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ABSTRACT

The continuous time Bayesian network (CTBN) enables reasoning about com-
plex systems in continuous time by representing a system as a factored, finite-state,
continuous-time Markov process. The dynamics of the CTBN are described by each
node’s conditional intensity matrices, determined by the states of the parents in the
network. As the CTBN is a relatively new model, many extensions that have been
defined with respect to Bayesian networks (BNs) have not yet been extended to
CTBNs. This thesis presents five novel extensions to CTBN modeling and inference.

First, we prove several complexity results specific to CTBNs. It is known that
exact inference in CTBNs is NP-hard due to the use of a BN for the initial distribution.
We prove that exact inference in CTBNs is still NP-hard, even when the initial states
are given, and prove that approximate inference in CTBNs, as with BNs, is also NP-
hard. Second, we formalize performance functions for the CTBN and show how they
can be factored in the same way as the network, even when the performance functions
are defined with respect to interaction between multiple nodes. Performance func-
tions extend the model, allowing it to represent complex, user-specified functions of
the behaviors of the system. Third, we present a novel method for node marginaliza-
tion called “node isolation” that approximates a set of conditional intensity matrices
with a single unconditional intensity matrix. The method outperforms previous node
marginalization techniques in all of our experiments by better describing the long-
term behavior of the marginalized nodes. Fourth, using the node isolation method
we developed, we show how methods for sensitivity analysis of Markov processes can
be applied to the CTBN while exploiting the conditional independence structure of
the network. This enables efficient sensitivity analysis to be performed on our CTBN
performance functions. Fifth, we formalize both uncertain and negative types of
evidence in the context of CTBNs and extend existing inference algorithms to be
able to support all combinations of evidence types. We show that these extensions
make the CTBN more powerful, versatile, and applicable to real-world domains.
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CHAPTER 1

INTRODUCTION

In this chapter, we present the motivation for advancing temporal reasoning,

specifically in extending modeling and inference in continuous time Bayesian networks

(CTBNs1). Temporal reasoning in artificial intelligence is the process of answering

queries about the behavior of a system that is changing in time. After a brief survey

of other temporal modeling approaches, we contrast these models with the CTBN,

showing the CTBN as a distinct model. We then summarize our major contributions

and conclude with an overview of each of the subsequent chapters of this dissertation.

1.1 Motivation

Temporal models serve an important role in many fields in which systems are

observed to be changing through time. For example, temporal models are used for

automatic speech recognition [2] and automatic handwriting recognition [3]. Medical

professionals use such models to track the likely progression of a disease and use it

to inform their prognoses [4, 5]. Similarly, maintenance engineers use such models

to track degradation of a system and predict its most likely time of failure [6, 7].

Chemists use temporal models to represent and reason about how chemical reactions

change under different experimental conditions [8]. Biologists and ecologists use tem-

poral models to predict population dynamics [9, 10]. Computer security experts use

temporal models to monitor systems and detect trends that indicate security anoma-

1Although identically named, the CTBN of [1] is not the same model as discussed in this disser-
tation.
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lies, for use in intrusion detection systems [11] and malware propagation analysis [12].

The financial sector relies on temporal models for financial forecasting [13, 14]. The

list could go on. In short, temporal models can be applicable to any domain in which

change occurs.

After a temporal model is constructed, it can be used to reason about this change,

such as the most likely progression of the state of a system. Using the model to reason

about the underlying system being modeled is a process called inference. Reasoning

about complex systems that are evolving in time is a difficult endeavor [15]. Temporal

models often attempt to track multiple variables that are interacting in time. As the

number of variables increases and the interactions between variables become more

complex, the computations necessary for inference become more difficult. Further-

more, there are different ways of representing time that must be taken into consid-

eration [16]. These choices on the representation of time, such as viewing time as a

sequence of discrete timesteps or as a continuous interval, is also a factor driving both

the representational power of the model and the complexity of performing inference

over the model. The CTBN is one such continuous-time model that attempts to

simplify the representation of the system into a set of interdependent subsystems, al-

lowing modelers more control and flexibility over the complexity of inference over the

model [17, 18]. The CTBN is an example of a graphical model, in that subsystems

are represented with nodes and dependencies between subsystems are represented

with arcs. The dynamics of each subsystem are specified by the parameters of the

corresponding node in the graph.

The strength of a model lies in its ability to represent the system, represent ob-

servations about the system, and reason about the system given those observations.

While several inference algorithms have been developed for CTBNs, there is still much

room for improvement in the types of inference that the model can support and in
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the types of observations that the model can represent. This dissertation describes a

number of valuable extensions to CTBN modeling and inference that make the model

more useful, flexible, and applicable.

1.2 Temporal Modeling

Many temporal models and their variations have been proposed for time-series

analysis and forecasting. Early models focused on univariate signal processing. These

include the autoregressive integrated moving average (ARIMA) model and its many

forms, in which the output of a variable in the model maintains a linear depen-

dence on the variable’s previous values [19]. Multivariate models extend from the

univariate case to allow interaction between multiple variables through time, rather

than a single variable dependent only on itself. Filtering methods, such as Kalman

filters [20, 21] and particle filters [22, 23], can represent non-linear dynamical systems

with continuous variables in continuous time and can be used for online tracking

and prediction. Markov chains have been used extensively for modeling and as a

means to reason about discrete-state, discrete-time stochastic processes, while Markov

processes extend this idea to represent continuous-time Markov chains [24]. Hidden

Markov models (HMMs) [25] and dynamic Bayesian networks (DBNs) [26] build upon

Markov chains and are also used extensively for sequences of observations within a

Bayesian framework. Recurrent neural networks extend the original neural network

formulation to reason about sequences of model input and output in discrete time

[27] and continuous time [28]. A relatively recent temporal model, the continuous

time Bayesian network, builds upon Markov processes and Bayesian networks (BNs)

to represent discrete variables in continuous time [17].
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While these represent a broad overview of temporal models, each model is suited

for different purposes and each exhibits strengths and weaknesses. Some of the dis-

tinguishing features of the CTBN are that it is a multivariate, discrete-state, and

continuous-time model.

The ability to handle multivariate systems differentiates the CTBN from univari-

ate models, such as ARIMA models. Because the CTBN is multivariate, it is able

to model more complex domains. Univariate temporal models simplify to a single

variable that is dependent only on its previous values in time. Multivariate temporal

models, on the other hand, allow for interaction between multiple variables through

time.

The CTBN is specifically designed for discrete-state systems, which differentiates

it from the continuous-state models, such as Kalman filters, particle filters, and other

state-space models. The choice between a discrete-state and continuous-state model

depends heavily on the application. If the variables to be modeled are already cate-

gorical, a discrete-state model would probably be better suited to the problem. For

example, the CTBN of [29] was learned from survey data and models an individual

through time. This model includes four discrete nodes, consisting of marital sta-

tus {married, not married}, smoking {smoker, a non-smoker}, employment status

{student, employment, unemployment}, and number of children {0, 1, 2+}. These

variables are naturally discrete, and constructing some mapping from these discrete

states to a continuous space for use in a continuous-state model would not make sense.

Furthermore, the CTBN is a continuous-time model, which differentiates it from

Markov chains, HMMs, and DBNs. In some temporal applications, the model only

needs to represent sequence, not duration. In this case, the CTBN would prob-

ably be less applicable. For other applications, duration is important, such as in

reliability modeling when querying mean time to failure. Discrete-time models can
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incorporate observations and be queried only at pre-determined discrete points in

time, while continuous-time models lift this restriction. Discrete-time models could

be constructed with finer time granularity, but this is often at the expense of increased

computational complexity of reasoning over these models.

The Markov process model bears the closest resemblance to the CTBN. This is

because the CTBN is a factored Markov process, in much the same way that a DBN is

a factored Markov chain. Through this factorization, the CTBN is able to model more

complex systems than a single Markov process before inference becomes intractable.

