
ON THE USABILITY OF CONTINUOUS TIME BAYESIAN NETWORKS:

IMPROVING SCALABILITY AND EXPRESSIVENESS

by

Logan Jared Perreault

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

Doctor of Philosophy

in

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

March, 2017

c©COPYRIGHT

by

Logan Jared Perreault

2017

All Rights Reserved

ii

DEDICATION

To Samantha, my loving wife

iii

ACKNOWLEDGEMENTS

I wish to thank my advisor, Dr. John Sheppard for his essential role in my

journey through the PhD program. His passion for machine learning convinced

me to join the graduate program, and his continued support enabled me to see

it through to the end. I also thank Dr. Brittany Fasy, Dr. Brendan Mumey, and

Dr. Qing Yang for their help throughout my education at MSU.

I thank the past and present members of the Numerical Intelligent Systems

Laboratory for making research an enjoyable experience. I especially thank

Monica Thornton, who acted as my co-author and friend for the vast majority

of my time spent researching at MSU. I also wish to thank Shane Strasser, who

inspired me to be a better researcher, developer, and person. This dissertation

would not be what it is today without the lengthy and unsolicited LaTeX lectures

that Shane provided.

Thank you Samantha for your endless patience during my time in the

graduate program. I recognize the burden that I placed on our family by

pursuing my degree, and I understand the sacrifices you made to give me

the opportunity. Thank you Mom and Dad for your support during my

long education, both financially and emotionally. I know you have never

fully understood the desire to pursue a PhD, which is why I appreciate your

unwavering support all the more.

Funding Acknowledgment

This work was supported in part under the NASA contract number

NNX14CJ45C, QSI Job number SR1429.

iv

TABLE OF CONTENTS

1. INTRODUCTION ..1

1.1 Motivation ...3
1.2 Contributions ...6
1.3 Organization ..8

2. BACKGROUND... 11

2.1 Bayesian Networks.. 11
2.2 Dynamic Bayesian Networks.. 15
2.3 Markov Processes ... 18
2.4 Continuous Time Bayesian Networks ... 25

2.4.1 Representation and Interpretation... 26
2.4.2 Inference and Learning Algorithms.. 31
2.4.3 Extensions and Applications ... 36

3. NON-EXPONENTIAL PARAMETRIC DISTRIBUTIONS 40

3.1 Background.. 40
3.1.1 Phase-Type Distributions ... 41
3.1.2 Parametric Distributions .. 43

3.2 Related Work ... 46
3.3 Embedding Process... 47
3.4 Learning Phase-Type Distributions .. 50

3.4.1 Kullback-Leibler Divergence ... 51
3.4.2 Optimization ... 53

3.5 Experiments ... 56
3.5.1 Optimization Methods.. 56
3.5.2 Number of Phases .. 58
3.5.3 Informed Initialization.. 61
3.5.4 Discussion ... 62

3.6 Parametric Representation and Interpretation .. 63
3.7 Summary ... 65

4. CONTINUOUS TIME DECISION NETWORKS.. 67

4.1 Background.. 67
4.1.1 Decision Networks.. 67
4.1.2 Factored Performance Functions ... 69
4.1.3 Related Work .. 72

4.2 Continuous Time Decision Networks .. 72

v

TABLE OF CONTENTS - CONTINUED

4.2.1 Drug Effect Decision Network ... 74
4.2.2 Multi-Objective Optimization using CTDNs 77

4.3 Experiments ... 79
4.3.1 Drug Optimization ... 79
4.3.2 Vehicle Fleet Optimization ... 82

4.4 Summary ... 88

5. COMPACT REPRESENTATIONS .. 90

5.1 Background.. 90
5.2 Motivation ... 91

5.2.1 Related Compact Representations ... 92
5.3 Distance Metrics for Transition Distributions ... 94

5.3.1 Symmetric Kullback-Leibler Divergence....................................... 95
5.3.2 Hellinger Distance .. 96
5.3.3 Kolmogorov Metric .. 97
5.3.4 Applying Distance Metrics to Intensity Matrices 98

5.4 Hierarchical Clustering of Intensity Matrices .. 98
5.4.1 Clustering Experiments .. 102

5.5 Mapped Conditional Intensity Matrices.. 105
5.5.1 Context-Independent Equivalence ... 108
5.5.2 MCIM Experiments ... 115
5.5.3 Unstructured Data Experiments.. 117
5.5.4 Structured Data Experiments ... 122

5.6 Tree-Structured Conditional Intensity Matrices..................................... 126
5.6.1 TCIM Experiments .. 130
5.6.2 Unstructured Data Experiments.. 131
5.6.3 Structured Data Experiments ... 134

5.7 Comparison Between MCIMs and TCIMs .. 136
5.8 Summary ... 143

6. CONTINUOUS TIME DISJUNCTIVE INTERACTION............................. 144

6.1 Background.. 144
6.2 Continuous Time Disjunctive Interaction.. 146

6.2.1 Boolean Disjunctive Interaction .. 149
6.2.2 Generalized Disjunctive Interaction ... 152

6.3 Converting DCIMs to CIMs .. 155
6.4 Approximate Inference with Disjunctive Interaction 158
6.5 Experiments ... 164

vi

TABLE OF CONTENTS - CONTINUED

6.5.1 Expectation Comparisons ... 164
6.5.2 Scalability ... 170

6.6 Summary ... 177

7. APPLICATIONS .. 179

7.1 Background.. 179
7.1.1 Notation.. 180
7.1.2 D-matrix ... 181
7.1.3 Fault Trees .. 182

7.2 Deriving CTBNs from D-matrices .. 184
7.2.1 Network Structure.. 184
7.2.2 Parameterization.. 185

7.3 Deriving CTBNs from Fault Trees ... 190
7.3.1 Pruning Process ... 190
7.3.2 Network Structure.. 192
7.3.3 Parameterization.. 194
7.3.4 Merging Derived Models... 197

7.4 Vehicle System Demonstration... 198
7.4.1 Structure Derivation... 201
7.4.2 Parameterization.. 207

7.5 Usage and Decision Making... 209
7.5.1 Scenarios ... 210
7.5.2 Performance Based Logistics ... 214

7.6 Conclusion ... 217

8. CONCLUSION... 220

8.1 Contributions ... 220
8.2 Future Work... 222

REFERENCES CITED.. 225

vii

LIST OF TABLES

Table Page

3.1 Comparison of Optimization Algorithms... 58

4.1 Repair Costs for Vehicle Components ... 85

5.1 Example Clustering of a CIM .. 101

6.1 DCIM Boolean state results. .. 167

6.2 DCIM General State Results ... 169

7.1 Table of Notation.. 180

7.2 Summary of Faults.. 199

7.3 Summary of Tests ... 200

viii

LIST OF FIGURES

Figure Page

2.1 Bayesian network sprinkler example. .. 14

2.2 First-order dynamic Bayesian network sprinkler example. 17

2.3 The drug effect example network describing the influence of
a drug on a patient. .. 29

3.1 PDFs for various parameterizations of Weibull distributions. 45

3.2 PDFs for various parameterizations of Lognormal distributions. 46

3.3 PT distribution fitted to a Weibull distribution................................... 51

3.4 KL-divergence values for approximating parameterizations. 59

3.5 KL-divergence comparison given number of phases. 60

3.6 Effect of informed initialization on KL-divergence. 62

4.1 Oil wildcatter drilling decision problem .. 69

4.2 Example drug effect decision network. .. 76

4.3 Drug performances as a function of doses. .. 81

4.4 WeightGain performance as a function of Comfort. 82

4.5 Vehicle decision network. ... 83

4.6 Cost performance as a function of VehiclePerformance......................... 87

5.1 Intensity matrix clustering. .. 101

5.2 Consistent distance metric experiment.. 103

5.3 Normalized distance metric experiment. ... 104

5.4 Three-parent network. ... 106

5.5 Three-parent network after inserting mapping variable. 107

5.6 The drug effect example network.. 113

5.7 Four-parent network before and after inserting mapping variable........ 114

5.8 Network structure for CTBNs used throughout experiments. 118

5.9 Impact of approximation threshold on MCIM representation.............. 119

ix

LIST OF FIGURES - CONTINUED

Figure Page

5.10 Impact of network structure on MCIM representation. 121

5.11 Impact of merge set sizes on MCIM representation............................ 123

5.12 Impact of number of merge sets on MCIM representation. 125

5.13 Tree-structured CIM for node X. ... 128

5.14 Structure decomposition using a tree-structured CIM. 129

5.15 Impact of approximation threshold on TCIM representation. 132

5.16 Impact of network structure on TCIM representation. 133

5.17 Impact of merge set sizes on TCIM representation. 135

5.18 Impact of number of merge sets on TCIM representation. 136

5.19 CIM clustering representations Venn diagram. 137

5.20 Compact structures for CIM clustering. .. 138

5.21 Tree-structured CIM ... 141

6.1 Generic Parent-Child Relationship ... 145

6.2 Conceptual disjunctive network structure. .. 153

6.3 Disjunctive interaction experiment network structure. 165

6.4 Portion of CIM computed as a function of samples............................ 172

6.5 Portion of CIM computed as a function of length of time................... 174

6.6 Portion of CIM computed as a function of intensity magnitudes......... 176

7.1 Example fault tree. ... 183

7.2 D-matrix for the vehicle model. The rows represent tests
while the columns represent potential faults. Nonzero entries
in the matrix indicate that the test associated with the row
monitors the fault associated with the column. 202

7.3 Fault tree for the vehicle model.. 204

7.4 Vehicle model. .. 206

x

LIST OF FIGURES - CONTINUED

Figure Page

7.5 Cooling subsystem with a decision node. .. 212

7.6 Axle subsystem with a decision node. ... 216

7.7 Power subsystem with a decision node.. 217

xi

ABSTRACT

The Continuous Time Bayesian Network (CTBN) is a model capable of com-
pactly representing the behavior of discrete state systems that evolve in continuous
time. This is achieved by factoring a Continuous Time Markov Process using the
structure of a directed graph. Although CTBNs have proven themselves useful in a
variety of applications, adoption of the model for use in real-world problems has been
limited. We believe this is due in part to limitations relating to scalability as well as
representational power and ease of use. This dissertation attempts to address these
issues.

First, we improve the expressiveness of CTBNs by providing procedures that
support the representation of non-exponential parametric distributions. This allows
for the specification of any positive and continuous parametric distribution, which
increases the number of processes that can be described using CTBNs. We
also propose the Continuous Time Decision Network (CTDN) as a framework for
representing decision problems using CTBNs. This new model supports optimization
of a utility value as a function of a set of possible decisions. The CTDN further
improves expressiveness of CTBNs, thereby extending the set of problems that can
be addressed using this model.

Next, we address the issue of scalability by providing two distinct methods
for compactly representing CTBNs by taking advantage of similarities in the model
parameters. These compact representations are able to mitigate the exponential
growth in parameters that CTBNs exhibit, allowing for the representation of more
complex processes. We then introduce another approach to managing CTBN
model complexity by introducing the concept of disjunctive interaction for CTBNs.
Disjunctive interaction has been used in Bayesian networks to provide significant
reductions in the number of parameters, and we have adapted this concept to provide
the same benefits within the CTBN framework.

Finally, we demonstrate how CTBNs can be applied to the real-world task of
system prognostics and diagnostics. We show how models can be built and parame-
terized directly using information that is readily available for diagnostic models. We
then apply these model construction techniques to build a CTBN describing a vehicle
system. The vehicle model makes use of some of the newly introduced algorithms
and techniques, including the CTDN framework and disjunctive interaction. This
extended application not only demonstrates the utility of the novel contributions
presented in this work, but also serves as a template for applying CTBNs to other
real-world problems.

1

CHAPTER ONE

INTRODUCTION

In a technology-driven society, there are many complex tasks that must be

performed routinely to support daily operations. Consider a fleet of multi-purpose

all-terrain vehicles designed to serve a military operation. The vehicles may

perform a variety of tasks, including reconnaissance, transportation of supplies,

and redistribution of personnel. These services are crucial for proper logistical

support, and in some cases may even be necessary for mission success. Given the

importance of these vehicles, it is imperative that at least a portion of the fleet

remain operational. In pursuit of this goal, it is first desirable to understand the

behavior of the components that make up the vehicles, and how they interact. These

interactions can be very complex, and to make matters more difficult, the state of the

components may change over time. Although reasoning about a system of dynamic,

interdependent components is a challenging task, it is one worth pursuing.

The need to understand and reason about complex and changing systems extends

to a variety of domains. Long-distance travel often relies on highly complex aircraft,

and even automobiles are becoming more advanced in their capabilities. Military

tools and weapon systems are evolving constantly to improve safety. Lab equipment

for medical or production environments is also improved continually to reflect the

current state of the art. As the complexity of systems and our dependence on them

increases, ensuring their reliability becomes critical.

2

One approach to reasoning about complex systems is to employ a modeling

technique. When working with systems that change over time, temporal models are

used to capture the dynamic aspect of the components. Although there exist many

types of temporal models, some are better suited for specific tasks than others. The

correct choice of model often depends on whether or not the states of the system are

discrete or continuous. For instance, the bendix in the starter of a vehicle is typically

in either a working or failed state, and modeling the component as a continuous

variable would not make much sense. Additionally, temporal models handle the

notion of time differently. Time may be represented either implicitly or explicitly

and can be treated as a discrete or continuous variable. In this dissertation, we

focus on the subset of models where time is represented continuously, and states are

represented discretely.

One temporal model that meets the discrete-state continuous-time criteria is

the Continuous Time Markov Process (CTMP) [87]. This model works by describing

the initial probability distribution over a set of discrete states, along with transition

rates that describe how the process moves between these states as a function of time.

CTMPs are representationally powerful models that have been applied successfully

to the task of temporal modeling. Unfortunately, these models do not scale well. The

that space of the process increases exponentially with the number of variables that

are being modeled, making it difficult or impossible to describe large systems.

To manage the issue of exponential complexity, a CTMP can be factored by

taking advantage of structural independencies. One such factored representation is

Kronecker Algebra, which represents the transition rates for a CTMP compactly as

a sum of Kronecker products [11]. Another possibility is to use a decision diagram,

which is a model capable of encoding generic functions using a directed graph, and

can be used to encode a CTMP by treating each potential transition rate as the

3

domain of the function [43]. Although these are both valid compact representations,

there is relatively little research available in the literature describing how to reason

efficiently over these models. Instead, our focus lies in the Continuous Time Bayesian

Network (CTBN), which factors a CTMP compactly using a directed graph structure

[84]. The nodes in the graph represent variables, each of which are parameterized

individually to describe transition behavior. CTBNs have received more attention in

the literature, and a number of efficient inference algorithms and useful extensions

have been developed as a result.

1.1 Motivation

The potential of many technological advancements remained initially unappre-

ciated for one reason or another. One historically recurring issue is a simple failure

to communicate and disseminate. The mere development of new technology is not

sufficient to ensure its adoption; the development must be made known to the public

before it is to achieve acclaim. Fortunately, the introduction of printed text, technical

conferences, and web technologies have greatly reduced the difficulties associated with

relaying new discoveries. Assuming proper notoriety in the literature, other limiters

with respect to adoption of a theoretical technology often involve a shortcoming

that prevents practical usage. This certainly holds true for many algorithmic

advancements in computer science, especially in the field of machine learning, which

often targets problems traditionally considered computationally intractable.

As an example, consider the artificial neural network. The concept of neural

networks has existed since the early days of computing but was viewed as a theoretical

novelty for the first few decades. In the late 1980s, the computational limitations of

traditional computing techniques were exposed as new problems were attempted, and

focus shifted back to neural networks as a potential solution [5]. Substantial funding

4

was offered for novel work in the area, largely in the form of a proposal request from

the Defense Advanced Research Projects Agency (DARPA) [69]. As a result, a variety

of training algorithms were developed to aid in creating neural networks. Of particular

note is the backpropagation algorithm, which was discovered and rediscovered several

times [90,143], until finally being popularized by Rumelhart, Hinton and Willaims in

the mid-1980s [112]. This training algorithm provided a tractable means of training

neural networks, which paved the way for many practical applications, especially

over the next ten years [144,145]. The rediscovery of the backpropagation algorithm

demonstrates the need for the continued exchange of ideas. Furthermore, the delay

in neural network adoption outside of a theoretical context shows that progress can

be impeded when gaps in the literature exist that make for excessive complexity or

ineffectiveness of an algorithm.

The convolutional neural network is another area of study in machine learning

whose progress was forestalled after its initial proposal [68]. More recently however,

a breakthrough was made in the literature, and convolutional neural networks were

shown to substantially outperform prior state-of-the-art classification accuracies [64].

In this case, the breakthrough can be attributed to a more efficient implementation

that distributed training computations over multiple GPUs. Prior to this type

of implementation, the complexity of convolutional neural networks was a limiting

factor and prevented wide-spread adoption of the model. Using parallel computing,

convolutional neural networks are now the current state of the art for image

classification tasks, and have been widely adopted by organizations like Google.

Since the burden of complexity has been alleviated and practical usage has been

demonstrated, a substantial number of works have been published in an effort to

further improve convolutional neural networks [47,48,122]. This observed publishing

5

behavior shows that not only can research enable practical application, but a

demonstration of a real-world application can also spur additional research as well.

The CTBN is a probabilistic temporal model capable of representing complex

systems. Inference algorithms have been developed that can answer sophisticated

queries within a relatively short period of time [25, 38, 83]. Additionally, a variety

of extensions have been proposed that improve or supplement representational

capabilities, query retrieval, and evidence types [82,127,132,136]. Despite this, there

have been relatively few large-scale, real-world applications of CTBNs documented

in the literature since its introduction in 2002. Why then does interest in CTBNs

remain so largely theoretical?

One reason may be that despite the compact representation, CTBN complexity

can still be unmanageable when applied to large systems. Although CTBNs

achieve their compact representation by parameterizing each variable separately,

parameterization of even a single variable can be a highly complex task. The issue

is that the number of parameters required to specify a variable X is exponential in

the number of variables that X directly depends on. In the worst case, a variable

might depend on all other variables, resulting in complexity that is equivalent to

an unstructured Markov process for the system. In general, for nodes with a large

number of dependencies, the factored representation is less effective, and complexity

of the model may make storing and reasoning over the model intractable.

Another potential inhibitor to the wide-spread adoption of CTBNs is restric-

tive representational capabilities. CTBNs naturally represent transition events as

exponentially distributed random variables. While this may be sufficient for some

applications, many real-world systems exhibit transitions that follow non-exponential

distributions. The literature provides extensions to the CTBN framework that allow

more complex distributions to be learned from data, but little has been done to show

6

how one might represent other parametric distributions and incorporate them into an

existing CTBN.

The motivating factors that drive the work presented in this dissertation are to

address the issues of scalability and representational power. The intent is to provide

more compact CTBN representations that can be used when working with large,

inter-dependent, real-world systems that may follow non-exponential parametric

distributions. We hope that these contributions, along with a demonstration of how

they might aid in modeling complex systems, will help to promote more wide-spread

adoption of CTBNs for use in practical applications.

1.2 Contributions

Each contribution of this dissertation marks an advancement toward either the

representational capabilities of CTBNs or the scalability of the model representation.

These advancements share the common goal to support CTBN adoption in various

domains. The most important contributions are listed below with citations to any of

our existing published work in the area.

• We formalize the embedding process that inserts phase-type distributions into

a CTBN model [99]. This provides the community with a mathematically

rigorous procedure for representing non-exponential distributions within the

CTBN framework.

• We present a method for learning phase-type distributions that closely approxi-

mate known non-exponential parametric distributions and empirically evaluate

the effect of several factors on the approximation quality [97]. We then argue for

a semantic interpretation of CTBN transition parameters that best describes

7

the process in the presence of phase-type embedding. The result is a well-

defined process for manually parameterizing and understanding CTBNs with

non-exponential transition distributions.

• We introduce the continuous time decision network (CTDN) as a framework

for optimal decision making in CTBNs [131]. Optimization is performed

over a function that maps a set of discrete inputs to a value obtained by

running inference over the model. The entire function, including all inputs,

is represented directly using standard CTBN semantics.

• We derive distance metrics for quantifying the similarity between variable

transition behavior. These metrics are used as the fundamental operators in a

hierarchical clustering algorithm that identifies which parameters are exactly or

approximately equivalent to one another for the purpose of producing compact

representations.

• We develop a compact CTBN representation scheme based on discrete functions

or compositions of discrete functions that map a large parameter space into a

smaller space. We then show how these function mappings can be achieved

using standard CTBN semantics.

• We develop a compact CTBN representation scheme based on decision trees

that is able to capture context independence. We then show how the tree

representation can be converted to use standard CTBN parameterization.

• We introduce the concept of disjunctive interaction for CTBNs, both for

the binary and general case [96, 101]. This allows for a compact CTBN

representation in cases where a set of variables act disjunctively on a dependent

variable.

8

• We demonstrate how these contributions may be used when applying CTBNs

to real-world problems and introduce several techniques for developing models

that represent physical systems for the purpose of prognostics and health

management (PHM) [98,100,102].

1.3 Organization

This section describes the organization of the remainder of this dissertation and

provides a brief description of the content in each chapter.

Chapter 2 provides the background information necessary to understand the

work presented in this dissertation. We begin by discussing Bayesian Networks and

Dynamic Bayesian Networks, which are related probabilistic graphical models. We

then describe the Continuous Time Markov Process, which is the model upon which

CTBNs are founded. Next we provide an overview of CTBNs: the model used

throughout the research presented in this dissertation.

Chapter 3 starts by providing background information on parametric distribu-

tions that are used frequently to describe transitions in temporal systems. We then

discuss phase-type distributions, which have previously been used to approximate

non-exponential distributions in CTBNs. We provide a formal description of how

to embed these phase-type distributions into the model and demonstrate how non-

parametric distributions can be learned. This allows non-exponential parametric

distributions to be modeled within the CTBN framework.

Continuous Time Decision Networks and optimization are presented in Chapter

4. This builds on work done in the area of CTBN performance functions. The notion

of decision nodes is introduced, and a demonstration of how to use these nodes for

optimization is presented.

9

Chapter 5 starts by deriving distance measures and a clustering algorithm for

the parameters in a CTBN. The chapter continues by introducing two compact

representation schemes. The first is based on discrete functions or convolutions of

discrete functions that map parent state combinations to a smaller domain. Next,

a compact representation scheme based on decision trees is presented, providing an

alternative to the discrete function representation. The chapter concludes by showing

that there are CTBN parameterizations that can be represented fully using either

discrete functions, decision trees, both, or neither.

In Chapter 6, we introduce disjunctive interaction for CTBNs. This allows for a

potentially significant reduction in the number of parameters that need to be specified

for a given CTBN. We then show how existing inference algorithms can be adapted

to use disjunctive interaction by computing transition rates on the fly. Disjunctive

interaction simplifies the modeling process and can reduce the space-complexity of the

model, as well as the expected runtimes for the corresponding inference procedures,

which may enable the representation of more complex systems.

Chapter 7 describes how CTBNs can be used in the context of PHM. We

start by providing background on diagnostic models referred to as D-Matrices. We

then show how a D-Matrix can be used to derive the structure of a prognostic

CTBN automatically. We then show how the resulting CTBN can be parameterized

using failure and repair rates, along with false alarm and non-detect values. Next,

background is provided on fault trees, and it is shown how to derive CTBNs

automatically from these models. The process for combining the two types of derived

CTBN models is then described. Finally, an example CTBN is introduced that makes

use of the described derivation algorithms, along with the other features discussed

throughout this dissertation.

10

Chapter 8 concludes the work by summarizing previous chapters and the

contributions made by each. This chapter continues by discussing how these

contributions impact the existing body of literature for CTBNs and how this might

improve work in CTBNs going forward. The chapter and this dissertation ends with

a discussion on future work that we hope to pursue in the near future.

11

CHAPTER TWO

BACKGROUND

This chapter provides the background necessary to set the context for our

contributions. We start by describing Bayesian Networks and Dynamic Bayesian

Networks, which are probabilistic graphical models that share many features with

CTBNs. Next we discuss Continuous Time Markov Processes, which form the

mathematical foundation for CTBNs. Finally we provide background on CTBNs,

the model on which we base our work throughout the remainder of this dissertation.

2.1 Bayesian Networks

The probability distribution over a set of random variables X is referred to as

the joint probability distribution. Although this distribution is rich with information,

its size is exponential in the number of variables, making it infeasible to work with

the information for most practical applications. The Bayesian Network (BN) is a

probabilistic graphical model capable of describing the joint probability distribution

over X compactly [61]. This compact representation is achieved by taking advantage

of conditional independence between variables in X. Relationships between variables

are encoded using a graph structure G, such that the nodes correspond to variables,

while directed edges indicate that a node is conditioned on its parents in the graph. To

maintain a valid probability distribution, G is constrained to be acyclic. To formalize,

the notion of independence in random variables must first be provided.

12

Definition 2.1.1 (Independence). Two random variables X1 and X2 are independent

if and only if

P (X1, X2) = P (X1)P (X2).

That is, the joint probability of two independent variables is equal to the

product of the probability of the marginals. When two variables are independent

of one another, then obtaining evidence for one of the variables will not change the

distribution for the other variable. This can be seen by expanding the conditional

probability formula, and applying Definition 2.1.1:

P (X1|X2) =
P (X1, X2)

P (X2)
=
P (X1)P (X2)

P (X2)
= P (X1).

Although this would greatly simplify the process of identifying probability distri-

butions in a complex system of variables, it is unlikely that independence between

variables will occur. Instead, it is more reasonable to expect a system to exhibit

conditional independence, defined as follows.

Definition 2.1.2 (Conditional Independence). Two random variables X1 and X2 are

conditionally independent given a set of random variables Y if and only if

P (X1, X2|Y) = P (X1|Y)P (X2|Y).

Using the same technique as before, we find that P (X1, X2|Y) = P (X1|Y).

Intuitively, two variables are conditionally independent if they exhibit independence

when conditioned on evidence applied to another set of variables. This means that

although X1 may affect X2 indirectly, this affect is mediated by the set of variables

Y. Conditional independence is the underlying concept that enables the BN to factor

the joint probability distribution over a set of variables.

13

Definition 2.1.3 (Bayesian Network). A Bayesian Network B is a factored rep-

resentation of a joint probability distribution over a set of random variables X =

{X1, X2, · · · , Xn}. The model consists of two parts: a graph structure G and a set of

parameters P . Graph G is a directed acyclic graph with nodes corresponding to the

variables in X. Parameterization P is a set of conditional probability distributions

(CPDs) for each Xi ∈ X, providing the conditional distribution P (Xi|Pa(Xi)), where

Pa(Xi) is the set of parents for node Xi in graph G.

The parameters P in a BN are sufficient to describe the joint probability

distribution over the set of variables X. The full joint probability distribution can be

obtained by combining the conditional probability distributions using the chain rule:

P (X) =
n∏
i=1

P (Xi|Pa(Xi)). (2.1)

In other words, the BN factors the joint probability distribution into a product of

smaller, more manageable distributions over each variable and its parents in the

graph. This compact representation is able to represent the same information as its

unstructured counterpart by making use of the graph structure G, which encodes

the independencies in the original probability distribution. To demonstrate the BN

factorization, consider the following example borrowed from Pearl [92].

Example 2.1.1. Sprinkler Bayesian Network

Consider a system of four discrete variables describing the interaction of a sprin-

kler and the surrounding environment: X = {Cloudy, Sprinkler,Rain,WetGrass},

where each variable has two states True (T) and False (F). Variables indicate whether

or not the sky is cloudy, the sprinkler is on, it is raining, or the grass is currently wet

respectively. Variables Sprinkler and Rain depend directly on Cloudy, while variable

14

Cloudy

Sprinkler Rain

WetGrass

Cloudy T F

S
p
ri

n
k
le

r T 0.1 0.5
F 0.9 0.5

Cloudy T F

R
ai

n T 0.8 0.2
F 0.2 0.8

C
lo

u
d
y T 0.5

F 0.5

Sprinkler T F
Rain T F T F

W
et

G
ra

ss T 0.99 0.9 0.9 0.0
F 0.01 0.1 0.1 1.0

Figure 2.1: Bayesian network sprinkler example.

WetGrass depends directly on both Sprinkler and Rain. The graph structure G and

conditional probability distributions P are given by Figure 2.1.

The joint probability distribution could be specified for the sprinkler model

by assigning a probability to each unique combination of state instantiations of

the four variables, resulting in 24 = 16 parameters. While this may be possible

for small models, the exponential increase in parameters makes this unstructured

representation intractable for all but the most trivial problems. A BN provides a

compact representation by factoring the full joint distribution using the chain rule

from Equation 2.1. For the sprinkler example, the full joint distribution is factored

as follows, where each variable is represented using its first letter:

P (C, S,R,W) = P (C)P (S|C)P (R|C)P (W |S,R).

This requires only 20 + 21 + 21 + 22 = 9 free parameters, one for each column in the

conditional probability tables from Figure 2.1. Note that there is actually a total of 18

parameters in the sprinkler example, but only half of them are free parameters, with

the other half being determined implicitly by the discrete probability distribution.

15

Some probabilities can be retrieved directly from the BN, such as the likelihood that

the grass is wet given that the sprinkler is on and it is not raining: P (W = T |S =

T,R = F) = 0.9. Other probabilities, such as P (C = T, S = T |W = F), the

probability that it is cloudy and the sprinkler is on given that the grass is not wet,

are not encoded directly by the network but can be obtained by performing inference

over the network.

Despite being a representationally powerful model, the BN is only capable of

representing static distributions. When working with systems that change through

time, a temporal model must be employed to reason about distributions through

time. The remaining sections in this chapter discuss models capable of representing

a system’s state distribution as a function of time.

2.2 Dynamic Bayesian Networks

The Dynamic Bayesian Network (DBN) is an extension to the BN discussed in

the previous section that allows for the representation of a system that changes over

time [27, 28]. Essentially, a DBN is a collection of BNs that each represent the state

of a system at a different point in time. To encode the expected dynamics of the

system, edges are added from the nodes in one BN to the corresponding nodes in

a BN representing some time in the future. These edges ensure that the state of a

variable depends directly on the state of that variable at a previous point in time.

Definition 2.2.1 (Dynamic Bayesian Network). Let Xi be a set of random variables

at some time t = i, and let Z = {X0,X1,X2, . . .} be an infinite series of these sets

at fixed time intervals. Then a Dynamic Bayesian Network is a specialized Bayesian

Network that provides a factored representation of a joint probability distribution over

each set of random variables Xi ∈ Z. The model consists of two parts, a Bayesian

16

Network B0 over variables X0, and a special Bayesian Network Bk that specifies a

network over some set of variables Xk conditioned on variables in prior networks Xj,

where j < k. The network Bk may have intra-time-slice arcs that connect variables

within Xk, or inter-time-slice arcs that connect variables from some Xj to Xk.

Note that in general, the nodes in a DBN can depend on any previous timestep.

For instance, a variable from timestep k may depend on a variable from timestep k−3.

As with any recursively defined series, this implies that the first three BNs must be

specified before the recursive definition can be employed, or else assumptions must be

made about the absence of these dependencies. Furthermore, modeling dependencies

between two timesteps that are relatively far away can be computationally expensive,

and often unnecessary from a representational standpoint. As a result, DBNs often

impose the restriction that a BNBk can only depend on nodes in the previous timestep

Bk−1. This is referred to as a first-order DBN, which factors the joint probability

distribution as follows:

P (X0, . . . ,Xn) = P (X0)
n∏
t=0

P (Xt+1|Xt).

Standard inference algorithms designed for BNs can be tailored to work with

DBNs as well. The resulting model is capable of answering queries about the state

distribution at any point in time that is explicitly represented by one of the contained

BNs. Going forward, the notation P (X(t)) is used to indicate the probability

distribution over variable X at time t. For instance, it may be necessary to obtain the

probability distribution over node X at some time t = 100, or P (X(100)). Inference

can achieve this by first performing inference over the initial variables X0, and then

using this information to perform inference over X1. This process, referred to as

“unrolling”, is repeated 100 times until timestep X100 is reached. It is in this way

17

Cloudy

Sprinkler

Rain

WetGrass

Cloudy

Sprinkler

Rain

WetGrass

. . .

. . .

. . .

. . .

Cloudy

Sprinkler

Rain

WetGrass

G0 G1 Gn

Figure 2.2: First-order dynamic Bayesian network sprinkler example.

that the DBN is able to work with an infinite sequence of nodes, in that nodes are

only considered as they are necessary for inference.

Example 2.2.1. Sprinkler Dynamic Bayesian Network

Consider a system of four discrete variables describing the interaction of a sprin-

kler and the surrounding environment: X = {Cloudy, Sprinkler,Rain,WetGrass},

where each variable has two states True (T) and False (F). Variables indicate whether

or not the sky is cloudy, the sprinkler is on, it is raining, or the grass is currently wet

respectively. Variables Sprinkler and Rain depend directly on Cloudy, while variable

WetGrass depends directly on both Sprinkler and Rain. Furthermore, the state of

these variables change in discrete time, such that each variable also depends on its

own previous state. The graph structure for the corresponding DBN is shown in Figure

2.2.

DBNs have been applied to a variety of domains that require temporal reasoning.

In prognostics, failure and repair rates are encoded by the model, providing a means

to predict the likelihood of failure at some time in the future [12,33,71]. These failure

probabilities can then be used to perform proactive maintenance [72,78]. DBNs have

18

also been applied to variety of other fields, including bioinformatics [32,154], medical

prognostics [36,89], and computer vision [30,91].

Despite their demonstrated success, there are limitations that make the DBNs

impractical for some applications. By nature, DBNs implicitly represent time as a

discrete set of timesteps. As such, queries cannot be performed at times “between”

these timesteps. Furthermore, unrolling can be an expensive procedure when the

desired timestep t is high. For cases where events do not occur at uniform intervals,

choosing a time granularity can be a difficult tradeoff between complexity and

representational accuracy. In cases like these, it makes more sense to represent time

directly as a continuous random variable. The remaining two sections in this chapter

discuss continuous time models that avoid the discrete time assumption made by

DBNs.

2.3 Markov Processes

An alternative to DBNs that allows for a continuous representation of time is the

Continuous Time Markov Process (CTMP) [6]. This model describes the distribution

over a continuous time random process, which is a set of random variables X defined

as a function of time. Roughly speaking, X can be thought of as a discrete state

variable in a BN, where each state is now a random variable dependent on time

rather than a fixed value.

Definition 2.3.1 (Continuous Time Markov Process). Let X be a continuous time

random process, consisting of a set of variables X that change as a function of

continuous time. A CTMP is a model over X consisting of two parts: an initial

distribution PX(0) and a transition intensity matrix QX defined over the states of X.

Each entry qi,j in row i, column j of the matrix QX defines the non-negative intensity

19

with which the process will transition from state xi to state xj as a function of time.

The diagonal entry for some row i and column i is denoted qi,i or simply qi, and is

constrained to be the negative sum of the rest of the row. Formally, qi,i = −
∑

j 6=i qi,j.

Note that the constraint on the diagonals ensures that each row sums to 0.0,

which is an attribute of the matrix that facilities inference options. If a process X has

n states, then the initial distribution P is represented using a normalized n-length

vector of probabilities, while the transition intensity matrix is represented using an

n× n matrix of intensities. Such a CTMP is shown below.

PX(0) =
[
p1 p2 · · · pn

]

QX =



x1 x2 · · · xn

x1 q1,1(t) q1,2(t) · · · q1,n(t)

x2 q2,1(t) q2,2(t) · · · q2,n(t)

...
...

...
. . .

...

xn qn,1(t) qn,2(t) · · · qn,n(t)


The process is expected to transition from some state xi to some state xj with

an intensity of qi,j(t). This indicates that the transition rate may change as a function

of time, meaning that the process may transition with a higher or lower intensity at

a different points in time. There is a more restrictive class of CTMPs that make the

assumption that intensities do not depend on time, and are instead constant. More

formally, qi,j(0) = qi,j(t) for all t ∈ [0,∞). This is referred to as a homogeneous

Markov process, and for the remainder of this dissertation, any reference to a CTMP

is assumed to be homogeneous. Conversely, the rates in an inhomogeneous intensity

matrix change as a function of time. The matrix QX can now be rewritten in terms

of fixed intensities, which may also be referred to as rates.

20

QX =



x1 x2 · · · xn

x1 q1,1 q1,2 · · · q1,n

x2 q2,1 q2,2 · · · q2,n
...

...
...

. . .
...

xn qn,1 qn,2 · · · qn,n


The transition behavior of process X can be described using exponential

distributions parameterized using the intensities from matrix QX . Let X start in

a state of xi at time t = 0. The amount of time that X stays in state xi before

transitioning to another state is exponentially distributed with parameter qi,i(t). The

probability density function (PDF) fqi,i and the cumulative distribution function

(CDF) Fqi,i are given below. These functions provide the likelihood that the process

X remains in the same state xi from time t = (0, t].

fqi,i(t) = qi,i exp(−qi,it), t ≥ 0

Fqi,i(t) =

∫
fqi,i(t)dt = 1− exp(−qi,it), t ≥ 0

Example 2.3.1. Barometric Pressure CTMP

Let B be a continuous time random process for barometric pressure. A CTMP

may be used to model this process using three states { b0 = falling, b1 = steady, b2 =

rising }. Using hours as the time unit, such a CTMP is given as follows.

PB =
[
0.0 0.2 0.8

]

21

QB =


−0.21 0.20 0.01

0.05 −0.10 0.05

0.01 0.20 −0.21


The CTMP in the barometric pressure example provides all the information

necessary to model the state of the process through time. Note that the process is

expected to start either in state b2 (rising), or possibly b1 (steady). If the process is in

state b2 (rising) at time t = 0, then the entry q2,2 ∈ QB indicates that the process will

stop rising with an intensity of 0.21. It is expected that the process will stop rising in

t = 1/0.21 ≈ 4.76 hours. Using the CDF, the probability of transitioning to another

state by time t = 3.5 hours in the future is F0.21(3.5) = 1 − exp(−0.21 · 3.5) ≈ 0.52.

Upon leaving the rising state, the process will enter the steady state with a probability

of 0.2/0.21 ≈ 0.95 or to the falling state with probability 0.01/0.21 ≈ 0.05.

One factor that has a strong influence on the behavior of a process is whether

or not there exist absorbing states.

Definition 2.3.2 (Absorbing State). A state xi in a CTMP X is said to be absorbing

if and only if ∀j(qi,j = 0).

In other words, if the transition intensity to all other states is zero, then the state

is said to be absorbing. Note that if all of the intensities in a row of an intensity matrix

are zero, then the diagonal is constrained to a value of zero as well. Once a process

enters an absorbing state, it will remain there permanently. Let xi be an absorbing

state in process X. If X(s) = xi, then X(s + t) = xi for all t ∈ [0,∞). If a state

is not absorbing, then it is considered transient. Absorbing states strongly influence

the steady-state distribution, and properties of absorbing and transient states are

leveraged during our work with phase-type distributions in Chapter 3.

22

It is worth mentioning that there are two equivalent approaches to parameter-

izing the transition behavior for a process. The first is referred to as a pure intensity

parameterization and specifies transition intensities using a single intensity matrix

Q. The barometric pressure example uses a pure intensity parameterization. This

type of parameterization lends itself to a “racing exponentials” interpretation, which

views each of the off-diagonal entries in the row of an intensity matrix as the rates

for separate exponential distributions. For instance, consider the barometric pressure

system where the process starts in state b0. The next state can be determined by

“racing” two exponential distributions with rates q0,1 = 0.2 and q0,2 = 0.01, which

can be accomplished by sampling from each distribution and choosing the transition

time that comes first.

A second representation of the parameters is referred to as the mixed intensity

parameterization. In this representation, a homogeneous CTMP X is represented

using two sets of parameters q and θ. Each qi ∈ q is a rate value used to parameterize

the exponential distribution associated with the next transition time for state xi,

while each θi ∈ θ is a discrete probability distribution over the remaining states

xj 6=i. In other words, q provides the information about when the process transitions,

while θ indicates where. This type of parameterization often uses a sojourn time

interpretation, which first identifies the amount of time spent in a state xi, and then

identifies the location of the transition using the discrete probability distribution. For

barometric pressure starting in state b0, the transition time would first be obtained by

sampling the sojourn time from an exponential distribution with a rate of q0,0 = 0.21.

The next state would then be determined by drawing from a discrete distribution

over the remaining states: θ0 = [0.2/0.21 0.01/0.21].

Note that the pure intensity representation and the mixed intensity represen-

tation are functionally equivalent methods for parameterizing homogeneous CTMPs.

23

The relationship between the two representations can be inferred by looking at the

alternate transition models for the barometer example. Specifically, each mixed

intensity parameter qi ∈ q corresponds to the negation of the diagonal entry qi,i ∈ Q

in the pure intensity parameterization. Furthermore, θi in the mixed intensity

parameterization is a vector corresponding to the off-diagonal entries of row i in Q,

normalized to transform the row into a unit vector. In other words, the parameters

for θ are computed as the ratio qi,j/qi,i, for all j 6= i. This guarantees that each

θi is a valid probability distribution over the remaining states. Although these

representations are functionally equivalent, the interpretations are distinct. Chapter

3 discusses the mixed intensity representation in greater detail, and advocates for its

use in scenarios involving non-exponential distributions. For notational convenience

however, the majority of this dissertation presents models using the pure intensity

representation.

Using the distributions defined by the rates in the intensity matrix, a CTMP is

able to represent the dynamics of a discrete system as a function of continuous time.

This representation has significant advantages over a discrete space model when there

is no natural choice of discretization available. A CTMP encodes the distribution

over a process X as a function of time, which here is treated as a continuous random

variable.

PX(t) = PX(0) exp(QXt).

In this equation, the initial distribution PX(0) and intensity matrix QX are defined

as part of the CTMP specification. The exp(·) operation is known as the matrix

exponential, which is defined as

exp(Q) =
∞∑
k=0

Qk

k!
,

24

although computation of the matrix exponential is typically achieved by employing

efficient approximations [77]. Using this operation, inference can be performed to

identify the probability distribution over a process at any continuous point in time

t. As t increases, the distribution over the process approaches its steady state

distribution, which can be computed using eigenvalue analysis [66].

