat −minstrat

,

where tstratl is the target stratification and astratl is the actual stratification of the same

bin. The maximum stratification is determined by the worst case scenario, which occurs

when all of the cells in the field have the same fertilizer rate. This is done to determine

how many cells each fertilizer rate should have for that specific bin, since there could be an

uneven number of cells. If there are sixteen cells and three bins, one bin will have 6 cells,

whereas the others will have five. The actual stratification for a yield bin is calculated by

counting the number each fertilizer rate occurs in each of the bins. For example, if we have

45 cells with three fertilizer rates and three total bins, we know the target stratification is

five if each of the bins contains fifteen cells.

However, when creating prescriptions, large jumps in fertilizer rate between consecutive

cells could occur. This puts strain on the farming equipment, increasing wear and tear on the

equipment. In turn, this leads to the farmer having to replace equipment more frequently,

increasing cost and waste, which has negative ecological impacts. To alleviate this issue, we

incorporated a second objective to minimize jump magnitudes in the maps, resulting in a

positive environmental impact, as illustrated in Figure 7.4.

The jump score sums over the absolute difference in fertilizer levels between adjacent

cells determined by an “as-applied” map, which shows how the farmer applied fertilizer to

the field, where each prescription map has c cells:

Fitnessjumps =

∑c−1
i=1 ∆jumpsi
maxjumps

,

where ∆jumpsi = |F (mapi)− F (mapi+1)|, and F (mapi) corresponds to the fertilizer index

151

(a) Example of consecutive cells with large jumps.

(b) Example of consecutive cells with small jumps.

Figure 7.4: Example of four consecutive cells in a field with large and small jumps. The
values are in pounds of fertilizer/acre.

of cell i. If we apply the following rates N = {0, 40, 80, 120}, the fertilizer indeces would

correspond to F (0) = 0, F (40) = 1, F (80) = 2, and F (120) = 3. Each individual jump

score is then normalized to be within a [0,1] range using the worst case scenario where each

consecutive cell goes from the minimum to the maximum fertilizer rate or vice versa (Figure

7.4a). If the unnormalized jump difference ∆jumpsi is less than or equal to 1, it is not added

into the jump score, as this is the most desirable rate change between cells.

To mitigate the effect fertilizer has on the environment, we reduced the overall amount

of fertilizer applied to a field, which served as our third objective when applying the Pareto-

based approach. This should reduce pollution of the atmosphere by limiting greenhouse gas

emissions and can help avoid polluting waterways, which can result in a loss of drinkable

water and the death of aquatic life. The overall fertilizer rate was calculated by summing

all the fertilizer prescribed in each of the cells and dividing by the maximum amount of

fertilizer, maxfert = max(F)× c:

Fitnessfert =
c∑

i=1

F (mapi)/maxfert.

152

7.3.2 Genetic Algorithm and Weighted Sum

With the jump minimization and stratification fitnesses defined, we implemented the

weighted sum method into a vanilla Genetic Algorithm since this was a fairly straightforward

bi-objective problem. We introduced the representation of the prescription map as a

chromosome for the GA. Then, we evaluated how adjusting the weights of the objectives

influences the fitness scores. We also looked at two different mutation approaches, swap and

scramble, to assess their influence on the convergence and diversity trade-off.

7.3.2.1 Experimental Approach We hypothesize that we can apply a genetic algorithm

to generate experiment prescriptions that effectively maintain stratification and minimize

jumps in fertilizer rate application. In this study, we tested this hypothesis by considering a

variety of genetic operators and by examining the effects of these operators on overall fitness

as well as individual impact on stratification and smoothness.

Specifically, we applied a GA to optimize a fertilizer experiment prescription map, which

dictates the fertilizer application rate for each cell on a field. In the case of winter wheat,

we prescribed nitrogen in pounds/acre, and the farmers decided which k nitrogen rates they

wished to apply and how the field was to be subdivided. We used three different farming

fields: Sec35Mid, Davidsonmidwest, and Sre1314. The ultimate goal was to minimize jumps

(Figure 7.4) while maintaining stratification.

For our GA, we used completed prescription maps as individual chromosomes in our

population with each cell in the map as a gene and its corresponding nitrogen rate as the

gene’s allele, where the cells are ordered based on the as-applied map. Each nitrogen rate

maps to an index that was used to calculate the jump score. A bi-objective fitness function

was then applied, taking both jumps and stratification into account. The initial population

consisted of n prescription maps, where each map is a chromosome such that its c cells

are genes in the chromosome. Once the population has been generated and evaluated,

153

Parameter Pop OS CR MR TS

Value 400 40 0.9 0.1 3

Table 7.1: Chosen values for all hyper parameters. The parameters are population (Pop),
offspring created (OS), crossover rate (CR), mutation rate (MR), and tournament size (TS).

tournament selection was performed to identify two parents, choosing a predefined number

of pairs by selecting the best map (lowest fitness score) from a chosen number of individuals

from the current population. For each of these pairs, two-point crossover was performed by

randomly selecting two indices and swapping the cells between these indices to create two

new child prescription maps.

Finally, mutation was applied to the offspring to maintain diversity in the population.

Two mutation operators were considered. Swap mutation chooses two random indices and

switches the values of these two cells, and scramble mutation is performed by selecting all

cells between two randomly chosen cells and performing a random permutation. These new

maps replaced the maps in the original population with the worst fitness score.

There are several parameters that can influence the performance of the GA: the

population size, the number of offspring to create, the number of candidates in tournament

selection, and the crossover and mutation rates. The mutation rate (0.05, 0.10, and 0.15) and

crossover rate (0.90, 0.92, 0.95, 0.98) were tuned simultaneously, where each combination of

the two was tested. Population size (200, 400, and 800), tournament size (2, 3, 5, 10, and

20), and offspring (20, 40, 80, 100) were tuned individually; the best result was used while

tuning the other parameters. After tuning, all experiments were run using a tournament size

of 3. The final values for each of the hyper parameters are shown in Table 7.1.

7.3.2.2 Results In Figures 7.5a and 7.5b the jump and stratification scores give equal

weight to the final fitness score. The plots show that the GA moves towards convergence,

154

which is the desired result. We can also see that using scramble seemed to explore more of

the search space as there was a slightly larger change in the jump and stratification scores

for the population. More importantly, there were much larger changes in variance of the

population across the generations, indicating better diversity while still converging.

When setting the jump score weight to 75%, the results again indicated convergence

for both the scramble and swap mutation methods. It is interesting to note that the

swap mutation seemed to find lower jump scores than scramble. This might indicate that

scrambling changes the maps too much, producing offspring that do not reduce the jump or

stratification score. However, when we look at variance, we can see that scramble has lower

overall variance with this weight scheme as compared to the equally weighted objectives.

This would also explain why convergence is slower, as it would take longer to find better

prescriptions. Swap mutation makes smaller adjustments, thereby possibly providing maps

that better maintain the overall stratification while exploring a minimization in jumps.

In all cases, there is a substantial drop in variance of the fitness scores early on in the

process. The initial variance is small to begin with but becomes almost negligible after a few

generations. However, a clear change in variance is evident when applying scramble mutation.

This indicates that the population fitness becomes very similar early on. Considering the

initial prescriptions are being created with the goal of laying out a randomly stratified

prescription map for nitrogen rates based on yield and protein bins, it makes sense that

there would not be much variance in the overall fitness. Once the jumps start to drop, the

fitness scores would become even more similar. The plots show that the largest drop in jump

score also occurs early in the process, making the drop in variance a logical consequence.

The average total fitness score results for ten runs of the GA are shown in Table 7.2.

A paired T-test was performed to confirm that the scores for scramble and swap mutation

are statistically different from each other for all fields and both binning methods at the

α = 0.05 level. Furthermore, the results show that the fitness scores for swap mutation are

155

(a) Swap mutation using equal weight (w = 0.5).

(b) Scramble mutation using equal weight (w = 0.5).

Figure 7.5: Field “sre 1314” results for 500 generations of the GA with equally weighted
objectives using the two different mutation types and equal sample binning, with tournament
size 3. The left y-axis shows the fitness score values, while the right y-axis details the variance
value.

156

(a) Swap mutation with w = 0.75, emphasizing jump score minimization.

(b) Scramble mutation with w = 0.75, emphasizing jump score minimiza-
tion.

Figure 7.6: Field “sre 1314” results for 500 generations of the GA with a stronger focus
on the jump score using the two different mutation types and equal sample binning, with
tournament size 3. The left y-axis shows the fitness score values, while the right y-axis details
the variance value.

157

Sec35Mid Davidsonmidwest Sre1314

3 20 3 20 3 20

Equal Width
Swap 0.0282 0.0207 0.0493 0.0195 0.0582 0.0578

Scramble 0.0520 0.0401 0.0385 0.0601 0.0627 0.0756

Equal Sample
Swap 0.0342 0.0309 0.0425 0.0213 0.0679 0.0525

Scramble 0.0364 0.0468 0.0489 0.0578 0.0613 0.0744

Table 7.2: Average fitness score of the best maps after ten runs of the GA for scramble and
swap mutation, using equal width and equal sample binning, on three different fields. The
jump weight is set to w = 0.5.

consistently lower, and that the GA achieves a lower fitness score for both discretization

methods.

7.3.3 Experimental Prescription Maps with an Ethical Objective

As a precursor to creating optimal prescription maps, we wanted to expand the

experimental trials to include a fertilizer minimization objective to address the environmental

impact of fertilizer. Having three objectives, the weighted sum method did not provide

sufficient insight into the trade-off between the objectives, and MOFEA was applied.

7.3.3.1 Experimental Approach We pose the following hypothesis: Including an ethical

objective to minimize overall fertilizer rate does not significantly degrade Montana winter

wheat yield. To evaluate our hypothesis we examined the cropping of three different fields

using three MOO-algorithms, which we denote NSGA2, CC-NSGA2, and F-NSGA2 for basic

NSGA2, cooperative coevolutionary NSGA2, and factored NSGA2 respectively.

For our experiments, we collected data on three fields from two farms. We used the

farmer designations for these fields (Henrys, Sec35Mid, and Sec35West). Previously, we

trained a convolutional neural network (CNN) based on prior experiments to predict yield

158

from the wheat harvested on these fields [104, 105]. Because we use this trained CNN

to predict yield and analyse the effects of minimizing fertilizer, we had to use fields for

which we had the appropriate data available; thus the change for two of the fields for

which we are creating experimental prescription maps. We created an initial, random

prescription based on the field boundary. The farmer provided information on the width

of their fertilizer application equipment and which fertilizer rates to apply across the field.

For our experiments, the cell size for Henrys was 300 ft by 450 ft, and the cell size for both

Sec35Mid and Sec35West were 200 ft by 300 ft. For all prescriptions, 6 different fertilizer

rates were specified in pounds per acre: F = {20, 40, 60, 80, 100, 120}. Once the initial grid

was created, the cells were ordered based on the “as-applied” route the farmer takes across

the field to apply fertilizer.

In order to limit runtime and reduce parameter tuning, each of the algorithms was set

to terminate after the non-dominated archive did not change for five iterations. Mutation

rate, using swap mutation, and crossover rate were set to 0.1 and 0.9 respectively, based

on results in the original experimental prescription design paper [113]. The parents for

crossover were selected using tournament selection with tournament size 5. The remaining

parameters are the population sizes for all three algorithms and the number of iterations

NSGA2 needs to be run on the subpopulations for F-NSGA2 and CC-NSGA2. To determine

these parameter settings, a grid search was performed. Four different population sizes were

considered, {100, 200, 500, 800}, and three different iteration limits, {50, 100, 200}. Based on

the results of the grid search, a population size of 500 was chosen for all algorithms, and an

iteration limit of 100 was chosen for both CC-NSGA2 and F-NSGA2.

The factor architecture for F-NSGA2 was determined using a linear grouping approach,

where each group/factor has a size of 10 cells with 5 overlapping cells [138]. For CC-NSGA2,

where the subpopulations do not overlap, the factors were determined based on the length

of a single strip, i.e., one group includes the cells from one side of the field to the opposite

159

side where the applicator has to turn around, which is a common approach used by farmers

today.

