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ABSTRACT

Factored Evolutionary Algorithms (FEA) define a relatively new class of
evolutionary-based optimization algorithms that have been successfully applied
to various problems, such as training neural networks and performing abductive
inference in graphical models. FEA is unique in that it factors the function being
optimized by creating subpopulations that optimize over a subset of dimensions of the
function. However, unlike other optimization techniques that subdivide optimization
problems, FEA encourages subpopulations to overlap with one another, allowing
subpopulations to compete and share information. Although FEA has been shown
to be very effective at function optimization, there is still little understanding with
respect to its general characteristics. In this dissertation, we present seven results
exploring the theoretical and empirical properties of FEA.

First, we present a formal definition of FEA and demonstrate its relationships
to other multiple population algorithms. Second, we demonstrate that FEA’s
success is independent of the underlying optimization algorithm by evaluating the
performance of FEA using a wide variety of evolutionary- and swarm-based algorithms
over single-population and non-overlapping versions. Third, we demonstrate that
for a given problem, there is an optimal way to generate groups of overlapping
subpopulations derived using the Markov blanket in Bayesian networks. Fourth,
we establish that a class of optimization functions like NK landscapes can be mapped
directly to probabilistic graphical models. Additionally, we demonstrate that factor
architectures derived from Markov blankets maintain better diversity of individuals
in their population. Fifth, we present a new discrete Particle Swarm Optimization
(PSO) algorithm and compare its performance to competing approaches. In addition,
we analyze the performance of FEA versions of discrete PSO and discover that
FEA masks the poor performance of search algorithms. We show what conditions
are necessary for FEA to converge and scenarios where FEA may become stuck in
suboptimal regions in the search space. Finally, we explore the performance of FEA on
unitation functions and discover several instances where FEA struggles to outperform
single-population algorithms. These results allow us to determine which situations
are appropriate for FEA when using solving real-world problems.
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CHAPTER ONE

INTRODUCTION

Bin packing, the traveling salesperson problem, job shop scheduling, training

neural networks, and inference in Bayesian networks are all important problems that

can be solved using optimization [103]. However, many problems, including the ones

mentioned above, are NP-complete, and there is a need for algorithms that can find

good approximate solutions to such problems. Additionally, there are problems that

are not NP-complete but are still difficult to solve. This includes problems where the

output of a function may be non-convex, noisy, stochastic, or dependent on human

feedback.

One class of algorithms for optimizing these types of problems is local search

algorithms. Local search algorithms work by maintaining a solution or set of solutions

and attempting to locate better solutions by exploring variations of the current

solution or set of solutions [51]. The most basic local search algorithm is a Hill

Climber, which maintains a single point that is updated by moving to a neighbor

of the current point that is the best solution to the optimization problem [50, 67].

These types of algorithms are popular because they are weak methods, meaning very

few assumptions are made about the search space, which allows an algorithm to be

applied to a wide range of problems with little or no modifications to algorithm.

This is different than strong methods, which make several assumptions about the

underlying optimization problem [18,100].



2

While local search algorithms like Hill Climbers are able to locate good solutions

to a wide range of problems, they often struggle on more complex problems with

rugged search spaces. For example, while exploring the search space, an algorithm

may become stuck in what are called local optima, which are points in the space that

are better than all other points in the immediate neighborhood. This is different

than a global optimum, which is a point in the search space that is better than all

other points in the space [89,103]. Local optima are a challenge for search algorithms

to escape because they require a local search algorithm to first move toward worse

solutions before the algorithm can move toward better solutions. In this dissertation,

we discover search properties of a local search algorithm, called Factored Evolutionary

Algorithms, by exploring empirical and theoretical experiments.

1.1 Evolutionary Algorithms

Stochastic search algorithms are a class of a Local Search algorithms often used

to solve difficult problems because the randomness used in the algorithms allows

the possibility for them to escape local optima. One of the best-known families

of stochastic search algorithms are Evolutionary Algorithms (EA). Algorithms such

as Genetic Algorithms (GA) [46], Genetic Programming (GP) [55], Evolution

Strategies (ES) [86], Differential Evolution (DE) [105], and Estimation of Distribution

Algorithms (EDA) [3] are types of EAs. These algorithms work by maintaining a

population of individuals and use a fitness function to evaluate the quality of an

individual. An EA then modifies its population according to a set of update rules.

This process is repeated until a convergence criterion is met. EAs are inspired by

Darwinian evolution: the best solutions in the population are more likely to survive

and pass their traits onto future generations [22].
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Another class of stochastic search algorithms is Swarm Intelligence (SI), which

includes algorithms such as Ant Colony Optimization (ACO) [25] and Particle Swarm

Optimization (PSO) [48]. ACO and PSO are based upon the movement in a

population of animals, such as ants searching for food or fish moving in a school [29].

Similar to EA, SI maintains a population of individuals and moves the individuals

based on either the population or swarm dynamics. For the sake of simplicity, in

this dissertation we will refer to an EA as any population-based stochastic search

algorithm, including SI.

Population-based algorithms like EAs are well suited for optimization problems

where the search space is difficult to characterize. One reason EAs are so well suited

is that the population of solutions allows an EA to explore a wide range of solution.

Additionally, because EAs are weak methods, an EA can be applied to a wide range

of tasks with minimal or no changes made to the EA algorithm [81].

While EAs have been successfully applied to a wide range of problems, there

are drawbacks to EAs. The first is that they suffer from the curse of dimensionality,

which says that as the number of variables in a problem increases, the number of

samples required to cover the space grows exponentially [12, 45, 102]. Because more

samples are required to cover the search space, an EA requires more iterations in

order to locate a solution of a specified quality. For example, assume a random

search algorithm is applied to a function with only eight variables, each of which can

take on eight different values. Additionally, each state is ordered and distinct. This

results in a total of 88 different states. If the search algorithm explores 10,000 samples,

the probability of finding one of the top 500 solutions is 0.2980 percent. However, if

the discrete problem has ten variables each of which can take on ten different values,

there are now 1010 different states. With 10,000 randomly generated samples, the

probability of finding one of the top 500 solutions is now only 0.0005 percent.
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While this example assumed a random search, a GA or PSO will also struggle

on locating good solutions as the dimensionality of the search space increases [114].

Because more samples are required for the EA to locate good solutions, the EA

requires larger population sizes or additional iterations. However, simply adding

more individuals or iterations does not always imply a larger exploration of the search

space [12].

Another drawback to EAs is that certain algorithms, like a GA, are susceptible

to hitchhiking, which is when poor values become associated with good schemas [99].

This is influenced by the he representation and the operators of the GA. This

causes the GA to converge to suboptimal solutions or requires more generations to

locate good solutions [66]. Similarly, PSO can be prone to what is called two steps

forward and one step back (TSFOSB), which happens when near optimal parts of an

individual’s current position can be thrown away if the rest of an individual’s position

leads to low fitness [113]. The result is that PSO must spend additional iterations to

recover the values that were thrown away. Additionally, the probability of hitchhiking

or TSFOSB increases as the problem dimensionality increases [113].

Cooperative Coevolutionary Algorithm (CCEA) is an extension to EAs that

addresses the curse of dimensionality and hitchhiking. The algorithm works by

subdividing the dimensions into disjoint subsets which are then optimized over

independently of other subpopulations. To evaluate a solution in a subpopulation, a

process called collaboration is performed where a complete solution is created using

the remaining subpopulations. ne of the earliest CCEA was developed by Potter and

De Jong, the Cooperative Coevolutionary Genetic Algorithm (CCGA), in which the

algorithm creates several subpopulations that represent a subcomponent of the full

solution [82]. A full solution is then obtained by assembling representative members

of each of the subpopulations. CCGA’s assume that if a subpopulation locates a good
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solution in its subspace, then the values will also lead to good solutions in the entire

search space. When this assumption holds, the CCGA is able to explore the search

space more efficiently than a full GA [82].

Van den Bergh and Engelbrecht extended the idea of CCGA by applying the

concept to PSO in an algorithm called Cooperative Particle Swarm Optimization

(CPSO) [113]. CPSO reduces the likelihood of the TSFOSB phenomenon by

subdividing the dimensions of the search space similar to CCGA. Later work by

Shi et al. developed an algorithm called Cooperative Coevolutionary Differential

Evolutionary (CCDE) that extends CCGA and CPSO to Differential Evolution [99].

One drawback of CCEAs is that each of the subpopulations is assumed to be

disjoint. Previous work on CCEA has shown that when relationships exist between

subpopulations, the performance of the algorithm degrades [114]. However, for certain

problems, CCEA will be unable to create disjoint subpopulations while minimizing

interactions between subpopulations. For example, suppose in a function with three

variables, X1, X2, and X3, that there is a relationship between X1 and X2, and

X2 and X3. Suppose in subdividing the dimensions for CCEA, each subpopulation

optimizes over a single variable. But this means that a relationship exists between

the subpopulation for X1 and the subpopulation for X2. A person can attempt to

create a subpopulation that optimizes over both X1 and X2; however, there still

exists a relationship with the population optimizing over variable X3. This example

demonstrates the need for a CCEA that is able to create more flexible subpopulations.

1.2 Factored Evolutionary Algorithms

One way to mitigate the interactions between factors like those in the previous

example is to allow subpopulations to overlap with each another. In the previous

example, one could create a subpopulation that optimizes over variables X1 and X2
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and another subpopulation that optimizes over X2 and X3. This configuration allows

all of the variable interactions in the optimization problem to be covered by at least

one subpopulation. Factored Evolutionary Algorithm (FEA) is a generalization of

CCEA that relaxes the assumption that subpopulations must be disjoint, allowing

for a more flexible set of subpopulations. FEA generalizes Overlapping Swarm

Intelligence (OSI) such that any EA can be used in an overlapping subpopulation.

The idea behind FEA is similar to how polynomials can be decomposed into

a product of factors. FEA decomposes the optimization problem into a set of

subpopulations, or factors, which, when put together, represent full solutions to the

problem. Because there are multiple populations optimizing over the same variable,

the algorithm requires a routine for resolving a conflict in values between populations

when assembling a full solution. However, FEA encourages factors to overlap with

one another, which allows the shared dimensions in overlapping factors to compete

for inclusion in the full solution [33].

There are three main functions that FEA uses: Update, Compete, and Share.

Update is the first step, which iterates over all of the factors and allows each factor

to optimize over its individual variables. Next, FEA performs Compete, which finds

sets of values from each factor that create a full solution with a high fitness. Finally,

FEA performs Share by using the full solution to inject information back into the

factors.

1.3 Research Questions

Prior work on CCEA, explored the most effective method to subdivide an

optimization problem, which we call the factor architecture. For example, Shi et

al.’s CCDE algorithm used two different factor architectures: one that divides the

problem into only two populations, and another that assigns each variable to a
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single subpopulation [99]. Van den Bergh and Engelbrecht used an architecture that

subdivided the problem into six disjoint subpopulations [114]. However, both papers

used the same factor architectures for all problems and failed to take into account

variable interactions.

In the first application of OSI to train neural networks, Ganesan Pillai and

Sheppard created a factor for each unique path of the neural network, starting and

ending at an input and output node, respectively [80]. While this architecture was

found to be effective for training deep neural networks, the number of factors grows

exponentially as the number of layers in the deep neural network increases. Later work

by Fortier et al. used a different factor architecture where each subpopulation learned

the weights for each neuron in the neural network [35]. This architecture was also

found to be an effective way to train neural networks and avoided the problem of the

exponential increase in the number of subpopulations. This highlights that finding

effective and efficient ways to create factor architectures in FEA is an important

decision to consider when applying the algorithm to different problems.

Given a problem, one would like to derive the optimal factor architecture without

empirically testing several different architectures. One open question is: Given an

optimization problem that contains a set of variable interactions, is it possible to use

the same procedure for deriving factor architecture from one set of problems and apply

it to another group of problems? Additionally, if there exists a factor architecture

that performs well on a set of problems, are there problems in which the same factor

architecture does not perform well? This also raises the question of what causes the

factor architecture to perform well on certain problems and poorly on other problems.

An even more general question is what types of problems is FEA effective

on? Previous work has shown FEA to perform well on a variety of tasks, such

as training neural networks, performing inference in Bayesian networks, learning
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Bayesian networks, and routing data in a sensor network. However, the No Free

Lunch Theorem states that there is no one algorithm that is universally the best

search or optimization algorithm [122]. In other words, while one algorithm may be

efficient on one class of problems, it is guaranteed to perform poorly on another class

of problems. This raises the question of what sets of problems do FEAs perform well

on and what sets do they perform poorly on?

Finally, we raise the questions, what are the general performance characteristics

of FEA and where does it gain its performance advantage over traditional population

algorithms? One specific question is what are the convergence properties of FEA?

While some of the performance of FEA can be attributed to the subdivision of the

problem over multiple subpopulations, the overlap of the subpopulations may also be

a major contributor to FEA’s performance. This also raises the question as to how

much of a role the competition step in FEA contributes to FEA’s performance.

In this dissertation, we attempt to answer the following three questions: what

is the optimal configuration for FEA, what kind of problems does FEA work well

on, and what are the general search characteristics of FEA? While there are many

other questions concerning FEA, those questions can be classified under one or more

of these three questions. Throughout the rest of the dissertation, we will refer back

to how each contribution helps answer these questions.

1.4 Contributions

In this dissertation, we make several significant contributions to the fields of

evolutionary computation, artificial intelligence, and computer science.

• We present the first formal definition of FEA. To do so, we provide a

framework that allows us to define EAs containing multiple populations. This
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framework allows us to formally define not only FEA, but also other multi-

population algorithms, such as the Island Model and CCEA. In addition to this

framework, we present the three primary subfunctions in FEA and a complexity

analysis of each function. This formal definition of FEA advances the field

of evolutionary computation by establishing the relationship between multi-

population algorithms, regardless of the underlying optimization algorithm

or the number of variables a subpopulation is optimizing. Additionally, the

complexity analysis of FEA advances the understanding of FEA by showing

which functions of FEA have the largest influence on its runtime. This helps

answer what are the general search characteristics of FEA.

• We also demonstrate empirically that FEA’s performance is not dependent on

the underlying optimization algorithm. Previous work with FEA was limited to

using PSO. Using our formal definition, we test FEA on a set of test functions

using a variety of local search-based optimization algorithms and show that

FEA almost always outperforms single-population and CCEA versions. These

experiments advance the field of evolutionary computation by demonstrating

that the FEA formalization of overlapping populations is what provides the

main advantage.

• We study different factor architectures on a multiple groups of different prob-

lems. While there has been some work discussing different factor architectures,

there has been little work to optimize these factor architectures for FEA. In

this dissertation, we empirically demonstrate that the performance of FEA is

tied to the factor architecture. These results advance the knowledge of how to

efficiently create subpopulations in multi-population algorithms.
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• Based on the above, we formally demonstrate how various optimization

problems can be mapped to Factor Graphs. Furthermore, by mapping a problem

to a factor graph, we can use the resulting structure as a means to derive a factor

architecture for FEA. These results further our understanding of the relationship

between optimization problems and probabilistic graphical models.

• While looking at the performance of FEA using PSO for different optimization

problems, we discovered the opportunity to improve upon existing PSO

algorithms for discrete and categorical optimization. As a result, we develop and

analyze a new PSO algorithm, called Integer and Categorical PSO (ICPSO).

ICPSO provides a novel and effective method to use PSO when solving discrete

and categorical optimization problems.

• We prove the conditions required for FEA to converge and show that FEA

is theoretically susceptible to becoming stuck in suboptimal locations in the

search space. However, we provide experiments demonstrating that this rarely

occurs. These results further our understanding of the impact an overlapping

factor architecture has on the performance of FEA and on the overall dynamics

of FEA.

• Finally, we also investigate the performance of FEA on deceptive problems like

unitation and Royal Road functions. Much of the previous work on FEA was

tested on commonly used test functions. However, no work explored FEA’s

performance on functions that are purposefully deceptive. By testing and

exploring the performance of FEA on deceptive functions, we discover that FEA

struggles on problems where there is no clear gradient in the search space. This

is caused by the Compete step being unable to efficiently perform competition

between overlapping factors.
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1.5 Overview

In this section, we describe the organization of the remaining chapters of this

dissertation and give a brief overview of each chapter. Chapter 2 presents the

background material necessary to understand the work presented in this dissertation.

This includes a definition of EAs followed by several examples of EAs, such as Genetic

Algorithms, Particle Swarm Optimization, and Differential Evolution. Additionally,

we present an in-depth review of related work.

In Chapter 3, we present a framework for defining multi-population algorithms.

We then demonstrate how algorithms like the Island Model, CCEA’s, and FEA fit

into this framework. This is followed by presentation of the FEA algorithm and each

of its subfunctions. Additionally, we present results comparing FEA with CCEA

and single-population versions of different algorithms. In doing so, we show that

FEA generalizes to other types of algorithms. Additionally, we demonstrate FEA’s

performance gains over CCEA and single-population versions.

In Chapter 4, we explore a variety of factor architectures on several different

problems, such as abductive inference in Bayesian networks, maximizing NK

landscapes, and optimizing commonly used benchmark test functions. Given a

problem, we investigate different ways to create an overlapping factor structure. We

then test each of those different architectures on a set of different problem instances

demonstrate that there do exist factor architectures that are better than others.

Additionally, we present theorems proving how various optimization functions can

be mapped to factor graphs. These theorems are used to derive a general process

for generating a factor architecture given an optimization problem and its variable

interactions. We then present more results demonstrating the benefit of this factor
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architecture and explore where this architecture gains its performance over other

architectures.

In Chapter 5, we present our ICPSO algorithm. This includes a review of

other discrete and categorical PSO algorithms, followed by several experiments

demonstrating ICPSO performance over competing approaches. We show how FEA

versions of the discrete PSO algorithms perform on NK landscapes and abductive

inference in Bayesian networks and discover that FEA is able to mask the poor

performance of several discrete PSO algorithms.

Chapter 6 presents an analysis of FEA convergence. First, we present results

that prove the full global solution in FEA will converge to a single point. We also

present a theorem showing that FEA may become stuck in suboptimal locations in

the search space. However, we also empirically demonstrate that, in practice, the

probability of becoming stuck in these suboptimal locations is very low.

In Chapter 7, we investigate the performance of FEA on unitation models, such

as the Royal Road and Long Path functions. These results demonstrate instances

where FEA struggles to perform as well as single-population algorithms. Additionally,

we discover that in these cases where FEA struggles, it is because the Compete step

in FEA is unable to efficiently perform competition between overlapping factors.

We conclude the dissertation in Chapter 8 with a summary of the dissertation

and several areas for future work. Additionally, we summarize the key contributions.
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CHAPTER TWO

BACKGROUND AND RELATED WORK

FEA is a generalization of EA that allow for the subdivision of the optimization

problem. To understand the motivation for FEA’s factoring of optimization problems,

we first present a background of different EAs along with several examples. Next, we

discuss drawbacks of different algorithms followed by related work on how to mitigate

those issues in EAs.

2.1 Evolutionary Algorithms

EA are stochastic local search algorithms that use biologically inspired opera-

tions to optimize a given function [22, 89]. Given a set of solutions, or a population,

EA modify each solution according to a specified update rule. These individuals

help guide the search process to locate better solutions. One of the most common

examples of an EA is a Genetic Algorithm (GA), which is based upon Darwinian

Evolution [46,65].

Often, the term EA is reserved for algorithms that contain the notion of evolving

solutions. However, for the safe of brevity, we define an EA as any stochastic local

search algorithm. For example, Particle Swarm Optimization (PSO) is a Swarm

Algorithm based upon the swarming of insects or schooling of fish [22,29,48]. While

PSO is biologically inspired, the update rules lack the notion of biological evolution.

Additionally, our definition of EA covers stochastic search algorithms that are not

biologically inspired, such as Hill Climbing.
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EAs are popular search algorithms for several reasons. First, the algorithm is

a weak method, which means it can be applied to a wide variety of search problems,

often with no changes to the algorithm [89, 100]. This “black box” optimizer allows

a user to implement a single algorithm that can then be applied to a wide range

tasks [22]. Another reason EAs are popular is that they are often very successful

in finding good solutions to difficult problems [89]. For example, if the problem

has complex, nonlinear variable interactions, a user does not have to worry about

making simplifying assumptions about the problem to allow for analytically solving

the problem. Instead, the black box can be applied to solve the problem without any

changes made to the task. Also, their performance on complex problems may often

be better than problem-specific algorithms. For example, Fortier et al. presented a

GA that outperformed domain-specific algorithms on abductive inference in Bayesian

networks [33]. Finally, EAs are popular because their memory footprint is usually

a constant or bounded amount [89]. One domain-specific algorithm for abductive

inference in Bayesian networks is called mini-bucket elimination, which is time-and-

space exponential in the induced width of the Bayesian networks ordered moral

graph [23, 24]. However, the space complexity for PSO is a constant amount that

is dependent only on the number of individuals in the population.

We will begin to define an EA as follows, but first we formally define what an

optimization problem is. Assume that, for a given task to solve, there exists a function

f : DN → R with domain DN with parameters X = 〈X1, X2, . . . , XN〉. We refer to

Xi as a dimension or variable in the function f . D = 〈D1, D2, . . . , DN〉 and each Di

defines a domain for each variable Xi [103,109]. The goal of optimization is to find a

set of values for xg = 〈x1, x2, . . . , xn〉 such that f(xg) ≤ f(x) for all x ∈ D. If xg is

less than or equal to all other points in the search space, it is called a global optimum.

Minimization attempts to find a set of values minimizing f , whereas maximization
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tries to find a set of values maximizing f . Throughout this dissertation, we will

assume we are dealing with minimization problems when describing algorithms.

However, finding a local optimum is often very difficult and often one can settle

for finding a xl such that f(xl) ≤ f(x) for all x ∈ D’, where D’ is a subset of the

search space. For example, D’ may be the sets of points within some distance of xl.

This is referred to as finding the local optimum.

EAs contain a population of D individuals at time t, which we can represent as

P t = {P1,P2, . . . ,PD}. Note that some EAs have a population size of one, which we

will discuss later. Additionally, some EAs will also change the size of the population

P t throughout time. Each individual Pi represents a vector 〈Xi,1, Xi,2, . . . , Xi,n〉 that

represents a candidate solution. These solutions have a fitness or score Si, which in

this dissertation will always be equal to f(Pi).

Algorithm 2.1 presents a general process for an EA. An EA first performs a

one-time initialization of the individuals. Then, each candidate solution is modified

according to a set of defined update rules. Ideally these modifications to the candidate

solutions cause the average fitness of the population to increases. In addition, these

modifications are usually stochastic in nature, enabling a broader exploration of the

search space. After the evaluating all of the individuals on the fitness function, the

EA updates the solution XAns that is returned by the algorithm . The fitness of XAns

is denoted as SAns. This process is repeated until some stopping criterion is met [29].

We refer to an update to the entire population as an iteration.

The selection of final solution Xi is algorithm dependent. For example, GA’s,

often return the individual with the best current fitness after the algorithm has

stopped at time tE. This is represented as

XAns = Pi where Si ≤ Sj ∀ Pj ∈ P tE
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Algorithm 2.1: General Evolutionary Algorithm

Input: Function f to optimize
Output: Solution XAns

1: P0 ← Initialize Individuals
2: t← 0
3: repeat
4: Update Individuals P t

5: Evaluate Individuals on f
6: XAns ← Get Candidate Solution from P t

7: t← t+ 1
8: until Stopping Criteria Met
9: return XAns

where tE is the number of iterations the EAs performs. Other algorithms, such as

PSO, return the best the solution found throughout the entire search process:

XAns = Pi where Si ≤ Sj ∀ Xj ∈ P t ∧ ∀ t ≤ tE.

Additionally, there are several ways that the stopping criterion can be defined.

However, in this dissertation, we will only use the following two methods.

• Set Iterations — Stop when a defined total number of iterations have been

performed. With this method, the user must specify the value for the maximum

number of iterations tE. This causes the EA to stop updating when tE < t.

Often this criteria is used because it allows for the specification of only a single

parameter and allows the user to to have a fine control for how may iterations

are performed. One drawback, however, is that if it is not set correctly, the

algorithm may perform poorly because the EA was not allowed to run for enough

iterations. Conversely, if it is set to high, the EA may spend an unnecessary
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amount of time updating the individuals when a good solution has already been

located.

• Stagnation — Stop when the fitness of XAnswer fails to improve by a certain

value over a set number of iterations. This version requires the user to not

only specify the number of iterations L for stagnation to occur, but also the

maximum amount of change ε that is considered to be stagnation. Formally,

this is represented as |St+L
Ans − St

Ans| ≤ ε [29, 90].

As discussed, the choice of the different function implementations in the EA

from Algorithm 2.1 is dependent on the specific EA algorithm. Though there are

many more stopping criteria than the ones discussed here, this dissertation focuses

on only four: Hill Climbing, Genetic Algorithms, Differential Evolution, and Particle

Swarm Optimization.

2.1.1 Hill Climbing

One of the simplest EAs is the Hill Climbing (HC) algorithm, which is shown in

Algorithm 2.2. In most cases, the algorithm works by maintaining only one individual,

i.e., a population size of one. The HC shown in Algorithm 2.2 gives a generalized

version of HC that allows for multiple individuals, which is used in experiments later

in this dissertation.

During each iteration, an individual examines all positions neighboring its

current location (line 5). Note there are various ways to generate neighbors of

the current solution. For example, one way is to generate all points that are an

ε distance away from the current solution [50]. However, this may generate an

overwhelming number of solutions to evaluate and therefore may be unfeasible in

practical applications. An alternate method is to generate a specific number of

points based on random changes to the current solution. In this dissertation, we
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use a neighborhood function that generates all points that differ by an ε distance in

only one dimension.

If there is a neighboring solution with better fitness, then the individual moves

to the new location (lines 8 - 10). This process is repeated until the individual can

no longer move to a neighbor with a better fitness. Because hill climbing is a greedy

search and allows only the individual to move to better locations, it can become

trapped in local optima. There have been several extensions to hill climbing, such

as simulated annealing, that allow the individual to move to locations with worse

locations [51,67]. For the purpose of this dissertation, we restrict ourselves to simple

HC.

Algorithm 2.2: Hill Climbing Algorithm

Input: Function f to optimize
Output: Set of values XAns

1: P0 ← Initialize Individuals
2: t← 0
3: repeat
4: for all Pi ∈ P t do
5: PN ← Neighbors(Pi)
6: Evaluate Population PN on f
7: PBest ← Best Solution in PN

8: if SBest < Si then
9: Pi ← PBest

10: end if
11: end for
12: XAns ← Get Candidate Solution from P t

13: t← t+ 1
14: until Stopping Criteria Met
15: return XAns
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2.1.2 Genetic Algorithms

One of the most well-known Evolutionary Algorithms is the Genetic Algorithm

(GA). GAs were inspired biologically by the idea of survival of the fittest. Each

individual in a GA acts like a chromosome and is modified in a manner that mimics

genetics [46,65]. The pseudocode is shown in Algorithm 2.3.

Algorithm 2.3: Genetic Algorithm

Input: Function f to optimize
Output: Set of values XAns

1: P0 ← Initialize Individuals
2: t← 0
3: repeat
4: P ′ ← ∅
5: for i = 1 to D do
6: PSelected ← Select Indivduals from P
7: Pi ← Perform Crossover PSelected

8: Mutate Pi

9: P ′ ← P ′ ∪ {Pi}
10: end for
11: P t ← P ′
12: t← t+ 1
13: until Stopping Criteria Met
14: XAns ← Get Best Candidate Solution from P t

15: return XAns

In a GA, the update function from the EA in Algorithm 2.1 is replaced with

lines 5 - 11 in Algorithm 2.3. During each iteration, or generation, there are two main

steps that update the D individuals in the population: reproduction and mutation.

1. Reproduction: The candidate solutions first reproduce with one another. This

is done in two steps: selection and crossover (lines 6 - 7).
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(a) Selection: During selection, pairs of individual are selected for reproduc-

tion. There are several selection methods, such as fitness proportionate,

tournament, and rank-based. All of these selection strategies are designed

such that individuals with higher fitness are more likely to be selected for

reproduction [22,29].

(b) Crossover: Once the individuals, or parents, are selected, these parents

are combined to create child individuals. Randomly selected dimensions

from the first selected individual are taken and combined with the

remaining dimensions of the second selected individual. The parents can be

recombined with one another in several different ways, such as one-point,

two-point, and uniform crossover [22].

2. Mutation: Each dimension in the individual in the new population may be

mutated to introduce new information into the population. This is done by

changing randomly selected dimensions in the individual to a randomly selected

value. There are several different methods we can use, such as uniform mutation,

inorder mutation, and Gaussian mutation. All of these methods are similar in

that dimensions of an individual are changed with a probability pm [29, 89].

Once reproduction and mutation have been performed, the child individuals are

added to the population for the next generation [22, 29]. As with all Evolutionary

Algorithms, these steps are repeated until the stopping criterion is met.

2.1.3 Differential Evolution

Differential Evolution (DE) is another Evolutionary Algorithm that has been

found to perform successfully on a variety of optimization problems. It was originally

proposed as an alternate optimization algorithm for nonlinear and non-differentiable
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functions [105]. One reason for DE’s popularity is that it has simple update equations

and a low number of control parameters. Additionally, DE has been found to perform

well in terms of accuracy and convergence rate on a wide range of problems [20, 29].

Algorithm 2.4 presents a the most commonly used version of DE. The DE’s update

has three main steps in each iteration: mutation, crossover, and selection.

Algorithm 2.4: Differential Evolution

Input: Function f to optimize
Output: Set of values XAnswer

1: P0 ← Initialize Individuals
2: t← 0
3: repeat
4: for i = 1 to D do
5: Pa,Pb,Pc ← Select Individuals from P t

6: for j = 1 to N do
7: M t+1

i,j ← X t
a,j + F

(
X t

b,j −X t
c,j

)
.

8: end for
9: RInt ← UZ(1, N)
10: for j = 1 to N do
11: if UR(0, 1) < pc or RInt = j then
12: U t+1

i,j ←M t+1
i,j

13: else
14: U t+1

i,j ← X t
i,j

15: end if
16: end for
17: if f(Ut+1

i ) < f(Pt
i) then

18: Pi ← Ut+1
i

19: end if
20: end for
21: t← t+ 1
22: until Stopping Criteria Met
23: XAns ← Get Candidate Solution from P t

24: return XAns
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1. Mutation: During mutation, a set of individuals are selected from the population

P t at time t and combined to create a mutation vector (lines 5 - 8). There

are several ways that this can be performed. In this dissertation, we restrict

ourselves to what is referred to as the “DE/rand/1” method. In DE/rand/1, an

individual i is mutated by first selecting three random individuals a, b, and c,

from the population P t at time t where a 6= b 6= c 6= i. Dimension j of particle

i’s mutation vector Mi = 〈Mi,1,Mi,2, . . . ,Mi,n〉 is calculated as

M t+1
i,j = X t

a,j + F
(
X t

b,j −X t
c,j

)
.

The values X t
a,j, X

t
b,j, X

t
c,j, and X t

d,j are the current position of dimension j of

individuals a, b, c, and d at time t. F is an integer in [0, 2] and gives a weight

to the difference between X t
b,j and X t

c,j.

2. Crossover: This step creates a trial vector Ud for individual d by combining

parts of the individual’s mutation vector with its current position, shown in lines

9 - 16 in Algorithm 2.4. One of the most commonly used crossover operators is

binomial crossover and proceeds as follows: Let M t+1
d,j be the value at position j

in individual d’s mutation vector at time t+ 1. Similarly, let X t
d,j be the value

at position j in individual d’s current position at time t. Individual d’s trial

vector Ut+1
d at time t+ 1 is computed as

U t+1
d,j =

 M t+1
d,j UR(0, 1) < pc or UZ(1, N) = d

X t
d,j otherwise

where pc is a crossover rate specifying the probability of the items from the

trial vector which will pass onto the offspring vector. The equation has two

random values UR(0, 1) and UZ(1, N). UR(0, 1) is a real-valued random number
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between [0, 1] that is generated for every dimension. UZ(1, N) is a random

integer between [1, N ] that is generated once during each individual’s crossover

phase. This ensures that, even with a very low crossover rate, an individual’s

trial vector is guaranteed to have at least one value that is different than its

current position.

3. Selection: In lines 17 - 19 the trial vector is evaluated to see if the individual

accepts the changes by comparing the fitness of the trial vector to that of the

current position. If the fitness of the trial vector is either better than or equal

to that of the current position for the individual, the current position is set

to the trial vector. Otherwise, the individual keeps its current position. This

guarantees that each new generation of individuals either gets better or remains

the same. Similar to the GA, the DE algorithm performs these three steps for

each individual until convergence occurs [20,105].

In addition to the DE update equations presented above, several other update

equations have been presented for the mutation and crossover steps. However, it has

been noted that no single set of update equations has been found to perform best for

all problems [20].

2.1.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based approach to optimiz-

ing a function, usually over a continuous set of variables. PSO was developed by

Kennedy and Eberhart and is based on the behavior of fish schools and bird flocks

swarming towards food sources [48].

Whereas GAs use a population of individuals that reproduce with one another,

PSO uses a swarm of particles that “fly” around the search space. In addition to

the vector Xi that represent a candidate solution, particles use a velocity vector Vi
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Algorithm 2.5: Particle Swarm Optimization

Input: Function f to optimize
Output: Set of values XAns

1: P0 ← Initialize Individuals
2: t← 0
3: repeat
4: for i = 1 to D do
5: Vi = ωVi + UR(0, φ1)⊗ (pBesti −Pi) + UR(0, φ2)⊗ (gBest−Pi)
6: Pi = Pi + Vi

7: if f(Pi) < f(pBesti) then
8: pBesti ← Pi

9: end if
10: if f(Pi) < f(gBest) then
11: gBest← Pi

12: end if
13: end for
14: XAns ← gBest
15: t← t+ 1
16: until Stopping Criteria Met
17: return XAns

to control how the particles move in the space. Each particle keeps track its own

best position found in a vector pBesti and the best position discovered by the entire

swarm gBest. Algorithm 2.5 shows a general version of the PSO algorithm. During

each iteration, a particle’s position is updated as follows:

Vi,j = ωVi,j + UR(0, φ1)⊗ (pBesti,j −Xi,j) (2.1)

+ UR(0, φ2)⊗ (gBestj −Xi,j)

Xi,j = Xi,j + Vi,j (2.2)

UR(0, φ1) and UR(0, φ2) are random numbers between 0 and φ1 and φ2. This cause

the particles have more random paths, aiding in the exploration of the search space.
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Xi,j and Vi,j is the position and velocity for dimension j of particle Pi and ω is an

inertia value that helps the velocity values from growing out of control.

The PSO algorithm first initializes a random swarm of particles over the search

space. During each iteration, a particle’s fitness is calculated using the fitness

function. If the fitness of the particle is better than that of its local best or global

best, the local and global best are updated accordingly. Finally, the velocities and

positions of the particles are updated according to the update equations. This process

is repeated until some convergence criterion is satisfied [48].

2.2 Related Work

While the update rules of the EAs are effective for finding good solutions to

a wide range of problems, drawbacks to the update rules still exist [66, 99]. For

example, an algorithm may locate good values for a particular variable but then

lose that information in later iterations. Conversely, an algorithm may believe that

a specific value for a variable correlates to high fitness when in reality the value is

suboptimal.

In a GA, this is called hitchhiking. Simply stated, hitchhiking causes poor values

become associated with good schemas [99]. Hitchhiking was first noticed by Mitchell

et al. when applying a GA to a set of problems called the Royal Road, which were

though to be easily solved by a GA. However, the authors noticed that on certain

versions of the Royal Road, the GA actually performed worse than expected. This

was due to hitchhiking: a bad value or set of values often got entangled or associated

with a set of good values. As the GA copies the good values to future generations,

the bad values also got carried along, hence, the term, hitchhiking.

Similarly, Van den Bergh and Engelbrecht discovered that PSO can be prone to

what is called two steps forward and one step back (TSFOSB), which happens when
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near-optimal or nearly optimal parts of a individual’s current position are thrown

away when the rest of an individual’s position causes the individual to have low

fitness [113].

The authors use the following example: suppose the PSO is optimizing a three-

dimensional function f(X) = ||x − 20||2 with a global minimum at 〈20, 20, 20〉.

Additionally, the global best gBest is at point 〈17, 2, 17〉 and an individual Pi is

at 〈5, 20, 5〉. Given these positions, the fitness of gBest and Pi are 342 and 450,

respectively. During the update, individual Pi will be pulled towards gBest. For the

sake of discussion, suppose that the new location for Pi is 〈15, 5, 15〉, which has a

fitness of 275. Because this new position has a better fitness than the original gBest,

the algorithm will update the global best to 〈15, 5, 15〉. While the overall fitness of

the global best improved, the quality of Pi’s second variable decreased, and in fact,

the previous value for the second variable was optimal. This information has thus

been lost and the PSO must spend more iterations rediscovering this value [114].