Analogous to the BN and DBN models, the graphical structure of a CTBN can

provide an intuitive interpretation of interactions between variables [30]. Similarly,

the parameters are relatively easily understood, consisting of expected times within

states and transition probabilities between states. This is in contrast to neural net-

works, in which the network parameters are difficult to interpret [31, 32]. Thus

CTBNs can—and have been—manually constructed by domain experts [33].

Lastly, note that according to the No Free Lunch theorems [34, 35], no particular

model can be expected to dominate all other models for all problem domains. That

is, while other temporal models will be superior to the CTBN on some problems,

the CTBN will be superior on others, and we expect at least some of these to be

significant, real-world problems. Therefore, further research and development of the

CTBN is a valuable contribution to the state-of-the-art in temporal modeling and

reasoning.

1.3 Contributions

This thesis contributes a number of important and valuable advancements to

inference and modeling in CTBNs. They are listed as follows.
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• We present formal complexity proofs for the NP-hardness of exact and ap-

proximate inference in CTBNs. These complexity proofs provide insight into

the problem of propagating probabilities through time. They further motivate

the development of more efficient approximate inference techniques. They also

provide a step toward further results that show provably tractable exact or

approximate inference for certain special cases of CTBNs. They inform mod-

elers of important considerations when balancing the complexity of the model

with tractable inference. To date, however, almost all of the complexity results

relevant to CTBNs have been derived from the NP-hardness of the Bayesian

network used for the initial distribution. Instead, we advance the understand-

ing of CTBN inference complexity by considering the process of propagating

probabilities through time, which is the primary task for CTBNs.

• We extend the CTBN model by introducing performance function nodes that

place user-defined values on the behavior of the model. Whereas the behavior

of the model is defined by each node’s parameters, performance function nodes

offer a formal way to represent, quantify, and reason about more complex be-

haviors of the network. This allows for higher-level reasoning about the system,

moving from inferring probabilities of states through time to estimating non-

linear expected values that users have placed on more complex behaviors of the

system. For example, these could be cost/reward values when certain transitions

occur or certain states are visited for a certain length of time.

• We show two methods for performing node isolation, an approximate node

marginalization technique that uses parent-child relationships in the CTBN to

isolate the child node. The first method is a sampling method that estimates

parameters for the child node so that all incoming arcs can be removed. This
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serves as a baseline for the second method, which is a closed-form solution

that more efficiently computes these parameters. This allows inference to avoid

working with the entire CTBN all at once by isolating the nodes of the CTBN

in a top-down manner. Because cycles are allowed in a CTBN, we also show

an iterative application of the node isolation method to isolate nodes in a cycle

without having to deal with the entire cycle all at once. This approximation re-

duces the complexity from being exponential in the number of nodes in the cycle

and the number of parents for all nodes in the cycle to just being exponential

in the maximum number of parents of any node in the network.

• We present the first algorithms for sensitivity analysis specific to CTBNs. Sen-

sitivity analysis is another form of inference, one that queries the behavior of

the model, given changes in the model parameters rather than traditional ob-

servations. It is useful for measuring the robustness of the model and detecting

which parameters most influence network performance. We then show how node

isolation takes advantage of the factored nature of the CTBN model to be able

to more efficiently perform sensitivity analysis.

• We extend CTBN modeling and inference to be able to handle uncertain and

negative types of evidence. This makes the CTBN more powerful and versatile,

allowing for further representation and reasoning under uncertainty. It allows

the inference algorithms to incorporate knowledge about the noisiness and ro-

bustness of the evidence. It allows for more varied types of evidence, such as

when the state is unknown over an interval of time, but some states can be

ruled out. For these types of models, it is important to know not only the most

probable answer, but to also know the confidence with which we can trust the
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most probable answer. The introduction of uncertain and negative evidence into

the CTBN is an important extension that had not been previously formulated.

As a newer model than the BN, the CTBN has not yet undergone the extensive

development enjoyed by the BN. However, many of the extensions defined for the BN

model, while they do not directly translate to the CTBN, are similarly valuable for the

CTBN model and inference process. Therefore, we have developed and demonstrate

a wide range of extensions to the CTBN model and inference that starts to bridge

this gap.

1.4 Organization

This section describes the organization of the remaining chapters of this disserta-

tion and gives a brief overview of the focus of each chapter.

In Chapter 2, we review the background work common to this entire thesis. We

start by defining Bayesian networks, the static model with which the CTBN shares

its name. From there, we define the DBN, the temporal version of the BN. Then

we define discrete-state, continuous-time Markov chains, upon which CTBNs are

built. Next, we formally define CTBNs and describe an example network. Then

we survey the literature describing the subsequent development of CTBNs, including

inference algorithms and model learning algorithms, as well as CTBN extensions and

application areas that have been researched to date. Each of the subsequent chapters

focuses on a different extension to the CTBN. As such, each chapter begins with

additional background work relevant to its own contributions.

In Chapter 3, we start with a review of the theoretical work related to complexity

of CTBNs. We extend the theory of CTBNs by proving three new theorems, that



9

exact inference in CTBNs is NP-hard and that approximate inference (both absolute

and relative) in CTBNs is also NP-hard. These proofs draw on analogous complexity

proofs for BNs, which we briefly review.

In Chapter 4, we extend CTBNs with factored performance functions. Whereas

the CTBN model describes the dynamics of a system, the performance functions

attach user-defined cost/reward values to system behaviors. To handle values defined

over complex interactions between multiple nodes, we show how the performance

functions can remain factored by augmenting the CTBN structure.

In Chapter 5, we develop the two node isolation methods and show how they can

be used to estimate the probabilities of the nodes of the CTBN evolving through

time starting from an initial distribution. We also present experiments for the node

isolation methods applied iteratively to cycles and to a larger, real-world network.

In Chapter 6, we extend sensitivity analysis to CTBNs. Whereas traditional

inference in CTBNs calculates the probabilities given observations, sensitivity anal-

ysis measures how changes in the network parameters affect network performance.

We show current work in applying perturbation realization, developed for sensitivity

analysis of Markov processes, to the CTBN. For the CTBN, sensitivity analysis can

be applied to different subnetworks individually through the node isolation methods.

In Chapter 7, we start by reviewing the types of continuous-time evidence cur-

rently being used in CTBNs. The concepts of uncertain evidence and negative evi-

dence, while defined for BNs, had not yet been extended to CTBNs. Furthermore,

the temporal nature of the evidence leads to a rich variety of evidence that the CTBN

can support. We formalize, categorize, and prove relationships between these types

of evidence. The addition of uncertain and negative evidence also necessitates exten-

sions to existing inference algorithms to be able to support them. We extend exact
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inference and develop a rejection sampling technique as our baseline methods, and

show how importance sampling is able to include these generalized types of evidence.

In Chapter 8, we conclude with a summary of our main results and discuss areas

for future research.
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CHAPTER 2

BACKGROUND WORK

This chapter presents the background work for understanding the CTBN model

and how it can be used. We start by reviewing Bayesian networks and Markov pro-

cesses. Then we formally define the CTBN and present a thorough survey of current

literature for CTBN extensions and applications. Because each chapter focuses on

different extensions to the CTBN, most chapters include additional background work

relevant to their own topic.

2.1 Bayesian Networks

In this section, we introduce Bayesian networks and dynamic Bayesian networks.

One of the key concepts behind the Bayesian network model is in its use of conditional

independence. We start by defining independence of random variables.

Definition 2.1.1 (Independence). Two random variables A and B are independent

if and only if

P (A,B) = P (A)P (B).

In other words, the joint probability of A and B is equal to the product of their

marginals.

Note that if A and B are independent, then

P (A|B) =
P (A,B)

P (B)
=
P (A)P (B)

P (B)
= P (A),
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which means that evidence about B does not change the distribution of A. Con-

ditioning on other evidence could also form independence between variables, which

gives rise to the definition of conditional independence.

Definition 2.1.2 (Conditional Independence). Two random variables A and B are

conditionally independent given a set of random variables C if and only if

P (A|C, B) = P (A|C)

In other words, the conditional probability of A given C does not depend on B.

We are now ready to introduce the Bayesian network.