Pareto Front Evaluation The used evaluation metrics are the hypervolume indicator

(HV), the spread indicator (S), and the coverage (C) of the fronts. We chose four different

non-dominated solutions from the approximate Pareto Front created by each algorithm for

each field. These solutions are based on the three extreme points in the Pareto Optimal

set: minimum jump score, maximum stratification score, and minimum fertilizer rate. The

centroid for these three solutions, xc, was found as follows, where k represents the objectives:

xj
c =

1

3

3∑
i=1

xj
i , ∀j ∈ k (7.1)

The non-dominated solution closest to this centroid (based on the Euclidean distance), is

used as the fourth solution.

The four prescriptions were processed by a trained, lean Convolutional Neural Network

(CNN) known as Hyper3DNetReg [104]. The CNN was built using field-specific data

from 2016-2020. This data includes satellite images, elevation, applied fertilizer rates, and

historical yield data. The CNN returned a yield prediction based on the experimental

prescription map. Based on this prediction, we assessed whether yield varied significantly

across the different non-dominated solutions. To do this, we fit a linear model to the yield

points for the three different factor variables: algorithm, field, and objective. An ANOVA

was then applied to the resulting linear model [53].

7.3.3.2 Results Applying the ANOVA test to the yield results, we found that there

were significant differences (α = 5%) between yield predicted for each of the fields, as well as

the different algorithms for each field. However, no significant difference was found between

the results for different objectives, confirming our hypothesis that ethical objectives do not

impact yield. In this section we present and discuss these results.

160

Figure 7.7: Yield prediction results averaged across the entire field based on the four different
prescription maps, each focusing on different objectives. The results are connected to show
how they are positioned relative to each other.

For each field, the yield predictions for a specific prescription were averaged to create

Figure 7.7. A summary for each field of the HV and S for each algorithm’s non-dominated

sets averaged over ten runs are given in Table 7.3. We also include the union front in these

results (X∗), which combines the non-dominated solution sets from the different algorithms

into a single non-dominated solution set. Finally, the coverage results are presented in

Tables 7.4 and 7.5 using a randomly selected run for each algorithm as to avoid bias. Table

7.4 indicates the percentage that the row algorithm covers the column on the given field.

Coverage in relation to the union front is presented in Table 7.5, where the non-dominated

sets found by the algorithms (X′) were compared to X∗, using the adjusted coverage (AC)

metric.

7.3.3.3 Discussion The prescription maps across all three algorithms, as well as the

union front, produced consistent yield predictions with small fluctuations between the

different objectives, as can be seen in Figure 7.7. The statistical results confirmed what can

be assessed visually in these plots: there is no significant difference between the predicted

yield values across the different objectives, including those for the union front. When looking

at coverage between algorithms (Table 7.4), we can see that F-NSGA2 has the highest

161

Henrys Sec35Mid Sec35West

NSGA2
HV 0.463 0.465 0.469

Spread 694.405 794.552 637.886

CC-NSGA2
HV 0.387 0.397 0.396

Spread 574.451 610.866 551.742

F-NSGA2
HV 0.498 0.504 0.474

Spread 719.386 834.015 747.126

(X∗)
HV 0.589 0.593 0.578

Spread 767.594 934.452 791.959

Table 7.3: Hypervolume (HV) and spread (S) results for the final non-dominated set found
by each algorithm, as well as for the union front (X∗), where all three solution sets are
combined and evaluated for non-domination. All results were found to be statistically
significantly different based on the Kruskal-Wallis and Wilcoxon rank sum tests with
α = 0.005, with the exception of the S results for NSGA2 and F-NSGA2 for Henrys and
Sec35Mid.

coverage for all but one case (for Sec35West classic NSGA2 covers more of F-NSGA2).

This indicates that the non-dominated solutions found by F-NSGA2 dominate most of the

solutions found by the other algorithms. The union front coverage results confirm that F-

NSGA2 seems to cover more non-dominated solutions in the objective space than the other

algorithms (Table 7.5), since it contributed the largest percentage of solutions to the union

front. NSGA2 also made large contributions to the union front, while CC-NSGA2 had the

smallest contribution for all results sets. This could potentially be explained by the use of

disjoint subpopulations in CCEA, since its disjoint nature means that a part of the solution

space may be left unexplored. On the other hand, FEA uses the overlap to find more diverse

solutions across the subpopulations, not only by saving a non-dominated solution from each

subpopulation, but through the replacement of single variables in the global solution as well.

The HV and S results (Table 7.3) further confirm our hypothesis that F-NSGA2

162

NSGA2 CC-NSGA2 F-NSGA2

NSGA2

Henrys N/A 0.956 0.823

Sec35Mid N/A 0.979 0.937

Sec35West N/A 0.863 0.924

CC-NSGA2

Henrys 0.614 N/A 0.371

Sec35Mid 0.989 N/A 0.292

Sec35West 0.943 N/A 0.678

F-NSGA2

Henrys 0.959 0.951 N/A

Sec35Mid 1.000 1.000 N/A

Sec35West 0.857 0.778 N/A

Table 7.4: Coverage C(row, column) for the three algorithms for each of the fields, where
the algorithm indicated on the left is measured with respect to how much it “covers” the
algorithms across the top. Bold text indicates which algorithm had the most coverage in
the pairwise comparison.

Henrys Sec35Mid Sec35West

NSGA2 38.9% 30.2% 27.7%

CC-NSGA2 11.3% 9.5% 26.2%

F-NSGA2 49.8% 60.3% 46.1%

Table 7.5: Adjusted coverage results, where each algorithm’s non-dominated set is compared
to the union front.

explores more of the objective space. Across all fields, F-NSGA2 had the largest S and HV

for its approximate Pareto front. According to a Wilcoxon Rank Sum test with p = 0.05, the

HV results were found to be significantly different for all three fields; however, no significant

difference was found for the S results for Henrys and Sec35Mid between F-NSGA2 and

NSGA2. When comparing the algorithms’ results to the union front, we see that the union

front HV and S is not much larger than those found by F-NSGA2, which is in line with the

163

Henrys Sec35Mid Sec35West

NSGA CCEA FEA NSGA CCEA FEA NSGA CCEA FEA

Fert. 9248.75 9815.00 9777.25 10634.62 10087.69 10026.92 8616.90 8129.86 8504.51

Jump 10532.25 10419.00 10305.75 10908.08 10573.85 10482.69 9253.80 8504.51 9141.41

Strat. 10343.5 10343.50 10003.75 10847.31 10421.92 10847.31 9253.80 9141.41 8991.55

Center 10079.25 10494.50 10154.75 10756.15 10786.54 10330.77 9253.80 8392.11 8616.90

Table 7.6: Estimated total applied fertilizer across the field for each prescription type in
pounds of nitrogen.

aforementioned coverage results.

Lastly, we evaluated the practical implication of the difference in applied fertilizer.

The total amount of nitrogen prescribed based on the different prescription maps generated

can be seen in Table 7.6. On average this resulted in a five percent reduction of fertilizer

application across the fields regardless of which prescription is compared to the minimized

fertilizer rate. However, some prescriptions apply over ten percent more fertilizer than the

minimized fertilizer rate prescription. These amounts will not have a large impact on a

field’s yield, as shown in the yield prediction results, but they could make a difference to the

environment by reducing the amount of fertilizer that goes into the water streams, thereby

positively impacting pollution [133]. This shows that adding ethical objectives and solving

the newly constructed, multi-objective problem using an MOEA is a feasible computational

approach to address ethical concerns.

7.4 Optimal Prescription Maps

Optimal prescription maps specify fertilizer rates to apply based on crop response and

economic models to maximize expected net return. These maps depend upon the ability

to predict yield based on the prescribed inputs, general field information, and satellite data

164

such as the normalized difference vegetation index (NDVI). The classic way to approach

yield prediction is to use linear regression or quadratic plateau regression [110]; however,

this approach is limited in its ability to represent the yield response curves. As a result,

machine learning approaches such as Random Forests [72] and Deep Learning [151] have

become more popular. We use these models to predict the yield and use the result to

determine the expected net return. The net return is then used as one of the objective

functions in the multi-objective optimization process.

7.4.1 Optimal Prescription Objective Functions

The optimal prescriptions optimize for the following three objectives:

1. Minimize jumps in consecutive cells

2. Maximize net return

3. Minimize overall fertilizer rate

The jump and fertilizer minimization objectives carry over from the experimental maps, but

we are now trying to maximize net return instead of stratification. Since we are dealing with

a continuous optimization problem when creating optimal prescription maps, the jump score

calculation is adjusted to take the sum of the difference in rates of all consecutive cells:

Fitnjumps =
c−1∑
i=1

|F (mapi)− F (mapi+1)|,

where F (mapi) is the fertilizer rate for the ith cell on the field. The jump score now sums

over the absolute difference in applied fertilizer between adjacent cells determined by an

“as-applied” map.

We use the following definition to maximize net return (NR):

NR = Y × P − AA× CA− FC, (7.2)

165

where Y is the expected crop yield, obtained through a predictive model, P is the crop

selling price, AA is the “as-applied” fertilizer rate, CA is the fertilizer cost, and FC reflects

any fixed costs associated with production. As previously mentioned, the expected yield

is predicted using a machine learning model. We train this model using the original data

points, where we use the most recent yield as the label to predict. Each of the original

data points has an “as-applied” fertilizer rate; for our optimization model, we adjust this

rate to be the fertilizer rate we are prescribing for the cell each data point belongs to. We

process adjusted data points with the predictive model to obtain yield predictions for our

prescription map. We calculate the total expected yield (bushels per acre) and input that

number into Equation 7.2. We used 2022 economic data provided by the US Department of

Agriculture to determine crop price and fertilizer cost [148].

7.4.2 Yield Prediction Dataset Reduction

When integrating predictive machine learning models into the optimization process,

we found that the process was computationally expensive when predicting yield for every

point on the field. To help reduce the time cost of the optimization process, we wanted

to reduce the number of points for which to make predictions, i.e., the number of points

being processed by the trained predictive model (the “adjusted data points” in Figure 7.8).

To this end, we set up an experiment comparing predictions using different data reduction

methods to predictions using the full dataset for two fields: Sec35Mid and Henrys. We use

the aforementioned Hyper3DNet CNN for the predictions [104].

7.4.2.1 Dataset Reduction Approaches We used three different approaches to reduce

the data set: random sampling, spatial sampling, and aggregation. The first two approaches

select a subset of data points from each cell in the field to make predictions for, while the

aggregation approach averages the information of all the data points per cell. An example

of each case is shown in Figure 7.9. We have a field with 16 cells and 63 data points, where

166

Figure 7.8: Yield prediction data flow. The original data points are used to train a predictive
machine learning model. We can then use the trained model to predict yield by sending
through adjusted data points.

each cell has two to five data points. For random sampling, we randomly select k data points

from each cell. In our experiments, k is determined based on the number of data points in a

cell; we select 10% of the total number of data points. In the example in Figure 7.9, we select

one or two random data points per cell. Spatial sampling divides a cell into l equally sized

sections and selects a point from each of these sections, ensuring we get data from different

parts of each cell. Figure 7.9 shows each cell being split in half, and a point is selected from

each of these halves. Lastly, the aggregate method does not select subset of data points,

rather, it creates a “new” data point by averaging the data of all the points.

7.4.2.2 Results First, we calculated the total yield for each field based on the predictions

made by the CNN. For the full data set, random sampling, and spatial sampling, we do this

by averaging the predicted yield for the data points in a cell to get a single yield prediction

for said cell. We used each cell’s yield prediction, in bushels per acre, to calculate the number

of bushels of wheat predicted for each cell and sum these predictions to get the total number

of bushels predicted for each field (Figure 7.10).

Second, we showed the difference in predicted bushels for the datapoint reduction

approaches and the full solution set. Figure 7.11c shows the difference for the full field

167

Figure 7.9: The three different types of sampling approaches.

predictions (as presented in Figure 7.10). To give us a more fine grained view of the

differences in predicted values, we also report the average of the per cell difference for the

different approaches in Figure 7.12. For each cell, we calculated the difference between the

prediction made using the full dataset and the reduced dataset, and then we averaged these

differences.