While this is a simple example with only three variables where only one variable’s

information deteriorated, it can quickly be generalized to any number of variables.

For example, a scenario could be conceived where in a problem with ten variables,

the good values for four variables are lost during an update. Even worse, there could

exist situations where the PSO knows the optimal values for N − 1 variables, but

loses all that information because of a new value for the Nth variable [112,114].

Differential Evolution also suffers from TSFOSB [72,99]. Using the same function

for the PSO, an individual Pi is at 〈5, 20, 5〉 and has a fitness of 450. Suppose that

after mutation and crossover, the new individuals position is 〈15, 5, 15〉 and has a

fitness of 275. Because the fitness of the new position is better than before, during

selection, the individual will accept the new position 〈15, 5, 15〉. Just like in the PSO,
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the optimal information for the second variable was lost by the individual, and DE

will need to spend more iterations rediscovering the lost information.

One possible way to help fix these shortcomings of EAs is to evaluate the function

after updating each variable [112, 114]. However, this may result in an increase the

number of fitness evaluations required by the algorithm. Additionally, this method

may apply only to certain EAs, like PSO, and not generalize to ones like GA. A

more commonly used method is to use a set of disjoint populations [112, 120]. By

having disjoint subpopulations, the algorithm is able to maintain better diversity in

the individuals [117], which in turn helps prevent hitchhiking and TSFOSB.

2.2.1 Island Model

One of the most common multi-population algorithms is the Island Model. The

Island Model was first proposed by Grosso and was used to simulate the interactions of

several evolving populations [39]. One reason for its popularity is that it offers an easy

way in which to parallelize a GA. In this model, there exist M disjoint populations

that evolve their individuals independent of one another. However, Grosso’s algorithm

allows for interactions between the populations, which is referred to as migration.

After a specified number of iterations, each population sends a number of individuals

to its neighbor. When a population receives a set of individuals from its neighbors,

the population assimilates the new individuals into its population [5,11]. This process

is repeated until convergence is reached.

There has been an extensive amount of research of various parameters of the

Island Model, such as the rate of migration and migration topologies [5,38,118]. For

example, Ishimizu and Tagawa compared different migration topologies that control

which populations interact with one another [47]. The authors found that by using a
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ring, torus, or hypercube migration topology, better performance was achieved than

just using a fully connected set of populations [38,47].

There has also been investigation of how to set the the migration rate in the

Island Model [39,81]. Grosso showed that too high of a rate of migration caused the

Island Model to behave like a single-population GA, while too little migration causes

the algorithm to converge toward worse solutions. Others have explored having each

population contain a different representation of the problem. For example, Skolicki

and De Jong proposed an Island model in which each population contained a different

representation to the solution, such as binary or gray-encoding [101]. The authors

used a transformation step during migration that allowed for one solution from one

population to be inserted into a different population.

Because the populations in the Island Model still represent full solutions

to the problem, each population is still susceptible to hitchhiking and TSFOSB.

Consequently, the entire set of populations are still susceptible to hitchhiking

and TSFOSB. One way to reduce the probability of each population encountering

hitchhiking and TSFOSB is to have each population optimize over a subset of variables

in the problem [81].

2.2.2 Cooperative Coevolutionary Algorithms

Cooperative Coevolutionary algorithms (CCEA), originally proposed by Potter

and De Jong, are some of the earliest algorithms to subdivide an optimization

problem in an evolutionary setting. [82]. In their work, the authors developed an

algorithm called the Cooperative Coevolutionary Genetic Algorithm (CCGA) that

uses subspecies to represent non-overlapping subcomponents of a potential solution.

Complete solutions are then built by assembling the current best subcomponents

of the subspecies. Their work showed that in most cases CCGA significantly
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outperformed traditional GAs. Only in cases where the optimization function had

high interdependencies between the function variables (i.e., epistasis) did CCGA

struggle because relationships between variables were ignored.

More dynamic versions of CCGA, that allow for subpopulations to evolve over

time, have been proposed [83]. When stagnation is detected in the population, a new

subpopulation is randomly initialized and then added to the set of subpopulations.

Similarly, a subpopulation is removed if it makes only small contributions to the

overall fitness. Because of the dynamic subpopulations, the possibility exists that

two subpopulations may overlap with another. However, there is no guarantee that

subpopulations will overlap, and the algorithm does not have a function to resolve

discrepancies between the subpopulations. The authors were able to demonstrate

that their algorithm could evolve the correct number of subpopulations and was

competitive with domain-specific algorithms on training cascade networks [83].

This idea of CCEA was extended by Van den Bergh and Engelbrecht to use

PSO to train neural networks [113]. In their paper, the authors tested four fixed

subpopulation architectures of their own design: Plain, Lsplit, Esplit, and Nsplit.

Plain used a full single-population PSO. Lsplit divides the weights in the neural

network by layer, whereas Esplit serializes the weights in the network and divides the

vector into two even subswarms. Nsplit extends Lsplit by creating subswarms for all

weights entering a single node in the neural network. Comparing these four different

architectures, the success of the algorithms was highly dependent on the architecture

used due to the interdependencies between the variables. By keeping variables with

interdependencies together, the algorithm was more effective at exploring the search

space [113].

Later, Van den Bergh and Engelbrecht extended their work by applying it

to a wider range of optimization problems [114]. Van den Bergh and Engelbrecht
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introduced the cooperative PSO (CPSO), which was able to get around the problem

of losing good values since each dimension is optimized by a single subpopulation. The

paper introduced CPSO as a general search algorithm not restricted to just training

neural networks. However, one drawback to CPSO is that it can become trapped in

what the authors call pseudominima, which are places that are minima when looking

at a single dimension but are not local minima over the entire search space. To avoid

this problem, the authors describe a hybrid algorithm that alternates between CPSO

and PSO. The result is an algorithm that always outperforms PSO and is competitive

with but more robust than CPSO.

CCEA has also been applied to Differential Evolution. Shi et al. proposed a

simple extension of CCGA to DE, called CCDE [99]. Other extensions have been

more complex, such as those presented by Yang et al., where the authors developed

a weighted cooperative algorithm that used DE to optimize problems with over 100

dimensions [123]. This algorithm utilized a weighting scheme to allow for the evolution

of subpopulations where the function was optimized within the subpopulations. The

authors’ algorithm was found to outperform regular CCEA algorithms on most of the

test functions explored [123].

A variation of CCEA that used evolving subpopulations was also proposed by

Li and Yao [62]. Here, the subpopulations were allowed to grow or to shrink when

stagnation was detected, creating a wider range of variable groups. The authors

showed that their algorithm performed better than others on functions that had

complex multi-modal fitness landscapes, but performed slightly worse than PSO on

unimodal functions. They noted that, while subpopulations of random variables

perform well, there should exist more intelligent ways of creating subpopulations.

One open question with CCEAs is how to evaluate an individual. Specifically,

when evaluating an individual, which values should be pulled from other subpopula-



31

tions to allow for calculating fitness? This is referred to as collaboration in the CCEA

and has some similarity to migration in the Island Model in that both of these steps

allow the otherwise independent populations to interact with one another. Wiegand

et al. presented some of the earliest work looking at the collaboration in CCEA and

presented results comparing several different methods [119]. They proposed methods

that used the best, random, or the worst individuals from other swarms to evaluate

an individual from a different swarm. Additionally, they explored combinations of

the the above methods by varying the number of collaborators. The authors found

that using the best known individuals generally provided the best performance and

that only one or two collaborators are required.

Other work with CCEA has focused on its convergence properties. Wiegand et al.

developed a framework using evolutionary game theory to model the interaction of two

subpopulations [120]. The authors calculated the next generation by using a payoff

matrix A and proved that when trajectories converge to a fixed point, the populations

become homogeneous. Additionally, the authors showed that subpopulations may

converge to points with suboptimal fitness values. Finally, the authors used their

framework to investigate the effects of uniform crossover and bit-flip mutation.

One of the drawbacks to this approach is that the authors assumed infinite

populations in each of the subpopulations and that an individual’s fitness is given

as the average fitness using all individuals from the other subpopulation during

collaboration [75]. Panait et al. relaxed this requirement by modeling the fitness

evaluation of an individual as the average fitness of N randomly chosen individuals

from the other subpopulation. Additionally, the authors used evolutionary game

theory as a way to visualize different convergence properties of CCEA [75].

Later work by Panait argued that the primary reason for poor performance in

CCGAs was the poor selection of individuals during collaboration [74]. The author
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went on to use a refined evolutionary game theory model and showed that a CCGA

will converge to the globally optimal solution when the collaboration process is set

properly. Additionally, Panait verified previous results by Wiegand et al. showing

that a collaboration process that uses the best individuals from subpopulations

outperforms a collaboration process that uses the average or worst individuals.

Other theoretical work with CCGAs has investigated their robustness, which

the authors define as the ability of an algorithm to consistently find good solutions.

Wiegand and Potter first defined a framework for characterizing robustness in

evolutionary algorithms [121]. Using this framework, the authors were able to show

that CCGAs exploit this robustness during search and empirically demonstrate how

this is done [121].

2.2.3 Overlapping Swarm Intelligence

Overlapping Swarm Intelligence (OSI) is a version of FEA that uses PSO as

the underlying optimization algorithm. Introduced in 2012, OSI works by creating

multiple swarms that are assigned to overlapping subproblems [41]. It was first

used as a method to develop energy-aware routing protocols for sensor networks that

ensure reliable path selection while minimizing energy consumption during message

transmission [41]. OSI was shown to be able to extend the life of the sensor networks

and to perform significantly better than preexisting energy-aware routing protocols.

The OSI algorithm was later extended by Ganesan Pillai and Sheppard to learn

the weights of deep artificial neural networks [80]. In that work, each swarm represents

a unique path starting at an input node and ending at an output node. A common

vector of weights is also maintained across all swarms to describe a global view of

the network, which is created by combining the weights of the best particles in each
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of the swarms. The authors showed that OSI outperforms several other PSO-based

algorithms as well as standard backpropagation on deep networks.

A distributed version of OSI was subsequently developed by Fortier et al.

called Distributed Overlapping Swarm Intelligence (DOSI) [35]. In that paper, a

communication and sharing algorithm was defined that allowed swarms to share

values while also competing with one another. The key distinction from OSI was

that a global solution was not used for fitness evaluation. The authors were able to

show that DOSI’s performance was close to that of OSI’s on several different networks

but there were several instances when OSI outperformed DOSI.

OSI and DOSI have also been used for inference tasks in Bayesian networks, such

as abductive inference, where the task is finding the most probable set of states for

some nodes in the network given a set of observations. Fortier et al. used OSI [33] and

DOSI [31] to perform full and partial abductive inference in Bayesian networks. The

authors were able to show that OSI and DOSI outperformed several other population-

based and traditional algorithms, such as PSO, GA, simulated annealing, stochastic

local search, and mini-bucket elimination.

Other applications of OSI and DOSI include learning Bayesian networks. Fortier

et al. adapted OSI to learn the structure of Bayesian classifiers by allowing subswarms

to learn the links for each variable in the network, where each variable represents

an attribute in the data [32]. For each variable in the network, two subswarms

were created: one comprised of the incoming links and one of the outgoing links.

The authors were able to show that in most cases OSI was able to outperform the

competing approaches significantly.

When learning Bayesian networks, latent or unobserved variables are often

introduced into the network. Fortieret al. used OSI to learn the parameters of

these latent variables [34]. A subswarm was created for each node with unlearned
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parameters and all of the variables in that node’s Markov blanket. The authors were

able to show that OSI outperformed the competing approaches, including Expectation

Maximization (EM), Monte-Carlo EM, Genetic Algorithm EM, and Age-Layered EM,

and that the amount of overlap between the subswarms can impact the performance

of OSI.

Fortier later adapted OSI to be a general structure learner for Bayesian networks

[36]. The authors showed that OSI and PSO approaches to structure learning

outperformed domain-specific algorithms, like K2. Additionally, Fortier showed

that an OSI approach for learning the structure and parameters for latent variables

simultaneously outperformed Expectation Maximization.

While DOSI allows for a full distributed implementation, it requires an increase

in computational complexity due to the communication required between neighboring

subswarms. Butcher et al. investigated the performance of DOSI when full consensus

was not required between neighboring subswarms and showed that DOSI still

performs well even with only a moderate amount of consensus between subswarms

[10]. Additionally, the paper contained the first definition of Distributed Factored

Evolutionary Algorithms (DFEA), which is a generalization of DOSI that allows for

any optimization algorithm.

2.2.4 Related Approaches

In addition to CCEA and OSI, other work exists with concepts similar to CCEA

and OSI. For example, a relatively new approach by Srivastava et al. is a variation

of backpropagation called Dropout in which random parts of the neural network are

deleted and the resulting “thinned” network is trained [104]. After training several

thinned networks, these networks are combined to create the full neural network. The

authors found that Dropout outperformed standard backpropagation on full neural
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networks. In addition, Dropout performed well on other types of networks, such as

Restricted Boltzmann Machines and Deep Belief Networks.

Tosun presented an approach to training Restricted Boltzman Machines (RBMs)

that was heavily influenced by OSI [110, 111]. Specifically, Tosun developed an

algorithm called Partitioned Learning that trains an RBM by subdividing the weights

of the network. During each step, the algorithm trains only a specified set of weights

that are independent of the weights in the rest of the network. The algorithm works

by first splitting the RBM in a sets of weights and training them independently

using Contrastive Divergence. After training the partitions, the algorithm generates

a new set of partitions. However, the new set of partitions contain fewer splits, and

consequently, partitions more sets of values to update. This process is repeated until

the full RBM is trained.

Tosun provided experiments on both overlapping and nonoverlapping partitions

and showed that overlapping partitions resulted in lower reconstruction error but

required more operations. Furthermore, the author was able to show that his approach

had lower reconstruction error and also took less time than regular Contrastive

Divergence when applied to image reconstruction. Finally, Tosun adapted his

approach to other tasks, such as RBM classifiers and Time Series Prediction [110].

Another example is the Multifactorial Evolutionary Algorithm (MFEA) in-

troduced by Gupta et al. [40]. MFEA uses a single-population to simultaneously

solve multiple optimization problems. In their algorithm, the authors assigned each

individual in the population to optimize one problem from the set of problems MFEA

is optimizing over. Each individual is only allowed to interact only with individuals

that are assigned the same problem. Because an individual is assigned only a single

function to optimize, MFEA essentially turns into a multi-population algorithm. By

optimizing different tasks that have additional influence over the search process,
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MFEA creates an exchange of information between the tasks. This creates an overlap

between the tasks, which is similar in concept to how OSI uses sets of overlapping

subpopulations. However, the focus of OSI is on subdividing a single function (task)

into overlapping sets of variables and using subpopulations to optimize over sets of

variables.

2.3 Conclusion

While EAs have been successfully applied to a wide range of problems, there

are still drawbacks to the algorithms. One of the most commonly used variation

of EA that addresses many of these issues is CCEA. CCEA is a general method

that can be applied to any EA and often outperforms traditional single-population

algorithms. However, CCEAs assume disjoint subpopulations. Furthermore, much of

the previous work with CCEA fails to provide a general method for how to derive

these subpopulations. In the next chapter, we present a new algorithm that directly

addresses these these issues.
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CHAPTER THREE

FACTORED EVOLUTIONARY ALGORITHMS

FEA is a generalization of EAs and OSI that allow for the subdivision of

the optimization problem. In this chapter, we present a formal definition of FEA,

including a framework for defining multi-population algorithms. First, we present our

framework and demonstrate how different multi-population algorithms map to this

framework. Then, in Section 3.2 we present the FEA algorithm and its subfunctions,

followed by a complexity analysis of FEA. Finally, we compare four different versions

of FEA that each use a different underlying optimization algorithm. In particular,

we focus on how FEA performs using different algorithms like HC, PSO, GA,

and DE. Each algorithm is then compared with single-population and Cooperative

Coevolutionary (CC) versions of the underlying algorithm.

3.1 Framework for Multipopulation EA

A wide variety of multipopulation EAs exist. However, almost all of them share

several commonalities. Here, we present a framework that allows for the definition of

different multi-population EAs and use it to define several of the previously mentioned

algorithms, allowing for a unification of the different approaches.

3.1.1 Defining the Framework

Similar to single-population EA’s, we assume that we are given a function f :

DN → R with domain DN to be optimized with parameters X = 〈X1, X2, . . . , XN〉.

S represents the set of M populations {P1,P2, . . . ,PM}. Each population P i is

optimized over some set of variables Ui ⊆ X. Note that f can still be optimized over
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Algorithm 3.6: Multiple Population Evolutionary Algorithm

Input: Function f to optimize
Output: Set of values XAns

1: Initialize Populations S
2: t← 0
3: repeat
4: for i = 1 to D do
5: Optimize f with Population P i

6: end for
7: Interaction between Populations
8: XAns ← Get Candidate Solution from S
9: t← t+ 1
10: until Stopping Criteria Met
11: return XAns

the variables in Ui even if Ui ⊂ X. However, the fitness function requires values for

variables that are not included in Ui. We refer to these as the remaining variables

and denote them as Ri = X \Ui.

Given this notation, we can present a general multi-population EA in Algorithm

3.6. The algorithm works as follows: the algorithm iterates over each population and

allows them to update their individuals (lines 4 – 6). After each population updates

its own individuals, the algorithm allows the populations to interact in some way

followed and updates the candidate to be returned. This process is repeated until

a stopping criterion is met. Note that the user must not only specify the stopping

criteria for the entire multi-population, but also for each individual population.
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3.1.2 Application of Subpopulation Framework

Given the above framework, we can now demonstrate how it is able to define a

wide range of multi-population algorithms. We begin by showing that even a single-

population EA fits the framework.

3.1.2.1 Single-Population Algorithms In the case that the multi-population

algorithm has only one population, then S = {P1}. Additionally, S1 = X. This is

equivalent to the single-population algorithms discussed in Section 2.1. Additionally,

because there is only one population, there is no need for Algorithm 3.6 to run line

7, which causes the populations to interact with one another.

3.1.2.2 Island Model In the Island Model, D > 1. Additionally, Si = X for all

P i ∈ S. The Island Model iterates over all populations and allows each population

to update its individuals independently of one another. While most work assumes

that each population P i uses the same EA, there is nothing in the core Island Model

that requires this. After updating each of the populations, the Island Model allows

the populations to interact with one another by performing migration. The most

commonly used method for migration is to take a set of individuals and send them to

a set of different populations. A population that receives migrating individuals then

adds them to its population.

There are two important considerations a user must make when implementing

an Island Model. The first is the migration topology, which controls where individuals

migrate to during the migration step, with the most popular topologies being rings,

tori, and hypercubes. Another important consideration is how often migration should

occur. As previously discussed, the Island Model is sensitive to the rate of migration;

therefore, finding an appropriate value can be difficult.
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3.1.2.3 CCEA CCEAs relax the Island Model such that each population or

subpopulation does not represent full solutions and each subpopulation optimizes

over disjoint sets of variables. Formally, this occurs when D > 1 and Ui ⊂ X for all

P i ∈ S. Additionally, Ui ∩Uj = ∅ for all P i and Pj in S. Because each population

is only optimizing over a subset of values in X, subpopulation P i optimizing over

values Ui needs to know the values of Ri for local fitness evaluations. The fitness for

an individual in Pi can then be calculated as f(Ui ∪Ri).

CCEAs must define a process for finding values for Ri, which the literature

refers to as the collaboration step [119,120]. In almost all algorithms, these values are

directly derived from other subpopulations. In the most commonly used process, the

value for variable Xi in Rj is obtained from the best individual Pk in population P l

where Xi ∈ Ul. Note that because all subpopulations are disjoint, there exists only

one population Pj that optimizes over variable Xi for all variables X. Collaboration

is performed in line 7 of Algorithm 3.6.

While subpopulations in CCEAs do not interact in the same manner as the

Island Model, the exchanging of values between subpopulations to update variables

in the remaining set Ri creates an interaction between the subpopulations. The

value subpopulation P i sends to Pj for Xk will affect how Pj evaluates individuals

in its population. This is analogous to the migration step in the Island Model;

subpopulations are interacting with one another.

3.1.2.4 MFEA While all of the previous methods assumed a single objective

function, the above framework can be extended to allow for multiple fitness functions.

Assume we are given a set of functions f = {f1, f2, . . . , fK} where each function is

defined as fi : DN → R with domain DN . While the original work on MFEA

allows for fitness functions with different size inputs, we assume here that each fitness
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function has the same number of variables. However, our framework can be modified

to allow for different sizes of input by setting each function f ′i to have an input of size

N ′ where N ′ is equal to the fitness function with the most variables. Each function

then uses a mapping of inputs f ′ to f ′. A population P i is defined for each fitness

function fi.

During each update step, the population optimizes over its own individual

fitness function. Note that the original MFEA assumes a GA being used to update

individuals in the population. However, the interaction between the subpopulations

is more complex than the Island Model. During the population interaction step,

individuals are randomly selected from the populations. If the individuals are

selected from the same population, crossover is performed to generate two new

individuals that are added into the original subpopulation. However, if the individuals

are from selected different populations, crossover is performed based on a cross-

cultural crossover probability. If the probability allows the two individuals from

different subpopulations to mate, two new individuals are produced that are randomly

inserted into one of the parent’s population. Otherwise, the individuals from different

subpopulations undergo mutation to produce new individuals that are then inserted

into their parents’ population.

This process is directly analogous to the migration step in the Island Model.

However, instead of directly inserting individuals into populations, the individuals

selected for migration interact with individuals from other populations before finishing

their migration.

3.2 Defining FEA

FEA is similar to cooperative EAs like CCGA and CPSO; however, FEA

encourages subpopulations to overlap with one another. This overlap allows for
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subpopulations to compete and share information. FEA is also a generalization of the

OSI algorithm since it allows for any EA to be used as the underlying optimization

algorithm. This allows for FEA to be part of a genera class of algorithms that includes

CPSO, CCGA, OSI, and Island Model. Here, we present the three main steps of FEA:

Update, Compete, and Share. We begin with defining the subpopulations in FEA.

3.2.1 Defining Factors

Using our framework for defining multipopulation algorithms, we define the

subpopulations in FEA as follows. FEA uses a set of subpopulations, or factors,

which are subsets of X. Formally, we can represent this as 1 < D, Ui ⊂ X, and⋃
i Ui = X for all populations. Additionally, FEA encourages factors to overlap with

one another. Without a loss of generality, assume every subpopulation overlaps some

other subpopulation. To evaluate individuals, a factor must have a set of values for

its remaining variables Ri. FEA uses a full global solution G = 〈X1, X2, . . . , XN〉 to

fill in a factor’s remaining variables.

Finally, we define a factor architecture which defines the variables the factors

optimize. This also affects the number of factors created, the size of each factor, and

the amount of overlap between two factors. Previous work has shown that generating

efficient factor architectures is crucial for CCEA to be able to locate good solutions

[82, 113]. Additionally, a factor architecture can cause an exponential increase in

computational complexity [35,80].

3.2.2 Update

The first step of FEA is to allow each factor to update its individuals. This

is done in the same manor as the general multi-population EA shown in Algorithm

3.6, lines 4 – 6. FEA iterates over every factor and allows each factor to update its

individuals until some stopping criterion is met. Throughout the dissertation, we will
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Algorithm 3.7: FEA Compete Algorithm

Input: Function f to optimize, subpopulations S
Output: Full solution G

1: randV arPerm← RandomPermutation(N)
2: for ranVarIndex = 1 to n do
3: i← randV arPerm[ranV arIndex]
4: BFit ← f(G)
5: BV al ← G[Xi]
6: SOpt ← {Pk|Xi ∈ Uk }
7: randPopPerm← RandomPermutation(|SOpt|)
8: for ranPopIndex = 1 to |SOpt| do
9: Pj ← SOpt[randPopPerm[ranPopIndex]]
10: G[Xi]← Get Value From Pj for Variable Xi

11: if f(G) < BFit then
12: BV al ← G[Xi]
13: BFit ← f(G)
14: end if
15: end for
16: G[Xi]← BV al

17: end for
18: return G

refer to a single factor updating its population as a factor update and the number of

iterations a single factor performs during a factor update as factor iterations.

3.2.3 Compete

The goal of competition in FEA is to find the state assignments with the best

fitness from the factors. FEA updates the full global solution G which allows factors

to evaluate their individuals. For every Xi ∈ X, the algorithm iterates over every

factor containing Xi and finds the best value from those factors.

Algorith 3.7 gives the pseudocode for Compete. The algorithm first iterates

over a random permutation of all the variables in X generated in line 1. Note that

this permutation changes each time the algorithm is run. Lines 4 and 5 initialize
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variables that are used for the competition. Next, the algorithm iterates over another

random permutation of all the factors that are optimizing the variable Xi. Lines 10

– 15 then compare the individual values of variable Xi by substituting the factors’

values into G. In our implementation, the factor uses the best value found during

the entire search process as its candidate value which is then evaluated in lines 10 –

15. The values yielding the best fitness from the overlapping factors are saved and

then inserted into G. Once the algorithm has iterated over all variables in X, the

algorithm exits and returns G.

Note that competition is not guaranteed to find the best combination of values

from each factor, nor does it guarantee the combination of values is better than

the previous G. However, by iterating over random permutations of X and S, the

algorithm is able to explore different combinations and is still able to find good

combinations of values.

3.2.4 Sharing

The sharing step serves two purposes. First, it allows overlapping factors to

inject their current knowledge into other factors. Previous work by Fortier et al.

discovered that this is one of the largest contributors to the FEA’s performance [33].

Second, it sets each factor’s Ri values to those in the full global solution G so that each

factor P i can evaluate its partial solution on the function f . The sharing algorithm

is provided in Algorithm 3.8.

The share algorithm iterates over all the factors and updates each factor’s

remaining values by setting each variable Xj ∈ Ri to the value in G (lines 2 –

4). Next, the algorithm injects information from G into factor P i. To accomplish

this, the algorithm finds the individual with the worst fitness in P i (line 5). Then,
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Algorithm 3.8: FEA Share Algorithm

Input: Function f , Full global solution G, Factors S
Output: Updated Factors S

1: for all P i ∈ S do
2: for all Xj ∈ Ri do
3: Ri[Xj]← G[Xj]
4: end for
5: Pw ← Get Worst Individual From P i

6: for all Xj ∈ Ui do
7: Pw[Xj]← G[Xj]
8: end for
9: Pw.f itness← Fitness of G
10: end for
11: return S

the share algorithm sets the worst individual Pw’s current position to the values in

G (lines 6 – 8). Finally, the fitness for Pw is updated in line 9.

3.2.5 FEA

Now that the share and competition algorithms have been defined, we can

give the full FEA (Algorithm 3.9). The algorithm works as follows. All of the

subpopulations are first initialized according to the optimization algorithm being used

and the subpopulation architecture (line 1). The full global solution G is initialized

in line 2. Next, the algorithm begins updating the factors using three steps (lines 3

– 11). First, the algorithm iterates over each factor and optimizes the values using

the corresponding optimization algorithm until some stopping criterion is met (line

6). Following the factor update steps, competition occurs between factors in the

Compete function on line 9. Finally, the Share function on line 10 shares the updated

best states between the factors. We refer to one iteration of Update, Compete, and
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Algorithm 3.9: Factored Evolutionary Algorithm

Input: Function f to optimize, optimization algorithm A
Output: Full solution G

1: S ← Initialize factors from f , X, and A
2: G← Initialize full global from S
3: repeat
4: for all P i ∈ S do
5: repeat
6: Optimize f with population P i

7: until Termination criterion is met
8: end for
9: G← Compete(f,S)
10: S ← Share(f,G,S)
11: until Termination criterion is met
12: return G

Share as an FEA iteration. These steps are repeated until the stopping criterion is

met.

3.3 Complexity

Given the definition of FEA, we now analyze the the computational complexity

of FEA and show which steps have the most computational burden by breaking down

each step in the algorithm. Additionally, we examine the number of fitness evaluations

used by each function. We refer to the pseudocode shown in Algorithm 3.9.

3.3.1 Fitness Evaluation

We first begin by determining the complexity to evaluate the fitness of an

individual and approximate it as O(Λ(N)), where N is |X|, and X is the vector

of variables. Λ(N) is a function that returns the complexity in calculating fitness

of an individual of N variables and is problem specific. In some cases, such as in
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the sphere function, the complexity of a fitness evaluation requires one iteration over

all N variables (Λ(N) = N). Other problems may be much more computationally

complex, such as evaluating neural networks.

3.3.2 Optimization Algorithm

Next, we determine the complexity of the underlying optimization algorithm.

We assume we are using a simple population-based algorithm such as a GA or PSO.

We assume also that the population algorithm has P = |P | individuals, where P

is the set of all the individuals in the factor. During each iteration, an individual

with N variables has its position and fitness updated. We denote the complexity

of updating a single individual of N variables as O(U(N)). In most EAs, U(N) =

N+Λ(N). For example, in PSO, the algorithm must iterate over all N variables in the

individual and velocity vectors. Then, the algorithm must evaluate the fitness of the

updated individual, giving a complexity of O(U(N)) = O(N + Λ(N)). This is done

P times, once for each individual; therefore, the complexity during each iteration is

O(P × U(N)).

3.3.3 FEA

To determine the complexity of FEA, we first show the complexity of the three

mains parts: Update, Compete, and Share.

• Update: The Update step in FEA involves iterating over the set of factors S and

maximizing each factor’s local fitness for K iterations. Using the complexity

for the optimization algorithms, each factor update has a complexity of O(P ×

U(N)), assuming each factor has P individuals. Since this is done for D =

|S| factors and K times for each factor, the total complexity of this step is

O(DKP × U(N)).
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• Compete: In FEA, the Compete step is used to find the optimal set of values

for the variables in X. This is done by iterating over all the variables and

then iterating over each factor. For every iteration there is a fitness evaluation.

Assume for each variable Xi, there are M factors optimizing Xi. Note that

there are N variables and M factors and that the time complexity for a fitness

evaluation is O(Λ(N)). Therefore, the total complexity of the Compete step in

FEA is O(MN × Λ(N)).

• Share: Share involves distributing the values found during competition to other

subpopulations. The algorithm iterates over all factors and seeds values by

replacing the lowest ranked individual in the algorithm. The seeding step

requires iterating over the N variables to set values for the worst-ranked

individual in the factor to the full global solution. This is done for all D factors,

which gives the Share step a complexity of O(DN).

FEA iterates over Update, Compete, and Share steps L times. Summing the

complexity for Update, Compete, and Share and multiplying it by L gives a

complexity of

O(FEA) = O(DKLP × U(N) + LMN × Λ(N) +DLN)

In many of the applications to which FEA has been applied, the architecture for

the subpopulations creates a subpopulation for every dimension in X, resulting in

D = N [33]. Substituting this into the above equation, we now have

O(FEA) = O(KLNP × U(N) + LMN × Λ(N) + LN2)
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If the complexity of U(N) = N + Λ(N), then the total complexity of FEA is

O(FEA) = O(KLNP × (N + Λ(N)) + LMN × Λ(N) + LN2)

= O(KLN2P +KLNP × Λ(N) + LMN × Λ(N) + LN2)

The first term in the above equation is the complexity required to update the

individuals. The total number of individuals in FEA is calculated as TotalP = NP

while the total number of update steps used by FEA is TotalUp = KL. If there

is an EA and FEA with the same number of individuals and update steps, then

TotalP × TotalUp × N is equal for both the EA and FEA. This demonstrates that

FEA does not add any additional complexity when updating individuals.

While FEA does not add any additional complexity to the Update step, it does

add additional fitness evaluations. One of the most commonly used measures of time

complexity for EAs is the number of fitness evaluations required. This is because the

number of fitness evaluations is a measure that can be applied to any local search

algorithm [28]. Additionally, fitness evaluations are used as a stopping criteria for

optimization algorithm competitions [63, 108]. We can formally analyze the number

of fitness evaluations required by Update and Compete by analyzing the percent of

fitness evaluations used by Compete, which is given as

LMN

KLNP + LMN
=

M

KP + 1

Figures 3.1 and 3.2 present plots of the percentage of fitness evaluations used

by Compete with varying numbers of K and M with 20 individuals. In Figure 3.1,

the number of factor iterations K is on the x-axis, whereas Figure 3.2 presents the

number of factors optimizing a single variable. In the first graph, we observe that
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Figure 3.1: The percent of fitness evaluations used by Compete in FEA varying K.

as the number of update iterations K increases, the percentage of fitness evaluations

used by Compete decreases. However, in the second graph, we see that the percent

of evaluations used by Compete increases linearly as M increases.

From this, we conclude that while FEA does use more fitness evaluations than

a regular EA, this is often less that 10% of the total number of fitness evaluations

used by the algorithm. Furthermore, if there is a high number of factors optimizing a

variable, the complexity can be managed by increasing the number of factor iterations

K.

3.4 Comparing FEA with Single-Population and CCEA

To demonstrate general performance, we applied FEA to abductive inference in

Bayesian networks, maximizing NK landscapes, and a set of benchmark test functions

using Hill Climbing (HC), Genetic Algorithm (GA), Differential Evolution (DE), and

Particle Swarm Optimization (PSO) as the underlying algorithms. On Bayesian

networks and NK landscapes, we used Discrete DE (DDE) and Discrete Multi-

Valued Particle Swarm Optimization (DMVPSO). We now describe the background
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Figure 3.2: The percent of all fitness evaluations used by Compete in FEA varying
M .

information on DMVPSO and the test problems necessary to understand the

experiments in this chapter.

3.4.1 Discrete Multi-Valued Particle Swarm Optimization PSO

PSO has been successfully applied to a wide variety of optimization problems,

but the algorithm is unable to handle discrete problems, which are functions in which

the domain for the variables can only assume a finite number of states [53]. For

example, a discrete variable may have a domain of different kinds furniture like chair,

couch, table, and dresser. NK landscapes and Bayesian networks are both instances

of discrete functions. For these problems, we used Discrete Multi-Valued Particle

Swarm Optimization (DMVPSO), proposed by Veeramachaneni et al. [115], as the

underlying algorithm as it has been shown by Fortier et al. to perform well in OSI [33].

In DMVPSO, the velocity update equations remain mostly unchanged from

regular PSO [48]. However, the semantics of the velocity vector are changed such

that it denotes the probability of a particle’s position taking on a specific value.

After the velocity is updated, it is transformed into the interval [0,M − 1], where M
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is the number of values the variable may take on, using the sigmoid function

Si,j =
M − 1

1 + exp(−Vi,j)
.

Next, each particle’s position is updated by generating a random number according

to the Gaussian distribution, Xi,j ∼ N(Si,j, σ× (M −1)) and rounding the result. To

ensure the particle’s position remains in the range [0,M − 1], the following piecewise

function is applied to the Xi,j

Xi,j =


M − 1 Xi,j > M − 1

0 Xi,j < 0

Xi,j otherwise

In all our experiments, the PSO and DMVPSO ω parameters were set to 0.729,

and φ1 and φ2 were both set to 1.49618. These values guarantee convergence of PSO

and have been found to perform well on a wide range of problems [16, 26, 98]. Each

subpopulation for FEA had a population size of 10. We will now describe the three

different sets of experiments and the results for each set.

3.4.2 Bayesian Networks

Bayesian networks are a probabilistic graphical model [54, 76]. A full joint

probability distribution P (X1, . . . , Xn) requires an exponential number of parameters

to define every probability for every combination of events. However, a Bayesian

network is able to reduce the number of parameters by taking advantage of

independence properties between variables in the distribution. We define a Bayesian

network as follows.
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Sprinkler

Grass Wet

Rain

Parents Sprinkler
Rain T F
F 0.40 0.60
T 0.01 0.99

Rain
T F
0.2 0.8

Parents Grass Wet
Sprinkler Rain T F

F F 0.40 0.60
F T 0.80 0.20
T F 0.90 0.10
T T 0.99 0.01

Figure 3.3: Example of a Bayesian network.

Definition 3.1. Let G = (X,E) be a directed acyclic graph. X is the set of

random variables in a joint probability distribution P (X1, . . . , XN) and E represents

relationships between the random variables. Specifically, an edge ei,j ∈ E means that

Xi is conditionally dependent on Xj. A joint distribution for a Bayesian network is

then defined as

P (X1, . . . , XN) =
N∏
i=1

P (Xi|Pa(Xi))

where Pa(Xi) corresponds to the parents of Xi.

Given a Bayesian network, each random variable Xi in the probability dis-

tribution P must define a conditional probability P (Xi|Pa(Xi). This defines the

probability of the random variable given all combinations of the variable’s parent

states. We will refer to this as the conditional probability table of a variable Xi.