Unlike BNs or DBNs, each state in a CTMP X is a single random variable

indexed by time. How then can such a model be used to describe a collection of

discrete variables Y = {Y1, Y2, . . . , Yn}? To achieve this, each state of the process

X is used to describe a complete instantiation to the variables in Y. As such, the

number of states in X is defined by the states in Y:

|X| =
∏
Y ∈Y

|Y |.

This representation allows multiple discrete variables to be modeled by the same

CTMP.

Example 2.3.2. Pain System CTMP

A continuous time random process consists of a subsytem for barametric pressure

B = {b0, b1, b2}, a subsystem for the pain experienced by a medical patient P =

{p0, p1}, and a subsystem for the concentration of a drug in the patient’s system

C = {c0, c1}. Using hours as the time unit, a CTMP describing the process is given

as follows.

P (0) =
[
p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

]

25

Q =



b 0
p
0
c 0

b 0
p
0
c 1

b 0
p
1
c 0

b 0
p
1
c 1

b 1
p
0
c 0

b 1
p
0
c 1

b 1
p
1
c 0

b 1
p
1
c 1

b 2
p
0
c 0

b 2
p
0
c 1

b 2
p
1
c 0

b 2
p
1
c 1

b0p0c0 −1.71 0.20 0.10 0.05 0.25 0.20 0.10 0.00 0.00 0.01 0.30 0.50

b0p0c0 0.15 −1.86 0.20 0.10 0.10 0.20 0.50 0.01 0.20 0.30 0.10 0.00

b0p0c0 0.05 0.20 −1.76 0.10 0.01 0.50 0.10 0.00 0.00 0.10 0.20 0.50

b0p0c0 0.01 0.10 0.05 −1.56 0.25 0.20 0.05 0.20 0.25 0.00 0.20 0.25

b0p0c0 0.30 0.50 0.05 0.25 −2.02 0.10 0.10 0.20 0.20 0.01 0.30 0.01

b0p0c0 0.25 0.50 0.00 0.25 0.05 −2.20 0.20 0.00 0.25 0.50 0.20 0.00

b0p0c0 0.25 0.25 0.05 0.20 0.10 0.05 −2.45 0.50 0.20 0.30 0.30 0.25

b0p0c0 0.20 0.00 0.20 0.20 0.01 0.10 0.20 −1.52 0.20 0.01 0.10 0.30

b0p0c0 0.05 0.00 0.00 0.01 0.30 0.05 0.50 0.00 −1.31 0.05 0.25 0.10

b0p0c0 0.05 0.00 0.00 0.30 0.25 0.50 0.25 0.20 0.01 −1.91 0.05 0.30

b0p0c0 0.01 0.20 0.05 0.25 0.01 0.00 0.50 0.05 0.30 0.00 −1.62 0.25

b0p0c0 0.05 0.30 0.00 0.20 0.25 0.10 0.50 0.00 0.10 0.30 0.20 −2.00



Although the CTMP is a powerful model capable of representing discrete

variables as a function of time, the size of the initial distribution and intensity matrix

is exponential in the number of variables. Even in the pain system, which consists

of only three variables with a small number of states, the number of parameters

required to specify the CTMP is already substantially larger than the original

barometer process. Unfortunately, this exponential complexity makes representing

and reasoning over CTMPs intractable for all but the simplest of problems. For

practical applications, a more efficient model is required.

2.4 Continuous Time Bayesian Networks

This section describes the continuous time Bayesian network (CTBN), which is

the model studied throughout this dissertation. An overview is provided regarding

representation and reasoning, as well as extensions and applications.

26

2.4.1 Representation and Interpretation

A CTBN is a probabilistic graphical model that factors a CTMP in much the

same way as a BN factors a joint probability distribution [84]. Rather than modeling

all variables in the set X with a single initial distribution and intensity matrix, the

individual variables are factored using a graph structure. Before describing the CTBN

in detail, the concept of a Conditional Markov Process must first be introduced.

Definition 2.4.1 (Conditional Markov Process). A Conditional Markov Process is

a special type of CTMP where the transition intensities for a variable X vary as a

function of the current state of the variables in a set U. Unlike with traditional

inhomogeneous CTMPs, the intensities in a Conditional Markov Process change

indirectly as a function of time. The intensity matrix for a Conditional Markov

Process is referred to as a Conditional Intensity Matrix (CIM).

An example of a CIM may be written as:

QX|U =



x1 x2 · · · xn

x1 q1,1(U) q1,2(U) · · · q1,n(U)

x2 q2,1(U) q2,2(U) · · · q2,n(U)

...
...

...
. . .

...

xn qn,1(U) qn,2(U) · · · qn,n(U)


,

where each function qi,j(U) is a discrete function mapping instantiations of U to

fixed transition intensities. As a result of the discrete function, a CIM may be

represented equivalently as a set of intensity matrices indexed by an assignment

u to the conditioning set U. If the conditioning set U is empty, then the process

is not conditioned on anything, and a single intensity matrix is used to represent

the standard (unconditional) process. Note that CIMs are analagous to conditional

27

probability tables from BNs, where instead of table cells corresponding to likelihoods,

they map to intensity matrices.

Using the Conditional Markov Process as a building block, it is now possible to

formally define a CTBN.

Definition 2.4.2 (Continuous Time Bayesian Network). A Continuous Time Bayesian

Network N is a factored representation of a CTMP over a set of discrete random

variables X = {X1, X2, · · · , Xn}. The model consists of two parts: a graph structure

G and a set of parameters P . Graph G is a directed, possibly cyclic graph with nodes

corresponding to the variables in X. Parameterization P is a set of Conditional

Markov Processes, one for each Xi ∈ X, conditioned on its parents in graph G.

The compact representation achieved by factoring a CTMP using the graph

structure works to address the issue of exponential complexity. Rather than defining

a single CTMP over an exponential number of states, a series of conditional CTMPs

are defined for each node conditioned on its parents. For each variable X, the size of

the initial distribution and the dimensions of the intensity matrices in the CIM are

equal to the size of the domain of X. Depending on the dependency structure, this

can be a significant improvement over a standard CTMP.

Just as with a BN, each individual node in a CTBN represents a variable,

while the directed edges describe direct dependence among these variables. The

only difference between the graph structure of a BN and that of a CTBN is that

the acyclicity constraint is lifted when dealing with continuous time. This is because

dependencies occur through time, meaning that cyclic dependencies can in fact occur.

This is analogous to how “cycles” are permitted in DBNs by acyclically connecting

nodes from previous timesteps. In either case, a variable cannot depend on its current

state, only its state at previous times.

28

Example 2.4.1. Drug Effect Continuous Time Bayesian Network [84]

Consider a system of eight discrete variables describing the effect of a drug on a

patient: X = { Concentration, Pain, Barometer, Drowsy, Uptake, Full Stomach,

Hungry, Eating }. At a high level, the concentration of a drug in a patient’s system is

directly determined by the uptake of the drug and the contents of the patients stomach.

The drug itself influences the patient’s pain and drowsiness. The content’s of the

patient’s stomach is dependent on if they were eating, which is dependent on if they

were hungry, which is dependent on if their stomach was full. Finally, a patient’s pain

level is not only influenced by the concentration of the drug, but also the barometric

pressure. The graph structure G for a CTBN describing process X is shown in Figure

2.3.

The drug effect example network provides a demonstration of how a CTBN

might be used to describe an interaction of variables that change in continuous time.

Consider the Barometer node, representing barometric pressure. This node has no

parents; therefore, it behaves according to an unconditional CTMP, identical to the

one presented in Example 2.3.1. The Pain node is more complex, in that it depends

on both Barometer and Concentration. It is instead described by a Conditional

Markov Process, as shown below. Note that the CIM QP |B,C is specified as a set of

intensity matrices associated with each state instantiation.

PP =
[
0.1 0.9

]

29

Concentration

Pain Drowsy

Barometer

Uptake

Full
Stomach

Eating Hungry

Figure 2.3: The drug effect example network describing the influence of a drug on a
patient.

30

QP |B,C =

QP |b0,c0 =

−6 6

0.1 −0.1

 QP |b0,c1 =

−1 1

0.1 −0.1

 QP |b0,c2 =

−6 6

0.1 −0.1


QP |b1,c0 =

−1 1

0.3 −0.3

 QP |b1,c1 =

−0.3 0.3

0.3 −0.3

 QP |b1,c2 =

−1 1

0.3 −0.3


QP |b2,c0 =

−0.01 0.01

2 −2

 QP |b2,c1 =

−0.01 0.01

2 −2

 QP |b2,c2 =

−0.01 0.01

2 −2




In this model, pain is discretized into two states, with b0 and b1 representing the

absence and presence of pain respectively. As such, the initial distribution vector PP

has two entries, and the dimension of each of the intensity matrices is 2×2. The CIM

QP |B,C consists of a total of nine distinct intensity matrices, each of which describes

the transition behavior of the pain process in different situations. Specifically, one

intensity matrix is provided for each state combination of B (Barometer) and C

(Concentration). Both B and C have three states in their domain, resulting in

the observed 3 × 3 = 9 intensity matrices in the CIM for P . This transition model

indicates that when the barometric pressure is falling (B = b0) and the concentration

of the drug is low (C = c0), then the patient will transition from a state of no pain (p0)

to a state of pain (p1) with an intensity of 6. Conversely, when barometric pressure

is rising (b2) and the concentration of the drug is low (c0), the patient will transition

to a state of no pain with an intensity of 2. For additional detail on the drug effect

model, see Nodelman [81].

CTBNs can be thought of as generative models, capable of producing samples

of the system state. Since the CTBN is a continuous time model, a sample consists

of a set of state assignments for each variable in the model during an interval of time

[ts, te). For practicality, this time window is constrained to include only a period of

31

interest, and it is typically assumed that ts = 0. When the state of every variable is

known for the entire time interval, the sample is referred to as a complete trajectory. If

there are gaps in the knowledge, and the state of one or more variables is unknown for

periods throughout the time window, the sample is referred to as a partial trajectory.

As a generative model, a CTBN is capable of “completing” a partial trajectory by

filling in the unknown gaps. In this way, existing knowledge can be encoded as partial

trajectories, and the CTBN can be used to answer queries conditioned on this known

information. This is referred to as evidence application, and the information obtained

from queries is drawn from a posterior distribution conditioned on this evidence.

2.4.2 Inference and Learning Algorithms

The compact representation afforded by the CTBN framework is only as valuable

as the inference algorithms that support it. To date, no tractable exact inference

algorithms have been identified that work on the factored representation directly.

Instead, exact inference relies on an operation called amalgamation, that combines

the variables in a CTBN into a single amalgamation of the original variables. By

performing this repeatedly on all variables in a model, a single entity is produced,

resulting in an unstructured CTMP. Inference can then be performed over the CTMP

as usual by computing the matrix exponential, providing an exact solution [?].

Although useful from a theoretic standpoint, amalgamation “un-factors” the model,

thereby eliminating the benefits provided by the CTBN. To address this, a number

of approximate inference algorithms have been proposed that work on the structured

representation directly.

The first approximate inference algorithm to be introduced for use with CTBNs

is expectation propagation (EP) [83, 84]. This algorithm is based on the clique tree

inference procedure in BNs [117]. The primary difference is that the factor product

32

operation in BNs is replaced with amalgamation for CTBNs. Inference starts by

forming a clique tree from the CTBN graph structure. Messages are then passed

between neighbors in the cluster graph until a consensus is reached regarding the

expected distribution. The time granularity at which inference is performed can

actually be chosen up front or dynamically. Work has been done to identify an

optimal time granularity in real time using an information-theoretic criterion, which

can be used to adapt each cluster dynamically based on its rate of convergence [114].

This allows computational resources to be assigned where it is most needed and avoids

wasting time working on clusters that do not need additional compute power.

Another approximation algorithm that has been adapted to work on the CTBN

framework is mean field variational approximation [24, 25]. The work is based on a

variational method designed for the Markov jump process, which is another model

built on CTMPs [88]. This algorithm works by approximating the distribution

defined by the CTBN using a product of inhomogenous Markov processes. This

is achieved using a density transform approach, where the set of all densities is

restricted to a computationally manageable class. Specifically, the restricted class

of density functions used are those that can be factored into a product of density

functions. This transformation into a product of densities is also known as a “mean

field approximation,” originating from the physics domain. Kullback-Leibler (KL)

divergence from the true posterior distribution can be minimized by solving a series

of ordinary differential equations (ODEs), resulting in an approximate solution to the

inference problem.

Belief propagation (BP) is another variational inference algorithm that builds

on concepts from both expectation propagation and mean field approximation [34].

BP functionally operates in much the same way as EP; the difference being in

how the approximation is represented. Like the mean field algorithm, BP relies

33

on inhomogeneous CTMPs, requiring a solution to a system of ODEs. This belief

propagation algorithm extends work by Yedidia et al. [151].

Node isolation is a relatively recent approach to performing approximate

inference in CTBNs. The idea is to convert a CIM consisting of multiple intensity

matrices and approximating the transition behavior using a single matrix. Three

techniques are presented to achieve this: a sample-based approach and two variations

of a closed-form approach. Once a node has been isolated, its dependencies are

severed, which allows for efficient computation of several inference tasks.

In addition to variational approaches, there have been a number of sample-

based inference algorithms introduced for CTBNs [38, 40]. Importance sampling is

an algorithm capable of estimating the expected value of any function of a trajectory

conditioned on any evidence [40]. The algorithm works by sampling from a proposal

distribution P ′, which is more efficient than drawing samples from the original

distribution P . The proposal distribution is constructed in a way that guarantees

evidence will be adhered to. To account for the fact that samples are drawn from P ′

rather than P , a weight is assigned to each sample to indicate the likelihood that the

sample was actually drawn from P . Rejection sampling was introduced to eliminate

samples responsible for high variance, and has been shown to reduce the amount of

time needed to obtain accurate results [142]. Importance sampling has since been

extended support efficient online inference and deal more effectively with transitions

into evidence periods using predictive lookahead and particle smoothing.

Particle filtering is another approach that has been taken to solve the problem

of inference in CTBNs [14, 80]. Continuous time particle filtering is an extension to

the more common discrete time particle filtering [31]. For instances where events are

non-uniform, continuous time particle filtering demonstrates superior performance

both in terms of inference speed and the quality of the approximation, as it is

34

able to skip to any point in time without stepping through discrete time slices.

Additionally, a filtering approach is capable of performing inference over a hybrid

system containing discrete and continuous state variables by sampling for discrete

variables and estimating continuous ones.

Another sample-based approach to inference is the Gibbs sampling algorithm

[35]. Gibbs sampling is a member of the class of algorithms referred to as Markov

Chain Monte Carlo (MCMC), which essentially amounts to a random walk over the

distribution. Gibbs sampling works by sampling a complete, continuous trajectory

for a single node X chosen at random, conditioned on the trajectories sampled

from other nodes that are influential in the distribution of X. This process is

performed repeatedly, resulting in samples that converge to the true distribution.

A burn-in period is often performed, which is a fixed number of iterations during

which samples are discarded. This removes any bias introduced by the initial state

assignment by sampling process transitions prior to recording the samples that are

used in computing statistics. An auxiliary Gibbs sampler has also been proposed that

employs a technique referred to as uniformization, which approximates the underlying

CTMP with a discrete time Markov chain [110, 111]. This allows “virtual” sojourn

times to be drawn from a homogeneous Poisson process that defines the Markov

chain [128]. This version of the algorithm is shown to be computationally more

efficient than traditional Gibbs sampling, and the underlying Markov chain in this

approach has since been shown to be geometrically ergodic, providing theoretical

guarantees regarding convergence [74]. Finally, another MCMC algorithm adapted

for CTBNs is the Metropolis-Hastings algorithm, which also utilizes uniformization,

but varies slightly in its implementation when compared to that of Rao and Teh [75].

Specifically, operations in the Metropolis-Hastings algorithm must update just a few

sufficient statistics, while Rao and Teh reevaluate the entire trajectory. As a results,

35

Rao and Teh work better with models of moderate size, but is unable to compete

with the approach taken by Miasojedow et al. on larger models.

In addition to inference algorithms, there have been a variety of algorithms

published on learning CTBNs [85]. The first of such works was presented by

Nodelman, where a conjugate prior for CTBNs was used as the basis for computing

a Bayesian score. This allowed for parameter estimation and structure learning in

the presence of complete data. This restrictive assumption was later lifted with

the introduction of the expectation maximization (EM) and structural expectation

maximization (SEM) algorithms, which can learn CTBNs from partially observed

data [86]. EM works by making iterative improvements to parameters such that

the expected log-likelihood of the data given the parameters is maximized. EM also

allows more complex non-exponential transition distributions to be learned from the

data, which is closely related to the work we present in Chapter 3. A recent approach

to structure learning was proposed that analytically identifies structure rather than

relying on an iterative maximization technique [130]. This is achieved exploiting the

Markov chains that are implicitly defined by the CTBN framework. These Markov

chains can be marginalized the Markov chain with respect to the parameters, resulting

in a parameter free process that support efficient structure learning. Shi and You

present an online parameter estimation algorithm that allows for batch updates to

CTBN parameters as new samples are collected [121]. Finally, learning algorithms

have been developed that exploit data characteristics found in specialized domains,

including financial, relational, non-stationary, and [52, 140, 150]. This closely relates

to our own work in that we present specialized methods for deriving CTBNs using

diagnostic and reliability data. This is discussed in detail in Chapter 7.

36

2.4.3 Extensions and Applications

One of the major limitations to the CTBN as originally proposed is the

requirement that all transition events be modeled using exponential distributions. For

this reason, phase-type distributions were introduced as a method for approximating

non-exponential distributions [82]. Initially, efforts involving phase-type distributions

focused on modeling and largely omitted the process of learning the distributions.

Nodelman and Horvits restrict the class of the phase-type distributions, considering

only the Erlang subclass, which is highly restrictive and less representationally

powerful than other more general representations. To address this issue, Gopalratnam

et al. extended this work to provide learning algorithms for a more general class

of phase-type distributions referred to as Erlang-Coxian [49]. Finally, Nodelman

revisited the topic in his work on expectation maximization, which provides a

natural method for learning fully general phase-type distributions from data. These

extensions are relevant to our own work in phase-type distributions in which we

approximate target parametric distributions using heuristic optimization techniques.

This is discussed in greater detail in Chapter 3.

Another work that is similar to our own is the partition-based CTBN [141].

This model extension incorporates a set of partitions into the graph structure that

attempt to compact parameterization further. Rather than using traditional CIMs,

new structures referred to as conditional intensity trees and conditional intensity

forests are learned from data. These map common intensities to a single value based

on a partition defined over the full joint, rather than making the assumption that

intensities change as a function of the parent states. The approach taken by Weiss

et al. shares some features with the tree-structured CIMs that we introduce in this

dissertation, but their goal is ultimately to generalize the representation of the CTBN

37

rather than improve its scalability. More information on work by Weiss et al., as well

as our own, is provided in Chapter 5.

Substantial research efforts have been conducted on the CTBN classifier

(CTBNC), which is an extension of the CTBN that was introduced to support

classification tasks in continuous time [15,127]. The CTBNC represents a class using

a single static node containing no parents. This enables classification of a static object

conditioned on continuous, temporal evidence. Specialized learning algorithms have

been developed for the CTBNC, including numerous scoring functions and a parallel

implementation [16–18,138]. Furthermore, the model has demonstrated success when

applied to practical classification tasks [19, 139].

Another model that incorporates static nodes in the standard CTBN framework

is the generalized CTBN (GCTBN) [23, 105]. This combines standard CTBN nodes

parameterized as Conditional Markov Processes with “immediate” or static nodes.

These immediate nodes are treated similarly to a node in a BN, and are parameterized

using a conditional probability table to describe their fixed probability distribution.

Inference and analysis of the model is achieved by producing an equivalent Generalized

Stochastic Petri Net (GSPN), which is able to represent delayed and immediate

transitions [20–22]. Another model that attempts to unify concepts from CTBNs and

the BN literature is the Asynchronous Dynamic Bayesian Network (ADBN) [104].

This model works by representing a stochastic process using a CTBN, but when

inference is required, reasoning is performed over an approximating DBN that is

created dynamically. The intent here is to take advantage of mature BN inference

algorithms while avoiding explicit specification of a time granularity.

In addition to model extensions, there have been a number of contributions to

the literature that focus on improving the representational power of inference queries

as well. As originally specified, CTBNs supported only queries concerning probability

38

distributions over the states of variables, and evidence was expected to be applied

with absolute certainty. Performance Functions (PFs) have since been introduced to

allow for more complex queries of a CTBN [132]. These PFs are capable of defining

sophisticated functions beyond just state probability distributions and are able to

define such a function using the CTBN’s factored graph structure. Several aspects of

our work rely on PFs as a method for assigning value to the state of a process, as will

be seen in Chapters 4 and 7. A formal definition of the various continuous evidence

types and how they relate has also been published [136]. This work also describes how

existing inference algorithms can be adapted to support the new evidence types that

did not exist previously, including uncertain evidence and various types of negative

evidence.

In addition to the applications of CTBNCs and GCTBNs, there have been

a number of domains in which the standard CTBN framework has been used

successfully to reason over a continuous process. An early model was built to

capture the behavior of a user in a system for the purpose of predicting activity

and availability [82]. In a similar vein, social network dynamics have also been

modeled using CTBNs [37, 39]. By modeling host-level network behavior, effective

intrusion detection systems have been constructed [147–149]. Server dependencies,

as well as sensor network dependencies, have both been modeled using the CTBN

framework [53, 120]. CTBNs have been used to predict the trajectories of moving

objects in databases [107]. In the healthcare domain, the framework has been used to

reason over medical models to predict cardiogenic heart failure [44,45]. CTBNs have

been extremely successful in performing gene network reconstruction and analysis,

and have since identified several regulators [2–4,42]. Finally, CTBNs have been used

to perform mechanical diagnostics and prognostics in a limited capacity [13, 152]. It

is this last domain of diagnostics and prognostics that drives our own research, and

39

Chapter 7 provides a number of extensions that decrease the barrier to entry when

applying CTBNs to this domain.

40

CHAPTER THREE

NON-EXPONENTIAL PARAMETRIC DISTRIBUTIONS

In addition to factors like scalability, a model must also be sufficiently expressive

to warrant adoption in real-world applications. In many situations, systems are known

to change state according to known parametric distributions. If the distribution is

exponential, the transition behavior can be modeled directly with a CTBN using

the rate parameters in the CIMs. The concern is that non-exponential parametric

distributions are not inherently supported by the CTBN framework. In this chapter,

we describe a method for automatically modifying a CTBN to approximate non-

exponential parametric distributions. We also make an argument for an interpretation

of CTBN parameters that best lends itself to this approach.

3.1 Background

To date, work on extending CTBNs through the use of phase-type distributions

has focused on the problem of approximating a distribution that describes available

data. This has been achieved by applying expectation-maximization algorithms to

learn a model that optimizes the log-likelihood of the data. While this approach

works well in the presence of abundant data, in many practical applications there is

inadequate data to describe a distribution sufficiently. Fitting a distribution to data

requires a sufficient number of data points to measure goodness of fit [8]. A viable

alternative is to rely on domain knowledge to indicate transition rates with a well-

defined parametric distribution. The purpose of this chapter is to detail how these

41

parametric distributions can be learned and modeled within the CTBN framework,

and as such we will refer to these probability distributions as “target” distributions.

3.1.1 Phase-Type Distributions

Phase-type distributions are a semi-parametric class of distributions that use

combinations of exponential distributions as a means to approximate general positive

distributions. Formally, phase-type distributions represent the time until absorption

in a Markov process with n transient states and one absorbing state [1]. The transient

states in the Markov process are also referred to as the phases of the phase-type

distribution. A variable will move through these phases according to the exponential

distributions defined for each phase by the rates in the Markov process, until the

variable eventually reaches the absorbing state. The phase-type distribution is defined

as the distribution of the entire time it takes the process to move through these phases.

Since a phase-type distribution depends only on a Markov process, its parameters

are specified fully by the initial distribution and transition intensity matrix for the

Markov process. It is generally assumed that the probability of starting in the

absorbing state is zero, and in many cases it is further restricted to ensure that

the process starts in the first transient phase.

The movement of a variable through the transient phases of the Markov process

can be directed in a variety of ways. In the most general case, all transient phases are

capable of transitioning to any other phase, including the absorbing state. Specific

classes of phase-type distributions restrict the movement of a variable between the

transient phase. One such type of restricted phase-type distribution is the Erlang

distribution, in which loops are not permitted, and each phase is required to have

the same rate parameter and must be visited in order before transitioning to the

absorbing state [?]. A slightly more general class is the Erlang-Coxian phase-type

42

distribution [?]. A Coxian distribution is similar to an Erlang distribution in that

it does not permit cycles in the phases. In contrast, however, a Coxian distribution

may be parameterized uniquely at each phase, and any of the phases may transition

to the absorbing state. An Erlang-Coxian distribution combines these two ideas by

forcing sequential progression through the Erlang phases until the Coxian phases are

reached, at which point the phase may either transition to the next phase, or go to

the absorbing state directly. Both of these restricted classes have been applied to

CTBNs [49,82].

The PDF for a phase-type distribution is given as:

f(t) = α exp(St)S0, (3.1)

where α is a vector corresponding to the probability of starting in each phase, S0

is a vector of intensities for transitioning to the absorbing state from each of the

other phases, and S is a square matrix of intensities for transitioning between non-

absorbing phases. Recall from the previous chapter that the matrix exponential

operation, exp(S), is defined by the Taylor series as:

exp(S) =
∞∑
k=0

1

k!
Sk. (3.2)

Generally calculating the matrix exponential is intractable. Fortunately, a variety

of methods exist for calculating an approximate matrix exponential [77]. The work

presented in this chapter utilizes the most commonly used approximation, known as

the scaling and squaring method [54].

43

The idea behind scaling and squaring is to scale the matrix by a power of two

to reduce the norm to order one, and then compute a Padé approximant1 for the

matrix exponential on the scaled matrix. Repeatedly squaring the resulting matrix

undoes the scaling. By using the scaling and squaring method to calculate the matrix

exponential, approximating the PDF of a phase-type distribution becomes tractable.

The ability to approximate this PDF becomes important when evaluating the quality

of a phase-type approximation for a target distribution.

3.1.2 Parametric Distributions

A parametric distribution, unlike an unknown distribution described by available

data, is specified entirely by its parameters. Using target distributions as a

means to describe system behavior is an established practice when performing tasks

such as failure rate analysis [41]. Learning phase-type distributions from target

distributions provides information about transition times for a variable while avoiding

the need for significant amounts of data. The problem of learning CTBN-compatible

representations of a target parametric distribution may be cast as an optimization

problem that seeks to minimize the KL-divergence of a learned phase-type distribution

from the target distribution. This is equivalent to maximizing the closeness of the

approximation. Section 3.4 describes the learning process in more detail and presents

several optimization techniques that can be applied to this problem.

A major motivation underpinning this dissertation is the desire to model system

failures in continuous time. For this reason, the subset of distributions discussed

in this chapter consist of those that are commonly used to model time-to-failure

(TTF); specifically, the Weibull and Lognormal distributions [56]. Exponential

1An [n,m] Padé approximant is a rational function consisting of a polynomial of degree m divided
by a polynomial of degree n, which is useful for providing an approximation of the power series of
another function [7].

44

distributions are also frequently used to model failure distributions, but CTBNs are

already naturally suited to model these distributions. Note that although the scope

of discussion has been limited to Weibull and Lognormal distributions, the framework

being proposed allows for the approximation of any positive, continuous parametric

distribution. The remainder of this section provides background on the Weibull and

Lognormal distributions.

The Weibull distribution is a flexible distribution parameterized by a rate

parameter λ and a shape parameter k [29]. Consider the case where the input t

to the distribution is interpreted as the TTF. When k < 1, the Weibull distribution

represents a decreasing failure rate, and an increasing failure rate when k > 1. In

the special case where k = 1, the Weibull distribution reduces to an exponential

distribution with a rate of λ. When t is positive, the probability density function

(PDF) for the Weibull distribution is defined as follows:

ft(λ, k) =
k

λ

(t
λ

)k−1
exp

(
−
(t
λ

)k)
.

Since the failure rate for a Weibull distribution can be increasing, decreasing, or

constant, it can be used to model the “infant mortality” stage (where k < 1), the

“useful life” stage (where k = 1), and the “end of life” stage (where k > 1) of an

object. When spliced together in this order, these three piece-wise segments form

what is often called the “bathtub” curve. This is considered an appropriate model for

the failure behavior of many objects, as it reflects a higher rate of failure surrounding

the birth and death of an object, and a smaller constant rate of failure during the

rest of the object’s lifespan. Additionally, it has been suggested that this composite

approach may prove to be a more realistic model for TTF than monotone failure rate

45

Figure 3.1: PDFs for various parameterizations of Weibull distributions.

models [109]. The plot for this distribution using several different parameterizations

is shown in Figure 3.1.

Another frequently used TTF curve is the Lognormal distribution, which

indicates that the log of a random variable follows a normal distribution. Due

to its dependence on the normal distribution, the only necessary parameters for

the Lognormal distribution are the mean parameter µ and the standard deviation

parameter σ. The Lognormal distribution is suited for instances where failure occurs

due to an accumulation of causes that have a multiplicative effect, a phenomenon

known as multiplicative degradation [126]. When the input t is positive, the PDF for

the Lognormal distribution is as follows:

ft(µ, σ) =
1

tσ
√

2π
exp

(
− (ln t− µ)2

2σ2

)
.

Figure 3.2 provides a plot of various parameterizations for this distribution.

46

Figure 3.2: PDFs for various parameterizations of Lognormal distributions.

3.2 Related Work

The use of phase-type distributions for CTBNs was first proposed by Nodelman

and Horvitz [82]. They demonstrated that phase-type distributions can be inserted

as subsystems in a CTBN without altering the underlying mechanics of the model.

Their work was restricted to Erlang distributions, which was shown to improve

the performance of the CTBN model when the underlying distribution was non-

exponential. The primary contribution made by the authors is the notion that phase-

type distributions can be inserted into a CTBN without changing the framework as

a whole. The specific details of how to parameterize the phase-type distributions, as

well as the details regarding how these phase-type distributions are embedded into

the CIMs, were omitted. The work by Nodelman and Horvitz was later extended

from Erlang distributions to Erlang-Coxian distributions, which is a more expressive

subclass of phase-type distributions [49].

47

The addition of the Coxian phases increases the expressiveness of the model

but at the cost of added complexity through an increase in the required number of

parameters. Instead of requiring a single rate parameter λ, two additional parameters

are required for each phase in the Coxian distribution. This additional complexity can

be managed by restricting the Coxian distribution to only two phases. Gopalratnam et

al. propose a method for learning these parameters from data based on EM. Unlike

the method we describe in this chapter, their technique attempts to parameterize

the distribution such that the log-likelihood between the data and the model is

maximized.

After demonstrating the utility of Erlang distributions as subsystems in CTBNs,

in subsequent work Nodelman et al. discuss a method for performing EM and

structural EM (SEM) to learn the parameters and structure of a CTBN model from

partially observed data [86]. This EM algorithm further relaxes the restrictions

on which subclasses of phase-type distributions are applicable, such that any

phase-type distribution can be used. This allows phases to occur within a loop,

significantly improving the expressiveness of the model. The experiments showed a

marked improvement over a CTBN model that did not use phase-type distributions.

Nodelman et al. demonstrated the utility of this approach, but we explore a different

angle with our contributions. While Nodelman learns phase-type distributions from

data, we learn the parameters for a phase-type distribution to fit a known distribution.

3.3 Embedding Process

Although other work has briefly explained how to embed phase-type distribu-

tions into the intensity matrices of a CTBN node, much of the details have been

omitted about the process [82]. This section provides a more formal treatment of how

phase-type distributions are inserted into intensity matrices and what information

48

is necessary to produce such an embedding. As distinct from other descriptions,

the procedure described here makes no assumption about the class of phase-type

distribution and works for the most general case.

Let ni be the number of phases in a phase-type distribution for the ith state of

a CTBN node. The phase-type distribution PTi for the ith state can be described by

an entrance distribution αi = (αi1 · · ·αini
) and a transition intensity matrix Si.

Si =



βi1

Ri
...

βini

0 · · · 0 0


(3.3)

Here, Si is an (ni+1)×(ni+1) matrix whose last row is an absorbing state of all zeros.

This matrix can be decomposed as an ni×ni block matrix Ri and an ni-element exit

distribution βi = (βi1 · · · βini
). Ri indicates transitions between transient states, while

βi consists of transitions to the absorbing state. Note that while each row of Si is

required to sum to zero, this will not be the case for Ri due to the omission of the βij

entry in each of the rows. For this reason, Ri is referred to as a rate matrix rather

than an intensity matrix.

Phase-type distributions can be embedded into an intensity matrix Q with n

states by representing each individual entry in the intensity matrix with a block

matrix. For diagonal entries qii ∈ Q, the replacement block matrices are the ni × ni

rate matrices Ri. This means that the off diagonal entries in Q also need to be

replaced with matrices. We denote the matrix used to replace entry qij as Ti→j,

and describe its construction later in this section. Let m be the number of rows or

columns in the original matrix Q, equating to the number of states for the variable.

49

The result after the embedding the matrices Ri and Ti→j into Q is an n′×n′ intensity

matrix Q′, where n′ =
∑

0≤i<m ni.

Recall that −qii ∈ Q describes the time spent in state i, with the constraint

that this time must be distributed exponentially. Ri ∈ Q′ also represents the

amount of time spent in state i, but does so using a phase-type distribution that

can approximate a broader class of distributions. Additionally, each qij ∈ Q indicates

a transition from state i to state j. Ti→j also indicates this transition between states,

but includes additional information about which phase in state i and j are involved

in the transition. Specifically, an entry tkl in row k, column l of Ti→j indicates a

transition from state i, phase k to state j, phase l. The resulting block matrix is as

follows:

Q′ =



[
R1

] [
T1→2

]
· · ·

[
T1→n

]
[

T2→1

] [
R2

]
· · ·

[
T2→n

]

...
...

. . .
...

[
Tn→1

] [
Tn→2

]
· · ·

[
Rn

]



.

The matrix Q′ can be constructed using a phase-type distribution PTi and a

multinomial state transition distribution ρi = (ρi1 · · · ρini
) for each state i. Each Ri

block matrix in Q′ can be obtained directly from the decomposition of Si. The only

remaining task is to construct each matrix Ti→j.

Let eij denote the unit vector corresponding to the jth row or column of an

identity matrix Ini
. In other words, eij is an ni-element vector where the jth element

is one, while all other elements are zero. The process for constructing each matrix

50

Ti→j using the multinomial distribution for each state, along with the entrance and

exit distributions for the phase-type distributions is as follows:

Ti→j = (eij · ρi) · βiαj.

Note that the multinomial distribution is already defined by a typical intensity

matrix based on the ratio between the transition intensities for each state in a row.

This means that the only additional parameters required for the embedding process

are the parameters for a phase-type distribution. Given a method for learning

the parameters for a phase-type distribution that approximate another parametric

distribution, the user needs only to specify the new parametric distribution to replace

the usual exponential distribution for each state. Moreover, this entire process reduces

to a standard intensity matrix when an exponential distribution is chosen that is

approximated with a phase-type distribution with only one phase. In this case,

the approximation is perfect since a single phase is sufficient to approximate an

exponential distribution, and each Ri and Ti→j block matrix in Q′ contains only

a single entry equivalent to the original entries in the matrix Q.

3.4 Learning Phase-Type Distributions

The intent of this chapter is to provide a method for learning a phase-type

distribution that accurately approximates a given target distribution. To achieve this,

the task of parameterizing the approximating distribution is cast as an optimization

problem. This problem is then solved, resulting in a parameterization of a phase-type

distribution that accurately approximates the specified target distribution.

As an example, consider a Weibull distribution with a rate parameter of 1.0 and

a shape parameter of 1.5. The learned initial distribution and transition matrix for a

51

Figure 3.3: Example of a phase-type distribution fitted to a Weibull distribution with
a rate of 1.0 and a shape of 1.5.

phase-type distribution that approximates this Weibull distribution is as follows:

P (X) =
[
0.98 0.02 0.00

]
,

Q =


−2.09 1.98 0.11

0.00 −1.99 1.99

0.00 0.00 0.00 .


A plot of the PDFs for both the Weibull distribution and the approximating phase-

type distribution is shown in Figure 3.3. For reference, the goodness of fit for this

approximation is quantified by a KL-divergence value of 0.0361.

3.4.1 Kullback-Leibler Divergence

The optimization process makes use of the Kullback-Leibler divergence measure,

often referred to simply as KL-divergence. KL-divergence serves as a measure of the

52

information lost when approximating a target distribution with an approximating

distribution and is equal to zero if the two distributions are identical. Using this

principle, it is possible to construct an accurate approximation by choosing phase-

type parameters that minimize the KL-divergence of the phase-type distribution from

the target distribution.

The KL-divergence of distribution Q from distribution P is denoted DKL(P ||Q).

For the case when P and Q are continuous, KL-divergence is defined as follows.

DKL(P ||Q) =

∫ ∞
0

P (t) log
P (t)

Q(t)
dt (3.4)

In practice, a discrete approximation can be used that evaluates the PDF for each

distribution at specified intervals. The work presented in this chapter uses the

following discrete version:

DKL(P ||Q) ≈
n∑
i=1

P (i)
∣∣∣ log

P (i)

Q(i)

∣∣∣. (3.5)

Note that in addition to evaluating the distributions at discrete intervals, the upper

bound of the summation is restricted to be a finite value. An upper bound of 2.5

was specified for this application, which is deemed the area of interest for both

the Weibull and Lognormal distributions in this work. An automated approach

could be taken that chooses the upper bound based on the percentage of the

distribution covered, as determined by the cumulative distribution function (CDF).

Furthermore, the equation contains an absolute value operator applied to the log

term, which is a modification to the standard KL-divergence equation. This is to

avoid situations where underestimation in one section of the approximate PDF might

mask overestimation in another, which may occur due to the fact that the log term

can be positive or negative.

53

Calculating Equation 3.5 requires knowledge of the PDFs of both distributions.

The PDF for the target distribution is unique to each distribution, but it is generally a

trivial calculation for most parametric distributions. We use the scaling and squaring

approximation of the PDF for a phase-type distribution, along with the PDF for the

target distribution, to compute the KL-divergence.

3.4.2 Optimization

Selecting parameters for the phase-type approximation of a target distribution

is an optimization problem that seeks to minimize KL-divergence. Particle Swarm

Optimization (PSO) has demonstrated utility in solving these types of problems, and

for a baseline comparison, a genetic algorithm (GA) and a hill-climbing algorithm

were implemented.

3.4.2.1 Particle Swarm Optimization PSO begins by initializing a population of

particles, each of which has a position in the search space that represents a possible

candidate solution [58]. The quality of each particle’s position can be evaluated using

a fitness function that is problem-specific. Particles move through the search space

as defined by their velocity, which is updated during each iteration of the algorithm

according to the following velocity update equation:

vi = ωvi + U(0, φ1)⊗ (pi − xi) + U(0, φ2)⊗ (pg − xi).

Here, vi is the velocity for particle i, xi is the position of particle i, pi is the best

position seen by particle i, and pg is the best position seen by any particle in the

swarm. In this application, KL-divergence is the fitness function, and the “best”

solution is defined to be the solution with the lowest KL-divergence value. The first

term is known as inertia, which pulls the particle in the direction it was previously

54

going. The second term is the cognitive component, which draws the particle toward

the best solution it has ever found, and the third is the social component, which

draws the particle toward the best solution any particle in the swarm has ever found.

The parameters φ1, φ2, and ω are user-defined constants that are tuned manually to

control the degree to which each term influences the particle’s movement.

PSO was chosen due to its success in related applications [59,113]. Additionally,

it is an anytime algorithm, which gives the user the option to accept a suboptimal

solution prior to convergence. This can be especially useful when attempting to

approximate a user-specified distribution, since a solution may be deemed sufficient

by a user during the modeling process.

3.4.2.2 Genetic Algorithm Genetic algorithms (GAs), as their name suggests,

are an attempt to bring the advantages of Darwinian evolution to optimization [76].

The idea behind a GA is to start with a population of randomly generated solutions,

which are in this case assignments of values to the parameters of a phase-type

distribution. Each solution in the population is called an individual or chromosome,

and in this case the fitness for these solutions is calculated as their KL-divergence

from the target distribution. Iteratively, a new “offspring” population is created from

the existing population as follows.

First, two parent chromosomes are chosen such that assignments with lower KL-

divergence are more likely to be selected. In this work, weighted tournament selection

was employed during the implementation of the genetic algorithm. This compares a

small pool of candidate parents uniformly selected from the population and chooses a

parent from this pool using a probability distribution weighted by fitness. The parent

is then returned to the population and another parent is selected in the same manner;

thus, it is possible to have the same chromosome as both parents.

55

Once the parents have been selected, crossover takes place. This work uses

multi-point crossover, which involves randomly selecting sections of parameters

and swapping them between the parents to create two offspring chromosomes.

Experimentation showed that five-point crossover, which involves swapping three

sections, gave the best results. The produced offspring are then mutated, a process

that randomly changes the values of some of the parameters by a small amount.

This process repeats until a desired number n of new offspring have been created,

at which point the generation is completed and is used to replace all n individuals from

the old population. The algorithm is repeated for a specified number of generations,

after which the fittest individual in the population is returned as the solution.

3.4.2.3 Hill-Climbing with Simulated Annealing Simulated annealing is a tech-

nique for improving basic hill-climbing search. It works by using a numerical analogue

to the process of slowly cooling metals so that they crystallize at their minimum energy

state [106]. In the original hill-climbing algorithm, the candidate solution, which in

this case is a parameterization of the model, is initialized at a random state in the

search space. Then, at each iteration, a random neighbor state is considered. If the

neighboring state is found to have a better fitness value than the current state, the

neighbor is accepted and becomes the current state. In this implementation, a better

fitness value is defined as a lower KL-divergence.