7.4.2.3 Discussion Overall, the predictions are similar across the sampling methods,

with no significant difference in yield predictions according to the student T-test with

α = 0.05. Interestingly, spatial sampling had the largest difference from the full data set

prediction for both fields. Random sampling had the smallest difference per cell for Henrys

and the smallest difference on the full field for Sec35Mid. The reverse is true for aggregate

sampling, where Sec35Mid had the smallest difference per cell and Henrys had the smallest

168

(a) Field Sec35Mid.

(b) Field Henrys.

Figure 7.10: Total yield prediction results for the entire fields using the different methods.

full field difference. These results appear counter-intuitive; it would make more sense that

spatial sampling would have the best results given the amount of spatial variety on a field

[61].

169

(a) Field Sec35Mid.

(b) Field Henrys.

(c) Difference in predicted yield for the entire field as compared to the full field prediction.

7.4.3 Optimal Prescriptions with Ethical Objectives

In this section, we present our results for the creation of optimal prescription maps

including the aforementioned ethical objectives. We show results for fields Sec35Mid (shown

in Figure 7.2) and Henrys.

170

(a) Field Sec35Mid.

(b) Field Henrys.

Figure 7.12: Average of the difference in predicted yield per cell.

7.4.3.1 Experimental Approach Mutation rate and crossover rate were set to 0.1 and

0.9 respectively. Swap mutation was used, and the parents for crossover were selected using

tournament selection with tournament size 5. The remaining parameters are the population

sizes for all three algorithms and the number of iterations NSGA2 needs to be run on the

subpopulations for F-NSGA2 and CC-NSGA2. For these experiments, our stopping criterion

171

is the number of fitness evaluations. This approach led to an increase in runtime; however,

since farmers are not yet able to create their own optimal prescription maps, we can generate

these maps beforehand, negating the need for a reduced runtime. To achieve this, we set the

number of generations and population size such that each algorithm has approximately the

same number of function evaluations (FEs). For NSGA2, this resulted in setting a population

size of 500 and running the algorithm for 500 iterations, yielding 500× 500 = 250, 000 FEs.

Our instance of CC-NSGA2 has 24 groups, resulting in CC-NSGA2 being run 10 times where

each subpopulation is of size 50, and NSGA2 is run for 20 generations on each subpopulation:

10× 20× 50× 25 = 250, 000. We used the same logic for F-NSGA2, where population size

is decreased to 25 to accommodate the increase in the number of subpopulations. We used

a Random Forest (RF)[72] and a CNN called Hyper3DNet [104] as regression models to

predict yield. Based on the results in the previous section, we used aggregate sampling for

Sec35Mid and random sampling for Henrys to reduce the data set for yield predictions.

7.4.3.2 Results For each algorithm combination (MOEA and prediction), we chose four

different non-dominated solutions from the approximate Pareto Front. These solutions were

based on the three extreme points in the Pareto Optimal set: minimum jump score, minimum

fertilizer rate, and maximum net return. The centroid for these three solutions, xc, was found

using Equation 7.1, which represents the “center” solution. We also combined the non-

dominated solution sets into a union front (re-evaluating non-dominance) and selected the

same four solutions from this union front. We present the Net Return results for these optimal

prescription solutions in Figures 7.13 and 7.14. Since we are minimizing the objectives,

the net return sign has been flipped to go from maximization to minimization. Therefore,

solutions that fall lower on the y-axis are better in terms of net return.

We wanted to investigate the difference in NR as compared to the experimental

prescription maps, so we used the CNN yield predictions for those experimental maps and

172

(a) Yield predictions using a RF. (b) Yield predictions using a CNN.

Figure 7.13: Net return for the four different prescription maps for field Sec35Mid.

(a) Yield predictions using a RF. (b) Yield predictions using a CNN.

Figure 7.14: Net return for the four different prescription maps for field Henrys.

plugged them into our NR calculation. This resulted in the predicted NR for fields Sec35Mid

and Henrys shown in Table 7.7.

To evaluate algorithm performance, we report the HV , S, and adjusted coverage (AC)

results in Tables 7.8 and 7.9. Since the yield predictions influence the net return calculation,

we note that we cannot compare algorithm results across the predictive methods. We can

only compare the algorithms using the same predictive method.

173

Sec35Mid Henrys

NSGA2 CCNSGA2 FNSGA2 NSGA2 CCNSGA2 FNSGA2

Fert 31744 31291 31144 45419 43884 44655

Jump 31681 31024 31269 45468 44033 45036

Strat 31549 31023 31784 45531 42757 43924

Center 31723 31607 31226 45557 44073 44651

Table 7.7: Predicted Net Return in USD ($) based on the yield predicted by the CNN for
the different types of experimental prescription maps.

HV S AC

RF

NSGA2 13453.96±206.73 554.02±171.35 85%

CCNSGA2 9725.35±489.44 281.01±137.28 0%

FNSGA2 13911.25±104.81 425.20±111.53 15%

CNN

NSGA2 15877.03±424.21 605.87±205.33 75%

CCNSGA2 11341.00±151.34 489.19±198.67 0%

FNSGA2 18474.29±1558.07 268.21±205.49 25%

Table 7.8: Optimal prescriptions: Hypervolume (HV), spread (S), and adjusted coverage
(AC) results for each algorithm on field Sec35Mid.

Lastly, we present an estimate of the total pounds of nitrogen fertilizer to be applied to

the field for the different prescription in Tables 7.10 and 7.11. This gives us an idea of the

difference in fertilizer depending on the optimized objective.

7.4.3.3 Discussion Applying an ANOVA test to the net return results for the different

types of prescription maps confirms that there is no significant difference in net return for any

of the results. When we visually inspect the net return values in Figures 7.13 and 7.14, we

174

HV S AC

RF

NSGA2 2185.43±83.05 412.54±157.49 75%

CCNSGA2 1313.48±86.61 175.35±65.33 0%

FNSGA2 3977.77±272.01 335.85±255.14 25%

CNN

NSGA2 36911.82±543.38 1162.03±297.84 85%

CCNSGA2 27866.85±251.34 726.19±108.70 0%

FNSGA2 40676.59±367.49 1540.85±371.14 15%

Table 7.9: Optimal prescriptions: Hypervolume (HV), spread (S), and adjusted coverage
(AC) results for each algorithm on field Henrys.

RF CNN

NSGA2 CCNSGA2 FNSGA2 NSGA2 CCNSGA2 FNSGA2

Fert 9917 10539 8417 10001 10419 6746

Jump 10683 11898 9438 10278 11491 6746

NR 9917 10539 8417 10001 10482 6777

Center 10209 10754 8731 10014 11062 6746

Table 7.10: Estimated applied fertilizer across the field for each prescription type for field
Sec35Mid using a Random Forest (RF) and Convolutional Neural Network (CNN) for yield
predictions.

can confirm that the difference in net return when focusing on different objectives is minimal

for each algorithm. The largest difference in net return is approximately $2,000. We would

like to note that currently the net return calculation does not include the cost of wear on

equipment. If farmers could gather data on how large jump rates impact them economically,

we could refine our net return calculation. When we compare the optimized NR values to the

NR found for the experimental maps, it is interesting that F-NSGA2 is the only approach

175

RF CNN

NSGA2 CCNSGA2 FNSGA2 NSGA2 CCNSGA2 FNSGA2

Fert 18339 18835 14725 17721 18477 14661

Jump 19118 19649 16095 18898 18703 15956

NR 18339 18835 14725 17915 18624 14661

Center 18590 19011 14806 18074 18645 15083

Table 7.11: Estimated applied fertilizer across the field for each prescription type for field
Henrys using a Random Forest (RF) and Convolutional Neural Network (CNN) for yield
predictions..

that finds a better net return for the optimal maps for Sec35Mid. Furthermore, the actual

difference in NR is not very big. The same does not hold true for Henrys, where there is a

difference of over $ 20, 000 when optimizing NR regardless of the optimization method used.

When evaluating the algorithms’ performance, we find significant differences for the S

and HV results per a Wilcoxon Rank Sum test with p = 0.05 (Tables 7.8 and 7.9). We see

that F-NSGA2 has a higher HV than NSGA2, but F-NSGA2 has large variance when using

the CNN as the predictive algorithm. We believe this could be due to the use of FE’s as a

stopping criterion. In [44], results indicate that using FE’s may result in an unfair stopping

condition. Based on our results, we believe F-NSGA2 did not have enough FE’s to converge.

This could also explain the S results for the algorithms. All the solution sets have large S

variance, which indicates that different runs explore different parts of the search space, i.e.,

there is no clear convergence toward the same Pareto optimal solutions.

NSGA2 covers most of the union front, and F-NSGA2 contributes the remainder of

the non-dominated solutions. However, F-NSGA2 finds solutions with a higher net return,

where the solutions found by F-NSGA2 dominate those found by CC-NSGA2. Overall, CC-

NSGA2 has the poorest performance out of the three approaches. When we look at the plots

176

in Figures 7.13 and 7.14, this can be visually confirmed; we see that F-NSGA2 found the

highest net return values regardless of the implemented prediction algorithm. Considering

one of the main concerns for farmers is profit, single population NSGA2 may not be the best

choice, since all its solutions had a lower net return than those found by F-NSGA2.

The estimated applied fertilizer for the optimal prescriptions for Sec35Mid (Table

7.10) was similar to that for the experimental prescriptions, albeit slightly higher (Table

7.6). However, the estimated applied fertilizer for Henrys is higher by several thousands

of pounds (7.11). We can once again see that when focusing on minimizing fertilizer rate,

the amount of nitrogen applied is reduced by hundreds of pounds. This confirms that a

multi-objective approach can indeed be beneficial to find solutions that have environmental

benefit. Furthermore, the F-NSGA2 approach consistently found solutions with the highest

net return and the lowest fertilizer application, indicating that F-NSGA2 explores relevant

areas of the objective space. Lastly, we notice that the CNN generally predicts a higher net

return with less fertilizer applied. This is especially apparent for field Henrys, where the

CNN predicts a NR that is ten times larger than that predicted by the RF. It would be

beneficial to do a more in-depth study on the effects of different predictive algorithms on

the optimization process to discover if this is a result of the predictions or the optimization

process.

7.5 Concluding Remarks

Multi-Objective Optimization provides a way for sustainability issues to be addressed

when optimizing fertilizer prescriptions in precision agriculture. In this research, we

investigated adding two sustainability-focused objectives to existing precision agriculture

problems, that of creating experimental and optimal fertilizer prescription maps. For both

problems three competing objectives were optimized: the base objective, stratification and

net return maximization respectively, and two sustainability objectives, fertilizer rate jump

177

minimization and overall fertilizer rate minimization. We applied three different MOO

algorithms, NSGA2, CC-NSGA2, and F-NSGA2, of which the latter is an adaptation of

the Factored Evolutionary Algorithm in which overlapping subpopulations are used to find

an approximate Pareto front. We found that all three MOO algorithms could find optimized

prescription maps successfully, and that including these sustainability objectives had minimal

impact on yield and net return. Based on these results, we confirmed our hypothesis

that focusing on sustainability need not significantly influence net return, thus indicating a

strong justification for modifying farming practices to incorporate such objectives, thereby

reducing environmental impact. Furthermore, our results indicated that using overlapping

subpopulations increases exploration of the objective space when compared to the single

population and disjoint subpopulation alternatives.

178

CHAPTER EIGHT

CONCLUSION

For our concluding remarks, we summarize the contributions of the dissertation and

identify directions for future work.

8.1 Contributions

In this dissertation, we introduced the Multi-Objective Factored Evolutionary Al-

gorithm (MOFEA) to solve Multi-Objective Optimization (MOO) problems, explored

properties of variables grouping for both Large Scale Optimization (LSO) and Large Scale

Multi- and Many-Objective Optimization, and introduced Objective Archive Management

(OAM) for solution set reduction. We also showed how MOO can be used to address

environmental concerns in the field of Precision Agriculture.