2.1.1 Definition

Bayesian networks are probabilistic graphical models that use nodes and arcs in

a directed, acyclic graph to represent a joint probability distribution over a set of

variables [36]. The Bayesian network is formally defined as follows.

Definition 2.1.3 (Bayesian Network). Let P (X) be a joint probability distribution

over n variables X1, . . . , Xn ∈ X. A Bayesian network B is a directed, acyclic graph

in which each variable Xi is represented by a node in the graph. Let Pa(Xi) denote

the parents of node Xi in the graph. The graph representation of B factors the joint

probability distribution as:

P (X) =
n∏
i=1

P (Xi|Pa(Xi)).

Without any factorization, the size of the full joint probability distribution is expo-

nential in the number of variables. Bayesian networks attempt to address this problem



13

by offering a more compact representation of the joint probability distribution. By

factoring the joint probability distribution into only the relevant variable interactions,

represented by the parent-child relationships in the network, the complexity of the

network can be managed. Furthermore, the Bayesian network uses the concept of

conditional independence to reason about the joint probability distribution without

having to represent it explicitly. The conditional independence between nodes in

a network can be described in terms of their Markov blankets, defined formally as

follows.

Definition 2.1.4 (Markov Blanket). The Markov blanket for a node A is the set of

nodes MB(A) composed of A’s parents, A’s children, and A’s children’s other parents.

The Markov blanket has the property that, for any other node B,

P (A|MB(A), B) = P (A|MB(A)).

That is, given A’s Markov blanket, A is conditionally independent from all other nodes

in the network.

This means that a query about a Bayesian network’s joint probability distribution

can be done by reasoning over smaller parts of the network at a time in order to

calculate the complete answer to the query.

Example 2.1.1. Figure 2.1 shows an example of a Bayesian network. The states T

and F are shorthand for True and False, respectively. Let each node be denoted by

its first letter. The Bayesian network factors the joint probability distribution as

P (C, S,R,W) = P (C)P (S|C)P (R|C)P (W|S,R).
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Figure 2.1: Example Bayesian network.

Using this model, we could compute the probability of wet grass given that it is cloudy

and the sprinkler is off, P (W |C = T, S = F ). For another example, we could compute

the probability that it is cloudy and raining given that the grass is wet, P (C,R|W =

T ).

2.1.2 Dynamic Bayesian Networks

The Bayesian network defined in Section 2.1.1 is a static model. However, we

can introduce the concept of time into the network by assigning discrete timesteps to

the nodes to create a dynamic Bayesian network, a temporal version of a BN. The

dynamic Bayesian network is defined formally as follows.

Definition 2.1.5 (Dynamic Bayesian Network). A dynamic Bayesian network

(DBN) is a special type of Bayesian network that uses a series of connected timesteps,

each of which contains a copy of a regular Bayesian network Xt indexed by time t.

The probability distribution of a variable at a given timestep can be conditionally
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Figure 2.2: Example first-order dynamic Bayesian network

dependent on states of that variable (or even other variables) throughout any number

of previous timesteps. In first-order DBNs, the nodes in each timestep are not condi-

tionally dependent on any nodes further back than the immediately previous timestep.

Therefore, the joint probability distribution for a first-order DBN of k + 1 timesteps

factors as:

P (X0, . . . ,Xk) = P (X0)
k−1∏
t=0

P (Xt+1|Xt).

Spanning multiple timesteps, the DBN can include any evidence gathered through-

out that time and use it to help reason about state probability distributions across

different timesteps. Often, the conditional probability tables of the DBN are defined

compactly by defining a prior network X0 and a single temporal network Xt. The

temporal network Xt is then “unrolled” to X1,X2, . . . ,Xk for k timesteps.

Example 2.1.2. Figure 2.2 shows the example Bayesian network transformed into

a first-order dynamic Bayesian network. Now we can compute probabilities given

evidence through time. Suppose that each timestep represents one day. Now, for

example, we could compute the probability of rain on day i given that it rained two

days ago and that it was cloudy one day ago, P (Ri|Ri−2 = T,Ci−1 = T ). Or we

could compute that probability that the grass was wet on some previous day i given
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that the sprinkler was not on the day before and that it was cloudy the day after,

P (Wi|Si−1 = F,Ci+1 = T ).

The DBN model has been used in many application areas that have sequences of

observations. Often these problems are concerned with performing classification only

in the current timestep based on prior evidence. However, DBNs can also be unrolled

further and forecast future states based on the evolving posterior probabilities. Some

predictive tasks that the DBN has been used for include clinical prognostics [37, 38]

and mechanical prognostics [39, 40, 41, 42].

2.2 Markov Processes

Although its name attempts to draw parallels between the conditional indepen-

dence encoded by BNs, the CTBN is functionally a factored Markov process. There-

fore, we present the necessary background on Markov processes.

2.2.1 Definition

There are variations and extensions of the Markov process model, but the CTBN

model uses the model described here. We refer to a finite-state, continuous-time

Markov chain as a Markov process. In a Markov process, a system is comprised of

a discrete set of states, and the system probabilistically transitions between these

states. The difference between a Markov process and a Markov chain is that each

transition occurs after a real-valued, exponentially distributed sojourn time, which

is the time it remains in a state before transitioning. The parameters determining

the sojourn times and the transition probabilities are encoded in what is called an

“intensity matrix.” If the intensity matrix is constant throughout the lifetime of the
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system, we refer to the Markov process as “homogeneous.” Formally, we define a

Markov process as follows.

Definition 2.2.1 (Markov Process). A finite-state, continuous-time, homogeneous

Markov process X with a state space of size n = |X| is defined by an initial probability

distribution P 0
X over the n states and an n× n transition intensity matrix

QX =



−q1,1 q1,2 · · · q1,n

q2,1 −q2,2 · · · q2,n

...
...

. . .
...

qn,1 qn,2 · · · −qn,n


in which each entry qi,j ≥ 0, i 6= j gives the transition intensity of the process moving

from state i to state j, and each entry −qi,i = −
∑

j qi,j is the parameter for an

exponential distribution, determining the sojourn times for the process to remain in

state i.

The value qi,i gives the rate at which the system leaves state xi, while the value

qi,j gives the rate at which the system transitions from state xi to state xj. Let X(t)

denote the state of X at time t. Formally,

lim
∆t→0

P (X(t+ ∆t) = xj|X(t) = xi) = lim
∆t→0

qi,j∆t+O(∆t2), for i 6= j,

lim
∆t→0

P (X(t+ ∆t) = xi|X(t) = xi) = lim
∆t→0

1− qi,i∆t+O(∆t2).

With the diagonal entries constrained to be non-positive, the probability density

function for the process remaining in state i is given by |qi,i| exp(qi,it), with t being

the amount of time spent in state i, making the probability of remaining in a state

decrease exponentially with respect to time. The expected sojourn time for state i is
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1/ |qi,i|. Each row is constrained to sum to zero,
∑

j qi,j = 0 ∀ i, meaning that the

transition probabilities from state i can be calculated as θi,j = qi,j/ |qi,i| ∀ j, i 6= j.

Because the sojourn time uses the exponential distribution, which is “memory-less,”

the Markov process model exhibits the Markov property, namely, that all future states

of the process are independent of all past states of the process given its present state.

In other words,

P (X(t+ ∆t)|X(t), X(s)) = P (X(t+ ∆t)|X(t)) for 0 < s < t <∞.

Note that the model does not specify a particular time unit for the sojourn times.

The modeler is responsible for choosing an appropriate time-scale (minutes, hours,

days, etc.) for the specific application. The parameters are then set and interpreted

accordingly.

Note also that a diagonal parameter can be set to 0, in which case the system

never leaves the state once it reaches it. Such a state is called an absorbing state. If

at every point in time there is a non-zero probability of reaching every state from any

other state at some time in the future, the Markov process is said to be ergodic.

Example 2.2.1. Suppose we have a Markov process B for modeling barometric pres-

sure. The process has three states, ordered as {falling, steady, rising}, and defined

with

P 0
B = {0.3, 0.7, 0}

and

QB =


−0.21 0.20 0.01

0.05 −0.10 0.05

0.01 0.20 −0.21


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where the unit of time is in hours.