Simulated annealing introduces an extra step at each iteration to avoid becoming

stuck in local optima. Once a neighbor state is selected, if the neighbor is worse, it

is accepted or rejected based on the acceptance probability:

P (accept) = exp

(
energy(current)− energy(neighbor)

kT

)

56

where the energy of a given parameterization is its KL-divergence from the target

distribution, k is the Boltzmann constant, and T is a value known as the temperature,

which is initialized to some positive number and is slightly decreased at each iteration.

A better neighbor state will still always be accepted, but now a worse solution may

also be accepted based both on how much worse it is and on the temperature at that

iteration.

The gradual lowering of the temperature parameter produces the desired

annealing effect: the likelihood of accepting a worse solution is initially high but

decreases as a function of time. This enables the algorithm to avoid becoming stuck

in local optima early in the search process while still converging on a close-to-optimal

solution in later iterations of the search.

3.5 Experiments

In addition to comparing optimization algorithms, this section explores the

effects of several other factors on the ability to learn phase-type approximations.

Specifically, experiments are designed to determine how an increase in the number

of phases might improve the expressive power of the model. Additionally, several

alternatives to random initialization of solutions during optimization are presented

and evaluated.

3.5.1 Optimization Methods

We ran the PSO, GA, and hill-climbing with simulated annealing (SA) optimiza-

tion algorithms on various parameterizations of Weibull and Lognormal distributions.

For the Weibull distribution we varied both the rate and shape parameters from 0.5

to 2.0 by increments of 0.1 for a total of 225 instances. The same values were used

with the Lognormal distribution for the mean and standard deviation parameters.

57

Each configuration was run 100 times to account for the stochastic nature of each of

the optimization algorithms.

For this initial experiment, the size of the learned distribution was fixed at three

phases. We employed general phase-type distributions, which have no structural

restrictions. The intensity matrix and initial distribution for each phase-type

distribution were serialized so that they conformed to the optimization algorithm

frameworks. This was done by extracting all non-diagonal entries from the intensity

matrix excluding the last row. This is because the diagonal entries for each row of the

intensity matrices can be computed as the negative sum of the rest of the row, and

the last row was always set to 0 since the corresponding state is absorbing. We also

included all of the values in the initial distribution in the serialization and normalized

the values to ensure that the probabilities sum to 1.0. The result is a vector of size

Θ(n2), where n is the number of phases. We bounded the valid search space for the

optimization such that the initial distribution values were smaller than one, while

the entries for the intensity matrix were bounded by some positive user-specified

value, which we set to 2.00 for all experiments. The deserialization process reversed

the described procedure to produce a phase-type distribution that can be used to

evaluate candidate solutions for the optimization algorithms.

Algorithms were compared using the KL-divergence between the final learned

phase-type distribution and the target distribution. We used 10-fold cross validation,

and manually tuned the parameters for each algorithm to improve performance. Hill-

climbing used an initial temperature of 100 and decreased this value by 0.05 at each

iteration. For the genetic algorithm, we used 100 individuals, five-point crossover,

and two-parent tournament selection with a 0.75 probability of choosing the fittest

parent. PSO used five particles, the behavior of which was dictated by a velocity

update equation with an inertia of 0.9, a personal learning rate of 1.0, and a social

58

Table 3.1: Comparison of Optimization Algorithms

PSO GA SA
Weibull 0.0498 0.0815 0.2996

Lognormal 0.0154 0.0394 0.0888

learning rate of 1.5. Each of the algorithms were run for 1000 iterations, which in all

cases appeared to be sufficient for convergence.

The mean performances for each algorithm measured in KL-divergence from the

target distribution are summarized in Table 3.1. Algorithms were compared with

the Wilcoxon signed-rank test with a confidence level of 0.95, a nonparametric test

chosen because the datapoints originate from different distributions. Based on our

statistical analysis, PSO significantly outperforms the GA, which in turn significantly

outperforms SA. For this reason, we focus the rest of our experiments on how well

PSO performs under varying conditions and omit any further results for GA and SA.

We also investigated PSO’s ability to approximate distributions over different

regions of the parameter space. As specified above, we used the 225 parameterizations

for Weibull and Lognormal and plotted the KL-divergence values obtained using PSO

in Figure 3.4. Figure 3.4a illustrates that relatively low KL-divergence values are

obtained for the majority of the Weibull search space, with the exception of those

cases when the rate is low and the shape is high. Similarly, we find from Figure 3.4b

that most parameterizations of the Lognormal distribution can be approximated well,

but performance degrades when both the mean and standard deviation are low.

3.5.2 Number of Phases

The next experiment investigated the effect of varying the number of phases

in the phase-type distribution. Phase-type distributions with more phases have

more representational power, therefore allowing for a more accurate approximation.

59

(a) Approximating Weibull (b) Approximating Lognormal

Figure 3.4: KL-divergence values for approximating parameterizations of Weibull and
Lognormal distributions using PSO.

However, more phases implies more parameters in the resulting CTBN, with a

corresponding increase in model complexity.

For this experiment, we used five representative parameterizations each for the

Weibull and Lognormal distributions. These parameterizations are intended to cover

a variety of common distribution shapes that may be used to specify the behavior of a

continuous system. For the Weibull distribution, these values were (0.8, 1.7), (1.0, 1.5),

(1.3, 1.7), (0.7, 0.7) and (1.0, 0.5), where the first value in each pair is the rate and the

second value of the pair corresponds to the shape. In the case of the Lognormal

distribution, we used (0.8, 1.2), (1.0, 1.2), (1.0, 1.0), (1.2, 1.0) and (0.95, 1.0), where

the first value of each pair is the mean and the second is the standard deviation.

Once again, each configuration was run 100 times to account for stochasticity in the

optimization algorithms.

For each of these ten target distributions, we used PSO to learn phase-type

distributions with varying numbers of phases. Specifically, we started with a

single phase (which is equivalent to the exponential distribution) and increased

60

Figure 3.5: A comparison of KL-divergence values when using varying numbers of
phases.

incrementally to ten phases. A summary of the results is shown in Figure 3.5.

Our analysis of these results consisted of a series of Wilcoxon signed-rank tests

with a confidence level of 0.95. Of particular note is that a single-phase distribution

was significantly outperformed by every other case, and using only two phases was

significantly worse than using three, four, five, and six phases. It is also interesting

that the approximations become slightly worse as the number of phases increases,

which is likely a result of the increased search space leading to a more challenging

optimization problem. Essentially there is no substantial advantage obtained from

the increased representational power when using a large number of phases, and worse

approximations are obtained by optimizing over the increased number of parameters

in the approximating phase-type distribution. While this is the case for the Weibull

and Lognormal distributions, more challenging target distributions may require a

larger number of phases.

61

3.5.3 Informed Initialization

Our final experiment tested an extension to our proposed algorithm, which

we call informed initialization. The idea is that rather than initializing particles

randomly, we can use a more intelligent starting solution. This is accomplished by

first approximating a variety of distributions, which can be chosen using a grid search

over the parameters. An approximation for each of these distributions is learned

using randomly initialized particles and the resulting parameters for the phase-type

distributions are saved. When learning a new distribution, the algorithm can then

initialize particles using a similar cached solution by calculating the sum of the

differences between parameters and sorting the list.

For this experiment, the set of saved solutions was generated using the

experiments run in Section 3.5.1, resulting in 225 potential starting positions for each

distribution. For the target distributions, we used the ten distributions discussed in

Section 3.5.2 and the parameters for each were perturbed by ±0.05 so that they could

not be found exactly in the set of saved solutions. We varied the number of particles

in the swarm that were initialized using a saved solution from zero (equivalent to

random initialization) to all five. When multiple particles used informed initialization,

solutions were drawn from the saved set in order of similarity.

The performance of the algorithm as a function of the number of iterations for the

cases when zero, one, and five particles use informed initialization is shown in Figure

3.6. This chart shows results for 100 runs approximating a Weibull distribution,

although similar results were found for Lognormal. Using more particles initialized

with informed starting positions resulted in faster convergence to lower KL-divergence

values. We omitted two, three, and four initialized particles from the graph for clarity,

but we noted that there was an incremental decrease in the KL-divergence for each

case. We also used a Wilcoxon signed-rank test with a confidence level of 0.95 to

62

Figure 3.6: Effect of informed initialization on KL-divergence.

compare the results of zero initialized particles to five initialized particles after every

200 iterations. Results indicate that the informed initialization performs significantly

better than random initialization at 0, 200, 400, 600, and 800 iterations. Although

informed initialization appears to perform better after 1000 iterations as well, the

decrease in KL-divergence from standard PSO is no longer statistically significant.

3.5.4 Discussion

The experiment from Section 3.5.1 showed that of the optimization methods

considered, PSO performed best. In addition, Figure 3.4 gives a sense of how

well phase-type distributions are able to approximate various parameterizations of

Weibull and Lognormal distributions. KL-divergence values were higher when the

target distribution had harsher peaks in its PDF. This indicates that phase-type

63

distributions are better at approximating smooth distributions. Intuitively, using a

larger number of phases should mitigate this problem.

The conclusion to be drawn from the experiment in Section 3.5.2 is that a

phase-type distribution with a single phase or few phases may lead to unsatisfactory

approximations. Six phases seems optimal, as further increasing the number of phases

does indeed increase expressiveness but also makes optimization more difficult. Since

the search space increases quadratically with the number of phases, adding more

phases greatly expands the parameter space the optimization method must search.

For the distribution we investigated, we found that three phases is likely sufficient

to get a reasonable approximation, and two phases may also work when model

complexity is a concern.

As discussed in Section 3.5.3, informed initialization does appear to improve

the approximations. Initializing the entire swarm in this way produced significantly

better results at intermediate stages of the optimization process. In addition, Figure

3.6 shows that the solution converges much faster when informed initialization is used,

which could be beneficial to applications where learning time is important.

3.6 Parametric Representation and Interpretation

This chapter has described how approximations of non-exponential parametric

distributions can be learned and embedded into the CTBN framework. Before

proceeding to the next chapter, we first take a brief moment to discuss the ramification

of this work the semantic interpretation of CTBN parameters. Recall from the

previous chapter that there are two equivalent parametric representations. A pure

intensity representation directly uses the intensities from an intensity matrix, and is

associated with a racing exponential interpretation. A mixed intensity representation

uses a single rate to determine a transition time and determines the location of the

64

transition using a discrete distribution over the possible destination states. With

the potential for embedding approximations of more complex distributions, it is our

contention that the mixed intensity representation is a more general approach to

viewing the parameters and can be readily extended to describe more complex, non-

exponential parametric distributions.

Traditionally, the mixed intensity representation for homogeneous CTMPs are

comprised of two sets of parameters; namely, a set of rates q defining transition times

and a set of discrete distributions θ defining transition destinations. Equivalently, q

is a set of parameterized exponential distributions defining transition times for each

state. With the ability to approximate non-exponential distributions using phase-type

distributions, the set q can be generalized to contain any parameterized distribution,

so long as it is positive and continuous. The discrete distributions defined by θ remain

the same.

For example, an intensity matrix for a node with three states might be defined

using q = {Weibull(1.0, 1.5),Exponential(5.0),Lognormal(3.0)}. In other words, the

expected sojourn time when the process is in each state is defined by a different

distribution. A phase-type distribution can be learned for the Weibull and Lognormal

distributions, resulting in a matrix of the form shown by Equation 3.3. The final

intensity matrix can then be constructed using the embedding process, the learned

phase-type distributions, and the discrete distributions from θ.

This is achievable because the mixed intensity parameterization is described

using sojourn times and discrete probability distributions over destination states,

which work well with the phase-type embedding process. A pure intensity represen-

tation does not readily describe the discrete distributions required for embedding a

learned phase-type distribution. Furthermore, the racing exponential interpretation

loses meaning when considering non-exponential distributions, while the sojourn time

65

interpretation promoted by the mixed intensity representation works well with new

parametric distributions.

3.7 Summary

This chapter was dedicated to developing a method for approximating known

parametric distributions using phase-type distributions. We demonstrated that this

can be accomplished by using an optimization algorithm to minimize a modified KL-

divergence value. The PSO, GA, and simulated annealing algorithms were compared,

and experimental results showed that PSO produced better approximations. We

explored how well this procedure performs for a variety of parameterizations of

both Weibull and Lognormal distributions and also tested how the number of

phases impacts the quality of the approximation. We also proposed and tested

an extension that uses informed initialization to improve convergence speed of the

optimization algorithm. Finally, the embedding process for phase-type distributions

was presented in a more formal context, and we made the argument for a mixed

intensity representation for cases involving these phase-type embeddings.

The techniques in this chapter provide a methodology for encoding approximate

non-exponential parametric distributions using CTBNs, thereby paving the way for

additional CTBN applications in domains exhibiting transition events that are known

to follow more complex distributions. This is certainly true of the reliability domain,

where system failures often follow known distributions like Weibull and Lognormal.

The formalization of the embedding process in this chapter also marks a valuable

milestone in improved CTBN adoption, in that it provides a fully general description

of how a learned phase-type distribution can be embedded into a CIM. Using this

formalization in addition to an algorithm for minimizing DKL, it is possible to

directly specify the parameters for a non-exponential distribution and obtain a CTBN

66

representation in an automated fashion. We expect these contributions to reduce the

level of difficulty associated with building CTBNs for practical applications.

67

CHAPTER FOUR

CONTINUOUS TIME DECISION NETWORKS

In the last chapter, methods for extending the CTBN framework to support non-

exponential parametric distributions were discussed. The intent was to extend the

class of problems that can be represented with CTBNs. In this chapter, we continue

toward this goal by introducing a variation on the CTBN framework that allows

for the representation of decision problems. This new model, which we refer to as

a Continuous Time Decision Network (CTDN), is designed to support optimization

over a set of actions. This further extends the class of problems to which CTBNs

may be applied to include continuous time decision problems.

4.1 Background

This section provides a review of related topics in the literature upon which this

work is founded. First, the decision network model is presented as it exists in a static

context. Factored performance functions are discussed, which are used as the basis of

the utility nodes in CTDNs. Finally, a review of the literature related to optimization

and decision making in CTBNs is provided.

4.1.1 Decision Networks

In its natural form, BNs are capable of representing static probability distribu-

tions over a set of variables. A decision network is a BN that has been adapted to

represent and allow for reasoning over decision problems as well [115, 116]. Decision

networks have also gone by the name decision diagram or influence diagram. Since its

introduction, the decision network has received substantial focus in the literature for

68

applications in domains requiring decision modeling, and often provide a tractable

alternative to decision trees, which can grow exponentially with the number of

variables [60].

Decision networks make use of three distinct types of nodes. The first is the

chance node, also known as an uncertainty node, which is identical to the nodes used

in a standard Bayesian Network that describe the conditional probability distribution

over a variable in the system. The second is the decision node, or action node, which

represents potential decisions to be made. These nodes can be thought of as a special

kind of uncertainty node where the state is chosen ahead of time and assigned as

evidence, rather than being inferred algorithmically. As a result, decision nodes do

not have parents by construction. Finally, decision networks make use of the utility

node, also sometimes referred to as a value node. Utility nodes assign a numeric

value to each state combination of its parents, rather than defining a probability

distribution over a set of states. Conventionally, chance nodes are depicted as ovals,

decision nodes are rectangles, and utility nodes are diamonds in a rendered graph.

An example decision network is shown in Figure 4.1. This network models the

oil wildcatter drilling decision problem [108]. In this problem, a wildcatter must

decide which tests to perform, and whether or not to drill. The problem depends

on several uncertain factors, including the test results, seismic structure, amount of

oil, and the cost to drill. The decision should maximize profit, which depends on a

number of factors, including the test and drill decisions. By considering the possible

decisions and applying evidence, standard Bayesian network inference can be used to

obtain utilities, and solving the problem therefore amounts to choosing the decision

that produces the best expected utility. This example demonstrates how decision

diagrams can be used to model complex interactions, which can in turn be used to

identify the best course of action when faced with uncertainty. These models have

69

Test
Test

Results

Seismic
Structure

Drill

Amount
of Oil

Profit

Cost of
Drilling

Figure 4.1: Oil wildcatter drilling decision problem

since been extended to allow for consideration of multiple utilities, as well as multiple

decision agents [60, 62].

4.1.2 Factored Performance Functions

A performance function measures user-specified cost/reward values over the

behavior of a system. For CTBNs, this can be achieved by evaluating a sample

σ using a function f . The resulting value f(σ) represents the global performance

of a system. The concern is that defining a function in terms of a sample σ may be

intractable, given that the number of possible states in σ is exponential in the number

of variables. This makes defining and even computing a function impractical for most

applications.

To address this issue, factored performance functions were proposed as a

method for representing a performance function while still adhering to the factored

representation of the CTBN [132]. This is applicable for cases where the global

function exhibits local decomposition in terms of each variable. To achieve this, local

70

performance functions are associated with nodes in the network that are involved

in the global performance function. More formally, if f is a global performance

function, it is factored over a subset of nodes X′ ∈ X, resulting in local functions fX ,

one for each X ∈ X′. Furthermore, each function fX is factored with respect to time

as well, avoiding the need to specify a function over every possible trajectory of a

variable. Instead, each local function defines a performance value assigned to a single

observation of a single variable. Let σ[X] be the portion of the trajectory describing

transitions of X, and let fX(ts, te, X(t)) be a function over a single state observation

in σ[X] from time t = [ts, te). The global performance function over a full CTBN is

therefore factored as:

f(σ) =
∑
X∈X

 ∑
〈ts,te,X(ts)〉∈σ[X]

fX(ts, te, X(ts))

 .

For a more formal definition, see Sturlaugson and Sheppard [132]. The factored

performance function fX is able to represent both fixed and variable costs over the

states of X. As an example, consider a performance function for a node X with states

x0 and x1, and let ∆t = te − ts. A local performance function over X is defined as

follows:

fX(ts, te, X(ts)) =


c1 + c2∆t if X(ts) = x0

0 if X(ts) = x1

.

Here, the time unit is hours, and c1 and c2 are two constants representing dollars and

dollars per hour respectively. The function fX indicates that a fixed cost of c1 occurs

every time X enters state x0, and will continue to receive a cost of c2 for every hour

that it remains in this state. When X is in state x0, no cost is assigned. This function

is assigned over the states of variable X only and does not depend on the location in

71

the trajectory. In other words, the value of ts is irrelevant, only the relative difference

between variables te and ts is necessary to compute the function.

Once concern with the factored approach is that there are some global

performance functions that cannot be entirely factored into local functions fX .

Definition 4.1.1 (Performance Synergy). Performance synergy is the case in which,

for at least two nodes X and Y , with joint performance function f{X,Y }, there do not

exist functions fX and fY such that, for all x ∈ X and y ∈ Y ,

f{X,Y }({x, y}) = fX(x) + fY (y).

For instance, let ca be the cost of purchasing some item A, and let cb be the cost of

buying item B. A discount may be applied such that the cost of buying both items is

less than the sum of each event: cab < ca+cb. To account for this, synergy nodes have

been introduced as a means of compensating for performance synergy. These nodes

work by augmenting the CTBN with an additional deterministically parameterized

node with parents corresponding to the variable exhibiting synergy. Any addition

or subtraction of value associated with a state combination of the variables is then

accounted for using this new node.

Note that a network is not restricted to a single performance function f . A

family of performance functions F = {f 1, f 2, . . . , fm} may be defined for a single

CTBN. Each performance function gives one “view” of the network. F could be

constructed to represent several potentially competing metrics, such as the cost and

quality of a product. Furthermore, it is possible to evaluate F with a single set of

samples S, regardless of the size of F .

72

4.1.3 Related Work

Cao’s work is most similar to our own in that it aims to perform multi-objective

optimization using CTBN inference as the basis for metric evaluation [13]. Despite

similarities, Cao’s approach is more application oriented, while the ideas presented in

this chapter are focused more on providing a general framework for making decisions

in continuous time. In their work, metrics are encoded directly into the fitness

function for a GA. By using performance functions, we are able to take advantage

of the factored representation when evaluating metrics. Furthermore, metrics are

inherently built into the model itself, and computation of fitness is handled implicitly

within the CTBN framework using inference, rather than relying on a manually

defined evaluation function external to the model. Furthermore, Cao’s work defines a

unique CTBN corresponding to each decision, while our approach encodes decisions

directly into the model itself. Finally, our work does not require that decisions be

represented as static events, but instead allow for decisions that are applied at specific

time intervals. In this way, the CTDN presented in this chapter can be thought of

as a generalized framework for the manually defined optimization problem conducted

by Cao.

4.2 Continuous Time Decision Networks

As with traditional decision networks, a CTDN is comprised of three different

types of nodes: chance nodes, decision nodes, and utility nodes. Analogous to BNs,

the chance nodes in a CTDN are identical to the nodes found in a CTBN. That is

to say, a chance node defines a Conditional Markov Process for a variable, which

describes the distribution of the variable as a function of continuous time conditioned

73

on the state of its parents. This leaves utility nodes and decision nodes that have yet

to be defined within this framework.

A utility node in a BN assigns a numeric value to each state instantiation of

its parents. Although this could be applied directly to the CTBN framework, this

assumes a static distribution, which would require a fixed time point for evaluation

and fails to capture the temporal aspect of the model. Instead, a utility should be

defined in a way that incorporates the time spent in each state over a period of

interest. Defining this type of utility can be expensive, especially if the function

depends on many variables in the network. To address this, we employ the families of

factored performance functions presented by Sturlaugson and Sheppard [132]. In this

way, each utility node in a static decision network is represented in continuous time as

a performance function f i in a family of functions F . Note that unlike a utility node

in a decision network, the utility function f i ∈ F of a CTDN may be modeled using

more than one node in the graph, and may indeed be built directly into an existing

chance node. For visual clarity, these factored functions can be expanded out into

their own utility function nodes using the same deterministic strategy employed when

handling synergy nodes in factored performance functions.

Finally, there is the need for a decision node to represent decisions in continuous

time.

Definition 4.2.1 (Continuous Time Decision Node). A continuous time decision

node X is a special type of CTBN node that has no parents, and where the state of

the process is known at all times t = [0.0,∞), thereby defining a local trajectory over

the variable σ[X]. The states in the trajectory σ[X] must conform to a possibly empty

set of constraints C, defining valid decisions for the system. Each constraint c ∈ C

consists of a set of tuples (ts, te,Y) defining the set of possible states Y that may be

assigned over the time interval [ts, te).

74

A continuous time decision node is identical to a static decision node, except

that its state must now be assigned as a trajectory over time. It is certainly possible

to represent static decisions, which is achieved by assigning a single state xi ∈ V al(X)

to a decision node X for the entirety of time t = [0,∞). The state of a decision node

is defined ahead of time, so the node’s behavior does not depend on anything in the

model itself, and therefore has no parents. Furthermore, any transition behavior is

specified explicitly, meaning that the choice of an initial distribution and transition

parameters is irrelevant, so long as it allows each state to be reached at any point in

time. For simplicity, and to provide good mixing during sampling procedures, each

parameter can be set so they are equal to (1/n), where n is the number of states in the

decision node. The defined states for any decision node are applied as evidence, and

inference is used to fill in the remaining unknown portions of the process’ trajectory.

4.2.1 Drug Effect Decision Network

This section presents a revised version of the drug effect network described

in Chapter 2. This new model applies slight variations to the original dependence

structure and adds decision and utility nodes to transform the CTBN into a CTDN

capable of representing decisions.

Example 4.2.1. Drug Effect Decision Network

Figure 4.2 shows an example of a Continuous Time Decision Network. This

model is a modified version of the original drug effect network, recast as a decision

problem. The network describes the temporal behavior of a patient’s condition as

influenced by concentration of a drug in their system. The decision problem requires

determining how to apply the drug in order to maximize comfort and minimize weight

gain.

75

In the example, the model still contains chance nodes for a Uptake, Concentration,

Drowsy, Pain, Barometer, Full Stomach, Eating, and Hungry. These are aspects of

the patient system that, in general, cannot be controlled directly. One aspect that

can be modified indirectly is the uptake of the drug, which can be modified with an

application of the drug itself. The CTDN version of the model therefore incorporates

a new decision node Drug, assigned as a parent to the existing node for Uptake. In

the original model, Uptake transitions from state u1 to state u0 with an intensity of

0.5 and remains in state u0 for the remainder of the process. With the addition of the

two-state Drug node, this behavior remains true when Drug is in state d0, but Uptake

transitions to u1 again with an intensity of∞ when Drug is in state d1. Furthermore,

the initial distribution for Uptake is adjusted so that the variable deterministically

starts in u0. Conceptually this means that uptake will not occur unless the drug is

applied, at which point it occurs instantaneously. After the drug is not longer applied

(Drug returns to d0), the uptake stops after a time that is distributed exponentially

with a rate of 0.5. This behavior models the application of the drug directly, rather

than assuming the event occurred at some previous time. Since the application of the

drug is a decision, the Drug node is drawn as a rectangle rather than the oval shape

used for chance nodes.

In addition to the Drug node, the model is also modified to account for the

effect that a drug may have on hunger. Some drugs affect appetite, and to capture

this behavior, an edge was added from the three-state Concentration node to the

two-state Hungry node in the original network. To account for the drug’s effect on

appetite, the first rows of the Hungry CIMs are multiplied by a factor of φ0, φ1, or φ2,

depending on if Concentration is in state c0, c1, or c2, respectively. Similarly, the

second rows of the Hungry CIMs are multiplied by a factor of 1
φ0

, 1
φ1

, or 1
φ2

, depending

on the state of Concentration. We set φ0 = 1.0, so that when Concentration is

76

Concentration PainDrowsy

BarometerUptake

Full
Stomach

Eating Hungry

Drug
fWeight fComfort

Figure 4.2: Example drug effect decision network.

in state c0, Hungry behaves the same as in the original drug effect network. We

set φ1 = 5.0 and φ2 = 10.0, so that as the concentration of the drug increases, the

intensity for transitioning into the h1 state increases while transitioning back to state

h0 decreases. This effectively models the scenario where the drug causes the patient

to feel hungrier. By setting φ1 and φ2 to some constant c < 1.0, it would have also

been possible to model loss of appetite as a side effect.

This decision problem is concerned with both a patient’s comfort level and their

potential for weight gain due to the application of the drug. To model these factors

of interest, two performance functions are developed to encode these utilities. First,

a function fComfort is defined that describes patient comfort in terms of the pain

experienced by the patient and how hungry the patient is. In an attempt to capture

the instant gratification received by a patient, benefits are awarded when either Pain

or Hungry transition back to a state of p0 or h0. In addition, a constant benefit is also

77

awarded for every hour the patient remains in either the p0 or h0 state. In a similar

fashion, penalties are assigned whenever a transition is made into the states p1 or

h1, and a constant negative contribution to the function is dispensed for every hour

spent in either one of these states. This function describing comfort is captured by

the newly introduced fComfort utility node, rendered as a diamond shape and added

as a child of the existing Hungry and Pain nodes.

The drug’s potential to induce weight gain for a patient is described by the

fWeight performance function. This function is defined in terms of the Eating and

Drowsy nodes, with the notion being that the calorie intake will be higher if the

patient eats more, and the calories burned will be lower when the patient is drowsy

for longer periods of time. While immediate pleasure or displeasure was attained

for the comfort variable upon entering a state, the concept of weight gain has no

corresponding instantaneous behavior. For example, while being drowsy may cause

weight gain, becoming drowsy does not. For this reason, fWeight is a more simplistic

performance function that simply adds a positive contribution for every hour spent

in the Eating = e1 or Drowsy = d1 states. This function is encoded by the fWeight in

Figure 4.2. The introduction of these two utility nodes, along with the Drug decision

node, transform what was a continuous time uncertainty problem into a continuous

time decision problem.

4.2.2 Multi-Objective Optimization using CTDNs

The CTDN provides a framework for solving decision problems in continuous

time. Solving the decision problem reduces to finding a decision or set of decisions

that maximize the defined utility functions. In other words, the goal is to optimize

the utility function outputs over the possible inputs as represented by the decision

78

nodes. This can be achieved by using the CTDN framework in conjunction with

standard CTBN inference algorithms.

Let X be the set of nodes in a CTDN, and let D ⊂ X be the set of decision

nodes in the model. A complete decision σ[d] is a complete trajectory for each

variable in the set D and represents an external action that can be taken. Next, let

f be a performance function defined over the CTDN using utility nodes. Inference

can be used to compute the expected utility conditioned on the decision σ[d], which

is assigned as evidence in the network. This expected utility E(f |σ[d]) is the value

associated with choosing that specific action, incorporating the uncertainty defined

by the model. Let DC be the set of all trajectories over the decision set D subject to

constraints C. The CTDN optimization problem attempts to find an assignment to

the decision set that maximizes the expected value:

argmax
σ[d]∈DC

E(f |σ[d]).

For multi-objective optimization, optimization is performed over a family of m

user-defined performance functions F = {f 1, . . . , fm},

argmax
σ[d]∈DC

(
E(f 1|σ[d]), E(f 2|σ[d]), . . . , E(fm|σ[d])

)
.

As is often the case with multi-objective optimization, when all of the functions of

F cannot be combined into a single value that can be optimized, the task is then

to estimate the Pareto frontier [70]. In this context, the Pareto frontier is the set of

solutions where an improvement for any value of a performance function f i implies

a degradation in the value of some other performance function fj. More formally,

let the set of solutions Z ⊆ X be the Pareto optimal set. Then the remaining set of

79

solutions Y = X\Z is the dominated set, where each solution Y ∈ Y is strictly worse

with respect to all dimensions that a solution Z ∈ Z.

The constraints on C are used to define the allowable trajectories. The

constraints are necessary to prevent infeasible actions, but the constraints can also

be used to make the optimization problem more tractable. The action trajectories

are defined over continuous time, so the user may specify discrete time intervals

over which the action holds. Optimization can then maximize the expected utility

functions by enumerating these discrete choices rather than optimizing over the entire

continuum.

4.3 Experiments

This section provides a demonstration of multi-objective optimization using

CTDNs. The Drug Optimization experiment in section 4.3.1 presents the results

of an optimization problem using the network presented in Example 4.2.1. This

problem involves identifying the number of doses taken by a patient per day to find

an amount that maximizes comfort level while minimizing weight gain. The Vehicle

Fleet Optimization experiment in section 4.3.2 also defines two utility functions; here

the goal is to assign an optimal set of technicians to maximize vehicle uptime and

minimize cost.

4.3.1 Drug Optimization

This experiment makes use of the CTDN from Figure 4.2. The goal of this

multi-objective optimization problem is to find a trajectory for the Drug node that

maximizes comfort while minimizing weight gain. First, the possible decisions

associated with the decision variable Drug are constrained to eliminate behavior that

is not possible or does not align with the model. In this case, application of the drug

80

is intended to be an event that occurs at a specific time. This can be simulated by

ensuring that upon transitioning to state d1, the variable transitions back to state d0

after a short expected time interval ε. For this experiment, ε is set to 0.001. When

the drug is applied (Drug enters state d1), Uptake instantly transitions to state u1

due to an infinite transition intensity forcing uptake to match the drug application.

When Drug transitions back to state d0 in roughly ε time later, Uptake begins its

normal behavior of transitioning back to u0 with rate 0.5.

While the described constraint ensures only valid trajectories are considered,

there is still the intractable problem of evaluating all possible times at which to

transition into state d1. To overcome this problem, domain knowledge can be applied

to constrain the trajectories further to a set of feasible options. In this case, it is

known that the drug should be administered at routine intervals. This constraint

reduces the problem of evaluating all possible transition times to the more tractable

problem of identifying the best time between drug dose applications.

This decision problem is focused on the effect of drug applications administered

throughout a day, and therefore inference is run from time ts = 0 to time te =

12 hours. Identifying the optimal time between dose applications is equivalent to

the problem of identifying the number of doses administered per day. We begin by

evaluating the case where no doses are applied, which equates to a time between doses

greater than 12. We then increase the doses per day from 1 to 8, applying evidence

to the Drug node that forces a transition to and from state d1 at routine intervals

throughout the day. At 8 doses per day, this equates to an application event occurring

every 1.5 hours.

The computed values for fComfort and fWeight as a function of the number of

applied doses are shown in Figure 4.3. The comfort level for the patient increases as

the number of doses increases, but the payoff levels off after two or three applications

81

Figure 4.3: Performance estimates of Comfort (left) and WeightGain (right) as the
number of doses is increased.

of the drug. Any number of doses above three remains at a comfort level of

approximately 340. The same positive increase can be observed for weight gain,

but the trend continues until hitting the maximum of eight doses. Optimizing either

function independently is a simple matter of choosing the largest or smallest value.

The task of optimizing both functions simultaneously is more difficult.

To identify the optimal choice for both performance functions, Figure 4.4 plots

weight gain as a function of comfort. The goal is to maximize comfort and minimize

weight gain, so an ideal datapoint is located in the bottom right of the graph. Here it

can be seen that zero drug applications minimize the expected weight gain, while five

drug applications maximizes Comfort. The darker nodes make up the Pareto frontier,

which strictly dominate the performance of the lighter nodes. The dominated nodes

occur due to the ceiling for the comfort values that occurs at around four doses, which

is not shared by the weight gain performance function. Any of the darker nodes in

the Pareto frontier are a valid choice for the optimal drug applications depending on

how much comfort is valued as compared to weight gain. In this case, two or three

doses appear to provide a good balance between comfort and weight gain.

82

Figure 4.4: Performance estimates of WeightGain displayed as a function of Comfort.
Each datapoint is labeled with the number of dose applications.

4.3.2 Vehicle Fleet Optimization

This next experiment is based on a real-world reliability model originally

presented by Cao, describing the expected uptime for a military vehicle [13]. This

system consists of three major subsystems: chassis (CH), powertrain (PT), and

electrical (EL). The chassis is comprised of four components, each having their own

failure and repair rates: suspension (SU), brakes (BR), wheels and tires (WT), and axles

(AX). Likewise, the powertrain subsystem is comprised of three subsystems: cooling

(CO), engine (EG), and transmission (TR).

In this experiment, the model was adapted to cover a fleet of vehicles and has also

been adapted to convert the CTBN into a CTDN capable of representing a decision

problem. The resulting model is shown in Figure 4.5. Here, the fleet size is set to

five, meaning that there are five separate replicated models of the vehicle network.

Each vehicle model can incorporate its own evidence, e.g., repair and usage history.

83

Vehicle

EL
PTCH

BRWT AX TREG

SU CO

Vehicle

EL
PTCH

BRWT AX TREG

SU CO

Vehicle

EL
PTCH

BRWT AX TREG

SU CO

Vehicle

EL
PTCH

BRWT AX TREG

SU CO

Vehicle

EL
PTCH

BRWT AX TREG

SU CO

fUptime

Technician2

Technician1

Technician3

Figure 4.5: Vehicle decision network.

84

Decision nodes are added that represent the option to assign specialized

technicians who are capable of maintaining and repairing the vehicles in the fleet.

We include three technician nodes in the network, which are added to the parent set

of all remaining nodes in the network. This means that the behavior of all components

in each vehicle is affected by the behavior of the technician nodes. The intent is for

these to provide added expertise in maintaining the vehicles beyond that already

covered by the model.

The technician nodes have two states corresponding to the absence or presence of

the technician. The presence of a technician decreases the time to repair and increases

the expected time to failure for a component due to preventative maintenance. This

equates to increasing the intensities for transitioning back to state 0, while decreasing

the intensities for transitioning away from state 0. Technician 1 and Technician 2 are

considered to be Level I technicians, which scale the repair rates by a factor of 1.5

and the failure rates by a factor of 0.8. Technician 3 is intended to model a Level

II technician, which has a stronger influence on the repair and failure rates. In this

case, the repair rate is increased by a factor of 2.0 and the failure rate is reduced by

a factor of 0.5.

Performance is defined in terms of the uptime for each vehicle, encoded using

the utility node fUptime, which is attached as a child of each Vehicle node in each of

the networks. A value of 1.0 is assigned for every hour a vehicle is in an operation

state, and a double value of 2.0 for each vehicle is assigned for instances where all

vehicles are operational at the same time. The function is represented using a single

utility node rather than as separate factored utility nodes over each vehicle, since it

is expected that the value of the entire fleet of vehicles is worth more than the sum

of the individual uptime values.

85

Table 4.1: Repair Costs for Vehicle Components

Component Repair Cost
BR (Brakes) 950
WT (Wheels/Tires) 700
AX (Axles) 2000
SU (Suspension) 850
EG (Engine) 450
TR (Transmission) 6500
CO (Cooling) 200

Furthermore, another performance function fCost is defined to account for the

monetary cost required to maintain the fleet of vehicles. There are two sources of

cost that are modeled in this system. The first is the cost of a repair event. A unique

cost is associated with the repair event for each component in the vehicles. No cost

is associated with repair events for entire subsystems, as the individual components

account for the cost required to bring the subsystem back online. The specific costs

associated with each component are shown in Table 4.1.

The second contributor to the fCost performance function is the wages paid to

the technicians. This cost is measured in terms of how much money is spent per hour

retaining the technician to work on the vehicle fleet. Technicians are also assigned

other billable jobs as well; therefore, the hourly cost for each technician with respect

to this fleet of vehicles is only a portion of the entire wage for the technician. The cost

per hour to retain Technician 1 and 2 is 2.0 respectively, while the cost to maintain

Technician 3 is 3.25. The discrepancy between wages is due to the difference is skill

levels, where Technicians 1 and 2 are at skill level I, and Technician 3 is at skill level

II.

86

Note that the utility nodes associated with cost are not shown explicitly in Figure

4.5. Technically, a single fCost utility node could be added as a child of the seven

component nodes from Table 4.1 and the three technician nodes. With 10 binary

parents, this would mean the utility node would require 210 = 1024 deterministic

intensity matrices. Instead, the function can be factored over each of its parents

individually, since the function fCost exhibits no synergy. This could be achieved

explicitly using ten different utility nodes, each with one parent. For visual clarity,

the model in Figure 4.5 does not show each of these utility nodes, but instead encodes

the function directly using the seven chance nodes and three decision nodes.

The model now contains two performance functions: fUptime, which are

dependent on the amount of time each vehicle spends in the operational state,

and fCost, which is defined in terms of repair costs and technician wages. Here

again we are faced with a multi-objective optimization problem where the goal is

to maximize vehicle uptime while minimizing cost, and the decision variables are the

use of technicians. Formally we wish to identify a trajectory for the three technician

nodes that will optimize the expected values for the performance functions. We start

by constraining the search space. In our system, we either hire a technician or not,

meaning that the state of the technician is static and does not change throughout

the entire time of interest. This reduces the problem to that of identifying the initial

states for each technician node.

To find the optimal assignment of technicians, we set evidence that each

technician node is either zero or one for the entire time period and evaluate the vehicle

uptime and cost performance functions. We do this for every assignment of technician

nodes, resulting in 23 = 8 datapoints. Figure 4.6 shows each assignment’s cost plotted

against the vehicle’s performance. The datapoints are labeled as (t1, t2, t3), where ti

is the state assignment for Technician i. The goal is to minimize cost and maximize

87

Figure 4.6: Performance estimates of Cost displayed as a function of VehiclePerfor-
mance. Each datapoint is labeled with the assignment of technicians in the form
(Technician1, Technician2, Technician3).

vehicle performance, so here again the best solution can be found in the lower right

side of the graph. The Pareto frontier consists of the darker points, which dominate

the remaining lighter colored nodes. Depending on the importance placed on the

vehicle’s performance vs cost, any of the assignments in the Pareto frontier are a

valid choice for the optimal solution.

This experiment demonstrates how CTDNs can be used to solve complex

optimization problems. Intuitively it may seem that as more technicians are employed,

vehicle performance will increase along with cost. While this is true for vehicle

performance, we see that the assignment with the minimal cost is not (0, 0, 0), but

rather (0, 0, 1), which corresponds to assignment of Technician 3. This occurs because

Technician 3 ultimately reduces the number of necessary repair events, each of which

has a cost associated with it. The amount of money saved in repair events is greater

than the amount spent on wages, and in the end Technician 3 actually saves money

88

in the model. At first glance, it may seem tempting to spend less money on a Level I

technician, but this model shows that there is absolutely no benefit to either cost or

vehicle performance in hiring a Level I technician if a Level II technician is available.

If vehicle performance is absolutely critical and money is less of a concern, hiring a

Level I technicians to supplement a Level II technician can provide some increased

performance. The interactions between technician skill, wages, vehicle performance,

and repair cost are complex and not immediately obvious. Through the use of CTDNs,

it is possible to solve this multi-objective optimization problem, which allows for more

informed decision making.

4.4 Summary

In this chapter, we introduced the Continuous Time Decision Network; a

variation on the CTBN capable of modeling decision problems in continuous time.

The CTDN uses traditional CTBN nodes in addition to decision and utility nodes to

represent possible actions, rewards, penalties, and uncertainty. The newly introduced

node types are specializations of the nodes in a CTBN, allowing for evaluation of

decisions using standard inference algorithms designed to support the CTBN. The

utilities defined within the CTDN framework can be optimized as a function of the

possible decisions, providing a means of solving a decision problem in continuous

time. We demonstrated the capabilities of this framework by optimizing two decision

problems adapted from models presented in the literature, showing that a set of

optimal decisions can be determined even in the presence of uncertainty.

The introduction of the CTDN framework allows for the representation of

decision problems in continuous time using the standard CTBN framework. This

supports applications of CTBNs in areas requiring decision optimization with respect

to some utility. The framework is a natural extension to decision networks using

89

Bayesian Network semantics, and provide a temporal alternative to the static

representation. CTDNs provide a formal method for performing optimization in

continuous time, and once again extend the class of problems that can be addressed

using CTBNs.

90

CHAPTER FIVE

COMPACT REPRESENTATIONS

Chapters 3 and 4 both focused on the representational capabilities of the CTBN.

Although this is certainly an important factor, even the most representationally

powerful models can be impractical if they are unable to scale. In this chapter, we

attempt to address this concern by introducing compact representations of conditional

CTMPs. Specifically, mapped conditional intensity matrices and tree-structured

conditional intensity matrices are presented as two alternative representations capable

of encoding transition behavior more compactly than a traditional CIM. These

representations have the potential to alleviate scalability issues, especially in the

presence of structured data.