Chapter 2 introduced fundamental concepts to provide the reader with the necessary

tools to understand the work presented in this dissertation. We then presented MOFEA in

Chapter 3. MOFEA is an extension of FEA to the multi-objective case. In all previous MOO

variable grouping research, only CCEA, which uses disjoint subpopulations, has been applied

to MOEA’s. MOFEA adds the use of overlapping subpopulations; the overlapping groups are

able to account for indirect variable interactions when providing an overlapping architecture

without pre-defining variable interacting groups, which is a significant contribution to the

field of MOO. While MOFEA allows for overlapping subpopulations, we explained how the

framework also works with disjoint subpopulations. Furthermore, we applied MOFEA to

three well known MOEAs: NSGA2, SPEA2, and MOEA/D, to demonstrate its general

applicability. We first applied MOFEA to NSGA2 and run an empirical analysis on the

multi-objective knapsack (MO-KS) problem. We introduced a novel, more complex version

179

of MOKS. While the classic MOKS optimizes separate knapsacks as separate objectives, we

proposed optimizing a single knapsack that maximizes value, minimizes weight, volume, and

the difference in weight/volume of the items in the knapsack. We found that this problem

is more difficult to solve, thus providing the field of MOO with a new, many-objective

combinatorial benchmark problem with 3, 4, or 5 objectives. F-NSGA2 outperformed regular

NSGA2 and CC-NSGA2 on all version of the MOKS.

In Chapters 4 and 5, we dove deeper into variable decomposition by performing

an empirical analysis on LSO and Large-Scale Multi- and Many-Objective Optimization.

For our single population experiments, we extended Differential Grouping (DG) to create

Overlapping DG (ODG), and we created a tree-based grouping approach that generates a

connected architecture through overlap. In our LSO experiments, we confirmed the benefits

of overlapping groups [14, 138]. The results also indicated that variable interaction learning

may not be necessary, since the connected architecture created by the Tree-based approach

provided high quality results. We affirmed these results in our MOO and MaOO experiments.

We applied the MOFEA framework to NSGA2, SPEA2, and MOEA/D, each with disjoint

and overlapping subpopulations. We found that overlapping linear and random grouping

improve results (compared to disjoint and single population implementations) even though

no variable interaction learning is performed. These variable grouping experiments are the

first empirical results comparing the three most commonly used grouping strategies for

both the disjoint and overlapping case. Furthermore, we are the first to draw connections

between different function characteristics and the different grouping strategies, providing

valuable insights to the field of MOO and MaOO. Previous research had only investigated the

importance of variable interaction learning for partially non-separable problems. Through

the use of connected overlapping architectures, we show that variable interaction learning

may not be as important as was previously believed. Moreover, we applied DG along the

different objectives of a single MOO function, as presented in [85]. Li et al. showed that the

180

DTLZ benchmarks consist of non-separable variable groups along the objectives but noted

that no good approach had been developed to address these overlapping groups. MOFEA

offers a solution to this problem.

The MOO variable grouping research led us to consider ways of reducing large solution

sets in many-objective optimization, which is the focus of Chapter 6. Inspired by the idea of

overlapping subpopulations, we created the Objective Archive Management (OAM) strategy,

a new solution set reduction strategy. Existing solution set reduction strategies either

require MOO specific knowledge to select the appropriate environmental selection operator

to reduce the solution set [142], or the use of expensive hypervolume calculations [131] which

becomes more difficult as the objectives increase. Our algorithm offers a different approach

without these limitations, thus providing MaOO research with a new, easy to use solution set

reduction strategy. We find that our approach selected solutions that strike a good balance

between the different objectives. Furthermore, we used radar graphs to visualize MaOO

solutions; providing a way for humans to visually assess the found non-dominated solutions.

Finally, we applied MOFEA to the real world problem of creating experimental and

optimal fertilizer prescription maps. We showed that multi-objective optimization can

be used to incorporated environmental objectives. In this specific case, we aimed to

maximize net return for farmers; however, excessive fertilizer application can have negative

environmental impacts, so we wished to minimize the overall fertilizer to be applied.

Additionally, the farmers we work with wanted to reduce strain on their farming equipment

by not having large jumps in fertilizer between consecutive cells on a field. This resulted

in three competing objectives to be optimized, making MOEA’s a natural choice to solve

this problem. Through empirical analysis using NSGA2, CC-NSGA2, and F-NSGA2,

we find that each algorithm successfully reduces the amount of fertilizer applied without

significantly impacting net return. This shows that MOO can be a useful tool in addressing

environmental and sustainability concerns. Previously, ethical concerns were not being

181

addressed throughout the optimization process directly, our research is the first to show

that such an integration is possible as well as beneficial.

8.2 Future Work

As shown in our MOFEA experiments, the hypervolume results leave room for

improvement. Currently we select a non-dominated solution from each of the subpopulations

based on the selection criterion the base algorithm uses to tie-break when filling out the

population for the next generation. However, we would like to explore adding a second

diversity-based selection criterion for a more guided way of picking a representative solution.

For example, we could sort based on the crowding distance for all base-algorithms and not

just NSGA2. This would mean that two different sorting mechanisms are employed. We

can then either select the “best” solution for each criterion, or we can find the overall best

given both. We expect that adding a diversity-based selection procedure to choose the non-

dominated solutions from the subpopulations will further improve hypervolume results. We

would also like to investigate effective parallelization of MOFEA to help improve efficiency

of the algorithm.

In terms of variable grouping, we have mostly looked at the difference between disjoint

and overlapping subpopulations, and the effects of variable learning versus a connected

architecture. However, it would be interesting to consider the impact of the amount of

overlap and the size of individual factors on optimization performance. Our LSO results

may indicate improved performance on smaller group sizes due to the success of CPSO-S.

Limited hyperparameter tuning was performed in order to maintain consistency across the

experiments, so further tuning to improve performance of the individual methods would be

beneficial for both the LSO and MOO experiments.

In our research, we proposed some new decomposition strategies to create overlapping

groups; however, there are several other decomposition strategies that can be created. We

182

would like to look at expanding some of the proposed methods as well as exploring other

existing methods. For example, in the MOO experiments, we find that DG performs well

from an optimization perspective but consumes large amounts of memory and CPU. It

would be beneficial to look at combining some of the smaller groups created by DG along

the objectives to reduce the number of groups generated as well as overlap size. Alternatively,

the graph-based approach by Cao et al. could be extended to create overlapping groups.

Additionally, because of the increased flexibility introduced by the overlap, we can imagine

many methods that better consider the function landscape and can lead to increased

performance. For example, by employing a hierarchical decomposition strategy based on

local variable interactions across the function’s domain.

The aforementioned methods mostly focus on continuous optimization. Another

interesting research direction would be looking at ways to perform variable decomposition for

combinatorial optimization. We show that overlap allows for objective-wise decomposition

with DG, but we have not yet explored how to apply this idea to combinatorial problems. For

the knapsack problem, we could sort variables based on their value, weight, and volume and

use an aggregation function to group items based on each of these characteristics, hopefully

resulting in different groups for each characteristic thus creating overlap.

Our proposed OAM strategy was shown to work well to reduce solution sets to a more

manageable size; however, we did not explore the use of OAM as an external archive to re-

inject solutions into the next generation. We believe that such solution injection could help

improve MaOO algorithm performance in higher objective spaces. Furthermore, we only

applied the external archive management strategy to NSGA2, and the single run OAM to

NSGA2 and NSGA3. In future work, we would like to investigate how the reduced solution

sets change depending on the MOEA used. Lastly, we would like to ensure the return of a

non-empty solution set by including an archive weighting strategy. If OAM’s overlap does

not select any solutions, the solution(s) with the highest weighted archive score would be

183

returned.

For the PA research, we plan to investigate adding temporal objectives, such as

minimizing variation in net return across several years, and including the impact climate

change might have on crop response [83]. Another goal is to investigate the effect of different

yield prediction approaches when creating optimized prescription maps. In other words, how

much influence does accurate yield prediction have on prescribing the correct fertilizer rate?

Or is it more important to use a model that accurately describes the shape of the yield

response curve? We are currently also looking at how to incorporate experimental rates

into the optimal prescription maps. There are two main questions we are trying to address:

which cells should be used to apply experimental rates to, and what fertilizer rates should

be applied?

Lastly, as a general note for population-based algorithmic research, Engelbrecht shows

that using function evaluations as a stopping criterion could impact results in an unfair

way [44]. To this end, it would be useful to explore different ways to evaluate how long

an algorithm should run. Alternative stopping criteria include the amount of change in

the non-dominated archive, a lack of change in hypervolume or other evaluation metrics, or

convergence of the non-dominated solutions’ fitnesses.

184

REFERENCES CITED

185

[1] MOP Evolutionary Algorithm Approaches, pages 61–130. Springer US, Boston, MA,
2007.

[2] Hussein A Abbass, Ruhul Sarker, and Charles Newton. PDE: a pareto-frontier
differential evolution approach for multi-objective optimization problems. In IEEE
Congress on Evolutionary Computation (CEC), pages 971–978, 2001.

[3] Salem F. Adra and Peter J. Fleming. A diversity management operator for evolutionary
many-objective optimisation. In Evolutionary Multi-Criterion Optimization, page
81–94. Springer, 2009.

[4] Johannes Bader and Eckart Zitzler. HypE: An algorithm for fast hypervolume-based
many-objective optimization. Evolutionary Computation, 19(1):45–76, 2011.

[5] Reza Behmanesh, Iman Rahimi, and Amir H. Gandomi. Evolutionary many-objective
algorithms for combinatorial optimization problems: A comparative study. Archives
of Computational Methods in Engineering, 28:673–688, Mar 2021.

[6] Julian Blank and Kalyanmoy Deb. Pymoo: Multi-objective optimization in python.
IEEE Access, 8, 2020.

[7] Aymeric Blot, Marie-Éléonore Kessaci, and Laetitia Jourdan. Survey and unification
of local search techniques in metaheuristics for multi-objective combinatorial optimi-
sation. Journal of Heuristics, 24(6):853–877, Dec 2018.

[8] R. Bongiovanni and J. Lowenberg-Deboer. Precision Agriculture and Sustainability.
Precision Agriculture, 5(4):359–387, August 2004.

[9] Karl Bringmann and Tobias Friedrich. Approximation quality of the hypervolume
indicator. Artificial Intelligence, 195:265–290, Feb 2013.

[10] Andre Britto and Aurora Pozo. Using reference points to update the archive of MOPSO
algorithms in many-objective optimization. Neurocomputing, 127:78–87, 2014.

[11] Dimo Brockhoff, Tobias Friedrich, and Frank Neumann. Analyzing hypervolume
indicator based algorithms. In International Conference on Parallel Problem Solving
from Nature, page 651–660. Springer, 2008.

[12] Dimo Brockhoff and Eckart Zitzler. Improving hypervolume-based multiobjective
evolutionary algorithms by using objective reduction methods. In IEEE Congress
on Evolutionary Computation (CEC), pages 2086–2093, 2007.

[13] David S Bullock, Maria Boerngen, Haiying Tao, Bruce Maxwell, Joe D Luck, Luciano
Shiratsuchi, Laila Puntel, and Nicolas F Martin. The data-intensive farm management
project: Changing agronomic research through on-farm precision experimentation.
Agronomy Journal, 111(6):2736–2746, 2019.

186

[14] Stephyn G. W. Butcher, Shane Strasser, Jenna Hoole, Benjamin Demeo, and John W.
Sheppard. Relaxing consensus in distributed factored evolutionary algorithms. In ACM
Genetic and Evolutionary Computation Conference (GECCO), pages 5–12, July 2016.

[15] Stephyn G.W. Butcher, John W. Sheppard, and Shane Strasser. Pareto improving
selection of the global best in particle swarm optimization. In IEEE Congress on
Evolutionary Computation (CEC), pages 1–8, 2018.

[16] Lei Cai, Shiru Qu, and Guojian Cheng. Two-archive method for aggregation-based
many-objective optimization. Information Sciences, 422:305–317, 2018.