2.2.2 Subsystems

One view of the CTBN is a set of interdependent subsystems of a Markov process.

A subsystem S defines the behavior of a subset of states of full Markov process X.

The intensity matrix QS of the subsystem S is formed from the entries of QX that

correspond to the state of S.

In general, the intensity matrix of a subsystem will not describe a closed system,

i.e., the process can transition out of the subsystem. In other words, the rows of the

subsystem intensity matrix will no longer sum to zero, representing the intensity with

which the process is transitioning out of the subsystem. With subsystems, we can

consider entrance and exit distributions. An entrance distribution is a probability

distribution over the states of S for entering the subsystem, i.e., the probability of

entering the subsystem through each state. Similarly, the exit distribution is a prob-

ability distribution over the states of S for leaving the subsystem, i.e., the probability

of leaving the subsystem from each state.

Example 2.2.2. Consider the subsystem {steady, rising} from the Markov process

example for barometric pressure. The intensity matrix for the subsystem is

QS =

−0.10 0.05

0.20 −0.21


.
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2.2.3 Inference

We can reason over the states and subsystems of the Markov process. As the

Markov process is a continuous-time model, we can incorporate observations in real-

valued time and can query at real-valued times, rather than being restricted to pre-

defined timesteps.

Inference in temporal models can be categorized as either filtering, smoothing, or

prediction. Let 0 < t1 < t < t2, where t denotes the current time, i.e., the time at

which inference occurs. Let the set of continuous-time evidence over the interval of

time [0, t) be denoted as σ[0,t). Filtering is reasoning about the current probability

distribution given past and possibly present observations, P (X(t)|σ[0,t)). Filtering

only conditions on previous evidence. Smoothing, on the other hand, is reasoning

about the past probability distribution given later and possibly earlier observations,

P (X(t1)|σ[0,t)). In other words, smoothing reasons backward about what likely hap-

pened in the past. Prediction is reasoning about the future given past and possibly

present observations, P (X(t2)|σ[0,t)). In other words, prediction is reasoning forward

about what will likely happen in the future given the past and present.

These three types of inference in a Markov process can be achieved using the

following forward-backward algorithm [43]. First, consider when there is no evidence.

The distribution at any point in time t can be calculated as

P (X(t)) = P 0
X exp(QXt),

where the matrix exponential is defined by the power series

exp(QXt) =
∞∑
n=0

(QXt)
n

n!
.
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Note that while the matrix exponential is defined with this equation, there are other

ways to compute it that attempt to avoid the computational and numerical difficulties

[44].

When continuous-time evidence is added, the matrix exponential is partitioned,

resulting in a product of matrices that alternate between matrix exponentials over the

segmented intervals and transition matrices between segments. The evidence might be

that the process was in a subsystem over some interval of time. Let X([t1, t2)) denote

the state of X over the interval [t1, t2). Let σ denote the evidence of the Markov

process. Suppose σ is partitioned into N segments, [ti, ti+1), for i = (0, N − 1),

such that the evidence is constant during each segment. Let Qi denote the inten-

sity matrix for segment i, meaning that the rows and columns of Qi that do not

conform to the evidence of segment i are zeroed out. Let Qi,j denote the transition

probabilities between segments i and j. If a transition is observed on the boundary

between segments i and j, the rows and columns of Qi,j are zeroed out except for the

transition intensities from non-zero rows in Qi to non-zero rows in Qj. Otherwise,

segments i and j will differ only in what states are becoming observed or unobserved

(instead of transitions being observed), in which case Qi,j is the identity matrix. The

segmentation of the matrix multiplications can then be defined recursively. Let αt

and βt denote the forward and backward probability vectors, defined as

αt = P (X(t), σ[0,t]),

βt = P (σ[t,T )|X(t)).

Let α0 be the initial distribution P 0
X over the states of X, and let βT be a vector

of ones. Let ∆i,j be an n × n matrix of zeros except for a one in position i, j. The
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recursive definitions for αti and βtj are

αti+1
= αti exp(Qi(ti+1 − ti))Qi,i+1,

βti = Qi−1,i exp(Qi(ti+1 − ti))βti+1
.

The distribution over state k at time t ∈ [ti, ti+1) given evidence σ[0,T ) can be com-

puted as

P (X(t) = k|σ[0,T )) =
1

Z
αti exp(Qi(t− ti))∆k,k exp(Qi(ti+1 − t))βti+1

,

where Z is the normalizing constant.

Example 2.2.3. Using the forward-backward algorithm, we can answer queries about

the Markov process for barometric pressure. For example, we could compute the distri-

bution at hour 4.1, given that the pressure has been steady from hour 2.2 through hour

3.7, as P (B(4.1)|B([2.2, 3.7)) = steady). For another example, we could compute the

distribution at hour 5.6, given that at hour 4.5 the pressure was in the {steady, rising}

subsystem, as P (B(5.6)|B(4.5) ∈ {steady, rising}).

2.3 Continuous Time Bayesian Networks

With the background in Bayesian networks and Markov processes, we are ready to

define the CTBN. The CTBN was first introduced in [17] and then further developed

in [18] as a continuous-time probabilistic graphical model.
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2.3.1 Definition

The motivation behind CTBNs is to factor a Markov process in much the same way

that a BN factors a joint probability distribution. Instead of conditional probabilities,

the CTBN uses conditional Markov processes. The CTBN is defined formally as

follows.

Definition 2.3.1 (Continuous Time Bayesian Network). Let X be a set of Markov

processes {X1, X2, . . . , Xn}, where each process Xi has a finite number of discrete

states. Formally, a continuous time Bayesian network N = 〈B,G〉 over X consists

of two components. The first is an initial distribution denoted P 0
X over X specified

as a Bayesian network B. This distribution P 0
X is only used for determining the

initial state of the process. The second is a continuous-time transition model G, which

describes the evolution of the process from its initial distribution. G is represented as

a directed graph with nodes X1, X2, . . . , Xn. Let Pa(X) denote the set of parents of

X in G, and let Ch(X) denote the set of children of X in G. Let paX denote the

set of all combinations of state instantiations to Pa(X), and let 〈paX〉 ∈ paX . A set

of conditional intensity matrices (CIMs), denoted QX|Pa(X), is associated with each

X ∈ X and is comprised of matrices QX|〈paX〉 ∀〈paX〉 ∈ paX

Similar to a BN, the CTBN manages the complexity of the network by factoring

the Markov process into interdependent subsystems. The conditional independence

between nodes in a CTBN can be described in terms of Markov blankets, analogous

to those in a BN. The Markov blanket for a CTBN node is still its parents, its

children, and its children’s other parents, but, in this case, the node is conditionally

independent of all other nodes in the network when conditioned on all the states of

its Markov blanket through time.



24

Figure 2.3: Example CTBN.

Example 2.3.1. Figure 2.3 shows an example CTBN from [17]. The initial distribu-

tions and intensity matrices for all the nodes can be found in Appendix B. Each child

node has multiple intensity matrices, one for each combination of states of its parent

nodes. For example, the matrix denoted QC|u1,f0 defines the dynamics of the node

Concentration given that the state of Uptake is u1 and that the state of Full stomach

is f0.

This model could be used to answer several interesting queries. For example, what

is the expected proportion of time that the patient is in pain while drowsy? Or, given

that the patient is initially in pain but that uptake occurred at time t1 and that the

patient finished eating at time t2, what is the expected amount of time until the patient

is not in pain? Or, given that the patient has been in pain from time t2 to t3, what

is the expected number of transitions between the concentration levels that occurred

during that time period?

2.3.2 Trajectories

Let ts and te be the start time and end time of an observation, respectively, such

that ts < te. Let x be a particular state of X. The tuple 〈ts, te, x〉 represents an
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observation of the network such that X(t) = x for ts ≤ t < te. The tuple could be

read as “from time ts to time te, the state of X was observed to be x.”