Example 1. An example Bayesian network is shown in Figure 3.3. In this example,

there are three random variables: Rain, Sprinkler, and Grass Wet. Each variable has

two possible states: True (T) or False (F). Note that Rain does not have any parents;

therefore, only the probability of its states are required. The conditional probability
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table for Sprinkler, however, requires defining the probability of Sprinkler being True

or False given the different states of Rain. Finally, Grass Wet is dependent on both

the states of Rain and Sprinkler.

One common task in a Bayesian network is to query for the probability of an

event occurring given some set of evidence. Note that this evidence set can be empty.

Answering such a query is known as inference [17,23,54]. With Figure 3.3, one might

know that it rained during the night. Given this information, we might ask, “what

is the probability of the grass being wet?” This particular query can be answered

quickly using marginalization, which in the above network, gives an answer of 0.802.

However, in general, exact inference in Bayesian networks is NP -complete [17,54,76].

Additionally, approximate inference in Bayesian networks is NP -hard [19].

An important feature of Bayesian networks is the concept of a Markov blanket,

which we define as follows.

Definition 3.2. In a Bayesian network, the Markov blanket of a node consists of the

node’s parents, children, and children’s parents, denoted as

MB(Xi) = {Ch(Xi) ∪Pa(Xi) ∪Pa(Ch(Xi)) \Xi}

where Ch corresponds to the child nodes of Xi and Pa corresponds to the parent

nodes of node Xi. A node is conditionally independent of all other nodes in the

network given its Markov Blanket.

Example 2. Suppose we have the Bayesian network in Figure 3.4. In this example,

there are 12 random variables. Given the variable X4, its Markov blanket consists

of its parents X1; its children X8, X9 and X10; and its children’s parents X2, X3 and

X5. Suppose we are given evidence for all the states in X4’s Markov blanket and
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X1

X2 X3 X4 X5 X6 X7

X8 X9 X10 X11 X12

Figure 3.4: Example of a Markov Blanket in a Bayesian network.

after performing inference, we find that the probability of X4 being in state 0 is 0.25.

Now, if we are given additional information about another variable, such as variable

X6 being in state 1, the probability for variable X4 does not change because it is

separated from X6 by its Markov blanket.

Abductive inference is a specific type of inference in Bayesian networks that tries

to find the most likely explanation for some set of evidence. This is also known as the

finding the maximum a posteriori (MAP) probability state of the remaining variables

of a network.

Definition 3.3. Let XU = X\XO, where X denotes the variable nodes in the

network. The problem of abductive inference is to find the most probable state

assignment to the unobserved variables in XU given the evidence XO = xo,

MAP (XU ,xo) = argmax
x∈XU

P (x|xO)

= argmax
x∈XU

N∏
i=1

P (xi|Pa(Xi))
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where xo denotes the set of observed states for variables XO and x is a set of state

assignments for variables in XU . Pa(Xi) represents the complete state assignment to

the parents of Xi.

Note that multiplying small probabilities several times can cause the values to go

to zero. To deal with this issue, the log is often used instead of the raw probabilities.

Since taking the log does not change the optimization problem, the MAP equation

becomes

MAP (XU ,xO) = argmax
x∈XU

log
N∏
i=1

P (Xi|Pa(Xi))

= argmax
x∈XU

N∑
i=1

logP (Xi|Pa(Xi))

3.4.3 NK Landscapes

The NK landscape is a mathematical framework that generates tunable fitness

landscapes often used as test functions for evaluating evolutionary algorithms [52].

They were first proposed by Kaufman [52], and Weinberger showed that optimizing

an NK landscape is NP-complete [116].

While NK landscapes usually assume binary variables, they have been extended

to allow for mixed variables, such as continuous, integer, and nominal [61]. Li et

al. first extended the binary NK landscape to continuous by mapping it to an N -

dimensional hypercube [0, 1]N and mapping values on the interior of the hypercube

using a multi-linear interpolation technique. For integers, values are first mapped to

[0, 1] and then to a continuous NK landscape. Nominal values required the landscapes

to define fitness tables that allow L values for the discrete variables.
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NK landscapes contains two parameters, N and K, that control the overall size

of the landscape and the structure or amount of interaction between each dimension,

respectively [116]. Increasing K makes the variables more dependent on one another,

resulting in more rugged landscapes [2]. This interaction is often referred to as

epistasis. Formally, we can define it as follows.

Definition 3.4. An NK landscape is a function f : BN → R+ where BN is a bit

string of length N . K specifies the number of other bits in the string that a bit is

dependent on. Given a landscape, the fitness value is calculated as

f(X) =
1

N

N∑
i=1

fi(Xi,NbK(Xi)) (3.1)

where NbK(Xi) returns the K bits that are located within Xi’s neighborhood. The

individual functions are defined as fi : BK → R+.

Note that there are multiple ways to define the neighborhood function NbK(Xi).

For example one commonly used method is that the function returns the next K

contiguous bits of the string starting at Xi. If the end of the string is reached,

then the neighborhood wraps back around to the beginning of the string. Another

commonly used method when generating the landscape, is to pick K bits randomly to

be in variable Xi’s neighborhood. Additionally, the individual functions are defined

as fi are usually created randomly.

3.4.4 Experimental Setup

For the Bayesian networks, we used the Hailfinder, Hepar2, Insurance, and

Win95pts Bayesian networks from the Bayesian Network Repository [93]. Previous

work by Fortier et al. used these four networks to evaluate OSI as the represent an

average size Bayesian network with varying number of parameters [33]. Table 3.1
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Table 3.1: Properties of the Test Bayesian Networks.

Network Nodes Arcs Parameters Avg. MB Size

Hailfinder (Ha) 56 66 2656 3.54
Hepar2 (He) 70 123 1453 4.51
Insurance (I) 27 52 984 5.19
Win95pts (W) 76 112 574 5.92

lists the number of nodes, edges, parameters, and average Markov blanket size for the

selected networks. NK landscapes were generated randomly using combinations of

N = 2, 5, 10 and K = 2, 5, 10. For the benchmark optimization functions, we used the

Ackley’s, Dixon-Price, Exponential, Griewank, Rosenbrock, Schwefel 1.2, and Sphere

functions as defined in Appendix A.

For each Bayesian network, 50 trials were performed for each algorithm. Because

NK landscapes are randomly generated, we generated 50 landscapes, and each

algorithm was then run 50 times on each landscape. Similarly, 50 trials were

performed on each benchmark function.

We used the DDE algorithm proposed by Lampinen and Zelinka, which rounds

the individual’s position during fitness evaluations to handle integer values [59]. An

indexing scheme is then used to map the integer value to the discrete value [59].

During tuning, we found that a value of 0.25 for both DE and DDE’s mutation rate

and a differential factor of 0.55 performed the best. For the GA, tournament section

and one-point crossover were used along with uniform mutation at a rate of 0.02.

The FEA versions of the algorithms used the Markov architecture for the

Bayesian networks by Fortier et al. [33]. On the NK landscapes, we created a factor

for each variable and included every variable in its neighborhood and any variable that

contained the current variable in its neighborhood. For the benchmark functions, we
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created a factor for each neighboring pairs of variables in the ordered list of variables.

Each factor performed ten iterations before Compete and Share were performed.

For the CC versions of DMVPSO, GA, DDE, and HC, N/2 factors optimizing

over two variables each were created, since these parameters gave the best results

during preliminary testing across all algorithms. These algorithms are similar to

the CPSO-SK model presented by Van den Bergh and Engelbrecht [113]. When

evaluating the fitness of a factor for the CC algorithm, we use the best known value

from the other factors to fill in the remaining values. While this is different than

other implementations, such as those presented in [82], it uses the same source for

values that FEA uses when it constructs the global solution G.

FEA, CC, and the single-population algorithms were given a total of 350

individuals for GA, PSO, and DE. Often, HC uses only one individual, but, because

CC and FEA requires at least one individual per factor, we used multiple individuals

in the single-population. For the HC versions, 75 individuals were used, since that

allows FEA to have at least one individual per factor on the largest optimization

functions. Furthermore, these values were found to perform well during tuning for

all algorithms. On the CC and FEA algorithms, individuals were distributed evenly

across each of the factors. All algorithms were stopped once the best fitness did not

improve after 15 iterations.

3.4.5 Results

Table 3.2 shows the results of comparing single-population and CC algorithms

to the FEA versions on performing abductive inference on the four different Bayesian

networks. Bold values indicate a statistically significant difference between the single-

population, CC, and FEA versions of the corresponding underlying algorithms, using

Paired Student t-Tests with a 0.05 significance level. If two algorithms tied, both
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Table 3.2: Comparison of single-population, cooperative coevolutionary, and FEA
algorithms on abductive inference on Bayesian Networks.

Hailfinder Hepar2 Insurance Win95pts

DMVPSO −5.05E+2(1.21E+2) −5.29E+1(9.89E−1) −2.54E+1(8.48E−1) −1.80E+2(6.68E+1)
CC-DMVPSO −1.16E+3(5.13E+2) −2.00E+1(1.48E+0) −1.76E+2(1.00E+2) −4.99E+2(1.52E+2)

FEA-DMVPSO −3.45E+1(1.87E−1) −1.75E+1(5.82E−1) −1.07E+1(1.14E−1) −1.43E+1(7.21E−1)
DDE −5.77E+1(1.76E+0) −1.98E+1(1.11E+0) −1.74E+1(1.04E+0) −7.04E+1(3.11E+0)

CC-DDE −4.13E+2(1.24E+2) −2.35E+1(6.11E−1) −1.74E+2(1.52E+2) −1.86E+2(9.18E+1)
FEA-DDE −3.60E+1(5.68E−1) −2.04E+1(9.79E−1) −9.21E+0(9.11E−1) −2.24E+1(1.70E+0)

GA −3.83E+1(1.58E+0) −1.75E+1(4.35E−1) −1.26E+1(8.73E−1) −3.11E+1(7.77E−1)
CC-GA −3.78E+1(5.67E−1) −2.10E+1(1.07E+0) −1.49E+1(2.28E+0) −3.44E+2(2.10E+2)

FEA-GA −3.67E+1(3.62E−1) −1.98E+1(9.68E−1) −1.19E+1(5.31E−1) −2.93E+1(1.57E+0)
HC −3.86E+1(6.91E−1) −1.67E+1(2.44E−1) −1.14E+1(4.64E−1) −2.56E+1(1.09E+0)

CC-HC −8.66E+2(2.37E+2) −2.08E+1(1.30E+0) −9.45E+1(7.76E+1) −4.92E+2(2.33E+2)
FEA-HC −3.62E+1(5.66E−1) −1.81E+1(5.16E−1) −1.11E+1(8.00E−1) −1.74E+1(9.59E−1)

Table 3.3: Comparison of single-population, cooperative coevolutionary, and FEA
algorithms on maximizing NK landscapes.

25 40
2 5 10 2 5 10

DMVPSO 1.76E+1(4.35E−2) 1.79E+1(3.59E−2) 1.80E+1(3.23E−2) 2.68E+1(8.03E−2) 2.68E+1(5.16E−2) 2.68E+1(4.01E−2)
CC-DMVPSO 1.84E+1(6.53E−2) 1.78E+1(8.72E−2) 1.72E+1(7.98E−2) 2.95E+1(1.16E−1) 2.77E+1(1.86E−1) 2.63E+1(1.34E−1)

FEA-DMVPSO 1.87E+1(3.93E−2) 1.93E+1(4.28E−2) 1.92E+1(4.77E−2) 3.02E+1(7.82E−2) 3.06E+1(6.15E−2) 3.07E+1(4.41E−2)
DDE 1.88E+1(3.94E−2) 1.88E+1(3.60E−2) 1.84E+1(3.84E−2) 2.98E+1(8.04E−2) 2.82E+1(5.32E−2) 2.76E+1(4.59E−2)

CC-DDE 1.83E+1(5.49E−2) 1.77E+1(9.00E−2) 1.70E+1(7.98E−2) 2.95E+1(8.36E−2) 2.79E+1(1.66E−1) 2.65E+1(1.49E−1)
FEA-DDE 1.86E+1(4.16E−2) 1.92E+1(4.18E−2) 1.91E+1(4.20E−2) 3.00E+1(7.88E−2) 3.02E+1(6.23E−2) 3.02E+1(4.75E−2)

GA 1.88E+1(3.98E−2) 1.91E+1(3.54E−2) 1.84E+1(5.74E−2) 3.03E+1(7.06E−2) 3.00E+1(7.66E−2) 2.73E+1(5.30E−2)
CC-GA 1.82E+1(5.25E−2) 1.78E+1(9.79E−2) 1.70E+1(7.89E−2) 2.94E+1(8.13E−2) 2.78E+1(1.62E−1) 2.67E+1(1.37E−1)

FEA-GA 1.85E+1(4.97E−2) 1.89E+1(4.28E−2) 1.87E+1(4.09E−2) 2.98E+1(7.82E−2) 2.99E+1(6.77E−2) 2.96E+1(5.50E−2)
HC 1.88E+1(3.98E−2) 1.94E+1(3.25E−2) 1.90E+1(3.35E−2) 3.03E+1(7.05E−2) 3.01E+1(4.56E−2) 2.94E+1(4.41E−2)

CC-HC 1.83E+1(6.85E−2) 1.74E+1(1.12E−1) 1.70E+1(8.17E−2) 2.92E+1(1.10E−1) 2.73E+1(1.81E−1) 2.63E+1(1.65E−1)
FEA-HC 1.86E+1(4.27E−2) 1.91E+1(4.50E−2) 1.89E+1(4.43E−2) 3.00E+1(7.68E−2) 3.02E+1(5.84E−2) 3.00E+1(5.63E−2)

values are bolded. In all cases, the FEA versions of the algorithms performed better

than the CC versions. However, FEA did not always perform better than the single-

population algorithms. For example, the single-population GA tied with the FEA

version on all four networks. The single-population DDE tied with FEA-DDE on the

Hepar2. FEA-HC was significantly outperformed by HC on Hepar2, but tied on the

Hailfinder and Insurance networks. The only instance in which FEA was significantly

outperformed by the single-population algorithm was HC on the Hepar2 network.

Finally, FEA-DMVPSO significantly outperformed DMVPSO on all four networks.

The results comparing single-population, CC, and FEA algorithms on the NK

landscapes are shown in Tables 3.3. Similar to the Bayesian network results, the
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Table 3.4: Comparison of single-population, cooperative coevolutionary, and FEA
algorithms on optimizing benchmark functions.

Ackley’s Dixon-Price Exponential Griewank

PSO 3.42E-2(3.42E-2) 6.76E-1(5.13E-3) -9.97E-1(2.75E-4) 1.01E-2(1.55E-3)1.01E-2(1.55E-3)1.01E-2(1.55E-3)
CC-PSO 5.27E-14(2.19E-15) 1.07E-8(4.92E-10)1.07E-8(4.92E-10)1.07E-8(4.92E-10) -1.00E+0(6.99E-17) 1.30E-2(7.08E-3)1.30E-2(7.08E-3)1.30E-2(7.08E-3)

FEA-PSO 1.37E-14(6.58E-16) 5.44E+0(3.75E+0) -1.00E+0(6.18E-17)-1.00E+0(6.18E-17)-1.00E+0(6.18E-17) 9.10E-2(1.60E-2)
DE 1.09E+1(9.90E-1) 2.42E+5(5.94E+4) -8.50E-1(3.95E-2) 1.17E+0(1.71E-1)

CC-DE 1.53E-2(1.53E-2)1.53E-2(1.53E-2)1.53E-2(1.53E-2) 1.84E+2(8.49E+1) -1.00E+0(6.18E-17)-1.00E+0(6.18E-17)-1.00E+0(6.18E-17) 9.51E-2(4.45E-2)9.51E-2(4.45E-2)9.51E-2(4.45E-2)
FEA-DE 1.49E-1(5.13E-2) 3.86E+1(9.20E+0)3.86E+1(9.20E+0)3.86E+1(9.20E+0) -1.00E+0(1.96E-8)-1.00E+0(1.96E-8)-1.00E+0(1.96E-8) 5.52E-2(1.22E-2)5.52E-2(1.22E-2)5.52E-2(1.22E-2)

GA 1.39E-1(1.11E-2) 1.47E+1(1.27E+0) -9.66E-1(1.52E-3) 2.06E-2(2.02E-3)2.06E-2(2.02E-3)2.06E-2(2.02E-3)
CC-GA 2.21E-2(1.56E-3)2.21E-2(1.56E-3)2.21E-2(1.56E-3) 3.61E+0(5.52E-1)3.61E+0(5.52E-1)3.61E+0(5.52E-1) -9.94E-1(5.06E-4)-9.94E-1(5.06E-4)-9.94E-1(5.06E-4) 5.44E-2(7.90E-3)

FEA-GA 2.08E-2(1.21E-3)2.08E-2(1.21E-3)2.08E-2(1.21E-3) 4.43E+0(5.83E-1)4.43E+0(5.83E-1)4.43E+0(5.83E-1) -9.94E-1(5.75E-4)-9.94E-1(5.75E-4)-9.94E-1(5.75E-4) 9.88E-2(1.24E-2)
HC 1.92E+1(4.10E-2) 1.89E+2(2.21E+1) -6.11E-6(1.36E-6) 1.08E+0(3.40E-2)

CC-HC 1.69E+0(7.93E-2) 1.22E+1(1.20E+0) -9.99E-1(1.62E-4) 4.28E-1(8.34E-2)
FEA-HC 5.95E-3(4.60E-4)5.95E-3(4.60E-4)5.95E-3(4.60E-4) 1.15E+0(4.33E-1)1.15E+0(4.33E-1)1.15E+0(4.33E-1) -1.00E+0(7.87E-7)-1.00E+0(7.87E-7)-1.00E+0(7.87E-7) 3.34E-2(7.94E-3)3.34E-2(7.94E-3)3.34E-2(7.94E-3)

Rosenbrock Schwefel Sphere

PSO 6.09E+1(4.75E+0) 1.99E+3(3.32E+2)1.99E+3(3.32E+2)1.99E+3(3.32E+2) 3.60E-3(3.11E-4)
CC-PSO 2.43E+1(1.40E+1) 8.43E+5(2.03E+5) 2.37E-17(6.24E-18)2.37E-17(6.24E-18)2.37E-17(6.24E-18)

FEA-PSO 2.99E+0(5.75E-1)2.99E+0(5.75E-1)2.99E+0(5.75E-1) 1.81E+3(6.54E+2)1.81E+3(6.54E+2)1.81E+3(6.54E+2) 5.79E-17(5.23E-17)5.79E-17(5.23E-17)5.79E-17(5.23E-17)
DE 4.18E+5(9.13E+4) 1.15E+5(3.24E+3) 1.49E+3(4.49E+2)

CC-DE 3.20E+2(8.59E+1) 9.45E+5(1.89E+5) 2.11E-30(4.94E-31)2.11E-30(4.94E-31)2.11E-30(4.94E-31)
FEA-DE 1.31E+2(1.78E+1)1.31E+2(1.78E+1)1.31E+2(1.78E+1) 9.18E+2(1.62E+2)9.18E+2(1.62E+2)9.18E+2(1.62E+2) 7.80E-3(7.80E-3)7.80E-3(7.80E-3)7.80E-3(7.80E-3)

GA 2.06E+2(1.25E+1) 9.26E+4(5.68E+3) 7.15E-2(8.09E-3)
CC-GA 4.74E+1(1.58E+1)4.74E+1(1.58E+1)4.74E+1(1.58E+1) 1.90E+6(4.65E+5) 9.81E-3(6.63E-4)9.81E-3(6.63E-4)9.81E-3(6.63E-4)

FEA-GA 7.38E+1(1.10E+1) 1.07E+2(1.23E+1)1.07E+2(1.23E+1)1.07E+2(1.23E+1) 9.39E-3(9.23E-4)9.39E-3(9.23E-4)9.39E-3(9.23E-4)
HC 8.23E+2(6.67E+1) 3.66E+4(1.86E+3) 2.04E+2(1.33E+1)

CC-HC 6.53E+1(8.78E+0) 1.54E+6(5.63E+5) 2.11E+0(2.32E-1)
FEA-HC 2.07E+0(3.67E-1)2.07E+0(3.67E-1)2.07E+0(3.67E-1) 9.71E+2(3.41E+2)9.71E+2(3.41E+2)9.71E+2(3.41E+2) 5.01E-3(3.88E-4)5.01E-3(3.88E-4)5.01E-3(3.88E-4)

FEA versions of the algorithms significantly outperformed the CC versions. FEA-

DMVPSO always outperformed the single-population versions. However, FEA-DDE

was outperformed on the simplest landscapes (N = 25, K = 2). GA significantly

outperformed FEA-GA on N = 25, K = 2, N = 25, K = 5, and N = 40, K = 2, but

tied on N = 40, K = 5. FEA-GA outperformed the single-population algorithm when

K = 10. Looking at the HC algorithms, FEA outperformed the single-population

algorithm only on N = 40, K = 10. The single-population HC significantly

outperformed the FEA version on N = 25, K = 2 and N = 25, K = 5. On the
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Table 3.5: Results comparing the number of fitness evaluations on benchmark and
Bayesian networks.

Benchmark Bayesian Networks
Rosenbrock Schwefel Win95pts Hailfinder

PSO 3.68E+5(7.55E+3) 1.69E+5(2.18E+4) 1.10E+4(5.96E+2) 1.14E+4(6.25E+2)
CC-PSO 4.33E+5(9.54E+4) 6.09E+4(1.26E+2) 8.09E+4(2.68E+3) 8.06E+4(3.62E+3)

FEA-PSO 5.96E+5(9.23E+4) 4.85E+5(1.14E+4) 1.06E+5(3.84E+3) 1.22E+5(5.80E+3)
DE 4.69E+4(4.52E+3) 1.41E+4(9.44E+2) 2.04E+4(1.34E+3) 2.05E+4(1.51E+3)

CC-DE 2.41E+5(7.18E+3) 6.08E+4(0.00E+0) 1.03E+5(4.42E+3) 9.53E+4(4.73E+3)
FEA-DE 2.36E+5(4.83E+3) 1.81E+6(1.01E+5) 8.21E+4(2.12E+3) 8.50E+4(2.19E+3)

GA 1.45E+5(8.03E+3) 1.77E+4(1.78E+3) 3.66E+4(1.82E+3) 4.46E+4(1.44E+3)
CC-GA 1.63E+6(1.01E+5) 6.08E+4(0.00E+0) 9.49E+4(3.33E+3) 1.09E+5(4.12E+3)

FEA-GA 1.65E+6(1.10E+5) 4.05E+6(2.98E+2) 1.04E+5(7.24E+3) 1.01E+5(4.36E+3)
HC 1.62E+6(2.19E+4) 5.84E+5(2.78E+4) 1.30E+5(2.75E+3) 2.25E+5(4.40E+3)

CC-HC 8.48E+4(2.99E+3) 4.32E+4(4.08E+2) 3.54E+4(9.12E+2) 5.52E+4(1.94E+3)
FEA-HC 3.87E+5(2.02E+4) 4.07E+6(5.70E+5) 1.30E+5(1.71E+3) 8.87E+4(1.53E+3)

other landscapes (N = 25, K = 10, N = 40, K = 2, N = 40, K = 5), the FEA and

single-population HC algorithms tied.

Table 3.4 shows the results of comparing single-population, CC algorithms, and

FEA versions on optimizing the benchmark functions. Results are presented as the

mean value over 30 trials along with the standard error shown in parentheses. Overall,

the FEA versions of the algorithms performed the best. FEA-PSO was outperformed

by CC-FEA on the Dixon-Price and Griewank functions. On the Ackley’s function,

CC-DE performed significantly better than FEA-DE. The GA outperformed FEA-

GA on the Griewank function while CC-GA performed significantly better on the

Rosenbrock function. FEA-HC performed significantly better than single-population

and CC versions on all functions. Finally, there are several instances where the CC

and FEA algorithms tied.

We also looked at the number of fitness evaluations each algorithm required.

Table 3.5 presents the average number of fitness evaluations for two representative

benchmark functions and Bayesian networks while Table 3.6 presents the results for
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Table 3.6: Results comparing the number of fitness evaluations on NK landscapes.

NK Landscapes
N = 25, K = 2 N = 40, K = 10

PSO 1.10E+4(2.63E+2) 1.11E+4(3.25E+2)
CC-PSO 7.91E+4(6.01E+2) 8.00E+4(1.26E+3)

FEA-PSO 7.20E+4(3.87E+2) 1.08E+5(2.38E+3)
DE 1.93E+4(4.30E+2) 1.32E+4(3.72E+2)

CC-DE 8.00E+4(7.40E+2) 8.65E+4(1.60E+3)
FEA-DE 7.53E+4(1.16E+3) 8.25E+4(7.40E+2)

GA 1.27E+4(1.84E+2) 1.17E+4(4.44E+2)
CC-GA 7.88E+4(7.91E+2) 8.38E+4(1.35E+3)

FEA-GA 7.41E+4(1.29E+3) 8.80E+4(1.75E+3)
HC 1.64E+4(2.96E+2) 2.47E+4(4.09E+2)

CC-HC 2.95E+4(2.21E+2) 3.41E+4(5.25E+2)
FEA-HC 4.26E+4(2.20E+2) 9.15E+4(4.89E+2)

two NK landscapes. For the sake of conciseness, we only present results for an easy

and hard instance of each class of problem. Note that each algorithm stopped when

the best solution failed to improve after 15 iterations. For the FEA, this correlates

to the full global solution not improving after 15 iterations of Update, Compete, and

Share. In almost all cases, the FEA algorithms required more fitness evaluations

than the single-population and CC versions. There were a few exceptions where FEA

versions required fewer iterations than the single population, HC on the Rosenbrock,

and Hailfinder and PSO on the NK landscape N = 40, K = 10.

To further investigate the number of fitness evaluations required for FEA to find

good solutions, we present fitness curves from DMVPSO maximizing NK landscapes

N = 25, K = 2 and PSO minimizing the Rosenbrock function. Figure 3.5 presents

the average best fitness over time on the NK landscape problem while Figure 3.6

shows the same for the Rosenbrock function. The curve labeled “Single” refers to

the single-population algorithm while “CC” and “FEA” refer to the CC and FEA

versions, respectively. Note that the y-axis in Figure 3.6 is on a log scale to allow for

a compact representation of the results. Results are average from 500 trials. Note
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Figure 3.5: A fitness curve plotting fitness versus number of fitness evaluations on
single-population, CC, and FEA DMVPSO algorithms maximizing NK landscapes
with N = 25 and K = 2.

that the best values were taken at each iteration in the single-population and an FEA

iteration for CC and FEA. A single iteration for CC and FEA involves iterating over

all subpopulations and allowing each subpopulation to run for ten iterations while an

iteration for a single-population is given after updating each of the individuals one

time. The consequence is that the fitness curves for CC and FEA have fewer data

points. For both figures, the single-population was the best algorithm at improving

its initial solutions with the fewest number of fitness evaluations. However, the single-

population algorithm required several more fitness evaluations to further converge.

Furthermore, the value the single-population converged to was a worse solution than

both CC and FEA. FEA, on the other hand, was able to quickly converge to a fit

solution in the fewest number of fitness evaluations. Finally, CC took more fitness

evaluations and also converged to a worse solution than FEA.

3.4.6 Analysis

The Paired Student t-Tests on the mean fitness show that FEA versions of

DMVPSO all performed significantly better than the corresponding single-population



65

0 25,000 50,000 75,000 100,000
101

102

103

104

Number of Fitness Evaluations

F
it
n
es
s

Single
CC
FEA

Figure 3.6: A fitness curve plotting fitness versus fitness evaluations on single-
population, CC, and FEA PSO algorithms minimizing the Rosenbrock function. Note
that the y-axis is shown on a logarithmic scale to allow for a compact display of fitness
values over time.

and CC versions. This demonstrates that FEA’s use of overlapping subpopulations

is more effective than the non-overlapping subpopulations used by the CC algorithm.

Additionally, the results suggest that on difficult problems, such as the Hailfinder

Bayesian network, FEA offers an increase in performance for almost all algorithms.

We believe that this is because FEA’s overlapping subpopulations help the algorithm

avoid hitchhiking and TSFOSB. If a subpopulation contains a poor value due to

hitchhiking, a better value from a different subpopulation may be selected during

the competition. This new value will then be injected into the other subpopulation

during the Share step of FEA, thus eliminating the value that is hitchhiking.

The results from the NK landscapes further support this hypothesis. FEA’s

performance over single-population and CC algorithms is significant on the landscapes

with high variable interaction (K = 10). On those problems, the landscape is more

complex, which increases the probability of the algorithms becoming trapped in a local

optimum. As shown in previous chapters, the Markov architecture is able to maintain

better diversity than other factor architectures. Furthermore, we believe that FEA
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is able to maintain more diversity during the search process than single-population

algorithms because the factors are updated independently during the Update step.

This is a similar concept to the Island model for EAs, where (full) subpopulations

are updated independently of one another.

Finally, the the benchmark function results further support our hypothesis

that FEA versions of population-based algorithms perform better than both single-

population and CC algorithms on complex or difficult problems. Many of the test

functions used are designed to be difficult problems with many traps and valleys. FEA

allows the algorithm to escape these by breaking up variables that are hitchhiking

and allowing the algorithm to maintain diversity between the subpopulations. This

is especially noticeable when comparing HC and FEA-HC, where FEA-HC always

outperformed HC. Because HC is a greedy algorithm that only moves in directions

with better fitness, it is susceptible to becoming stuck in local optima. FEA-HC

allows the individuals to escape those suboptimal locations by sharing information

between those individuals.

The results also support the claims by Fortier et al. that the increased

performance obtained by FEA is due to a representation of each subpopulation that

allows communication and competition to occur between overlapping populations

[33] . When there was no overlap between subpopulations, such as in the CC

algorithms, the performance was significantly worse than when there was overlap,

like in FEA. By defining each node’s subpopulation to cover its Markov blanket

when performing abductive inference, we ensure that each population learns the

state assignments for all variables upon which that node may depend. Also, because

multiple subpopulations optimize over each variable, the FEA algorithm allows

greater exploration of the search space. Through competition and sharing, FEA is
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able to find good combinations of variable state assignments from the subpopulations

are used in the final solution.

While FEA does find better solutions, we observe that FEA almost always

requires roughly twice as many fitness evaluations. One source of the additional fitness

evaluations come from the Compete step. However, based on the results in Figure 3.2,

this corresponds to around 10% of the total number of fitness evaluations. As shown in

the complexity analysis of FEA, this percentage is related to the number of iterations

FEA uses in the Update step and the number of overlapping factors optimizing a

variable. If FEA only ran each factor for one iteration, then the percentage of fitness

evaluations used during the Compete step would increase. However, if the FEA had

each factor run for more iterations, then the percentage of fitness evaluations incurred

during Compete would decrease. Furthermore, the graphs in Figures 3.5 and 3.6 show

that FEA quickly converges and fewer iterations could have been performed with little

to no dropout in performance. The other source of the extra fitness evaluations is

how FEA determines that convergence has been reached. In these experiments, FEA

updated each factor ten times before performing competition and then checking for

convergence. If FEA has begun to converge, FEA will be performing ten times more

fitness evaluations than a single population; therefore, FEA performs unnecessary

fitness evaluations towards the end of its convergence.

However, based on the fitness curves in Figures 3.5 and 3.6, FEA performs

better than CC and single-population algorithms when limiting all the algorithms

to the same number of fitness evaluations. While the single-population algorithm is

faster early in the search process, it takes more fitness evaluations to converge while

converging to worse solutions that CCEA and FEA. These results also demonstrate

that the convergence criteria used in these experiments for FEA could be lowered

without negatively affecting the performance. Here, convergence was reached when
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the full global solution did not improve after 15 iterations, however, we could have

used a much lower threshold.

3.5 Conclusion

In this chapter, we presented a framework for defining multi-population EAs.

We then demonstrated how this framework can define the Island Model, CCEA, and

MFEA. Next, we defined FEA and defined its three major subfunctions: Update,

Compete, and Share. We then provided a complexity analysis of FEA and showed the

conditions under which Update and Compete functions dominate the runtime of FEA.

From this, we observe that while FEA will increase the number of fitness evaluations,

the amount can be managed by adjusting parameters in FEA. Furthermore, FEA

does not increase the complexity to update individuals.

Additionally, we examined the generality of FEA by performing experiments

comparing single-population, CC, and FEA versions of GA, PSO, DE, and HC. In

almost all cases, FEA outperformed single-population and CC algorithms. We also

demonstrated that the performance of FEA is not dependent on the optimization

algorithms. While FEA requires more fitness evaluations, the majority of these

extra evaluations are caused by FEA performing extra fitness evaluations when the

algorithm begins to converge. Additionally, the criteria for convergence could be lowed

so that FEA performs fewer fitness evaluations without affecting the performance of

FEA.
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CHAPTER FOUR

FACTOR ARCHITECTURES

While there has been some work discussing different factor architectures, there

has been little work optimizing factor architectures for FEA. In this chapter, we

verify empirically that the performance of FEA is tied to the factor architecture.

To do so, we test a variety of architectures on three different problems: abductive

inference in Bayesian networks, maximizing NK landscapes, and optimizing a set of

commonly-used benchmark functions for EAs.

From those results, we discover that factor architectures affect the performance of

FEA. Additionally, there appears to be a relationship between different architectures.

We then prove that a specific class of optimization problems can be mapped to factor

graphs. Factor graphs are similar to Bayesian networks in that they can be used to

encode a joint probability distribution over a set of random variables. Additionally, we

use this mapping as a general method for deriving factor architectures when applying

FEA to a problem by mapping the problem to a factor graph and use the resulting

dependencies as a way to derive the factors. Finally, we demonstrate this general

method by using an FEA version of GA on a set of benchmark functions, including

an investigation into how the architecture outperforms other factor architectures.

4.1 Comparing Factor Architectures

We begin by comparing a set of factor architectures for performing abductive

inference in Bayesian networks, maximizing NK landscapes, and optimizing a set of

commonly-used benchmark functions for EAs.
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4.1.1 Bayesian Networks

For all our experiments, we used an empty evidence set. Previous work by Fortier

et al. randomly selected a 50% of the leaf variables as nodes to apply evidence when

using OSI to perform full and partial abductive inference [33]. However, this raises

the question as to how OSI performs when using other methods for selecting evidence.

To eliminate these experimental decisions, we we do not apply any evidence to the

Bayesian network; therefore, we are searching for the most probable state assignment

for all variables, i.e. XU = X. Additionally, when evidence is applied to the network,

the number of variables to be optimized is reduced. Thus, by choosing not to apply

evidence, we are testing on a more difficult optimization problem.

To test our architectures, we used the Hailfinder, Hepar2, Insurance, and

Win95pts Bayesian networks from the Bayesian Network Repository [93]. Table 3.1

lists the number of nodes, edges, parameters, and average Markov blanket size for

the selected networks. For each Bayesian network, we compared four different factor

architectures, which are described below.

• Random Architecture — Random factors are considered as the baseline

architecture. For this approach, a random subpopulation is constructed for each

of the N variables. K variables are then added to each of the N subpopulations.

For each individual Bayesian network, K was set to be equal to the rounded

average Markov blanket size for the network.

• Parents Architecture — For each variable Xi, we construct a subpopulation

of individuals consisting of Xi ∪ Pa(Xi). This is one of the simplest ways

to subdivide a Bayesian network and provide overlap. Additionally, this

architecture takes advantage of the structure of the log likelihood function that

is used to evaluate the fitness of individuals in the population.
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• Markov Architecture — This architecture uses the Markov blanket of the

nodes to create subpopulations, which offers arguably one of the most natural

ways to subdivide a Bayesian network and provide overlap. For every variable,

a factor was created consisting of the variable itself, and every node in its

Markov blanket. This architecture may provide an advantage when performing

inference because every node in the network is conditionally independent of all

other nodes given its Markov blanket.

• Clique Tree Architecture — This architecture is one of the more complicated

methods to create subpopulations. The Bayesian network is first moralized,

which consists of connecting parents of variables with an undirected edge. Next,

the directed edges of the Bayesian network are made to be undirected, followed

by triangulating the network. Finally, the graph is decomposed into a clique

tree by first computing the maximal cliques and then finding the maximum

spanning tree weighted by the overlap size of neighboring cliques. Note that

unlike the previous architectures, this method does not build a subpopulation

by centering on a single variable. Instead, each subpopulation corresponds to

the variables in a clique in the resulting clique tree.

Table 4.1 shows the results for the FEA-DMVPSO when performing abductive

inference on the four different Bayesian networks using the four different factor

architectures. The average fitness values, along with the standard deviation for error

bounds, are displayed. Additionally, the results of statistical significance testing using

a Paired Student t-Test with α = 0.05 between each pairs of factor architectures are

shown in Table 4.2. If an architecture performed significantly better than another

architecture on a particular Bayesian network, the network’s abbreviation is shown
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Table 4.1: Average fitness of factor architectures for FEA-DMVPSO performing
abductive inference on Bayesian networks.