[17] Bin Cao, Jianwei Zhao, Yu Gu, Yingbiao Ling, and Xiaoliang Ma. Applying graph-
based differential grouping for multiobjective large-scale optimization. Swarm and
Evolutionary Computation, 53:100626, 2020.

[18] Fabio Caraffini, Ferrante Neri, and Lorenzo Picinali. An analysis on separability for
memetic computing automatic design. Information Sciences, 265:1–22, 2014.

[19] Matheus Carvalho and André Britto. Influence of reference points on a many-objective
optimization algorithm. In 7th Brazilian Conference on Intelligent Systems (BRACIS),
pages 31–36, 2018.

[20] Wenxiang Chen and Ke Tang. Impact of problem decomposition on cooperative
coevolution. In IEEE Congress on Evolutionary Computation (CEC), pages 733–740,
2013.

[21] Wenxiang Chen, Thomas Weise, Zhenyu Yang, and Ke Tang. Large-scale global
optimization using cooperative coevolution with variable interaction learning. In
International Conference on Parallel Problem Solving from Nature, pages 300–309,
2010.

[22] Ran Cheng, Yaochu Jin, Markus Olhofer, and Bernhard sendhoff. Test problems for
large-scale multiobjective and many-objective optimization. IEEE Transactions on
Cybernetics, 47(12):4108–4121, 2017.

[23] CA Coello Coello and Maximino Salazar Lechuga. MOPSO: A proposal for multiple
objective particle swarm optimization. In IEEE Congress on Evolutionary Computa-
tion (CEC), volume 2, pages 1051–1056, 2002.

[24] Carlos A. Coello Coello. Constraint-handling techniques used with evolutionary
algorithms. In ACM Genetic and Evolutionary Computation Conference (GECCO),
page 563–587. Association for Computing Machinery, Jul 2016.

[25] Carlos A. Coello Coello, Clarisse Dhaenens, and Laetitia Jourdan. Multi-objective
combinatorial optimization: Problematic and context. In Carlos A. Coello Coello,
Clarisse Dhaenens, and Laetitia Jourdan, editors, Advances in Multi-Objective Nature
Inspired Computing, page 1–21. Springer, 2010.

187

[26] Carlos A Coello Coello, Silvia González Brambila, Josué Figueroa Gamboa,
Ma Guadalupe Castillo Tapia, and Raquel Hernández Gómez. Evolutionary multi-
objective optimization: open research areas and some challenges lying ahead. Complex
& Intelligent Systems, 6(2):221–236, 2020.

[27] Carlos A Coello Coello and Gary Lamont. Applications of multi-objective evolutionary
algorithms. Advances in Natural Computation. World Scientific, 2004.

[28] Cai Dai, Xiujuan Lei, and Xiaoguang He. A decomposition-based evolutionary
algorithm with adaptive weight adjustment for many-objective problems. Soft
Computing, 24(14):10597–10609, 2020.

[29] Indraneel Das and John E Dennis. Normal-boundary intersection: A new method for
generating the pareto surface in nonlinear multicriteria optimization problems. SIAM
journal on optimization, 8(3):631–657, 1998.

[30] EA Davidson, Mark B David, James N Galloway, Christine L Goodale, Richard
Haeuber, John A Harrison, Robert W Howarth, Dan B Jaynes, R Richard Lowrance,
Nolan B Thomas, et al. Excess nitrogen in the us environment: trends, risks, and
solutions. Issues in Ecology, (15), 2011.

[31] TJ De Koeijer, GAAWossink, and FJHMVerhees. Environmental and economic effects
of spatial variability in cropping: nitrogen fertilization and site-specific management.
In The Economics of Agro-Chemicals, pages 187–200. 2018.

[32] Olivier L De Weck. Multiobjective optimization: History and promise. In Invited
Keynote Paper, GL2-2, The Third China-Japan-Korea Joint Symposium on Optimiza-
tion of Structural and Mechanical Systems, Kanazawa, Japan, volume 2, page 34, 2004.

[33] Kalyanmoy Deb. Multi-objective optimization. In Search Methodologies, pages 403–
449. Springer, 2014.

[34] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach, part 1: solving
problems with box constraints. IEEE Transactions on Evolutionary Computation,
18(4):577–601, 2013.

[35] Kalyanmoy Deb, Manikanth Mohan, and Shikhar Mishra. Evaluating the -domination
based multi-objective evolutionary algorithm for a quick computation of pareto-optimal
solutions. Evolutionary computation, 13(4):501–525, 2005.

[36] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast
and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, 2002.

188

[37] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable multi-
objective optimization test problems. In IEEE Congress on Evolutionary Computation
(CEC), volume 1, pages 825–830. IEEE, 2002.

[38] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable
Test Problems for Evolutionary Multiobjective Optimization, pages 105–145. Springer
London, London, 2005.

[39] Bernabe Dorronsoro, Grégoire Danoy, Pascal Bouvry, and Antonio Nebro. Multi-
objective Cooperative Coevolutionary Evolutionary Algorithms for Continuous and
Combinatorial Optimization, volume 362, pages 49–74. 07 2011.

[40] Tyrone E Duncan. On the calculation of mutual information. SIAM Journal on Applied
Mathematics, 19(1):215–220, 1970.

[41] Russell Eberhart and James Kennedy. Particle swarm optimization. In IEEE
International Conference on Neural Networks, volume 4, pages 1942–1948, 1995.

[42] Matthias Ehrgott and Xavier Gandibleux. A survey and annotated bibliography of
multiobjective combinatorial optimization. OR-Spektrum, 22(4):425–460, Nov 2000.

[43] Alwalid N. Elshafei. Hospital layout as a quadratic assignment problem. Operational
Research Quarterly (1970-1977), 28(1):167–179, 1977.

[44] A. P. Engelbrecht. Fitness function evaluations: A fair stopping condition? In IEEE
Swarm Intelligence Symposium, 2014.

[45] Absalom E Ezugwu, Amit K Shukla, Rahul Nath, Andronicus A Akinyelu, Jeffery O
Agushaka, Haruna Chiroma, and Pranab K Muhuri. Metaheuristics: a comprehensive
overview and classification along with bibliometric analysis. Artificial Intelligence
Review, 54:4237–4316, 2021.

[46] Rui Fan, Lixin Wei, Xin Li, Jinlu Zhang, and Zheng Fan. Self-adaptive weight vector
adjustment strategy for decomposition-based multi-objective differential evolution
algorithm. Soft Computing, 24(17):13179–13195, 2020.

[47] Marco Farina, Kalyanmoy Deb, and Paolo Amato. Dynamic multiobjective optimiza-
tion problems: Test cases, approximations, and applications. IEEE Transactions on
Evolutionary Computation, 8(5):425–442, 2004.

[48] Nasim Ferdosian, Mohamed Othman, Kweh Yeah Lun, and Borhanuddin Mohd Ali.
Optimal solution to the fractional knapsack problem for LTE overload-state scheduling.
IEEE 3rd International Symposium on Telecommunication Technologies (ISTT), pages
97–102, 2016.

[49] Carlos M. Fonseca and Peter J. Fleming. An overview of evolutionary algorithms in
multiobjective optimization. Evolutionary Computation, 3(1):1–16, March 1995.

189

[50] Nathan Fortier, John Sheppard, and Shane Strasser. Abductive inference in bayesian
networks using distributed overlapping swarm intelligence. Soft Computing, 19(4):981–
1001, April 2015.

[51] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy. Journal
of Machine Learning Research, 13:2171–2175, jul 2012.

[52] Laura Garcia, Lorena Parra, Jose M. Jimenez, Jaime Lloret, and Pascal Lorenz. Iot-
based smart irrigation systems: An overview on the recent trends on sensors and IoT
systems for irrigation in precision agriculture. Sensors, 20(4):1042, Jan 2020.

[53] Andrew Gelman. Analysis of variance—why it is more important than ever. The
Annals of Statistics, 33(1):1–53, 2005.

[54] Chi-Keong Goh and Kay Chen Tan. A competitive-cooperative coevolutionary
paradigm for dynamic multiobjective optimization. IEEE Transactions on Evolution-
ary Computation, 13(1):103–127, 2009.

[55] C.K. Goh, K.C. Tan, D.S. Liu, and S.C. Chiam. A competitive and cooperative
co-evolutionary approach to multi-objective particle swarm optimization algorithm
design. European Journal of Operational Research, 202:42—-54, Apr 2010.

[56] Dunwei Gong, Fenglin Sun, Jing Sun, and Xiaoyan Sun. Set-based many-objective
optimization guided by a preferred region. Neurocomputing, 228:241–255, 2017.

[57] Wenyin Gong and Zhihua Cai. A multiobjective differential evolution algorithm for
constrained optimization. In IEEE Congress on Evolutionary Computation (CEC),
pages 181–188, 2008.

[58] Brian K. Haberman and John W. Sheppard. Overlapping particle swarms for energy-
efficient routing in sensor networks. Wireless Networks, 18:351–363, 2012.

[59] Dong Han, Wenli Du, Wei Du, Yaochu Jin, and Chunping Wu. An adaptive
decomposition-based evolutionary algorithm for many-objective optimization. Infor-
mation Sciences, 491:204–222, 2019.

[60] Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos. Reducing the time
complexity of the derandomized evolution strategy with covariance matrix adaptation
(CMA-ES). Evolutionary Computation, 11(1):1–18, 2003.

[61] Paul B Hegedus, Bruce Maxwell, John Sheppard, Sasha Loewen, Hannah Duff, Giorgio
Morales-Luna, and Amy Peerlinck. Towards a low-cost comprehensive process for on-
farm precision experimentation and analysis. Agriculture, 13(3):524, 2023.

190

[62] John Henry Holland. Adaptation in natural and artificial systems: An introductory
analysis with applications to biology, control, and artificial intelligence. MIT press,
1992.

[63] Wen-Jing Hong, Peng Yang, and Ke Tang. Evolutionary computation for large-
scale multi-objective optimization: A decade of progresses. International Journal of
Automation and Computing, 18(2):155–169, 2021.

[64] Jiayuan Huang, Arthur Gretton, Karsten Borgwardt, Bernhard Schölkopf, and Alex
Smola. Correcting sample selection bias by unlabeled data. Advances in neural
information processing systems, 19:601–608, 2006.

[65] Simon Huband, Philip Hingston, Luigi Barone, and Lyndon While. A review of
multiobjective test problems and a scalable test problem toolkit. IEEE Transactions
on Evolutionary Computation, 10(5):477–506, 2006.

[66] Kokolo Ikeda, Hajime Kita, and Shigenobu Kobayashi. Failure of pareto-based
MOEAs: Does non-dominated really mean near to optimal? In IEEE Congress on
Evolutionary Computation (CEC), volume 2, pages 957–962. IEEE, 2001.

[67] Hisao Ishibuchi, Naoya Akedo, and Yusuke Nojima. Behavior of multiobjective
evolutionary algorithms on many-objective knapsack problems. IEEE Transactions
on Evolutionary Computation, 19(2):264–283, Apr 2015.

[68] Hisao Ishibuchi, Hiroyuki Masuda, Yuki Tanigaki, and Yusuke Nojima. Modified
distance calculation in generational distance and inverted generational distance. In
António Gaspar-Cunha, Carlos Henggeler Antunes, and Carlos Coello Coello, editors,
Evolutionary Multi-Criterion Optimization, pages 110–125, Cham, 2015. Springer
International Publishing.

[69] Hisao Ishibuchi and Youhei Shibata. Mating scheme for controlling the diversity-
convergence balance for multiobjective optimization. In ACM Genetic and Evolution-
ary Computation Conference (GECCO), page 1259–1271, 2004.

[70] Hisao Ishibuchi, Noritaka Tsukamoto, and Yusuke Nojima. Evolutionary many-
objective optimization: A short review. In IEEE Congress on Evolutionary Com-
putation (CEC), pages 2419–2426, 2008.

[71] Haider Mahmood Jawad, Rosdiadee Nordin, Sadik Kamel Gharghan, Aqeel Mahmood
Jawad, and Mahamod Ismail. Energy-efficient wireless sensor networks for precision
agriculture: A review. Sensors, 17(8):1781, 2017.