Definition 2.3.2 (Trajectory). A trajectory of X, denoted σ[X], is defined as a

sequence of observations of X. If ts = 0 for the first observation and if, for every pair

of adjacent observations 〈〈ts, te, x〉, 〈t′s, t′e, x′〉〉 in σ[X], te = t′s, and x 6= x′, then σ[X]

is called a complete trajectory of X. Otherwise, σ[X] is called a partial trajectory of

X.

A complete trajectory has no “gaps” in the observation. That is, the state of X

is known from t = 0 until t = te of the last observation.

Example 2.3.2. The complete trajectory

σ[X] = 〈〈0, 1.5, x1〉, 〈1.5, 2.7, x2〉, 〈2.7, 3.1, x0〉〉

records that X was in state x1 for time t = 0 until time t = 1.5. At exactly time

t = 1.5, X transitioned to x2 and remained there until time t = 2.7. At exactly time

t = 2.7, X transitioned to x0 and remained there until time t = 3.1, at which point

X became unobserved.

Note that the trajectory σ[X] is for a single node X in the network. The full set

of trajectories σ[X1] ∪ σ[X2] ∪ · · · ∪ σ[Xn] over all of the nodes of a CTBN will be

denoted as σ.

Example 2.3.3. Suppose we have a two-node CTBN, comprised of X and Y , with

a dependency X → Y such that the behavior of Y changes based on the behavior

of X. Furthermore, X and Y are observable (at least at certain times), which we

would like to use to reason about their behavior when they are unobserved. Take the
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Algorithm 2.1 Forward sample CTBN.

ForwardSample(N )

1: for each X ∈ N
2: choose X(0) by sampling from B
3: end for
4: t← 0, σ ← ∅
5: repeat until termination
6: Append(σ, 〈X, t〉)
7: for each X ∈ N
8: if time(X) 6= null then continue end for
9: AX ← AX|Pa(X)

10: i← X(t)
11: ∆t ∼ Exponential(ai,i)
12: time(X)← t+ ∆t
13: end for
14: X ′ ← argminX∈N (time(X))
15: t← time(X ′)
16: X(t) ∼ Multinomial(AX′ , X(t))
17: time(X ′) = null
18: for each Y ∈ Ch(X ′)
19: time(Y ) = null
20: end for
21: end repeat
22: return σ

evidence to be the partial trajectory e = 〈〈2.1, 3.7, y0〉, 〈2.5, 2.8, x1〉〉. We might want

to calculate P (X(t)|e) for 0 ≤ t < 2.5 and t ≥ 2.8. Similarly, we might want to

calculate P (Y (t)|e) for 0 ≤ t < 2.1 and t ≥ 3.7. Because X and Y are connected,

evidence for either node will influence the probabilities of the other.

2.3.3 Generative Semantics

The CTBN can also be used as a generative model. Algorithm 2.1, adapted from

[43], shows the pseudocode for how to create a complete trajectory from a CTBN.

The algorithm accepts a CTBN from which to sample and returns a sequence of state

transitions and their corresponding transition times. Lines 1-4 choose the starting
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states of the trajectory and initialize the variables. Lines 5-21 are repeated until the

trajectory is of desired length, which could be the total time of the trajectory or the

total number of transitions. In line 6, the method Append(σ, 〈X, t〉) adds a transition,

given as a state X at time t to the end of the trajectory σ. Lines 7-13 ensure that

all variables have a proposed sojourn time, drawn from an exponential distribution

whose parameter depends on the current states of the parents of each node. Line 14

selects the node with the soonest proposed transition time, and line 15 updates the

current time of the trajectory. Line 16 chooses the next state for the transitioning

node, according to a multinomial distribution whose parameters are derived from

the current row of the node’s conditional intensity matrix. Finally, lines 17-20 reset

the proposed sojourn times for that node and all its children to be re-sampled. The

proposed sojourn times of the node’s children are reset because their conditional

intensity matrices changed when their parent transitioned to a new state.

2.3.4 Amalgamation

While we have shown that the CTBN is able to represent a Markov process as a

set of interdependent subsystems, it is also useful to show how the subsystems of a

CTBN can be merged together into “supernodes” containing the dynamics of multiple

subsystems.

First, we introduce additional notation for specific state instantiations and sets

of state instantiations. Let 〈paX\Y 〉 denote the state instantiation 〈paX〉 excluding

any state of Y (this changes 〈paX〉 only if Y is a parent of X). Then QX|〈paX\Y 〉,Y is

the set of conditional intensity matrices that are dependent on the state instantiation
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〈paX\Y 〉 and each state of Y ,

QX|〈paX\Y 〉,Y = {QX|〈paX\Y 〉,y|y ∈ Y }.

Finally, let paX\Y denote the set of all combinations of state instantiations to Pa(X)

excluding any state of Y (again, this changes paX only if Y is a parent of X).

The process involves combining sets of conditional intensity matrices from two

different nodes, QX|〈paX\Y 〉,Y and QY |〈paY \X〉,X , and forming a new conditional in-

tensity matrix QXY |〈paXY 〉, where 〈paXY 〉 = 〈paX\Y 〉 ∪ 〈paY \X〉. That is, the state

instantiations for the parents of X and Y are combined, excluding states of X and Y .

The states of X and Y are excluded from 〈paXY 〉 because QXY |〈paXY 〉 will be defined

over all state combinations of X and Y .

Example 2.3.4. Suppose we have a CTBN with A→ X � Y ← B. Combining the

conditional intensity matrix sets QX|a0,Y and QY |b1,X will create conditional intensity

matrix QXY |a0,b1.

Let xi,j be entry i, j of QX|〈paX〉,yk , and let yk,l be entry k, l of QY |〈paY 〉,xi . The

combined CIM QXY |〈paXY 〉 is the matrix defined over the states (xi, yk), with the

entries populated as follows.

(xij, ykl) =



xij if i 6= j and k = l

ykl if i = j and k 6= l

xij + ykl if i = j and k = l

0 otherwise

(2.1)
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The CIM QXY |〈paXY 〉 defines the simultaneous dynamics of X and Y , given that their

parents are in states 〈paXY 〉. Thus, the state-space of XY is the Cartesian product

of the states of X and Y , making QXY |〈paXY 〉 an |X||Y | × |X||Y | matrix.

Example 2.3.5. Assume that we have the CTBN from Example 2.3.4 and that the

four conditional intensity matrices are given as follow.

QX|a0,y0 =

x0 x1 x0 −1 1

x1 2 −2

QY |b1,x0 =

y0 y1 y0 −3 3

y1 4 −4

QX|a0,y1 =

x0 x1 x0 −5 5

x1 6 −6

QY |b1,x1 =

y0 y1 y0 −7 7

y1 8 −8

Combining these intensity matrices, we have

QXY |a0,b1 =

(x0, y0) (x0, y1) (x1, y0) (x1, y1)


(x0, y0) −4 3 1 0

(x0, y1) 4 −9 0 5

(x1, y0) 2 0 −9 7

(x1, y1) 0 6 8 −14

Definition 2.3.3 (Amalgamation). Amalgamation takes two nodes X and Y and

replaces them with node XY , having the set of conditional intensity matrices

QXY |Pa(XY ) as formed by combining QX|〈paX\Y 〉,Y and QY |〈paY \X〉,X ∀〈paY \X〉 ∈ paX\Y

and ∀〈paX\Y 〉 ∈ paY \X according to Equation 6.7. Amalgamation can be viewed as
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Algorithm 2.2 Amalgamate two nodes of a CTBN.

Amalgamate(X, Y )

1: QXY |Pa(XY ) ← ∅
2: for each 〈paY \X〉 ∈ paX\Y and 〈paX\Y 〉 ∈ paY \X
3: QXY ← 0
4: for i, j = 1, . . . , |X| and l, k = 1, . . . , |Y |
5: QX ← QX|〈paX\Y 〉,xi
6: QY ← QY |〈paY \X〉,yk
7: if i = j ∧ k = l
8: qXY(i,j),(k,l) ← qXi,j + qYk,l
9: else if i = j ∧ k 6= l
10: qXY(i,j),(k,l) ← qYk,l
11: else if i 6= j ∧ k = l
12: qXY(i,j),(k,l) ← qXi,j
13: end if
14: end for
15: QXY |〈paXY 〉 ← QXY

16: QXY |Pa(XY ) ← QXY |Pa(XY ) ∪ {QXY |〈paXY 〉}
17: end for
18: return QXY |Pa(XY )

a multiplication operation over sets of conditional intensity matrices and is denoted

QXY |Pa(XY ) = QX|Pa(X) ×QY |Pa(Y ).