Network Random Parents Markov Clique

Hailfinder -37.98±2.17 -36.81±2.08 -35.13±1.59 -95.88±204.36
Hepar2 -19.46±2.73 -17.16±1.38 -16.37±0.00 -16.57±0.83

Insurance -12.96±2.24 -12.32±2.26 -11.61±1.81 -12.73±2.10
Win95pts -39.02±5.60 -48.24±105.62 -33.25±5.95 -68.22±148.80

Table 4.2: Hypothesis tests of factor architectures for FEA-DMVPSO performing
abductive inference on Bayesian networks.

Architecture Random Parents Markov Clique

Random − − − −
Parents Ha,He,−,− − − Ha,−,−,−
Markov Ha,He,I,W Ha,He,−,− − Ha,−,I,−
Clique −,He,−,− −,He,−,− − −

where the row architecture outperforms the column architecture. If there is no

significant difference, a “—” is shown.

The Markov architecture outperformed all other architectures on all networks.

However, it only significantly outperformed the Parents architecture on the Hailfinder

and Hepar2 networks, and the Clique architecture on the Hailfinder and Insurance

networks. The Parents architecture also performed well on all networks except the

Win95pts network, whereas the Clique architecture performed well only on the Hepar2

and Insurance networks. Finally, the Random architecture performed the worst on

the Hepar2 and Insurance networks and did not significantly outperform any of the

other architectures.
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4.1.2 NK Landscapes

We tested each architecture on NK landscapes with parameters N = 25, 40 and

K = 2, 5, 10. In our experiments, we compared the following factored architecture

strategies on 50 randomly generated landscapes.

• Random Architecture — Random subpopulations for NK landscapes are

constructed similarly to the Random architecture used in abductive inference

in Bayesian networks. A subpopulation is created for every variable, and M

variables are then added to each of the N subpopulations. For these experiments

we set M to be equal to K, giving each factor a size of K + 1.

• Neighborhood Architecture — For each variable Xi, we create a subpopu-

lation and add all the variables in the set NbK(Xi). In all of our experiments,

we used the neighborhood function that returns the next K contiguous bits of

the string starting at Xi. This results in subpopulation sizes of K + 1.

• Loci Architecture — The loci subpopulation extends the neighborhood

architecture. Each variable Xi is still used to create a subpopulation along with

the variables in NbK(Xi). Therefore, we add variable Xj to the subpopulation

if Xi ∈ NbK(Xj). In other words, the subpopulation consists of all the variables

in its neighborhood and all variables that contain Xi in their neighborhood. The

neighborhood architecture will result in factors similar to those created by the

Markov architecture for Bayesian networks. This creates subpopulations of size

2K + 1.

Table 4.3 shows the results the FEA-DMVPSO on maximizing NK landscapes

using different factor architectures. Results from the hypothesis testing are in Table

4.4, where a + is shown if the row architecture is better than the column architecture.
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Table 4.3: Average fitness of factor architectures for FEA-DMVPSO maximizing NK
landscapes.

N K Random Neighborhood Loci

25
2 18.01±0.78 18.41±0.76 18.42±0.75
5 18.20±0.67 18.59±0.59 18.43±0.59
10 17.81±0.58 18.03±0.58 17.67±0.57

40
2 28.51±1.25 29.34±1.18 29.37±1.13
5 28.73±0.92 29.66±0.75 29.40±0.74
10 28.04±0.82 28.81±0.75 28.25±0.72

If there is no significant difference or the row architecture is worse than the column

architecture, a “−” is shown.

The Neighborhood architecture always outperforms the Loci and Random

architectures. However, it is only significantly better than the Loci architecture for

K = 5 and K = 10. Random was almost always the worst and was significantly

outperformed by Neighborhood and Loci, except when N = 25, K = 10, where

random performed statistically better than the Loci architecture. A key observation

from these results is the Neighborhood architecture is never significantly outperformed

on any of the landscapes.

4.1.3 Test Functions

In this section, we evaluate the performance of FEA on real-valued optimization

problems by applying the algorithm to a set of test functions commonly used in the

literature for testing EAs and swarm algorithms.

The seven functions selected for these experiments were the Ackley’s (AK),

Dixon-Price (DP), Exponential (EX), Griewank (GR), Rosenbrock (RO), Schwefel 1.2

(SH), and Sphere (SP) functions. All of the functions are defined in Appendix A We

used the same set of standard function ranges as presented in [28]. All of the problems

are minimization problems with global minima of 0.0, except for Exponential, which
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Table 4.4: Hypothesis tests of factor architectures for FEA-DMVPSO maximizing
NK landscapes.

N K Architecture Random Neighborhood Loci

25

2
Random − − −

Neighborhood + − −
Loci + − −

5
Random − − −

Neighborhood + − +
Loci + − −

10
Random − − −

Neighborhood + − +
Loci + − −

40

2
Random − − −

Neighborhood + − −
Loci + − −

5
Random − − −

Neighborhood + − +
Loci + − −

10
Random − − −

Neighborhood + − +
Loci + − −

has a minimum of −1.0. Additionally, all of the problems are scalable, meaning they

can be optimized for versions of any dimension. In our experiments, we used functions

of 50 dimensions. For each function, we compared the following factored architecture

strategies.

• Simple Architecture — Simple architecture are specified by two parameters,

l and m, where l controls how many variables each factors optimizes over while

m dictates how many variables each neighboring factor overlap. For example,

values of 4 and 2 for l and m would create a factors S1 = {X1, X2, X3, X4},

S2 = {X3, X4, X5, X6}, S3 = {X5, X6, X7, X8}, and so on. We will denote

simple factor factor architecture with parameters l and m as SA-l,m.
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Table 4.5: Average fitness of different factor architectures for FEA-PSO minimizing
different benchmark test functions.

CA-2 CA-5 CA-10 SA-4,2 SA-10,5

Ackley’s 1.34E-14(1.03E-15) 1.30E-14(8.30E-16) 2.93E-2(2.93E-2) 5.86E-2(4.07E-2) 1.22E+1(1.00E+0)
Dixon-Price 7.99E-2(7.99E-2) 2.56E-1(7.99E-2) 3.63E+0(3.18E+0) 2.48E+0(4.24E-1) 1.33E+0(2.99E-1)
Exponential -1.00E+0(6.18E-17) -1.00E+0(6.18E-17) -1.00E+0(6.18E-17) -1.00E+0(6.18E-17) -1.00E+0(6.18E-17)
Griewank 4.26E-3(2.04E-3) 4.00E-3(1.61E-3) 1.15E-2(3.85E-3) 2.15E-2(1.08E-2) 1.05E-1(2.73E-2)

Rosenbrock 4.57E+0(5.72E-1) 6.58E+0(2.75E+0) 3.98E+0(6.03E-1) 1.71E+1(5.21E+0) 6.29E+1(7.68E+0)
Schwefel 1.67E+4(1.88E+3) 8.45E+2(4.84E+2) 3.94E+2(3.32E+2) 1.97E+4(4.79E+3) 1.22E+4(3.05E+3)
Sphere 9.50E-42(8.87E-42) 9.74E-36(5.36E-36) 6.75E-32(3.37E-32) 9.69E-36(4.81E-36) 2.82E-19(2.62E-19)

Table 4.6: Hypothesis tests of factor architectures for FEA-PSO optimizing bench-
mark functions.

CA-2 CA-5 CA-10 SA-4,2 SA-10,5

CA-2 — — — Dp, Ro Ak, Dp, Gr, Ro
CA-5 Sh — — Dp Ak, Dp, Gr, Ro
CA-10 Sh — — Sh Ak, Gr, Ro, Sh
SA-4,2 — — — — Ak, Dp, Sh
SA-10,5 — — — — —

• Centered Architecture — The centered factor generates a factor for each

variable in the optimization problem. For each factor, the next l variables are

included in the factor. The algorithm starts with variable X1 and adds the next

l variables {X2, X3 . . . Xl+1}. This is repeated for all variables. The architecture

is called Centered Architecture because in the case that l is odd, the architecture

can be viewed as adding the previous (l− 1)/2 and next (l− 1)/2 variables to a

factor centered around variable Xi. We note that in our implementation, we did

not use any wrap-around upon reaching the end of the list of variables. Because

of this, factors centered around variables towards the end of the list of variables

will be smaller. We denote this architecture as CA-l.

Table 4.5 displays the results of the different factor architectures on minimizing

the benchmark test functions. Results are displayed as average fitness over 30

trials with the standard error shown in parentheses. CA-2 outperformed all other

architectures on the Dixon-Price and Sphere functions. It was outperformed by CA-5
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on Ackley’s and Griewank. CA-10 performed the best on Rosenbrock and Schwefel.

All of the architectures performed equally well on the Exponential function. Neither

of the SS architectures performed better than the CS architectures.

Table 4.6 shows the pairwise significance tests. If an architecture performed

significantly better than another architecture on a particular benchmark function

network, the function’s abbreviation is shown where the row architecture outperforms

the column architecture. We note that in almost all cases, all of the CA architectures

tied in terms of performance. Only on the Schwefel problem did CA-5 and CA-

10 perform significantly better than CA-2. The difference between SA-4,2 and SA-

10,5 was significant for the functions Ackley’s, Dixon-Price, and Schwefel. Similarly,

the CA-2 and CA-5 were significantly different from SA-10,5 on all functions except

the Exponential, Schwefel, and Sphere. Finally, we note that that CA-2 was only

significantly outperformed on the Schwefel function.

4.1.4 Analysis

From the Bayesian network results, the Markov architecture performed the

best across all networks. However, it was only statistically better than the other

architectures on certain networks. We believe this is because the size of FEA’s factors

also affect FEA’s performance. This can be demonstrated by comparing Markov’s

performance on the Win95pts and Hailfinder networks. In the Win95pts network, the

average Markov blanket size of a variable in the network is 5.92. On this network, the

Markov architecture failed to be statistically better than Clique and Parents. But on

the Hailfinder network, where the average Markov blanket size is 3.54, the Markov

architecture was statistically better than all other architectures. These results also

demonstrate that the Markov architecture will usually perform the best on networks

that have relatively small average Markov blankets (< 5).
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Within the NK landscape experiments, the best-performing architecture was

Neighborhood. In almost all cases, Neighborhood outperformed Loci and Random.

The Neighborhood architecture is similar to the Parents architecture for abductive

inference in Bayesian networks. However, when K = 2, the Loci architecture,

which is similar to the Markov architecture for Bayesian networks, performed better

than the Neighborhood. This supports our previous claim that the performance of

FEA’s factors also depends on the size of the factors. When K became large, Loci’s

performance became worse as compared to Neighborhood’s.

Based on the benchmark results, CA-2 was the best-performing architecture

except on the Schwefel function. In that case, CA-5 and CA-10 performed the best.

The Schwefel function output is dominated by the summation of factors, where the

factor is composed of a product of input variables and the number of variables in the

product ranges from 1 to n. This results in a function with variables that interact

with one another to a large degree. Based on the results, we see that the factor

architecture with larger factors, CA-10, is better able to capture the high level of

variable interaction in the Schwefel function.

For the other benchmark functions, the problems are either completely separable,

like the Sphere function, or are dominated by the summation of the product of only

one or two variables, like Rosenbrock. In those cases, the factor architecture with

small factors, CA-2, is capable of capturing the variable interaction. These results

indicate that the best factor architectures are those that are appropriately sized for

the product of variables in the benchmark function. Factors that are too large can

lead to problems such as TSFOSB, like regular PSO. However, if the factors are

too small, then FEA loses its effectiveness because variable interactions may not be

captured by the factors.
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4.2 Mapping Functions to Factor Graphs

Based on the results in the previous section, we discovered that factor

architectures affect the performance of FEA. Furthermore, we demonstrated that

taking advantage of groupings of highly related variables is the best way to create

factor architectures. From these results, there appears to be a relationship between

the Markov architecture for Bayesian networks and the Lock architecture for NK

landscapes. If the problem can be represented as a Bayesian network, then the

Markov blanket should be used to derive the factor architectures. This is because

the Markov blanket for a variable makes it independent of all other variables outside

of its Markov blanket, allowing the factor to discover good values in the search space.

In this section, we prove that a specific class of optimization problems can be

mapped to factor graphs. Factor graphs are similar to Bayesian networks in that

they can be used to encode a joint probability distribution over a set of random

variables. Additionally, we use this mapping as a general method for deriving

factor architectures when applying FEA to a problem by mapping the problem to

a factor graph and use the resulting dependencies as a way to derive the factors.

Finally, we demonstrate this general method by using an FEA version of GA on

a set of benchmark functions, including an investigation into how the architecture

outperforms other factor architectures.

4.2.1 Related Work

The idea of mapping an optimization to a probabilistic graphical model is similar

to Estimation of Distribution Algorithms (EDA) [8]. EDA are a class of GAs that use

a probability distribution to estimates the fitness function being optimized. While

GAs are effective for a wide range of problems, they often struggle when building
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blocks are not contained in contiguous sets of variables. This is because GAs struggle

by breaking up building blocks too frequently or not mixing different combinations

of the blocks together [78]. EDA attempts to alleviate these problems by using a

learning algorithm to build a probability distribution while optimizing the function.

During each iteration, an EDA will select individuals similar to a regular GA. The

algorithm then uses the selected individuals to update the structure and parameters

of a probabilistic graphical model. Finally, EDA generates a new set of individuals

based on the distribution [77].

Most EDAs perform selection and generate new individuals in a similar fashion

in that a probability vector is used to generate new individuals. However, there

is a great deal of variation in how algorithms update their estimated distribution.

One of the simplest ways is to assume independence between all variables in the

problem [78]. Baluja first samples individuals from a probability vector [3]. From the

sample, the best individuals are selected and used to update the probability by scaling

the probability vector by the number of state occurrences in the selected individuals.

Mühlenbein and Paass use a similar method in that individuals are sampled from

a probability vector [70]. However, the probability vector is completely replaced by

setting the distribution of a variable equal to the number of state occurrences in the

selected individuals.

One issue with assuming independence between all variables is that the

algorithms will be misled when there is a strong interaction between variables.

De Bonet et al. relax the independence assumption and allow variables to be

connected to two other variables [21]. Once samples have been generated and

selected, the algorithms builds a Bayesian network by using a greedy chain search

that minimizes mutual information between neighboring variables. The result is a

chain of random variables that the authors also show minimizes the Kullback-Leibler
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divergence between the estimated distribution and the true distribution [21]. Similar

to the methods that assume independence between variables, the Bayesian network is

sampled to generate new individuals, which are used to update the Bayesian network.

This process is repeated until a stopping criterion is met.

Baluja presented an algorithm that relaxed the chain requirement to allow for

building a tree over the variables [4]. After samples have been generated, a model is

constructed using the Chow-Liu algorithm, which constructs a fully connected graph

weighted by the mutual information between variables followed by finding a maximum

spanning tree [14]. Next, the parameters for variables in the tree are estimated using

the individuals in the population. This Bayesian network is then used to generate

the individuals and the process is repeated until the stopping criteria is met. A forest

version was presented by Pelikan and Mühlenbein [79], which used the Pearson’s

chi-square test instead of the using mutual information [79].

Many of the previously mentioned EDA algorithms for optimizing a function

have been extended to allow for models that allow variables to interact with more than

two other variables. While learning general Bayesian networks often requires more

computational time than that of simplified learners, such as the minimum spanning

tree algorithm by Chow-Liu algorithm, the result is often an overall reduction in

the computational time of the EDA algorithm [14, 78]. There are several variations

of EDA that use a general probability distribution to generate individuals. One

of the earliest versions was called the factorized distribution algorithm (FDA) [69].

In this algorithm, it is assumed that the Bayesian network structure is given along

with the optimization problem. During each step, the FDA uses the individuals in

the population to update the local probability distributions in the network. This is

repeated until some stopping criterion is met.
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Harik used a more general algorithm called the Extended Compact Genetic

Algorithm (ECGA) that would update both the structure and parameters of the

Bayesian network [42]. ECGA first assumes all variables are independent and

adds connections between variables that minimizes the minimum description length

(MDL). If there are no connections that reduce the MDL, the algorithm stops adding

links and then uses the Bayesian network to generate new individuals, which are

then used to update the network The resulting Bayesian network often has groups

of variables that are independent of all other groups. During each generation, a

completely new Bayesian network is generated.

The Bayesian Optimization Algorithm (BOA) presented by Pelikan et al.

extends ECGA to learn more general Bayesian networks [77]. Individuals are first

randomly generated and selected based on fitness. Next, the K2 algorithm developed

by Heckerman et al. is used to build a Bayesian network [43]. In BOA, the authors

restrict variables to have no more than two incoming edges and used the Bayesian-

Dirichlet score as the measure of network quality. Similar to other EDAs, BOA

uses the Bayesian network to generate and selected new individuals which are then

used update the network. Other authors have presented similar algorithms to BOA

that use the Bayesian Information Criterion (BIC) to drive the Bayesian learning

algorithm [30,68].

While most of the work with EDAs involves learning Bayesian networks, there

has also been some work in using Markov networks in EDAs instead of Bayesian

networks. Distribution Estimation Using Markov Networks (DEUM) is one of the

first algorithms focusing on Markov networks [96, 97]. DEUM is similar to FDA

in that the structure of the network is given upfront. During each iteration, the

algorithm updates the parameters to the Markov network using the current generation

of individuals.
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An extension was made to DEUM by Shakya et al. that allows for learning the

structure of the Markov network [95]. The algorithm does this by calculating the

mutual information between variables to determine pairs of neighboring variables.

Once a structure is learned, the algorithm is able to compute the parameters of the

network using the individuals in the population. There has also been some work using

Walsh functions to investigate how the learned Markov network can affect the search

process [8].

EDAs are related to our work here, where we show how a Factor Graph can

represent NK landscapes, because they use a probability distribution to represent

a fitness function. However, our work differs in that we create an exact mapping

from NK landscapes to factor graphs and therefore do not have to learn a probability

distribution. Furthermore, the factor graph is not used to generate individuals during

the search process.

4.2.2 Factor Graphs

We begin by presenting a formal definition of a factor followed by factor graphs

and abductive inference in factor graphs. In all the following definitions, we define D

to be a set of random variables.

Definition 4.1. A factor potential is a function φ: V al(D) → R, where V al(D)

is the set of values for a set of variables D. The function φ defines the affinity or

strength of relationship between states for a variable.

Example 3. Suppose we have two random variables A and B, each of which can

take two states: Y es and No. An example factor potential for the two variables is:
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A B φ

Y es Y es 30

Y es No 5

No Y es 1

No No 10

Here, this potential defines a relationship where there is a high likelihood that A and

B agree. The highest potentials are for (Y es, Y es) and (No, No) while the lowest

values are for (Y es, No) and (No, Y es).

Definition 4.2. Let G = (V,E) be the set of vertices and edges in a graph where

V = {X∪φ}. X = {X1, X2, . . . , Xn} is the set of variables and each Xi is a random

variable. φ is the set of factors that define the potentials between variables. An edge

ei,j ∈ E connects a factor φi to a variable Xj if Xj is an argument of factor φi. Note

that edges only exist between variable nodes and factor nodes. The set of variables

that are connected to factor φi is denoted as Di. A joint distribution PΦ for a factor

graph is then defined as

PΦ(X1, . . . , Xn) =
1

Z

m∏
i=1

φi(Di)

where Z is a normalization factor that is calculated as

Z =
∑
Xi∈X

(
m∏
i=1

φi(Di)

)
.

Example 4. Figure 4.1 shows an example factor graph. The square nodes represent

the factor potentials while the circles are random variables. In this example, there are

three factor potentials and four random variables. The potential φ1 defines a function
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A

φ1

φ2

φ3

B

C

D

Figure 4.1: Example of a factor graph.

for D1 = {A} while φ2 defines the potentials for D2 = {A,B}. Finally, the function

φ3 defines the potentials for D3 = {A,C,D}.

We can also define a Markov blanket in a factor graph.

Definition 4.3. Given a variable Xi in a factor graph, the Markov blanket of Xi is

defined as all of the variables Xk that are connected to any of the factor nodes φj

connected to the node Xi [1].

Example 5. In Figure 4.1, the Markov blanket for A are all other nodes in the

network because there is a factor connecting A to B,C, and D. However, variable

B is only connected to A through φ2, and therefore, the Markov blanket for B is A.

Finally, the Markov blanket for C is A and B while the Markov blanket for D is A

and B.

Next, we give a definition for abductive inference in factor graphs.

Definition 4.4. Given a set of evidence variables and their corresponding states in a

factor graph, abductive inference is the problem of finding the maximum a posteriori

(MAP) probability state of variables without any evidence. If we let XU = X\XO,
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where X denotes the variable nodes in the network, the problem of abductive inference

is to find the most probable state assignment to the variables in XU given the

observation of evidence XO = xO. MAP is performed by maximizing the equation

MAP (XU ,XO) = argmax
x∈XU

1

Z

m∏
i=1

φi(di)

where di is equal to the (full or partial) state assignments for the variables connected

to the factor φi defined by xO. Z is a normalization factor and is calculated over the

restricted potentials defined by xo as

Z =
∑

Xi /∈Xo

(
m∏
i=1

φi(di)

)
.

Because MAP is an argmax and only concerned with the most likely state

assignments and not the probability of the assignment, the normalization factor Z

can be dropped [1]. Note that multiplying several small probabilities together can

cause the values to go to zero. To address this issue, the log of the probabilities is

often used instead of the raw probabilities [1]. Since taking the log does not change

the optimization problem, the MAP equation becomes

MAP (XU ,XO) = argmax
x∈XU

m∑
i=1

log φi(di). (4.1)

We now give a theorem about how optimizing NK landscapes can be reduced

to abductive inference in factor graphs followed by the proof. Recall that an NK

landscape is a function f : BN → R+ where BN is a bit string of length N and K

specifies the number of other bits in the string that a bit is dependent on. Fitness is
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calculated as

f(X) =
1

N

N∑
i=1

fi(Xi,NbK(Xi))

where NbK(Xi) returns the K bits that are located within Xi’s neighborhood.

Theorem 4.2.1. Given an NK landscape, a corresponding factor graph can be

defined such that all factors φi correspond to a functions fi from the landscape and

the optimization problem in the NK landscape is identical to abductive inference over

the factor graph.

Proof. Assume we are given an NK landscape L with N bits and K interactions per

bit. Remember the task for optimizing an NK landscape is to find state assignments

x = 〈x1, x2, . . . , xn〉 for X that maximizes the function

f(X) =
1

N

N∑
i=1

fi(Xi,NbK(Xi))

This maximization problem can be formulated as

M(L) = argmax
x∈V al(X)

n∑
i=1

fi(xi, nbK(xi)).

We will construct a factor graph G = (V,E) such that the vector defining the most

probable explanation for G is equal to the vector denoting the global maximum of L.

For each bit Xi in L, a variable node Xi and a factor node φi are inserted into

the factor graph G. Edges are then added between φi and each node Xj in nbK(Xi).

Due to our factor graph construction, Di = {Xi, nbK(Xi)}. Parameterize each factor

φi as φi(Di) ← efi(Xi,nbK(Xi)) for each entry in the factor table. Note that if given

an empty evidence set XO, performing abductive inference on the newly constructed
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factor graph is

MAP (XU) = argmax
x∈V al(XU )

m∑
i=1

log φi(Di).

Since we defined φi(Di) = efi(Xi,nbK(Xi)), we have log φi(Di) = fi(xi, nbK(xi)).

Therefore the optimization problem can be rewritten as

MAP (XU) = argmax
x∈V al(X)

n∑
i

fi(xi,NbK(xi)).

This equation is identical to the equation maximizing NK landscapes, therefore,

M(L) = MAP (X).

Theorem 4.2.1 has several implications. The first is that it shows a direct

relationship between NK landscapes and probabilistic graphical models, allowing us to

use any results for analyzing probabilistic graphical models on NK landscapes and vice

versa. For example, this theorem can be used as an alternative reduction to prove the

NP-hardness of abductive inference in factor graphs, and by extension, on Bayesian

networks. Second, it can allow for an alternative way define NK landscapes. For

example, K could be viewed as an upperbound to the number of variables connected

to a factor. Additionally, the discrete factors in the factor graph could be replaced

with continuous factors, which would define a new class of continuous NK landscapes.

Note that would be an alternative model than the continuous NK landscape presented

by Li et al. [61]. For the purposes of this paper, we will restrict our use of Theorem

4.2.1 to informing us on how to apply FEA to NK landscapes.

We also extend this to any maximization function with a similar form. This is

expressed in the following corollary.
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Corollary 4.2.2. Given a function to be maximized with the the form

f(X) =
N∑
i=1

fi(Di)

where Di = {Xj, Xk, . . . Xl}, a corresponding factor graph can be defined such that

optimizing the function is identical to abductive inference of the factor graph.

Proof. Assume we are given a maximization function f with N variables and that

this maximization problem can be formulated as

M(f) = argmax
x∈V al(X)

n∑
i=1

fi(Di).

We will construct a factor graph G = (V,E) such that the vector defining the most

probable explanation for G is equal to the vector denoting the global maximum of f .

For each dimension Xi in f , a variable node Xi and a factor node φi are inserted

into the factor graph G. Edges are then added between φi and each node Xj in

Di = {Xj, Xk, . . . Xl}. Each factor φi is parameterized as

φi(Di)← exp(fi(Xj, Xk, . . . Xl))

for each entry in the factor table. Note that if given an empty evidence set XO,

performing abductive inference on the newly constructed factor graph is calculated

as

MAP (XU) = argmax
x∈V al(XU )

m∑
i=1

log φi(Di).
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Since we defined φi(Di) = efi({Xj ,Xk,...Xl}), we have log φi(Di) = fi({Xj, Xk, . . . Xl}).

Therefore the optimization problem can be rewritten as

MAP (XU) = argmax
x∈V al(X)

n∑
i

fi(xj, xk, . . . xl)).

This equation is identical to maximizing the function f , therefore, M(f) = MAP (X).

We note two major differences between Theorem 4.2.1 and Corollary 4.2.2. The

first is that Corollary 4.2.2 does not place any restriction on the variables being

continuous or discrete. Second, Corollary 4.2.2 does not require that each fi use the

same size Di input that NK landscapes require. Furthermore, the sets Di can be any

subset of variables.

Note that this corollary only applies to maximization. However, any maxi-

mization problem can be converted to a minimization by creating a new function

f ′(X) = −f(X). This means that any function of the form

f(X) =
N∑
i=1

fi(Xi, Xi+1, . . . , Xi+ki) (4.2)

can be mapped to a factor graph.

We give the following example to demonstrate the mapping.

Example 6. Suppose we are given the Rosenbrock function

f(X) =
N−1∑
i=1

100(Xi+1 −Xi)
2 + (1−Xi)

2.
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Note that this is a minimization function that can be transformed into a maximization

function, giving us the folloing

f ′(X) = −f(X) = −
N−1∑
i=1

100(Xi+1 −Xi)
2 + (1−Xi)

2.

Note that fi is equal to

f ′i(Xi, Xi+1) = −100(Xi+1 −Xi)
2 − (1−Xi)

2.

This gives us the following equation

f ′(X) =
N−1∑
i=1

f ′i(Xi, Xi+1).

Each function φi is then set as

φi(Xi, Xi+1)← exp(−100(Xi+1 −Xi)
2 − (1−Xi)

2).

4.3 Empirical Analysis

We extended the experiments in the previous experiments by first analyzing FEA

using a GA instead of a PSO. In that section, we analyzed factor architectures for FEA

using only PSO as the underlying optimization algorithm. Additionally, we restricted

their analysis to the average fitness of each architecture on only four networks. Here,

we incorporate more networks and look at other performance characteristics, such as

population diversity, to gain a better understanding where each architecture gains its

advantage.

In these experiments, we tested each of the architectures on three different

problems: abductive inference in Bayesian networks, maximizing NK landscapes, and
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Table 4.7: Properties of Bayesian networks.

Nodes Edges Parms. Avg. MB Size

Alarm 37 46 509 3.51
Andes 223 338 1157 5.61
Barley 48 84 114,005 5.25
Child 20 25 230 3.00
Diabetes 413 602 429,409 3.97
Hailfinder 56 66 2656 3.54
Hepar2 70 123 1453 4.51
Insurance 27 52 984 5.19
Link 724 1125 14,211 4.80
Mildew 35 46 540,150 4.57
PathFinder 135 200 77,155 3.04
Pigs 441 592 5,618 3.66
Water 32 66 10,083 7.69
Win95pts 76 112 574 5.92

minimizing a set of commonly-used benchmark functions. For the Bayesian networks,

we used a set of networks from the Bayesian Network Repository [93]. The networks

used and parameters are shown in Table 4.7. NK landscapes were generated randomly

using combinations of N = 25, 40 and K = 2, 5, 10. For each Bayesian network,

30 trials were performed for each factor architecture. Because NK landscapes are

randomly generated, we generated 30 landscapes. Each version of FEA was then run

30 times on each landscape. On the benchmark test functions, we used the Brown,

Dixon & Price, Powell Singular, Rana, and Rosenbrock. These functions were chosen

because they match the form of the function shown in Equation 4.2, and each fi is

comprised of more than one variable.

The GA used in our experiments used tournament selection and uniform

crossover. The mutation rate was set to 0.15. Additionally, each factor contained ten

individuals. For each of the problems, we used three different methods for deriving

factor architectures.
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Table 4.8: Results of FEA-GA performing abductive inference on Bayesian networks.

Markov Parents Random (M) Random (P)

Alarm −1.26E+01 (7.17E−01) −1.64E+01 (7.80E−01) −1.76E+01 (9.70E−01) −1.94E+01 (1.06E+00)
Andes −6.92E+01 (6.33E−01) −7.47E+01 (8.41E−01) −8.27E+01 (8.90E−01) −8.35E+01 (1.45E+00)
Barley −5.10E+01 (9.69E−01) −5.62E+01 (1.35E+00) −5.48E+01 (1.43E+00) −6.17E+01 (1.78E+00)
Child −7.61E+00 (3.35E−01) −9.13E+00 (4.07E−01) −9.64E+00 (3.67E−01) −1.04E+01 (4.16E−01)
Diabetes −1.42E+04 (5.42E+02) −1.63E+04 (5.81E+02) −1.79E+04 (3.78E+02) −1.89E+04 (9.45E+02)
Hailfinder −3.63E+01 (4.26E−01) −8.79E+01 (3.45E+01) −1.14E+02 (4.15E+01) −6.39E+01 (2.48E+01)
Hepar2 −2.02E+01 (5.74E−01) −2.13E+01 (6.03E−01) −2.19E+01 (6.61E−01) −2.14E+01 (6.35E−01)
Insurance −1.26E+01 (4.39E−01) −1.43E+01 (6.52E−01) −1.45E+01 (5.03E−01) −1.54E+01 (6.18E−01)
Link −3.61E+03 (3.61E+02) −5.70E+03 (5.84E+02) −6.04E+03 (4.94E+02) −7.28E+03 (5.14E+02)
Mildew −1.02E+03 (9.64E+01) −1.30E+03 (1.02E+02) −1.32E+03 (1.28E+02) −1.27E+03 (1.64E+02)
PathFinder −5.27E+02 (7.42E+01) −8.79E+02 (9.89E+01) −1.42E+03 (1.28E+02) −1.67E+03 (1.84E+02)
Pigs −2.67E+02 (4.70E+00) −2.85E+02 (2.66E+00) −2.76E+02 (1.85E+00) −2.83E+02 (5.86E+00)
Water −4.08E+02 (6.90E+01) −5.84E+02 (8.50E+01) −4.84E+02 (1.04E+02) −6.81E+02 (1.03E+02)
Win95pts −2.21E+01 (8.35E−01) −2.90E+01 (1.01E+00) −6.31E+01 (2.45E+01) −3.95E+01 (1.46E+00)

• Parents Architecture — For each variable Xi, we construct a subpopulation

of individuals consisting of elements in the neighborhood of Xi.

• Markov Architecture — This architecture uses the Markov blanket of the

nodes to create subpopulations. For each problem, a factor is created for each

variable Xi consisting of Xi and all the nodes in Xi’s Markov blanket.

• Random Architecture — Random subpopulations are considered as the

baseline architecture. For this approach, a random subpopulation is constructed

for each of the N variables. K variables are then added to each of the N

subpopulations. We used two different values for K. The first is setting it equal

to the number of variables in a node’s neighborhood and denote it as Random

(P). Random (M) denotes a random architecture where M is set equal to the

average size of a Markov blanket for each test problem.

Similar to the previous chapter, we hypothesize that the Markov architecture

will outperform the other architectures [106]. Additionally, we hypothesize that in

the Random architectures, the subpopulations with fewer variables, Random (P), will

outperform Random (M) because it will be less susceptible to hitchhiking.
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Table 4.9: Results of FEA-GA maximizing NK landscapes.

Markov Parents Random (M) Random (P)

N = 25
K = 2 1.87E+01 (2.33E-02) 1.85E+01 (2.54E-02) 1.82E+01 (2.82E-02) 1.80E+01 (2.99E-02)
K = 5 1.91E+01 (1.73E-02) 1.88E+01 (2.02E-02) 1.87E+01 (2.02E-02) 1.81E+01 (2.32E-02)
K = 10 1.87E+01 (1.70E-02) 1.84E+01 (1.73E-02) 1.86E+01 (1.55E-02) 1.82E+01 (1.96E-02)

N = 25
K = 2 2.96E+01 (3.23E-02) 2.93E+01 (3.30E-02) 2.86E+01 (3.72E-02) 2.85E+01 (3.73E-02)
K = 5 3.05E+01 (2.34E-02) 2.99E+01 (2.56E-02) 2.93E+01 (2.92E-02) 2.87E+01 (3.13E-02)
K = 10 2.98E+01 (2.24E-02) 2.95E+01 (2.26E-02) 2.93E+01 (2.45E-02) 2.86E+01 (2.60E-02)

Table 4.10: Results of FEA-GA minimizing benchmark functions.

Markov Parents Random (M) Random (P)

Brown 1.67E−02 (1.52E−03) 3.43E−02 (3.24E−03) 4.17E−02 (7.06E−03) 6.15E−02 (6.29E−03)
Dixon & Price 3.64E+00 (4.26E−01) 4.14E+00 (3.59E−01) 3.67E+00 (4.38E−01) 5.69E+00 (5.81E−01)
Powell Singular 4.80E−01 (2.77E−02) 6.75E−01 (5.10E−02) 6.51E−01 (5.09E−02) 9.66E−01 (1.22E−01)
Rana −1.41E+04 (9.56E+01) −1.33E+04 (1.30E+02) −1.32E+04 (1.29E+02) −1.25E+04 (1.32E+02)
Rosenbrock 6.99E+01 (9.10E+00) 7.01E+01 (1.29E+01) 5.72E+01 (1.20E+01) 4.60E+01 (6.34E+00)

4.3.1 Results

Table 4.8 shows the results for performing abductive inference on the Bayesian

networks using FEA-GA. Results are reported for each of the four different factor

architectures in terms of average fitness values. The standard error for confidence

bounds is given in parentheses. Similarly, Table 4.9 displays the results of FEA-GA

to maximize NK landscapes. Finally, we present the benchmark functions results in

Table 4.10. All results are averaged over 30 trials. In all tables, a bold value indicates

that a Paired Student t-Test with α = 0.05 determined that factor architecture

significantly outperformed the others on that specific problem. If multiple values in

a single row are bold, that means that the bolded architectures were not statistically

significantly different from each other but significantly outperformed all non-bolded

architectures.

Looking at Table 4.8, we can see that Markov always significantly outperforms

all competing architectures. The next best performing architecture was Parents, as

it outperformed both Random architectures on the Alarm, Andes, Child, Diabetes,
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Hepar2, Insurance, Link, Pathfinder, and Win95pts networks. On the Barley, Water,

and Pigs networks, the Random (M) architecture performed second best, while on

Mildew and Hailfinder, Random (P) was second.

For the NK landscapes, Markov again demonstrated the best performance to a

statistically significant level. Out of the remaining architectures, Parents performed

best and was only outperformed by Random(M) on N = 25 and K = 10.

Finally, Markov had the best overall performance on the benchmark functions,

statistically outperforming the other methods in most cases. However, it failed to

differ statistically from Random (M) on Dixon & Price and was outperformed by

Random (P) on the Rosenbrock function. Parents was second only on Brown while

Random (M) performed best on the Dixon & Price and second best on the Powell

Singular functions. Random (P) was best on Rosenbrock and second best on the

Rana.

4.3.2 Analysis

Based on our results, the Markov architecture performs best on the majority

of problems. This is because this architecture groups variables together that are

highly related, allowing interactions to be captured by inter-swarm optimization.

Similarly the Parents architecture groups variables that are highly related; however,

the resulting swarm for a variable Xi contains the variables that Xi is dependent on,

but does not contain variables that depend on it. Thus, the superior performance

of the Markov architecture can be attributed to the fact that it includes both sets

of variables in each swarm, and thus does a better job of grouping highly related

variables.