[72] Jig Han Jeong, Jonathan P Resop, Nathaniel D Mueller, David H Fleisher, Kyungdahm
Yun, Ethan E Butler, Dennis J Timlin, Kyo-Moon Shim, James S Gerber, Vangi-
malla R Reddy, et al. Random forests for global and regional crop yield predictions.
Public Library of Science, 11(6), 2016.

191

[73] F. Jimenez, A.F. Gomez-Skarmeta, G. Sanchez, and K. Deb. An evolutionary algorithm
for constrained multi-objective optimization. In IEEE Congress on Evolutionary
Computation (CEC), volume 2, pages 1133–1138, 2002.

[74] Rong juan Luo, Shou feng Ji, and Bao lin Zhu. A pareto evolutionary algorithm
based on incremental learning for a kind of multi-objective multidimensional knapsack
problem. Computers Industrial Engineering, 135:537–559, 2019.

[75] Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi. The traveling salesman
problem. Handbooks in operations research and management science, 7:225–330, 1995.

[76] Nattavut Keerativuttitumrong, Nachol Chaiyaratana, and Vara Varavithya. Multi-
objective co-operative co-evolutionary genetic algorithm. In International Conference
on Parallel Problem Solving from Nature, pages 288–297, 2002.

[77] Joshua Knowles and David Corne. Instance generators and test suites for the
multiobjective quadratic assignment problem. In Carlos M. Fonseca, Peter J. Fleming,
Eckart Zitzler, Lothar Thiele, and Kalyanmoy Deb, editors, Evolutionary Multi-
Criterion Optimization, Lecture Notes in Computer Science, page 295–310. Springer,
2003.

[78] Joshua D Knowles, David W Corne, and Mark Fleischer. Bounded archiving using the
lebesgue measure. In IEEE Congress on Evolutionary Computation (CEC), volume 4,
pages 2490–2497. IEEE, 2003.

[79] Brad Koch, R Khosla, WM Frasier, DG Westfall, and D Inman. Economic feasibility of
variable-rate nitrogen application utilizing site-specific management zones. Agronomy
Journal, 96(6):1572–1580, 2004.

[80] Hans-Peter Kriegel, Erich Schubert, and Arthur Zimek. The (black) art of runtime
evaluation: Are we comparing algorithms or implementations? Knowledge and
Information Systems, 52:341–378, 2017.

[81] Marco Laumanns, Günter Rudolph, and Hans-Paul Schwefel. A spatial predator-
prey approach to multi-objective optimization: A preliminary study. In International
Conference on Parallel Problem Solving from Nature, pages 241–249, 1998.

[82] Eugene L Lawler. The quadratic assignment problem. Management science, 9(4):586–
599, 1963.

[83] Niklaus Lehmann and Robert Finger. Optimizing whole-farm management considering
price and climate risks. In 123rd European Association of Agricultural Economists
Seminar, February 2012.

[84] Bingdong Li, Jinlong Li, Ke Tang, and Xin Yao. Many-objective evolutionary
algorithms: A survey. ACM Comput. Surv., 48(1), sep 2015.

192

[85] Ke Li, Mohammad Nabi Omidvar, Kalyanmoy Deb, and Xin Yao. Variable
interaction in multi-objective optimization problems. In Julia Handl, Emma Hart,
Peter R. Lewis, Manuel López-Ibáñez, Gabriela Ochoa, and Ben Paechter, editors,
International Conference on Parallel Problem Solving from Nature, pages 399–409.
Springer International Publishing, 2016.

[86] Longmei Li, Hao Chen, Jun Li, Ning Jing, and Michael Emmerich. Preference-based
evolutionary many-objective optimization for agile satellite mission planning. IEEE
Access, 6:40963–40978, 2018.

[87] Mo Li, Qiang Fu, Ping Guo, Vijay P Singh, Chenglong Zhang, and Gaiqiang Yang.
Stochastic multi-objective decision making for sustainable irrigation in a changing
environment. Journal of Cleaner Production, 223:928–945, 2019.

[88] Xiaodong Li. A non-dominated sorting particle swarm optimizer for multiobjective
optimization. In ACM Genetic and Evolutionary Computation Conference (GECCO),
pages 37–48, 2003.

[89] Xiaodong Li, Ke Tang, Mohammad Nabi Omidvar, Zhenyu Yang, Kai Qin, and Hefei
China. Benchmark functions for the CEC 2013 special session and competition on
large-scale global optimization. IEEE Congress on Evolutionary Computation (CEC),
7(33):8, 2013.

[90] Zhengping Liang, Xuyong Wang, Qiuzhen Lin, Fei Chen, Jianyong Chen, and Zhong
Ming. A novel multi-objective co-evolutionary algorithm based on decomposition
approach. Applied Soft Computing, 73:50–66.

[91] Yingbiao Ling, Haijian Li, and Bin Cao. Cooperative co-evolution with graph-based
differential grouping for large scale global optimization. In 2016 12th international
conference on natural computation, fuzzy systems and knowledge discovery (ICNC-
FSKD), pages 95–102. IEEE, 2016.

[92] Yingbiao Ling, Haijian Li, and Bin Cao. Cooperative co-evolution with graph-based
differential grouping for large scale global optimization. In International Conference on
Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pages
95–102, 2016.

[93] Junhua Liu, Yuping Wang, Ninglei Fan, Shiwei Wei, and Wuning Tong. A convergence-
diversity balanced fitness evaluation mechanism for decomposition-based many-
objective optimization algorithm. Integrated Computer-Aided Engineering, 26(2):159–
184, 2019.

[94] Thibaut Lust and Jacques Teghem. The multiobjective traveling salesman problem:
A survey and a new approach. In Carlos A. Coello Coello, Clarisse Dhaenens, and
Laetitia Jourdan, editors, Advances in Multi-Objective Nature Inspired Computing,
page 119–141. Springer, 2010.

193

[95] Robert J Lygoe, Mark Cary, and Peter J Fleming. A real-world application of a many-
objective optimisation complexity reduction process. In International Conference on
Evolutionary Multi-Criterion Optimization, pages 641–655. Springer, 2013.

[96] Lianbo Ma, Min Huang, Shengxiang Yang, Rui Wang, and Xingwei Wang. An adaptive
localized decision variable analysis approach to large-scale multiobjective and many-
objective optimization. IEEE Transactions on Cybernetics, 52(7):6684–6696, 2022.

[97] Xiaoliang Ma, Xiaodong Li, Qingfu Zhang, Ke Tang, Zhengping Liang, Weixin Xie, and
Zexuan Zhu. A survey on cooperative co-evolutionary algorithms. IEEE Transactions
on Evolutionary Computation, 23(3):421–441, 2018.

[98] Xiaoliang Ma, Fang Liu, Yutao Qi, Xiaodong Wang, Lingling Li, Licheng Jiao, Minglei
Yin, and Maoguo Gong. A multiobjective evolutionary algorithm based on decision
variable analyses for multiobjective optimization problems with large-scale variables.
IEEE Transactions on Evolutionary Computation, 20(2):275–298, 2016.

[99] Wouter Maes and Kathy Steppe. Perspectives for remote sensing with unmanned aerial
vehicles in precision agriculture. Trends in Plant Science, 24(2):152–164, Feb 2019.

[100] Kuntinee Maneeratana, Kittipong Boonlong, and Nachol Chaiyaratana. Multi-
objective optimisation by co-operative co-evolution. In International Conference on
Parallel Problem Solving from Nature, page 772–781. Springer, 2004.

[101] Bruce Maxwell, Paul Hegedus, Philip Davis, Anton Bekkerman, Robert Payn, John
Sheppard, Nicholas Silverman, and Clemente Izurieta. Can optimization associated
with on-farm experimentation using on-farm experimentation using site-specific tech-
nologies improve producer management decisions. In International Conference on
Precision Agriculture, 2018.

[102] Adriana Menchaca-Mendez and Carlos A Coello Coello. An alternative hypervolume-
based selection mechanism for multi-objective evolutionary algorithms. Soft Comput-
ing, 21(4):861–884, 2017.

[103] Seyedali Mirjalili and Andrew Lewis. The whale optimization algorithm. Advances in
Engineering Software, 95:51–67, 2016.

[104] Giorgio Morales and John W Sheppard. Two-dimensional deep regression for early
yield prediction of winter wheat. In SPIE Future Sensing Technologies 2021, volume
11914, pages 31–45, 2021.

[105] Giorgio Morales, John W. Sheppard, Bryan Scherrer, and Joseph A. Shaw. Reduced-
cost hyperspectral convolutional neural networks. Journal of Applied Remote Sensing,
14(3), Sep 2020.

194

[106] Kaname Narukawa and Tobias Rodemann. Examining the performance of evolutionary
many-objective optimization algorithms on a real-world application. In 2012 Sixth
International Conference on Genetic and Evolutionary Computing, pages 316–319.
IEEE, 2012.

[107] Mohammad Nabi Omidvar, Xiaodong Li, Yi Mei, and Xin Yao. Cooperative co-
evolution with differential grouping for large scale optimization. IEEE Transactions
on Evolutionary Computation, 18(3):378–393, 2013.

[108] Mohammad Nabi Omidvar, Xiaodong Li, and Xin Yao. Cooperative co-evolution with
delta grouping for large scale non-separable function optimization. In IEEE Congress
on Evolutionary Computation (CEC), pages 1762–1769, 2010.

[109] Mohammad Nabi Omidvar, Ming Yang, Yi Mei, Xiaodong Li, and Xin Yao. Dg2: A
faster and more accurate differential grouping for large-scale black-box optimization.
IEEE Transactions on Evolutionary Computation, 21(6):929–942, 2017.

[110] S.L. Osborne, J.S. Schepers, D.D. Francis, and M.R. Schlemmer. Use of spectral
radiance to estimate in-season biomass and grain yield in nitrogen- and waterstressed
corn. Crop Science, 42:165–171, 2002.

[111] Lucie Pansart, Nicolas Catusse, and Hadrien Cambazard. Exact algorithms for the
order picking problem. Computers Operations Research, 100:117–127, 2018.

[112] Abhishek Patel. Working of differential evolution.
Medium, May 2018. https://medium.com/@b516002/

differential-evolution-sounds-cool-right-a5c245cbe6d9.

[113] Amy Peerlinck, John Sheppard, Julie Pastorino, and Bruce Maxwell. Optimal design
of experiments for precision agriculture using a genetic algorithm. In IEEE Congress
on Evolutionary Computation (CEC), pages 1838–1845, 2019.

[114] Sebastian Peitz and Michael Dellnitz. A survey of recent trends in multiobjective
optimal control—surrogate models, feedback control and objective reduction. Mathe-
matical and Computational Applications, 23(2):30, 2018.

[115] Guang Peng and Katinka Wolter. A decomposition-based evolutionary algorithm with
adaptive weight vectors for multi-and many-objective optimization. In International
Conference on the Applications of Evolutionary Computation, pages 149–164. Springer,
2020.

[116] Francis J. Pierce and Peter Nowak. Aspects of precision agriculture. volume 67 of
Advances in Agronomy, pages 1–85. 1999.

[117] Mitchell Potter and Kenneth De Jong. Cooperative coevolution: An architecture for
evolving coadapted subcomponents. Evolutionary Computation, 8(1):1–29, 2000.

https://medium.com/@b516002/differential-evolution-sounds-cool-right-a5c245cbe6d9
https://medium.com/@b516002/differential-evolution-sounds-cool-right-a5c245cbe6d9

195

[118] Elliott Pryor, Amy Peerlinck, and John Sheppard. A study in overlapping factor decom-
position for cooperative co-evolution. In IEEE Symposium Series on Computational
Intelligence (SSCI), pages 01–08, 2021.

[119] Bo Yang Qu and Ponnuthurai Nagarathnam Suganthan. Constrained multi-objective
optimization algorithm with an ensemble of constraint handling methods. Engineering
Optimization, 43(4):403–416, 2011.

[120] Aurora Ramı́rez, José Raúl Romero, and Sebastián Ventura. A survey of many-
objective optimisation in search-based software engineering. Journal of Systems and
Software, 149:382–395, 2019.