Amalgamation takes two nodes and combines all of their CIMs, producing a set

of CIMs that are conditioned on the combined parent states of X and Y . Thus, the

set QXY |Pa(XY ) contains
∏

Z∈Pa(XY ) |Z| conditional intensity matrices.

Algorithm 2.2 shows the pseudocode for amalgamating two nodes of a CTBN.

Line 1 initializes the empty set of conditional intensity matrices for the amalgamated

node. Lines 2-17 iterate over all combinations of parent state instantiations of X and

Y , excluding the state of X and Y . Line 3 initializes the conditional intensity matrix

to be populated. Lines 4-14 iterate over the state combinations of X and Y . Lines 5-6

assign the conditional intensity matrices to temporary variables for simpler notation.

Lines 7-13 populate the parameters of the conditional intensity matrix initialized in
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line 3 per Equation 2.2. Lines 15-16 add the conditional intensity matrix to the set of

conditional intensity matrices of the amalgamated node, which is returned in Line 18.

Example 2.3.6. Assume that we have the CTBN from Example 2.3.4 and that we

amalgamate X and Y . This turns the CTBN into A→ XY ← B.

Definition 2.3.4 (Full Joint Intensity Matrix). The full joint intensity matrix of a

CTBN is the matrix resulting from amalgamating all nodes of the CTBN,

Q =
∏
X∈N

QX|Pa(X)

The size of Q is n× n, where n =
∏

X∈N |X|.

2.3.5 DBNs vs. CTBNs

Note that, unlike a regular Bayesian network, cycles are allowed in G, because the

nodes represent subsystems of a single Markov process, and therefore only one state

transition is allowed at a time for the whole CTBN. A cycle in a CTBN model would

be analogous to a dynamic Bayesian network with variables X and Y , where arcs

such as Xt → Yt+1 and Yt → Xt+1 would be valid.

Similar to the Bayesian network, the conditional dependencies allow a more com-

pact representation for the model. Like a Bayesian network, the local conditionally

dependent probability tables can be combined to form the full joint probability distri-

bution. In the case of the CTBN, this is the full joint intensity matrix, which describes

the evolution of the entire process. However, just as in the Bayesian network, in which

the number of entries in the full joint probability distribution grows exponentially in

the number of variables, so too the number of states in the full joint intensity matrix

grows exponentially in the number of variables for the CTBN.
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Despite these few similarities, the CTBN model is fundamentally different from

the DBN model. Although the network topologies for both models encode conditional

dependence, the models are differentiated by what the nodes represent. Whereas the

nodes in a DBN are simple random variables, the nodes in a CTBN are conditional

Markov processes. As a result, CTBNs can be queried about the state probabilities

for any real-valued time. A DBN, unrolled for a discrete number of timesteps, can

only be queried for state probabilities at these timesteps but not in-between adjacent

timesteps. While the time interval between timesteps can be set with finer granularity,

doing so multiplies the number of nodes needed to span the same amount of time as

the original unrolled DBN and still is not continuous with respect to time. DBNs

becomes asymptotically equivalent to a CTBN only as the interval of time between

timesteps approaches zero [45].

2.3.6 Inference and Learning

The only exact inference algorithm that exists so far for CTBNs simply expands

and works with the full joint intensity matrix, which is exponential in the number of

nodes [46]. However, this inference algorithm does not take advantage of the factored

nature of the network. Thus, research has focused on approximate methods.

The CTBN importance sampling algorithm [46, 43] is a sample-based inference

algorithm. The algorithm uses a combination of exponential and truncated exponen-

tial distributions to select node sojourn times that conform to upcoming evidence,

after which transitions are sampled from multinomial distributions. The sampler

generates a sequence of sojourn times and transitions for all nodes to generate a

complete trajectory. Because the trajectory was sampled from a distribution that

assumed the evidence, the trajectory is weighted by its likelihood. A set of samples
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is generated, and queries are answered by calculating the weighted proportion of

samples that match the query.

Using importance sampling, each interval of evidence causes a decreased weight

in a fraction of the samples, resulting in an increase in variance of the importance

weights. Because the weight of a complete trajectory corresponds to the product of

its interval weights, the decreased weight of each interval approaching non-matching

evidence produces a distribution of trajectory weights with potentially high variance,

which can indicate that the sampled distribution is far from the true distribution

and can lead to biased results unless the number of samples is large enough. To

address this, the rejection-sampler framework of [47] attempts to improve the sampled

distribution by learning when to accept or reject samples from that distribution that

forces the evidence.

The Gibbs sampling algorithm for CTBNs is another sample-based inference algo-

rithm [48]. Gibbs sampling takes a Markov Chain Monte Carlo (MCMC) approach.

The algorithm starts by generating an arbitrary trajectory that is consistent with the

evidence. The trajectory for a single node’s dynamics depends on trajectories of its

Markov blanket, as well as on the node’s past and present evidence. Therefore, the

algorithm alternates between randomly picking a node and sampling a trajectory from

the distribution of the node, conditioned on the trajectories of the other components

and the evidence. The algorithm samples a complete, continuous trajectory for that

node in each iteration. After repeating this process over all the nodes, the idea is that

the sampled trajectories will converge to the true distribution. The computational

complexity of this algorithm is determined by the complexity of the current trajec-

tories and the sampled one, rather than a pre-defined time granularity parameter

(analogous to timesteps in a DBN). Thus, the computation time of the algorithm

adapts to the complexity of the network and the complexity of the evidence.
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The auxiliary variable Gibbs sampler for CTBNs [49] is based on the idea of

uniformization, in which a set of “virtual” sojourn times are sampled from a Pois-

son process. The algorithm then sets up a Markov chain over paths of a node by

alternately sampling the set of virtual sojourn times given the current path and then

sampling a new path given the set of extant and virtual sojourn times using a standard

hidden Markov model forward-filtering, backward-sampling algorithm. The auxiliary

variable Gibbs sampler is computationally efficient, as compared to the original Gibbs

sampling algorithm for CTBNs [48].

More recently, the Metropolis-Hastings (MCMC) algorithm [50] was developed for

detecting hidden variables in a CTBN. Like the auxiliary variable Gibbs sampler, the

Metropolis-Hastings algorithm exploits uniformization. The algorithm was found to

be more efficient than the importance sampling algorithm, as well as the auxiliary

Gibbs sampling algorithm when performing inference over larger state-spaces.

Methods for expectation propagation (EP) [51] have also been developed, which

employ a message passing scheme in cluster graphs. In these methods, for each interval

of evidence, the nodes exchange messages with their neighbors in the cluster. The idea

is to pass approximate “marginals” which are unnormalized, unconditional intensity

matrices, valid for that interval, until all of the nodes have a consistent distribution

over that interval. Each cluster in the cluster graph encodes a distribution over

trajectories of the nodes in the cluster throughout the duration of evidence. Therefore,

expectation propagation, unlike discrete-time models, can adapt the time granularity

at which it reasons for different nodes, for different segments, and under different

conditions. In other words, computational resources can be allocated to different

clusters based on how quickly the cluster is evolving and the desired accuracy in

each cluster. Originally, this allocation would have to be specified manually based

on the network and the evidence being applied. The extension to EP developed in
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[52] provides an information-theoretic criterion to automatically and dynamically re-

partition the clusters during the inference process, allowing EP to adapt the level of

approximation to each cluster based on its current rate of evolution. Their algorithm

avoids the need to manually select the appropriate inference granularity, allowing the

granularity to adapt throughout the inference process.