Even though the Markov architecture has larger factors, it does not appear to

suffer from hitchhiking, which often affects populations that optimize over large sets
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of variables. This is illustrated by the fact Random (M), which has larger factors,

outperformed Random (P) on all networks except Hailfinder, Hepar2, Mildew, and

Win95pts. If hitchhiking had been present, we would have expected the larger factors

to impede the algorithm’s performance. The NK landscape experiments further

support these results: the Random (M) architecture outperformed the smaller random

architecture, Random (P), on all landscapes tested.

Additionally, Parents outperformed Random (M) on almost all NK Landscapes.

This suggests that the level of interaction between factor variables, rather than the

sizes of the factors, is more important when creating a factor architecture.

To investigate further where the Markov architecture’s performance gains

originate, we analyzed the diversity over time for each of the different architectures.

Because most individuals optimize over different subsets of variables, we used the

genotype variance, a measure of the distance between each individual and the

“average” individual, to measure diversity [9]. This variance is calculated as

1

N × P
N∑
i=1

P∑
j=0

(x̄i − xi,j)2

where x̄i is the average value across the population for variable Xi, xj,i is individual

j’s value for variable Xi, P is the total number of individuals, and N is the number of

variables in the problem being optimized. The graphs for both fitness and diversity

over time for FEA-GA are shown in Figure 4.2.

Results are presented for 100 trials of FEA-GA optimizing an NK landscape with

parametersN = 25 andK = 2. The y-axis on the chart on the top denotes the average

diversity, while the y-axis on the bottom chart is the best fitness. The x-axis shows

the number of FEA iterations, where each iteration consists of the update, compete,

and share steps, and each factor performs five updates during a single iteration.
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Figure 4.2: Average diversity and best fitness of all individuals for NK landscape N
= 25, K = 2.
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When considering fitness, the Markov architecture converges the fastest, and it

maintains the best population diversity over time. We believe this is because the

Markov architecture provides the best balance between the number of variables in

the factors and the level of interaction being handled. Larger factors provide more

variation between individuals’ state assignments, thus leading to higher diversity

in the population. Given this, we might expect the Markov and Random (M)

architectures to have identical diversity curves, as they yield the same factor sizes for

NK Landscapes; however, we observed that both Random architectures had relatively

low diversity. Also, while Parents has smaller factors than Random (M), its diversity

was higher on average. This implies that factor size is not the only influence on average

diversity, and that grouping together highly interactive variables also increases the

average diversity.

A similar analysis was performed on the Rosenbrock function, the results of

which are in Figure 4.3. We note that the y-axis on the bottom, which shows the

best fitness, is in log scale and inverted to allow for a better view of the graph. The

first thing we observed is that the Markov architecture reaches a plateau in around 40

iterations, while the other architectures take around 60-80 iterations before reaching

decreasing returns. This is consistent with the NK landscape results, where the

Markov architecture also reaches convergence quickest. However, unlike in the NK

landscape experiments, the other architectures continue to increase, albeit slowly

after reaching this plateau. In fact, after roughly 120 iterations, the Random (M)

architecture’s fitness curve reaches slightly above the Markov fitness curve.

Looking at the diversity results, it appears that the Markov architecture tends to

lose diversity quicker than the other architectures. Markov’s diversity curve initially

declines more steeply than those of other architectures, then appears to stabilize at

that level of diversity for the remainder of optimization. On the other hand, the
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Parents, Random (M), and Random (P) architectures take slightly longer to reach a

low level of diversity. These three architectures’ diversity also fluctuate much more

during the remainder of the iterations. This suggests that the Markov architecture

reaches stagnation after its initial diversity loss, where solution values are changing

relatively little, while the other architectures produce solutions that continue to vary

significantly in later iterations.

We believe the reason for this is that the Markov architecture is able to find

a good solution relatively quickly, but then becomes stuck in that local optimum.

Ideally, an optimization method should be able to escape local optima in order to

explore the search space further, balancing exploitation of previous-discovered good

solutions with additional search. More research is needed in order to explore why this

trade-off appears to be a problem for the Markov architecture on the Rosenbrock

function, but not for the Bayesian networks and NK landscapes. One possible

explanation is that the Rosenbrock function is by its nature able to deceive factors

that are optimizing over highly interactive variables, that is, the function leads the

factors to local optimum. We will further explore this hypothesis in Chapter 9.

4.4 Conclusion

In this Chapter, we empirically demonstrated that taking advantage of groupings

of highly related variables is the best way to create factor architectures. From

these results, there appears to be a relationship between the Markov architecture

for Bayesian networks and the Lock architecture for NK landscapes. If the problem

can be represented as a Bayesian network, then the Markov blanket should be used

to derive the factor architectures. This is because the Markov blanket for a variable

makes it independent of all other variables outside of its Markov blanket, allowing the

factor to discover good values in the search space. We then proved that maximizing
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an NK landscape is equivalent to abductive inference in factor graph. Furthermore,

any function that can be expressed as a summation of functions can be mapped to a

factor graph. These mappings can then be used as a general method for creating a

factor architecture for FEA. The function is mapped to a factor graph and then the

Markov blankets for a variable are used to create a factor architecture for the function.

Next, we demonstrated the performance advantage of the Markov architecture over

other approaches. Finally, we showed that the Markov architecture maintains better

diversity in the population.
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CHAPTER FIVE

DISCRETE PARTICLE SWARM OPTIMIZATION

Discrete optimization problems, such as feature selection or inference in Bayesian

networks, represent an important and challenging set of problems. These differ from

continuous problems in that each variable can take on only a finite number of states

[29]. An example is integer problems, where variables are restricted to a set of integer

values. For such problems, there exists a relationship between neighboring values.

More generally, there is an implicit ordering in the integers: integers with a larger

difference between them are considered to be further apart.

While integer problems are a subset of discrete problems, there are other types.

For example, in abductive inference for Bayesian networks, the goal is to find the

set of states that best explains a set of observations. Here, there may not exist

a direct relationship or gradient between neighboring states. For example, say the

set of states is a set of furniture Chair, Table, Dresser, Couch, and Desk. While

these states may be represented with integers during optimization, there is no real

ordered relationship between the values of this encoding. We refer to such problems

as categorical optimization problems.

Particle Swarm Optimization (PSO) is a highly customizable, yet relatively

simple search algorithm applicable to a wide variety of optimization problems.

However, the original PSO algorithm is unable to handle discrete problems, such

as the ones discussed above, as its velocity update requires continuous solution

values [53, 73, 84]. Currently, there are several extensions to the PSO algorithm

that allow discrete solution values, though the definition of “discrete” varies widely

between applications and algorithms.
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Previous chapters demonstrated that FEA can use a wide range of underlying

optimization algorithms on various discrete problems. One design decision encoun-

tered during those experiments was which discrete PSO algorithm to use. Our initial

investigation found that the discrete PSO by Veeramachaneni et al. performed well

and used it in several experiments. However, a more careful analysis revealed that

the discrete PSO by Veeramachaneni et al. did not actually behave as originally

expected [115]. This discovery presented an opportunity to develop a new discrete

PSO algorithm called Integer and Categorical PSO (ICPSO).

The goal of our algorithm is to keep the extensions to continuous PSO as simple

as possible and preserve much of the original semantics, while also addressing some

of the potential pitfalls of other discrete PSO algorithms. To achieve this, we alter

the representation of the particle’s position so that each attribute in a particle is

a distribution over its possible values rather than a value itself. This is similar to

Estimation of Distribution Algorithms (EDAs) where a set of fit individuals is used

to generate a distribution vector that can then generate fitter solutions [60]. ICPSO

differs from EDAs in that the algorithm uses a population of distribution vectors that

are updated using the PSO update equations.

For ICPSO, evaluating a particle becomes the task of sampling a candidate

solution from these distributions and then calculating its fitness. ICPSO also allows

us to use the original PSO update equations and avoids problems associated with

an implicit ordering of the possible solution values. Additionally, ICPSO modifies

the global and local best solutions’ distributions whenever a global best sample

is produced. This serves to bias distributions toward the best sample they have

produced while still allowing exploration of the search space.

In this chapter, we present our new PSO algorithm, including a review of related

work followed by several experiments demonstrating the performance of ICPSO over
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Table 5.1: Average iterations for an individual to find the optimal solution in a
parabola.

Algorithm Iterations

PSO 2.53
VPSO 12.09
RAN-R 9.99

RAN-NR 5.52

competing approaches. Additionally, we test the performance of FEA using different

discrete PSO algorithms.

5.1 Revisiting the Veeramachaneni PSO Algorithm

We begin by first revisiting the discrete PSO algorithm proposed by Veera-

machaneni et al. [115]. To do so, we performed a simple experiment to evaluate the

number of iterations until an individual reaches a local optimum. Using only one

individual, we set the global best for the individual to the optimal solution in the

parabola f(X) = −X2 + 10X + 75 restricted to integer values in the range [0, 10].

Furthermore, we removed the local best and any update rules related to the local best.

We then examined the number of iterations required for the individual to converge

to the optimal solution. Table 5.1 gives the average number of iterations for PSO

and Veeramachaneni PSO (VPSO) to reach the global best. Additionally, we present

results of a random search algorithm (RAN) with and without replacement. Results

are over 30 trials.

RAN-R is random with replacement while RAN-NR is a random search without

replacement. Here, we discovered that even on a simple problem, an individual in

VPSO takes longer than expected to move towards the global best solution. In

fact, the results are almost to that of a random search without replacement. From
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these results, we conclude that the update rules for VPSO are ineffective at moving

individuals towards the global best. If VPSO is unable to move the individuals

towards the global best, then there is not a high probability of VPSO being able to

move individuals towards good solutions when used in real world problems. These

results motivate the need to develop a more effective discrete PSO algorithms.

5.2 Discrete Optimization

Across the literature, “discrete” PSO has taken on a number of meanings. Many

methods address integer problems; however, there are many applications where the

discrete solution values are not integers. Similarly, while categorical optimization is a

form of discrete optimization, not all discrete optimization is necessarily categorical.

Due to this ambiguity in the literature, we propose a more specific definition of

discrete optimization problems.

Definition 5.1. Discrete Optimization: A class of problems where an objective

function is to be optimized that has variables whose values are limited to finite sets,

numerical or categorical, ordered or unordered.

The definition of discrete optimization is often a bit fuzzy because integers are

frequently used as an example. This definition recognizes that discrete optimization

problems often require integer solutions where the possible states for each variable

are numerical, discrete, ordered and there is a fitness relationship between adjacent or

nearby values. But it also emphasizes that some discrete problems are over variables

with categorical values such as the previous emotion example. In this case, there is

not necessarily a fitness relationship between the values Chair and Couch because the

set is unordered.
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More importantly, we could resort to an integer encoding for this set for

representational convenience, just because the integers in the encoding are ordered,

this does not mean there is now a fitness relationship between adjacent values in the

encoding. For example, we could just as easily have encoded our set of emotions from

above: {Chair, Couch, Desk, Table, Dresser} as {1, 2, 3, 4, 5} or {3, 5, 4, 2, 1}.

Traditionally, discrete sets include both finite and countably infinite sets. For

practical reasons, we limit ourselves to finite sets due to finite computer memory.

However, our algorithm is applicable to all discrete problems falling within this

definition. We refer to our algorithm as Integer and Categorical PSO (ICPSO) to

emphasize that it can be applied to both integer and categorical discrete problems.

5.3 Related Work

In this section, we review other approaches to discrete particle swarm optimiza-

tion, both binary and multi-valued. This analysis provides the necessary context

for our experiments comparing the performance of ICPSO to competing approaches.

Additionally, this section serves to highlight the problems, endemic in discrete PSO

methods, that our contributions are intended to address.

First, we discuss PSO variants that mostly maintain the core update equations

and have only been augmented with a few additional equations to handle discrete

problems. These algorithms are the most similar to ours, and thus the bulk of the

discussion will be focused here.

Next, we present versions of PSO that have been combined with other

optimization algorithms, such as Estimation of Distribution Algorithms (EDA). We

include these hybrid algorithms because ICPSO shares some similar ideas, though it

differs in implementation. Finally, we discuss other PSO variants applied to specific

discrete problems, such as the Traveling Salesperson Problem. While these algorithms
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are only designed for specific applications, we include them in our discussion for the

sake of completeness.

5.3.1 Discrete Variations of PSO

It is possible to use the original continuous PSO to solve problems with integer-

valued solutions by rounding the particle’s position at each iteration [48]. We will

refer to this algorithm as Integer PSO (IPSO).

IPSO requires a relationship between neighboring states, as the velocity update

equation uses subtraction to measure the distance between the particle’s current

position and the global/local best positions. As such, it is only applicable to certain

problems where the states can be ordered or arranged in a way that provides the

necessary relationship between neighboring states.

Binary PSO (BPSO) was proposed originally by Kennedy and Eberhart [53].

BPSO requires that the position vector be a binary representation of candidate

solutions. This representation also changes the velocity interpretation: the velocity

represents the probability of each variable assuming the value 0 or 1. While the

velocity update for BPSO remains unchanged, the position update is modified to take

advantage of the new semantics of the velocity vector. After updating the velocity

vector, each term in the velocity is mapped into a [0,1] interval using the sigmoid

function

Si,j =
1

1 + exp(−Vi,j)
(5.1)

where Vi,j is the value of the jth variable for particle i [53]. Next, a random number is

sampled from the normal distribution Xi,j = N (0, 1) and converted to be in [0, 1] by

first calculating Si,j −Xi,j, and then using a unit step function to snap the difference

to 0 or 1. This value is then assigned as particle i’s current position for variable Xj.

When velocity is high, the position update is more likely to select a value closer to
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1 than 0. Conversely, when velocity is low, there is a higher likelihood of selecting

0 [53].

The main limitation of BPSO is that it requires a binary representation.

Standard binary coding is commonly used for binary representation, but has the

disadvantage of introducing Hamming cliffs. Hamming cliffs represent situations

where adjacent binary-encoded numbers have a large Hamming distance between

them, or where two binary-encoded numbers with a very small Hamming distance

actually have a large difference in value.

An alternative strategy is to use gray coding, where the Hamming distance

between neighboring values is set to 1, which reduces the Hamming Cliff problem.

However, both methods’ encodings may overrepresent the problem if the number of

states is not a power of 2. This can also increase problem dimensionality, slowing

optimization [64].

Veeramachaneni et al. developed an extension to binary PSO that relaxes the

need for a binary representation of the problem [115]. This was discussed in earlier

chapters under the name DMVPSO. Throughout the rest of the paper, we will refer

to this algorithm as the Veeramachaneni PSO (VPSO). In VPSO, each variable is

allowed to assume any of M discrete values. While the velocity update remains

unchanged from the binary case, the position update is modified to allow for more

than two states. After the velocity has been updated, it is mapped into the [0,M−1]

interval by first using a generalized version of the sigmoid function in Equation (5.1),

which is given as

Si,j =
M − 1

1 + exp(−Vi,j)
.

Next, each particle’s position is updated by generating a random number according

to the normal distribution Xi,j = N (Si,j, σ× (M −1)) and rounding the result. Then
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the piecewise function

Xi,j =


M − 1 Xi,j > M − 1

0 Xi,j < 0

Xi,j otherwise

is applied to ensure all values fall within [0,M − 1] [115].

While VPSO does extend BPSO so that any number of discrete values can be

used, the algorithm requires a relationship between neighboring states in the range

of variable values, just like in IPSO. In [115], the authors demonstrated that VPSO

is able to outperform BPSO when mapping continuous variables to quaternary or

ternary. However, all experiments contained relationships between neighboring states.

The multi-valued PSO extension most similar to ours was introduced by Pugh

and Martinoli [84]. We will refer to this variant as PPSO. PPSO, like ICPSO,

uses a probabilistic interpretation of a particle and evaluates fitness stochastically

by generating a sample solution.

The position vector, however, does not represent a valid probability distribution

explicitly in PPSO. To evaluate the position, the authors presented a process to

generate a sample that can be directly evaluated in the fitness function. When

generating a sample, each element in the position vector has a sigmoid transformation

applied to each of its terms. The probability of state k for variable j is equal to the

position vector’s jth element divided by the weighted sum of all other elements. This

allows the solution element to take on any value from 0 to a user-specified n. This

sampling procedure involves several more steps than our implementation of discrete

PSO.

An adjustment must also be applied after each modification of the particle’s

values in order for all of the particles to share a common reference frame [84]. To
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achieve this adjustment, a value ci,j is subtracted from each value of particle Pi,

element j’s vector of values. This ci,j is calculated such that all values of the vector,

when mapped to the sigmoid function, sum to 1. The resulting equation is solved

for c via an approximate root-finding method to produce an adjustment for each

value in each element of the position vector. To address the noisy fitness evaluation,

the algorithm also reevaluates best particles at each iteration, averaging fitness over

particles’ lifetimes. Unlike in ICPSO, the sample’s value is not used when setting the

global or local best positions.

Angle Modulated PSO (AMPSO), reduces a high-dimensional binary search

space into a smaller continuous search space using an angle modulation-based method,

thus reducing the number of parameters to be optimized [73]. This speeds up

optimization while potentially improving performance. The approach uses the angle

modulation equation, which is given as

g(x) = sin(2π(x− a)× b× cos(A)) + d

where A = 2π × c(x− a) and x is a single input value.

AMPSO first optimizes over the parameters a, b, c, and d in the angle modulation

equation. Next, for each variable, the algorithm generates k evenly-spaced values,

where k is the number of bits needed to represent every state in the discrete problem.

These k values are then transformed into a bit string by converting positive values to

1 and negative values to 0.

The novelty of AMPSO is more related to the transformation of the search space

than the PSO implementation itself. Additionally, this approach requires a binary

representation of the problem, which has similar limitations to BPSO.
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5.3.2 Hybrid Algorithms

Another related class of algorithms combines Estimation of Distribution Algo-

rithms (EDA) and PSO to create an EDA-PSO hybrid [6,27,124]. These approaches

either use EDA to help guide the movement of particles in PSO or use PSO to

generate or update individuals generated by an EDA. Our work differs from these

hybrid approaches in that it retains the core PSO update equations by modifying

the particle representation to fit discrete problems. Additionally, many of these

hybrid algorithms are designed to operate on continuous problems, while ICPSO

is specifically designed for discrete optimization.

In the work by El-Abd and Kamel, the authors propose a hybrid algorithm

in which a particle is either updated according to the PSO update equations or

replaced with a new individual sampled from the estimated distribution [27]. In

another example of a hybrid algorithm, Zhou et al. developed an algorithm called

Discrete Estimation of Distribution Particle Swarm Optimization (DEDPSO), in

which the local best positions from all individuals are used to update the distribution

vector. This update distribution vector is then sampled to update the existing

individuals [124]. The algorithm is designed to operate on binary vectors.

In [87], Reynolds et al. first generate a set of individuals using EDA and insert

them into a PSO swarm. PSO runs for a set number of iterations and then uses

the updated positions to generate new individuals. Those individuals are then added

back to the original set of individuals from EDA. The set of individuals from both

algorithms are then used to update the probability distribution, and the process

is repeated. This is similar to the work by Bengoetxea and Larrañaga [6]. Their

algorithm generates individuals independently using EDA and PSO and uses the

generated individuals from both algorithms to update the distribution.
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Kulkarni and Venayagamoorthy use both EDA and PSO when updating an

individual [58]. An individual is first updated according to the PSO update equations,

and a new individual is generated using EDA. Of these, the individual with the best

fitness is kept in the swarm [58]. Santucci and Milani take a different approach

to hybridization by using PSO within an EDA framework [92]. This is done by

replacing the PSO update equations with those found in EDA. Then each variable

in an individual is updated using EDA. After all individuals have been updated, the

distribution is updated using the new positions of the individuals [92].

5.3.3 Other Approaches

In addition to the hybrid and discrete PSO algorithms, there are several PSO

variants tailored to specific discrete problems, such as the Traveling Salesperson

Problem (TSP). In these cases, each application requires a specific mapping or

transformation of the problem [13]. For example, Clerk uses PSO to solve TSP by

representing the particle as a path through all nodes [15]. With this representation,

the velocity is a set of changes to be made to the path. The addition and subtraction

operators are then re-defined to fit the modified semantics of the optimization [15].

Sha et al. propose a PSO algorithm to solve the job shop scheduling problem [94].

Each particle represents a matrix, where each element is the priority of a job on a

machine. The velocity represents a swap operator of a job to a different machine.

To evaluate a solution, the matrix is decoded into a schedule using Giffler and

Thompson’s heuristic [37]. This schedule is then evaluated for fitness.

Other approaches use a variation of integer PSO by rounding continuous values

to integer values during fitness evaluation. This is similar to the work done by Salman

et al., where the authors applied PSO to the job shop scheduling problem [91]. Each

particle’s position represents a matrix that contains assignments of a task to a machine



113

or processor. The velocity update remains unchanged, but is also represented by a

matrix. Particle evaluation is done after rounding values in the matrix [91].

Hela and Abdelbar also used a matrix representation in using PSO to solve the

quadratic assignment problem [44]. In that work, the velocity is represented by a

matrix where an element (i, j) represents the likelihood of variable i taking on value

j. The position is then updated by probabilistically selecting an element for variable

i, using roulette wheel selection, based on the values in row i of the velocity matrix.

To update the velocity, the position array is expanded to a binary position matrix

where (i, j) = 1 if variable i is set to value j. In some ways, this type of matrix-based

representation is similar to the one used in ICPSO. However, in our algorithm, an

individuals position is also a matrix representation, which allows for the positions to

contain a more detail representation of the problem. Consequently, when updating

the velocity, the difference will contain a finer level of granularity, which also allows

for better updates to the position of an individual.

A more recent algorithm for combinatorial optimization problems uses what is

called set-based PSO [13]. Here, each individual represents a subset of values out

of a universal set, and the velocity represents the probability of an element being

selected for inclusion in the set. To fit the updated position and velocity semantics,

the authors define new set-theoretic velocity and position update equations [13].

5.4 Integer and Categorical PSO

We propose an alternative position representation that supports discrete-valued

solutions. We first describe the particle representation used in this PSO variant,

followed by the necessary changes to the update equations. Finally, we give a modified

fitness evaluation procedure and explain how to set the personal and global best

vectors.
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5.4.1 Representation

The current position for a particle in ICPSO is a set of probability distributions,

one for each dimension of the solution. This differs from other PSO variants, where

a particle’s position is often a direct representation of the solution values. When

optimizing over discrete values, this direct representation creates a problem: namely,

there is an assumption that there must be a relationship between neighboring states,

and that the arithmetic difference between states must be indicative of distance

between them. While certain discrete applications may have a fairly natural way

to order the possible states, others do not.

Using our emotions example from before, suppose we have a solution with three

attributes and {Dresser, Table, Chair, Couch, Desk} is encoded as {1, 3, 2, 4, 5}. Say

we have two particles with positions Pp1 = (1, 4, 5) and Pp2 = (1, 3, 5), and the global

best is at gBest = (1, 5, 5). The vector subtraction during the velocity update would

imply that p1 is closer to the global best than p2 is. However, semantically, one could

argue that Chair is closer to Desk than Couch is; therefore, the variable ordering is

not indicative of a meaningful ordering of the states.

ICPSO’s particle representation avoids this problem by using probability

distributions rather than single values in the position vector. A particle P ’s position

is represented as

XP = [DP1 ,DP2 , . . . ,DPN
]

where each Dp,i denotes the probability distribution for variable Xi. In other words,

each entry in the particle’s position vector is itself comprised of a set of distributions:

DP,i = [daP,i, d
b
P,i, . . . , d

k
P,i],
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where djP,i corresponds to the probability that variable Xi takes on value j for particle

P .

A particle’s velocity is a vector of n vectors φ, one for each variable in

the solution, that adjust the particle’s probability distributions. Formally, this is

represented as:

Vp = [φp,1, φp,2, . . . , φp,n]

φp,i = [ψa
p,i, ψ

b
p,i, . . . , ψ

k
p,i].

where ψj
p,i is particle p’s velocity for variable i in state j. Since these values are

continuous, the velocity update equation remain unchanged from the update equation

in traditional PSO.

5.4.2 Update Equations

The velocity and position update equations are identical to those of traditional

PSO, seen in Equations (2.1) and (2.1). However, because we are working with

distributions instead of real values, the difference and addition operators for the

distribution and velocity vectors take on a slightly different meaning. For this reason,

we will define them explicitly as follows. The difference operator is defined as a

component-wise difference between the two position vectors, i.e. for each variable Xi

and value j ∈ V als(Xi),

dj(pBestp−Pp),i = djpB,i − djp,i.

Here, djpB is the personal best position’s probability that variable Xi takes value j.

The global best equation is identical except pBestp is replaced with gBest and djpB,i

with djgB,i.
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The addition of the velocity vector to the position vector is similarly component-

wise over each value in the distribution. For each probability for variable Xi and

possible value j, the addition is djp,i + ψj
p,i.

These operations have the potential to create probabilities that fall outside [0, 1].

In order to maintain a valid probability distribution, any value outside this range is

mapped to the nearest boundary. The distribution is then normalized to ensure that

its values sum to 1.

To evaluate a particle p, its distributions are sampled to create a candidate

solution. This sample is denoted

Sp = [sp,1, sp,2, . . . , sp,n]

where sp,j denotes the state of variable Xj.

The fitness function is used to evaluate the sample’s fitness, which then is used

to evaluate the distribution.

5.4.3 Setting the Best Vectors

When a particle produces a sample that beats the global or local best, we use

both the distributions from that particle’s position, Pp, and the sample itself, Sp,

to update the best values. The goal of this update is to bias the distribution that

produced the best sample toward producing similar samples in the future. This is

accomplished by reducing the probability, for each variable, of taking on any state

except its state in the best sample. Mathematically, for all states j ∈ V als(Xi) the
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global best’s probability is updated as

djgB,i =


ε× djp,i if j 6= sp,i

djp,i +
∑

k∈V als(Xi)
∧k 6=j

(1− ε)× dkp,i if j = sp,i

where ε, the scaling factor, is a user-set parameter that determines the magnitude

of the shift in the distribution. We restrict the scaling factor to values in [0, 1).

This increases the likelihood of the distribution producing samples similar to the best

sample, while inherently maintaining a valid probability distribution. This can be

shown as follows:

∑
j∈V als(Xi)

djgB,i =
∑

j∈Sv(Xi,k)

(
djp,i × ε

)
+ dkp,i +

∑
j∈Sv(Xi,k)

(
djp,i − djp,i × ε

)
=

∑
j∈Sv(Xi,k)

(
djp,i × ε

)
+ dkp,i +

∑
j∈Sv(Xi,k)

(
djp,i
)
−

∑
j∈Sv(Xi,k)

(
djp,i × ε

)
= dkp,i +

∑
j∈Sv(Xi,k)

(
djp,i
)

= 1

where Sv(Xi, k) = {j|j ∈ V als(Xi) ∧ j 6= k} and k = sp,i. The procedure for setting

the local best is directly analogous. The global best sample is returned as the solution

at the end of optimization.

The pseudocode for setting the global best on a single variable’s distribution is

given in Algorithm 5.10. First, the distribution new D̂p,i is initialized. Given a state

from the sample and a distribution for the corresponding variable, the algorithm

iterates over all probabilities in the distribution. For probability indices k not equal

to the index of the state sjp,i, the probability is multiplied by the scaling factor ε (line

6). This new probability is inserted into the variable d̂kgB,i. Otherwise, the probability

for state k′ must be increased. To do so, the algorithm calculates the total change in
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Algorithm 5.10: ICPSO Update Best

Input: Probability Distribution Dp,i, State sjp,i
Output: Updated Distribution D̂gB,i

1: Initialize D̂gB,i

2: k′ ← sjp,i
3: ∆← 0
4: for all dkp,i ∈ Dp,i do
5: if k 6= k′ then
6: d̂kgB,i ← ε× dkp,i
7: else
8: for all dlp,i ∈ Dp,i and l 6= k do

9: ∆← ∆ +
(
(1− ε)× dlp,i

)
10: end for
11: d̂kgB,j ← dkp,i + ∆
12: end if
13: end for
14: return D̂gB,i

probability by iterating over all other variables and recording the difference (lines 8

- 10). This value ∆ is then added to dkp,i in line 11, which increases the likelihood of

the distribution generating samples with state sjp,i for variable Xi.

5.5 Single Population Experiments

We compare ICPSO against the algorithms from Section 5.3.1, as those were

the closest in approach and interpretation. Specifically, we compared to the Angle

Modulated PSO (AMPSO), Binary PSO (BPSO), Binary PSO using Gray coding

(BGPSO), Integer PSO (IPSO), the PSO proposed by Pugh and Martinoli (PPSO),

and the PSO proposed by Veeramachaneni et al. (VPSO). Additionally, we present

results of a Random PSO (RAN), which gives a baseline to compare with the discrete
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PSO algorithms. RAN updates its individuals by randomly generating new positions

and only keeps track of the global best position as a final solution to be returned.

5.5.1 Design

We compare the algorithms on a set of benchmark functions (namely, Ackley,

Griewank, Rastrigin, Rosenbrock, and Sphere) using the same function ranges as

presented in the appendix of Eberhart and Shi [26]. Normally, these are studied as

continuous functions to be optimized; however, we modify them to allow for both

integer and categorical (discrete) optimization. For the integer discrete optimization

problem, we restrict the states of the variables to integer values. This permits adjacent

values to correlate with their fitness as defined by the original function. For categorical

problems, and unique to our experimental design within the discrete PSO literature,

we break the relationship between the adjacent numerical values and their fitness by

mapping the integer values to a randomly chosen (“shuffled”) integer encoding. For

example, the state values of some variable x, {1, 2, 3, 4, 5}, might be shuffled to the

encoding {4, 2, 1, 3, 5}.

We tested all discrete algorithms on both shuffled (categorical) and unshuffled

(integer) versions. Functions were restricted to ten dimensions and ten states for each

dimension. For the shuffled versions, we generated 30 different shuffles and ran each

algorithm 30 times on the each function. Algorithms were also run 30 times on each

of the unshuffled problems.

We also tested the algorithms on NK landscapes, which are usually binary

strings. We, however, used a generalized version that allows for categorical strings,

where each variable can take on D different values. For our experiments, we used

an NK-landscape with N = 10 and K = 2. We varied the number of states, D, for

each dimension to values 2, 4, 6, 8, 10, 15, and 20. For each set of NK landscape
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parameters, we generated 30 different landscapes and ran each algorithm 30 times

per landscape.

Finally, we tested the discrete PSO algorithms on abductive inference in Bayesian

networks. We used the same set of Bayesian networks from the experiments in Section

3.4.2, Chapter 4: Hailfinder, Hepar2, Insurance, and Win95pts. Network details are

shown Table 3.1. For fitness evaluations, we used the log likelihood and for each

network, we ran each algorithm 30 times per landscape.

All PSO variants used the same set of parameters in order to make comparisons

as consistent as possible. Parameters φ1 and φ2 were set to 1.49618, and ω = 0.729,

which has been found to encourage convergent trajectories [26]. Each algorithm used

a swarm of size five and terminated once the global best did not change after 50

iterations. This is due to the recommendations of [28], which demonstrated that a

large swarm may, counterintuitively, have difficulty exploring the search space. For

our approach, we set the scaling factor ε to 0.75, and in the VPSO we set σ to the

authors’ recommended value of 0.2. All algorithms randomly initialized velocity and

position vectors. Significance testing was done using a Paired Student t-Test with

α = 0.05.

5.5.2 Results

Results from the test functions, reported as average solution fitness, are shown

in Table 5.2. The center column displays unshuffled function results, and results on

the shuffled functions are presented in the far right column. All results are reported in

terms of average solution fitness. Standard error is shown in parentheses. Bold values

indicate algorithms that statistically significantly outperformed all other algorithms.

On the unshuffled functions, IPSO significantly performed the best. This was

expected, given that IPSO is able to follow the gradient of the search space to good
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Table 5.2: Results of discrete PSO algorithms minimizing benchmark functions.

Ackleys Shuffled Ackleys Griewank Shuffled Griewank
AMPSO 4.45E+00(5.79E-01) 5.59E+00(1.77E-01) 7.64E-01(6.54E-02) 9.58E-01(1.86E-02)
BGPSO 6.74E+00(8.64E-02) 5.23E+00(8.04E-02) 9.77E-01(8.29E-03) 9.44E-01(7.73E-03)

BPSO 6.94E+00(9.12E-02) 5.05E+00(1.05E-01) 9.62E-01(9.20E-03) 9.19E-01(1.06E-02)
ICPSO 2.49E+00(1.10E-01) 2.45E+00(1.16E-01)2.45E+00(1.16E-01)2.45E+00(1.16E-01) 3.92E-01(3.25E-02) 3.85E-01(2.79E-02)3.85E-01(2.79E-02)3.85E-01(2.79E-02)

IPSO 7.47E-01(1.35E-01)7.47E-01(1.35E-01)7.47E-01(1.35E-01) 4.74E+00(9.12E-02) 1.63E-01(3.23E-02)1.63E-01(3.23E-02)1.63E-01(3.23E-02) 6.54E-01(3.65E-02)
PPSO 4.27E+00(1.58E-01) 4.33E+00(1.34E-01) 8.28E-01(2.11E-02) 8.27E-01(1.58E-02)
VPSO 6.49E+00(1.01E-01) 4.32E+00(9.47E-02) 9.55E-01(7.28E-03) 9.03E-01(8.49E-03)
RAN 5.26E+00(9.93E-02) 5.07E+00(1.15E-01) 8.75E-01(1.03E-02) 8.62E-01(1.50E-02)

Rastrigin Shuffled Rastrigin Rosenbrock Shuffled Rosenbrock

AMPSO 2.65E+01(3.81E+00) 3.13E+01(3.22E+00) 1.72E+04(3.65E+03) 3.11E+04(5.25E+03)
BGPSO 4.45E+01(1.12E+00) 3.07E+01(1.17E+00) 3.61E+04(2.01E+03) 1.96E+04(1.20E+03)

BPSO 4.65E+01(1.51E+00) 3.01E+01(9.76E-01) 3.57E+04(2.37E+03) 2.12E+04(1.31E+03)
ICPSO 5.07E+00(6.96E-01) 4.67E+00(3.12E-01)4.67E+00(3.12E-01)4.67E+00(3.12E-01) 1.20E+03(1.93E+02) 1.11E+03(1.55E+02)1.11E+03(1.55E+02)1.11E+03(1.55E+02)

IPSO 9.33E-01(2.09E-01)9.33E-01(2.09E-01)9.33E-01(2.09E-01) 1.63E+01(1.09E+00) 2.74E+02(5.26E+01)2.74E+02(5.26E+01)2.74E+02(5.26E+01) 7.72E+03(1.37E+03)
PPSO 1.73E+01(1.09E+00) 1.93E+01(1.68E+00) 7.93E+03(1.10E+03) 8.40E+03(1.03E+03)
VPSO 3.83E+01(1.55E+00) 3.08E+01(1.10E+00) 1.80E+04(1.61E+03) 2.42E+04(1.43E+03)
RAN 2.36E+01(9.29E-01) 2.32E+01(7.92E-01) 8.98E+03(6.56E+02) 9.62E+03(7.20E+02)

Sphere Shuffled Sphere

AMPSO 2.74E+01(3.95E+00) 2.48E+01(2.45E+00)
BGPSO 4.17E+01(1.39E+00) 2.36E+01(1.15E+00)

BPSO 4.79E+01(1.38E+00) 2.60E+01(8.02E-01)
ICPSO 4.07E+00(4.52E-01) 5.17E+00(6.49E-01)5.17E+00(6.49E-01)5.17E+00(6.49E-01)

IPSO 9.33E-01(2.03E-01)9.33E-01(2.03E-01)9.33E-01(2.03E-01) 1.36E+01(1.06E+00)
PPSO 1.89E+01(1.20E+00) 1.64E+01(1.13E+00)
VPSO 3.58E+01(1.01E+00) 2.16E+01(7.86E-01)
RAN 2.26E+01(8.17E-01) 2.32E+01(1.17E+00)
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Table 5.3: Results of discrete PSO algorithms maximizing NK landscapes.