5.1 Background

In this section, motivation and research in the area of compact representations

are discussed. In each case, the objective is to provide a more scalable solution to

the problem of modeling systems of variables in the presence of uncertainty. Some of

the discussed works use a similar approach to our own but are applied in a different

domain. Others strive to achieve a similar goal of compact CTMP representation

but employ different methods of doing so. In each case, we attempt to set our

contributions in context. Note that our work in this chapter also makes use of basic

principles of decision trees and function composition, but these principles are not

themselves part of the novel contributions presented in this dissertation.

91

5.2 Motivation

By defining a conditional CTMP for each variable in the system, the size of the

parameterized model can be reduced greatly. The number of entries in an intensity

matrix for a CTMP is

nctmp =

(∏
V ∈V

|V |

)2

.

Alternatively, the total number of entries in the CIMs of a CTBN over the same set

of variables is

nctbn =
∑
V ∈V

 ∏
U∈Pa(V)

|U |

× |V |2
 , (5.1)

where Pa(V) is the set of parents for node V in the graph. If these parent sets are

smaller than the total number of nodes in the graph, then nctbn < nctmp. In other

words, so long as the behavior of a variable only depends on a subset of the other

variables in the system, a CTBN is able to model the process more compactly.

Referring back to the drug effect network from Chapter 2, a Conditional Markov

Process is specified for each of the eight nodes in the network. As an example, consider

the Joint Pain node, which has parents Barometer and Concentration. For the

sake of conciseness, these nodes can be referred to using their first initials J , B and

C. Node J can be parameterized with an initial distribution of size |J |, and a CIM

where the number of rows/columns is also |J |. In accordance with the definition

for a Conditional Markov Process, the CIM can be viewed as a set of homogeneous

intensity matrices, one for each unique state instantiation of the parent nodes. The

CIM for node J will therefore consist of |B| × |C| intensity matrices. If it is assumed

that |B| = 3 and |C| = 2, then there are 3 × 2 = 6 homogeneous intensity matrices

92

that make up the CIM for node J .

QJ |B,C = {QJ |b0,c0,QJ |b0,c1,QJ |b1,c0,QJ |b1,c1,QJ |b2,c0,QJ |b2,c1}

Although the CTBN representation may be substantially more compact than

a CTMP over the same set of variables, in many situations the model may still

be unmanageably large. Note the product in Equation 5.1, which accounts for the

requirement that all parent instantiations must be enumerated. If a node in a CTBN

has a large number of parents, then storing and using a CIM for the node may be

difficult due to the exponential number of homogeneous intensity matrices. In the

worst case, all nodes may depend on every other node. In this case, no independencies

can be exploited, and a CTBN provides no benefits over a CTMP representation. For

CTBNs with large parent sets, a more concise representation may be required. This

chapter introduces two such representations, both capable of reducing the complexity

of specifying the parameters of a CTBN node when the number of parents is large.

5.2.1 Related Compact Representations

The CTBN is not the only framework designed to induce structure on a CTMP;

there is also the Kronecker representation and the decision-diagram [118]. Kronecker

algebra is able to decompose the intensity matrix of a CTMP into basic matrix

operations [11]. These operations, known as Kronecker products and Kronecker sums,

allow smaller matrices to be stored that can be used to reconstruct the original process

after applying the Kronecker operations:

R =
E∑
e=1

L⊗
l=1

R(l)
e .

93

Here, R is a full joint rate matrix over L variables, R
(l)
e is a rate matrix over variable l,

and E can be viewed as the individual events in the process. Although the Kronecker

representation strives toward a similar goal of compact representation, our approach

starts with the already structured CTBN representation and seeks to add additional

structure to the conditional CTMPs. Our approach is also distinctly different from

the decomposition via matrix operations used in Kronecker algebra.

Decision diagrams are used to encode functions over discrete domains compactly.

This same concept can be used to encode intensity matrices, providing another way

to represent CTMPs compactly [43]. Decision diagrams are represented as directed

acyclic graphs where each layer corresponds to a different variable. The outgoing

edges for each node in a layer corresponds to values that the variable can take on.

Traditionally decision diagrams are binary, but extensions have been made to allow

for multiway decision diagrams (MDDs) [125]. The final value is determined by

combining the values along the edges on a path from the root to a leaf node. This

means that the behavior of a decision diagram largely depends on the operator that

is used to combine edge values. Shelton and Ciardo discuss versions where the edge

values are summed (EV+MDD) and where the edge values are multiplied (EV∗MDD)

[118]. Here again, decision diagrams are used to add structure to a flat CTMP, while

we look into further improving the CTBN framework.

The partition-based CTBN is another structured representation of a CTMP,

and can be viewed as a generalization of the CTBN [141]. The concern being

addressed here is that while complexity of unstructured CTMPs is unmanageable,

there are assumptions made by the CTBN framework that may not suit certain data

structures. Specifically, the conditional CTMP defined by a CTBN assumes that

transition intensities only change as a function of the parent states. Weiss et al.

lift this restriction by allowing multiple intensities to be specified for each parent

94

combination, and instead map intensities to partitions defined over the full joint of

the variables in the model. These partitions are represented using trees or forests,

which bears a loose resemblance to the work presented in this chapter. The difference

is that we use trees to encode a CIM more efficiently, rather than replace the CIM with

a different representation entirely. Furthermore, while Weiss et al. are addressing an

issue of representation, we are attempting to improve scalability. The partition-based

CTBN is actually a more complex model in general, requiring more parameters as

well as an additional partitioning structure that is specified in addition to the original

CTMP. In contrast, our approach adds structure to the CTBN rather than replacing

the existing structure, and generally requires less parameters.

Boutilier et al. introduce the concept of context-specific independence in BNs

[10]. In their work, they formalize scenarios where a variable is independent of the

state of a subset of its parents. This allows for conditional probability tables to be

encoded using a decision tree, reducing the total number of parameters required to

specify the BNs. The tree-structured CIMs presented in this chapter also make use of

context-specific independence and are the continuous time analog of tree-structured

conditional probability tables. As such, the work by Boutilier et al. serves as a

static foundation to the techniques presented in Section 5.6. This chapter not only

extends these methods to work in continuous time, but Section 5.5 also introduces

an alternative method for compactly encoding CTBN parameters that is unrelated

to tree structures.

5.3 Distance Metrics for Transition Distributions

Transitions between the states of a variable in a CTBN are described using

exponential distributions. Let p1 and p2 be exponential distributions with rates λ

and µ respectively. Furthermore, let f(t) be the probability density function (PDF)

95

for p1, and let F (t) be the cumulative distribution function (CDF) for p1. Similarly,

let g(t) and G(t) be the PDF and CDF for p2. The distance between the two

exponential distributions p1 and p2 can be quantified using a wide array of metrics,

each of which has its own unique attributes and advantages [46]. In this dissertation,

three common metrics used to compare probability distributions are considered. This

section concludes by describing how these distance metrics may be used to compare

intensity matrices.

5.3.1 Symmetric Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence, also referred to as relative entropy,

measures the divergence of an approximating distribution from a target distribution

[67]. The notation DKL(p1||p2) is used to indicate the KL divergence of distribution p2

from p1, where p2 is the approximating distribution, and p1 is the target distribution.

The following shows the derivation for KL divergence for the special case where p1

and p2 are exponential distributions as described earlier in this section. Note that

because p1 and p2 are positive distributions, the integral starts at zero.

DKL(p1||p2) =

∫ ∞
0

f(t) log

(
f(t)

g(t)

)
dt

=

∫ ∞
0

λe−λt log

(
λe−λt

µe−µt

)
dt

=

(
λ(µ− λ)

∫ ∞
0

te−λtdt

)
+

(
λ(log λ− log µ)

∫ ∞
0

e−λtdt

)
=
(
λ(µ− λ)(−λ−2e−λt(λt+ 1))

)
+
(
λ(log λ− log µ)(−λ−1e−λt)

) ∣∣∣∞
0

=
µ

λ
+ log(λ)− log(µ)− 1

Although useful for many applications, KL divergence is an asymmetric measure

and is therefore unsuitable for a distance measure intended to test for equivalence

96

between arbitrary distributions. There have been several different adaptations to

KL divergence in the literature that extends the measure to enforce symmetry [9,

73]. Here, we use the definition that sums the standard KL divergence between the

two probability distributions in both directions. This new metric is referred to as

symmetric KL divergence, and is denoted D̃KL(p1, p2).

D̃KL(p1, p2) = DKL(p1||p2) +DKL(p2||p1)

=
(µ
λ

+ log(λ)− log(µ)− 1
)

+
(λ
µ

+ log(µ)− log(λ)− 1
)

=
λ2 + µ2

λ · µ
− 2

5.3.2 Hellinger Distance

The Hellinger distance has been used successfully to quantify the distance

between two probability distributions [26, 146]. Denoted DH(p1, p2), the Hellinger

distance when considering exponential distributions is as follows.

DH(p1, p2) =
1

2

∫ ∞
0

(√
f(t)−

√
g(t)

)2
dt

= 1−
∫ ∞
0

√
f(t)g(t)dt

= 1−
∫ ∞
0

√
λe−λtµe−µtdt

= 1−
√
λµ

∫ ∞
0

e−(λ+µ)t/2dt

= 1−
√
λµ

(
− 2

λ+ µ
e−(λ+µ)t/2

) ∣∣∣∞
0

= 1− 2
√
λµ

λ+ µ

97

5.3.3 Kolmogorov Metric

The Kolmogorov metric, also referred to as the uniform metric, is another means

of measuring differences in probability distributions [63, 153]. This metric indicates

the largest deviation between the cumulative distribution functions and is denoted

DK(p1, p2). The following definition shows the Kolmogorov metric when comparing

exponential distributions:

DK(p1, p2) = sup
t
|F (t)−G(t)|

= sup
t
|(1− e−λt)− (1− e−µt)|

= sup
t
|e−µt − e−λt|

where supt is the supremum over the domain of t. To identify the maximum value,

the terms within the absolute value function can be derived.

d

dt
e−µt − e−λt = λe−λt − µe−µt

By setting this equal to zero and solving for t, it is possible to determine the time at

which the maximal difference occurs.

t =
log λ− log µ

λ− µ

98

This value may then be substituted back into the original equation to obtain the

supremum, and therefore the distances according to the Kolmogorov metric.

DK(p1, p2) =
∣∣e−µ((log λ−log µ)/(λ−µ)) − e−λ((log λ−logµ)/(λ−µ))∣∣

=

∣∣∣∣∣
(
λ

µ

)µ/(µ−λ)
−
(
λ

µ

)λ/(µ−λ)∣∣∣∣∣
5.3.4 Applying Distance Metrics to Intensity Matrices

To compare intensity matrices, the distance metrics described previously in this

section can be leveraged. Each rate qi,j in an intensity matrix Q specifies a potentially

unique exponential distribution p1, which can be compared to the corresponding

exponential distribution p2 defined by rate q′i,j in a matrix Q′.

Let D(qi,j, q
′
i,j) be the distance between the exponential distributions defined

by rates qi,j ∈ Q and q′i,j ∈ Q′. Then let D(Q,Q′) =
∑

i,j|i 6=j D(qi,j, q
′
i,j). Each of

the distances D(qi,j, q
′
i,j) may be computed using one of the metrics discussed in this

section. Note that the assumption of symmetry holds at the matrix level as well, such

that D(Q,Q′) = D(Q′, Q).

5.4 Hierarchical Clustering of Intensity Matrices

The basic idea behind compactly representing a CIM is that similar intensity

matrices that comprise the CIM may be consolidated. The task then becomes how

best to group intensity matrices so as to eliminate the largest number of intensity

matrices while still retaining as much of the original semantics encoded by the network

as possible. Although it would be possible to identify a score for a particular grouping

of intensity matrices based on the distance metrics discussed in Section 5.3, it is

infeasible to consider every possible grouping for all but the smallest of CIMs. Instead,

99

clustering techniques are employed to manage the complexity of identifying a suitable

grouping of intensity matrices.

Although there are a variety of clustering algorithms available, we make use

of hierarchical clustering [79]. Hierarchical clustering is either performed using an

agglomerative or divisive approach. Agglomerative clustering works by starting with

each datapoint in a separate cluster and iteratively merging the clusters that are

closest to one another. Conversely, divisive clustering initially places all datapoints

into a single cluster and divides clusters into groups that are farthest away from one

another. In this research, an agglomerative approach to clustering is used to identify

groups of similar intensity matrices.

The clustering process depends on the ability to quantify the similarity between

two arbitrary clusters. Cluster similarity can be achieved by making use of a linkage

criterion that indicates distance between clusters based on pairwise distances between

elements within the clusters. In this context, the elements within clusters are intensity

matrices, and determining the distance between these intensity matrices can be

achieved by using the metrics discussed in Section 5.3. While a variety of linkage

criteria have been defined in the literature, we make use of maximal linkage clustering.

The criterion works by computing the distance between sets of clustered intensity

matrices as the maximum of the pairwise distances between the elements in the sets

and is a common choice when the underlying structure of the data is unknown [137].

Consider a node with parent variables U having eight possible state instantia-

tions. The corresponding CIM therefore consists of eight intensity matrices, which

are denoted: {Qa,Qb,Qc,Qd,Qe,Qf ,Qg,Qh}. Clusters of these matrices are denoted

Cu, where u indicates the matrices contained in the cluster. For example, Cbe is a

cluster containing the matrices Qb and Qe. Figure 5.1 shows an example of how these

matrices might be clustered hierarchically, using a dendrogram representation [?].

100

Here, the clustering starts at the bottom with each of the eight matrices assigned to

individual clusters. Clusters are then combined in ascending order of distance, which

is represented using the y-axis in the graph. For this example, it is determined that

Ce and Cf are the closest to one another, and the two clusters are therefore combined

into a single new cluster Cef . This process is repeated continually until all clusters

have been merged or until a stopping criterion is met.

Typically a stopping criterion either places a limit n on the depth of the tree

or specifies a maximum distance threshold τ that determines whether or not to

merge a pair of clusters. We make use of the distance threshold to determine which

intensity matrices should be merged. Here, the distance threshold can be used

as an approximation parameter, where smaller thresholds indicate more accurate

approximations with smaller cluster sizes, and a distance threshold of zero will

combine only intensity matrices that are exactly equal to one another. The choice of

the maximum distance threshold depends on the desired approximation accuracy, as

well as the underlying distance metric that is used to compare intensity matrices.

The dashed lines and nodes in Figure 5.1 represent potential cluster merges that

are not taken in this example because their distances exceed a specified threshold τ ,

indicated by the horizontal line. The clusters on the frontier of the solid region in

the hierarchy are Ca, Cb, Ccd, and Cefgh. Table 5.1 lists these four clusters in terms of

the matrices they contain. Here, each row can be treated as a single intensity matrix,

since each entry in a row is identical or nearly identical to the rest. For instance,

C4 consists of four intensity matrices that can all be treated as equivalent to one

another. By taking the mean of these intensity matrices, a single matrix Q4 may be

used to represent the entire cluster. As a result, even though there are eight intensity

matrices in this example, the entire set can be represented with only four unique

intensity matrices that are obtained by computing the mean of each cluster.

101

Ca Cb Cc Cd Ce Cf Cg Ch

Ccd
Cef

Cgh

Cbcd

Cefgh

Cbcdefgh

Cabcdefgh

τ

Figure 5.1: Intensity matrix clustering.

Table 5.1: Example Clustering of a CIM

C1: Qa

C2: Qb

C3: Qc Qd

C4: Qe Qf Qg Qh

102

5.4.1 Clustering Experiments

In this section, an experiment is developed to compare the distance metrics

derived in the previous section and determine their impact when clustering intensity

matrices. This section focuses exclusively on the behavior of the clustering algorithm,

and an investigation on the impact of the underlying CTBN dynamics is reserved

for Sections 5.5.2 and 5.6.1. There are many ways of evaluating the quality of

a clustering. Some evaluation techniques take a statistical approach, considering

clusters with respect to the underlying data [50]. Another approach is to perform a

relative comparison of the clusters, which is less expensive than performing statistical

testing [51]. A traditional goal is to maximize inter-cluster distances while minimizing

intra-cluster distances. For our purposes, we are interested in the total number of

consolidated matrices; therefore, we treat the number of clusters as the variable of

interest. For more specific applications where data is known to behave in a predictable

fashion, distance metrics can be chosen based on more sophisticated criteria.

For this experiment, network structures were fixed to consist of five parent nodes

and a single child node, each with two states. The networks are parameterized

randomly, such that each of the off-diagonal rates in the intensity matrices are drawn

from a uniform distribution U(0.0, 1.0). Diagonal entries are defined as the negative

sum of the remaining row, as per the definition of a Markov process. To obtain

a reasonable sample base, 100 different networks were generated in this fashion.

For each network, the hierarchical clustering algorithm was run using each distance

metric, with the maximal difference threshold ranging from 0.0 to 2.0. The results

are shown in Figure 5.2, where the total number of unique, unconsolidated matrices

are shown on the y axis, and the maximal distance threshold is given by the x axis.

The error bars show standard error for the 100 runs of the clustering algorithm.

103

0 0.5 1 1.5 2
0

10

20

30

Distance Threshold

U
n
iq

u
e

S
ta

te
s Metric

KLD
Hellinger

Komogorov

Figure 5.2: Consistent distance metric experiment.

The most important information that can be drawn from these results is the

points at which each of the distance metrics tend to converge. For instance, the

Hellinger metric appears to converge almost immediately, while KLD continues to

decrease until nearly the end of the range. This provides an upper bound for

a reasonable threshold value for each metric given the generated models. These

ranges differ from metric to metric, meaning that the distance threshold should not

necessarily be interpreted the same for each. As such, it does not necessarily make

sense to compare each metric’s impact on the clustering algorithm using a fixed

range of 0.0 to 2.0. To account for this, the experiment is rerun with the same setup,

except that the approximation threshold for Hellinger is now varied from 0.0 to 0.5,

Kolmogorov ranges from 0.0 to 0.75, and the threshold for symmetric KL-divergence

remains at the range 0.0 to 2.0. This normalizes each metric to a range that extends

only to its observed convergence point. The plot for this modified version of the

experiment is shown in Figure 5.3, where the x axis now signifies the percentage into

the threshold range for each metric. For instance, 0.5 indicates a threshold of 1.0 for

symmetric KL-divergence, but a threshold of 0.25 for Hellinger.

By changing the threshold ranges to suit each metric, the behavior of the

clustering algorithm is more clearly depicted. Specifically, we are now able to observe

104

0 0.2 0.4 0.6 0.8 1
0

10

20

30

Percent of Range

U
n
iq

u
e

S
ta

te
s Metric

KLD
Hellinger

Komogorov

Figure 5.3: Normalized distance metric experiment.

the early stages of the Kolmogorov and Hellinger metrics with finer granularity, now

giving the appearance that Kolmogorov tapers off much more slowly than Figure

5.2 implies. Based on this new plot, it is evident that symmetric KL-divergence and

Hellinger exhibit similar behavior in that cluster sizes increase rapidly with the size of

the approximation threshold. Furthermore, although the number of clusters decreases

rapidly with symmetric KL-divergence, this behavior slows rather quickly, and by the

end of the ranges considered it actually produces more clusters than either Hellinger

or Kolmogorov. Finally, over the threshold interval from 0.0 to 0.75, a clustering

algorithm using Kolmogorov combines intensity matrices at a more gradual rate.

Based on the apparent convergence exhibited by the symmetric KL-divergence metric

that occurs prior to reaching a single cluster, we choose to use KL-divergence going

forward for the remainder of our experiments. Again, the choice of distance metric

will generally depend on the underlying data, and future work in this area should

consider distance metrics within the context of the problem being solved. Regardless

of the metric used, a threshold value should be chosen based on the change in behavior

of the underlying CTBN, as discussed in later sections.

105

5.5 Mapped Conditional Intensity Matrices

The hierarchical clustering algorithm discussed in the previous section provides

groups of intensity matrices that may be treated as equivalent Markov processes

within a CIM. To exploit these equivalences, a computationally efficient data structure

must be leveraged that reduces either the space requirements to store a CTBN or the

time needed to run inference. Given the existing one-to-many relationship in the

output of the clustering algorithm, a discrete mapping function is a natural choice

to represent intensity matrix similarities. The basic idea is to consolidate similar

intensity matrices by mapping their corresponding parent instantiations to a single

output state. Let u be the set of unique instantiations for the parent variables U. A

discrete function f may be used to map inputs u to a set of output states m, where

|m| < |u|, and each element m ∈m is mapped to an element u ∈ u. In other words,

the function f is surjective and traditionally denoted as f : u�m.

Referring back to the example clustering from Table 5.1, a discrete function f

may be obtained simply by reversing the direction of the cluster notation.

{a} 7→ Q1

{b} 7→ Q2

{c,d} 7→ Q3

{e, f ,g,h} 7→ Q4

Here, recall that each element a,b, . . . ,h represents a unique state instantiation to

the parent variables u ∈ U. Each of the output states m ∈M is an intensity matrix,

defined to be the mean of the intensity matrices in the corresponding cluster. Using

this mapping, it is possible to represent the example CIM with only four intensity

106

A B C

X

Figure 5.4: Three-parent network.

matrices rather than the original eight. This new representation is referred to as a

mapped CIM, or simply an MCIM.

To place this in a more explicit context, see Figure 5.4, which depicts an example

network with a single child node with three parents. The mapping for this example

is as follows:

f(U) =



{a0b0c0, a0b1c1} 7→ Q1

{a1b0c1, a1b1c0, a1b1c1} 7→ Q2

{a0b0c1} 7→ Q3

{a0b1c0} 7→ Q4

{a1b0c0} 7→ Q5

. (5.2)

This mapping can be represented in two different ways. The first is that the standard

CIM representation can be augmented to accommodate the new discrete mapping

function f and will only specify an intensity matrix for each output state of the

function. When an algorithm requires rates from an intensity matrix in a CIM, the

intensity matrix is first looked up in the mapping function f based on the state

instantiation of the parents.

The second option is to encode the mapping function f indirectly using standard

CTBN semantics. This can be achieved by inserting a new synthetic variable, referred

to as a mapping variable, into the network. In the three-parent example, the resulting

107

A B C

M

X

Figure 5.5: Three-parent network after inserting mapping variable.

structure after inserting the mapping variable is shown in Figure 5.5. The mapping

variable M has one state for every cluster and is parameterized such that states

are entered deterministically according to the parent instantiations. For example,

consider the following matrix.

QM |a1b1c0 =



m1 m2 m3 m4 m5

m1 −∞ ∞ 0 0 0

m2 0 0 0 0 0

m3 0 ∞ −∞ 0 0

m4 0 ∞ 0 −∞ 0

m5 0 ∞ 0 0 −∞


Here, the process transitions to state m2 instantaneously due to the infinite transition

rates, regardless of the current state of the process. Upon entering state m2,

the process remains there indefinitely, until the parent instantiation changes and a

different intensity matrix is employed. The process is forced into state m2 because f

maps the instantiation a1b1c0 to matrix Q2. For conciseness, this type of deterministic

matrix is denoted Qn
s , where n is the number of states, and s is the state into which

the process transitions. In the general case, the entries for these matrices are defined

108

as follows.

qi,j =


∞, if i 6= s ∧ j = s

−∞, if i 6= s ∧ j = i

0, otherwise

These deterministic intensity matrices are used to parameterize the CIM for the

mapping variable to encode the deterministic function f . Finally the child node X in

Figure 5.5 is parameterized using the mean intensity matrices associated with each

cluster. For instance, in the running example, QX|m2 = Q2, as determined by the

mapping function f .

5.5.1 Context-Independent Equivalence

Although the MCIMs discussed so far allow for the elimination of extraneous

intensity matrices, there is a cost associated with representing the mapping between

parent state instantiations and the corresponding matrices. Standard parameteriza-

tion of a node X requires n =
∏

U∈Pa(X) |U | separate intensity matrices, and although

a discrete function f may substantially reduce the number of required intensity

matrices, the function itself must contain the n original parent state combinations in

order to associate them with the new subset of intensity matrices. This problem is only

exacerbated when the function is encoded using intensity matrices, since the number

of deterministic intensity matrices that are introduced is equivalent to the number of

intensity matrices in the original parameterization. As an example, consider the

network in Figure 5.5, which actually has |M | more intensity matrices than the

original network from Figure 5.4. Although this type of mapping has the advantage

of improving interpretability by reducing the number of non-trivial parameters in the

model, it does not reduce the overall complexity and may, in fact, have a negative

impact. To combat this issue, this section discusses cases where discrete mappings

109

can be decomposed to cover a smaller subset of parent variables, thereby reducing

the space complexity.

To describe discrete mapping decomposition properly, some new terminology

must be introduced. First, consider a subset V of the original parent set U for a

node X. Going forward, this subset of variables is referred to as the subject set, and

an instantiation v to the subject set is called a subject. Similarly, the remaining

parents C = {U\V} are referred to as the context set, and an instantiation c is a

context. The basic idea is that if the intensity matrices for two or more subjects

V′ ⊆ V are equal across all contexts c ∈ C, then the matrices may be consolidated

using a discrete function over the reduced domain of V. In this case, the subjects V′

are said to be contextually equivalent to one another. As before, matrix equivalence

can be determined using a clustering algorithm, and the notion of equivalence may

be relaxed to allow for approximate mappings.

Contextual equivalence is described further by way of example. Consider a node

X with parent nodes U = {A,B,C,D}, each having two states. A standard CIM for

node X will consist of 24 = 16 intensity matrices. An example of a discrete map fU

obtained by clustering the intensity matrices is shown below. Here, the total number

of intensity matrices is reduced from 16 to 8, but the number of state instantiations

that are stored for the domain of fU is still 16.

110

fU =



{a0b0c0d0, a0b1c0d0, a1b0c0d0} 7→ Q1

{a0b0c0d1, a0b1c0d1, a1b0c0d1} 7→ Q2

{a0b0c1d0, a0b1c1d0, a1b0c1d0} 7→ Q3

{a0b0c1d1, a0b1c1d1, a1b0c1d1} 7→ Q4

{a1b1c0d0} 7→ Q5

{a1b1c0d1} 7→ Q6

{a1b1c1d0} 7→ Q7

{a1b1c1d1} 7→ Q8

To compact the representation further, the discrete function fU can be

decomposed by taking advantage of context-independent equivalence. In this case,

V = {A,B} will be treated as the subject set, implying that C = U\V = {C,D}

is the context set. By inspecting the first four mappings in the discrete function fU,

it can be seen that subjects a0b0, a0b1 and a1b0 are equivalent across all contexts.

Note that each of the three subjects appear in each of the first four sets in fU, and

the context does not change within each of these sets. The basic idea is that if the

context is known, then there is no difference between the consolidated subject states.

For instance, if the context is fixed to the state c1d0, then the transition behavior is

described by the intensity matrix Q3 if the subject is equal to a0b0, a0b1 or a1b0, and

matrix Q7 if the subject is a1b1. This observed context equality can be used to derive

two new discrete functions fV and fM. The function fV maps subject instantiations

vi to new states mi. Function fM then rewrites the original function fU by replacing

subject states with the corresponding state mi obtained from function fV. These two

functions are shown here.

111

fV =


{a0b0, a0b1, a1b0} 7→ m0

{a1b1} 7→ m1

fM =



{m0c0d0} 7→ Q1

{m0c0d1} 7→ Q2

{m0c1d0} 7→ Q3

{m0c1d1} 7→ Q4

{m1c0d0} 7→ Q5

{m1c0d1} 7→ Q6

{m1c1d0} 7→ Q7

{m1c1d1} 7→ Q8

Using function composition, the original function fU may be rewritten in terms

of fM and fV, as follows.

fU(u) = fM({fV(v)} ∪ c) (5.3)

Here, the original state instantiation u passed as input to fU is decomposed into the

subject v and the context c. The subject instantiation is then passed as input to the

subject mapping function fV, producing an output mi which is combined with the

existing context instantiation c. This newly obtained state instantiation is passed as

input to the mapping function fM, which returns the correct intensity matrix.

Note that the domain of fV is comprised of four state instantiations, and that

fM requires eight instantiations. In other words, there are 12 instantiations required

112

to define both of the decomposed functions, compared to the 16 used for the original

function fU. Furthermore, the instantiations for fV and fM cover two and three

variables respectively, compared to the four variable instantiations in function fU.

This decomposed representation encodes the exact same information as the original

function fU, despite its more compact representation. Note that although a reduction

from 16 instantiations to 12 may seem trivial, the advantages observed in this example

are compounded as the size of the parent sets increase.

For a more concrete example, refer back to the example drug effect network

presented in Figure 2.3 from Chapter 2, which is repeated here in Figure 5.6 for

convenience. There exist identical intensity matrices in the CIM QP |B,C that can be

consolidated using the principle of context-independent equivalence. For instance,

if the barometric pressure B is known to be in state b0, then that same transition

behavior is expected regardless of whether the concentration of the drug C is in state

c0 or c2. Similarly, when B = b1, there is no difference between c0 and c2. An even

stronger example of context-independent equivalence is in the case where B = b2, in

which case all instantiations of C result in the same transition behavior. In other

words, a patient’s pain is fully independent of the concentration of the drug when the

barometric pressure is known to be in state b2.

It is worth noting that this decomposed mapping is a generalized version of the

MCIM introduced earlier. Specifically, the mappings of the type shown in Equation

5.2 considered cases where the subject set was equal to the parent set (U = V);

therefore, the context set was empty (C = (U\V) = ∅). This results in a mapping of

fU(u) = fM(fV(u)), which can be represented more concisely using a single discrete

function fU relating inputs u to their corresponding intensity matrices.

As before, the decomposed functions can be encoded using standard CTBN

semantics by introducing a new mapping variable. The key difference is that now

113

Concentration

Pain Drowsy

Barometer

Uptake

Full
Stomach

Eating Hungry

Figure 5.6: The drug effect example network.

114

A B C D

X

A B C D

M

X

Figure 5.7: Four-parent network before (left) and after (right) inserting a mapping
variable based on a discrete function with context-independent equivalence.

that contextual equivalence has been introduced, the subject set V contains only a

subset of the total number of parents U. The mapping variable is parameterized

according to the function fV; therefore, the parent set for the mapping variable is

defined by V. Similarly, the original child node X is reparameterized according to

fM, meaning that the new parent set for X is {M ∪C}.

Figure 5.7 shows a network before and after a new mapping variable M has been

inserted to encode the discrete mapping. Note that the behavior of M is determined

by nodes A and B, which are the members of the subject set. As before, M is

parameterized using intensity matrices with deterministic transitions that map the

parent instantiations to a new set of states, where |M | < |A| · |B|. For this particular

example, |A| · |B| = 4, and |M | = 2. This new network requires |M | · |C| · |D| = 8

intensity matrices to parameterize X and |A|·|B| = 4 deterministic intensity matrices

are needed to parameterize M . These correspond to the domains for functions fM

and fV respectively. This compact MCIM representation uses only twelve intensity

matrices compared to the sixteen required by the original network. Once again, these

savings become more pronounced as the size of the networks grow.

An additional benefit gained when taking advantage of context-independent

equivalence is that the decomposed mapping functions can be inserted for multiple

subject sets. For instance, multiple state combinations of variables A and B may

115

be treated as equivalent for all contexts of C and D. Similarly, there may be state

combinations of C and D that are equivalent regardless of the state of A and B.

In this case, multiple mapping variables could be inserted, further decomposing the

representation. The process of identifying proper mappings can be done efficiently in

a pairwise fashion between variables, building up to potentially larger groups. This

is analogous to the process of hierarchical clustering described earlier.

5.5.2 MCIM Experiments

To evaluate MCIMs as a compact representation, experiments are conducted that

compare CTBNs before and after introducing the mappings. For consistency, the dis-

crete functions are represented using deterministically parameterized mapping nodes

in each of the experiments. This section is broken into two parts, corresponding to

unstructured and structured synthetic data. For the unstructured data experiments,

models are produced by randomly generating each intensity matrix. Conversely,

the structured data experiments generate intensity matrices using a pseudo-random

procedure that follows specific constraints. The intent is to determine how structure

in the data impacts the behavior exhibited by discrete mappings.

Throughout the experiments, the compact model is evaluated based on the

change in complexity as well as the error introduced when compared to the original

model. Since the compact models used in these experiments only change the

parameterization of a single node X, error is determined by querying the probability

distribution over the states of X through time. Let G be a baseline model containing

a node X, and let G′ be a compacted model that simplifies the parameterization of

node X. Let PX(t) and P ′X(t) be the distributions over the states of variable X at

time t obtained from running inference over G and G′ respectively. Then error can be

defined using discrete (nonsymmetric) KL-Divergence, shown below. Given that X is

116

discrete, calculation of the KL-Divergence can be computed numerically by summing

over the individual states. This quantifies the extent to which the compacted model

G′ diverges from the target baseline model G at some time t.

DKL(PX(t)||P ′X(t)) =
∑
x∈X

PX(t)[x] log
PX(t)[x]

P ′X(t)[x]

This can be generalized to encompass an entire window of time t = [ts, te) by

integrating over t.

DKL(PX ||P ′X) =

∫ te

ts

DKL(PX(t)||P ′X(t))dt (5.4)

Note that while this is one possible error measure, other approaches may be

better suited for specific applications. For instance, perturbation realization is a

useful technique for evaluating parameter sensitivity in Markov processes and has

recently been adapted to work within the CTBN framework as well [135]. In

essence, perturbation realization computes the expected long-term change in value

of a function defined over a CTBN [132]. To identify long-term behavior, the steady-

state distribution is identified. This process relies on the ergodicity assumption,

which assures that no states are absorbing. For cases where this assumption can be

guaranteed and interest lies in the long-term behavior of the process, perturbation

realization could be used to evaluate the quality of the approximations discussed

here. For our experiments, we continue with the KL-Divergence error measure from

Equation 5.4, which does not require that the models be ergodic and focuses on

short-term behavior rather than using the steady-state distributions.

117

5.5.3 Unstructured Data Experiments

For the unstructured data experiments, networks are generated with a set of

nodes X. Consider a node Xk ∈ X with nk states. The node Xk is parameterized

using a CIM QXk|U with nk × nk dimensional intensity matrices. Each intensity

matrix is generated randomly such that each off-diagonal entry qi,j|i 6=j is drawn from

a uniform distribution U(0.0, 1.0). After each of the (nk − 1) · (nk − 1) rates are

obtained, the diagonal entries are set to the negated sum of the remaining row, as

per the requirements for a valid intensity matrix. This process is repeated for each

intensity matrix in the CIM QXj |u ∈ QXj |U. This, in turn, is applied to each node

Xj ∈ X.

Given that the intent of the experiments is to demonstrate various CIM

representations, the single-child multi-parent network structure used in previous

examples is employed throughout the experiments to allow for a controlled means

of changing the number of intensity matrices within the CIM. Formally, each network

consists of a single child variable X, as well as m parent variables Ui, where i ∈ (1,m).

A directed edge is added from each parent variable Ui to the child variable X. As

a result, each of the m parents has a CIM consisting of a single intensity matrix

with dimensions |Ui| × |Ui| states each, while the CIM for the child variable has∏
i |Ui| intensity matrices, each with dimensions |X| × |X|. The described network

structure is shown in Figure 5.8. The number of states |X|, the total number of parent

variables m, and the number of states |Ui| for each parent are varied by experiment

to investigate different aspects of compact CIM representations.

5.5.3.1 Approximation Threshold The first experiment is designed to investigate

the effect of the approximation threshold in the clustering algorithm. The basic

idea is that small approximation thresholds will produce clusters that consist of

118

U1 U2 · · · Um

X

Figure 5.8: Network structure for CTBNs used throughout experiments.

intensity matrices that are very nearly identical to one another. Conversely, large

thresholds will consolidate more intensity matrices, thereby producing larger clusters

with intensity matrices that are more dissimilar. To begin, a fixed network structure

containing five binary parent nodes and a five-state child node was generated. Then

ten compact versions of the network were produced using an MCIM encoding obtained

from clusters that were generated using a symmetric KL-divergence measure with

approximation thresholds varying from 0.0 to 10.0. Finally, inference was run over

the compact network and the original network, with the KL-divergence between the

query results as shown in Equation 5.8 serving as an error measure. Importance

sampling with 10000 samples was used as the inference algorithm [38,40]. To provide

a baseline of comparison, error was measured against two inference runs over the

same original network to quantify the error introduced by the approximate inference

algorithm itself. This process was repeated 100 times to obtain a sufficiently large

population of results.

Figure 5.9a shows the compaction ratio as a function of the approximation

threshold, with error bars showing standard error. Here, the compaction ratio is

defined as the ratio between the unique intensity matrices required by the MCIM

representation and the original number of required intensity matrices. As such,

smaller values indicate more efficient compact representations. The number of unique

119

0 2 4 6 8 10

0.5

1

Approximation Threshold

C
om

p
ac

ti
on

R
at

io

(a) Scalability analysis.

0 2 4 6 8 10

0

2

4

·10−2

Approximation Threshold

E
rr

or

Baseline
Compacted

(b) Accuracy analysis.

Figure 5.9: Impact of approximation threshold with unstructured data using a MCIM
representation.

intensity matrices corresponds to the number of inputs to the function fM, or

equivalently the number of intensity matrices for X in a CTBN with an inserted

mapping variable M . Similarly, Figure 5.9b shows the error for the compacted model,

as well as the baseline error measure as a function of the approximation threshold,

with the error bars representing the standard deviation.

The behavior observed in Figure 5.9a matches expectation. When the approxi-

mation threshold is set to zero, no compaction occurs, resulting in a compaction ratio

of 1.0. Due to the random nature of the data, all produced clusters contain only a

single intensity matrix, meaning that no consolidation occurs. As this approximation

threshold is increased, cluster sizes increase as well. These clusterings can be encoded

using discrete mappings, which reduce the total number of unique intensity matrices.

Note that a compaction ratio near zero indicates a small number of clusters. In the

most extreme case, all intensity matrices may be merged into a single cluster, meaning

that the child variable X acts approximately the same regardless of the states of its

parents. If this were truly the case, the most efficient method for representing this

independence would be to break all edges between the parents and the child and

use a single intensity matrix to describe the now independent node’s behavior. This

120

is a process referred to as node isolation, and can itself be used as an inference

algorithm [134]. Given the random nature of the data, however, it is almost certainly

the case that a substantial reduction in the intensity matrices indicates an excessively

large approximation threshold. Instead, a smaller approximation threshold should be

employed that balances the accuracy of the approximation with the efficiency of the

compact representation.

The error results shown in Figure 5.9b indicate a steadily positive trend,

where small approximation thresholds correspond to smaller error values, and large

thresholds produce a larger error. This is not surprising in that large approximation

thresholds allow increasingly diverse intensity matrices to be merged into a single

cluster. Ultimately, this means that larger approximation thresholds will result in

models that represent the same information with fewer parameters, which has the

potential to introduce error. Another interpretation of the observed error behavior is

that there is a trade-off between complexity and reliability. A small approximation

threshold will introduce very little error but may not provide much in the way of

parameter reduction. Alternatively, a large approximation threshold will likely allow

for substantial savings in the number of parameters but may introduce an excessive

amount of error in the process.

5.5.3.2 Network Structure The next experiment is designed to determine the

impact that the network graph structure has on the MCIM compact representation.

Specifically, the structure from Figure 5.8 is used, where the number of parents m is

varied from one to eight. Just as before, all parent nodes in the network are binary,

while the child variable consists of five states. For all intensity matrices, rates are

drawn from uniform distributions ranging from 0.0 to 1.0. In this experiment, the

symmetric KL-divergence distance metric was used with an approximation threshold

121

1 2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1

Number of Parents

C
om

p
ac

ti
on

R
at

io Metric
KLD

(a) Scalability analysis.

1 2 3 4 5 6 7 8
−2

0

2

4

6
·10−3

Number of Parents

E
rr

or

Baseline
Compacted

(b) Accuracy analysis.

Figure 5.10: Impact of network structure with unstructured data using a MCIM
representation.

of 0.25 throughout. Models were compacted using the MCIM representation, and

inference results were compared using the same error measure from the previous

experiment. This process was performed 100 times, and the compaction ratio and

error are plotted in Figures 5.10a and 5.10b respectively.

As shown by Figure 5.10a, the compaction ratio decreases with the size of

the parent set. In other words, networks with more parents correspond to more

consolidated intensity matrices. This increase in savings is due to the increase in the

total number of intensity matrices. Networks are parameterized by drawing rates from

a fixed uniform distribution, meaning that intensity matrices can be viewed as data

points that fall within a fixed space of possible parameterizations. Given this random

parameterization and the fixed approximation threshold, the total number of intensity

matrices is the primary factor influencing the results of the clustering algorithm. Since

an increase in the number of parents produces an exponential increase in the number

of intensity matrices, more of the space is covered with larger networks, allowing for

more effective clusterings.

Figure 5.10b shows error as a function of the number of parents, both for

the compacted model and the baseline. For networks with a single parent, the

122

error appears to match the baseline, which makes sense given that there is no

compaction occurring. For all other network sizes, the compacted model produces

a consistently larger error than the baseline, likely due to the constant approximation

threshold. The important aspect to note is that there is no discernible pattern for the

compacted error in terms of either a positive or negative trend. This indicates that

the number of parents do not have a significant impact on the error introduced by

the MCIM representation. Furthermore, the selected approximation threshold in this

case produces a consistently small error, and based on the error bars, the difference

from the baseline is not statistically significant. This demonstrates that the MCIM

representation becomes increasingly effective as the number of parents grows, with

no degradation in error.

5.5.4 Structured Data Experiments

For the structured data experiments, networks are generated initially in the same

fashion as the unstructured data experiments, with identical structure and random

parameterization. The clustering algorithm uses the symmetric KL-divergence

distance measure with a constant approximation threshold of 0.25. Then models

are modified to introduce structure synthetically into the data. Specifically, a subset

V of parent variables is chosen randomly from the total set of parents U. A set of

state instantiations v′ is chosen randomly from the total set of instantiations of V.