The mean-field variational approximation method for CTBNs [45, 53] is another

message passing algorithm. In this case, it uses products of inhomogeneous Markov

processes to approximate a distribution over trajectories as systems of ordinary dif-

ferential equations (ODEs). Using asynchronous updates, the variational approach is

guaranteed to converge, and the approximation represents a consistent joint distribu-

tion over the nodes of the network which can then be efficiently queried. The approach

is able to exploit the development of optimized ODE solvers, which automatically

tune the trade-off between the time granularity and the approximation quality. As

expected with a variational approach, the method is susceptible to local maxima, and

it cannot capture certain complex interactions in the posterior distribution. By using

a time-inhomogeneous representation, the approximation is able to capture many

complex patterns in the evolution of the marginal distribution of each node.

Belief propagation (BP) [54] is similar to the mean-field variational approach,

except that it only needs to converge to locally consistent distributions over neigh-

borhoods of nodes rather than globally consistent distributions over all of the nodes.

In this sense, BP is similar to the EP algorithm for CTBNs. The main difference is

in the structure of the approximation. EP maintains the homogeneity assumption of

each node by representing the dynamics of a node as piece-wise conditional intensity

matrices. BP, on the other hand, represents the inhomogeneity through systems of

ODEs.
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Approaches specific to continuous-time particle filtering in CTBNs [55] have also

been developed. These methods propagate probabilities forward in time, without

having to be conditioned on upcoming evidence. They look at two different methods

for computing the matrix exponential: ODE integration and uniformization of the

Taylor expansion. To counteract the exponential size of the full joint intensity matrix,

they consider approximations in which only a factored belief state is maintained. For

factored uniformization, they demonstrate that the KL-divergence of the filtering is

bounded.

The particle filtering algorithm of [56] applies to hybrid systems containing both

discrete-state and continuous-state nodes. The dynamics of the discrete-state nodes

are determined by a Markov process. Whenever the discrete-state process is ob-

served, the filtering algorithm samples a trajectory of the underlying Markov process.

This trajectory is then used to estimate the continuous-state nodes using the system

dynamics determined by the discrete state in the trajectory.

As a data-driven model, algorithms have been developed for model learning, both

with learning the network structure and model parameters. First, the learning algo-

rithm of [57] addresses the problem of learning parameters and structure of a CTBN

from fully observed data. They define a conjugate prior for CTBNs, showing how it

can be used for both Bayesian parameter estimation and as the basis of a Bayesian

score for comparing different network structures for use in structure learning algo-

rithms.

Later, the work of [29] extended this to the problem of learning the parameters

and structure of a CTBN from partially observed data. They showed how to apply

expectation maximization (EM) and structural expectation maximization (SEM) to

CTBNs. The introduced of the EM algorithm allowed CTBNs to learn more com-

plex sojourn distributions than just a single exponential distribution. This extension
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addressed one of the limitations of CTBNs, namely the restriction of states to expo-

nentially distributed sojourn times.

CTBN model maturation has also been explored. The algorithm of [58] updates

parameters of an existing CTBN model with a new set of data samples. They present a

framework for online parameter estimation and batch parameter updating for CTBNs.

They derive parameter update rules from their framework, which attempts to balance

the existing model and new data samples when calculating the updated parameters.

2.3.7 Applications and Extensions

CTBNs have found use in several applications. For example, CTBNs have been

used for inferring users’ presence, activity, and availability over time [59]; robot

monitoring [56]; modeling server farm failures [60]; modeling social network dy-

namics [61, 62]; modeling sensor networks [63]; building intrusion detection systems

[64, 65, 66]; predicting the trajectory of moving objects [67]; and diagnosing cardio-

genic heart failure and anticipating its likely evolution [68, 69]. The CTBN has also

been extended to support decision-making, resulting in structured continuous-time

Markov decision processes [70].

The CTBN model has also undergone several specializations and generalizations.

The Generalized CTBN (GCTBN) of [71] combines the conditional probability tables

of BNs and the conditional intensity matrices CTBNs, allowing nodes to be either

what they call “delayed” nodes or “immediate” nodes. They show how inference

can be performed when combining the conditional probabilities of the immediate

nodes with the intensity matrices of the delayed nodes by converting to a gener-

alized stochastic Petri net (GSPN) which defines immediate and delayed transition

types between states. The delayed nodes are exponentially distributed transitions in
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the GSPN, while the immediate nodes are immediate transitions in the GSPN. The

GSPN model provides well-defined semantics for GCTBNs in terms of the underlying

stochastic process, and it provides a means to perform inference (both prediction and

smoothing) on GCTBNs through evaluating the associated GSPN.

The CTBN classifier (CTBNC) of [72, 73, 74] is similar to the GCTBN in that

it combines conditional Markov processes with a static probability distribution. In

this case, the CTBNC features a parent-less class node with a marginal probability

distribution over the class label for classifying a static object given continuous-time

evidence about that object. In the GCTBN, only the single class node uses a static

probability distribution, while all the other nodes are CTBN nodes. The conditional

intensity matrices are conditioned on the class label, which does not change in time.

Given a continuous-time trajectory of the object as evidence, the model classifies the

object with the class having the highest posterior probability.

The work of [75] changes the representation of the CTBN to be partition-based,

using what they call conditional intensity trees and conditional intensity forests. This

is analogous to representing the conditional probabilities in BNs as decision trees [76].

Because the number of parameters of a node is exponential in the number of parents,

the idea is to more compactly represent the parameters encoding the parameters in

trees in which duplicates can be removed. For example, if a node had only two distinct

conditional intensity matrices, these unique matrices would take up only two leaves

of the tree. The branches of the tree would dictate which matrix to return based on

the current states of the parents.

The Erlang-Coxian CTBN (EC-CTBN) of [77] replaces the exponential distribu-

tion of the sojourn times with Erlang-Coxian distributions. The Erlang-Coxian distri-

butions allow the model to approximate non-exponential sojourn time distributions.

In [18], they had shown how combinations of nodes in the CTBN could represent
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Erlang-Coxian distributions [29], but the EC-CTBN replaces this with a single node

by introducing a generalized conditional intensity matrix. In addition, they describe

an expectation-maximization algorithm for learning these non-exponential sojourn

distributions.

The asynchronous dynamic Bayesian network (ADBN) of [78] uses a CTBN for

the representation of the system but a DBN for inference over the system. At query

time, the conditional intensity matrices of the CTBN are converted to conditional

probability tables, creating a temporary DBN. The idea is that the parameters of

the DBN will be populated on-the-fly from the conditional intensity matrices and the

continuous-time evidence of the CTBN. This attempts to avoid the assumption of a

uniform interval of time between the timesteps of the DBN (hence, an asynchronous

DBN). After converting the conditional intensity matrices to conditional probability

tables, inference can be performed over the DBN instead of the CTBN. The ADBN

attempts to leverage the existing work on inference for BNs.
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CHAPTER 3

COMPLEXITY OF INFERENCE

Before we introduce extensions to inference in CTBNs, we consider the difficulty

of inference in CTBNs in general. Because the CTBN is relatively new, much of

the complexity theory surrounding CTBNs has yet to be fully explored. The CTBN

reduces the number of model parameters by using a factored representation. Even

still, the number of conditional intensity matrices of a node is exponential in the

number of the node’s parents. If we constrained the maximum number of parents, does

the factorization of the CTBN guarantee that inference is tractable? Also consider

the quality of the answer returned by a CTBN inference algorithm. If computing the

exact answer to a query is difficult in the general case, can we expect to more easily

compute an approximate solution?

In this chapter, we address these questions by proving three new theorems specific

to inference in CTBNs, that both exact and approximate (absolute and relative)

inference in CTBNs is NP-hard. We start by reviewing the current progress in CTBN

complexity theory and providing background on the complexity theory of BNs. We

then prove the three theorems and provide empirical validation of the performance

predicted by the result. We conclude with a discussion of the implications of these

theorems and pose questions for future work on CTBN complexity theory.