D AMPSO BPSO BGPSO ICPSO IPSO PPSO VPSO RAN

2 7.01(0.02) 7.35(0.01)7.35(0.01)7.35(0.01) 7.36(0.01)7.36(0.01)7.36(0.01) 7.23(0.02) 6.73(0.02) 7.13(0.02) 7.33(0.01)7.33(0.01)7.33(0.01) 7.22(0.01)
4 7.43(0.02) 7.82(0.01) 7.81(0.01) 8.07(0.01)8.07(0.01)8.07(0.01) 7.42(0.02) 7.71(0.01) 7.57(0.01) 7.58(0.01)
6 7.44(0.02) 7.78(0.01) 7.77(0.01) 8.14(0.01)8.14(0.01)8.14(0.01) 7.61(0.02) 7.77(0.01) 7.66(0.01) 7.62(0.01)
8 7.55(0.02) 7.71(0.01) 7.69(0.01) 8.09(0.01)8.09(0.01)8.09(0.01) 7.66(0.02) 7.75(0.01) 7.64(0.01) 7.65(0.01)
10 7.47(0.02) 7.79(0.01) 7.78(0.01) 8.11(0.01)8.11(0.01)8.11(0.01) 7.66(0.02) 7.79(0.01) 7.65(0.01) 7.60(0.01)
15 7.47(0.02) 7.64(0.01) 7.66(0.01) 8.02(0.01)8.02(0.01)8.02(0.01) 7.73(0.02) 7.73(0.01) 7.63(0.01) 7.63(0.01)
20 7.47(0.02) 7.71(0.01) 7.69(0.01) 7.98(0.02)7.98(0.02)7.98(0.02) 7.77(0.01) 7.71(0.01) 7.65(0.01) 7.64(0.01)

Table 5.4: Results of discrete PSO algorithms performing abductive inference on
Bayesian networks.

Hailfinder Hepar2 Insurance Win95pts

AMPSO -2.43E+03(2.14E+02) -6.67E+01(1.05E+00) -7.21E+01(2.44E+01) -1.47E+03(1.72E+02)
BPSO -2.01E+03(8.44E+01) -6.64E+01(6.49E−01) -4.67E+01(1.96E+00) -1.37E+03(9.42E+01)

BGPSO -2.06E+03(9.59E+01) -6.72E+01(7.52E−01) -4.49E+01(2.09E+00) -1.51E+03(8.87E+01)
ICPSO -8.12E+02(1.39E+02)-8.12E+02(1.39E+02)-8.12E+02(1.39E+02) -3.11E+01(1.12E+00)-3.11E+01(1.12E+00)-3.11E+01(1.12E+00) -2.47E+01(1.91E+00)-2.47E+01(1.91E+00)-2.47E+01(1.91E+00) -2.53E+02(7.89E+01)-2.53E+02(7.89E+01)-2.53E+02(7.89E+01)

IPSO -4.11E+03(1.62E+02) -8.24E+01(1.31E+00) -1.46E+03(1.44E+02) -3.16E+03(1.31E+02)
PPSO -1.66E+03(1.62E+02) -5.76E+01(1.47E+00) -4.07E+01(1.73E+00) -8.73E+02(1.09E+02)
VPSO -2.98E+03(1.09E+02) -6.89E+01(6.48E−01) -5.24E+02(6.60E+01) -1.24E+03(7.71E+01)
RAN -2.28E+03(8.35E+01) -6.47E+01(5.95E−01) -1.01E+02(3.39E+01) -1.34E+03(8.92E+01)

solutions. The next best-performing algorithm was ICPSO. Even though it is not

shown in the table, ICPSO significantly outperformed all other algorithms except

IPSO. AMPSO, BPSO, and BGPSO all had comparable performance. VPSO was

comparable with AMPSO, BPSO, and BGPSO and PPSO generally outperformed

VPSO.

For the shuffled problems, ICPSO statistically performed the best, with IPSO as

the runner-up. The rest of the algorithms have roughly the same performance, and

are function-dependent as to which method performs the best.

Comparing each algorithm across the regular and shuffled problems, we found

that ICPSO had the smallest change in performance. In some cases the performance

on the unshuffled problems was better than the shuffled; however, this was not always

the case. Meanwhile, IPSO consistently had poorer performance on the shuffled
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problems. AMPSO usually performed better on the unshuffled problems, except on

the Rastrigin function. BPSO and BGPSO both performed better on the shuffled

functions than unshuffled.

Table 5.3 contains the results of the PSO variants on maximizing NK landscapes.

The far left column indicates the number of states per dimension. On the NK

landscapes, ICPSO almost always demonstrated the best performance significantly,

and was only outperformed on binary strings (D = 2). In the binary case, BPSO,

BGPSO, and VPSO significantly performed the best. Many of the other algorithms,

such as AMPSO, BPSO, and BGPSO only varied slightly for D = 4 to 20. However,

ICPSO had among the highest variance in performance between different D values.

Finally, the results from abductive inference are shown in Table 5.4. The far left

column gives the different algorithm while the column shows the different Bayesian

networks. In all networks, ICPSO significantly outperformed all other approaches.

The 2nd best performing algorithm was the PPSO, which significantly outperformed

all other approaches on all networks. The worst performing algorithm was IPSO,

which was outperformed by all other approaches by a significant amount.

The fitness curves for all of the PSO algorithms on the sphere and shuffled sphere

problems are shown in Figures 5.1 and 5.2. Figure 5.3 shows the fitness curves of the

PSO algorithms on the NK landscape problem with D = 4. For ease of reading, the

results in each case have been split between two graphs with the same scale. The

X-axis is the number of iterations, while the Y axis is the gBest fitness averaged

over 30 runs. For these experiments, we ran all algorithms for 200 iterations.

5.5.3 Analysis

Based on our results, ICPSO is generally more robust than the other approaches,

as demonstrated by its consistent performance on the shuffled and unshuffled
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Figure 5.1: Fitness curves for minimizing the discrete sphere function.

functions. We believe this is because the particles represent distributions instead

of candidate solutions, and thus do not rely on having a gradient or relationship

between neighboring states.

While PPSO uses a very similar particle representation to ours, ICPSO always

outperformed PPSO. We believe that this is due in part to how we set and bias

the local and global bests. ICPSO uses the knowledge that if a particular sample has

high fitness, more exploration should likely be performed around the sample. Another

benefit to our approach is that we avoid the added complexity that PPSO incurs due

to the approximate methods it requires to shift position values. ICPSO instead treats

each variable as a probability distribution and normalizes after the position update.

As the number of states varied in NK landscapes, ICPSO had the highest

variance in terms of its performance. This could be because it uses samples to set

the local and global best vectors, which may make ICPSO more sensitive to bias

associated with sampling. Additionally, this could be caused by under-sampling the

distribution.
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Figure 5.2: Fitness curves for minimizing the discrete sphere function.

Results also suggest that IPSO performs the best if a gradient exists between

the states for a variable. If no such gradient exists, then IPSO suffers the largest

drop in performance. This is demonstrated in the abductive inference results, where

ICPSO significantly outperformed all other approaches.

The fitness curves for the sphere problems show that ICPSO has a steep initial

curve. However, there appear to be decreasing returns to fitness after about 100

iterations. IPSO has a similar trend on the unshuffled sphere problem shown in the left

graph in Figure 5.1. Some other approaches, such as PPSO and VPSO, converge at a

comparatively slow pace. On more difficult problems, such as the NK landscapes in

Figure 5.2, ICPSO has a more gradual fitness curve. However, ICPSO still converges

faster than the competing approaches. Additionally, Figure 5.2 demonstrates that

IPSO quickly converges to a poor solution. Again, these results demonstrate that

in general, regular PSO requires a gradient between states in a variable in order to

perform well.

Analysis of the fitness curves in Figures 5.1, 5.2, and 5.3 suggests that ICPSO

might also be useful in applications where only a limited number of iterations may be
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Figure 5.3: Fitness curves discrete PSO algorithms maximizing NK landscapes
functions where N = 10, K = 2, and D = 4.

run. Since ICPSO generally has a sharp initial fitness gain and levels out within

relatively few iterations, it can return a good solution sooner than many of the

competing algorithms.

To further support our hypothesis that ICPSO is able to efficiently explore in

the modified search space better than other discrete PSO algorithms, we used Multi-

Dimensional Scaling (MDS) to visualize all the individuals in the PSO algorithms in 2

dimensions. MDS is method for reducing the dimensionality of data that attempts to

preserve the distance between data points in a reduced [56,57]. Let ∆ ∈ RM×M be a

symmetric similarity matrix between M data points where each point Xi ∈ RN Each

entry δi,j in ∆ represents the distance between two individuals. The goal of MDS

is to find a point Xi ∈ RD such that Dist(Xi − Xj) = δi,j, preserving the distance

between the points in the new space. In most cases, MDS sets D equal to 2. Here,

we use the Pivot MDS method [7].
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1st 200 Evals. Next 400 Evals. Last 400 Evals.

Figure 5.4: Individuals from ICPSO over time optimizing discrete sphere visualized
in two dimensions using MDS.

1st 200 Evals. Next 400 Evals. Last 400 Evals.

Figure 5.5: Individuals from PPSO over time optimizing discrete sphere visualized in
two dimensions using MDS.

For ICPSO, we use Symmetric KL Divergence to measure the distance between

individuals.

DSKL(P ||Q) = DKL(P ||Q) +DKL(Q||P )

where

DKL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
.

For the other algorithms, we used the Euclidean distance, which is defined as

D(X, Y ) =

√∑
i

(Xi − Yi)2
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The Euclidean metric was chosen for the other discrete PSO algorithms, a gradient

is assumed between neighboring states. However, because ICPSO uses a distribution

to represent a state, we used the KL divergence because it allows for a better

measurement of the differences of two distributions.

We restrict our analysis to BPSO, ICPSO, IPSO, PPSO, VPSO, and RAN

and leave out BGPSO and AMPSO since the performance of those algorithms

was comparable to BPSO. Figure 5.4 shows the individuals in ICPSO optimizing

the discrete sphere over three discretized time slices corresponding to the first 200

evaluations, the next 400 evaluations, and the last 400 evaluations. This allows us

to visualize how individuals in ICPSO move throughout time. We present a similar

figure for PPSO in Figure 5.5. Both figures are over a single trial. Additionally,

darker colors represent better fitness while lighter colors have worse fitness.

The ICPSO algorithm first has all the individuals generated randomly through-

out the space. However, in the next 400 evaluations, one can see how the individuals

begin to converge to a central space. In the last 400 evaluations, the individuals

continue to move towards the right while also continuing to spread apart slowly.

In PPSO, we see how the randomly initialized individuals are spread throughout

the space, similar to ICPSO. However, the points begin to converge to a tighter

region and continue to do so during the last 400 evaluations. Additionally, in both

algorithms, one can also see that as the individuals move throughout the space, the

fitness gradually improves by the darkening of the points. However, in PPSO, the

improvement in color is less than that in ICPSO.

We present the results of all individuals in BPSO, ICPSO, IPSO, PPSO, VPSO,

and RAN optimizing the discrete sphere in Figure 5.6. All individuals are from a

single trial where each algorithm was run for 1000 iterations. Darker colors represent

more fit individuals while lighter colors correspond to individuals with worse fitness.



129

BPSO ICPSO

IPSO PPSO

VPSO RAN

Figure 5.6: Individuals from discrete PSO algorithms optimizing discrete sphere
visualized in two dimensions using MDS.
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Figure 5.7: Individuals from discrete PSO algorithms optimizing shuffled discrete
sphere visualized in two dimensions using MDS.
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Figure 5.8: Individuals from the discrete PSO algorithms optimizing NK landscapes
with N = 10, K = 2, and D = 4 visualized in two dimensions using MDS.
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Figure 5.9: Individuals from discrete PSO algorithms performing abductive inference
on the Insurance Bayesian network visualized in two dimensions using MDS.
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The first thing we notice is how the BPSO, VPSO, and RAN algorithms all have

similar structure, that is, the points are randomly distributed throughout the space.

One interesting discovery is that the MDS of the individuals in the RAN version

is able to reduce the ten dimensional sphere problem into a two dimensional view

of the same problem. However, BPSO and VPSO are unable to capture this same

relationship. Additionally, none of these algorithms exhibit any structure in their

movement throughout the search space.

ICPSO, IPSO, and PPSO on the other hand, have structure to how the

individuals move in the space. While the individuals are initialized randomly, they

eventually begin to converge to a region in the space. Additionally, this convergence

corresponds to a set of points that have high fitness.

Results from performing MDS on individuals of the discrete PSO algorithms

on the shuffled discrete sphere problem show a similar phenomenon in Figure 5.7.

However, the largest difference is that the structure of the sphere shown in the RAN

algorithm is now lost due to the shuffling of the space. Additionally, VPSO shows

a tighter clustering of individuals. ICPSO shows similar behavior on the shuffled

discrete sphere during the beginning and middle iterations, but has a tighter grouping

of the individuals towards the end.

We also present figures of individuals from the different PSO algorithms

visualized in 2-dimensions using MDS on NK landscapes where N = 10, K = 2, and

D = 4 in Figure 5.8 and the Insurance Bayesian network in Figure 5.9. The MDS

figures further demonstrate that only three of the discrete PSO algorithms contain

structure to their search process: IPSO, PPSO, and ICPSO. The similarity between

the ICPSO and PPSO algorithms can also be seen in these figures as both algorithms

show all individuals converging towards a single area. However, based on the results

comparing the performance of ICPSO and PPSO, we see that PPSO is not as effective
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as ICPSO in locating good solutions. This suggests that while PPSO has similarities

to ICPSO, the sampling process in PPSO is not as effective as ICPSO’s sampling

procedure. Finally, we note that IPSO still contains structure in its exploration of

the search space even if there does not exist a gradient between states in a variable.

5.6 FEA with ICPSO

In the previous sections, we proposed a new discrete PSO algorithm called

ICPSO and demonstrated its performance over other algorithms on various discrete

optimization problems. However, one question is how do FEA versions of the

different discrete PSO algorithms perform. Here, we test to see whether ICPSO

still outperforms the competing methods. We begin by discussing different ways to

use the different discrete PSO algorithms in FEA.

In the previous chapters, all of the optimization algorithms used by FEA, such

as GA, VPSO, HC, and DE, maintained the same representation as the underlying

problem. However, several of the the discrete PSO algorithms discussed use a different

representation of the underlying optimization problem. For example, BPSO used a

binary representation of the problem while ICPSO used a probabilistic representation.

This raises the question of show to use the various discrete PSO algorithms in FEA.

Here, we discuss two ways to apply the discrete PSO algorithms to FEA. One

possible way is first to map the problem to the alternative representation and then

create factors on the new problem representation. An alternative method would be

to keep the problem representation the same and allow each factor to generate its

own representation of its variables.
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f = X1 X2 X3 X4

f ′ = X1,1 X1,2 X1,3 X1,4 X2,1 X2,2 X2,3 X2,4 · · · X4,1 X4,2 X4,3 X4,4

Figure 5.10: Example of factoring a function f by first mapping the function to an
alternative representation.

5.6.1 Generate Mapping Before Factoring

The first method we discuss is to generate the mapping of the function to the

alternative representation before applying FEA to the modified function. Formally, we

can represent this as follows. Assume we are given a f : DN → R with domain DN to

be optimized with parameters X = 〈X1, X2, . . . , XN〉. D = 〈D1, D2, . . . , DN〉 and Di

defines a domain for each variable. In the discrete settings, each domain Di is a set of

discrete states. For algorithms like BPSO and ICPSO, a new function f ′ : D′M → R is

generated with domain DM to be optimized with parameters X′ = 〈X ′1, X ′2, . . . , X ′M〉.

The transformed function requires a mapping g such that g(X′) = X. D′ is the

modified domain 〈D′1, D′2, . . . , D′M〉. We can also represent the new modified inputs as

X′ = 〈X1,1, X1,2, . . . , X1,K , X2,1, X2,2, . . . , XN,K〉 where X1,1, X1,2, . . . , X1,K represents

the encoding for variable X1.

This new function is dependent on the the underlying algorithm and the required

representation. For example, if BPSO is being used to optimize the function f , the

new function f ′ has binary variables and g maps the binary variables (bits) to integer

values. In this example, X1 is mapped into log(|D1|) variables. But in the ICPSO

algorithm, f ′’s variables are probabilities and are mapped into |D1| variables, which
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X1,1 X1,2 X1,3 X1,4 X2,1 X2,2 X2,3 X2,4 · · · X4,1 X4,2 X4,3 X4,4

Figure 5.11: Example of creating factors on a transformed function with an alternative
representation.

means that g is a function that samples the input to generate a vector of integer

values.

A diagram demonstrating the various mappings is shown in Figure 5.10. The

top four variables X1, X2, X3, X4 represent variables from the original problem

while the bottom set of variables are the input to the modified problem. The figure

demonstrates the mapping of variables in the original function to the new function. In

factoring f ′, the factors are competing over the transformed variables. Assume that

all variables have four states D1 = V,X,X,Z. If applying ICPSO, the transformed

function f ′ would have 16 variables where each variable represents the probability of a

variable in f ′ assuming a particular state. We represent the transformed function for

ICPSO in Figure 5.11 as X1,1 as the probability of variable one state one, V . Given the

new transformed function, FEA would generate factors that optimize the probabilities

on f ′. Figure 5.11 also demonstrates how two overlapping factors compete over the

values X2,1, X2,2, X2,3, and X2,4.

One of the benefits to this approach is that it allows for competition to be

performed over the transformed variables. For example, in ICPSO, competition will

determine the probability of variable Xi generating state j. This allows factors to

share information between one another on the transformed variables.

However, the drawback to this approach is that it increases the complexity in

the competition. Because there are more variables in the transformed space, there are
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now more variables that the competition algorithm has to iterate over. Additionally,

the competition algorithm may require additional checks to ensure that the new set

of values for the variables that correspond to the variable Xi remain in its domain.

In ICPSO, this corresponds to ensuring that after each competition, the probability

distribution remains valid.

5.6.2 Generate Mappings After Factoring

An alternative method is to allow each of the algorithms to generate the

mappings after factors for FEA have been generated. This allows each algorithm

to generate its mappings independently of all other factors. From each factors view,

all factors are optimizing the function f .

One of the benefits to this approach is that it allows factors to use different

types of algorithms. For example, one factor could use a BPSO while another factor

could ICPSO. Additionally, competition is performed over the original set of variables

X, which does not introduce additional complexity or require extra checks to ensure

values after competition are valid. However, a drawback to this approach is that it

does not allow for a competition between factors on the alternative representation.

In ICPSO, generating an alternative representation before factoring allows factors to

share and compete over a finer granularity of solutions.

For this set of experiments, we generate the mappings after factoring the

functions. There are two reasons for this choice. The first is that creating the

alternative mapping after generating the factors requires no adaptation of the FEA

compete algorithm. Second, it allows for combining different discrete PSO algorithms,

which we discuss as an area of future work.
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5.7 Discrete PSO FEA Experiments

In our experiments, we compared FEA using ICPSO with FEA using Binary PSO

(BPSO), Integer PSO (IPSO), the PSO proposed by Pugh and Martinoli (PPSO),

and the PSO proposed by Veeramachaneni et al. (VPSO). Additionally, we tested an

FEA version of the Random PSO (RAN) algorithm discussed in the previous section.

Similar to the previous experiments in this chapter, we tested the algorithms

on generalized NK landscapes where each variable can assume D states. For our

experiments, we used an NK-landscapes with N = 10, 20, K = 2, 4, and D = 2, 4, 8.

For each set of NK landscape parameters, we generated 30 different landscapes and

ran each algorithm 30 times per landscape.

In addition to testing the algorithms on the NK landscapes, we tested the discrete

PSO algorithms on abductive inference in Bayesian networks. We added four different

networks (Alarm, Andes, Child, and Water) to the networks used in the previous

section (Hailfinder, Hepar2, Insurance, and Win95pts), giving a total of eight different

networks to evaluate the different algorithms. Network details are shown Table 4.7.

For fitness evaluations, used the loglikelihood and for each network ran each algorithm

30 times per landscape.

Each FEA used factors with a swarm of size five and terminated once the

full global solution did not change after ten iterations. Compete and Share were

performed every five iterations. We used the Markov blanket factor architecture, and

each factor had a population size of five.

All PSO variants used the same set of parameters, in order to make comparisons

as consistent as possible. Parameters φ1 and φ2 were set to 1.49618, and ω = 0.729,

which has been found to encourage convergent trajectories [26]. This is due to

the recommendations of Engelbrecht, which demonstrated that a large swarm,
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counterintuitively, may have difficulty exploring the search space [28]. For our

approach, we set the scaling factor ε to 0.75, and in the VPSO we set σ to the

authors’ recommended value of 0.2. All algorithms randomly initialized velocity and

position vectors. Bold values indicate one algorithm was significantly better than all

other algorithms. Two or more bold value indicate that both algorithms outperformed

all other algorithms but were not significantly different with each other. If there are

no bolded values, than there were more than three algorithms that were significantly

equivalent. Significance testing was done using a Paired Student t-Test with α = 0.05.

5.7.1 Results

Table 5.5 presents the average fitness for NK landscapes. Standard error is shown

in parenthesis. On problems with low epistasis and only two states per variables,

there was almost no significant difference between the algorithms. For example, on

the N = 10, K = 1, D = 2, there was no significant difference between BPSO-

FEA, ICPSO-FEA, PPSO-FEA, and VPSO-FEA. However, IPSO-FEA and RAN-

FEA were were both significantly outperformed by all other algorithms.

For problems with high epistasis (K = 4), the best FEA discrete PSO algorithm

was ICPSO-FEA. Of note, while ICPSO-FEA had a better average fitness than BPSO-

FEA on N = 20, K = 4, D = 8, there was no significant difference. Overall, the best

performing algorithm was the BPSO-FEA algorithm, as it was significantly better

than a majority of the algorithms on six out of the twelve problems. The worst

performing algorithm was IPSO-FEA, which had the worst fitness on nine out of the

twelve problems. On the remaining three problems, PPSO-FEA performed the worst.

Results for FEA discrete PSO algorithms on abductive inference are shown in

Table 5.6. The first thing we note is that there were only two networks in which there

was a clear significant difference between algorithms: Child and Water. Of those two



140

Table 5.5: Discrete PSO FEAs maximizing NK landscapes.

N K D BPSO-FEA ICPSO-FEA IPSO-FEA PPSO-FEA VPSO-FEA RAN-FEA

10

2
2 7.44(0.02) 7.41(0.03) 7.19(0.03) 7.43(0.02) 7.43(0.02) 7.25(0.03)
4 8.66(0.02)8.66(0.02)8.66(0.02) 8.52(0.02) 8.14(0.02) 8.39(0.02) 8.57(0.02) 8.59(0.02)
8 9.07(0.01) 8.97(0.01) 8.46(0.02) 8.35(0.02) 9.02(0.01) 9.06(0.01)

4
2 7.56(0.02) 7.50(0.02) 7.27(0.03) 7.48(0.02) 7.56(0.02) 7.60(0.02)
4 8.39(0.01)8.39(0.01)8.39(0.01) 8.33(0.02) 8.02(0.02) 7.56(0.03) 8.29(0.01) 8.39(0.01)8.39(0.01)8.39(0.01)
8 8.44(0.01) 8.63(0.01)8.63(0.01)8.63(0.01) 8.26(0.02) 7.65(0.03) 8.47(0.01) 8.40(0.01)

20

2
2 14.57(0.04) 14.51(0.04) 14.00(0.05) 14.56(0.04) 14.56(0.04) 14.69(0.03)
4 17.19(0.02)17.19(0.02)17.19(0.02) 16.91(0.02) 16.15(0.03) 16.91(0.02) 16.97(0.02) 17.13(0.02)17.13(0.02)17.13(0.02)
8 18.20(0.02)18.20(0.02)18.20(0.02) 17.98(0.02) 16.83(0.02) 17.51(0.03) 18.11(0.02) 18.17(0.02)18.17(0.02)18.17(0.02)

4
2 15.34(0.03) 15.16(0.03) 14.45(0.04) 15.25(0.03) 15.30(0.03) 15.18(0.03)
4 16.97(0.02)16.97(0.02)16.97(0.02) 16.76(0.02) 15.84(0.03) 15.93(0.03) 16.72(0.02) 16.97(0.02)16.97(0.02)16.97(0.02)
8 17.35(0.02)17.35(0.02)17.35(0.02) 17.44(0.02)17.44(0.02)17.44(0.02) 16.40(0.02) 17.09(0.02) 17.14(0.02) 17.11(0.02)

networks, ICPSO-FEA and V-PSO were both significantly better than the majority

of the other algorithms. Additionally, the RAN-FEA tied on the Child network.

On the other six networks, there was no significant difference between four or

more of the algorithms. However, in all eight networks, IPSO-FEA performed the

worst. While BPSO-FEA performed the best on three out of the eight networks, none

of these differences were significant. RAN-FEA performed best on one network while

RAN-FEA was the best on two networks, but none of the differences were significant.

In addition to the average fitness, we present the average number of iterations,

number of evaluations used by all factors, and number of evaluations used by

FEA’s Compete. Table 5.7 displays the averages over every abductive inference

problem. IPSO-FEA required the fewest iterations while PPSO-FEA required the

most. Additionally, PPSO-FEA required the most fitness evaluations. The second

best algorithm in terms of iterations and fitness evaluations performed was ICPSO-

FEA. Finally, BPSO-FEA, VPSO-FEA, and RAN-FEA, all required a similar number

of iterations and evaluations.
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Table 5.6: Discrete PSO FEAs performing abductive inference on Bayesian networks.

Alarm Andes Child Hailfinder

BPSO-FEA -8.04E+0(3.92E−1) -6.04E+1(4.53E−1) -8.17E+0(3.19E−1) -3.37E+1(2.99E−1)
ICPSO-FEA -9.61E+0(5.30E−1) -6.64E+1(4.89E−1) -6.70E+0(3.06E−1)-6.70E+0(3.06E−1)-6.70E+0(3.06E−1) -3.39E+1(3.95E−1)

IPSO-FEA -1.49E+1(8.37E−1) -8.43E+1(1.15E+0) -9.38E+0(3.43E−1) -1.63E+2(5.16E+1)
PPSO-FEA -1.09E+1(6.13E−1) -6.24E+1(4.10E−1) -7.93E+0(3.41E−1) -3.52E+1(3.86E−1)
VPSO-FEA -9.41E+0(5.01E−1) -6.04E+1(5.85E−1) -6.27E+0(2.69E−1)-6.27E+0(2.69E−1)-6.27E+0(2.69E−1) -3.35E+1(2.82E−1)
RAN-FEA -8.13E+0(5.58E−1) -6.13E+1(5.31E−1) -6.78E+0(3.44E−1)-6.78E+0(3.44E−1)-6.78E+0(3.44E−1) -3.29E+1(4.06E−1)

Hepar2 Insurance Water Win95pts

BPSO-FEA -1.75E+1(2.78E−1) -1.13E+1(3.61E−1) -3.61E+2(7.75E+1) -1.77E+1(7.63E−1)
ICPSO-FEA -1.87E+1(4.63E−1) -1.03E+1(4.49E−1) -1.09E+2(5.89E+1)-1.09E+2(5.89E+1)-1.09E+2(5.89E+1) -1.83E+1(6.01E−1)

IPSO-FEA -1.88E+1(5.10E−1) -1.34E+1(5.65E−1) -6.32E+2(1.38E+2) -8.65E+1(3.45E+1)
PPSO-FEA -1.86E+1(3.66E−1) -1.22E+1(4.26E−1) -6.25E+2(1.03E+2) -1.92E+1(7.62E−1)
VPSO-FEA -1.75E+1(3.36E−1) -1.06E+1(2.97E−1) -8.45E+1(4.14E+1)-8.45E+1(4.14E+1)-8.45E+1(4.14E+1) -1.66E+1(6.77E−1)
RAN-FEA -1.79E+1(3.14E−1) -1.04E+1(3.48E−1) -4.60E+2(8.43E+1) -1.66E+1(8.83E−1)

5.7.2 Analysis

Based on the previous results, we can draw several conclusions. The first is

that the Compete function in FEA is able to locate good solutions even if the factors

are random. In the previous section, we demonstrated that ICPSO significantly

outperformed all other discrete PSO algorithms on both shuffled discrete benchmark

functions, NK landscapes, and Bayesian networks. However, the discrete PSO FEA

all had very similar performance. In very few instances was there an algorithm

that was clearly better than the others. Additionally, in the few cases that an

algorithm significantly outperformed another algorithm, the difference was less than

the difference between the full versions of the algorithms.

While there was no clear algorithm that performed the best, IPSO-FEA

performed the worst the majority of the time. We believe there are two reasons for

this. The first is that IPSO lacks any structure to its exploration of the search space,

which we demonstrated in the MDS analysis of the full single IPSO. Second, we believe

that IPSO is more susceptible to becoming stuck in suboptimal solutions. If IPSO

was able to escape suboptimal solutions, its performance, both in terms of fitness and
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Figure 5.12: Fitness curves for discrete PSO FEAs performing abductive inference
on the Insurance network.

number of iterations, would have been closer to that of RAN-FEA. Instead, it required

the fewest number of iterations to converge, indicating the particles becoming stuck

in suboptimal solutions.

Additionally, IPSO lacks any type of sampling process. BPSO-FEA, ICPSO-

FEA, PPSO-FEA, and VPSO-FEA all require a sample to be generated from either

the position or velocity vectors. This sampling procedure introduces another level of

exploration into the algorithm, which may allow particles to escape local optimum.

To provide more insight into the performance of the different discrete PSO FEAs,

we present fitness curves in Figures 5.12. Results are from abductive inference on

the Insurance network. The x-axis is the fitness of the full global solution of FEA.

BPSO-FEA, PPSO-FEA, and VPSO-FEA, and RAN-FEA all had similar fitness

curves while IPSO quickly converged, but only to a poor solution. ICPSO-FEA had

a similar fitness curve to that of VPSO-FEA, but failed to make improvements after 20

iterations. This indicates that ICPSO-FEA may suffer from premature convergence.
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Table 5.7: Number of iterations and fitness evaluations for FEA versions of discrete
PSO algorithms.

Number
Iterations

Number Factor
Evals.

Number
Compete Evals.

BPSO-FEA 142.38 66763.55 9509.81
ICPSO-FEA 125.58 55281.33 7858.88

IPSO-FEA 87.54 31909.94 4437.57
PPSO-FEA 260.13 241023.86 13185.97
VPSO-FEA 140.83 69475.48 9912.02
RAN-FEA 142.08 65719.96 9360.35

Similar to the previous section, we analyzed the movement of swarms using

MDS. Figure 5.13 displays every position evaluated for fitness in two dimensions

using MDS. We restrict our analysis to only two neighboring factors on the ICPSO,

IPSO, and PPSO algorithms on the NK landscape problem with N = 10, K = 2, and

D = 2. All individuals are from a single trial where each algorithm was run for 1000

iterations. Darker colors represent more fit individuals while lighter colors correspond

to individuals with worse fitness.

From these figures, we see that the factors for ICPSO-FEA and PPSO-FEA still

retain the structure in search that was found in the full single-population versions.

Additionally, IPSO still lacks structure in its exploration of the search space. One

interesting result is that while Factor 2 on ICPSO and PPSO exhibits structure, it

appears that the swarm moves between two different locations in the search space.

This is caused by a factor first moving towards a good set of solutions in its subspace.

However, after Compete, the factors may be searching in a different subspace, causing

the factors to move towards a different set of solutions in the subspace. Finally, we

make note that IPSO still lacks structure to its exploration of the search space.

Furthermore, while the second factors in ICPSO and PPSO appear to respond to the

change in the full global solution after compete, IPSO does not.
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Figure 5.13: Individuals from PSO optimizing NK landscape visualized in two
dimensions using MDS.
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5.8 Conclusion

In this chapter, we proposed a new discrete PSO algorithm called Integer

and Categorical PSO (ICPSO). We then evaluated ICPSO’s performance on several

different functions and discovered that on functions without a gradient, ICPSO

outperforms all other approaches. However, on functions with a gradient, Integer

PSO still outperformed discrete PSO algorithms. Next, we compared FEA versions

of discrete PSO algorithms and discovered that FEA is able to mask the poor

performance. This is because during Compete, the algorithm only the best solution

during the entire search process is used. In later chapters, we further investigate the

how the Compete step affects the performance of FEA.
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CHAPTER SIX

CONVERGANCE OF FEA

One open question concerning FEA is its proof of convergence. Previous work

with FEA has found that the full global solution G always converged to a single

solution. However, no one has analyzed under what conditions convergence will occur.

Here, we present work showing that the full global solution G in FEA will converge

to a single solution if the individual factors also converge. Additionally, we show that

FEA may converge to suboptimal solutions that are not local minima.

6.1 Convergence to Single Solutions

First, we will prove under which conditions the full global solution G converges

to a single solution. Without loss of generality, assumes a minimization problem. We

begin with some definitions.

Definition 6.1. Let ∆t
i be the change in factor P i’s best position at time t where

P t
i = [st(i,1), s

t
(i,2), . . . , s

t
(i,k)] is the best position for factor P t

i at time t, and each

position s(i,j) corresponds to a parameter in the function f : DN → R with domain

DN and parameters X. The change in the position for a single factor P i is denoted

as

∆t
i = d(P t−1

i ,P t
i)

where K is the size of the factor and d is a metric function.

Definition 6.2. Let df(P i)
t be the change in fitness in factor P i’s at time t, where

df(P i)
t = f(P t−1

i )− f(P t
i).
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Because P i is only updated if the fitness is strictly less than the previous fitness,

we know df(P i)
t ≥ 0.

Definition 6.3. Let ∆t
G be the change in position for G where

∆t
G = d(Gt−1,Gt)

is a metric function. Additionally, Gt is equal to [gt1, g
t
2, . . . , g

t
N ].

Definition 6.4. Let df(G)t be the change in fitness of G at time t where

df(G)t = f(Gt−1)− f(Gt)

Definition 6.5. Let Df represent the search space for the function f . Similarly, let

Dt
Comp be the search space for the competition algorithm at time t. Note that Dt

Comp

is a discrete and finite set of points and is given by the set of best positions from all

factors,

Dt
Comp = [Dt

1, D
t
2, . . . , D

t
N ]

where Dt
i is the set of values a variable Xi in G can assume at time t,

Dt
i = [st(1,i), s

t
(2,i), . . . , s

t
(K,i)]

and st(1,i) is the best position at time t for the first factor P1 that optimizes parameter

Xi.

Definition 6.6. Let Ct be the set of all points that G can assume at time t. The

set Ct is determined by Dt
Comp and consists of

Ct = {Dt
1 ×Dt

2 × · · · ×Dt
N},
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where

Ct
i = [st(a,1), s

t
(b,2), . . . , s

t
(z,N)]

and st(a,1) is a value for variable X1 from a factor a. We denote the size of Ct as L.

Definition 6.7. A factor P i converges when

lim
t→∞

∆t
i = 0.

Similarly, G is said to have converged when

lim
t→∞

∆t
G = 0.

Lemma 6.1.1. Assume that at time t − 1, G is at a local minimum in Dt−1
Comp. If

df(P i)
t = 0 for all factors i, then ∆t

G = 0 and df(G)t = 0.

Proof. If df(P i)
t = 0, then no factors were updated and ∆t

i = 0 for all i. This

indicates that the search space remain unchanged from t − 1 to t and Ct−1 = Ct.

Since G was at a local minimum in Ct−1, G is also at a local minimum in Ct. Because

there are no single changes that the competition algorithm can make to improve the

fitness of G, ∆t
G = 0. Finally, because G remains unchanged, so does its fitness

df(G)t = 0.

The above lemma shows that if the full global solution is locally optimal and the

search space Dt
Comp does not change, then there are no changes that the competition

algorithm can make to improve the fitness of G. This leads us to the next Theorem,

which relates the convergence of factors to the convergence of G.

Theorem 6.1.2. If G is at a local minimum in Dt
Comp and all factors have converged,

then G has also converged.
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Proof. By definition of convergence for a factor P i,

d(P t−1
i ,P t

i) = 0

P t−1
i = P t

i.

Therefore,

f(P t−1
i ) = f(P t

i)

f(P t−1
i )− f(P t

i) = 0

df(P i)
t = 0

for all factors i. By Lemma 6.1.1, G will not change and therefore has converged.

The above theorem requires that all of the factors have already converged to

guarantee the full global solution also converges. We relax the constraint in the next

Theorem by only assuming that, at some point in time, the factors converge.

Theorem 6.1.3. If all the factors P i in FEA converge at some point in time during

FEA’s optimization of f , then the full global solution G will also converge.

Proof. By definition of convergence for each factor P i,

lim
t→∞

∆t
Pi

= 0

lim
t→∞

d(P t−1
i ,P t

i) = 0
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Because d is a metric function,

lim
t→∞

si,j
t−1 − si,j t = 0

for all j in i. Let ∆t
C be the change for all points in C at time t,

∆t
C =

∑L
i=1 d(Ct−1

i , Ct
i )

L

where Ct
i is the ith point in C at time t, and d is the difference. Because Ct−1

i,j is

factor k’s value for variable j, we know that the sequence of values will converge

lim
t→∞

(sk,j
t−1 − sk,jt) = 0

lim
t→∞

(sk,j
t−1 = sk,j

t)

and therefore

lim
t→∞

d(Ct−1
i , Ct

i ) = 0

for all factors i. Putting this together gives us

lim
t→∞

∑M
i=1 d(Ct−1

i ,Ct
i)

M
= 0

lim
t→∞

∆t
C = 0

This shows that the search space Dt
Comp also converges to a set of discrete points.