Each selected subset of state instantiations to the subset of parent variables is referred

to as a merge set. The size of the merge sets as well as the total number of merge sets

vary between experiments. The only stipulation is that the assignments are a valid

subset such that V ⊆ U and v′ ⊆ v. These state instantiations are then merged

such that the corresponding intensity matrices are assigned to be equivalent for each

context, which is achieved by taking the mean of each group of |v′| matrices. To

123

No Compaction

0 1 2 3 4 5

0

10

20

30

40

Size of Merge Sets

C
om

p
ac

ti
on

R
at

io

Mapping
Child

(a) Space analysis.

0 1 2 3 4 5

0.8

1

1.2

Size of Merge Sets

S
ec

on
d

s

Original
Compacted

(b) Time analysis.

Figure 5.11: Impact of the size of merge sets with structured data using a MCIM
representation.

allow for approximations, noise is introduced to the rates in the intensity matrices.

This is achieved by adding a random variable drawn from a uniform distribution

U(−α, α), producing intensity matrices that are approximately equal to one another.

This procedure introduces context independence into otherwise unstructured data.

5.5.4.1 Merge Set Size For the first structured experiment, the size of the

merge sets was varied to determine the effectiveness of the compact representation.

Specifically, the size of the merge sets ranged from zero to five, where zero indicates no

data structure, and five means that state instantiations to all five parents are merged

with no context. For each case, a maximum value of eight was set as the number

of merge sets, meaning that at most eight states were altered to be approximately

equivalent. Results are shown in Figure 5.11.

Figure 5.11a shows a stacked line graph of the size of the model, broken down by

both intensity matrices and the discrete function. Specifically, the upper red region

shows the number of unique intensity matrices that are stored for the child node, and

the lower blue region shows the number of intensity matrices needed to parameterize

an inserted mapping node to achieve the compact representation. The dashed line

represents the size of the original model with no compaction applied. An important

124

aspect to note is that the size of the model decreases when the number of merge

sets increases to three, and increases again as it approaches five. This is because

the reduction in the number of intensity matrices for the child node outweighs the

increase in size that is introduced by inserting the mapping variable. Charts showing

the approximation error are omitted, as there is no discernible difference between the

baseline and compact models. This is due to the choice of approximation threshold

in combination with similarity in the structured data for these experiments, which

results in a negligible loss of information.

Figure 5.11b shows runtimes for inference run over both the original model

shown as blue circles, and the compacted model shown by red squares, with error

bars indicating standard error. As expected, the original model remains consistent

regardless of the size of the merge sets. Runtimes for the compacted model decrease

and increase proportional to the size of the model shown in Figure 5.11a, and for

the case where merge sets are of size three, the difference in runtimes is statistically

significant. This decrease in runtime does not come from algorithmic improvements,

but instead occurs due to the reduction in the model size.

5.5.4.2 Number of Merge Sets The next structured experiment looks at the effect

that the number of merge sets has on the resulting compact representation. The same

network structure from the previous experiment was used, and in all cases the size

of the merge sets was fixed to a size of three. The number of merge sets was varied

from one to eight, where one indicates a model with no compaction, and eight is the

total number of state instantiations for three binary parent variables, meaning that

all state combinations for the parents are equivalent. The results are shown in Figure

5.12.

125

No Compaction

1 2 3 4 5 6 7 8

0

10

20

30

40

Number of Merge Sets

C
om

p
ac

ti
on

R
at

io Mapping
Child

(a) Space analysis.

0 2 4 6 8 10 12
0.6

0.8

1

1.2

Number of Merge Sets

S
ec

on
d
s

Original
Compacted

(b) Time analysis.

Figure 5.12: Impact of the number of merge sets with structured data using an MCIM
representation.

Figure 5.12a shows the size of the model, with the upper red region showing the

number of intensity matrices required to parameterize the child node, and the lower

blue region representing the number of intensity matrices introduced by inserted the

mapping variable. Once again, the dashed line indicates the baseline number of

intensity matrices in the original model prior to compaction. For very small numbers

of merge sets, there is no compaction and the total number of intensity matrices

matches the baseline. As the number of merge sets increase, discrete functions are

introduced that ultimately decrease the total number of intensity matrices in the

network, despite the need for parameterizing the new mapping variables.

Runtimes for this experiment are shown in Figure 5.12b. Once again, there is

no statistical difference between the runtimes for inference applied to the original

model, regardless of the number of the merge sets. However, the runtimes for the

compacted models decrease proportionally to the size of the model, which is reduced

as the number of merge sets grows. When the number of merge sets is greater than

six, the difference in runtimes is statistically significant. This shows that models may

be more represented efficiently for structured data where the number of merge sets is

126

large, both in terms of the space required to parameterize the model, and the time

required to perform inference.

5.6 Tree-Structured Conditional Intensity Matrices

In addition to discrete functions, a tree data structure may be used to represent

a CIM compactly. This tree-structure representation of intensity matrices relates to

context-specific independence in BNs, which uses a tree structure to store probabilities

in a conditional probability table [10]. The intent of context-specific independence in

BNs is to capture independencies that cannot be encoded using the graph structure

alone, and the same principle holds in the domain of CTBNs. Boutilier et al.

take advantage of regularities in the conditional probability table and encode these

regularities using a tree structure. This section demonstrates how the same process

can be applied to CIM regularities obtained via a clustering algorithm. The tree

encoding of a CIM is referred to as a tree-structured CIM, or simply a TCIM.

Let X be a node in a CTBN with parents U, and let C be the set of clusters

obtained by hierarchically clustering the intensity matrices in the CIM for X. A tree

TX may be used to encode context-specific independence exhibited by the clusters

C. Let I(TX) be the set of interior nodes in tree TX , and let L(TX) be the set of

leaf nodes. Furthermore, let P(TX) be the set of paths in the tree, where each path

P ∈ P(TX) is a sequence of nodes from the root Nr to a leaf node N ∈ L(TX). A

variable U from the parent set U is assigned to each interior node N ∈ I(TX), such

that no path P ∈ P(TX) contains more than one assignment u. There are |U| edges

leaving an interior node with assignment u, each labeled with the states associated

with variable U . Each leaf node N ∈ L(TX) is assigned a unique intensity matrix. To

retrieve an intensity matrix from TX associated with the parent set instantiation u,

127

the tree is traversed starting at the root, following edges corresponding to the state

assignments in u, until an intensity matrix at a leaf node is reached.

The primary advantage of the TCIM representation is that entire branches of a

tree may be pruned if all leaves in the subtree contain equivalent or approximately

equivalent intensity matrices. In that case, the root of the subtree is replaced with

a mean intensity matrix, creating a leaf that occurs at a higher level in the tree.

The paths of a pruned tree are therefore potentially shorter than the total number of

parents |U|. This pruning process is how the TCIM structure achieves its compact

representation.

An example is now presented to demonstrate how a TCIM may be used to store

intensity matrices in a CIM efficiently. Consider a four-node network with a variable

X and three parent variables U = {A,B,C}. Here, let |A| = 3, |B| = 2, and |C| = 2,

for a total of twelve intensity matrices in the unmodified CIM QX|U. An example

clustering of these intensity matrices is as follows.

C1: QX|{a0,b0,c0} QX|{a0,b0,c1}

C2: QX|{a0,b1,c0} QX|{a0,b1,c1}

C3: QX|{a1,b0,c0}

C4: QX|{a1,b1,c0}

C5: QX|{a1,b0,c1} QX|{a1,b1,c1}

C6: QX|{a2,b0,c0} QX|{a2,b0,c1} QX|{a2,b1,c0} QX|{a2,b1,c1}

Take, for example, cluster C1. Both matrices in this cluster are tied to states a0

and b0, while the value of C varies across its two states. In other words, once it has

been determined that A = a0 and B = b0, then it does not matter what the state

of C is, because the intensity matrix for this cluster will be the same, regardless of

C’s value. More formally, X is contextually independent of C given a0 and b0. This

128

A

B

Q1 Q2

C

B

Q3 Q4

Q5

Q6

0

0 1

1

0

0 1

1

2

Figure 5.13: Tree-structured CIM for node X.

contextual independence can be represented using a tree, as shown in Figure 5.13.

Note that if node A is followed down branch 0, and B is followed down branch 0, then

the tree terminates at a leaf node with a value of Q1, which is the intensity matrix

associated with cluster C1. Following this path did not require evaluation of the

variable C. Similar tree pruning is performed for the other clusters, and indeed there

are a total of six distinct intensity matrices at the leaves of the tree, corresponding

to each of the six clusters.

Just as with the discrete functions described previously, the tree structures used

to encode a CIM may be represented using standard CTBN semantics. In the BN

literature, the analogous process is referred to as structural decomposition. This is

achieved by retaining the variable associated with the root node of the tree as a parent

of X but removing all other variables. Additional variables are then inserted into the

parent set of X, one for each state of the root variable, indicating the presence or

absence of the state. These nodes in turn have parents associated with the next

variable down the tree branch, along with all of the potential state instantiations

associated with the variable.

Figure 5.14 shows the structural decomposition for the tree in Figure 5.13. First,

note that nodes A, B, and C are the same nodes from the original network in Figure

5.4, with identical parameterization. Conceptually, the newly introduced nodes can

129

X

A Xa2Xa0 Xa1

B

Xa0b0 Xa0b1
CXa1c0 Xa1c1

Xa1c0b0 Xa1c0b1

Figure 5.14: Structure decomposition using the tree-structured CIM from Figure 5.13.

be thought of as random variables indicating the value of X given a specific context.

For example, Xa0 encodes the value that X takes on in the event that A = a0. Nodes

Xa0, Xa1, and Xa2 can be obtained independently of one another, and the “correct”

value can be retrieved after the value of A becomes known.

Nodes X, Xa0, Xa1, and Xa1c0 are parameterized using deterministic CIMs that

force the node to one of the parent boolean values. As an example, if B is found to be

b0, then Xa0 will transition with deterministic rates to ensure Xa0 matches the state

of Xa0b0 at any point in time. Nodes Xa2, Xa0b0, Xa0b1, Xa1c1, Xa1c0b0, and Xa1c0b1 are

parameterized each with a unique intensity matrix corresponding to the six means

of the clusters discussed previously. For instance, Xa2 is parameterized using the

intensity matrix corresponding to the mean of the matrices from cluster C6 shown

earlier in this section.

Again, consider the CIM QP |B,C in the example drug effect network for a more

concrete example of context-specific independence. When the barometric pressure B

130

is known to be in state b2, then the state of the drug concentration C is irrelevant.

Using a tree representation, if B is the root of the node and path b2 is taken, then an

intensity matrix can be stored at this level without the need to specify the value of

C. Note that although there are two other pairs of identical matrices in QP |B,C , they

cannot be accounted for by context-specific independence. Specifically, QP |b0,c0 =

QP |b0,c2 and QP |b1,c2 = QP |b1,c2 . The issue is that although states c0 and c2 are

equivalent when B is in state b0 or b1, the behavior of pain is not independent of C

because of the change observed for state c1. As discussed in Section 5.7, these types

of similarities are better described using a MCIM.

One concern when using standard CTBN semantics to represent a TCIM is

the rapid increase in the number of nodes. Indeed, in many cases there is an

increase in the total number of intensity matrices required to parameterize the network

after introducing context-specific independence. However, just as with the discrete

mapping, there are additional advantages beyond parameter reduction. In terms of

interpretability, the structure shown in Figure 5.14 provides additional information

about independence that was not immediately observable in the original network

structure. In terms of efficiency, the new representation may reduce the maximal

parent set size. Despite the increase in the total number of nodes, the size of the

parent sets may be the more important factor when using inference algorithms that

employ cluster graphs.

5.6.1 TCIM Experiments

This section presents the results of several experiments designed to investigate

the properties exhibited by TCIM representations. The experiments are structured

in much the same way as the MCIM experiments from Section 5.5.2. Specifically, a

TCIM representation is applied to unstructured data in Section 5.6.2 and structured

131

data in Section 5.6.3. These experiments use the same network structure shown in

Figure 5.8 and the KL-Divergence error measure presented in Equation 5.4.

5.6.2 Unstructured Data Experiments

The TCIM unstructured data experiments are set up similarly to the MCIM

unstructured experiments from Section 5.5.3. Each node in the network is parameter-

ized using randomly generated intensity matrices. Specifically, each intensity matrix

is produced by drawing off-diagonal transition rates from a uniform distribution

U(0.0, 1.0), with the diagonal entries in the matrix being defined implicitly by the

remaining rates in the row. This type of network parameterization ensures that there

are no dependencies between the intensity matrices, guaranteeing that there is no

inherent underlying structure in the data.

5.6.2.1 Approximation Threshold The first experiment conducted with unstruc-

tured data focused on determining the impact of the clustering approximation

threshold. This experiment is set up identically to the first MCIM experiment from

Section 5.5.4, except that the TCIM compact representation scheme is used in place

of the MCIM representation. The results are shown in Figure 5.15.

Figure 5.15a shows that as the approximation threshold increases, the total

number of intensity matrices required to specify the model decreases, and the

variance increases. Furthermore, Figure 5.15b shows that the error observed by

running inference on a compacted model increases with the size of the approximation

threshold. In other words, the model may be represented more compactly by accepting

worse approximations.

Note that the savings in space requirements shown in Figure 5.15a are less

dramatic than the corresponding MCIM results shown in Figure 5.9a. This is due to

the difference in representational capabilities. A single discrete function is capable of

132

0 2 4 6 8 10

0.4

0.6

0.8

1

Approximation Threshold

C
om

p
ac

ti
on

R
at

io

(a) Scalability analysis.

0 2 4 6 8 10

0

2

4

·10−2

Approximation Threshold

E
rr

or

Baseline
Compacted

(b) Accuracy analysis.

0 2 4 6 8 10

0.5

1

Approximation Threshold

R
u
n
ti

m
es

Original
Compacted

(c) Runtime analysis.

Figure 5.15: Impact of approximation threshold with unstructured data using a TCIM
representation.

133

1 2 3 4 5 6 7 8

0.8

1

Number of Parents

C
om

p
ac

ti
on

R
at

io

Metric
KLD

(a) Scalability analysis.

1 2 3 4 5 6 7 8

0

2

4

6
·10−3

Number of Parents

E
rr

or

Baseline
Compacted

(b) Accuracy analysis.

1 2 3 4 5 6 7 8
0

0.5

1

1.5

Number of Parents

R
u

n
ti

m
es

Original
Compacted

(c) Runtime analysis.

Figure 5.16: Impact of network structure with unstructured data using a TCIM
representation.

fully encoding all clusterings, while a tree structure cannot necessarily capture all the

same information. Despite this, a tree structure is a more efficient means of encoding

information when compared to a single discrete mapping function.

5.6.2.2 Network Structure The next experiment is designed to investigate the

impact of network size when using a TCIM representation. This experiment is set up

to match the second MCIM experiment from Section 5.5.4, except a TCIM was used

to model the child node in the network. The results are shown in Figure 5.16.

As shown by Figure 5.16a, the compaction ratio initially decreases, and then

steadily increases as the size of the networks increase. This is likely because the TCIM

representation relies on pruning portions of the tree, and the unstructured nature of

the data makes it unlikely that large branches will be pruned when networks are large.

134

The reduction in variance indicates that the tree structure is consistently providing

a small amount of compaction for large networks. In terms of the error introduced

by the compact representation, Figure 5.16b shows no statistical significance between

the two models, although just as shown by the MCIM experiments, there may be a

small error introduced by the constant approximation threshold.

Despite the minimal improvements to space requirements, the efficient tree

structure provides substantial improvements in terms of inference times. Figure 5.16c

shows the runtimes for inference over a TCIM compacted model as well as a baseline

model with no compaction. While the runtimes for the uncompacted models increase

exponentially with the network size, the compacted model times appear almost linear.

In addition, the variance for inference over the original model increases as shown by

the error bounds, while the variance for the compacted model remains essentially

negligible.

5.6.3 Structured Data Experiments

The structured data experiments in this section use models designed as described

previously in Section 5.5.4. Specifically, random models are generated that are then

modified to contain approximate equivalence using the notion of merge sets. The

number of merge sets and the size of the merge sets vary based on experiments.

5.6.3.1 Merge Set Size The results of the merge set size experiment are shown

in Figure 5.17. In this case, Figure 5.17a shows the size of the model in terms of

both the number of intensity matrices (the lower blue region), and the number of

nodes in the tree that store the intensity matrices (the upper red region). Another

interpretation is that the lower region shows the number of leaf nodes in the tree,

while the upper region shows the number of interior nodes. With a set size of zero,

the number of leaf nodes match the baseline model, which makes sense given that

135

No Compaction

0 1 2 3 4 5
0

20

40

60

Size of Merge Sets

M
o
d

el
S

iz
e

Matrices
Tree Nodes

(a) Space analysis.

0 1 2 3 4 5

0.5

1

Size of Merge Sets

S
ec

on
d

s

Original
Compacted

(b) Time analysis.

Figure 5.17: Impact of the size of merge sets with structured data using a TCIM
representation.

there is no compaction occurring. Just as in the MCIM experiments, a set size of

three produces the most compact models.

Figure 5.17b shows the runtimes for inference over the baseline and compacted

models. Not only is inference over the TCIM compacted model substantially faster,

the variance is reduced by switching to the compact representation as well, as

indicated by the error bars. This improvement in inference speed does not appear

to be affected by the merge set size, indicating that the efficiency of the TCIM

representation overpowers any effect that model size has on inference runtimes.

5.6.3.2 Number of Merge Sets Just as with the MCIM experiments, the number

of merge sets was varied from one to eight, to account for all possible state

combinations of the three parents. Figure 5.18a shows the size of the model in terms

of the number of intensity matrices and tree nodes. As the number of merge sets

increase, the TCIM structure is able to encode increasingly more compact models.

This follows the same trend as in the MCIM experiment, showing that in either

case, the compact representations are more efficient when more states can be merged.

Figure 5.18b shows runtimes for inference run over the original and compacted models.

Once again, the TCIM compacted model results in substantially reduced runtimes

136

No Compaction

1 2 3 4 5 6 7 8

20

40

60

Number of Merge Sets

M
o
d

el
S

iz
e

Intensity Matrices
Tree Nodes

(a) Space analysis.

0 2 4 6 8 10 12

0.5

1

Number of Merge Sets

S
ec

on
d
s

Original
Compacted

(b) Time analysis.

Figure 5.18: Impact of the number of merge sets with structured data using a TCIM
representation.

with less variation. This indicates that the TCIM representation improves inference

speeds, regardless of the type of structure exhibited in the data.

5.7 Comparison Between MCIMs and TCIMs

There are many different potential cluster possibilities when grouping intensity

matrices. This section compares the representational capabilities of MCIMs and

TCIMs by inspecting different types of clusterings. A graphical depiction of the

results is shown in Figure 5.19. Before providing the theorems, we first present

some formal terminology. A cluster is represented fully if the number of intensity

matrices used in the structure is equal to the number of clusters. In other words,

if a compact structure uses more intensity matrices than the number of clusters,

then there are aspects of the clustering that are being omitted, meaning that it

has not be represented fully. Alternatively, a clustering is represented exactly if is

state instantiation maps to the correct cluster. Put another way, only the correct

intensity matrices are used to describe the state instantiations. Furthermore, a non-

trivial MCIM refers to a composition of functions containing a non-empty context set.

Certainly a single mapping function with inputs V equal to the entire parent set U is

137

All CIM Clusterings

MCIMs TCIMs

Figure 5.19: Venn diagram depicting CIM clusterings that can be represented
using MCIMs and TCIMs. Theorems 2 and 3 prove that {MCIMs}/{TCIMs} and
{TCIMs}/{MCIMs} are nontrivial. Theorem 1 shows that {MCIMs} ∩ {TCIMs} is
nontrivial.

capable of full representing any possible clustering, although as discussed in Section

5.5, this type of representation is itself too complex to provide any computational

benefits. As such, only non-trivial mappings are considered in the following.

Theorem 1. There are clusterings that can be represented fully and exactly using

either a non-trivial MCIM or a TCIM.

Proof. To prove this claim, it is sufficient to provide a single example where this

statement holds. Consider a network containing a node X and three parents U =

{A,B,C}, each with two states. A potential clustering of the CIM for X is as follows:

C1: QX|{a0,b0,c0} QX|{a0,b1,c0}

C2: QX|{a0,b0,c1} QX|{a0,b1,c1}

C3: QX|{a1,b0,c0}

C4: QX|{a1,b0,c1}

C5: QX|{a1,b1,c0}

C6: QX|{a1,b1,c1}

.

The original CIM consists of 23 = 8 intensity matrices, which are then condensed

down to six clusters. Figure 5.20a shows an MCIM that encodes the clustering, while

138

A B C

M

X

(a) MCIM for six clusters.

A

C

Q1 Q2

B

C

Q3 Q4

C

Q5 Q6

0

0 1

1

0

0 1

1

0 1

(b) TCIM for six clusters.

Figure 5.20: Compact structures for CIM clustering.

Figure 5.20b shows a TCIM that captures the same clustering. Here, the mapping

variable M in the MCIM reduces the four state combinations of {A,B} down to

three, meaning that node X contains 3× 2 = 6 intensity matrices, one for each of the

clusters. Similarly, the tree structure has six leaf nodes corresponding to each cluster,

indicating that these representations were in fact able to encode the entire clustering.

The shaded area between the circles in Figure 5.19 indicates clusterings that can

be captured entirely by either non-trivial MCIMs or TCIMs.

Theorem 2. There are clusterings that can be represented fully and exactly using a

non-trivial MCIM, but not a TCIM.

Proof. Again, a single example is sufficient. Consider the clustering presented in the

previous section, but now assume that B has three states rather than two, resulting

in four new matrices that do not belong to any of the previous clusters. This new

clustering is shown below.

139

C1: QX|{a0,b0,c0} QX|{a0,b1,c0}

C2: QX|{a0,b0,c1} QX|{a0,b1,c1}

C3: QX|{a1,b0,c0}

C4: QX|{a1,b0,c1}

C5: QX|{a1,b1,c0}

C6: QX|{a1,b1,c1}

C7: QX|{a0,b2,c0}

C8: QX|{a0,b2,c1}

C9: QX|{a1,b2,c0}

C10: QX|{a1,b2,c1}

These clusters cannot be represented by any tree structure. This is because

there are three states of B, that are not all equal in any context of A and C. The

MCIM framework does not require that all states be equal and provides a method

for consolidating a subset of states. In this example, the tree structure from Figure

5.20a is sufficient to describe the above clustering. Here, M maps state combinations

{a0, b0} and {a0, b1} to a single state, and maps the remaining four state combinations

to their own states. This results in a five state mapping variable, in combination

with the unmodified two state variable C, resulting in a total of 10 possible state

combinations for the parents of variable X. This matches the clustering described

in this section where two of the original twelve intensity matrices in the network

have been consolidated using the latent variable framework. A TCIM representation

would require a full tree with no pruning, necessitating the storage of all twelve of

the original intensity matrices.

140

This example suggests that the MCIM framework is better suited for representing

CIMs when parent variables have a large number of states. As the number of states

grows, it becomes increasingly less likely that all intensity matrices will be equal

across all states for a given context. This means that TCIMs are likely to provide

little or no benefit in these cases. An MCIM is capable of capturing equivalencies over

a subset of the total number of states, which is a more reasonable requirement when

there is a large number of states. The left circle in Figure 5.19 represents clusterings

that may be represented using non-trivial MCIMs.

Theorem 3. There are clusterings that can be represented fully and exactly using a

TCIM, but not a non-trivial MCIM.

Proof. In this case, the example starts with the same clustering from the proof for

Theorem 1, except that now we assume clusters C5 and C6 are now close enough that

they can be merged. The resulting cluster set is as follows, where C5 ≈ C6.

C1: QX|{a0,b0,c0} QX|{a0,b1,c0}

C2: QX|{a0,b0,c1} QX|{a0,b1,c1}

C3: QX|{a1,b0,c0}

C4: QX|{a1,b0,c1}

C5: QX|{a1,b1,c0} QX|{a1,b1,c1}

This clustering cannot be represented using the MCIM framework. The

consolidation of the matrices in clusters C1 and C2 can be achieved as described

in the previous section, but this does not hold for the matrices in C5. The issue is

that the equivalence observed in C5 does not hold across all contexts; therefore, they

cannot be captured by mapping variables, except in the trivial case where a variable

is introduced as a child for all parents A, B and C. Conversely, a TCIM can describe

141

A

C

Q1 Q2

B

C

Q3 Q4

Q5

0

0 1

1

0

0 1

1

Figure 5.21: Tree-structured CIM

this clustering compactly without issue, as shown in Figure 5.21, where the five leaf

nodes correspond to the five clusters, thereby providing a minimal representation.

This example suggests that a TCIM may work better for representing clusterings

when there are a large number of parent variables. This is because large parent sets

make it increasingly less likely that multiple instantiations will be equivalent across

all contexts. As the number of parents grows, the size of the subject and context

sets grows exponentially, likely making MCIMs a poor choice for networks with large

parent sets. This shortcoming is not shared by tree structures, which are likely able

to exploit context-based independence regardless of the number of parent nodes. The

right circle in Figure 5.19 represents clusterings that can be represented using TCIMs.

Theorem 4. There are clusterings that cannot be represented fully and exactly using

either a non-trivial MCIM or a TCIM.

Proof. The previous two cases may be combined to form an example of a clustering

that cannot be represented by either MCIMs or TCIMs. Specifically, a clustering

can be produced that contains a three state variable B, as well as a clustering of

QX|{a1,b1,c0} and QX|{a1,b1,c1}. The combined clustering is shown below.

142

C1: QX|{a0,b0,c0} QX|{a0,b1,c0}

C2: QX|{a0,b0,c1} QX|{a0,b1,c1}

C3: QX|{a1,b0,c0}

C4: QX|{a1,b0,c1}

C5: QX|{a1,b1,c0} QX|{a1,b1,c1}

C6: QX|{a0,b2,c0}

C7: QX|{a0,b2,c1}

C8: QX|{a1,b2,c0}

C9: QX|{a1,b2,c1}

The three state issue from Theorem 2 prevents complete representation of the

clustering using a TCIM. Similarly, the combined matrices in cluster C5 have the same

issue seen in Theorem 3, in that the equivalence does not hold across all contexts.

For this reason, an MCIM is unable to encode the clustering efficiently, unless all

parent variables are included as inputs to the discrete mapping function. An MCIM

representation of the clustering requires the storage of 10 intensity matrices, and a

TCIM will need to store 11 matrices at the leaves. Although the MCIM appears to be

a slightly better choice, neither representation is able to represent the minimal nine

intensity matrices defined by the clusters. This demonstrates that clusterings exist

that can only partially be captured using MCIMs and TCIMs.

The surrounding rectangle in Figure 5.19 represents the entire space of clus-

terings, and the area outside of the circles is the set of clusterings that cannot be

represented with either non-trivial MCIMs or TCIMs.

143

5.8 Summary

In this chapter we introduced the MCIM and the TCIM: two approaches to

representing conditional CTMPs compactly. The MCIM exploits the notion of

context-independent equivalence, allowing the conditional CTMP to be factored using

a composition of functions. Similarly, the TCIM takes advantage of context-specific

independence and uses a tree structure to factor a conditional CTMP. In both cases,

the compact structures make use of intensity matrix clustering as a preprocessing step,

which allows for approximate compact representations as well as exact. Experiments

were conducted that evaluated the capabilities of both the MCIM and TCIM, and it

was proved that the classes of conditional CTMPs that can be represented by MCIMs

and TCIMs intersect, but are not equivalent. These two compact representations

provide a means of combating scalability concerns, especially when data exhibits

strong context-independent equivalence or context-specific independence.

When working with models that contain a variable with many parents, the

exponential number of intensity matrices can be intractable. This is because CTBNs

are only able to factor the parameters using conditional independence between

variables, and fail to capture other forms of independencies. The MCIM and TCIM

structures presented in this chapter allow additional structure to be imposed that

combats the complexity issues. By providing these compact structures, it is possible

to model processes that would have otherwise been too large to be represented using

CTBNs. The MCIM and TCIM representations will serve as valuable tools for those

applying CTBNs to highly interdependent, structured datasets.

144

CHAPTER SIX

CONTINUOUS TIME DISJUNCTIVE INTERACTION

As discussed in the previous chapter, the driving factor in the complexity

of a CTBN is the size of the parent sets for each variable. The last chapter

suggested MCIMs and TCIMs as techniques for addressing this issue. These compact

representations both work by consolidating equivalent or similar intensity matrices,

reducing the total number of parameters required to specify a CTBN. This chapter

pursues the same goal of compact representation but takes a distinctly different

approach to solving the problem. The concept of disjunctive interaction is introduced

for CTBNs, allowing for a substantial reduction in the number of required parameters,

so long as assumptions hold regarding parent-child relationships. The techniques

presented in this chapter are analogous to the Noisy-OR model in BNs, generalized

to allow for non-Boolean variables.

6.1 Background

This section describes disjunctive interaction as it exists in the context of BNs.

Disjunctive interaction, also referred to as the Noisy-OR gate or the Noisy-Max

gate, is a generalized version of the logical OR gate, capable of capturing the non-

determinism in a system with disjunctive interactions. In a traditional OR gate,

there are n Boolean inputs u1, . . . , un and a single Boolean output x. The domain for

each ui and x consists of the states False and True, which we denote using 0 and 1

respectively. The output x takes on a value of 1 if at least one of the inputs ui is in

state 1.

145

U1 · · · Ui · · · Un

X

Figure 6.1: Generic Parent-Child Relationship

The Noisy-OR model can also be described generally as an OR gate with inputs

u1, . . . , un and an output of x. The BN structure is shown in Figure 6.1, where the

inputs are represented using nodes U1, . . . , Un, and the output is the node X. A

lowercase ui is used to refer to an instantiation of node Ui, and x is considered to be

an instantiation of X. We use usi to represent the specific instantiation where Ui is

in state s. Without loss of generality, let ũi denote the specific set of parent node

instantiations {u00, · · · , u0i−1, u1i , u0i+1, · · · , u0n}, such that only node Ui has a value of

1, while the remaining variables in U are set to 0.

We say that if a single parent Ui is in state 1, it will “cause” X to be 1 with

probability λi and 0 with probability (1− λi), as shown in the following:

P (X = 1|ũi) = λi

P (X = 0|ũi) = (1− λi).

The probability that X is in state 0 given its entire parent set U is calculated as the

product of the probabilities P (X = 0|ũi) for each Ui that is in state 1. We use ũ+ to

146

denote the set of indices for parents that are in state 1, as shown below.

P (X = 0|U) =
∏
i∈ũ+

P (X = 0|ũi)

=
∏
i∈ũ+

(1− λi).

If all parents U are in state 0, then there are no causes that can effect an event in X

and P (X = 0|U) = 1.0. If this behavior is not desired, an additional parent referred

to as a leak node can be added to represent unmodeled causes. We can use this to

calculate the probability that X is in state 1 by taking 1 minus this probability, as

follows:

P (X = 1|U) = 1− P (X = 0|U)

= 1−
∏
i∈ũ+

(1− λi).

As a result, the number of parameters required to populate the CPT is reduced.

Rather than being exponential in the number of parents, we need only a linear number

of parameters, equating to only the cases where a single parent is in state 1, and

the case where all parents are in state 0 when a leak probability is desired. The

reduction in the number of required parameters streamlines the process of creating a

BN when the underlying system consists of disjunctive interactions. This allows for

the representation of systems that would otherwise have been intractably large.

6.2 Continuous Time Disjunctive Interaction

Although the CTBN is representationally powerful, it is incapable of scaling

to larger models that contain nodes with a large number of parents. The space

147

complexity of the system primarily depends on the node with the largest number

of parents, with all other nodes contributing potentially far less to the space

requirements of the model. With this in mind, a generic network containing a single

child node and n parent nodes is introduced in this section for demonstrative purposes.

This network can be thought of as a standalone CTBN, or as a subnetwork in a larger

model. The graph structure for this network is shown in Figure 6.1.

The number of homogeneous intensity matrices required to describe a CIM for

node X is as follows:

|QX |U| =
n∏
i=0

|Ui|. (6.1)

It is this exponential number of intensity matrices that prevents model scalability.

CTBNs provides a more compact representation of a CTMP by using conditional

independence between variables. Similarly, as discussed in Chapter refch:compact, it

is possible to exploit special characteristics of the data in a CTBN to provide an even

more compact representation. This provides a method for avoiding the exponential

space complexity for cases where this data characteristic applies.

Disjunctive interaction between the variables in a CTBN can be used to simplify

model representation. Let X be a node in a CTBN, and let U be the set of parents

for that node. We say that there is a disjunctive interaction among the parents of X

if the assumptions of accountability and causation independence hold. We describe

these two assumptions as they exist in a temporal context with an arbitrary number

of variable states, which varies slightly from the traditional definitions provided by

Pearl [92].

The accountability assumption refers to the notion that a transition between the

states of X may only occur as a result one of the parents in U. In other words, if each

of the parents in U are expected to cause a zero transition rate from a state xi to xj,

148

then the final transition probability should be zero as well since there has been no

cause to explain the transition. If it is desired for X to have some rate of transitioning

despite the absence of a cause, an additional node can be added synthetically to the

parent set of X that represents the notion of unmodeled causes. This synthetic node

is referred to as a “leak” node in that it captures all other possibilities and explicitly

represents otherwise implicit behavior.

The assumption of causation independence indicates that if a transition event

from xi to xj occurs, the mechanisms that cause such a transition are independent

from one another. This means that any parent U ∈ U is sufficient to produce

transition rates between the states of a variable X on its own, without the assistance

of any other parent. Furthermore, if multiple parents of X are expected to cause a

transition from xi to xj, then when considered simultaneously, they will cause the

transition to occur at a higher rate than when considering the parents individually.

If these assumptions hold, then we say that there is a disjunctive interaction for

the parents of X. When this is the case, the node X can be parameterized more

concisely than a typical node in a CTBN. The insight that allows for the reduction in

parameters is the notion that X depends on each of its parents independently, rather

than simultaneously. To formalize this idea, we introduce the notion of a Disjunctive

Conditional Markov Process, which we formalize in the following definition.

Definition 6.2.1. A Disjunctive Conditional Markov Process (DCMP) X is an

inhomogeneous Markov process whose intensity matrix varies with time, but only as

a function of the current value of a discrete conditioning variable U drawn from a

set of variables Û, where the hat notation indicates that the set of variables exhibits

disjunctive interaction. Its intensity matrix, called a Disjunctive Conditional Intensity

Matrix (DCIM), is written QX|Û and can be viewed as a set of homogeneous intensity

matrices QX|u – one for each instantiation u to U , for each variable U in Û.

149

6.2.1 Boolean Disjunctive Interaction

In this section, we restrict our analysis of the model to only consider the case

where variable are Boolean. The notion of disjunctive interaction that was first

proposed for BNs assumed that all nodes in the network were Boolean, where each

state had an explicit meaning [92]. Specifically, state one is considered to be the

presence of an event, while state zero can be thought of as the absence of an event.

The relationship between a parent and its child can then be interpreted as causal,

where an event’s occurrence in a parent will cause an event to occur in a child node as

well with some probability. This interaction acts as an OR gate in that one or more

parents are needed to cause an event in the child node. Furthermore, if no events

have occurred in the parent nodes, then no event will occur in the child. The model

is referred to as the Noisy-OR gate because there is a non-zero probability that an

event fails to occur in the child node, despite an event occurring in a parent.

This section explores disjunctive interaction in CTBNs for the special case where

a child node and all of its parents have exactly two states. First, note that the CIM

for node X consists of 2n homogeneous intensity matrices, where n is the number of

parents for node X. Each of these homogeneous intensity matrices has four entries,

equating to two unique rates. An example of such an intensity matrix is shown below.

QX|u =


0 1

0 −λu λu

1 µu −µu


The parameters in these matrices describe the rate at which the variable is expected

to transition from one state to another. Using this, the probability density function

f and the cumulative distribution function F can be defined for transitioning from

150

state x0 to state x1.

fλu(t) = λu exp(−λut)

Fλu(t) = 1− exp(−λut)

The cumulative distribution function Fλu(t) defines the probability of transitioning

from state x0 to state x1 by time t. This means that the probability that the process

has remained in state x0 until time t is exp(−λut).

To replicate the event causation interpretation from the BN literature, restric-

tions can be applied to the rates of the intensity matrices for X. First, it is assumed

that once an event occurs, the process cannot revert back to an absence of an event.

This requirement can be handled by forcing each rate µu to equal 0.0. This guarantees

that state x1 is an absorbing state, meaning that an event will only occur once and

stay in that state for the remainder of the process. The second restriction that must

be applied is that λu = 0.0 when each u ∈ u is in state u0. This ensures that if no

event has occurred in the parent nodes, then there is no cause to explain an event in

X, and the probability that X = x1 is 0.0. Finally, the initial distribution for X is

defined as P = (1.0, 0.0), which forces X to start deterministically in state x0 at the

starting time.

The DCIM model may now be used for the described Boolean CTBN. Rather

than requiring 2n intensity matrices, a DCIM needs only 2n. This corresponds to

the two separate intensity matrices required for each state of a parent node, which is

necessary for all n parents. Using the available 2n intensity matrices in the DCIM,

it is possible to compute any intensity matrix in the CIM according to the parent

state assignment u. The probability that multiple causes fail to produce an event

in X is the product of the probabilities that each cause fails to produce an event

151

independently. For more information, refer to Pearl’s work on Noisy-OR [92]. Using

this property, along with the cumulative distribution function, an equation can be

derived that defines the rates of a CIM in terms of the rates in a DCIM.

P (X(t) = x1) = 1−P (X(t) = x0) (6.2a)

1− exp(−λut) = 1−
∏
u∈u

exp(−λut) (6.2b)

exp(−λut) =
∏
u∈u

exp(−λut) (6.2c)

−λut =
∑
u∈u

−λut (6.2d)

λut = t
∑
u∈u

λu (6.2e)

λu =
∑
u∈u

λu (6.2f)

The derivation starts on Line 6.2a with a basic equality showing that the

probability of X being in each of the two states sums to 1.0. Next, Line 6.2b shows

the cumulative distribution function using a rate λu for a CIM is shown on the left.

An alternative representation is shown on the right side of the equation, where the

probability of remaining in state x1 is replaced with the product of probabilities for

remaining in state x1 given each parent individually. This produces an equality that

relates the rate in a CIM to the rates in a DCIM. Line 6.2c subtracts 1 from both sides

and multiplies the resulting terms by −1. Line 6.2d takes the log of both sides, which

also has the effect of changing the product to a sum. In Line 6.2e, −1 is multiplied

by each side, and t is pulled out of the summation. Finally, note that the t value on

the left side of the equation is equal to the t value on the right, indicating that this

equality holds for all times t. As a result, the t on each side of the equation cancels,

resulting in the equality shown in Line 6.2f.

152

This derivation indicates that a rate in a CIM can be computed by summing

the rates contributed by individual parents. This validates the formulation presented

in this chapter by demonstrating its equivalence to previous disjunctive interaction

as it was proposed originally for BNs. Furthermore, if the rate assumptions made in

this Boolean special case hold, then the computation of CIM rates can be simplified.

First, it is known immediately that the rate of transitioning from x1 to x0 is always

0.0, meaning that no summation needs to be performed for these entries in the CIM.

Next, it is assumed that if a parent is in state u0, then it will not cause X to transition

to state x1. With the knowledge that these rates are equal to 0.0, the summation

shown in Equation 6.2f may be simplified. Rather than summing over the entire set

of parent instantiations u, the sum can instead consider only those parents where

u = u1. This excludes the cases where u = u0, which have a known contributing rate

of 0.0. The Boolean rate may be computed more efficiently than a general CIM rate

due to the potential reduction in the size of the summation.

6.2.2 Generalized Disjunctive Interaction

The previous section described disjunctive interaction in CTBNs for the case

where all variables contain exactly two states. This section lifts that assumption

to allow both the child and parent variables to incorporate any number of states.

The approach that we take to generalizing disjunctive interaction is similar to that

of Srinivas [?]. Without loss of generality, let X be a node in a CTBN with n

parents, and assume that disjunctive interaction holds. A DCIM can be defined in

terms of the more traditional CIM data structure by using a conceptual model. For

example, Figure 6.2 shows n separate instances of X, one for each parent U ∈ U.

Although the actual CTBN structure contains only a single instance of X, this figure

serves as an aid for conceptualizing DCIMs. Intuitively this structure conforms to the

153

U1

· · ·

Ui

· · ·

Un

X X X
Figure 6.2: Conceptual disjunctive network structure.

idea of disjunctive interaction in that each of the parents are now able to influence

the behavior of X independently without the interference of another parent. Using

traditional CIM parameterizations for each of these disjoint instances of X, each QX|U

requires |U | homogeneous intensity matrices corresponding to the states of each parent

variable U . The DCIM for a node X with parents Û can be thought of as the union

of the CIMs required for each X in the conceptual model. This is shown formally

in the following equation, where each intensity matrix QX|U is conditioned on only a

single variable U .

QX|Û =
⋃
U∈U

QX|U . (6.3)

For a more concrete example, refer back to the drug effect network in Figure 2.3.

The JointPain variable was modeled as a conditional Markov process, dependent on

both Barometer and Concentration. By assuming disjunctive interaction between

the causes of the JointPain variable, it is assumed that the barometric pressure will

affect joint pain without the assistance of drug concentration, and vice versa. In

other words, a specific combination of barometric pressure and drug concentration

will not have a unique influence on joint pain other than the existing contribution

made by Barometer and Concentration individually. If this assumption holds, then

154

JointPain can instead be modeled using a DCMP. Recall from our example that

Barometer consists of three states while Concentration has two. Then the set of

homogeneous intensity matrices that make up the DCIM for JointPain is as follows:

QJ |B,C = {QJ |b0,QJ |b1,QJ |b2,QJ |c0,QJ |c1}.