[121] William R Raun, John B Solie, Gordon V Johnson, Marvin L Stone, Robert W Mullen,
Kyle W Freeman, Wade E Thomason, and Erna V Lukina. Improving nitrogen use
efficiency in cereal grain production with optical sensing and variable rate application.
Agronomy Journal, 94(4):815–820, 2002.

[122] Nery Riquelme, Christian Von Lucken, and Benjamin Baran. Performance metrics in
multi-objective optimization. In Latin American Computing Conference, page 1–11.
IEEE, 2015.

[123] Keith W Ross and Danny HK Tsang. The stochastic knapsack problem. IEEE
Transactions on communications, 37(7):740–747, 1989.

[124] H. Mert Sahinkoc and Ümit Bilge. A reference set based many-objective co-
evolutionary algorithm with an application to the knapsack problem. European Journal
of Operational Research, 2021.

[125] Hiroyuki Sato, Hernán E. Aguirre, and Kiyoshi Tanaka. Controlling dominance area
of solutions and its impact on the performance of MOEAs. In Shigeru Obayashi,
Kalyanmoy Deb, Carlo Poloni, Tomoyuki Hiroyasu, and Tadahiko Murata, editors,
Evolutionary Multi-Criterion Optimization, pages 5–20, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

[126] Eman Sayed, Daryl Essam, and Ruhul Sarker. Dependency identification technique for
large scale optimization problems. In IEEE Congress on Evolutionary Computation
(CEC), pages 1–8, 2012.

[127] J David Schaffer and Amy Morishima. An adaptive crossover distribution mechanism
for genetic algorithms. In Second International Conference on Genetic Algorithms,
pages 36–40, 1987.

[128] James David Schaffer. Some Experiments in Machine Learning Using Vector Eval-
uated Genetic Algorithms (Artificial Intelligence, Optimization, Adaptation, Pattern
Recognition). PhD thesis, USA, 1984.

196

[129] Christiaan Scheepers, Andries P Engelbrecht, and Christopher W Cleghorn. Multi-
guide particle swarm optimization for multi-objective optimization: Empirical and
stability analysis. Swarm Intelligence, 13(3):245–276, 2019.

[130] Uferah Shafi, Rafia Mumtaz, José Garcia-Nieto, Syed Ali Hassan, Syed Ali Raza Zaidi,
and Naveed Iqbal. Precision agriculture techniques and practices: From considerations
to applications. Sensors, 19(17), Jan 2019.

[131] Ke Shang, Hisao Ishibuchi, Lie Meng Pang, and Yang Nan. Reference point specifi-
cation for greedy hypervolume subset selection. In IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pages 168–175, 2021.

[132] Min Shi. An Exploration and Optimization of Cooperative Coevolution. PhD
thesis, Norwegian Institute of Science and Technology, Department of Computer and
Information Science, 2012.

[133] W Adam Sigler, Stephanie A Ewing, Clain A Jones, Robert A Payn, EN Jack
Brookshire, Jane K Klassen, Douglas Jackson-Smith, and Gary S Weissmann.
Connections among soil, ground, and surface water chemistries characterize nitrogen
loss from an agricultural landscape in the upper missouri river basin. Journal of
Hydrology, 556:247–261, 2018.

[134] Kenneth Sorensen. Metaheuristics – the metaphor exposed. International Transactions
on Operations Research, 01 2013.

[135] Nidamarthi Srinivas and Kalyanmoy Deb. Multiobjective optimization using nondom-
inated sorting in genetic algorithms. Evolutionary Computation, 2(3):221–248, 1994.

[136] Theodor Stewart, Oliver Bandte, Heinrich Braun, Nirupam Chakraborti, Matthias
Ehrgott, Mathias Göbelt, Yaochu Jin, Hirotaka Nakayama, Silvia Poles, and Danilo
Di Stefano. Real-World Applications of Multiobjective Optimization, pages 285–327.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[137] Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization,
11(4):341–359, Dec 1997.

[138] Shane Strasser, John Sheppard, Nathan Fortier, and Rollie Goodman. Factored
evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 21(2):281–
293, 2017.

[139] Shane Tyler Strasser. Factored Evolutionary Algorithms: Cooperative Coevolutionary
Optimization with Overlap. PhD thesis, Gianforte School of Computing, Montana
State University, 2017.

197

[140] Yuan Sun, Michael Kirley, and Saman K Halgamuge. Quantifying variable interactions
in continuous optimization problems. IEEE Transactions on Evolutionary Computa-
tion, 21(2):249–264, 2017.

[141] Yuan Sun, Mohammad Nabi Omidvar, Michael Kirley, and Xiaodong Li. Adaptive
threshold parameter estimation with recursive differential grouping for problem de-
composition. In ACM Genetic and Evolutionary Computation Conference (GECCO),
page 889–896, New York, NY, USA, 2018.

[142] Tomoaki Takagi, Keiki Takadama, and Hiroyuki Sato. Non-dominated solution
sampling using environmental selection in EMO algorithms. In IEEE Congress on
Evolutionary Computation (CEC), pages 1–9, 2020.

[143] Ke Tang, Xiaodong Li, P. N. Suganthan, Zhenyu Yang, and Thomas Weise. Benchmark
functions for the CEC’2010 special session and competition on large-scale global
optimization. Technical report, Nature Inspired Computation and Applications
Laboratory, 2009.

[144] Sunil Thrikawala, Alfons Weersink, Glenn Fox, and Gary Kachanoski. Economic
feasibility of variable-rate technology for nitrogen on corn. American Journal of
Agricultural Economics, 81(4):914–927, 1999.

[145] Ye Tian, Langchun Si, Xingyi Zhang, Ran Cheng, Cheng He, Kay Chen Tan, and
Yaochu Jin. Evolutionary large-scale multi-objective optimization: A survey. Journal
of the ACM, 1(1), 2021.

[146] Ye Tian, Langchun Si, Xingyi Zhang, Ran Cheng, Cheng He, Kay Chen Tan, and
Yaochu Jin. Evolutionary large-scale multi-objective optimization: A survey. ACM
Computing Surveys (CSUR), 54(8):1–34, 2021.

[147] Van Truong Vu, Lam Thu Bui, and Trung Thanh Nguyen. A competitive co-
evolutionary approach for the multi-objective evolutionary algorithms. IEEE Access,
8:56927–56947.

[148] United States Department of Agriculture. Agricultural prices. https://usda.

library.cornell.edu/concern/publications/c821gj76b?locale=en, Jan 2022.

[149] Stefan Van Aelst, Xiaogang Steven Wang, Ruben H Zamar, and Rong Zhu. Linear
grouping using orthogonal regression. Computational Statistics & Data Analysis,
50(5):1287–1312, 2006.

[150] Frans Van den Bergh and Andries Petrus Engelbrecht. A cooperative approach
to particle swarm optimization. IEEE Transactions on Evolutionary Computation,
8(3):225–239, 2004.

https://usda.library.cornell.edu/concern/publications/c821gj76b?locale=en
https://usda.library.cornell.edu/concern/publications/c821gj76b?locale=en

198

[151] Thomas Van Klompenburg, Ayalew Kassahun, and Cagatay Catal. Crop yield
prediction using machine learning: A systematic literature review. Computers and
Electronics in Agriculture, 177, 2020.

[152] David A Van Veldhuizen. Multiobjective evolutionary algorithms: classifications,
analyses, and new innovations [ph. d. thesis]. Department of Electrical and Computer
Engineering. Graduate School of Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, Ohio, 1999.

[153] Shanu Verma, Millie Pant, and Vaclav Snasel. A comprehensive review on nsga-ii for
multi-objective combinatorial optimization problems. IEEE Access, 9:57757–57791,
2021.

[154] Tobias Wagner and Heike Trautmann. Integration of preferences in hypervolume-
based multiobjective evolutionary algorithms by means of desirability functions. IEEE
Transactions on Evolutionary Computation, 14(5):688–701, 2010.

[155] Dongshu Wang, Dapei Tan, and Lei Liu. Particle swarm optimization algorithm: An
overview. Soft Computing, 22(2):387–408, Jan 2018.

[156] Handing Wang, Licheng Jiao, and Xin Yao. Two arch2: An improved two-archive
algorithm for many-objective optimization. IEEE Transactions on Evolutionary
Computation, 19(4):524–541, 2014.

[157] Lyndon While, Lucas Bradstreet, and Luigi Barone. A fast way of calculating exact
hypervolumes. IEEE Transactions on Evolutionary Computation, 16(1):86–95, 2012.

[158] K. M. Whitley, J. R. Davenport, and S. R. Manley. Differences in nitrate leaching
under variable and conventional nitrogen fertilizer management in irrigated potato
systems. In P. C. Robert, R. H. Rust, and W. E. Larson, editors, Proceedings of
the 5th International Conference on Precision Agriculture, pages 1–9, Madison, USA,
2000. American Society of Agronomy.

[159] Gerhard J Woeginger. Exact algorithms for NP-hard problems: A survey. In
Combinatorial Optimization—Eureka, You Shrink! Papers Dedicated to Jack Edmonds
5th International Workshop Aussois, France, March 5–9, 2001 Revised Papers, pages
185–207. Springer, 2003.

[160] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, April 1997.

[161] Stephen J. Wright. Optimization. Encyclopedia Britannica, February 2023. https:

//www.britannica.com/science/optimization.

[162] Yi Xiang, Yuren Zhou, Miqing Li, and Zefeng Chen. A vector angle-based evolutionary
algorithm for unconstrained many-objective optimization. IEEE Transactions on
Evolutionary Computation, 21(1):131–152, 2017.

https://www.britannica.com/science/optimization
https://www.britannica.com/science/optimization

199

[163] Biao Xu, Yong Zhang, Dunwei Gong, Yinan Guo, and Miao Rong. Environ-
ment sensitivity-based cooperative co-evolutionary algorithms for dynamic multi-
objective optimization. IEEE/ACM Transactions on Computational Biology and Bio-
Informatics, 15(6):1877–1890, 2017.

[164] Chonghuan Xu. A big-data oriented recommendation method based on multi-objective
optimization. Knowledge-Based Systems, 177:11–21, 2019.

[165] Rishika Yadav. Selection of multiple objectives for multi objective optimization
in precision agriculture. In International Conference on Advances in Chemical
Engineering, Nov 2020.

[166] Feng Yang, Liang Xu, Xiaokai Chu, and Shenwen Wang. A new dominance relation
based on convergence indicators and niching for many-objective optimization. Applied
Intelligence, 51(8):5525–5542, 2021.

[167] Ming Yang, Aimin Zhou, Changhe Li, and Xin Yao. An efficient recursive differential
grouping for large-scale continuous problems. IEEE Transactions on Evolutionary
Computation, 2020.

[168] Xin-She Yang and Xingshi He. Firefly algorithm: Recent advances and applications.
International Journal of Swarm Intelligence, 1(1):36–50, 2013.

[169] Zhenyu Yang, Ke Tang, and Xin Yao. Differential evolution for high-dimensional
function optimization. In IEEE Congress on Evolutionary Computation (CEC), pages
3523–3530, 2007.

[170] Zhenyu Yang, Ke Tang, and Xin Yao. Large scale evolutionary optimization using
cooperative coevolution. Information Sciences, 178(15):2985–2999, 2008.

[171] Xue Yu, Wei-Neng Chen, Tianlong Gu, Huaxiang Zhang, Huaqiang Yuan, Sam Kwong,
and Jun Zhang. Set-based discrete particle swarm optimization based on decomposition
for permutation-based multiobjective combinatorial optimization problems. IEEE
Transactions on Cybernetics, 48(7):2139–2153, 2017.

[172] Yuan Yuan, Hua Xu, Bo Wang, Bo Zhang, and Xin Yao. Balancing convergence and
diversity in decomposition-based many-objective optimizers. IEEE Transactions on
Evolutionary Computation, 20(2):180–198, 2016.