Remember that this is a discrete and finite set of points for the competition algorithm

to explore. Eventually, the competition algorithm, which is a Greedy local search
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algorithm, will either reach a local minimum or hit all points. Therefore, G will

converge.

The above theorem requires that all of the factors in FEA have converged.

However, it is possible for the full global solution in FEA to converge even if not

all of the factors have converged. Instead, we only require that G is a local minimum

in all subsequent domains, which allows for some of the factors to not converge.

Theorem 6.1.4. If G is a local optimum in all spaces Dt
Comp ∀t > t0, then G has

converged.

Proof. Since G was at a local minimum in Ct for all future time past t0, there are no

single changes that the competition algorithm can make to improve the fitness of G

during each FEA iteration. Therefore, ∆t
G = 0, which by definition is the convergence

of G.

6.2 Pseudominimum Convergence

The previous section showed that if the search space for the competition

algorithm converges or if G is at a local optimum, then the full global solution G

will converge to a single point. However, it is unknown to what kind of solution

the full global solution will converge to. Additionally, while G may be located at a

local minimum in Dt
Comp, it may not be a local minimum in Dt

f . The next section

proves that G may become stuck in suboptimal points in the search space that are

not locally minimal.

Definition 6.8. A local minimum is a point

x∗ = (x1, x2, . . . , xN)
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such that, for some ε > 0, f(x∗) < f(x) for all points within an ε of x∗.

Definition 6.9. Given a subspace S in RK where K < N , a pseudominimum is a

point

xp = (x1, x2, . . . , xN)

such that xp is a local minimum in the subspace S but is not a local minimum for f .

Definition 6.10. Given a subspace S in RK where K < N , a global pseudominimum

is a point

xp = (x1, x2, . . . , xN)

such that xp is a global minimum in the subspace S but is not a local or global

minimum for f .

Example 7. An example of a global pseudominimum is the point (0, 0) for the

function

f(X) = g(h(X)) (6.1)

where

g(X) = X2
1 + X2

2 − (tanh(10X1) + 1) (tanh(−10X2) + 1) exp

(
X1 +X2

3

)

and h(X, θ) is a rotation operator defined as

h(X, θ) =

cos(θ) − sin(θ)

sin(θ) cos(θ)


X1

X2

 .
To highlight the shape of the function, we plot the inverse in Figure 6.1. The point

(0, 0) is a global pseudominimum in the subspace defined by the y axis at X =

0 because moving in any direction in the y-axis, the function increases in value.
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However, the point is not a local minimum since the function can be decreased in the

x and y axes simultaneously.

Note that not all pseudominimum are saddle points, but all saddle points are

pseudominimum. The next proof gives an example of a pseudominimum that is not

a saddle point. Finally, we define a special case of a pseudominimum.

Definition 6.11. Given a subspace S in RK where K < N , a maximal pseudomini-

mum is a point

xp = (x1, x2, . . . , xN)

such that xp is a local minimum in the subspace S but is not a local minimum for

S ∪Xi for all variables in RN .

Definition 6.11 differs from Definition 6.9 in a key way. A pseudominimum in

subspace S may also be a pseudominimum S ∪ Xi where Xi is some dimension not

in S. The definition of a pseudominimum only requires that a point not be a local

minimum for all dimensions. For example, a point may be a pseudominimum in two

dimensions X1 and X2 for a function with five variables X1, X2, X3, X4, X5. But it

may also be a pseudominimum in the dimensions X1, X2, and X3. If the point is not

a pseudominimum in the subspaces X1, X2, X3, X4 and X1, X2, X3, X5, then it is a

maximal pseudominimum.

With these definitions, we first present a theorem showing that there exist global

pseudominimas that will trap FEA. Second, we will generalize the existence theorem

by showing under what conditions FEA will become trapped by global pseudominima.

Theorem 6.2.1. There exist global pseudominima that will trap FEA.

Proof. Because this is an existence theorem, we prove this by example based on the

proof sketch used by Van den Bergh [112, 114]. Assume we are given a function
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Figure 6.1: An inverse plot of Equation 6.1. Point (0, 0) is an example of a global
pseudominimum.

f : DN → R with domain DN , that the output of the function is greater than 0, and

that it is strictly increasing when moving in any direction from the origin Additionally,

there exists a simplex with a point at the origin such that the rest of the points that

define the simplex are strictly greater than 0. At the tip of simplex, the output of f

is equal to the value at the origin, and within the simplex, the fitness decreases from

all of the points that define the simplex to a local minimum X∗ = (X∗1 , X
∗
2 , . . . , X

∗
N).

An example function with three dimensions is shown in Figure 6.2 with the sides

of the triangle region projected onto the primary planes. In this example, the function

for three variables X, Y and Z, is equal to f(X) = ||X||. The only exception is in a

triangle shaped region where f(X) < 0. Let B be the simplex region. We represent

the function as

f(X) =


g(X) if B contains X

√
X2 + Y 2 + Z2 else

where

g(X) = (X −X∗)2 + (Y − Y ∗)2 + (Z − Z∗)2 − C.
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Figure 6.2: Diagram of an example function used in the proof of Theorem 6.2.1.

C is a constant value to ensure that all values of the function g within the simplex

are negative.

An FEA is applied with factors P1, P2, . . .PM where each factor Si optimizes

over a pair of variables Xj, Xk. Note that the origin (0, 0 . . . , 0) is a global

pseudominimum defined by the FEA’s factors since moving in only two directions

causes f to increase in value. However, the origin is not a local minimum since f

decreases in value by moving in all N directions simultaneously, thereby moving into

the simplex with negative values.

Suppose the FEA has a full global solution G at the origin (0, 0, . . . , 0). If during

factor P1’s Update step it evaluates the point (X∗1 , X
∗
2 ), the fitness will be some value

L. By definition of f , the output is strictly increasing when moving away from the

origin, and therefore, L is greater than 0. This is because FEA uses the full global

solution G to evaluate the values (X∗1 , X
∗
2 ).

In the example shown in Figure 6.2, this would equate to three factors: P1,P2,

and P3, which optimize over variables xy, yz, and xz, respectively. Additionally,
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G = (0, 0, 0). Factor P1 would evaluate the point X∗, Y ∗ as

f(X∗, Y ∗, 0) =
√

(X∗)2 + (Y ∗)2.

Note that this point is not within the simplex because all points that define the

simplex are strictly greater than 0.

Because the fitness of (X∗, Y ∗) is greater than 0 and the current best fitness of the

factor, the factor discards this point and (X∗1 , X
∗
2 ) will not be used in the competition

and sharing steps of FEA. Consequently, the full global solution is unable to move

from the origin to (X∗, Y ∗, 0, . . . , 0). This same phenomenon will also occur for the

other factors; therefore, FEA will be stuck at the global pseudominimum.

We note that the point p in the subspace x in Figure 6.2 is not a maximal

pseudominimum because the point is also a pseudominimum in the subspace xy.

However, the point p is a maximal pseudominimum in the subspace xy.

Theorem 6.2.2. Given an FEA, let S be a set of subspaces RK with K < N as

defined by the set of factors in the FEA. If FEA’s full global solution reaches a point

p that is a global pseudominimum in all subspaces Si ∈ S, then FEA will be unable

to escape p.

Proof. Assume we are given a function f : DN → R with domain DN and that the

FEA has a set of factors P1, P2, . . .PM . Also, assume that the full global solution

G = (X∗1 , X
∗
2 , . . . X

∗
N) is at a point p that is a global pseudominimum. By definition of

a global pseudominimum, each factor P i will be unable to move to a better position

because all other points in the subspace that factor P i is searching over will have

fitness greater than the current fitness of P i at p. Since each factor will be unable

to locate a position with better fitness than its current position, the factor will not
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use other values different than those in G during the competition and sharing steps

of FEA. Because no other values are used during competition, the full global solution

is unable to move from the global pseudominimum; therefore, FEA will be unable to

escape from the global pseudominimum.

While this shows that FEA may become stuck, the factors must be optimizing

over the variables that induce the pseudominimum. For example, if a factor is

optimizing over all three variables in Figure 6.2, then the factor using hill climbing as

the algorithm will not be trapped by the point (0,0,0). This suggests that if it is known

where a pseudominimum occurs in an optimization problem, then there should exist

a factor that optimizes over a superset of variables that induce the pseudominimum.

Another consequence of this result is that it may provide another explanation

of results in the previous chapter as to why certain factor architectures outperform

others. In those experiments, we showed that the Markov architecture performed

better than other architectures because it minimized hitchhiking. However, the

performance of the better factor architecture may also be due to fact that the factors

have less chance of becoming trapped in pseudominima.

6.3 Hybrid FEA

In the previous section, we showed that the full global solution G in FEA will

converge to a single solution. However, similar to CPSO, FEA may converge to

suboptimal solutions called pseudominima that regular EA are able to escape. As

described earlier, van den Bergh and Engelbrecht proposed an extension to the CPSO

algorithm called Hybrid Cooperative Particle Swarm Optimization (CPSO-H). CPSO-

H combined the benefits of CPSO and a regular PSO by performing a number of

iterations using CPSO followed by running a regular PSO. By performing several
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Algorithm 6.11: Hybrid Factored Evolutionary Algorithm

Input: Function f to optimize, optimization algorithm A
Output: Full solution G

1: S ← initializeFactors(f,X, A)
2: G← initializeFullGlobal(S)
3: repeat
4: for all Si ∈ S do
5: repeat
6: Si.updateIndividuals()
7: until Termination criterion is met
8: end for
9: G← Compete(f,S)
10: Share(G,S)
11: Full.seed(G)
12: repeat
13: Full.updateIndividuals()
14: until Termination criterion is met
15: if Full.bestFitness() is better than f(G) then
16: G← Full.bestSolution()
17: end if
18: until Termination criterion is met
19: return G

iterations with a full PSO, CPSO-H is able to escape pseudominima because an

individual is able to modify all variables in one round of updates. Here, we present a

similar extension to FEA called FEA-H (Algorithm 6.11).

FEA-H works as follows. First, it performs the same set of operations as FEA—

Update, Compete, and Share—in lines 1–10. Next, FEA-H performs a set of updates

to the full EA population, which is denoted as Full. First, the position of the

individual with the worst fitness from Full is set to the full global solution G (line

11). In line 14, the full population updates its individuals until some stopping criteria

is satisfied. Finally, the fitness of the best solution in Full is compared with G. If
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the fitness of the best individual from the full population is better than the full

global solution, then the algorithm sets G to solution with the better fitness (line

16). However, if the fitness is not better, then no changes are made to G.

By running a set of iterations with a full EA, FEA-H is should be able to escape

pseudominima. This is because when Full updates its individuals, each individual

has the opportunity to change every variable simultaneously. For example, in Figure

6.1, the full population is able to move individuals from the origin to the optimal

solution by following the incline on the ridge. However, if the factor architecture

subsumes the pseudominima in the fitness landscape, then FEA will not become

stuck at suboptimal solutions, and FEA-H will provide little to no benefit over FEA.

6.4 Empirical Analysis of Pseudominima in FEA

As shown in the previous section, FEA is still susceptible to pseudominima.

However, FEA only becomes stuck at these points if the factors are optimizing over a

subset of variables in Rk. We hypothesize that for certain factor architectures in FEA,

the probability of pseudominima becomes low. To test this hypothesis, we compare

versions of CPSO and FEA with the hybrid version of CPSO-H presented by Van de

Bergh and Englebrecht [114]. In addition, we compare all algorithms with FEA-H

presented in the previous section. If FEA does become stuck in pseudominima, then

one would expect FEA-H to outperform FEA because the full population in FEA-H

allows the algorithm to escape pseudominima. However, if FEA does not become

stuck in pseudominima, FEA-H will provide little to no benefit over FEA.

For the test problems we chose NK landscapes, abductive inference in Bayesian

Networks, and some common benchmark optimization problems. NK landscapes

were included because they represent commonly used functions for evaluating the

performance of evolutionary algorithms applied to epistatic functions. We included
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abductive inference in Bayesian Networks because they are a practical combinatorial

optimization problem. On the NK landscapes and abductive inference, we used a

modified version of PSO since both problems are functions with a discrete input.

To handle these problems, we used the ICPSO algorithm as the underlying search

algorithm [107].

6.4.1 Test Problems

For the test problems we again chose NK landscapes, abductive inference

in Bayesian Networks and some common benchmark optimization problems. We

generated NK landscapes with parameters N = 25, 40, 50, and K = 5. For each

set of parameters, we created 30 random landscapes and ran each algorithm 30

times. On the abductive inference, we used the Alarm, Andres, Child, Hailfinder,

Hepar2, Insurance, and Win95pts Bayesian networks from the Bayesian Network

Repository [93]. For the benchmark functions, we chose the following: Ackley’s,

Dixon Price, Exponential, Griewank, Rastrigin, Rosenbrock, Schwefel 1.2, and Sphere

with 30 dimensions. [49].

6.4.2 Setup

For the FEA algorithm on the NK landscapes and Bayesian networks, we used

the Markov blanket factor architecture since this was shown in previous Chapters

to outperform all competing factor architectures. On the Benchmark functions,

we used the Simple Centered (SC) architecture proposed in Chapter 4 since SC

architecture had the most consistent performance over all functions [106]. For the

CPSO algorithms, we had each subswarm optimize over two variables in the problem.

This subswarm size was found to have the most consistent performance during the

tuning of the algorithms.
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Table 6.1: Results from comparing regular and hybrid versions of CPSO and FEA on
NK landscapes.

CPSO CPSO-H FEA FEA-H

N=25, K = 5 1.78E+01(6.06E−02) 1.83E+01(3.80E−02)1.83E+01(3.80E−02)1.83E+01(3.80E−02) 1.91E+01(3.15E−02)1.91E+01(3.15E−02)1.91E+01(3.15E−02) 1.89E+01(3.19E−02)
N=40, K = 5 2.81E+01(1.09E−01) 2.86E+01(7.00E−02) 3.05E+01(4.72E−02)3.05E+01(4.72E−02)3.05E+01(4.72E−02) 3.01E+01(5.08E−02)
N=50, K = 5 3.47E+01(1.31E−01)3.47E+01(1.31E−01)3.47E+01(1.31E−01) 3.47E+01(6.74E−02) 3.81E+01(3.87E−02)3.81E+01(3.87E−02)3.81E+01(3.87E−02) 3.65E+01(5.11E−02)

Each algorithm was given a total of 400 individuals to divide between their

subswarms. For the hybrid algorithms CPSO-H and FEA-H, an additional 10

individuals were used for the full algorithm step of the algorithms. These values were

found to perform well for all algorithms during tuning. On the NK landscapes and

abductive inference, both versions of CPSO and FEA used ICPSO as the underlying

search algorithm. On the benchmark problems, we used canonical PSO. For both

PSOs, the ω parameter was set to 0.729, and φ1 and φ2 were both set to 1.49618. In

ICPSO, the scaling value ε was set to 0.75. These values were found to perform well

for all algorithms on all problems during tuning of the algorithms.

6.4.3 Results

Table 6.1 shows the results comparing CPSO, CPSO-H, FEA, and FEA-H

on maximizing NK landscapes. Results from abductive inference on Bayesian

networks are shown in Table 6.2 Note that both these problems are maximization.

Results comparing CPSO, CPSO-H, FEA, and FEA-H on minimizing the benchmark

functions are in Table 6.3. All results are expressed as means over 30 trials with

standard errors in parentheses. Bold values indicate a significant difference between

the regular CPSO or FEA algorithms with the hybrid versions using Mann-Whitney

U test with α = 0.05.

As we can see in the NK landscape results, CPSO-H outperformed CPSO on

two out of the three landscapes, but was only significantly better on N = 25, K = 5.
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Table 6.2: Results from comparing regular and hybrid versions of CPSO and FEA on
Bayesian networks.

CPSO CPSO-H FEA FEA-H

Alarm −1.99E+01(2.01E+00) −1.59E+01(1.49E+00) −9.12E+00(5.44E−01) −9.87E+00(6.45E−01)
Andes −2.01E+02(8.72E+01) −1.72E+02(7.12E+00)−1.72E+02(7.12E+00)−1.72E+02(7.12E+00) −7.37E+01(8.34E−01)−7.37E+01(8.34E−01)−7.37E+01(8.34E−01) −8.80E+01(1.30E+00)
Child −9.54E+00(5.08E−01) −9.06E+00(4.48E−01) −6.61E+00(3.03E−01) −6.57E+00(2.98E−01)
Hailfinder −7.39E+02(1.60E+02) −2.28E+02(6.92E+01)−2.28E+02(6.92E+01)−2.28E+02(6.92E+01) −3.43E+01(3.61E−01)−3.43E+01(3.61E−01)−3.43E+01(3.61E−01) −3.57E+01(3.18E−01)
Hepar2 −1.86E+01(4.48E−01)−1.86E+01(4.48E−01)−1.86E+01(4.48E−01) −2.14E+01(7.96E−01) −1.81E+01(4.35E−01) −1.76E+01(3.04E−01)
Insurance −3.26E+02(8.56E+01) −1.57E+01(9.07E−01)−1.57E+01(9.07E−01)−1.57E+01(9.07E−01) −9.65E+00(4.13E−01) −1.04E+01(2.91E−01)
Win95pts −2.65E+02(1.10E+02) −1.17E+02(3.46E+01)−1.17E+02(3.46E+01)−1.17E+02(3.46E+01) −1.82E+01(5.90E−01)−1.82E+01(5.90E−01)−1.82E+01(5.90E−01) −3.26E+01(1.16E+00)

Table 6.3: Results from comparing regular and hybrid versions of CPSO and FEA on
benchmark functions.

CPSO CPSO-H FEA FEA-H

Ackleys 6.47E−06(3.86E−07)6.47E−06(3.86E−07)6.47E−06(3.86E−07) 5.61E−05(6.24E−06) 6.12E−06(7.39E−07)6.12E−06(7.39E−07)6.12E−06(7.39E−07) 9.90E−05(1.20E−05)
Dixon Price 2.22E−02(2.22E−02)2.22E−02(2.22E−02)2.22E−02(2.22E−02) 2.17E−01(1.52E−01) 4.44E−02(3.09E−02)4.44E−02(3.09E−02)4.44E−02(3.09E−02) 1.56E−01(5.23E−02)
Exponential −1.00E+00(2.95E−10)−1.00E+00(2.95E−10)−1.00E+00(2.95E−10) −1.00E+00(1.02E−08) −1.00E+00(1.47E−10)−1.00E+00(1.47E−10)−1.00E+00(1.47E−10) −1.00E+00(7.34E−08)
Griewank 3.17E−02(1.95E−02) 3.11E−03(1.50E−03)3.11E−03(1.50E−03)3.11E−03(1.50E−03) 4.77E−02(8.32E−03) 5.33E−03(1.99E−03)5.33E−03(1.99E−03)5.33E−03(1.99E−03)
Rastrigin 4.34E+00(3.83E−01)4.34E+00(3.83E−01)4.34E+00(3.83E−01) 5.27E+00(3.76E−01) 3.38E+00(2.96E−01)3.38E+00(2.96E−01)3.38E+00(2.96E−01) 4.51E+00(4.49E−01)
Rosenbrock 2.81E+00(5.77E−01) 2.28E+01(1.40E+01) 9.29E+00(3.07E+00)9.29E+00(3.07E+00)9.29E+00(3.07E+00) 4.80E+01(7.22E+00)
Schwefel 2.86E+05(5.31E+04) 1.42E+03(5.08E+02)1.42E+03(5.08E+02)1.42E+03(5.08E+02) 6.06E+02(5.63E+01)6.06E+02(5.63E+01)6.06E+02(5.63E+01) 1.00E+03(6.96E+01)
Sphere 2.15E−08(6.64E−09)2.15E−08(6.64E−09)2.15E−08(6.64E−09) 7.48E−07(1.68E−07) 8.97E−09(1.20E−09)8.97E−09(1.20E−09)8.97E−09(1.20E−09) 3.21E−06(1.15E−06)

Only on the larger problems (N = 50) did CPSO-H tie with CPSO-H. However, when

looking at the FEA, the hybrid version of FEA was always outperformed by regular

FEA, so hybridization provided no benefit and appears to have hurt performance.

The Bayesian network results show a similar trend in comparing regular and

hybrid versions of CPSO and FEA. On the Andes, Hailfinder, Insurance, and

Win95pts networks, CPSO-H outperformed CPSO significantly. Additionally, it was

not outperformed by CPSO on the Alarm and Child networks. Only on the Hepar2

networks did CPSO significantly outperform CPSO-H. FEA outperformed FEA-H

significantly on the Andes, Hailfinder, and Win95pts networks. Furthermore, it was

only outperformed by FEA-H on the Child and Hepar2 networks. Note that in both

of these cases, there was no significant difference between FEA and FEA-H.
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On the benchmark functions, CPSO-H outperforms CPSO significantly on

Griewank and Schwefel whereas, CPSO performs significantly better than CPSO-

H on the Ackleys, Dixon Price, Exponential, Rastrigin and Sphere functions. FEA

outperformed FEA-H by a significant margin on all functions except the Griewank

function, where FEA-H outperformed FEA. We also note that the trends in the

differences between CPSO and CPSO-H are similar to that of FEA and FEA-H. Only

on the Schwefel function was there a significant difference in the trends of CPSO and

CPSO-H with that of FEA and FEA-H.

6.4.4 Analysis

From the NK landscape, Bayesian network, and benchmark results, we see that

the full PSO steps used by FEA-H provided a performance gain only a few times. In

particular, FEA-H only significantly outperformed FEA on the Griewank function.

Additionally, in many of the problems, the full population steps in FEA-H hurt the

performance.

While CPSO-H significantly outperformed CPSO on the majority of the NK

landscapes and Bayesian networks, CPSO performed significantly better than CPSO-

H on the majority of the benchmark functions. There are two possible reasons for this

result. One is that in the majority of the functions, there are fewer pseudominima

that trap CPSO; therefore, CPO-H provides fewer benefits than regular CPSO. The

other possible reason is that the creation of the subswarms for CPSO leads to the

ability to avoid the pseudominima in the search space on the majority of the functions.

Another result we would like to make note of is the similarities between CPSO

and FEA on the benchmark functions. We believe that the similarity of these results

is due to the subswarm (factor) size for both CPSO and FEA being set to two thus not

adequately capturing all of the variable interactions. Even with these similarities, on
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the Rosenbrock and Schwefel functions, CPSO did not outperform CPSO-H whereas

FEA outperformed FEA-H on both these functions. Specifically, with Rosenbrock and

Schwefel functions the overlap in FEA appears to allow the subpopulations to capture

the majority of the of the variable interactions that CPSO is unable to capture. Again,

this is because CPSO subpoulations optimize only disjoint sets of variables.

For the NK landscape and Bayesian networks, we believe that the performance of

FEA over FEA-H is because the factors in FEA are less susceptible to pseudominima

than the subswarms in CPSO. In the benchmark functions, CPSO was able to escape

the majority of the pseudominima. But on the NK landscapes and Bayesian networks,

CPSO had a higher liklihood of becoming trapped in pseudominima, which explains

why CPSO-H often outperformed CPSO. Meanwhile, the factors in FEA are less

prone to get stuck in pseudominima because they are optimizing over larger groups

of subspaces that induce the pseudominima; therefore, the full PSO steps are not

needed.

We explored this hypothesis further by running an experiment where, during

FEA, we checked to see if the factors’ best solution were at a pseudominimum after

the Compete step. Because the Bayesian networks and NK landscapes are discrete

problems, we are able to look at all neighboring states of a factor. For a given factor

P i, if there does not exist a neighboring state with better fitness, then P i could be

at a pseudominimum. However, this point could also be a true local minimum. To

see if P i is in fact at a pseudominimum, we checked to see if any neighboring points

of P i ∪ Ri had better fitness. If there does exist a neighboring point of P i ∪ Ri

with better fitness, then P i is a true pseudominimum. However, if there are no

neighboring points of P i ∪Ri with better fitness, then P i is at a local minimum and

not a pseudominimum. If a factor was not at a pseudominima or local minima, it was

ignored in the calculation. This is because a factor not at a local or pseudominimum
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Figure 6.3: Probability of pseudominimum for NK landscape N = 25, K = 5.

suggests that the factor is still in the process of moving towards a better area in the

search space.

We ran these experiments on the NK landscape with N = 25, K = 5, and on the

Insurance network. Results for both CPSO and FEA are shown in Figures 6.3 and

6.4 respectively. In both of these figures, the x-axis represents iterations of FEA. The

y-axis gives the probability of a pseudominimum at each iteration and is calculated

as

Pm

Pm+ Lm

where Pm is the number of factors at a pseudominimum and Lm is the number

of factors at a local minimum. A value of 1 means that all subswarms and

factors are located at pseudominima while 0 indicates that all factors are located

at a local minimum. Note that there is a possibility that the probability of a

pseudominimum may become undefined if none of the factors are at a local minimum

or pseudominimum. However, those instances were never encountered in these

experiments.
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Figure 6.4: Probability of pseudominimum for Insurance network.

As we can see in the two figures, both CPSO and FEA begin with a high

probability of being located at pseudominima. This is likely due to the fact that

the subswarms have just begun to locate good areas in the search space and are still

moving towards those areas. However, we can see that the probability of factors being

located at pseudominima in FEA decreases much faster than CPSO. Additionally, as

the number of iterations increase, the probability for FEA becomes closer to zero.

While the probability of CPSO does decrease over time, there is approximately a

20% probability of a subswarm being located at a pseudominimum. Finally, we

note that the probability of pseudominima never increases because the definition of

pseudominimum excludes a local minimum. Once a factor reaches a local minimum,

it becomes more difficult for the factor to escape the local minimum, thus reducing

the likelihood of a factor moving from a local minimum to a pseudominimum.

These results highlight why CPSO-H sees greater performance gains over CPSO

than FEA-H does over FEA. On the NK landscapes and Bayesian networks, CPSO

becomes trapped in pseudominima. CPSO-H is able to escape these pseudominima
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and continue searching towards better solutions. FEA, on the other hand, has a

smaller probability of becoming stuck in a pseudominima; therefore, the full swarm

steps in FEA-H provide less benefit because the algorithm is already able to move

towards good locations in the search space.

While the results suggest that FEA is less prone to pseudominima, the

benchmark results suggest that the architecture is not the best for all functions.

This is demonstrated by FEA-H significantly outperforming FEA on the Griewank

function. We believe that main cause is that the factor architecture used for the

Griewank function is suboptimal, and given a better factor architecture, we may see

FEA outperform FEA-H. However, despite a suboptimal factor architectures, FEA is

still competitive with both FEA-H and both versions of CPSO.

6.5 Conclusion

In this paper, we proved that the full global solution G found by FEA will

converge to a single point if the individual factors also converge. Even so, we

also proved that FEA is still susceptible to pseudominima. Despite the fact that

FEA can become stuck at pseudominima, we demonstrated that, when using certain

factor architectures, the probability of factors becoming stuck at pseudominimum

approaches zero. To test this, we compared hybrid versions of CPSO and FEA and

demonstrated that FEA-H did not provide significant performance gains on discrete

problems. Additionally, we showed that over time, FEA has a lower probability of

pseudominimum than CPSO.
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CHAPTER SEVEN

FEA ON UNITATION AND DECEPTIVE FUNCTIONS

In Chapter 4, we demonstrated that the best-performing factor architecture also

maintained better diversity between the individuals. However, it is unknown how

the increased diversity corresponds with improved performance. Furthermore, the

question still remains as to whether FEA’s performance is most influenced by the

creation of subpopulations through the factoring of the function or the competition

and collaboration between factors in the Compete stage. For example, if a factor

architecture is poorly constructed, will Compete in FEA still be able to locate good

solutions?

There are three main areas we will explore in this chapter. The first is what types

of problems an individual factor is able to solve. Second, we examine how effective

Compete is at combining solutions from overlapping factors. Finally, we investigate

if there exists guidelines for creating factors for problems without intuitive methods

for factoring the function.

To investigate these different areas of research, we explore how FEA performs

on two sets of functions with binary variables. The first set are unitation functions,

which are functions whose fitness is based on the number of zeros and ones in the

input vector. Even though the functions themselves do not have complex definitions,

they are still able to define complex search spaces [88]. Additionally, the functions

contain properties found in real-world problems. The second set of functions are the

Royal Road functions, which were proposed by Mitchell et al. to explore the building

block hypothesis in GAs [66].
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While we analyzed the number of iterations in previous chapters, the optimal

solutions in the Bayesian networks and NK landscapes were unknown. By dealing

with unitation functions, we are able to analyze the number of evaluations FEA

requires to directly find the optimal solution. This also allows us to observe how

FEA handles deceptive problems.

7.1 Unitation Functions

In our discussion of unitation functions, we split them in two groups: Base

functions and Royal Road functions. Base functions are functions in which the fitness

is based upon counting the number of 1’s. Royal Road functions are variations of the

base unitation functions in that, in addition to the fitness being based upon the

number of 1’s, a specific structure is imposed upon the fitness landscape. We begin

by discussing the base unitation functions.

7.1.1 Base Functions

A unitation function is a fitness function whose output is based upon the number

of ones in a binary array. We can formally define the unitation function u(X)→ R+

of a binary array as

u(X) =
N∑
i=0

Xi

where Xi is the ith binary variable. The simplest unitation problem is called One

Max, which is defined as

f(X) = u(X)

The optimal solution is all 1’s. Figure 7.1 gives a ten dimension example of the fitness

of the One Max function where the x-axis is the unitation (number of 1’s) and the

y-axis is the fitness.



170

0 2 4 6 8 10
0

2

4

6

8

10

Unitation

F
it
n
es
s

Figure 7.1: Fitness of OneMax function.
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Figure 7.2: Fitness of Needle function.

Two of the simplest variations of the One Max problem are the Needle and

BiNeedle problems. The Needle function contains a search space with a large flat

basin and a narrow optimal solution when the input contains all 1’s. In some ways,

the Needle function is reminiscent of a pseudominimum from Chapter 6, where a

search algorithm may become stuck in a suboptimal location that it is unable to

escape because only K variables can be changed. The function is defined as

f(X) =


1 + α u(X) = N

1 otherwise.

The BiNeedle, on the other hand, contains two narrow optimal solutions: one with

all 0’s and one with all 1’s. The function is defined as

f(X) =


1 + α u(X) = 0

1 + α u(X) = N

1 otherwise.
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Figure 7.3: Fitness of BiNeedle function.
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Figure 7.4: Fitness of DecTrap function.

A ten dimension example of the Needle function is shown in Figure 7.2 and Figure

7.3 contains an example of the BiNeedle problem.

Three more-deceptive versions of the Needle and BiNeedle functions exists:

DecTrap, TwoTrap, and DecTwoTrap. A deceptive function is one in which there

are multiple paths to local optimum solutions; however, one of more of those paths

lead to a local optimum.

DecTrap contains one global optimum with all 1’s and one suboptimal solution

all 0’s. Additionally, the function slope is defined such that the search will be biased

towards the suboptimal solution. An example of DecTrap is shown in Figure 7.4.

Formally, it is defined as

f(X) =


N u(X) = N

N − 1− u(X) otherwise.

From the figure, we observe how the function is deceptive to a search algorithm. A

search algorithm will be led in one of two directions: either toward all 0’s or all 1’s.

However, the solution with all 0’s is only a local optimum.
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Figure 7.5: Fitness of TwoTrap function.
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Figure 7.6: Fitness of DecTwoTrap func-
tion.

TwoTrap is an extension of the DecTrap function that contains two optimal

solutions: all 0’s and all 1’s. However, the suboptimal solution is centered in the

middle of the search space: N/2 1’s. Similar to DecTrap, much of the search space

guides the search algorithm toward the suboptimal solution. The function is defined

as

f(X) =



N − N
2
u(X) u(X) < N

5

2u(X)− 2
5
N N

5
≤ u(X) ≤ N

2

8
5
N − 2u(X) N

2
< u(X) ≤ 4

5
N

N
2
u(X)− 2

5
N2 4

5
N < u(X).

DecTwoTrap is the opposite of the TwoTrap function; it has one optimal solution

and one suboptimal solution and is defined as

f(X) =


N u(X) = N

2

−2u(X) +N − 2 u(X) < N
2

2u(X)−N − 2 N
2
< u(X).
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Figures 7.5 and 7.6 show an example of the TwoTrap and DecTwoTrap functions,

respectively.

7.1.2 Royal Road

The Royal Road is an optimization problem that was original designed to be

easy for GAs to solve [66,88]. The function is defined as

f(X) =
∑
s∈S

csσs(X)

where X is a bit string and S defines a set of schemata. A schema is a string that

that denotes a pattern in a function. Additionally, a schema allows variables to be

wild cards [66]. For example, a schema of ∗1 is a pattern that matches any string

where the second variable is 1 and the first variable is either 0 or 1. If the bit string

X contains a schema s, then σs(X) returns 1; otherwise it returns 0. cs defines a cost

or weight for schema s.

In the first presentation of Royal Road, Mitchell et al. proposed two different

versions: R1 and R2. Schemata for R1 are shown in Figure 7.7. The inspiration for

R1 the generation of a function that was thought to be easy for a GA to solve. It was

believed that intermediate schemata (s9 − s14) would help guide the search process

for the GA. Mitchell et al. also proposed the R2 Royal Road, which eliminates the

intermediate schema. However, the authors discovered that intermediate schemas

slowed down the GA as it searched for the optimal solution of all 1’s.

We propose an extension of R1 that combines concepts from the deceptive

unitation functions with those concepts in the Royal Road. This is accomplished

by introducing deceptive schemata into set as shown in Figure 7.9. The motivation

for this is the introduction of groups of variables that are purposefully designed to

mislead FEA. Previous results on factor architectures suggest a factor should be
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s1 = 11111111∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c1 = 8

s2 = ∗∗∗∗∗∗∗∗11111111∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c2 = 8

s3 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗11111111∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c3 = 8

s4 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗11111111∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c4 = 8

s5 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗11111111∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c5 = 8

s6 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗11111111∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c6 = 8

s7 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗11111111∗∗∗∗∗∗∗∗, c7 = 8

s8 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗11111111, c8 = 8

s9 = 1111111111111111∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c9 = 16

s10 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗1111111111111111∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c10 = 16

s11 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗1111111111111111∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c11 = 16

s12 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗1111111111111111, c12 = 16

s13 = 11111111111111111111111111111111∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c13 = 32

s14 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗11111111111111111111111111111111, c14 = 32

s15 = 1111111111111111111111111111111111111111111111111111111111111111, c15 = 64

Figure 7.7: The R1 Royal Road function.

s1 = 11111111∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c1 = 8

s2 = ∗∗∗∗∗∗∗∗11111111∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c2 = 8

s3 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗11111111∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c3 = 8

s4 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗11111111∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c4 = 8

s5 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗11111111∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c5 = 8

s6 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗11111111∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c6 = 8

s7 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗11111111∗∗∗∗∗∗∗∗, c7 = 8

s8 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗11111111, c8 = 8

s9 = 1111111111111111111111111111111111111111111111111111111111111111, c9 = 64

Figure 7.8: The R2 Royal Road function.
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s16 = ∗∗∗∗00000000∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c16 = 8

s17 = ∗∗∗∗∗∗∗∗∗∗∗∗00000000∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c17 = 8

s18 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗00000000∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c18 = 8

s19 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗00000000∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c19 = 8

s20 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗00000000∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c20 = 8

s21 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗00000000∗∗∗∗∗∗∗∗∗∗∗∗, c21 = 8

s22 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗00000000∗∗∗∗, c22 = 8

s23 = ∗∗∗∗∗∗∗∗0000000000000000∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c23 = 16

s24 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗0000000000000000∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c24 = 16

s25 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗0000000000000000∗∗∗∗∗∗∗∗, c25 = 16

s26 = ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗00000000000000000000000000000000∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗, c26 = 32

Figure 7.9: The R2 Royal Road function. The schema above are added to the R1
schema, comprising the the R3 Royal Road function.

generated for interactive groups of variables. In the R3 function, the negative schema

represents groups of related variables; however, those groups of related variable are

likely to lead to suboptimal solutions.

7.2 FEA on Unitation Functions

As discussed at the beginning of the chapter, two of the main questions we wish

to answer are what kinds of problems can an individual factor solve and how effective

is the Compete function at combining solutions from an individual factor. In this

section, we set out to answer these questions by factoring ten variable base unitation

functions. By dealing with smaller problems, we are able to perform a more detailed

analysis of the search process. Additionally, the ten dimensional functions can be

thought of as being part of a much larger function, which allows us to examine the

types of problems smaller factors perform well on.
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One of the first goals in evaluating FEA on the unitation functions is how to

generate an effective factor architecture. Based on the results in previous chapters,

we discovered that the optimal way to factor a function is probably based on the

Markov blanket of the variable’s factor graphs. In the base unitation functions,

there is no intuitive way to group the variables. Based on the OneMax function,

which forms the basis for all the unitation functions, we hypothesize that all variables

are independent of one another. However, in the Needle or BiNeedle functions, a

relationship is created between the variables because the optimal solution cannot be

located unless all variables are at a specific value. We begin by exploring how varying

the size and overlap between factors affects the performance of FEA on the base

unitation functions.