Note that there are five intensity matrices in this set, compared to the six

intensity matrices necessary for the original JointPain CIM. This is because a DCIM

considers the state of each parent on an individual basis, rather than using state

assignments to all parents simultaneously. As a result, the number of homogeneous

matrices required to specify a DCIM are the summation of the number of states for

each parent variable, as shown here.

|QX|Û| =
n∑
i=0

|Ui| (6.4)

This follows directly from Equation 6.3, which constructs the set of intensity matrices

using a union operation. A viable interpretation of disjunctive interaction is that each

of the parents acts as an independent cause of a transition in the child. This means

that identifying the next transition in state X reduces to the task of taking the

minimum of a set of independent random variables that are exponentially distributed

with rates defined for each of the parents. Each of these random variables is a

transition event, and the earliest of these events will be exponentially distributed

with a rate equal to the sum of the parent contributions. This is analogous to how a

diagonal entry in a row of an intensity matrix defines the earliest transition time for

all other states by summing the remaining columns.

Comparing Equations 6.1 and 6.4, we see that the number of intensity matrices

required to specify a DCIM is a summation, while a CIM is a product over the same

155

terms. This change from a product to a summation is the cause for the reduction

in the number of parameters when using DCIMs. For instance, in the joint pain

example where there are two parents with 2 and 3 states, a CIM will require 3∗2 = 6

homogeneous intensity matrices, while a DCIM will require only 3 + 2 = 5. As we

consider models with a larger number of parents, or parents with a larger number

of states, the savings provided by the DCIM representation becomes increasingly

evident.

6.3 Converting DCIMs to CIMs

Although DCIMs are capable of representing disjunctive interaction concisely,

existing algorithms designed for CTBN learning and inference are dependent on the

CIM framework. To ensure DCIMs are compatible with these algorithms, we require

a method for converting a DCIM to a CIM. The concern however, is that if a DCIM is

simply replaced with a CIM, the representational advantages afforded by disjunctive

interactions are lost. Instead, we take advantage of the fact that algorithms typically

only use a small subset of the parameters in a CIM at one time. To facilitate access

to specific parts of a CIM, DCIMs can be used to derive only the information that is

necessary. This allows algorithms access to a CIM implicitly, despite the fact that no

explicit representation exists.

To derive a CIM from a DCIM, we make use of the properties of the underlying

disjunctive interaction. As a reminder, each parent U of a variable X is considered

sufficient to explain the behavior of X if the accountability and causal independence

assumptions hold. As a result, each parent U in some state u will causeX to transition

from state xi to xj with a rate of QX|u[i, j]. When considering every parent U ∈ U, we

are left with n = |U| transition events, each of which are independent exponentially

distributed random variables. The rate at which we expect X to transition from xi

156

to xj given a full state instantiation u to its parents U is therefore the minimum of

the transition times obtained from each parent individually. Given that the events

are independent and exponentially distributed, the rate of the minimum transition

time for a full instantiation of the parents is as follows.

QX|u[i, j] =
∑
u∈u

QX|u[i, j] (6.5)

The property that allows the individual transition rates to be summed is the

same property that ensures that the diagonal entry in the row of an intensity matrix

encodes the sojourn time for that state. Recall that the diagonal entry in the row of an

intensity matrix is the negative sum of the remaining entries for the row, and that the

absolute value of the diagonal represents the rate at which the variable will transition

to any of the other states. This is directly analogous to how a combination of parents

cause a transition event in a child with a rate equal to the sum of their individual

effects. Each parent can be thought of as contributing to the overall transition

rate, and due to the accountability assumption discussed in the previous section,

the entirety of a transition rate must be accounted for by these parent contributions.

Using Equation 6.5, each rate qi,j for a homogeneous intensity matrix in a CIM

can be computed using the rates in a DCIM. This applies to any of the entries in an

intensity matrix for a CIM, including the negative entries along the diagonal. Given

the summation applies to each of the individual entries of a matrix, entire intensity

matrices in a CIM can be computed at once using matrix addition. Specifically,

QX|u =
∑

u∈u QX|u, where QX|u is a homogeneous intensity matrix in the CIM QX|U,

and QX|u is a homogeneous intensity matrix from the DCIM QX|Û. Note that while

summing the matrices as a whole may be advantageous in some cases, it will likely be

157

more efficient to sum the individual rates when only a subset of an intensity matrix

is required for an algorithm to operate.

To better conceptualize how CIM rates are generated dynamically from rates in a

DCIM, we can define a CIM alternatively in terms of functions rather than statically

stored transition rates. Consider an arbitrary homogeneous intensity matrix QX|u

from the CIM QX|U. Each of of the entries in the matrix can be replaced with a call

to the following function fX which is taken directly from Equation 6.5, and returns

an intensity corresponding to the indices provided as input.

f(X,U, i, j) =
∑
u∈u

QX|u[i, j] (6.6)

The key concept is that an intensity for a position in the matrix does not exist until it

is computed by the function. Rather than storing the rates directly, a reference to a

function that enables the rate to be computed is provided. After a rate is computed,

the value can be discarded and recomputed at a later time if necessary. Here is the

CIM with function entries.

QX|u =



x1 x2 · · · xn

x1 f(X,u, 1, 1) f(X,u, 1, 2) · · · f(X,u, 1, n)

x2 f(X,u, 2, 1) f(X,u, 2, 2) · · · f(X,u, 2, n)

...
...

...
. . .

...

xn f(X,u, n, 1) f(X,u, n, 2) · · · f(X,u, n, n)


This representation provides a means of representing a larger set of parameters with

a smaller set of parameters and a mapping function that exploits the disjunctive

interaction in the model.

158

6.4 Approximate Inference with Disjunctive Interaction

Importance sampling can be used to achieve inference over a CTBN that contains

nodes that are parameterized using DCIMs. Trajectories σ can be broken into

segments σ[i] that are partitioned based on when variables transition between states.

The likelihood of a trajectory is decomposable by time, and is therefore calculated

by multiplying the likelihood contributions for each segment of the trajectory. The

likelihood for a trajectory is as follows:

L′(σ) =
∏
u

∏
x

(
q
M [x|u]
x|u exp(−qx|uT [x|u])

) ∏
x′ 6=x

θ
M [x,x′|u]
xx′|u

where T [X|u] is the amount of time spent in state x, M [x, x′|u] is the number of

transitions from x to x′, and M [x|u] is the total number of transitions from x to

any other state. These sufficient statistics are particularly simple to obtain from the

trajectory segment. T [X|u] is simply the duration of the segment, and M [x|u] is

guaranteed to be zero since there are no transitions in the segment by construction.

Given this, the likelihood can be rewritten specifically for a trajectory segment.

L̃′(σ) =
∏
u

∏
x

(q0x|u exp(−qx|u(te − t))
∏
x′ 6=x

θ0xx′|u (6.7)

=
∏
u

∏
x

(exp(−qx|u(te − t)) (6.8)

Importance sampling works by sampling from a proposal distribution P ′

that guarantees the resulting trajectories conform to evidence, rather than the

target distribution PN . This is achieved by sampling from truncated exponential

distributions that force the necessary state transitions to occur prior to periods of

evidence. The sampled trajectories are then weighted to account for their being

159

drawn from the proposal distribution. The calculation of the weight for a sample is

shown below, where e is the set of evidence indicating known states for specified time

durations.

w(σ) =
PN (σ, e)

P ′(σ)

In order to compute likelihoods in the presence of disjunctive interaction, the

sampling process must be adjusted slightly. With the introduction of DCIMs, the

necessary rate parameters from Equation 6.7 are no longer readily available, and

must be computed as they are required. The importance sampling algorithm can

be extended to allow for disjunctive interaction by calling a function to obtain rates

for transition times, as well as the multinomial distributions that define the relative

likelihood of entering each state in the event of a transition. These rates for transition

times and multinomial distributions may be computed using Algorithms 6.1 and 6.2

respectively, which either compute the intensities in the event that the node uses a

DCIM representation, or draw the intensities directly from the corresponding intensity

matrix if the node is using a standard CIM representation.

The pseudocode for importance sampling was originally presented by Fan et al.,

which demonstrates how the likelihood and weight equations are built into the process

of continuous time sampling [38,40]. A modified version of this procedure is shown in

Algorithm 6.3, where asterisks to the right of lines indicate changes that were made

to the original code. These changes include calls to either the Get-Rate procedure or

the Get-Multinomial procedure, which compute the necessary rates on the fly using

the summation from Equation 6.5. This differs from the original importance sampling

algorithm which obtained these rates directly from the intensity matrices that were

available. Algorithm 6.4 contains a subroutine used by importance sampling to assign

160

Algorithm 6.1: Get-Rate(x,u)

Input: Current state x of the node and instantiation u to parent variables.
Output: The rate λ for transitioning away from state x.

1: qx|u ← 0
2: if X uses DCIM then
3: for u ∈ u do
4: qx|u ← qx|u + QX|u[x, x]
5: end for
6: else
7: qx|u ← QX|u[x, x]
8: end if
9: return qx|u

Algorithm 6.2: Get-Multinomial(x,u)

Input: Current state x of the node and instantiation u to parent variables.
Output: The discrete distribution θ for transitioning to each state x′ 6= x.

1: θx|u ← {0, · · · , 0} // Vector of |X| zeros
2: if X uses DCIM then
3: for s ∈ X, where s 6= x do
4: for u ∈ u do
5: θx|u[s]← θx|u[s] + (QX|u[x, s]/QX|u[x, x])
6: end for
7: end for
8: else
9: for s ∈ X, where s 6= x do

10: θx|u[s]← θx|u[s] + (QX|u[x, s]/QX|u[x, x])
11: end for
12: end if
13: return θx|u

161

states to undefined variables. Algorithm 6.5 provides the updated pseudocode for

the Update-Weight procedure, which is a subroutine of the importance sampling

algorithm.

Other inference algorithms can be modified in a similar fashion, where the

Get-Rate and Get-Multinomial procedures are called as rates from CIMs are needed.

Disjunctive interactions allow for a more compact representation of CTBNs, regardless

of the choice of inference algorithm. Furthermore, it is quite likely that large portions

of a CIM will never need to be computed during the inference process. Consider

sample-based inference, which essentially performs a random walk through state

transitions. As the number of homogeneous intensity matrices in a CIM increases, it

becomes increasingly less likely that a sample path will use every rate. This relates to

the curse of dimensionality in that samples will not be sufficient to cover the entirety

of a CIM. For this reason, learning and storing every possible transition rate for a CIM

is often unnecessary, and may not be possible when considering memory limitations.

This further emphasizes the importance of the DCIM representation and the role it

plays during inference.

Note that the expected computational complexity of the algorithm has not been

altered, but rather has been adapted to work with DCIMs using the same architecture

designed for CIMs. The intent of the importance sampling algorithm presented here

is to demonstrate how existing algorithms are able to work with the more compact

DCIM representation without the need for significant alterations. Despite the fact

that the theoretical bounds for computational complexity are not improved, the

algorithm adapted to work with disjunctive interaction tends to result in smaller

computation times when the number of parents is large, which is discussed in greater

detail in Section 6.5.2. Future work will focus on developing inference algorithms that

162

Algorithm 6.3: DCIM-Importance-Sample(X, e, te)

Input: CTBN over variables X, possibly empty evidence set e, and end time te.
Output: A complete trajectory σ over variables in X during the interval [0, te).

1: t← 0, σ ← ∅, w ← 1
2: for each variable X ∈ X do
3: if evalX (0) defined then
4: set x(0)← evalX (0), and then set w ← w · θBx(0)|paB(0)

5: else
6: draw state x(0) according to θBX|paB(X)

7: end if
8: end for
9:

10: DCIM-Sample-Transition-Times(X, e, t, te)
11:

12: if Time(X) ≥ tend then
13: w ← Update-Weight(X,w, t, tend)
14: return (σ,w)
15: else
16: w ← Update-Weight(X,w, t, T ime(X))
17: end if
18: Update t← Time(X)
19:

20: if eendX (t) 6= t or evalX (t) is defined then
21: if evalX (t) is defined then
22: set x(t)← evalX (t)
23: else
24: draw x(t) from discrete distribution Get-Multinomial(x(t),uX(t)) *
25: end if
26: Add 〈X ← x(t), t〉 to σ
27: Undefine Time(X) and Time(Y) for all variables Y for which X ∈ UY

28: else
29: Undefine Time(X)
30: end if

163

Algorithm 6.4: DCIM-Sample-Transition-Times(X, e, t, te)

Input: CTBN over variables X, evidence set e, current time t, and end time te.
Result: Assigns transition times to any undefined variables.

1: for each X ∈ X such that Time(X) is undefined do
2: if evalX (t) is defined then
3: set ∆t← eendX (t)− t
4: else if evalX (te) is defined where te = etimeX (t), x(t) 6= evalX (te) then
5: draw ∆t from exponential with rate Get-Rate(x(t),uX(t)) *
6: else
7: draw ∆t from an exponential with parameter Get-Rate(x(t),uX(t)) *
8: end if
9: Define Time(X)← t+ ∆t

10: end for
11: Let X ← arg minX∈X[Time(X)]

Algorithm 6.5: Update-Weight(Y,w, t1, t2)

Input: A variable Y , an existing weight value w, and start-end times t1 and t2.
Output: An updated weight w.

1: for each X ∈ X such that evalX (t) is defined for t ∈ [t1, t2) do
2: w ← w · L̃X(x[t1 : t2])
3: end for
4:

5: for each X ∈ X such that evalX (te) is defined,
where te = etimeX (t1), and x(t1) 6= evalX (te) do

6: if X = Y then
7: w ← w · (1− exp(−GetRate(x(t1),uX(t1)) · (te − t1)))
8: else
9: w ← w · 1−exp(−GetRate(x(t1),uX(t1))·(te−t1))

1−exp(−GetRate(x(t1),uX(t1))·(te−t2)) *
10: end if
11: end for
12:

13: return w

164

use the DCIM representation directly, rather than first translating the parameters to

a CIM compatible form.

Finally, it is worth noting that this process is analogous to inference algorithms

in BNs, except that rather than summing rates, BN algorithms multiply disjunctive

conditional probabilities. The reason for this equivalence is the CTBN’s reliance on

the exponential distribution, where summing transition intensities is the temporal

equivalent to multiplying fixed probabilities. Excluding algorithms such as quickscore

which make use of specific network structures, inference in BNs in the presence of

disjunctive interaction works in much the same way as described here, where the

probabilities in a conditional probability table are computed at runtime as necessary.

6.5 Experiments

6.5.1 Expectation Comparisons

In this section, two experiments are presented that are intended to validate and

explore the behavior of the proposed DCIM parameterization. The first experiment

restricts the number of states for both the child and parent nodes to be Boolean,

while the second experiment relaxes this restriction. These experiments compare the

query results of a network parameterized using DCIMs with the expected transition

probabilities. These experiments are designed to further justify the formulation

of disjunctive interaction in CTBNs by supporting the theoretical results already

provided. In all cases, the modified importance sampling algorithm presented in

Section 6.4 was used, which performs on-the-fly calculations of the necessary rates

using information encoded in DCIMs.

6.5.1.1 Binary State Nodes For the first experiment, we constructed a network

with four parents A, B, C and D, and a single child node X. The network structure

165

A B C

X
Figure 6.3: The network structure for the CTBN used in the expectation comparison
experiments. Here, X is parameterized using DCIMs.

is shown in Figure 6.3. All nodes in the network are assumed to have two states,

0 and 1. Each of the parent nodes are parameterized with an initial distribution of

(0.5, 0.5) and a single intensity matrix containing a rate of 1.0 for transitioning to

either state 0 or 1. The child node X is parameterized with an initial distribution of

(1.0, 0.0), and uses the disjunctive interaction model. This means that rather than

using a CIM that would require a total of 16 intensity matrices, a DCIM is used to

define transition behavior, consisting of only eight. The rate of X transitioning to

state 1 given an instantiation of its parents is a random number drawn uniformly from

the range [0.0, 1.0]. These rates are generated using a random number generator with

a fixed seed to ensure that parameterization is consistent over numerous experiment

runs. For each intensity matrix in the DCIM, the rate of transitioning from state

1 to state 0 is 0.0. The initial distribution for X ensures that the process starts

deterministically in state 0, and the zero valued transition rates from state 1 to state

0 produce an absorbing state in state 1. This configuration ensures only a single

transition from state 0 to state 1 will occur, at which point the process will remain

in state 1 indefinitely. An example of the initial distribution for X and an intensity

matrix in the DCIM for X is shown below. Here, λ1 is a random value between 0.0

166

and 1.0, representing the transition intensity into state 1 from state 0.

PX = [1.0, 0.0] QX|U =

−λ1 λ1

0.0 0.0


Node X has four parents with two states each, meaning that there are 24 = 16

possible unique instantiations to these parents. For the sake of this experiment, ten

of these instantiations were considered, randomly chosen to ensure a representative

cross-section. For each instantiation of the parents, evidence was assigned to the

model to guarantee that the parents conform to their corresponding states for the

interval of time t = [0.0, 2.0). The probability distribution over the states of X

was then queried at 100 evenly spaced timesteps over this time interval. Next, the

expected probabilities for the states of X were obtained by retrieving the probability

of X having transitioned to state x1 from an exponential distribution with a rate

equal to the sum of the rates contributed by the corresponding intensity matrices in

the DCIM.

To ensure that the inference algorithm adapted to work with DCIMs behaves as

anticipated, we compare the results to the expected probabilities through time. Let

∆[x1] be the mean difference between the probability obtained by running inference

and the expected probability that was retrieved manually.

∆[x1] =
(∑

t

∣∣P (X(t) = x1)− E[X(t) = x1]
∣∣)/100 (6.9)

Here the summation accounts for each of the 100 evenly spaced intervals of t ∈

[0.0, 2.0). This average difference serves as a metric for capturing how closely the

inference algorithm is able to track the expected value over time. Table 6.1 shows

∆[x1] for each of the ten parent instantiations considered for this experiment.

167

∆[x1]
P (X|a1, b0, c0, d1) 0.0001
P (X|a0, b0, c1, d1) 0.0008
P (X|a0, b1, c0, d0) 0.0003
P (X|a0, b1, c1, d1) 0.0002
P (X|a0, b0, c0, d0) 0.0002
P (X|a1, b1, c0, d1) 0.0008
P (X|a1, b0, c0, d0) 0.0003
P (X|a1, b1, c1, d1) 0.0002
P (X|a1, b0, c1, d0) 0.0010
P (X|a0, b0, c0, d1) 0.0006

Table 6.1: Average differences between expected probabilities and probabilities
queried from a Boolean state network containing a DCIM-specified node.

Note that the observed values of ∆[x1] are generally very small, indicating

that inference closely matches the expected values throughout the entire time period

[0.0, 2.0). A paired equivalence test with a 0.005 region of similarity and a significance

level of 0.05 was used to compare the queried result to the expected probability. For all

cases, it was found that the probability obtained by querying the DCIM parameterized

CTBN was statistically equivalent to the corresponding expected probability. What

error does exist can be explained by our use of an approximate inference algorithm.

6.5.1.2 General State Nodes The previous experiment investigated the behavior

of disjunctive interaction when a network contains Boolean state nodes only. This

restricts the number of intensity matrices required to specify the child node, and

mandates that each of these intensity matrices is of size 2×2. This Boolean restriction

is now lifted, allowing nodes with any arbitrary number of states. This experiment

makes use of the same network structure shown in Figure 6.3, but in this case we let

[A] = 2, [B] = 5, [C] = 3, and [D] = 10. The number of states for the child node is

also increased, such that [X] = 4.

168

With these added states, each intensity matrix for X now contains 4 × 4 = 16

entries rather than 4. In addition, a CIM would require 2 × 5 × 3 × 10 = 300 of

these intensity matrices. This is drastically reduced by switching to a disjunctive

representation, in that a DCIM requires only 2 + 5 + 3 + 10 = 20 intensity matrices.

This is a reduction of 280 intensity matrices, which, when compared to the reduction

of eight matrices observed in the Boolean experiment, demonstrates the increasing

utility of the disjunctive representation as the number of states increase.

Just as before, parent nodes are parameterized such that the initial probability

for starting in each state is distributed evenly across all options, and all states

transition to all other states with a rate of 1.0. The child node X is set to start

deterministically in state x0 at time t = 0, and may then transition to some state

xi 6= x0 with a rate λi drawn from a uniform distribution over [0.0, 1.0]. Here again,

these random values are drawn using a seeded random number generator to ensure

consistency throughout the experiment. The initial distribution and an intensity

matrix in the DCIM for node X is shown below, where Λ is the sum of the randomly

drawn rates λ1, λ2 and λ3.

PX = [1.0, 0.0, 0.0, 0.0] QX|U =



−Λ λ1 λ2 λ3

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0


Unlike the Boolean case, node X is now able to transition to several different

states from its initial state x0. To compute the expectation for each of these

transitions, we again draw from an exponential distribution with a rate obtained

by summing the contributing rates in the corresponding intensity matrices in the

DCIM. This results in three exponential distributions, each of which can be thought

169

∆[x1] ∆[x2] ∆[x3]
P (X|a0, b0, c1, d0) 0.0019 0.0024 0.0006
P (X|a1, b4, c0, d6) 0.0004 0.0005 0.0011
P (X|a1, b2, c0, d8) 0.0016 0.0024 0.0008
P (X|a1, b3, c0, d5) 0.0008 0.0003 0.0010
P (X|a0, b1, c2, d7) 0.0011 0.0017 0.0025
P (X|a0, b2, c1, d7) 0.0012 0.0014 0.0027
P (X|a0, b1, c1, d2) 0.0006 0.0013 0.0006
P (X|a0, b0, c0, d1) 0.0073 0.0103 0.0028
P (X|a0, b1, c2, d5) 0.0014 0.0010 0.0029
P (X|a0, b3, c2, d4) 0.0013 0.0030 0.0017

Table 6.2: Average differences between expected and queried probabilities for for
transitioning to states x1, x2 and x3. X is parameterized using a DCIM.

of as “racing” one another to transition X into any one of the states x1, x2, or x3. To

account for the possibility that X may instead transition to another state first, the

probabilities obtained from each exponential distribution in weighted by its rate as a

fraction of the total sum of the transition rates.

Once more, ten different instantiations of the parent nodes were considered for

this experiment, corresponding to evidence that was applied for individual inference

runs. The difference between the expected probability and the queried probability

for each state x1, x2 and x3 is computed over 100 uniformly spaced time points in the

range [0.0, 2.0). Given that there are now three possible states for X to transition to,

∆ can now be viewed as a vector of errors, indexed by each state of the variable X.

The errors in this vector ∆ are shown for the ten parent instantiations in Table 6.2.

The errors shown in Table 6.2 are generally larger than those observed in Table

6.1, but ultimately these errors still amount to fractions of a percent. Using the

same paired equivalence test as the previous experiment, it was found that there was

again no significant difference between the probabilities obtained by inference and the

170

expected probability for each state. This points to the use of an approximate inference

algorithm as the source of error, and the increase in error from the Boolean case is

likely due to the increased model complexity. This experiment shows that disjunctive

interaction behaves as expected, even in the case of non-Boolean variables.

6.5.2 Scalability

The previous experiments focused on validating the disjunctive formulation

presented in this chapter. In this section, we present a series of experiments designed

to investigate disjunctive interaction further. More specifically, we run inference over

increasingly complex models in an attempt to gauge how well the DCIM approach

scales.

For these experiments, a network with a single child node X, and n parent nodes

U is used. All nodes in the network are assumed to have three states, meaning that a

CIM for X will require 3n, intensity matrices containing 9 entries each, while a DCIM

will need only 3 · n. Each parent is parameterized using an initial distribution and

intensity matrix as shown below:

P =

[
1

3
,
1

3
,
1

3

]
QU =


−Λ0 λ0,1 λ0,2

λ1,0 −Λ1 λ1,2

λ2,0 λ2,1 −Λ2


where each λi,j is a rate that was drawn from a uniform distribution over the range

[0.0, 1.0] and Λi =
∑

j 6=i λi,j. This is very similar to the parameterization of parent

nodes in the previous expectation experiments, except that transitions make occur

between states at varying rates.

Parameterization of the child node X is also modified from the one presented

previously. In the expectation comparisons, it was required that X deterministically

171

started in a single state and that all other states were absorbing. This ensured that

X transitioned only once during the entire process, thereby allowing for the manual

computation of state expectations. In this experiment we lift that restriction and

allow X to be fully general. The initial distribution allows for an equal probability of

starting in each of the three states, and all rates in the intensity matrices for the DCIM

were drawn uniformly from the range [0.0, 1.0]. In other words, X is parameterized in

exactly the same fashion as the parent nodes, except that rates are drawn to populate

all 3 · n intensity matrices, rather than just one.

For all scalability experiments, the number of parents is varied from one to

twelve. The baseline run uses the modified inference algorithm presented in Section

6.4, which generates 100, 000 trajectories over the interval of time [0.0, 2.0). Recall

that generating these trajectories requires the use of CIM rates, which are not directly

available for node X given the DCIM parameterization. Instead, CIM rates are

computed dynamically as they are needed by the algorithm. For the purpose of this

experiment, a recording is kept of each dynamically generated rate in the CIM for

X throughout the inference process. The total number of unique rates that were

computed is then compared to the total number of rates in the CIM, which can be

obtained directly as 9 × 3n. This provides a method for determining the portion of

the CIM that was actually required to perform inference.

6.5.2.1 Number of Samples To determine how model complexity affects the

portion of the CIM that was computed, we consider this portion as a function of

the number of parent nodes in the graph. To investigate how the number of samples

used in importance sampling impact these results, the number of samples was also

varied. In addition to the baseline that makes use of 100, 000 samples, three other

runs of the inference algorithm were considered that make use of 10, 000, 1, 000 and

172

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

Number of Parents

P
o
rt
io
n
o
f
C
IM

C
o
m
p
u
te
d

Num Samples
100
1, 000
10, 000
100, 000

Figure 6.4: Plot of the portion of a CIM that is used during inference as a function
of the number of parents in the graph. Each series represents inference that uses a
different number of samples.

100 samples. Figure 6.4 plots the portion of the CIM computed during the four

different inference runs as a function of the number of parents in the graph. Note

that there is no perceptible change between inference that uses 10, 000 samples and

one that uses 100, 000. As a result, the line for the 100, 000 sample is obscured in the

figure.

The first notable feature of the plot is that the portion of the CIM that is

computed decreases as the number of parents increase, regardless of the number of

samples used during inference. This is due to the exponential increase in the number

of intensity matrices that comprise the underlying CIM. When there is only one

parent, there are three intensity matrices comprising the CIM, one for each state of

the parent node. Throughout the sample generation process, it is very likely that

all rates in these CIMs will be needed eventually, which is why 100% of the CIM is

computed. As the number of parent nodes increase, so does the number of intensity

173

matrices, resulting in a large number of rates for the CIM. At 12 parents, there are

312 intensity matrices in a CIM for X, for a total of approximately 1.6 million rates.

This makes it extremely unlikely that every rate will be used when sampling during

inference, which explains the reduction in the portion of the CIM that is computed.

It should also be noted that the computed portion of the CIM decreases more

quickly with fewer samples. This is because fewer samples implies fewer chances to

generate unique rates of the CIM. In theory, as the number of samples approaches

infinity, the portion of the CIM that is computed will approach 100%. Unfortunately

as the number of parents approaches infinity, the portion of the CIM that is computed

approaches 0%, creating competing influences. Furthermore, an increase in the

number of samples produces only a small increase in the likelihood of computing the

remaining rates, especially considering that some state instantiations to the parents

may be very unlikely, suggesting a mixing problem. Conversely, the increased number

of parameters is exponential in the number of parents, meaning that the influence

imposed by the network structure will dominate the impact of the number of samples

used during inference. In practice, as parent sets become large, only a small portion

of the CIM will be used during inference, regardless of the number of samples chosen.

This can be observed in Figure 6.4, where the increase from 10, 000 samples to 100, 000

samples has no perceivable impact on the portion of the CIM that was computed.

6.5.2.2 Time Period The next experiment investigates the impact that time has

on the portion of the CIM that is computed. In all previous experiments, inference

was computed over the interval of time t = [0.0, 2.0). To determine the impact that

this interval has on the portion of the CIM computed, the end time te is now varied.

Additional endtimes of 1.5, 1.0, and 0.5 are considered, each of which are added as

174

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Number of Parents

P
o
rt
io
n
o
f
C
IM

C
o
m
p
u
te
d

Time Periods
[0.0, 0.5)
[0.0, 1.0)
[0.0, 1.5)
[0.0, 2.0)

Figure 6.5: Plot of the portion of a CIM that is used during inference as a function of
the number of parents in the graph. Each series represents a separate run of inference
over a varying lengths of time.

separate series in the plot shown in Figure 6.5. All instances use a fixed 100, 000 of

samples when performing inference.

First note that the series where inference is run until time t = 2.0 matches the

series in Figure 6.4 with 100, 000 samples, since the experimental setup in both cases is

identical. These can be thought of as the baseline case. Next note that as the end time

te decreases, the decrease in the portion of the CIM computed occurs more rapidly.

The reason for this is that earlier end times imply shorter time periods in general,

which decreases the size of the sampled trajectories. These smaller trajectories contain

fewer transitions, meaning fewer rate computations to accommodate these transition

events. Just as before, however, ultimately the number of parents is more important

than the size of the time period, in that the exponential increase in parameters cannot

be matched by a linear increase in trajectory size. For a large number of parents,

even very long trajectories will not require computation of the entire CIM.

175

6.5.2.3 Magnitude of Transition Rates In the final scalability experiment, the

magnitudes of transition rates used when parameterizing nodes are altered. In

previous experiments, each transition rate λ in an intensity matrix was drawn from

a uniform distribution over the range [0.0, 1.0]. In this experiment, the range for the

distribution is altered such that the maximum magnitude of a rate is limited to values

0.5, 0.25 and 0.1. These three new parameterization ranges, in addition to the baseline

case where the maximum is 1.0, are each used to parameterize different models. As

before, the portion of the CIM for node X that was computed during inference is

recorded as a function of the number of parents, and the four different cases are

shown as the four series in Figure 6.6. Although the rates are drawn from different

distributions for each case, the process is still achieved using a seeded random number

generator to guarantee consistency between runs. In this experiment, the number of

samples used during inference is fixed at 100, 000, and the time period over which

inference is computed is [0.0, 2.0).

The baseline series where rates are constrained to a magnitude of 1.0 and below

is equivalent to the [0.0, 2.0) series from Figure 6.5, and the 100, 000 series from

Figure 6.4. Here again, a decrease in the rates at which transitions occur results

in a more rapid decrease in the portion of the CIM computed as the number of

parents increase. Smaller rate values result in longer times between transitions. Given

that trajectories encode transitions that occur over a fixed length of time, longer

times between transition events imply fewer transitions overall. This decreases the

probability of covering the entire CIM during the sampling process.

In each of the scalability experiments, it was shown that as the number of parent

nodes increase, the portion of the underlying CIM that is actually used decreases.

This behavior is exhibited regardless of attributes such as the number of samples

used during inference, the time period considered, or the magnitude of the rates used

176

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

Number of Parents

P
o
rt
io
n
o
f
C
IM

C
o
m
p
u
te
d

Rate Distribution
U(0.0, 0.1)
U(0.0, 0.25)
U(0.0, 0.5)
U(0.0, 1.0)

Figure 6.6: Plot of the portion of a CIM that is used during inference as a function
of the number of parents in the graph. Each series represents a different model
parameterized with varying magnitudes of transition intensities.

to parameterize intensity matrices. Despite amplifying or lessening the effect, changes

to the model or inference algorithm do not significantly impact the overall trend that

a CIM cannot be covered when the number of parents becomes very large. The issue is

that the number of possible state instantiations to the parent nodes is exponential in

size, making it difficult to cover the space with even a large number of samples. This

relates to the curse of dimensionality that notes the difficulty in sufficiently covering

a space with many dimensions, and therefore extremely large volume.

When sampling in CTBNs, it is unlikely to encounter every state instantiation of

parents, meaning that only a subset of the CIM is accessed. Given that only a subset

of the CIM is in use during the inference process, storing the information that will

never be used is wasteful and may limit the size of the models that can be represented.

If the disjunctive interaction assumption holds, then a DCIM provides a much more

177

compact representation that allows for the computation of portions of the CIM only

as needed.

For instance, consider the case where a node has twelve parents, as shown by the

right-most points in Figure 6.6. For these examples, the portion of the CIM that was

actually used during inference runs was, at most, approximately 40%. Using a DCIM

formulation, it is unnecessary to store all 312 = 531441 intensity matrices required

for a CIM directly. Instead, 3× 12 = 36 intensity matrices are stored for the DCIM,

and the rates required during inference are computed dynamically.

We conclude the experiment section by informally noting the observed runtime

performances. We acknowledge that CPU time is largely dependent on factors such

as implementation and hardware; therefore, we provide this information only as a

rough guide. Using a machine with modest hardware specifications, inference using

the DCIM formulation for all experiments took seconds to complete for small numbers

of parents, and up to several minutes for instances with 10, 11 and 12 parents. This

was a massive improvement when compared to running the same experiments using

a CIM formulation, and models with larger numbers of parents were unable to load

due to memory restrictions. Improved hardware or optimized implementations may

help alleviate this problem, but ultimately the exponential increase in model size will

make representation and inference infeasible when using CIMs in scenarios with large

numbers of parents.

6.6 Summary

In this chapter, disjunctive interaction was described in the context of CTBNs.

The disjunctive conditional intensity matrix was introduced as a compact means

of parameterizing nodes with disjunctive interaction. This DCIM parameterization

was shown to reduce the number of required intensity matrices when compared

178

to a standard CIM representation. Specifically, the number of intensity matrices

required to specify the disjunctive model is linear in the number of parents rather

than exponential. This chapter also provided a method to compute unspecified rates

in a CIM using a DCIM defined over the same set of variables, allowing for dynamic

computation of specific regions in a CIM as necessary. Disjunctive interaction was

then described in more detail as it works with Boolean state variables, and the theory

presented here was related back to the BN literature. Finally, a modified version of the

importance sampling inference algorithm for CTBNs was presented which made use of

the DCIM formulation and the dynamic rate computation process. This demonstrated

the ability to use the DCIM formulation with existing algorithms provided in the

literature on CTBNs.

The introduction of disjunctive interaction represents a major step toward

improved scalability in CTBNs, especially in domains with causal relationships

between variables. By providing a parameterization scheme that is linear in the

number of parents rather than exponential, it is possible to represent models that

would have otherwise been intractable. While disjunctive interaction works to achieve

the same goal as the compact representations presented in the previous chapter,

DCIMs are able to encode mathematical relationships between individual transition

rates rather than describing similarities in the intensity matrices as a whole. This

provides a compact model for describing CTBNs that can applied to different scenarios

exhibiting causal relationships. Just as with the MCIM and TCIM representations,

disjunctive interaction addresses the issue of scalability in CTBNs, and expands the

set of processes that can be modeled using this framework.

179

CHAPTER SEVEN

APPLICATIONS

Up until now, this dissertation has presented techniques for improving represen-

tation or scalability in CTBNs. In either case, the underlying motivation behind

our research is to support the adoption of CTBNs in real-world domains, either

by extending the class of representable problems, or by managing complexity when

working with large systems. In this chapter, we consider the specific domain of

prognostics and health management (PHM), and present novel techniques for deriving

the structure and parameters of a CTBN using a relatively small amount of diagnostic

and reliability information that is already commonly available for most systems.

This avoids the need to employ traditional CTBN learning algorithms, which are

computationally more complex and typically require an abundance of data that may

not be available for a system of interest. Furthermore, this chapter demonstrates

how the CTDN framework presented in Chapter 4 can be used for performance

based logistics (PBL), a task of increasing importance to large, contract-driven

organizations. This chapter not only provides a guideline for applying CTBNs to

PHM and PBL, but also serves as a demonstration of how the research in previous

chapters can be applied in a real-world setting.

7.1 Background

This section starts by providing an overview of some additional notation. It

then provides background information on D-matrices and fault trees, which are the

180

Table 7.1: Table of Notation

Fi , The ith fault in the network

Ti , The ith test in the network

Fi , The vector of faults monitored by Ti (the parent set of Ti)

λi , Failure rate for fault Fi
µi , Repair rate for fault Fi

NDi , Non-detect probability for test Ti
FAi , False alarm probability for test Ti

NDi,j , Non-detect probability for test-fault relationship Ti and Fi[j]

FAi,j , False alarm probability for test-fault relationship Ti and Fi[j]

types of models that we leverage to construct prognostic CTBNs. Any related work

relating to CTBN applications is covered in Chapter 2.

7.1.1 Notation

Before going into any technical detail, we first describe some additional notation

in this chapter. Capital letters Fi and Tj are used to denote faults and tests

respectively, where the subscript represents the index of the component in the system.

A bold Fi is a vector of faults that are detected by a test Ti, therefore Fi[j] signifies

the jth fault detected by Ti. The subscripted Greek letters λi and µi are used to

describe the failure and repair rates respectively for fault Fi. Similarly, NDi and FAi

are the non-detect and false alarm probabilities respectively associated with test Ti,

which describe the probabilities of the test failing to do its job. Symbols NDi,j and

FAi,j also describe non-detect and false alarm probabilities, but do so for the specific

test Ti and fault Fi[j] pair. Rather than describing the probability of complete test

failure, NDi,j and FAi,j capture the notion that a test may fail to detect an individual

fault. These symbols and their meanings are summarized in Table 7.1.

181

7.1.2 D-matrix

To perform system diagnosis and prognosis, we require certain information about

the current state of a unit under test (UUT). This information is collected via tests

performed on the UUT, and the outcome of these tests indicate the presence or

absence of faults in the system [123]. In a complex system, this interplay of tests

and faults can make diagnosis and maintenance difficult since a single fault may be

monitored by multiple tests, and a single test may monitor multiple faults. To manage

this complexity, the relationships between the faults and tests can be represented

explicitly and compactly in an adjacency matrix that we call a D-matrix. Within this

matrix, the columns correspond to tests and the rows correspond to the potential

failures observed by the tests. The D-matrix, has been adopted by a number of

modeling tools used to perform fault diagnosis, and the aerospace community is one

of the major communities using these tools [119].

Constructing a D-matrix involves assembling the diagnostic signatures for every

potential fault within the UUT. Given a set of faults F and a set of tests T, we can

define the function eval(Fi, Tj) as follows:

eval(Fi, Tj) =


1, if Tj detects Fi

0, otherwise.

For some fault Fi, when we apply this function to each Tj ∈ T, the result is the

diagnostic signature Fi = [eval(Fi, T1), . . . , eval(Fi, T|T|)] for that fault [119, 129].

This diagnostic signature is constructed for each Fi ∈ F. Each signature Fi forms

the ith row of the D-matrix.

The relationships between tests and faults, described by a D-matrix, provide

information about how to diagnose the UUT, but they do not offer the complete

182

picture. The logical relationships between the tests and faults are codified in

the D-matrix, but probabilistic information is not captured by this format [129].

Similarly, the D-matrix does not provide information on fault-to-fault or test-to-test

relationships; although, test-to-test relationships can be recovered through a process

called “logical closure” [129]. For these reasons, while the D-matrix is used to assist in

producing a network structure as detailed in Section 7.2.1 of this chapter, additional

information is required to parameterize the model used to perform diagnosis and

prognosis on the UUT. An example of a simple D-matrix is shown here, where test

T1 monitors both of the faults F1 and F2, while test T2 monitors only F1.

DS =


F1 F2

T1 1 1

T2 1 0



7.1.3 Fault Trees

Fault tree analysis (FTA) is a powerful and well-established technique for

evaluating system design in a reliability context. In a number of critical domains,

fault trees encode knowledge about the system in a manner that is intuitive and easy

to interpret. A fault tree provides a graphical representation that depicts the ways

in which the failure of one or more system components can lead to system failure.

A fault tree is a directed acyclic graph (DAG) consisting of a set of events and a

set of logic gates. Interior nodes represent effects, while the leaf nodes are faults.

Leaf states propagate upward through the tree to the root, modeling how faults can

contribute to the various possible system failures. Each interior effect receives input

from its children, which are either faults or other effects. Input to each effect is passed

through a logic gate such as the AND gate or the OR gate.

183

Effect1
E1

Effect2
(E2)

Fault1
(F1)

Fault2
(F2)

Effect5
(E5)

Fault1
(F1)

Fault1
(F1)

Effect5
(E5)

Fault1
(F1)

Fault2
(F2)

Effect3
(E3)

Fault2
(F2)

Fault4
(F4)

Fault3
(F3)

Effect4
(E4)

Fault3
(F3)

Fault4
(F4)

Effect6
(E6)

Fault3
(F3)

Figure 7.1: Example fault tree.

Some fault tree representations may allow for redundancies in the system that

can cause the same component to appear in multiple parts of the tree thus violating

the tree constraint. These redundancies can also be introduced when the system of

interest is not represented easily as a polytree. The process of converting the system to

a corresponding polytree representation often involves duplicating portions of the tree

and placing them appropriately to avoid cycles. While these redundant components

do provide valid information about the system, in many cases the information they

provide is already encoded at another location in the tree. Furthermore, when these

redundant components are removed from the fault tree with a valid pruning process,

the resulting fault tree is easier to store, update and analyze. Fortunately, the pruned

tree remains functionally equivalent to the original fault tree. Figure 7.1 shows an

example of the fault tree models used in this chapter. We discuss the dashed and

colored nodes in more detail in Section 7.3.1.

A related diagnostic model is the Fault Isolation Manual (FIM), which often

plays a significant role in the maintenance of large systems [123]. FIMs are derived

from decision trees and are typically referred to as a fault tree. Despite the name, these

FIM-based fault trees are different from fault trees that we use in this chapter. The

184

internal nodes of the FIM correspond to a series of tests, and the leaves correspond

to a fault. To use the FIM, the user first performs the test specified by the root of the

tree and follows the branch specified by the test outcome until reaching the leaf node

corresponding to the diagnosed fault. In this way, an FIM enables the isolation of

individual faults or ambiguity groups through the application of a structured sequence

of tests, and can be used to derive BNs [129].

7.2 Deriving CTBNs from D-matrices

This section describes how a CTBN model can be derived from a D-matrix

and related reliability and measurement data. Section 7.2.1 focuses on deriving

the network structure using the dependence information encoded by the D-matrix.