[173] Zhaoyu Zhai, José-Fernán Mart́ınez Ortega, Néstor Lucas Mart́ınez, and Jesús
Rodŕıguez-Molina. A mission planning approach for precision farming systems based
on multi-objective optimization. Sensors, 18(6):1795, Jun 2018.

[174] Maoqing Zhang, Lei Wang, Weian Guo, Wuzhao Li, Junwei Pang, Jun Min, Hanwei
Liu, and Qidi Wu. Many-objective evolutionary algorithm based on dominance degree.
Applied Soft Computing, 113, 2021.

200

[175] Q. Zhang and H. Li. MOEA/D: A multiobjective evolutionary algorithm based on
decomposition. IEEE Transactions on Evolutionary Computation, 11(6):712–731, Dec
2007.

[176] Qian Zhang, Yanmin Liu, Huayao Han, Meilan Yang, and Xiaoli Shu. Multi-objective
particle swarm optimization with multi-archiving strategy. Scientific Programming,
2022, 2022.

[177] Xingyi Zhang, Ye Tian, Ran Cheng, and Yaochu Jin. A decision variable clustering-
based evolutionary algorithm for large-scale many-objective optimization. IEEE
Transactions on Evolutionary Computation, 22(1):97–112, 2018.

[178] Shi-Zheng Zhao, Jing J Liang, Ponnuthurai N Suganthan, and Mehmet Fatih
Tasgetiren. Dynamic multi-swarm particle swarm optimizer with local search for large
scale global optimization. In IEEE Congress on Evolutionary Computation (CEC),
pages 3845–3852, 2008.

[179] Feifei Zheng, Angus Simpson, and Aaron Zecchin. Improving the efficiency of multi-
objective evolutionary algorithms through decomposition: An application to water
distribution network design. Environmental Modelling & Software, 69:240–252, 2015.

[180] Yu-Jun Zheng, Qin Song, and Sheng-Yong Chen. Multiobjective fireworks optimization
for variable-rate fertilization in oil crop production. Applied Soft Computing,
13(11):4253–4263, 2013.

[181] Chenwen Zhu, Lihong Xu, and Erik D. Goodman. Generalization of pareto-optimality
for many-objective evolutionary optimization. IEEE Transactions on Evolutionary
Computation, 20(2):299–315, 2016.

[182] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, and V.G. da Fonseca. Performance
assessment of multiobjective optimizers: An analysis and review. IEEE Transactions
on Evolutionary Computation, 7(2):117–132, 2003.

[183] Eckart Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and
Applications. PhD thesis, Department of Computer Science, Swiss Federal Institute of
Technology, 1999.

[184] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of multiobjective
evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2):173–195,
Jun 2000.

[185] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the strength
pareto evolutionary algorithm. TIK-report Swiss Federal Institute of Technology, 103,
2001.

201

[186] Eckart Zitzler and Lothar Thiele. Multiobjective optimization using evolutionary
algorithms—a comparative case study. In International Conference on Parallel
Problem Solving from Nature, pages 292–301, 1998.

[187] Eckart Zitzler and Lothar Thiele. An evolutionary algorithm for multiobjective
optimization: The strength pareto approach. TIK-report Swiss Federal Institute of
Technology, 43, 1999.

[188] Djaafar Zouache, Abdelouahab Moussaoui, and Fouad Ben Abdelaziz. A cooperative
swarm intelligence algorithm for multi-objective discrete optimization with application
to the knapsack problem. European Journal of Operational Research, 264(1):74–88,
2018.

202

APPENDICES

203

APPENDIX A

MULTI-OBJECTIVE CONTINUOUS BENCHMARK FUNCTIONS

204

Name Function

DTLZ1

g(xm) = 100
(
|xm|+

∑
xi∈xm

(
(xi − 0.5)2 − cos(20π(xi − 0.5))

))
f1(x) =

1
2(1 + g(xm))

∏m−1
i=1 xi

f2(x) =
1
2(1 + g(xm))(1− xm−1)

∏m−2
i=1 xi

...
fm−1(x) =

1
2(1 + g(xm))(1− x2)x1

fm(x) = 1
2(1− x1)(1 + g(xm))

DTLZ2

g(xm) =
∑

xi∈xm
(xi − 0.5)2

f1(x) = (1 + g(xm))
∏m−1

i=1 cos(0.5xiπ)

f2(x) = (1 + g(xm)) sin(0.5xm−1π)
∏m−2

i=1 cos(0.5xiπ)
...

fm(x) = (1 + g(xm)) sin(0.5x1π)

DTLZ3

g(xm) = 100
(
|xm|+

∑
xi∈xm

(
(xi − 0.5)2 − cos(20π(xi − 0.5))

))
f1(x) = (1 + g(xm))

∏m−1
i=1 cos(0.5xiπ)

f2(x) = (1 + g(xm)) sin(0.5xm−1π)
∏m−2

i=1 cos(0.5xiπ)
...

fm(x) = (1 + g(xm)) sin(0.5x1π)

DTLZ4

g(xm) =
∑

xi∈xm
(xi − 0.5)2

f1(x) = (1 + g(xm))
∏m−1

i=1 cos(0.5xαi π)

f2(x) = (1 + g(xm)) sin(0.5xαm−1π)
∏m−2

i=1 cos(0.5xαi π)...
fm(x) = (1 + g(xm)) sin(0.5xα1π)

Table A.1: List of DTLZ multi-objective optimization benchmark functions.

205

Name Function

DTLZ5

g(xm) =
∑

xi∈xm
(xi − 0.5)2

θi =
π

4(1+g(xm))(1 + 2g(xm)xi, for i = 2, 3, . . . , (m− 1)

f1(x) = (1 + g(xm)) cos(θ1π/2) . . . cos(θm−2π/2) cos(θm−1π/2)

f2(x) = (1 + g(xm)) cos(θ1π/2) . . . cos(θm−2π/2) sin(θm−1π/2)

f3(x) = (1 + g(xm)) cos(θ1π/2) . . . sin(θm−2π/2)...
fm(x) = (1 + g(xm)) sin(θ1π/2)

DTLZ6

g(xm) =
∑

xi∈xm
x0.1i

θi =
π

4(1+g(xm))(1 + 2g(xm)xi, for i = 2, 3, . . . , (m− 1),

f1(x) = (1 + g(xm)) cos(θ1π/2) . . . cos(θm−2π/2) cos(θm−1π/2)...
fm(x) = (1 + g(xm)) sin(θ1π/2)

DTLZ7

g(xm) = 1 + 9
|xm|

∑
xi∈xm

xi

h(f1, f2, . . . , fM−1, g) = m−
∑m−1

i=1

[
fi
1+g (1 + sin(3πfi))

]
f1(x1) = x1
f2(x2) = x2...

fm−1(xm−1) = xm−1

fm(x) = (1 + g(xm))h(f1, f2, . . . , fm−1, g

Table A.2: List of DTLZ multi-objective optimization benchmark functions.

206

APPENDIX B

LARGE-SCALE CONTINUOUS BENCHMARK FUNCTIONS

207

Name Function

Shifted Ackley’s

F3(x) = Fackley(x) = −20 exp (−0.2
√

1
D

∑D
i=1 x

2
i)

- exp (1
D cos(2πxi)) + 20 + e

Shifted m-rotated
Rastrigin’s

F5(x) = Frot rastrigin[x(P1 : Pm)]× 106

+ Frastriginx(Pm+1 : PD)

Frastrigin(x) =
∑D

i=1(x
2
i − 10 cos(2πxi) + 10)

D
2m shifted mrotated

Ackley’s

F11(x) =
∑ D

2m
k=1 Frot ackley[x(P(k−1)×m+1 : Pk×m)]

+ Fackley[x(PD
2
+1 : PD)]

D
m shifted m-rotated

Schwefel’s 1.2

F17(x) =
∑D

m
k=1 Fschwefel[x(P(k−1)×m+1 : Pk×m)]

Fschwefel(x) =
∑D

i=1

(∑i
j=1 xi

)2
Shifted Rosenbrock F20(x) =

∑D−1
i=1 [100(x2i − xi+1)

2 + (zi − 1)2]

Table B.1: List of CEC 2010 LSO benchmark functions. Dimension D = 1000, group size
m = 50, P : random permutation of {1, 2, . . . , D}, Frot refers to rotation of the variables
based on a D ×D orthogonal matrix [143].

208

APPENDIX C

SOLUTION SET REDUCTION RADAR GRAPHS

209

A selection of additional radar graphs for each of the problems. These are graphs
generated from a single randomly selected solution set. Since we ran each algorithm 30
times, this is only a small sampling of the total results.

Terminology:

1. OAM: Objective Archive Management

2. ES: Environmental Selection

3. Single: Refers to the one time application of OAM to a solution set

4. External: Refers to the continuous updating of an external OA throughout the
optimization process, and using the resulting OA to find overlapping solutions

210

(a) External

(b) Single

Figure C.1: DTLZ6 5 objectives NSGA2 ES

211

(a) External

(b) Single

Figure C.2: DTLZ6 5 objectives NSGA2 OAM

212

(a) NSGA3

(b) OAM Single

Figure C.3: DTLZ6 5 objectives NSGA3

213

(a) External

(b) Single

Figure C.4: DTLZ6 10 objectives NSGA2 ES

214

(a) External

(b) Single

Figure C.5: DTLZ6 10 objectives NSGA2 OAM

215

(a) NSGA3

(b) OAM Single

Figure C.6: DTLZ6 10 objectives NSGA3

216

(a) External

(b) Single

Figure C.7: WFG3 5 objectives NSGA2 ES

217

(a) External

(b) Single

Figure C.8: WFG3 5 objectives NSGA2 OAM

218

(a) External

(b) Single

Figure C.9: WFG3 10 objectives NSGA2 ES

219

(a) External

(b) Single

Figure C.10: WFG3 10 objectives NSGA2 OAM

220

(a) External

(b) Single

Figure C.11: WFG7 5 objectives NSGA2 ES

221

(a) External

(b) Single

Figure C.12: WFG7 5 objectives NSGA2 OAM

222

(a) NSGA3

(b) OAM Single

Figure C.13: WFG7 5 objectives NSGA3

223

(a) External

(b) Single

Figure C.14: WFG7 10 objectives NSGA2 ES

224

(a) External

(b) Single

Figure C.15: WFG7 10 objectives NSGA2 OAM

225

(a) NSGA3

(b) NSGA3 - OAM Single

Figure C.16: WFG7 10 objectives NSGA3

	Titlepage
	Copyright
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	Chapter 1 — Introduction
	Motivation
	Research Questions
	Contributions
	Organization
	Chapter 2 — Background
	Population-Based Algorithms
	Multi-Objective Optimization
	Many-Objective Optimization
	Multi-Objective Combinatorial Optimization
	Co-operative Co-evolutionary Algorithms
	Factored Evolutionary Algorithms
	Chapter 3 — Multi-Objective Factored Evolutionary Algorithm
	Related Work and Motivation
	Multi-Objective Factored Evolutionary Algorithm
	Multi-Objective Knapsack Problem Experiments
	Concluding Remarks
	Chapter 4 — Influence of Variable Grouping on Large-Scale Optimization
	Problem Decomposition
	Related Work and Motivation
	Decomposition Methods
	Experimental Approach
	Results
	Discussion
	Concluding Remarks
	Chapter 5 — Influence of Variable Grouping on Multi-Objective Optimization
	Related Work and Motivation
	Decomposition Methods
	Experimental Approach
	Results
	Discussion
	Concluding Remarks
	Chapter 6 — Solution Set Reduction
	Related Work and Motivation
	Objective Archive Management
	Experimental Approach
	Results
	Discussion
	Concluding Remarks
	Chapter 7 — Real World Application - Precision Agriculture
	On-Farm Precision Experimentation
	Related Work and Motivation
	Trial Design
	Optimal Prescription Maps
	Concluding Remarks
	Chapter 8 — Conclusion
	Contributions
	Future Work
	References Cited
	APPENDICES
	APPENDIX A: Multi-Objective Continuous Benchmark Functions
	APPENDIX B: Large-Scale Continuous Benchmark Functions
	APPENDIX C: Solution Set Reduction Radar Graphs