7.2.1 Varying Factor Size

The first thing we test is how the factor size with no overlap affects the

performance of FEA on the base unitation functions. To do so, we generate factors of

decreasing size, starting with a full GA and decreasing the factor size by one. Because

the focus is strictly on size and not overlap, we do not allow factors to overlap with

one another. For example, the second largest factor architecture generates one factor

of size nine and one factor of size one, whereas the next largest factor has one factor

of size eight and one of size two. When possible, we generate factors of equal size,

such as two factors of size N/2. In the case where factors optimize over four variables,

we create two factors of size four and one of size two. Following this process gives us

the set of factor architectures shown in Table 7.1.

In all experiments, we use a GA as the underlying optimization algorithm. The

GA used in our experiments used tournament selection and uniform crossover with

a mutation rate set to 0.1. In all algorithms, we used a budget of 250 individuals to



177

Table 7.1: Set of factor architectures varying factor size and with no overlap between
factors.

Name Number of Factors (M) and Size (N): (N,M)

F (1,10)
S9 (1,9), (1,1)
S8 (1,8), (1,2)
S7 (1,7), (1,3)
S6 (1,6), (1,4 )
S5 (2,5)
S4 (2,4), (1,2)
S3 (3,3), (1,1)
S2 (5,2)

distribute evenly between all the factors. We also present results for a full, single-

population GA.

All problem had ten variables. Each algorithm was run until the optimal solution

was found. However, each algorithm was given a budget of 35,000 evaluations before

terminating the algorithm. All results are from 200 trials. In FEA, factors performed

one round of updates before Compete and Share were performed.

7.2.1.1 Results Figure 7.10 presents the number of successful trials to find

the optimal solutions, whereas Figure 7.11 presents the average number of fitness

evaluations, excluding the failures required for each factor architecture to locate the

optimal solution. In Figure 7.10, the y-axis corresponds to the number of successful

trials, whereas in Figure 7.11 the y-axis on the corresponds to the number of fitness

evaluations. The x-axis lists the the different factor architectures, starting with the

full GA (F) and then moving down the architectures S9, S8, . . ., S2. For the sake

of readability, labels for S9, S7, S5, and S3 are not shown. The average number of

fitness evaluations is calculated only from trials that were successful in locating the

optimal solution. Additionally, the standard error is shown for the number of fitness
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Varying Factor Size
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Figure 7.10: Number of successful trials of FEA with factors of decreasing size on
unitation functions.
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Varying Factor Size
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Figure 7.11: Average number of fitness evaluations of FEA with factors of decreasing
size on unitation functions.
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evaluations. Note that in many cases, such as for the full GA (F) on the Needle

function, the standard error is very small and may not be visible in the graph.

In the OneMax function, both the full GA and every factor architecture were

able to find the optimal solution every time. However, S5, S4, and S3 were able to do

so in the fewest iterations, requiring on average only one iteration. The worst factor

architecture was S8, requiring approximately 180 more fitness evaluations than S3,

equating to almost one full iteration.

Conversely, on the Needle and BiNeedle functions, the larger factors performed

best. The full GA performed the best, while the best FEA factor architecture was

S9. S2 performed the worst, requiring seven times more fitness evaluations than S9.

However, all factor architectures were able to locate the optimal solution 100% of the

time. Notably, out of all the base unitation functions, the Needle function required

the most fitness evaluations.

On the DecTrap function, the algorithms were able to locate the optimal solution

only 5% of the time. In terms of locating the best solution, S6 performed the best,

finding the optimal solution 15 times. The worst architectures were S3 and S4, which

found the optimal solution only five times. When the full GA or FEA found the

optimal solution, it was always in a single iteration. Additionally, the variety in the

number of fitness evaluations for this function is caused by the extra fitness evaluations

FEA performs during initialization of the algorithm.

The best architecture on TwoTrap in terms of successful trials was S9, which

found the optimal solution 100% of the time. However, it required the most fitness

evaluations, roughly nine times the number of evaluations required needed by S5.

The downside to S5 is that it had the lowest success rate out of all architectures.

As the factor size decreased from S9 to S5, both the number of successful trials and

number of evaluations steadily decreased. From S5 to S2, the number of successful
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trials and fitness evaluations increased, with the largest increase occurring from S5 to

S4 followed by a slight decrease from S4 to S3.

Finally, on the DecTwoTrap function, the larger factor architectures performed

the best. The only two architectures that were unable to locate the optimal solution

100% of the time were S3, and S2, which found the optimal solutions only 98% and

87.5% of the time. Similar to the DecTrap function, FEA and the full GA were

always able to locate the optimal solution in one iteration with the the differences

in the number of fitness evaluations being caused by extra fitness evaluations during

FEA’s initialization.

7.2.1.2 Analysis In the OneMax function, the factors of smaller size performed

better than the larger factors. This supports our hypothesis that the variables

in the OneMax functions are independent of one another. Conversely, the factor

architectures with large factors outperformed those with smaller factors on all other

functions. This suggests that even though all functions are based upon the number of

0’s and 1’s, by requiring specific values from all or some of the variables, a relationship

is created between the variables.

Another result is that on most functions, the best algorithm was the full

GA. Only on the OneMax and TwoTrap functions did FEA outperform the single-

population. FEA’s superior performance on the OneMax is due to the Compete step,

a Greedy algorithm that is able to join together the best solutions from individual

factors quickly. The probability of a solution of with ten 1’s being generated is

1
210

= 0.097%, whereas the probability of a subsolution with two 1’s is 1
4

= 25%.

Given these odds, there is a high likelihood that each of the factors will contain the

optimal subsolution, which Compete is then able to combine together into the optimal
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solution. Conversely, the full GA can rely only on crossover and mutation to locate

the optimal solution.

The TwoTrap function demonstrates the drawback of using a greedy method

for the Compete algorithm. As the population size decreases, a greater emphasis is

placed on Compete being able to assemble good solutions. Because the majority of

the search space leads to the suboptimal solution, the likelihood of Compete finding

the optimal solution is small. Additionally, once Compete locates the suboptimal

solution, the full global solution is unable to leave the suboptimal solution because

finding a better solution requires changing more than one bit. Only when the full

global solution is initialized in a region that leads to the optimal solution are the

smaller factors for FEA able to find the optimum. This explains why the factor

architectures with smaller factors found the optimal solutions the least number of

times but were able to do so in the fewest iterations.

Meanwhile, FEA with the S9 factor architecture is able to locate the optimal

solution more often than the full GA is because FEA has a smaller search space to

explore to locate a solution in the optimal region. Conversely, S8 has less chance of

success because it requires the both of the variables in the smaller factor to be 0s or

1s, instead of just one variable being 0 or 1, as is the case in S9.

From these results, we conclude that in the majority of the functions, the larger

factors perform better because of the relationship between all the variables. However,

when a relationship does not exist between all variables, such as in OneMax, FEA

performs better than the single-populations.

7.2.2 Varying the Number of Overlapping Factors

While we have shown that larger factors perform better than smaller factors

on the majority of the basic unitation functions, the question remains, how do the
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Table 7.2: Set of factor architectures varying the number of overlapping factors.

Name Number of Factors (M) and Size (N): (M,N)

F (1,10)
F2 (2,10)
F3 (3,10)
F4 (4,10)
F5 (5,10)
F6 (6,10)

number of overlapping factors affect the performance of FEA? Furthermore, in the

previous section, there was no competition between factors because there was no

overlap. Compete was responsible only for assembling the full global solution. Here,

we are able to directly examine how effective Compete is at determining optimal

values for the full global solution.

In these experiments we investigate how increasing the number of overlapping

factors affects the performance of FEA. Starting with two factors optimizing over all

ten variables, we increase the number of factors from two to five. By increasing the

number of factors, we are able to evaluate how FEA is able to utilize multiple values

for each variable during Compete. Table 7.2 presents the different factor architectures

along with each architecture’s name. We also include results of a single-population

GA for reference.

As in the previous experiments, we used a Genetic Algorithm (GA) as the

underlying optimization algorithm with tournament selection and uniform crossover

with a mutation rate of 0.1. All algorithm architectures used a budget of 250

individuals distributed evenly between all the factors. Each function was of ten

variables. FEA and the single-population GA were run until the optimal solution

was found. However, each algorithm was given a budget of fitness evaluations for

performing Update and Compete. All results are averages from 200 trials.
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7.2.2.1 Results Figure 7.12 presents the number of successful trials required to

find the optimal solution, whereas Figure 7.13 presents the average number of fitness

evaluations required for each factor architecture to locate the optimal solution. The y-

axis in Figure 7.12 corresponds to the number of successful trials, whereas the y-axis in

Figure 7.13 corresponds to the number of fitness evaluations. The x-axis lists the the

different factor architectures, starting with the full GA (F) and increasing the number

of overlapping factors, F1, F2, . . ., F6. The average number of fitness evaluations

is calculated only from trials that were successful in locating the optimal solution.

Additionally, the standard error is shown for the number of fitness evaluations.

The first result we make note of is that the best architecture on the OneMax was

F4, which required the fewest number of fitness evaluations. On the other functions,

FEA was often outperformed by the single-population GA in terms of number of

fitness evaluations required to find the optimal solution. However, this difference

was not always significant. For example, on the Needle and BiNeedle functions, F2

required more evaluations than the full GA, but both values were within the standard

error. Only with the DecTrap and DecTwoTrap is there a clear difference between F

and F2.

Another result is that there appears to be a correlation between the increase in

both the number of factors and the number of fitness evaluations. However, there are

a few exceptions, such as F4 in the Needle function or F3 and F5 on the BiNeedle

function. The only function that does not display this correlation is the DecTrap

function, where there is an increase from F to F2, but then the number of evaluations

levels out.

Finally, we note that each architecture was able to locate the optimal solution

almost 100% of the time. Only with the DecTrap function did FEA and the full GA
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Varying Number of Overlapping Factors
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Figure 7.12: Number of successful trials of FEA with factors of decreasing overlap on
unitation functions.
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Varying Number of Overlapping Factors
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Figure 7.13: Average number of fitness evaluations of FEA with factors of decreasing
overlap on unitation functions.



187

struggle to find the optimal solution, where F4 was the best architecture for locating

the optimal solution.

7.2.2.2 Analysis From the results varying the number of overlapping factors, we

discovered that increasing the number of factors does not increase the performance of

FEA on most of the base unitation function. Only when there exists a clear gradient

to the optimal solution does adding additional overlapping factors increase FEA’s

performance.

For the remaining functions, the algorithms are either misled to suboptimal

solutions or are forced to randomly explore a flat basin to locate a gradient. There

are two possible ways for FEA to locate the optimal solution: through an individual

factor locating the solution independent of all factors or by Compete piecing together

good values from individual factors. This leads us to two possible explanations for

FEA’s poor performance on the unitation functions. The first is that by distributing

250 individuals between the factors, the individual factors are not as efficient as the

full GA at finding the optimal solutions. Ideally, we would expect FEA to be able to

overcome the difference between the factor sizes and the full global solution by having

factors collaborating with one another. FEA performs this collaboration through

Compete, which leads us to the our second explanation for the poor performance of

FEA: Compete is unable to efficiently combine values from overlapping factors.

The greedy search in Compete makes it impossible for the full global solution

to escape the suboptimal solution when more than one variable must be changed

simultaneously. Therefore, if the full global solution becomes located at a suboptimal

point, the only way for FEA to locate the optimal solution is if a factor locates the

optimal solution on its own. But because each factor has fewer individuals than a

single-population GA, the likelihood of FEA finding the optimal solution decreases.
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In reviewing logs from the individual trials, we discovered that in the vast majority

of trials, the optimal solution was located by an individual factor in FEA.

From these results, we conclude that Compete is only able to efficiently combine

values from overlapping factors if there exists a gradient for Compete to follow.

Additionally, these results demonstrate that Compete is susceptible to becoming

trapped in suboptimal solutions. When the full global solution becomes trapped

at a suboptimal point, the only way for FEA to escape is for an individual factor to

locate a better point.

7.2.3 Varying Factor Overlap and Size

While the previous experiment varied the number of overlapping factors, we did

not vary the amount of overlap between the two factors. Additionally, because each

factor optimized over all ten variables, the factors were unaffected by changes to the

full global solution after Compete. In these experiments, we vary the size of factors

and the amount of overlap between factors.

To do so, we use two factors of equal size and vary the number of variables each

factor is optimizing and the amount of overlap between factors. Starting with two

factors of size nine, we position each factor at both ends of the ordered variables. In

this case, factor one optimizes variables one - nine while factor two optimizes variables

two-eight, which gives an overlap of eight. We then decrease the size of each factor,

starting with nine and moving down to five, where there is no overlap between the

factors. Table 7.3 presents the name and structure of the five different architectures.

All experiments used a GA with tournament selection, uniform crossover with a

mutation rate of 0.1, and 250 individuals. FEA was also given 250 individuals that

were distributed between the two factors. Both the GA and FEA were allowed 35,000

fitness evaluations to find the optimal solution.
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Table 7.3: Set of factor architectures varying factor size and overlap between two
factors

Name Number of Factors (M) and Size (N): (M,N) Overlap

F (1,10) —
T9 (2,9) 8
T8 (2,8) 6
T7 (2,7) 4
T6 (2,6) 2
T5 (2,5) 0

7.2.3.1 Results Figure 7.14 presents the number of successful trials for the

various FEA factor architectures over each of the unitation functions and Figure

7.15 shows the average number of fitness evaluations for successful trials. The y-

axis in Figure 7.14 corresponds to the number of successful trials, and the y-axis in

Figure 7.15 corresponds to the number of fitness evaluations. The x-axis lists the the

different factor architectures, starting with the full GA (F) and increasing the number

of overlapping factors, T1, T2, . . ., T6. The average number of fitness evaluations

is calculated only from the trials (out of 200) that were successful in locating the

optimal solution. Additionally, the standard error is shown for the number of fitness

evaluations.

In the OneMax function, the factor architecture T6 performed the best, requiring

the fewest number of fitness evaluations. On the Needle and BiNeedle functions, T9

and T8 tied with the full GA (F). However, as the factor size and overlap decreased

from T8 to T5 for the Needle and BiNeedle, the number of fitness evaluations also

increased.

The DecTrap function was the most difficult function to optimize. On average,

each factor architecture was able to locate the optimal solution only approximately

5% of the time. However, when FEA and the full single-population GA found the
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Varying Overlap Between Two Factors
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Figure 7.14: Number of successful trials of FEA with two factors of decreasing overlap
on unitation functions.
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Varying Overlap Between Two Factors
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Figure 7.15: Average number of fitness evaluations of FEA with two factors of
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optimal solution, it was done in only one iteration. The differences between the

number of fitness evaluations is due to Compete evaluating different values from the

factors. A similar result can be seen in the DecTwoTraps, where each architecture

was able to locate the optimal solution within one iteration. The difference, however,

is that each architecture was able to locate the optimal solution every time.

Finally, on the TwoTrap function, the best architectures were T8 and T9, which

required the fewest number of fitness evaluations, taking only 11.5 iterations to find

the optimal solution. As the amount of overlap decreases, the performance begins

to decrease as well. T5 was the worst factor architecture, which was able to find

the optimal solution only 21 times. However, when it did so, it required only one

iteration.

7.2.3.2 Analysis From the previous results, the best factor architectures has

two large factors with a large amount of overlap, which reaffirms the results from

the previous sections. In the majority of the functions, T9 required the fewest

fitness evaluations. Only on the OneMax was T9 outperformed by a significant

margin. While T9 required the most evaluations on DecTrap and DecTwoTrap,

the architecture was still able to find the optimal solution within one iteration.

Additionally, the total number of evaluations was relatively small.

We believe that this is because the larger factors are able to balance the benefits

of having a global view of the entire function while decreasing the number of variables

to optimize. For example, in the Needle function for T9, the last factor only has to find

a solution that has a 1 for the last variable in order for the first factor to able locate

the optimal solution. This is because the second factor is the only factor optimizing

over the last variable. Likewise, the first factor only has to find a solution with a 1



193

for the first variable in order for the second factor to be able to locate the optimal

solution.

Additionally, these larger factors remove the burden from Compete to piece

together a full global solution that places the factors in a good subregion in the search

space. In T9, there was only one variable that each of the swarms were not optimizing;

therefore, all Compete had to do is choose a good value for the last variable. But

because there was only one factor optimizing the last variable, Compete used the best

value found by the other factor.

From these results, we conclude that the Compete algorithm is not effective

at piecing together good solutions in unitation functions that have a high degree of

variable interaction. This is because Compete is able to change only one variable at

a time; therefore, if multiple variables need to be changed simultaneously in order for

the full global solution to move from a suboptimal solution, Compete is unable to do

so. Finally, we determined that smaller factors are effective only when the problem is

decomposable. When high interaction occurs between variables, the smaller variables

are unable to efficiently interact with one another to locate good solutions. This

possibly explains why the Parents factor architecture for abductive inference is less

effective than the Markov architecture. The smaller factors are likely getting stuck

in flat regions or a local minimum.

7.3 FEA on Royal Road

From the previous results, we were able to show that Compete is often unable

to effectively create optimal solutions on the base unitation functions. This places a

greater emphasis on generating good factor architectures. In this section, we examine

what comprises a good factor architecture and why. To do so, we evaluate the
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performance of FEA on the Royal Road functions. Furthermore, this will also help

explore other functions that Compete is more effective at optimizing.

For the Royal Road problems, we used R1, R2, and R3 defined in Figures 7.7,

7.8, and 7.9. Each algorithm was run until the optimal solution was found; however,

each algorithm was given a budget of 500,000 evaluations before terminating the

algorithm. All results are over 30 trials. In FEA, factors performed one round of

updates before Compete and Share were performed. Factor sizes were set to 2, 4, 8,

and 16 with an overlap of 1, 2, 4, and 8, respectively. We also include results where

there is no overlap between factors, allowing us to investigate the previous results by

Ochoa et al. [71].

In all of these experiments, we use a GA as the underlying optimization

algorithm. The GA used in our experiments used tournament selection and uniform

crossover with a mutation rate of 0.015. In all algorithms, we used a budget of 250

individuals distributed evenly between all the factors. We also present results for a

full, single-population GA.

7.3.1 Results

Table 7.4 presents the results for the different factor architectures on the Royal

Road functions. “Success” is the number of times the algorithm was able to locate the

optimal solution. “Evals” is the average number of evaluations required to find the

optimal solution with the standard error shown in parentheses. A bold value indicates

the algorithm was significantly better than all other algorithms using a Paired Student

t-Test with α = 0.05. If more than one algorithm is in bold, then there was no

significant difference between algorithms, but they were still statistically better than

all other algorithms. Note that the mean and standard error were calculated only

for the trials that were able to successfully locate the global optimums, which is why
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Table 7.4: Average number of evaluations for FEA to find optimal solution on Royal
Road functions.

R1 R2 R3
Success Evals Success Evals Success Evals

Full 17 4.28E+4(7.99E+3) 30 3.24E+4(3.64E+3) 2 4.50E+4(3.34E+4)

Size = 2
29 2.54E+5(1.65E+4) 28 2.36E+5(2.09E+4) 1 5.36E+4(NA)

Overlap = 0
Size = 4

30 9.77E+4(7.70E+3) 30 1.08E+5(9.69E+3) 4 9.41E+4(4.24E+4)
Overlap = 0

Size = 8
30 3.39E+4(3.41E+3)3.39E+4(3.41E+3)3.39E+4(3.41E+3) 30 4.26E+4(3.99E+3) 1 8.34E+3(NA)

Overlap = 0
Size = 16

30 2.28E+4(2.56E+3)2.28E+4(2.56E+3)2.28E+4(2.56E+3) 30 2.26E+4(2.12E+3)2.26E+4(2.12E+3)2.26E+4(2.12E+3) 4 2.12E+4(6.05E+3)
Overlap = 0

Size = 2
27 3.27E+5(2.81E+4) 27 3.64E+5(2.16E+4) 1 2.48E+5(NA)

Overlap = 1
Size = 4

30 1.59E+5(1.48E+4) 30 1.36E+5(1.47E+4) 2 1.58E+5(1.77E+3)
Overlap = 2

Size = 8
30 7.27E+4(8.87E+3) 30 5.88E+4(5.19E+3) 1 1.05E+5(NA)

Overlap = 4
Size = 16

30 4.56E+4(5.22E+3)4.56E+4(5.22E+3)4.56E+4(5.22E+3) 30 3.57E+4(4.15E+3) 4 1.92E+4(5.73E+3)
Overlap = 8

certain algorithms have a standard erorr of “NA” on R3. In FEA, this also includes

evaluations used during the competition phase. We note that each algorithm required

250 fitness evaluations during the initialization of the population.

In R1, the full single-population GA (Full) was less effective than every factor

architecture, because it was only able to locate the optimal solution 17 times. The

best architectures had size = 8, overlap = 0; size = 16, overlap = 0;and size = 16,

overlap = 8, which required the fewest number of fitness evaluations by a significant

margin. The worst architecture was size = 2, overlap 1, which was able to find

the optimal solution only 27 of 30 times. Additionally, it required the most fitness

evaluations to do so.

On the R2 function, the single-population GA had a much easier time locating

the optimal solution, because it was able to locate the optimal solution 100% of the

time. Size = 2, overlap = 1 was still the worst factor architecture, locating the optimal
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solution only 27 times and requiring the most fitness evaluations to do so. The best

architecture had size = 16, overlap = 0, requiring the fewest number of evaluations.

The R3 function, on the other hand, presented a much tougher challenge for

the Full and FEA versions of GA. Note that because several of the architectures

were able to locate the optimal solution only once, hypothesis testing was not

performed between the architectures. In terms of locating the optimal solution,

both size =16, overlap = 8 and size =16, overlap = 0 had the best performance,

as they successfully located the optimal solution four times. Additionally, when they

did locate the optimal solution, they required the second-fewest number of fitness

evaluations. We make note that the difference between the number of evaluations

for these architectures was not significant. In terms of finding the best solution, the

size = 8, overlap = 0 architecture performed the best, requiring only 8400 fitness

evaluations. However, it only did so once. The worst performing architecture was

size = 2, overlap = 0, as it only located the optimal solution once and required the

most evaluations to do so.

To further help interpret the results, particularly on R3, we also present the

average fitness of the Full and FEA versions of GA on the Royal Road in Table

7.5, which allows us to see the average performance of the algorithms over the 30

trials. From this table, we can see that the best architecture was size = 16, overlap

= 8 followed by size = 8, overlap = 0. While most architectures achieved perfect

performance on R1 and R2, these two architectures had the best performance in

terms of fitness for R3. Meanwhile, size = 8, overlap = 4 had the worst performance

in terms of average fitness.
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Table 7.5: Average fitness of FEA on Royal Road functions.

Full
Size = 2 Size = 4 Size = 8 Size = 16 Size = 2 Size = 4 Size = 8 Size = 16

Overlap = 0 Overlap = 0 Overlap = 0 Overlap = 0 Overlap = 1 Overlap = 2 Overlap = 4 Overlap = 8

R1 204.00 252.00 256.00 256.00 256.00 244.00 256.00 256.00 256.00
R2 128.00 123.20 128.00 128.00 128.00 120.80 128.00 128.00 128.00
R3 139.47 122.13 127.47 130.67 125.33 118.40 126.67 109.33 137.60

7.3.2 Analysis

From these results, we can make several observations. The first is that the larger

factor architectures performed the best on all Royal Road functions. We believe this

is because these larger factors map more closely to the basic building blocks in the

Royal Road functions. For example, in size = 2, overlap = 0, an individual factor

must rely on six other factors locating all 1’s at the same time in order to satisfy

the smallest building block. Conversely, the larger factors are able to find the good

schema without requiring that other factors be located in specific positions.

This also verifies our results from the base unitation functions: Compete is

effective at finding good solutions only when single variable changes have a direct

affect on the fitness. For example, to locate the smallest schema in the size = 2,

overlap = 1, Compete has to explore a flat basin until eight 1’s are located, similar to

the Needle function. As demonstrated in the results of FEA on the Needle function,

Compete struggles at being able to piece together values when there is not a gradient

to follow.

Another observation is that the results in Table 7.4 differ from those of Ochoa

et al. [71]. In that work, the authors found that the optimal architecture was size

= 4, overlap = 0. However, we found that the best non-overlapping architecture

was size = 16. As earlier stated, we believe that the larger factor sizes allow the

individual factors to have a better global picture of the fitness landscape. Previous

chapters analyzing the factor architectures demonstrated that while smaller factors
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do decrease the probability of hitchhiking, they do not necessarily maintain better

diversity. The results presented in this chapter suggest that smaller factor sizes do

not allow a large enough picture of the search space.

While we have shown that the best factor architecture for Royal Road is one

that maps factors to base schema, this assumes knowledge of the schemata in the

function. However, the schemata are not usually known, which is why much of the

work in this dissertation and other related work on CCEA’s is focused on testing

factor architectures. This also offers an explanation for why the Markov blanket factor

architecture on the probabilistic graphical models outperformed other architectures:

the Markov blanket acts as a building block in a Bayesian network.

On comparing the overlapping factors versus the non-overlapping factors, we

discovered that overlap was almost always a detriment to the performance of FEA

on the Royal Road functions. The only time overlap did not hurt performance was

for size = 16, overlap = 8. This is because the overlapping factors are attempting to

locate the two halves of the different schema.

R3 further demonstrates that having factors optimize over two halves negatively

impacts the performance. This function contained groups of “negative” schemata

that caused all of the architectures to be misled. In size = 8, overlap = 4, this means

that there are factors optimizing over the variables within the deceptive schema. A

factor optimizing over those variables is more likely to locate a schema of 0’s instead

of one with all 1’s, because the factor is able to see an increase in fitness independent

of the values in the full global solution.

This discovery introduces another design decision when creating factor architec-

tures. The architecture must not only generate factors that optimize over groups of

related variables, but it should do so only for variables that are positively correlated.

This is one possible explanation as to why the Markov blanket architecture in previous
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chapters did not perform well on the Rosenbrock function. While a relation in the

Rosenbrock exists between variables Xi and Xj, by searching over both variables

simultaneously, the factors were misled into suboptimal solutions.

7.4 Conclusion

In this chapter, we evaluated the peformance of FEA on two sets of binary

problems: unitation and Royal Road functions. From the unitation functions, we

discovered that there are several instances where the Compete step in FEA struggles

to build good solutions. In the Royal Road functions, we demonstrated for the regular

Royal Road functions, the optimal factor architecture is one that maps factors directly

to schemata. However, we also discovered scenarios where mapping factors directly to

schemata decreased the performance FEA. These negative schemata represent another

design decision to consider when generating a factor architecture.
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CHAPTER EIGHT

CONCLUSIONS

In this chapter, we review the work presented in this dissertation along with how

each result contributes to the field of Computer Science. Additionally, we present

several areas of future work.

8.1 Contributions

In this dissertation, we introduced Factored Evolutionary Algorithms (FEA)

and explored various properties of the algorithm. FEA is unique in that it factors

the function being optimized by creating subpopulations that optimize over a subset

of dimensions of the function. However, unlike other optimization techniques that

subdivide optimization problems, FEA encourages subpopulations to overlap with

one another. This allows the subpopulations to Compete and Share information.

In Chapter 2, we reviewed the necessary background in order to understand

the contributions of this dissertation along with related work. Next, we presented a

framework for defining multiple populations EAs in Chapter 3. We then demonstrated

how several of the approaches discussed in the relation work can be mapped to

this framework. This contributes towards to the field of evolutionary computation

by establishing the relationship between multi-population algorithms, regardless of

the underlying optimization algorithm or number of variables a subpopulation is

optimizing over. We also presented a formal definition of FEA and a complexity

analysis of each of its subfunctions, which provides a better understanding of FEA by

showing the functions of FEA that have the largest influence on its runtime. Finally,
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we demonstrated the generality of FEA by demonstrating how FEA outperforms

the single-population and CCEA versions of Hill Climbing, Genetic Algorithms,

Differential Evolution, and Particle Swarm Optimization. This contributes to a better

understanding that the benefits of FEA are not specific to only one optimization

method.

Chapter 4 explored different factor architectures for FEA and found that the

optimal architecture for FEA might be based upon the Markov blanket in Bayesian

networks. These results advance the knowledge of how to create subpopulations for

multi-population algorithms efficiently. We then formalized this relationship in by

proving that optimizing certain fitness functions is equal to abductive inference in

factor graphs. Additionally, we further empirically explored why the Markov factor

architecture outperforms other architectures. These results further our understanding

of the relationship between optimization problems and probabilistic graphical models.

Chapter 5 examined the performance of different discrete PSO algorithms and

proposed a new discrete PSO algorithm. ICPSO provides a better understanding of

discrete PSO algorithms and general guidelines on how the different algorithms should

be used. Additionally, we performed experiments analyzing the performance of FEA

versions of the different discrete PSO algorithms. These results further improve our

understanding of FEA’s performance advantages.

In Chapter 6 we explored various convergence properties of FEA and found

that, although FEA is susceptible to pseudominima, the likelihood of becoming stuck

in a pseudominima is often small. These results further our understanding of the

impact of an overlapping factor architecture on the performance of FEA. Finally,

we examined the performance of FEA on unitation and Royal Road functions and

discovered instances where the Compete stage in FEA is unable to provide benefit.

These results provide a better understanding of functions for which Compete can and
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cannot provide benefits. In addition, these results provide a relationship between

Bayesian networks and Royal Road functions.

8.2 Future Work

We have targeted several different areas for future research. The first area is

learning the factor architecture. In all of the experiments in this dissertation, we

assumed that we were able to directly observe the fitness function and its variables.

However, there are often cases where the function is a black box. For these cases, it

will be necessary to learn a probabilistic graphical model that can then be used as a

factor architecture.

We propose two two to accomplish this. The first uses a pre-processing step to

generate samples from the fitness function and then uses those samples to learn the

structure of a probabilistic graphical model. Another approach modifies FEA to use

dynamic factors that are modified during the search process. This is similar to the

work done by Qureshi and Sheppard, who proposed an OSI algorithm for training

a Neural Network that created and deleted factors based on randoms paths through

the neural network [85]. However, this sampling was done randomly and lacked any

structure for creating and deleting the factors. Additionally, the main focus of the

work was the reduction of the computational burden that was encountered by Ganesan

Pillai and Sheppard [80].

One possible way to dynamically learn a factor architecture while optimizing

the function would be to modify the algorithm by Qureshi and Sheppard so that the

factors would be mutated based on measuring variable correlation. Variables with

low correlation would be separated while variables with high correlation would be

combined into a single factor. This concept is similar to EDA’s, where fit samples
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generated from a probabilistic graphical model are used to update the structure and

parameters of the network [78].

We would like to explore modeling the search process of FEA. One of the

most common methods for modeling evolutionary search algorithms is Markov chain

analysis, which models the probability of all states of a random variable over time.

Because FEA contains multiple populations, each population would need to be

modeled by its own Markov chains. Additionally, although there are periods where

the factors update their individuals independent of one another, the Compete and

Share steps in FEA will also affect the probability of the individual Markov chains.

A Dynamic Bayesian Network (DBN) is an extension of a Markov chain that

allows for more complex representations of random variables over time. One way that

the search process of FEA can be modeled is by allowing each factor to represent a

random variable in the DBN. Additionally, a random variable could be added for

the Compete and Share functions. Links would then be added between the random

variables for factors and the random variables for Compete and Share.

Given this structure, the conditional probability distributions are then set based

upon the underlying search algorithms and the factor sizes and overlap. Once the

network has been parameterized, inference can then be performed to evaluate the

probability of FEA to locate a particular solution. This provides another framework

to compare different architectures. For example, suppose the function being optimized

is R1. The DBN for the factor architecture of size = 2, overlap = 0 is going to be

different that the DBN for size = 8, overlap = 0. Given these two DBNs, one could

calculate the expected number of iterations required for each of the DBNs to reach

a goal state. Additionally, this could be used to prove that specific architectures are

superior.
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A third possible area for future research is the investigation of how FEA is able

to avoid pseudominima. In Chapter 8, we demonstrated that the Markov architecture

is able to avoid pseudominima. However, no formal analysis was performed to

understand why this is the case. By using a DBN, we could evaluate the probability

of FEA becoming trapped at a pseudominima and examine the conditions that caused

FEA to become stuck.

Finally, we would like to explore different algorithms for performing competition.

As shown in Chapter 9, the Compete step in FEA may be trapped when only one

variable is changed and there is no gradient to follow. There are several different

changes that could be made to Compete. For example, instead of using the best

known solution from a factor, competition could be performed over the current best

individual or a randomly selected individual. Additionally, Compete could select

the value for inclusion into the full global solution based on either roulette wheel or

tournament selection instead of the greedy selection that is currently used.

However, all of these changes are based upon Compete performing competition

one variable at a time and may not address the issues highlighted in Chapter 9. One

possible way to address the poor performance of Compete on the unitation functions

would be to allow competition on multiple variables simultaneously. For example,

Compete could evaluate every combination of values for two or more variables. In

the extreme case, Compete could use a GA or PSO for a limited number of iterations

to select values for the full global solution.
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In this section, we present the benchmark functions used in this dissertation.

Note that almost all of these functions are part of the CEC benchmark sets [63,108].

When possible, we present a graph of each function with two variables to give the

reader a general idea on the shape of the function.

A.1 Ackley’s

f(X) = −20× exp

−0.2

√√√√ 1

N

N∑
i=1

X2
i

− exp

(
1

N

N∑
i=1

cos(2πXi)

)
+ 20 + e

−32 ≤ Xi ≤ 32

minimum at f(0, · · · , 0) = 0

Figure A.1: Ackley’s function in two dimensions.
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A.2 Brown

f(X) =
N−1∑
i=1

(X2
i )(X2

i+1+1) + (X2
i+1)(X2

i +1)

−1 ≤ Xi ≤ 4

minimum at f(0, · · · , 0) = 0

Figure A.2: Brown function in two dimensions.
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A.3 Dixon-Price

f(X) = (X1 − 1)2 +
N∑
i=2

i(2X2
i −Xi−1)2

−10 ≤ Xi ≤ 10

minimum at f

(
2

2i − 2

2i
, · · · , 22i − 2

2i

)
= 0

Figure A.3: Dixon-Price function in two dimensions.
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A.4 Exponential

f(X) = − exp

(
−0.5

N∑
i=1

X2
i

)
−1 ≤ Xi ≤ 1

minimum at f(0, · · · , 0) = 0

Figure A.4: Exponential function in two dimensions.
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A.5 Griewank

f(X) = 1 +
1

4000

N∑
i=1

X2
i −

N∏
i=1

cos

(
Xi√
i

)
−100 ≤ Xi ≤ 100

minimum at f(0, · · · , 0) = 0

Figure A.5: Griewank function in two dimensions.



222

A.6 Powell Singular

f(X) =

N/4∑
i=1

(X4i−3 +10X4i−2)2 +(5X4i−1−X4i)
2 +(X4i−2−X4i−1)4 +10(X4i−3−X4i)

4

−4 ≤ Xi ≤ 5

minimum at f(3,−1, 0, 1, . . . , 3,−1, 0, 1) = 0

Note that the function requires at least four variables; therefore, a two-dimensional

plot is not possible.
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A.7 Rana

f(X) =
N−1∑
i=1

(Xi+1 + 1)× cos(t2) sin(t1) +Xi × cos(t1) sin(t2)

where t1 =
√
|Xi+1 +Xi + 1| and t2 =

√
|Xi+1 −Xi + 1|

−500 ≤ Xi ≤ 500

Figure A.6: Rana function in two dimensions.
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A.8 Rastrigin

f(X) = 10N +
N∑
i=1

(X2
i − 10 cos(2πXi))

−5.12 ≤ Xi ≤ 5.12

minimum at f(0, · · · , 0) = 0

Figure A.7: Rastrigin function in two dimensions.
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A.9 Rosenbrock

f(X) =
N−1∑
i=1

(100(X2
i −Xi+1)2 + (1−Xi)

2)

−2.048 ≤ Xi ≤ 2.048

minimum at f(1, 1, · · · , 1) = 0

Figure A.8: Rosenbrock function in two dimensions.
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A.10 Schwefel

f(X) = 418.9829×N −
N∑
i=1

Xi sin(
√
|Xi|)

−512 ≤ Xi ≤ 512

minimum at f(420.968746, 420.968746, · · · , 420.968746) = 0

Figure A.9: Schwefel function in two dimensions.
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A.11 Sphere

f(X) =
N∑
i=1

X2
i

−5.12 ≤ Xi ≤ 5.12

minimum at f(0, · · · , 0) = 0

Figure A.10: Sphere function in two dimensions.
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