Section 7.2.2 describes how the nodes in the derived CTBN can be computed from

failure rates, as well as false alarm and non-detect rates for tests.

7.2.1 Network Structure

The non-zero entries in a D-matrix represent a dependence relationship between

a test and a fault. Similarly, the directed edges in a CTBN indicate dependence

between variables. This observation can be used to derive the network structure for a

CTBN from a D-matrix. Let D be an m×n D-matrix, and let G be a graph structure

for a CTBN that initially contains no nodes. To start, m fault nodes are added to G,

each corresponding to a row in matrix D. Then, n test nodes are added, corresponding

to the columns in D. Note that fault and test nodes are behaviorally identical to any

standard CTBN node and are described as faults and tests for semantic purposes only.

Finally, for each entry in the D-matrix where eval(Fi, Tj) = 1, an arc is inserted from

node Fi to node Tj. Each of these arcs indicate that the behavior of a test depends

185

on the state of a fault at some point in time, which is equivalent to the information

originally encoded by the D-matrix.

The resulting network G has m+n nodes and md edges, where md is equal to the

number of nonzero entries in the matrix. These directed edges are inserted exclusively

from a fault node to a test node, with no edges from tests to faults, or between two test

or fault nodes. As a result, the graph G is bipartite, with one layer consisting of the

m faults and the other layer consisting of the n tests. Typically the variables contain

relatively few states, meaning that the initial probability distributions and intensity

matrices for each node are small. Instead, the total number of intensity matrices for

each node is the primary factor driving complexity. Each fault node has no parent by

construction, meaning that only a single intensity matrix is required to parameterize

each of these nodes. The test nodes, however, may have any number of fault nodes

in its parent set. As a result, a CIM for a test node will have |QTj | =
∏

Fi∈Pa(Tj)
|Fi|.

In the worst case, a test may monitor all faults in the system, resulting in an upper

bound on the space complexity equal to O(cm), where c is some small constant value

that serves as a upper bound on the number of states for each fault.

7.2.2 Parameterization

The previous section described a procedure for producing a CTBN graph

structure from a D-matrix, which consists of nodes and directed edges. While this

network structure indicates the presence or absence of fault-test dependence, it does

not quantify the strength of such a dependence. Furthermore, the matrix alone does

not incorporate any knowledge about prior failure rates. The specifics of how one

variable influences another, as well as default failure transition behavior, is captured

by the parameterization of each node. This section shows how the constructed models

can be parameterized directly by using reliability information. We assume Boolean

186

states for both fault and test nodes, although the same principles apply to non-

Boolean variables as well, so long as there exists reliability information to support

the procedures.

7.2.2.1 Parameterizing Fault Nodes To begin, the fault nodes in the network

can be parameterized, independent of the test nodes. Fault nodes have no parents in

the network by construction, which is advantageous in terms of parameterization in

that it associates each fault node with a single unconditional intensity matrix. The

intensity matrix describes exponential transition distributions and provides expected

transition probabilities between the states. In the Boolean case, this means that the

CIM defines the probability distributions associated with transitioning to a failing

state and transitioning back to a non-failing state. Typically these failure and repair

rates are available in some form via either historical data or domain knowledge.

Formally, a failure rate λ indicates the rate at which a failure will occur given that

no failure currently exists. This failure rate may be available directly, or may be

provided indirectly in the form of mean time between failures (MTBF). The mean

time between failure is a metric more frequently used in the reliability literature, and

is defined as MTBF = 1/λ.

A repair rate µ indicates the rate at which a fault will transition back to having

no failure, and depending on expected repair policy is often set to zero. Note that if no

repair policy is implemented, then MTBF is often referred to simply as the mean time

to failure (MTTF), implying that the failure state is absorbing. Intensity matrices

are nothing more than an organized collection of transition rates, so parameterization

of each matrix can be achieved by inserting the rates into the correct locations. The

failure rate λ is assigned to the entry that describes the transition from non-failure

to failure, and the repair rate µ is assigned to the reverse direction. As required by

187

the CIM definition, diagonal values are set to be the negative sum of the remaining

entries in the row. Thus, for a fault Fi,

QFi
=


f 0
i f 1

i

f 0
i −λi λi

f 1
i µi −µi

. (7.1)

7.2.2.2 Parameterizing Test Nodes With the fault nodes parameterized, the only

remaining task is to parameterize the test nodes in the network. Specifically, a

probability distribution for each test node must be determined given the faults that

they monitor. Parameterizing test nodes is a more complex task than parameterizing

the fault nodes, in that test nodes have an arbitrary number n of parents in the

graph, meaning that the number of intensity matrices required to specify a test

node’s CIM will be exponential with respect to n. As a result, there are potentially

many parameters in the model, and the need for a fast parameterization procedure is

especially important in this context. Fortunately the relationships described by the D-

matrices are inherently causal, making them suitable for the DCIM parameterization

described in the previous chapter.

The intensity matrices for a test node’s CIM may be derived using false alarm

(FA) and non-detect (ND) likelihoods for each test. Just as with failure rates, FA

and ND values are readily available for most systems of interest, obtained either

from historical data or expert knowledge. The relation between FA/ND rates and

the probability distribution for a test can be modeled using a line failure model, as

described in detail by Perreault et al. [102]. The resulting probability distribution is

188

given as:

P (Ti = 0|Fi) = (NDi)P (pi = 1|Fi) (7.2)

+ (1− FAi)P (pi = 0|Fi), (7.3)

where Ti is a test in the network, Fi is the set of parent fault nodes for Ti, and NDi

and FAi are non-detect and false alarm values defined for test Ti. These rates describe

the likelihood that a test either fails to detect a fault despite fault input (non-detect

event), or indicates the presence of a fault despite valid input (false alarm event).

This may occur due to noise in the environment, or due to a failure in the test itself.

The equation also incorporates two probabilities P (pi = 0|Fi) and P (pi = 1|Fi), as

defined below.

P (pi = 0|Fi) =
∏

{fi,j∈Fi|fi,j=0}

(1− FAi,j) ·
∏

{fi,j∈Fi|fi,j=1}

(NDi,j)

P (pi = 1|Fi) = (1− P (pi = 0|Fi))

Here, NDi,j and FAi,j represent the non-detect and false alarm rates for test Ti,

specifically with respect to the jth fault in the parent set of Ti. These fault-dependent

FA/ND rates may be caused by imperfect or noisy input data received from one of the

components monitored by the test. The entire probability distribution P (pi|Fi) can

be thought of as the probability that the true state of faults Fi are received correctly

or incorrectly by test node Ti.

While this representation is useful as a generalization, it is often the case that

information is collected at a larger granularity, and specific false alarm and non-detect

rates are not provided with respect to each fault. Given the previous equation, the

number of non-detect and false alarm values necessary is equal to the number of edges

189

in the CTBN network, plus the number of total tests: O(|E| + |V |). Although this

number is quite manageable from a computational standpoint, it may be that no

data exists to describe the non-detect and false alarm values for specific fault-test

relationships. Instead, the fault-test specific values NDi,j and FAi,j are all assumed

to be zero, and any false alarm or non-detect likelihoods are summarized by the NDi

and FAi values for test Ti. In this way, the false alarm and non-detect rates are

assumed to be constant across all faults.

With this assumption, the number of user-specified parameters is reduced

drastically. The only non-detect and false alarm values that need to be specified

are for the test nodes: O(|V |). Given this assumption, and assuming a test will fail

given any failure of the monitored components, then the test’s output will follow a

deterministic OR gate. The intensity matrix for the case when no fault nodes are

failing is shown in Equation 7.4, while the intensity matrix for the cases with failures

is given by Equation 7.5. Using these equations, each intensity matrix in a CIM QTi

can be constructed, resulting in a procedure for parameterizing each test node using

only the available false alarm and non-detect values.

Q{Ti|(∧F∈Fi
F=0)} =


t0i t1i

t0i −(1− FAi)−1 (1− FAi)−1

t1i (FAi)
−1 −(FAi)

−1

 (7.4)

Q{Ti|(∨F∈Fi
F=1)} =


t0i t1i

t0i −(NDi)
−1 (NDi)

−1

t1i (1−NDi)
−1 −(1−NDi)

−1

 (7.5)

190

7.3 Deriving CTBNs from Fault Trees

Section 7.2 described how the network structure and parameters for a CTBN

might be derived using a D-matrix and reliability information. The result is a model

that describes potential faults and the tests that monitor these faults. Although

this is useful from a diagnostic perspective, it fails to account for the effects that

the faults might produce over time. While it is certainly beneficial to identify likely

faults in a system, it is the risks that are of primary interest in most applications, with

fault behavior serving as a means to an end. In this section, a method for deriving

CTBNs from fault trees is provided, resulting in a network with faults and effects.

An explanation of how this model relates to the D-matrix-produced model is then

provided, and a method is given for merging the two networks.

7.3.1 Pruning Process

Recall that redundant information in the fault tree may result in an unnecessarily

complex CTBN model. In this section, we present a pruning process that alleviates

this problem through the elimination of redundant branches of the fault tree. To

motivate this pruning process, we refer back to Figure 7.1. Note the effect E2 on the

second level of the tree. Due to the OR gate, this effect will have a value of 1 if and

only if at least one of F1, F2 or E5 are 1. In other words, we assume that E2 is 0

unless one of the following three rules applies:

(E2.1) F1 = 1→ E2 = 1

(E2.2) F2 = 1→ E2 = 1

(E2.3) E5 = 1→ E2 = 1.

191

Now we focus on the subeffect E5 in this input set. E5 is determined by another OR

gate with a single fault F1, as an input. This means E5 is determined by only a single

rule:

(E5.1) F1 = 1→ E5 = 1.

We can derive implied rules by taking advantage of the transitive property. In this

case, we can combine rules (E5.1) and (E2.3) to derive the rule F1 = 1 → E2 = 1.

This rule is implicitly followed by E2, but note that the rule is also explicitly specified

by rule (E2.1). We say that effect E5 already accounts for F1, since E2 = 1 if F1 = 1,

regardless if F1 is a direct descendant or not. For this reason, it is redundant to list F1

as a direct descendant of E2. Although this representation may be advantageous in

some situations where fault trees are used, the complexity of a CTBN model is driven

by the number of dependencies in the model. For this reason, we wish to remove the

extraneous dependencies that are already implicitly encoded by the fault tree.

As shown, fault F1 under effect E2 is unnecessary and can therefore be pruned

from the fault tree while still retaining the semantic meaning encoded by the fault

tree. In general, any direct descendant of an effect can be pruned if it is already

accounted for by another child. In the case of an OR gate, inputs that are also OR

gates will account for all of their children by producing implied rules via the transitive

property. We refer back to Figure 7.1. Fault F1 under E1 can be pruned due to the

chained rule F1 = 1 → E5 = 1 → E2 = 1 → E1 = 1. This rule can be simplified

to the more basic rule of F1 = 1 → E1 = 1, which makes the direct descendant F1

unnecessary for the top level effect E1. We say that F1 is already accounted for by E2

via E5. By this same logic, we can prune F2 and E5 from E1 since they are already

accounted for by E3 and E2 respectively. The nodes that can be pruned in Figure 7.1

using the rules implied by OR gates are shown with dashed lines.

192

A similar idea can also be applied to nested AND gates in a fault tree. Consider

effect E4 in Figure 7.1. The output of E4 is determined by the rule F3∧F4∧E6 → E4.

Effect E6 is in turn determined by the rule F3 → E6. To obtain the implied rules

for E4, we can simply replace node E6 with the logical expression that determines it.

This results in the rule F3 ∧F4 ∧ (F3)→ E4. Here we can see that F3 is redundant in

the logical expression. We say that effect E6 accounts for F3, and therefore E4 does

not require F3 as a direct descendant. The pruned F3 is highlighted in Figure 7.1

with a double outline. Note that in more complex cases where subeffects have more

than one child, implied rules may involve lengthy chains of ANDed variables.

In general, components of a fault tree are accounted for by descendants so long

as they chain through the same type of gate. For example, consider the component

F3 that we pruned under E4. We cannot remove the instance of F3 under E1, since

E4 is determined by an AND gate, and E1 is determined by an OR gate. This is

because F3 = 1 does not imply E1 = 1 if the direct descendant is removed. If F3 = 1,

E4 may still be 0 due to the requirement on F4. The same logic can be applied in the

reverse direction where an OR gate is nested below an AND gate. For this reason, the

pruning process only applies when chaining through gates of the same type. We can

think of the gates as partitioning segments of the tree that allow for implied rules.

Algorithm 7.6 provides an outline of the process required to prune redundant fault

tree components.

7.3.2 Network Structure

Recall that the structure of a CTBN takes the form of a directed graph G =

(V,E), where V is a set of nodes and E is a set of edges. The structure can be derived

directly using a fault tree as follows. First the set of nodes V is obtained by extracting

the variables directly from the faults and effects in the fault tree. Note that a fault or

193

Algorithm 7.6: Prune-Fault-Tree(node)

Input: The root node of the tree X.

1: visited← new list()
2: for each Y in GetChildrenOf(X) do
3: subnodes = PruneTree(Y)
4: if IsFault(Y) or GatesEqual(X, Y) then
5: visited.Union(subnodes)
6: end if
7: end for
8: for each Y in GetChildrenOf(X) do
9: if Y ∈ visited then

10: RemoveChild(X, Y)
11: else
12: visited.Add(Y)
13: end if
14: end for
15: return visited

effect may occur in multiple locations of the fault tree, but the corresponding node in

the CTBN will occur only once. To insure that no duplicates are added to the set V,

a list can be maintained for variables that have already been added when iterating

through the fault tree components.

Next, edges are inserted between the nodes to form the set E. These can be

obtained directly from the structure of the fault tree. First note that faults only

occur as leaves in the fault tree. This means that faults occur on their own accord

and do not depend on any other modeled variables. Thus the corresponding nodes in

the CTBN have no parents. Next we consider the effect nodes in the fault tree, whose

states are determined by its inputs. We represent dependence on the inputs by adding

an edge from the nodes corresponding to each input ui to the node corresponding to

the effect. The resulting CTBN has the same structure as the fault-tree after it has

been pruned, but is generally shown reversed with the faults on top. The pruning

194

process may result in substantially fewer edge insertions, and given that the space

complexity of a node is exponential with respect to the number of parents, pruning

is a critical preprocessing step.

7.3.3 Parameterization

The task of parameterizing a CTBN involves populating the initial distribution

and the rates for the CIMs associated with each node in the network. In general,

this set of parameters can be quite large. Let nX be the number of states in the

domain of variable X. Then the number of parameters required to populate all the

associated IMs for node X is (nX(nX − 1)) ·
∏

A∈Pa(X) nA. In system reliability, the

prior probability that each component starts in a failing state is often known and is

based on the failure rate. In this part of our model derivation we assume that all

variables start in a working state with a probability of 1.0. For our purposes, we

can assume the variables are Boolean, consisting of a failing state and a non-failing

state. In this case, each node X requires 2(|Pa(X)|+1) rates, which can make identifying

parameters for even relatively small models a difficult task. Just as in Section 7.2,

the goal is to reduce the number of rates required to parameterize a node by taking

advantage of common reliability information and by exploiting behavioral information

obtained from the underlying fault tree. The fault nodes in the network are identical

to those obtained from the D-matrix; therefore, the same parameterization process

from Section 7.2.2.1 can be employed. Parameterization of the remaining effect nodes

are described throughout the remainder of this section, broken out by the logical gate

that determines the effect’s behavior. Specifically, Section 7.3.3.1 describes effects

that use a logical AND gate, while Section 7.3.3.2 provides a parameterization scheme

for effects following an OR gate.

195

7.3.3.1 Parameterization of AND Effects Although we wish to model state

transitions that occur over time, eventually it is expected that the behavior of an

effect node in a CTBN matches the behavior of the corresponding static logic gate.

Let FX be the discrete function corresponding to the gate from which variable X

was derived. Then it is expected that limt→∞ P (X(t) = FX(Pa(X))) = 1.0. This

behavior is guaranteed for each CIM QX|Pa(X) by forcing a non-zero transition rate

to the state produced by FX(Pa(X)), and a zero rate from the state produced by

FX(Pa(X)). This results in an absorbing state that will eventually be reached, at

which point the variable will remain in this state until a change in at least one of the

parents occurs.

In the case of a variable created from an AND gate, FX becomes the logical

AND function. Here FX is expected to produce a value of 1 if and only if all inputs

are 1. To ensure the desired behavior in the CTBN, the CIM is parameterized for a

node X where all parents are 1 as follows:

QX|Pa(X) =


x0 x1

x0 −λX λX

x1 0 0

,
when FX(Pa(X)) = 1 (all ones).

Next, we turn our attention toward the remaining cases where not all parents

of the node are 1. In this case, the function FX produces a value of 0, so we wish to

describe the time it takes to transition back to a state of 0 for the node in the CTBN.

196

To achieve this, the CIM is parameterized as:

QX|Pa(X) =


x0 x1

x0 0 0

x1 µX|Pa(X) −µX|Pa(X)

,
when FX(Pa(X)) = 0 (not all ones).

Note that it is required to specify a rate for transitioning back to 0 for each of

the instances where not all parents are in state 1. Although this specificity may be

necessary in some cases, it may be possible to simplify the parameterization process

by assuming the rate is the same, regardless of the parent set. This means that X

transitions back to 0 at the same rate, so long as FX evaluates to 0. Given this, a

variable X derived from an AND node in a fault tree can be specified using only two

parameters. λX defines the time it takes to transition to 1 in the event that all parents

are in state 1, and µX is used in all other cases to indicate when X will transition

back to 0.

7.3.3.2 Parameterization of OR Effects When a variable X is created from an

OR gate, FX is defined as the logical OR function. In this case, FX is expected to

produce a value of 0 if and only if all the parents of node X are 0. Again, it is

guaranteed that this CTBN node eventually reaches state 0 by parameterizing the

intensity matrix such that state 0 is an absorbing state:

QX|Pa(X) =


x0 x1

x0 0 0

x1 µX −µX

,

197

when FX(Pa(X)) = 0 (all zeroes).

Next, consider the cases where FX evaluates to 1. Since FX is a logical OR gate,

this occurs whenever at least a single parent is in state 1. In this case, node X is

parameterized such that the intensity matrices in the CIM eventually transition to

state 1:

QX|Pa(X) =


x0 x1

x0 −λX|Pa(X) λX|Pa(X)

x1 0 0

,
when FX(Pa(X)) = 1 (not all zeroes).

Here again it is required to specify a rate parameter for every possible state

instantiation of the parents where at least one parent is in state 1. This means that

2|Pa(X)| parameters are required for node X. As in the case of the AND node in the

previous section, this number can be reduced by making a simplifying assumption.

Given the causal interpretation of the model, the concept of disjunctive interaction

from Chapter 6 may be employed. This allows for specification of the rates λXi

for only the cases where a single parent is in state 1. This reduces the number of

required parameters to be linear in the number of parents rather than exponential.

The remainder of the parameters for the CIMs where multiple parents are in state 1

are accounted for by disjunctive interaction.

7.3.4 Merging Derived Models

Sections 7.3.2 and 7.3.3 provide a method for deriving the structure and

parameters for a CTBN automatically using a fault tree and a relatively small number

of rate parameters. The resulting network consists of a set of fault nodes, as well as

a set of effect nodes that depend on these faults. The constructed CTBN supports

198

queries about the expected behavior of effects over time, given information that might

be know about the faults in the system. This section briefly describes how to merge

this model with a CTBN produced from D-matrices as described earlier in Section

7.2. The key observation that makes this merge process possible is that given a D-

matrix DS and a fault tree TS that both describe a single system S, the set of faults

is the same for both diagnostic models. A CTBN that models system S as a whole

can be obtained by merging the two CTBNs derived from DS and TS.

Let CTBND be a CTBN constructed from a D-matrix DS, and let CTBNF be

a CTBN derived from a fault tree FS. Furthermore, let T be the set of test nodes in

CTBND, E be the set of effect nodes in CTBNF , and F the set of faults contained

in both CTBNs. A new model CTBNS can be obtained for system S by combining

both networks to obtain a single CTBN with nodes T, E, and F. The nodes in the

sets T and E ultimately have the same parents and parameters as they did in the

original networks. The only difference is that the nodes in the set F in the combined

CTBN have more children than they did prior to being merged, but this does not

affect their behavior or parameterization. Furthermore, fault nodes in CTBND and

CTBNF are parameterized using the same method, meaning that there is no conflict

when consolidating the faults from the individual CTBNs.

7.4 Vehicle System Demonstration

This section works through an example intended to demonstrate how the

material presented in this chapter is used in a practical application. In this example,

a model is constructed from reliability data describing the uptime for a military

vehicle, which going forward is formally denoted as system S. Reliability and cost

information is based on real-world data for the High Mobility Multipurpose Wheeled

Vehicle (HMMWV) and is an extension of the vehicle model presented in Chapter 4.

199

Table 7.2: Summary of Faults

Faults Full Name MTBF MTTR Repair Costs (USD)

AI Air System 900 5 250
AL Alternator 1300 15 900
AX Axles 1800 12 2000
BR Brakes 1200 5 950
CO Cooling System 2100 6 200
EL Electronics 1700 20 600
FU Fuel System 800 16 1200
IG Ignition System 600 13 300
PR Compression System 1100 35 9000
PW1 Power Source 1 400 3 250
PW2 Power Source 2 200 3 250
SU Suspension System 1500 8 850
TR Transmission 2500 30 6500
WT Wheels/Tires 700 3 700

The intent is that by using this real-world example, the applicability of CTBNs to

PHM and other domains will become more clear.

The major components for the extended vehicle model are enumerated in Table

7.2. The identifier is provided by the first column, while the full descriptive name

is shown in the second column. The third and fourth columns provides the mean

time between failure and mean time to repair in hours. The last column shows the

average repair cost in US dollars. Notice that the air system (AI), alternator (AL),

fuel system (FU), ignition system (IG), and compression system (PR), and power

sources one and two (PW1/PW2) are all new components that were not modeled in

the original vehicle model from Chapter 4. In total, there are now 14 components,

representing the major subsystems in the vehicle.

The tests that have been assigned to monitor the faults from Table 7.2 are shown

in Table 7.3. The first two columns show the identifier and full name for the test. The

third column gives a brief description providing more information about what the test

200

Table 7.3: Summary of Tests

ID Full Name Description FA ND

AF Air Filter Check Checks the state of the air filter. 0.07 0.1
AM Axle Movement Check for excessive axle movement in a

suspended vehicle.
0.04 0.03

BC BCM Test Checks health of the body control module. 0.02 0.02
BT Bounce Test Check number of bounces to recover from

suspension depression.
0.05 0.06

BT1 Battery Test 1 Tests the battery’s ability to hold a charge. 0.02 0.01
BT2 Battery Test 2 Tests the battery’s ability to hold a charge. 0.02 0.01
CP Coolant

Pressure Test
Tests pressure of the cooling system. 0.02 0.01

DE Decelerometer Simple test of deceleration. 0.09 0.05
DY Dynamometer Measures for torque and power. 0.04 0.03
FC Fluid Check Check for proper fluid levels, color, etc. 0.04 0.02
FP Fuel Pump Test Tests the fuel pump. 0.02 0.02
FT Fuse Tests Tests if fuses are operational. 0.01 0.02
GC Groove

Cracking
Check for cracks in tire grooves. 0.01 0.01

GT Gauge Test Tests gauges. 0.02 0.05
LT Leakdown Test Tests cylinder pressures. 0.02 0.01
PWT Power Test Tests for the presence of vehicle power. 0.01 0.01
RS RPM Shift Test Tests for proper gear shift behavior based

on RPM thresholds.
0.04 0.05

RT Roller Test Comprehensive break test (static vehicles). 0.01 0.01
SP Spark Plug Test Tests each spark plug for ignition. 0.02 0.05
TT Timing Test Tests distributor, timing belt, etc. 0.01 0.01
TW Tread Wear Check tire tread depth at various points. 0.03 0.02
VM Voltage Meter Performs a voltage test on the alternator. 0.03 0.08

201

does. Finally, the last two columns show the false alarm and non-detect rates for the

tests. These rates represent the overall expected false alarm and non-detect rates, and

it is assumed that these rates are approximately the same for each fault monitored

by the tests. Note that some tests are inherently more effective than others. For

instance, although both tests check the brakes component, the Decelerometer (DE)

test has relatively high false alarm and non-detect rates, while the Roller Test (RT)

is highly effective and hardly ever produces erroneous results. This means that RT

is more effective than DE with respect to failure probabilities, although it is likely

a more costly in terms of time and money, which may be an important factor in

some scenarios. There are a total of 22 tests, each of which monitor a subset of the

components listed in Table 7.2.

7.4.1 Structure Derivation

The specifics of which components are monitored by which tests is encoded in the

D-matrix DS shown in Figure 7.2. The rows are labeled with the test identifiers, and

the columns are labeled with the component identifiers. As dictated by the number

of tests and components, the dimensions of the matrix are 22× 14, for a total of 308

entries. As is often the case, the D-matrix is sparse, with only 29 of the entries being

non-zero. In other words, there are 29 fault-to-test relationships out of a possible 308

in the event that all tests monitor all components. The dependence information in

DS, in conjunction with the reliability information in Tables 7.2 and 7.3, are sufficient

to derive a bipartite CTBN network as described in Section 7.2. The resulting model

CTBND contains 22 test nodes, 14 fault nodes, and 29 edges between them.

Next, consider the fault tree FS shown in Figure 7.3, which encodes the

relationships between the vehicle faults and possible events. The top level effect is

the LossOfCrew event, which indicates the event where one or more crew members of

202

DS =



AI AL AX BR CO EL FU IG PR PW1 PW2 SU TR WT

AF 1 0 0 0 0 0 0 0 0 0 0 0 0 0

AM 0 0 1 0 0 0 0 0 0 0 0 0 0 0

BC 0 0 0 0 0 1 0 0 0 0 0 0 0 0

BT 0 0 0 0 0 0 0 0 0 0 0 1 0 0

BT1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

BT2 0 0 0 0 0 0 0 0 0 0 1 0 0 0

CP 0 0 0 0 1 0 0 0 0 0 0 0 0 0

DE 0 0 0 1 0 0 0 0 0 0 0 0 0 0

DY 0 0 0 0 0 0 0 0 1 0 0 0 1 0

FC 0 0 0 0 0 0 0 0 1 0 0 0 1 0

FP 0 0 0 0 0 0 1 0 0 0 0 0 0 0

FT 0 0 0 0 0 1 0 0 0 0 0 0 0 0

GC 0 0 0 0 0 0 0 0 0 0 0 0 0 1

GT 0 0 0 0 1 0 1 0 0 0 0 0 0 0

LT 0 0 0 0 1 0 0 0 1 0 0 0 0 0

PWT 0 1 0 0 0 0 0 0 0 1 1 0 0 0

RS 0 0 0 0 0 0 0 0 0 0 0 0 1 0

RT 0 0 0 1 0 0 0 0 0 0 0 0 0 0

SP 0 0 0 0 0 0 0 1 0 0 0 0 0 0

TT 0 0 0 0 0 0 0 1 0 0 0 0 0 0

TW 0 0 0 0 0 0 0 0 0 0 0 1 0 1

VM 0 1 0 0 0 0 0 0 0 0 0 0 0 0



Figure 7.2: D-matrix for the vehicle model. The rows represent tests while the
columns represent potential faults. Nonzero entries in the matrix indicate that the
test associated with the row monitors the fault associated with the column.

203

the vehicle perish. This effect may occur if either the LossOfChassis event occurs, or

if the LossOfVehicle event occurs. The LossOfChassis event describes a situation

where the chassis of a vehicle is no longer operational, due to either a failure in

the brakes, wheels/tires, axle, or suspension subsystems. This chassis failure may

cause a loss of crew if the failure is catastrophic and the damage to the vehicle

is passed along to the crew. The LossOfVehicle event occurs if any of the three

main subsystems fail, as captured by the LossOfElectrical, LossOfChassis, and

LossOfPowerTrain events. In a military setting, an inoperable vehicle may result

in a loss of crew due to the crew’s dependence on vehicle functionality for mission

operations. The LossOfPowerTrain event depends on the transmission and coolant

system components, as well as the LossOfEngine event, which is broken down by

the compression, ignition, air, and fuel components. The LossOfElectrical event

depends on the alternator and electrical components, along with the LossOfPower

event, which can occur if there is a failure in both of the two power sources. The

redundancy in the design of the power source subsystem is the reason behind the

AND gate for the LossOfPower event rather than the OR gate that is followed by

other events in the fault tree. Note that each of the leaf nodes are faults from Table

7.2, while the internal nodes represent the effects or risks in the vehicle system.

Before constructing a CTBN from the fault tree, the pruning process is applied

to eliminate redundant information. For the fault tree in Figure 7.3, there is only one

branch that is removed, denoted with blue dashed nodes. The reasoning is that the

LossOfChassis subsystem that feeds into the LossOfCrew event is already accounted

for as input to the LossOfVehicle event. More formally, the branch may be pruned

because LossOfChassis occurs at a lower level in the tree, and each of the events of

interest follow the OR gate function. The same concept could be applied to AND

gates if there was repetition in the LossOfPower branch. Although only one branch

204

LossOfCrew

LossOfVehicle

LossOfElectrical

EL LossOfPower

PW1 PW2

AL

LossOfChassis

BR WT AX SU

LossOfPowerTrain

TR LossOfEngine

PR IG AI FU

CO

LossOfChassis

BR WT AX SU

Figure 7.3: Fault tree for the vehicle model.

205

is pruned for the given structure, removing the LossOfChassis event also removes

the brakes, wheels/tires, axle, and suspension subsystems below the event, resulting

in a savings of five nodes in total.

Using the fault tree, the network structure can be obtained for a CTBN using the

procedure described in Section 7.3. Starting at the top, LossOfCrew is added to the

network as an effect node. The effect LossOfVehicle is then added to the network,

and an edge is inserted from the new LossOfVehicle node to the LossOfCrew

node. Note that LossOfChassis is not yet inserted since that branch was pruned

during the preprocessing step. Next, the LossOfElectrical, LossOfChassis, and

LossOfPowerTrain effects are added to the network, and edges are inserted so that

these three new nodes form the parent set for LossOfVehicle. This process continues

until the leaf fault nodes are reached, which are inserted into the network with empty

parent sets. The produced network CTBNF contains 7 effect nodes, 14 fault nodes,

and 20 edges.

Since both networks CTBND and CTBNF were derived from the same vehicle

system S, they share a common set of fault nodes and can be merged using the process

described in Section 7.3.4. Figure 7.4 shows the final network structure for the merged

CTBN obtained from the vehicle system D-matrix and fault tree. As expected, this

network is comprised of 7 effect nodes, 14 fault nodes, and 22 test nodes, matching

the node counts from the individual networks CTBND and CTBNF . Here, effect

nodes are represented as ovals, fault nodes are circular, and test nodes are octagonal.

Furthermore, the network has a total of 49 edges, which is the sum of the edge counts

for each of the original networks. Note that all test nodes have at least one fault

node as a parent, indicating that the behavior of the test depends on one or more

faults. Similarly, the effect nodes have at least one parent, which is either a fault or

206

LossOfPowerEL AL

PW1 PW2

TR CO LossOfEngine

PR IGFU AI
SUBR WT AX

LossOfChassis LossOfElectrical LossOfPowerTrain

LossOfVehicle

LossOfCrew

BT

RT

DE

TW

GC

AM
LT

CPFC

DY

RS

GT

FP

TT

SP

AF

FT BC

BT1 BT2PWT

VM

Figure 7.4: Vehicle model.

another effect. None of the fault nodes have any parents in the graph, which is by

construction based on the D-matrix and fault tree information.

To better understand the network construction process, consider the power

subsystem in the center of the network in Figure 7.4. The LossOfPower effect has

two parents: PW1 and PW2. This comes from the two leaf nodes that act as inputs

to the LossOfPower node in the fault tree from Figure 7.3. Note that the type of

gate does not affect the structure derivation process, only the parameterization. PW1

has two parents, BT1 and PWT, which correspond to the two non-zero entries in the

PW1 column of the D-matrix DS. Alternatively, the faults that a test monitors can

be looked up by using the rows in the D-matrix. For instance, it can be seen that

test PWT monitors faults AL, PW1 and PW2, corresponding to the three children for PWT

in Figure 7.4. Each node or edge in the network can be traced back to information

obtained from either the fault tree or the D-matrix for the vehicle system.

207

7.4.2 Parameterization

With the network structure for the vehicle model in place, the only remaining

task is to parameterize the nodes in the CTBN. This involves specifying rates for

each entry in each of the intensity matrices in the CIM for each node. While this is

a complex task when employing traditional learning algorithms, the process is made

relatively simple by taking advantage of reliability information. To demonstrate how

parameterization is achieved, this section shows the parameters for example nodes in

the network corresponding to each of the different node types.

First, consider the fault node PR, representing engine compression. Table 7.2

shows that the mean time between failure for the PR fault is 1100, while the mean

time to repair is 35. As such, the failure rate is 1/1100 ≈ 0.001, and the repair rate is

1/35 ≈ 0.029. Assuming state pr0 is non-failing, and pr1 is failing, then the intensity

matrix for node PR is shown below. Since PR is a fault node, it has no parents by

construction, and its CIM contains only this single matrix.

QPR =


pr0 pr1

pr0 −0.001 0.001

pr1 0.029 −0.029


Next, consider the LT test node, representing the leakdown test. According

to Table 7.3, the false alarm rate for test LT is 0.02, and the non-detect rate is 0.01.

Equation 7.4 shows how the false alarm rate can be used to derive the intensity matrix

Q{LT |pr0,co0}. Specifically, the transition rate from state lt1 to lt0 is FA−1 = 50, and

the transition rate from lt0 to lt1 is (1 − FA)−1 = 1.02. Similarly, Equation 7.5

shows how the non-detect rate is used to produce intensity matrices Q{LT |pr0,co1} and

Q{LT |pr1,co0}. Both of these matrices are identical due to the assumption that the

false alarm and non-detect rates for the LT test are equivalent regardless of the fault

208

being monitored. The derived intensity matrices are shown below, which together

fully specify the CIM for test node LT.

QLT =



Q{LT |pr0,co1} =


lt0 lt1

lt0 −100 100

lt1 1.01 −1.01

 Q{LT |pr1,co0} =


lt0 lt1

lt0 −100 100

lt1 1.01 −1.01



Q{LT |pr0,co0} =


lt0 lt1

lt0 −1.02 1.02

lt1 50 −50





These three intensity matrices cover the case where all of the monitored faults

are in a non-failing state, as well as each of the cases where a single parent is in

a failing state. The remaining parent state instantiation with multiple failures is

implicitly covered by the disjunctive interaction parameterization, as introduced in

Chapter 6. By making use of the disjunctive interaction, the last remaining intensity

matrix Q{LT |pr1,co1} is generated on the fly using the existing parameters.

Finally, consider the LossOfElectrical effect node. This effect is dictated by

an OR gate of inputs, meaning that just as with the test node parameterization,

disjunctive interaction can be employed to reduce the number of intensity matrices

required. Assume that the time it takes for LossOfElectrical to take effect is

exponentially distributed with a rate of 5 when the EL fault has occurred, with a rate of

35 when LossOfPower occurs, and a rate of 1.5 when the AL fault occurs. Furthermore,

it is assumed that if there is no input to cause the effect, then LossOfElectrical is

guaranteed not to occur. Then the intensity matrices for the case where no faults have

occurred and where one of each of the three faults have occurred is listed below. For

conciseness, LOE is used as shorthand to represent the LossOfElectrical, and LOP

stands for LossOfPower. Just as before, the remaining unspecified intensity matrices

209

for the CIM can be derived automatically using disjunctive interaction.

QLOE =



Q{LOE|el0al0lop0} =


loe0 loe1

loe0 0 0

loe1 ∞ −∞

 Q{LOE|el1al0lop0} =


loe0 loe1

loe0 −5 5

loe1 0 0



Q{LOE|el0al1lop0} =


loe0 loe1

loe0 −1.5 1.5

loe1 0 0

 Q{LOE|el0al0lop1} =


loe0 loe1

loe0 −35 35

loe1 0 0





Although this section covered parameterization of only three of the 43 nodes in

the vehicle network, the same principles can be applied to the remaining 40 nodes.

Methods exist for parameterizing faults, tests, and effects. In each case, methods make

use of available reliability data, and when nodes behave according to an OR input,

disjunctive interaction is employed to reduce the required number of parameters.

7.5 Usage and Decision Making

In the previous section, a prognostic model was created to describe a military

vehicle using automated derivation procedures and reliability data. The derived

CTBN contains nodes representing tests, faults, and effects related to one another

with edges and parameterized using transition rates derived from reliability data.

This model can use state information collected about tests to perform diagnostics

and prognostics. More specifically, evidence is applied to the test nodes indicating

whether or not the test passed or failed, and at what time. Queries can then be made

to obtain probability distributions over the states of faults and effects at any point

in time. These probability distributions can identify the most likely effects and how

probable they are.

210

Traditionally, approaches to PHM use domain experts to synthesize the proba-

bility information in order to gauge the implication of effect likelihoods and determine

the next course of action. The concern is that the analysis and decision making can

be informal and difficult to justify. Instead, a more ideal approach is to build the

concept of utility and decision making into the model directly, and rely on standard

query techniques to quantify the quality of the system. To accomplish this, we use

the CTDN framework proposed in Chapter 4, which can be used to model potential

actions and their associated outcomes. This allows for an estimated evaluation of

an action before it is enacted in the real world, providing a more mathematically

rigorous method for decision making in the presence of uncertainty. The remainder

of this section describes how the CTDN framework can be used to decide between

different operational or design choices.

7.5.1 Scenarios

In some cases, it may be useful to construct multiple variations of the

same model. We refer to these model variations as “scenarios.”, which represent

maintenance actions or different system modes of operation. For instance, one option

may be to perform preventative maintenance on the vehicle at time t = 500 hours

and replace the wheels/tires prior to a failure event for the component. This results

in two possible scenarios, one in which no preventative action is taken, and one where

the WT component is replaced. In the replacement scenario, there is a guaranteed

downtime for the system in order to perform the maintenance operation, as well as

a cost associated with that operation. With that said, the preventative action will

reduce the likelihood that the component fails on its own, may prevent a more drastic

LossOfVehicle event, and may even prevent a LossOfCrew event in an extreme case.

Another example of a scenario may be to change the operational mode of the vehicle.

211

If the cooling system has a high probability of failing in the near future, rather than

continue operating the vehicle as normal, a more conservative approach could be

taken that reduces speed and conserves power consumption. This would reduce the

likelihood of failure for the component but may have other associated costs.

There are several options when modeling scenarios. A näıve approach is to

duplicate the base model and make the necessary changes to the network structure

or parameters to account for the difference in the new scenario. The result is two

networks that vary in some shape or form. Queries can then be performed over the

two networks simultaneously, and the results may be compared. Although this works

from a technical standpoint, scenarios often differ by very little, meaning that the

various networks will have many redundancies. This may be a concern when there

are many scenarios or when the models are very large. Furthermore, in the event that

a change must be made to the model, this change must be propagated through all of

the copied networks, causing a consistency concern.

An alternative approach is to use the decision nodes in a CTDN. In this case,

the states of the decision node represent scenarios that may be “selected.” After

inserting the decision node, any nodes that are changed as part of the scenario are

added to the child set of that node. The child node’s parameters are then modified

to account for the new scenario.

See Figure 7.5 for an example of how a decision node might be added to the

vehicle network from Figure 7.4. Here, only the cooling subsystem is shown, as

the remainder of the vehicle network remains unaltered. The alteration to the

network is shown in dashed lines. The only change is that the cooling node CO now

has an additional parent Operation, depicted as a rectangular decision node and

representing the operational modes of the vehicle. For the purposes of this example,

there are two operational modes as discussed earlier: standard or conservative. This

212

CO

LT
CP

GT

LossOfPowerTrain Operation

Figure 7.5: The cooling subsystem with the inclusion of a decision node that encodes
different system operational decisions.

violates the constraint imposed previously that each fault has no parents. Essentially

this means that the components of the vehicle no longer behave independently of

external factors but instead are influenced by decisions.

The model must now be reparameterized to account for this change to the

structure of the network. The fault CO originally had a CIM with only a single

intensity matrix QCO, which assumed standard operation of the vehicle. The new

CIM now contains two matrices, one for each state of its new parent: Q′CO|Operation =

{Q′CO|standard,Q′CO|conservative}. Since the original model assumed standard operation,

the transition behavior in that case is already known and Q′CO|standard = QCO. The

remaining intensity matrix Q′CO|conservative is then defined to describe the new cooling

system behavior given a conservative operational mode. For this scenario, the failure

rate will likely decrease with the conservative driving style, while the repair rate will

remain the same. As discussed in the Chapter 4, parameterization of the decision

node itself is unimportant so long as all states are reachable at all times.

Now that operational decisions have been modeled, utility must be defined for

the CTDN using performance functions. Let F be a performance function that assigns

213

value for every hour spent in the operational or partially operational state, and no

value when in a non-operational state.

F =


10t, if LOV = false ∧Operation = standard

5t, if LOV = false ∧Operation = conservative

0, otherwise

Here LOV is shorthand for LossOfVehicle. To model this function directly using

the model itself, a new utility node can be added to the network as a child of

the LossOfVehicle and Operation nodes. This utility node has three states that

are entered deterministically based on the three conditions in F , each of which are

assigned their corresponding value from F .

The vehicle model has now been extended to use a CTDN representation that

describes the possible scenarios and utility values. To use this model, inference can be

run over the network for each possible decision, and the results can be compared. In

this case, that means fixing the Operation node to a standard state and running

inference and then repeating the process after setting the Operation node to a

conservative state. This results in two output values for the utility function. The task

of making a decision then reduces to maximizing the expected utility over the possible

scenarios. Let A = {{Operation = standard}, {Operation = conservative}} be the

set of possible actions or scenarios. Then the optimization problem is summarized by

the following maximization:

argmax
A∈A

F (A).

Note that computing F (A) requires that evidence be set in the CTDN according to

the state assignments in A, and inference is run to obtain the expected value for

performance function F when the network is in this state.

214

In this vehicle model, running the vehicle in a conservative state is less valuable

than standard operation, but the decrease in the failure rate for the cooling system

may be substantial enough to prevent a total loss of vehicle event. It might therefore

make more sense to take the partial value that is available rather than risk losing the

vehicle entirely and receiving no value at all. Additional, more complex performance

functions may also be defined as necessary, which may change the outlook of the

decision process. In the event that there are multiple performance functions, multi-

objective optimization can be employed to obtain a Pareto frontier of non-dominated

scenarios. This subset of superior scenarios can then be presented to a domain expert

who can choose the scenario that best meets the needs of the application. By building

these functions into the model directly using the CTDN framework, it is possible not

only to support diagnostics and prognostics over faults and risks, but also to compare

scenarios using metrics that are relevant to the system’s application.

7.5.2 Performance Based Logistics

In addition to supporting decisions for runtime operations, CTDN models can

be used in the design stage as well. This is especially useful when working under

the guidelines of performance based logistics (PBL), which is a contracting strategy

that aims to improve operational effectiveness in large organizations like the DoD.

Unlike other approaches that contract for resources, PBL contracts for performance

according to a variety of prespecified metrics [124]. These metrics are related directly

to system performance, such as reliability, maintainability, and supportability [65]. In

short, PBL contracts purchase an open-ended solution from a contractor that must

meet performance criteria, which requires an objective method for evaluating such

performance values.

215

By building a prognostic CTBN during the development cycle, accurate

predictions of system behavior can be made. Furthermore, performance functions

can be constructed and built into the model that relate to the objectives laid out in

the PBL contract. Finally, different design alternatives can be added to the model

using CTDN decision nodes. This allows design choices to be evaluated with respect

to the contract requirements prior to any physical implementation, saving time and

money for the contractor, and improving the overall solution for the agency.

To demonstrate this idea, refer again to the vehicle model from Figure 7.4.

During the design phase, there may be a choice between two different axle systems.

Table 7.2 shows that the AX component has an MTBF of 1800, an MTTR of 12, and

a repair cost of 2000. Now assume there is a second axle system AX ′ with an MTBF

of 2100, an MTTR of 20, and a repair cost of 2500. Essentially, the idea is that this

new axle design is more complex, resulting in higher reliability and therefore a longer

mean time to failure. Unfortunately this additional complexity in the design increases

the mean repair time, as well as the cost to fix the component. The question that

the contractor is then left with is which design alternative should be chosen to best

meet the contract requirements.

The correct choice between these axle design alternatives is not immediately

evident and depends on many factors, including how these changes to reliability

impact risks and what performance functions are most important for the contract.

To approach this using the CTDN framework, the vehicle network can be modified

to incorporate this decision. Figure 7.6 shows the axle subsystem of the network,

with the new decision node D-AX highlighted using a dashed line. To parameterize

the AX node, an intensity matrix is derived once for each design alternative, and

paired with the corresponding state in the D-AX decision node. Once again, the

parameters in the decision node are largely unimportant since the state will be

216

AX

LossOfChassis AM

D-AX

Figure 7.6: The axle subsystem before and after the inclusion of a decision node that
encodes different design decisions.

assigned deterministically. With this model, inference can be run once for each

design alternative, allowing the performance values to be obtained for each objective.

Alternatives who’s performances do not meet the contract requirements can be

eliminated, and a design choice can be obtained from the remaining valid solutions.

In addition to parameter changes, decision nodes can support structure changes

to the graph as well. For example, there may be two design alternatives regarding

the power subsystem, where one option includes a redundant power source, while

the other alternative omits the secondary battery. Figure 7.7 shows the power

subsystem from the vehicle model with the decision node D-PW2 added as a parent

to the LossOfPower event. Assuming PW1 and PW2 are both Boolean, then the CIM

for LossOfPower originally consists of four intensity matrices. These four intensity

matrices are mapped to the first state of D-PW2, and four new intensity matrices

are mapped to the second state. With these four new matrices, LossOfPower is

parameterized according to PW1 alone as if PW2 did not exist. As such, when D-PW2

is in the first state (redundant design), LossOfPower is dependent on both PW1 and

PW2. When D-PW2 is in the second state (no redundancy), LossOfPower is dependent

on only PW1, and the edge between PW2 and LossOfPower is effectively severed.

217

LossOfPower

PW1 PW2

BT1 BT2PWT

D-PW2

Figure 7.7: The power subsystem before and after the inclusion of a decision node
that encodes the decision to support multiple power sources.

These models provide a mathematically sound and inexpensive method for evalu-

ating design choices with respect to contract requirements prior to implementation. In

addition, upon fabrication of the system, the model can then be used for diagnostics

and prognostics. This is achieved by fixing the decision nodes representing design

choices to the actual alternative that was chosen. Going forward, these models can

still be used to identify fault and effect likelihoods, as well as to evaluate specified

performance functions. Additional decision nodes can be inserted to model possible

operational decisions, which can serve as mitigation strategies that have the potential

to minimize performance loss.

7.6 Conclusion

In this chapter, we discussed PHM as a specific application for CTBNs. To

reduce the barrier to entry when building these models for system prognostics, we

have introduced derivation procedures that help to construct CTBNs using commonly

available diagnostic and reliability information. We show how both structure and

218

parameters can be obtained using this data, which eliminates the need to apply

expensive learning algorithms that depend on often exorbitant amounts of data. In

the event that reliability information defines failure or repair rates that are non-

exponential, the techniques discussed in Chapter 3 may be used to compute an

approximating phase-type distribution, and embed this distribution into the resulting

CTBN. The derivation procedures were applied to an extended version of the vehicle

model, demonstrating the applicability of these techniques to real-world systems.

It is often the case in this domain that system relationships are causal, and the

vehicle network is no exception. For this reason, the disjunctive interaction model

from Chapter 6 is applied as part of the parameterization procedures, providing a

substantial reduction in both the model size and the amount of necessary data.

For cases where a node has many parents that were derived from an AND gate

in the original fault tree, disjunctive interaction cannot be applied. Instead, the

compact representations proposed in Chapter 5 may serve as an alternative approach

to managing scalability.

In addition to detailing processes for CTBN construction, this chapter also

discussed how the resulting models can be used to perform diagnostics and prognostics

by applying evidence corresponding to test results. Furthermore, methods for

representing and reasoning over operational decisions were presented. Specifically,

we argued for the use of the CTDN framework presented in Chapter 4, which allows

for the representation of various scenarios and utilities, which can then be optimized to

obtain a mathematically supported best decision during runtime. Finally, we showed

that the CTDN framework was not only useful for making operational decisions, but

could also be applied to design time decisions as well.

The CTBN derivation algorithms we presented in this chapter provide an

automated procedure for constructing models without the need for excessive amounts

219

of historical data. Furthermore, the vehicle network construction and experimentation

serves as a tutorial to those seeking to apply the CTBN to PHM tasks. Finally,

by providing a framework for optimizing over various design decisions, CTDNs can

support tasks like PBL, and can continue to serve as prognostic models capable

of describing runtime behavior after fabrication. This lowers the barrier to entry

required to apply CTBNs to prognostics and diagnostics, and provides a guideline for

how domain-specific algorithms and models may be developed to better suit CTBNs

to real-world problems.

220

CHAPTER EIGHT

CONCLUSION

The contributions in this dissertation share the common goal of making CTBNs

more accessible in real-world domains. These contributions can be separated into two

distinct categories: those focusing on the representational capabilities of CTBNs, and

those concerned with scalability issues. By providing methods for addressing these

issues, we hope to reduce the barrier to entry when applying CTBNs in practice. In

this final chapter, we provide a brief summary of the contributions presented in this

dissertation, and end with directions for future work.

8.1 Contributions

First, Chapter 3 helped to improve the representational capabilities of CTBNs

by describing a method for modeling non-parametric transition distributions. It was

shown that general-purpose optimization algorithms can be used to minimize the

KL-divergence of a phase-type distribution from a target parametric distribution, so

long as it is positive and continuous. We then formalized the process for embedding

any general phase-type distributions into the intensity matrices of a CTBN. These

two contributions provide an automated procedure for specifying non-exponential

parametric distributions within the CTBN framework, thereby allowing processes

with more complex transition behavior to be modeled.

Next, Chapter 4 continued with the goal of improved representational power by

introducing the continuous time decision network. The CTDN was defined formally,

and consists of three node types: chance nodes, utility nodes, and decision nodes.

221

This framework supports the representation of decision problems over processes that

change in continuous time. We demonstrated how such a model might be constructed

and showed how the framework can be used to evaluate utility values. Optimization

algorithms were used to identify the actions that maximize utility in the system,

thereby assisting in the decision making process, even in the presence of uncertainty.

Just as with the phase-type approximations, the newly introduced CTDN helps in

representing additional problems in practical domains.

Chapter 5 shifts its attention to the issue of scalability. Two distinct

contributions were presented in this chapter, each corresponding to a different

compact representation of the CIMs in a CTBN. The MCIM used compositions of

functions to consolidate intensity matrices, thereby reducing the total number of

required parameters. The TCIM representation also consolidated intensity matrices

but used decision trees rather than discrete functions to encode independences In both

cases, the compact representations rely on groupings of identical or similar intensity

matrices, which is achieved by applying a clustering algorithm to the CIM. By

reducing the number of parameters, scalability concerns may be alleviated, allowing

larger processes to be modeled.

Chapter 6 presents disjunctive interaction for CTBNs, which is another approach

to managing scalability when working with large models. We showed how the space

complexity of a node can be reduced from exponential to linear in the number of

parents, so long as the interaction between the parents is disjunctive. We also showed

the special case where variables are Boolean, and related this work to the Noisy-

OR model in Bayesian Networks. This parameterization can provide a substantial

reduction in model size, especially for applications where variables exhibit causal

relationships.

222

Finally, Chapter 7 tied these contributions together by providing an extended

example of how CTBNs can be applied to the practical domain of reliability

and prognostics for a vehicle model. The modeling process makes use of the

CTDN framework to represent decision problems, but also incorporates disjunctive

interaction to manage the complexity of the parameterization. Furthermore, this

chapter introduces novel methods for deriving the structure and parameters of a

CTBN using existing reliability data. This demonstration, as well as the domain-

specific techniques presented in the chapter, act as a guideline when applying CTBNs

to the field of PHM.

8.2 Future Work

For our future work in non-exponential parametric distributions, we would like

to apply our PT distribution learning procedure to a wider array of parametric dis-

tributions. It may be possible to estimate the quality of a phase-type approximation

based on the underlying characteristics of the target distribution. For instance, phase-

type distributions are only capable of approximating continuous distributions, so it

is likely that approximations of excessively sharp distributions will be poor.

For Continuous Time Decision Networks, we would like to investigate automated

methods for constraining the search space over the trajectory of decision variables.

The experiments reported in Chapter 4 made use of domain knowledge to reduce the

set of necessary evaluations to a tractable size. We intend to evaluate the effectiveness

of gradient based methods, as well as population-based optimization methods like

particle swarm optimization to perform a directed search over all possible decisions.

This would provide a locally optimal decision while avoiding the need to evaluate every

possible decision assignment. We also hope to further refine the CTDN framework

223

by developing learning and inference algorithms that are specifically tailored to work

efficiently with this representation.

Concerning the MCIM and TCIM compact representations discussed in Chap-

ter 5, as well as disjunctive interaction described in Chapter 6, we would like to

look into hybrid compact structures. As proven, there are conditional CTMPs

that cannot be factored fully using either the MCIM or TCIM representation.

By combining these approaches, and possibly other structured representations for

CTMPs such as Kronecker algebra, it may be possible to achieve even more effective

representations. Furthermore, we hope to adapt existing inference algorithms to work

on the compact representations directly, potentially allowing for even more efficient

inference. By working with the the compact representations directly, improvements

may be achievable to the inference time complexity. As is the case in the Bayesian

Network literature, it may be that efficient inference algorithms that exploit compact

representations may only exist for special cases. If this is the case, it will be

necessary to identify when inference can be performed efficiently in terms of network

structure and evidence application. The experiments in Chapter 6 also indicated that

with large models, specific state combinations become unlikely, presenting a mixing

problem. Although this does not influence the compact representations presented in

this dissertation, it may negatively influence the quality of approximate inference

algorithms. In the future we hope to further study and identify approaches for

addressing this issue.

We hope to continue refining the CTBN models used for diagnostics and

prognostics, and we intend to investigate other domains where CTBNs may be under-

utilized. By providing domain-specific algorithms and modeling procedures, the

burden placed on researchers and engineers to integrate CTBNs into their current

operations will be reduced. We also hope to formalize the process for representing

224

scenarios using decision nodes. This will involve mapping parametric and structure

changes to the discrete states of the decision node, and algorithmically updating the

network accordingly. Above all, we hope that the contributions presented in this

dissertation help to guide CTBNs toward these research aims, and ultimately toward

more prominent real-world applications.

225

REFERENCES CITED

[1] O. O. Aalen. Phase–type distributions in survival analysis. Scandinavian
Journal of Statistics, 22(4):447–463, 1995.

[2] E. Acerbi and F. Stella. Continuous time Bayesian networks for gene network
reconstruction: a comparative study on time course data. In Bioinformatics
Research and Applications, pages 176–187. Springer, 2014.

[3] E. Acerbi, E. Viganò, M. Poidinger, A. Mortellaro, T. Zelante, and F. Stella.
Continuous time bayesian networks identify prdm1 as a negative regulator of
th17 cell differentiation in humans. Scientific reports, 6, 2016.

[4] E. Acerbi, T. Zelante, V. Narang, and F. Stella. Gene network inference using
continuous time bayesian networks: a comparative study and application to
th17 cell differentiation. BMC bioinformatics, 15(1):387, 2014.

[5] D. Z. Anderson. Neural information processing systems. Springer Science &
Business Media, 1988.

[6] W. J. Anderson. Continuous-time Markov chains: An applications-oriented
approach. Springer Science & Business Media, 2012.

[7] G. A. Baker Jr. and J. L. Gammel. The Padé approximant and some related
generalizations. In The Padé Approximant in Theoretical Physics, volume 71 of
Mathematics in Science and Engineering. Academic Press, 1970.

[8] J. Banks. Handbook of Simulation. John Wiley & Sons, 1998.

[9] W. Bian and D. Tao. Harmonic mean for subspace selection. In 19th
International Conference on Pattern Recognition (ICPR), pages 1–4. IEEE,
2008.

[10] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific
independence in bayesian networks. In Proceedings of the Twelfth international
conference on Uncertainty in artificial intelligence, pages 115–123. Morgan
Kaufmann Publishers Inc., 1996.

[11] P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. Complexity of kronecker
operations on sparse matrices with applications to the solution of markov
models. Technical report, Institute for Computer Applications in Science and
Engineering, Hampton, VA United States, 1997.

[12] F. Camci and R. B. Chinnam. Dynamic Bayesian networks for machine
diagnostics: hierarchical hidden Markov models vs. competitive learning. In

226

Proceedings of the IEEE International Joint Conference on Neural Networks
(IJCNN), volume 3, pages 1752–1757, 2005.

[13] D. Cao. Novel models and algorithms for systems reliability modeling and
optimization. PhD thesis, Wayne State University, 2011.

[14] E. B. Celikkaya, C. R. Shelton, and W. Lam. Factored filtering of continuous-
time systems. In F. G. Cozman and A. Pfeffer, editors, UAI, pages 61–68. AUAI
Press, 2011.

[15] D. Codecasa. Continuous Time Bayesian Network Classifiers. PhD thesis, Ph.
D. thesis, Universitá degli Studi di Milano-Bicocca. To appear in BOA (Bicocca
Open Archive), 2014.

[16] D. Codecasa and F. Stella. A classification based scoring function for continuous
time Bayesian network classifiers. In International Workshop on New Frontiers
in Mining Complex Patterns, pages 35–50. Springer, 2013.

[17] D. Codecasa and F. Stella. Conditional log-likelihood for continuous time
Bayesian network classifiers. In European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD),
International Workshop New Frontiers in Mining Complex Patterns (NFMCP),
2013.

[18] D. Codecasa and F. Stella. Learning continuous time Bayesian network
classifiers. International Journal of Approximate Reasoning, 55(8):1728–1746,
2014.

[19] D. Codecasa and F. Stella. Classification and clustering with continuous
time Bayesian network models. Journal of Intelligent Information Systems,
45(2):187–220, 2015.

[20] D. Codetta-Raiteri and L. Portinale. Generalized continuous time Bayesian
networks and their GSPN semantics. European Workshop on Probabilistic
Graphical Models, pages 105–112, 2010.

[21] D. Codetta-Raiteri and L. Portinale. A gspn based tool to inference generalized
continuous time bayesian networks. In Proceedings of the 7th International
Conference on Performance Evaluation Methodologies and Tools, pages 316–
319. ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering), 2013.

[22] D. Codetta-Raiteri and L. Portinale. A petri net based tool for the analysis
of generalized continuous time bayesian networks. Theory and Application of
Multi-Formalism Modeling, page 118, 2013.

227

[23] D. Codetta-Raiteri and L. Portinale. Modeling and analysis of dependable
systems through generalized continuous time bayesian networks. In Reliability
and Maintainability Symposium (RAMS), 2015 Annual, pages 1–6. IEEE, 2015.

[24] I. Cohn. Mean Field Variational Approximations in Continuous-Time Markov
Processes. PhD thesis, The Hebrew University, 2009.

[25] I. Cohn, T. El-Hay, N. Friedman, and R. Kupferman. Mean field variational
approximation for continuous-time Bayesian networks. In Proceedings of the
25th Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages
91–100. AUAI Press, 2009.

[26] A. Cutler and O. I. Cordero-Braña. Minimum Hellinger distance estimation
for finite mixture models. Journal of the American Statistical Association,
91(436):1716–1723, 1996.

[27] P. Dagum, A. Galper, and E. Horvitz. Dynamic network models for forecasting.
In Proceedings of the eighth international conference on uncertainty in artificial
intelligence, pages 41–48. Morgan Kaufmann Publishers Inc., 1992.

[28] P. Dagum, A. Galper, E. Horvitz, and A. Seiver. Uncertain reasoning and
forecasting. International Journal of Forecasting, 11(1):73–87, 1995.

[29] J. T. de Oliveira. Statistical choice of univariate extreme models. Statistical
Distribution in Scientific Work: Applications in Physical, Social and Life
Sciences, 6:367–387, 1981.

[30] E. Delage, H. Lee, and A. Y. Ng. A dynamic bayesian network model for
autonomous 3d reconstruction from a single indoor image. In Computer
Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on,
volume 2, pages 2418–2428. IEEE, 2006.

[31] P. M. Djuric, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F. Bugallo,
and J. Miguez. Particle filtering. IEEE Signal Processing Magazine, 20(5):19–
38, 2003.

[32] N. Dojer, A. Gambin, A. Mizera, B. Wilczyński, and J. Tiuryn. Applying
dynamic bayesian networks to perturbed gene expression data. BMC bioinfor-
matics, 7(1):249, 2006.

[33] M. Dong and Z. Yang. Dynamic Bayesian network based prognosis in machining
processes. Journal of Shanghai Jiaotong University (Science), 13:318–322, 2008.

[34] T. El-Hay, I. Cohn, N. Friedman, and R. Kupferman. Continuous-time belief
propagation. In J. Frnkranz and T. Joachims, editors, International Conference
on Machine Learning (ICML), pages 343–350, 2010.

228

[35] T. El-Hay, N. Friedman, and R. Kupferman. Gibbs sampling in factorized
continuous-time Markov processes. In Proceedings of the 24th Annual Con-
ference on Uncertainty in Artificial Intelligence (UAI), pages 169–178. AUAI
Press, 2008.

[36] K. P. Exarchos, G. Rigas, Y. Goletsis, and D. I. Fotiadis. Towards building
a dynamic Bayesian network for monitoring oral cancer progression using
time-course gene expression data. In 10th IEEE International Conference on
Information Technology and Applications in Biomedicine (ITAB), 2010, pages
1–4, 2010.

[37] Y. Fan. Continuous Time Bayesian Network Approximate Inference and Social
Network Applications. PhD thesis, University of California Riverside, 2009.

[38] Y. Fan and C. R. Shelton. Sampling for approximate inference in continuous
time Bayesian networks. In Tenth International Symposium on Artificial
Intelligence and Mathematics, 2008.

[39] Y. Fan and C. R. Shelton. Learning continuous-time social network dynamics.
In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence
(UAI), pages 161–168. AUAI Press, 2009.

[40] Y. Fan, J. Xu, and C. R. Shelton. Importance sampling for continuous time
Bayesian networks. Journal of Machine Learning Research (JMLR), 99:2115–
2140, 2010.

[41] V. T. Farewell and R. L. Prentice. A study of distributional shape in life testing.
Technometrics, 19(1):69–75, 1977.

[42] N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using bayesian networks
to analyze expression data. Journal of computational biology, 7(3-4):601–620,
2000.

[43] M. Fujita, P. C. McGeer, and J.-Y. Yang. Multi-terminal binary decision
diagrams: An efficient data structure for matrix representation. Formal methods
in system design, 10(2-3):149–169, 1997.

[44] E. Gatti. Graphical models for continuous time inference and decision making.
PhD thesis, Università degli Studi di Milano-Bicocca, 2011.

[45] E. Gatti, D. Luciani, and F. Stella. A continuous time bayesian network model
for cardiogenic heart failure. Flexible Services and Manufacturing Journal,
24(4):496–515, 2012.

[46] A. L. Gibbs and F. E. Su. On choosing and bounding probability metrics.
International Statistical Review, 70(3):419–435, 2002.

229

[47] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless pooling of
deep convolutional activation features. In European Conference on Computer
Vision, pages 392–407. Springer, 2014.

[48] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville, and Y. Bengio.
Maxout networks. ICML (3), 28:1319–1327, 2013.

[49] K. Gopalratnam, H. Kautz, and D. S. Weld. Extending continuous time
Bayesian networks. In Proceedings of the National Conference on Artificial
Intelligence, volume 20, page 981. AAAI Press, 2005.

[50] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Cluster validity methods: Part
i. ACM Sigmod Record, 31(2):40–45, 2002.

[51] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Clustering validity checking
methods: Part ii. ACM Sigmod Record, 31(3):19–27, 2002.

[52] J. Hallgren. Structure learning and mixed radix representation in continuous
time bayesian networks. Technical report, Royal Institute of Technology,
Stockholm Sweden, 2016.

[53] R. Herbrich, T. Graepel, and B. Murphy. Structure from failure. In Proceedings
of the 2nd USENIX Workshop on Tackling Computer Systems Problems with
Machine Learning Techniques, pages 1–6. USENIX Association, 2007.

[54] N. J. Higham. The scaling and squaring method for the matrix exponential
revisited. SIAM Journal on Matrix Analysis and Applications, 26(4):1179–1193,
2005.

[55] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. Spudd: Stochastic planning using
decision diagrams. In Proceedings of the Fifteenth conference on Uncertainty in
artificial intelligence, pages 279–288. Morgan Kaufmann Publishers Inc., 1999.

[56] J. D. Kalbfleisch and R. L. Prentice. The Statistical Analysis of Failure Time
Data, chapter Failure Time Models. John Wiley & Sons, 2011.

[57] K. F. Kan and C. R. Shelton. Solving structured continuous-time Markov
decision processes. In Proceedings of 10th International Symposium on Artificial
Intelligence and Mathematics, 2008.

[58] J. Kennedy, R. Eberhart, et al. Particle swarm optimization. In Proceedings
of IEEE International Conference on Neural Networks, volume 4, pages 1942–
1948. Perth, Australia, 1995.

[59] M.-S. Kim, I.-H. Yang, and H.-J. Yu. Maximizing distance between GMMs
for speaker verification. In Fourth International Conference on Natural
Computation, pages 175–178. IEEE, 2008.

230

[60] U. B. Kjaerulff and A. L. Madsen. Bayesian networks and influence diagrams.
Springer Science+ Business Media, 200:114, 2008.

[61] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and
Techniques. MIT Press, 2009.

[62] D. Koller and B. Milch. Multi-agent influence diagrams for representing and
solving games. Games and economic behavior, 45(1):181–221, 2003.

[63] A. N. Kolmogorov. Foundations of Probability. Chelsea Publishing Company,
New York, 1933.

[64] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[65] U. D. Kumar, D. Nowicki, J. E. Ramirez-Marquez, and D. Verma. A goal pro-
gramming model for optimizing reliability, maintainability and supportability
under performance based logistics. International Journal of Reliability, Quality
and Safety Engineering, 14(03):251–261, 2007.

[66] G. Latouche and V. Ramaswami. Introduction to matrix analytic methods in
stochastic modeling. SIAM, 1999.

[67] P. W. Laud and J. G. Ibrahim. Predictive model selection. Journal of the Royal
Statistical Society. Series B (Methodological), 57(1):247–262, 1995.

[68] B. B. Le Cun, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Handwritten digit recognition with a back-propagation network.
In Advances in neural information processing systems. Citeseer, 1990.

[69] J. Makhoul. Artificial neural networks. Investigative radiology, 25(6):748–750,
1990.

[70] R. T. Marler and J. S. Arora. Survey of multi-objective optimization methods
for engineering. Structural and Multidisciplinary Optimization, 26(6):369–395,
2004.

[71] K. R. McNaught and A. Zagorecki. Using dynamic Bayesian networks for
prognostic modelling to inform maintenance decision making. In IEEE Inter-
national Conference on Industrial Engineering and Engineering Management,
2009. IEEM 2009., pages 1155–1159, 2009.

[72] K. Medjaher, J. Moya, and N. Zerhouni. Failure prognostic by using dynamic
Bayesian networks. Dependable Control of Discrete Systems, 1:291–296, 2009.

231

[73] A. Mesaros, T. Virtanen, and A. Klapuri. Singer identification in polyphonic
music using vocal separation and pattern recognition methods. In ISMIR, pages
375–378, 2007.

[74] B. Miasojedow and W. Niemiro. Geometric ergodicity of rao and teh’s algorithm
for markov jump processes and ctbns. arXiv preprint arXiv:1606.08160, 2016.

[75] B. Miasojedow, W. Niemiro, J. Noble, and K. Opalski. Metropolis-type algo-
rithms for continuous time Bayesian networks. arXiv preprint arXiv:1403.4035,
2014.

[76] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1998.

[77] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential
of a matrix, twenty-five years later. SIAM Review, 45(1):3–49, 2003.

[78] A. Muller, M. Suhner, and B. Iung. Formalisation of a new prognosis model
for supporting proactive maintenance implementation on industrial system.
Reliability Engineering & System Safety, 93(2):234–253, 2008.

[79] F. Murtagh. A survey of recent advances in hierarchical clustering algorithms.
The Computer Journal, 26(4):354–359, 1983.

[80] B. Ng, A. Pfeffer, and R. Dearden. Continuous time particle filtering. In
International Joint Conference on Artificial Intelligence (IJCAI), volume 19,
pages 1360–1365, 2005.

[81] U. Nodelman. Continuous Time Bayesian Networks. PhD thesis, Stanford
University, Stanford, California, 2007.

[82] U. Nodelman and E. Horvitz. Continuous time Bayesian networks for inferring
users’ presence and activities with extensions for modeling and evaluation.
Microsoft Research, 2003.

[83] U. Nodelman, D. Koller, and C. R. Shelton. Expectation propagation
for continuous time Bayesian networks. In Proceedings of the 21st Annual
Conference on Uncertainty in Artificial Intelligence, pages 431–440. AUAI
Press, 2005.

[84] U. Nodelman, C. Shelton, and D. Koller. Continuous time Bayesian networks.
In Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence
(UAI), pages 378–387, 2002.

[85] U. Nodelman, C. R. Shelton, and D. Koller. Learning continuous time Bayesian
networks. In Proceedings of the 19th Conference on Uncertainty in Artificial
Intelligence (UAI), pages 451–458. Morgan Kaufmann Publishers Inc., 2002.

232

[86] U. Nodelman, C. R. Shelton, and D. Koller. Expectation maximization and
complex duration distributions for continuous time Bayesian networks. In
Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence
(UAI), 2005.

[87] J. R. Norris. Markov chains, volume 2. Cambridge university press, 1998.

[88] M. Opper and G. Sanguinetti. Variational inference for Markov jump processes.
In Advances in Neural Information Processing Systems, pages 1105–1112, 2008.

[89] K. Orphanou, A. Stassopoulou, and E. Keravnou. Dbn-extended: a dynamic
bayesian network model extended with temporal abstractions for coronary heart
disease prognosis. IEEE journal of biomedical and health informatics, 20(3):944–
952, 2016.

[90] D. B. Parker. Learning logic. Technical Report TR-47, Sloan School of
Management, Massachusetts Institute of Technology, Cambridge, MA United
States, 1985.

[91] V. Pavlovic, J. M. Rehg, T.-J. Cham, and K. P. Murphy. A dynamic bayesian
network approach to figure tracking using learned dynamic models. In Computer
Vision, 1999. The Proceedings of the Seventh IEEE International Conference
on, volume 1, pages 94–101. IEEE, 1999.

[92] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, CA, 1988.

[93] L. Perreault, J. Sheppard, H. King, and L. Sturlaugson. Using continuous-time
Bayesian networks for standards-based diagnostics and prognostics. In IEEE
AUTOTESTCON Proceedings 2014, pages 198–204, 2014.

[94] L. Perreault and J. W. Sheppard. Compact structures for continuous time
Bayesian networks. Technical report, Montana State University, 2017.

[95] L. Perreault and J. W. Sheppard. Risk-based prognostics and health manage-
ment. Technical report, Montana State University, 2017.

[96] L. Perreault, S. Strasser, M. Thornton, and J. Sheppard. A noisy-or model
for continuous time Bayesian networks. In Proceedings of the Twenty-Ninth
International Florida Artificial Intelligence Research Society Conference, 2016.

[97] L. Perreault, M. Thornton, R. Goodman, and J. W. Sheppard. Extending
continuous time Bayesian networks for parametric distributions. In IEEE SSCI,
2015.

233

[98] L. Perreault, M. Thornton, and J. W. Sheppard. Deriving prognostic continuous
time Bayesian networks from fault trees. In Annual Conference of the
Prognostics and Health Management Society 2016, 2016.

[99] L. Perreault, M. Thornton, and J. W. Sheppard. Embedding phase-type
distributions in continuous time Bayesian networks. Submitted to the Journal
of Artificial Intelligence Research (JAIR), 2016.

[100] L. Perreault, M. Thornton, and J. W. Sheppard. Valuation and optimization
for performance based logistics using continuous time Bayesian networks. IEEE
AUTOTESTCON, pages 1–10, 2016.

[101] L. Perreault, M. Thornton, J. W. Sheppard, and J. DeBruycker. Disjunctive in-
teraction in continuous time Bayesian networks. Submitted to the International
Journal of Approximate Reasoning (IJAR), 2016.

[102] L. Perreault, M. Thornton, S. Strasser, and J. W. Sheppard. Deriving
prognostic continuous time Bayesian networks from D-matrices. In IEEE
AUTOTESTCON Proceedings, 2015, pages 152–161, 2015.

[103] L. Perreault, M. P. Wittie, and J. Sheppard. Communication-aware distributed
pso for dynamic robotic search. In IEEE Symposium on Swarm Intelligence
(SIS), 2014, pages 1–8. IEEE, 2014.

[104] A. Pfeffer. Asynchronous dynamic Bayesian networks. In Proceedings of the
21st Conference on Uncertainty in Artificial Intelligence (UAI), 2005.

[105] L. Portinale and D. Codetta-Raiteri. Generalizing continuous time Bayesian
networks with immediate nodes. In Workshop on Graph Structures for
Knowledge Representation and Reasoning, 2009.

[106] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering. Combi-
natorial Minimization: Method of Simulated Annealing. Cambridge University
Press, 1986.

[107] S. Qiao, C. Tang, H. Jin, T. Long, S. Dai, Y. Ku, and M. Chau. PutMode:
prediction of uncertain trajectories in moving objects databases. Applied
Intelligence, 33(3):370–386, 2010.

[108] H. Raiffa. Decision analysis: introductory lectures on choices under uncertainty.
MD computing: computers in medical practice, 10(5):312, 1968.

[109] S. Rajarshi and M. Rajarshi. Bathtub distributions: a review. Communications
in Statistics — Theory and Methods, 17, 1988.

[110] V. Rao and Y. W. Teh. Mcmc for continuous-time discrete-state systems. In
Advances in Neural Information Processing Systems, pages 701–709, 2012.

234

[111] V. Rao and Y. W. Teh. Fast MCMC sampling for Markov jump processes and
extensions. Journal of Machine Learning Research (JMLR), 14(1):3295–3320,
2013.

[112] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal
representations by error propagation. Technical report, DTIC Document, 1985.

[113] F. Sahin, M. Ç. Yavuz, Z. Arnavut, and Ö. Uluyol. Fault diagnosis for airplane
engines using Bayesian networks and distributed particle swarm optimization.
Parallel Computing, 33(2):124–143, 2007.

[114] S. Saria, U. Nodelman, and D. Koller. Reasoning at the right time granularity.
In Proceedings of the 23rd Conference Annual Conference on Uncertainty in
Artificial Intelligence (UAI), 2007.

[115] R. D. Shachter. Evaluating influence diagrams. Operations research, 34(6):871–
882, 1986.

[116] R. D. Shachter. Probabilistic inference and influence diagrams. Operations
Research, 36(4):589–604, 1988.

[117] G. R. Shafer and P. P. Shenoy. Probability propagation. Annals of Mathematics
and Artificial Intelligence, 2(1-4):327–351, 1990.

[118] C. R. Shelton and G. Ciardo. Tutorial on structured continuous-time Markov
processes. Journal of Artificial Intelligence Research, 51:725–778, 2014.

[119] J. Sheppard and S. Butcher. A formal analysis of fault diagnosis with D-
matrices. Journal of Electronic Testing, 23(4):309–322, 2007.

[120] D. Shi, X. Tang, and J. You. An intelligent system based on adaptive CTBN
for uncertainty reasoning in sensor networks. Intelligent Automation & Soft
Computing, 16(3):337–351, 2010.

[121] D. Shi and J. You. Update rules for parameter estimation in continuous time
Bayesian network. In PRICAI 2006: Trends in Artificial Intelligence, pages
140–149. Springer, 2006.

[122] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep fisher networks for large-
scale image classification. In Advances in neural information processing systems,
pages 163–171, 2013.

[123] W. R. Simpson and J. W. Sheppard. System Test and Diagnosis. Kluwer
Academic Publishers, Norwell, MA, 1994.

[124] A. Sols, D. Nowick, and D. Verma. Defining the fundamental framework of an
effective performance-based logistics (PBL) contract. Engineering Management
Journal, 19(2):40–50, 2007.

235

[125] A. Srinivasan, T. Ham, S. Malik, and R. K. Brayton. Algorithms for discrete
function manipulation. In Computer-Aided Design, 1990. ICCAD-90. Digest of
Technical Papers., 1990 IEEE International Conference on, pages 92–95. IEEE,
1990.

[126] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. Exploiting structural
duplication for lifetime reliability enhancement. In Proceedings of the 32nd
Annual International Symposium on Computer Architecture, pages 520–531.
IEEE Computer Society, 2005.

[127] F. Stella and Y. Amer. Continuous time Bayesian network classifiers. Journal
of biomedical informatics, 45(6):1108–1119, 2012.

[128] W. J. Stewart. Probability, Markov chains, queues, and simulation: the
mathematical basis of performance modeling. Princeton University Press, 2009.

[129] S. Strasser and J. Sheppard. An empirical evaluation of Bayesian networks
derived from fault trees. In Proceedings of the IEEE Aerospace Conference,
pages 1–13, March 2013.

[130] L. Studer, L. Paulevé, C. Zechner, M. Reumann, M. R. Mart́ınez, and
H. Koeppl. Marginalized continuous time bayesian networks for network
reconstruction from incomplete observations. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, pages 2051–2057. AAAI Press,
2016.

[131] L. Sturlaugson, L. Perreault, and J. W. Sheppard. Factored performance
functions and decision making in continuous time Bayesian networks. Journal
of Applied Logic, 2016.

[132] L. Sturlaugson and J. W. Sheppard. Factored performance functions with
structural representation in continuous time bayesian networks. In FLAIRS
Conference, 2014.

[133] L. Sturlaugson and J. W. Sheppard. Factored performance functions with
structural representation in continuous time Bayesian networks. In The Twenty-
Seventh International FLAIRS Conference, 2014.

[134] L. Sturlaugson and J. W. Sheppard. The long-run behavior of continuous time
bayesian networks. In UAI, pages 842–851. Citeseer, 2015.

[135] L. Sturlaugson and J. W. Sheppard. Sensitivity analysis of continuous time
bayesian network reliability models. SIAM/ASA Journal on Uncertainty
Quantification, 3(1):346–369, 2015.

236

[136] L. Sturlaugson and J. W. Sheppard. Uncertain and negative evidence in
continuous time bayesian networks. International Journal of Approximate
Reasoning, 70:99–122, 2016.

[137] G. J. Szekely and M. L. Rizzo. Hierarchical clustering via joint between-
within distances: Extending ward’s minimum variance method. Journal of
Classification, 22(2):151–183, 2005.

[138] S. Villa, M. Rossetti, et al. Learning continuous time Bayesian network
classifiers using mapreduce. Journal of Statistical Software, 62(3):1–25, 2014.

[139] S. Villa and F. Stella. A continuous time Bayesian network classifier for intraday
FX prediction. Quantitative Finance, 2014.

[140] S. Villa, F. Stella, K. Martiny, R. Möller, C. Muise, J. C. Beck, S. A. McIlraith,
A. Moreo Fernández, A. Esuli, F. Sebastiani, et al. Learning continuous time
bayesian networks in non-stationary domains. Journal of Artificial Intelligence
Research, 57:1–37, 2016.

[141] J. Weiss, S. Natarajan, and D. Page. Multiplicative forests for continuous-time
processes. In Advances in neural information processing systems, pages 458–466,
2012.

[142] J. C. Weiss, S. Natarajan, and C. D. Page, Jr. Learning when to reject an
importance sample. In AAAI (Late-Breaking Developments), volume WS-13-17
of AAAI Workshops. AAAI, 2013.

[143] P. Werbos. Beyond regression: New tools for prediction and analysis in the
behavioral sciences. PhD thesis, Harvard University, Cambridge, MA, 1974.

[144] B. K. Wong, T. A. Bodnovich, and Y. Selvi. A bibliography of neural
network business applications research: 1988–september 1994. Expert Systems,
12(3):253–261, 1995.

[145] B. K. Wong, V. S. Lai, and J. Lam. A bibliography of neural network
business applications research: 1994–1998. Computers & Operations Research,
27(11):1045–1076, 2000.

[146] W. A. Woodward, P. Whitney, and P. W. Eslinger. Minimum Hellinger
distance estimation of mixture proportions. Journal of Statistical Planning
and Inference, 48(3):303–319, 1995.

[147] J. Xu. A Continuous Time Bayesian Network Approach for Intrusion Detection.
PhD thesis, University of California Riverside, 2010.

237

[148] J. Xu and C. R. Shelton. Continuous Time Bayesian Networks for Host Level
Network Intrusion Detection. In W. Daelemans, B. Goethals, and K. Morik,
editors, Machine Learning and Knowledge Discovery in Databases, volume
5212 of Lecture Notes in Computer Science, pages 613–627. Springer Berlin
/ Heidelberg, 2008.

[149] J. Xu and C. R. Shelton. Intrusion detection using continuous time Bayesian
networks. Journal of Artificial Intelligence Research (JAIR), 39(1):745–774,
2010.

[150] S. Yang, T. Khot, K. Kersting, and S. Natarajan. Learning continuous-time
bayesian networks in relational domains: A non-parametric approach. In AAAI,
pages 2265–2271, 2016.

[151] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free-energy approx-
imations and generalized belief propagation algorithms. IEEE Transactions on
Information Theory, 51(7):2282–2312, 2005.

[152] L. Yu, H. Chen, J. Zhou, H. Yin, and H.-Z. Huang. Fatigue life prediction of
low pressure turbine shaft of turbojet engine. International Journal of Turbo
& Jet-Engines, 2016.

[153] V. M. Zolotarev. Probability metrics. Theory of Probability and its Applications,
28(2):264–287, 1983.

[154] M. Zou and S. D. Conzen. A new dynamic bayesian network (dbn) approach
for identifying gene regulatory networks from time course microarray data.
Bioinformatics, 21(1):71–79, 2005.

	Titlepage
	Copyright
	Dedication
	Acknowledgements

	Table of Contents
	List of Tables
	List of Figures

	Abstract
	Chapter 1 — Introduction
	Motivation
	Contributions
	Organization

	Chapter 2 — Background
	Bayesian Networks
	Dynamic Bayesian Networks
	Markov Processes
	Continuous Time Bayesian Networks

	Chapter 3 — Non-Exponential Parametric Distributions
	Background
	Related Work
	Embedding Process
	Learning Phase-Type Distributions
	Experiments
	Parametric Representation and Interpretation
	Summary

	Chapter 4 — Continuous Time Decision Networks
	Background
	Continuous Time Decision Networks
	Experiments
	Summary

	Chapter 5 — Compact Representations
	Background
	Motivation
	Distance Metrics for Transition Distributions
	Hierarchical Clustering of Intensity Matrices
	Mapped Conditional Intensity Matrices
	Tree-Structured Conditional Intensity Matrices
	Comparison Between MCIMs and TCIMs
	Summary

	Chapter 6 — Continuous Time Disjunctive Interaction
	Background
	Continuous Time Disjunctive Interaction
	Converting DCIMs to CIMs
	Approximate Inference with Disjunctive Interaction
	Experiments
	Summary

	Chapter 7 — Applications
	Background
	Deriving CTBNs from D-matrices
	Deriving CTBNs from Fault Trees
	Vehicle System Demonstration
	Usage and Decision Making
	Conclusion

	Chapter 8 — Conclusion
	Contributions
	Future Work

	References Cited