3.1 Background Work

In this section, we review the complexity results proved for CTBNs so far and

review some of the complexity theory of BNs relevant to our proofs.
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3.1.1 CTBN Complexity Theory

Most of the complexity theory surrounding CTBNs is derived from the use of a

BN for the initial distribution. One complexity result specific to CTBNs arises from

the difference between BN and CTBN structure learning. In structure learning, it is

common to assign a scoring function to arcs in the network that quantifies how well

the network topology matches the training data. The learning algorithm of [18] gives a

polynomial-time algorithm for finding the highest-scoring set of k parents for a CTBN

node when given complete data (no missing values). The corresponding problem in

a BN has been shown to be NP-hard, even for k = 2, due to the acyclic constraint of

BNs [79]. The learning algorithm can maximize the score of each node independently,

because it does not need to try all combinations of network structures that enforce the

acyclic constraint while maximizing the score of a single node. We note that, while

lifting the acyclic constraint makes structure learning easier, cycles can introduce

difficulties for inference, because the complete behavior of a node depends on all of its

ancestors, which becomes the entire cycle at the very least. Aside from this complexity

result for structure learning, we found no other results specific to CTBN complexity

theory in either learning or inference. Thus, our proofs concerning inference are novel

contributions to the understanding of complexity in CTBNs.

3.1.2 Exact Inference in BNs

Our results build on the complexity results of BNs, which we review in this section.

Theorem 3.1.1. (Cooper) Exact inference in Bayesian networks is NP-complete [80].

Proof. Cooper proved the NP-completeness of BN inference via a reduction from

3SAT. The 3SAT problem consists of a set of m clauses C = {c1, c2, . . . , cm} made up
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of a finite set V of n Boolean variables. Each clause contains a disjunction of three

literals over V , for example, c3 = (v2 ∧ ¬v3 ∧ v4). The 3SAT problem is determining

whether there exists a truth assignment for V such that all the clauses in C are

satisfied.

The 3SAT problem can be reduced to a BN decision problem of whether, for a

True(T )/False(F ) node X in the network, P (X = T ) > 0 or P (X = T ) = 0. We

can represent any 3SAT instance by a BN as follows. For each Boolean variable

vi ∈ V , we add a corresponding True(T )/False(F ) node Vi to the network such that

P (Vi = T ) = 1
2

and P (Vi = F ) = 1
2
. For each clause Cj, we add a corresponding

True(T )/False(F ) node Cj to the network as a child of the three nodes corresponding

to its three Boolean variables. Let wj be the actual clause corresponding to the state

of the three parents of Cj, and let eval(wj) be the truth function for this clause. The

conditional probabilities of the node are

P (Cj = T |wj) =


1 if eval(wj) = T

0 if eval(wj) = F

Finally, for each clause Cj, we add a True(T )/False(F ) node Dj. Each Dj is condi-

tionally dependent on Cj and on Dj−1 (except for D1). The conditional probabilities

for D1 are

P (D1 = T |C1) =


1 if C1 = T

0 otherwise

.
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Figure 3.1: Example reduction from 3SAT to BN exact inference.

Similarly, the conditional probabilities for Dj (j > 1) are

P (Dj = T |Cj, Dj−1) =


1 if Cj = T ∧Dj−1 = T

0 otherwise

.

Example 3.1.2. Figure 3.1 shows the BN for determining the satisfiability of the

clause (v1 ∨ v2 ∨ v3) ∧ (¬v1 ∨ ¬v2 ∨ v3) ∧ (v2 ∨ ¬v3 ∨ v4).

Importantly, the construction of this network is polynomial in the length of the

Boolean expression. For a 3SAT instance of |V | variables and |C| clauses, the corre-

sponding network has |V | + 2|C| nodes. Furthermore, each node of the network has

no more than three parents, constraining the largest conditional probability table to

have no more than 16 entries, for a maximum of 2|V |+ 16|C|+ 8(|C| − 1) + 4 entries

for the entire network.

The probabilities of the V nodes allow for every combination of truth assignments

to the Boolean variables. From there, the C and D nodes enforce the logical relations

of the clauses using the network’s conditional probability tables. As such, the 3SAT
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instance is satisfiable if and only if P (Dm = T ) > 0, that is, if and only if there is a

non-zero probability that some instantiation of the V nodes to T and F will cause all

of the clauses to be satisfied. Thus, if an algorithm exists that is able to efficiently

compute the exact probabilities in arbitrary BNs, the algorithm can efficiently decide

whether P (Dm = T ) > 0 for the specially constructed networks that can represent

arbitrary instances of 3SAT.

3.1.3 Approximate Inference in BNs

Furthermore, it is known that even absolute and relative approximations in BNs

are NP-hard [81]. These approximations are defined formally as follows. Suppose

we have a real value ε ∈ [0, 1], a BN with binary-valued nodes V , and two nodes

X, Y ∈ V instantiated to x and y, respectively.

Definition 3.1.1. A relative approximation is an estimate 0 ≤ Z ≤ 1 such that

P (X = x|Y = y)

(1 + ε)
≤ Z ≤ P (X = x|Y = y)(1 + ε).

Definition 3.1.2. An absolute approximation is an estimate 0 ≤ Z ≤ 1 such that

P (X = x|Y = y)− ε ≤ Z ≤ P (X = x|Y = y) + ε.

The proof of NP-hardness for relative approximation follows from the proof for

exact inference. Satisfiability of the clause is determined whether Z = 0 or Z > 0,

which is not influenced by the choice of ε. Thus, there is no constant-factor relative

approximation for inference in BNs.

Theorem 3.1.3. (Dagum & Luby) Absolute approximate inference in Bayesian net-

works is NP-hard [81].
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The proof of NP-hardness for absolute approximation starts with the reduction

for exact inference as above, representing the variables and clauses with the same

network and parameters. This time, one by one a truth assignment is set for each

Boolean variable vi, and the corresponding node Vi is removed from the network. The

truth assignment for vi is determined by the higher probability of P (Vi = T |Dm = T )

and P (Vi = F |Dm = T ). However, if there exists an efficient approximate BN

inference algorithm that can guarantee to be within ε = 1
2

of the exact probability

on arbitrary BNs, this algorithm can be used to determine efficiently satisfying truth

assignments to all Boolean variables of an arbitrary instance of 3SAT. Furthermore,

any approximation with ε ≥ 1
2

for a two-state node (the simplest case) is no better

than random guessing.

These results are for BNs, which apply to the initial distribution of a CTBN.

While the CTBN and DBN are formulated differently, a DBN becomes asymptot-

ically equivalent to a CTBN as the interval of time between timesteps approaches

zero [45]. One might be tempted to argue that the BN complexity proofs therefore

apply to the CTBN. However, it is not always clear that moving from a discrete

space to a continuous space preserves the complexity results. For example, take the

difference between linear programming and integer linear programming, the former

being solvable in polynomial time with the latter being NP-hard. Thus, we prove the

complexity results for CTBNs explicitly.
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Figure 3.2: Example reduction from 3SAT to CTBN exact inference.

3.2 Complexity of Inference in CTBNs

3.2.1 Exact Inference

We show that exact inference in CTBNs is NP-hard, even when given the exact

initial states, following a similar reduction as the proof for BNs but using the condi-

tional intensity matrices of the CTBN instead of the conditional probability tables.

Example 3.2.1. Figure 3.2 shows the CTBN for determining the satisfiability of the

clause (v1 ∨ v2 ∨ v3) ∧ (¬v1 ∨ ¬v2 ∨ v3) ∧ (v2 ∨ ¬v3 ∨ v4).

Theorem 3.2.2. Exact inference in continuous time Bayesian networks is NP-hard.

Proof. The CTBN topology matches that of the BN for representing variables and

clauses, but the nodes are specified differently. For each Boolean variable vi ∈ V , we

add a corresponding three-state node Vi to the network. The three states in order are

True(T ), False(F ), and Start(S), the last being the initial state for node Vi. We set
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the unconditional intensity matrix of Vi to be

QVi =


0 0 0

0 0 0

c/2 c/2 −c


for any constant c > 0. The zero entries for T and F make them absorbing states. At

some point in time, the system will transition to either T or F with equal probability,

but not both.

For each clause Cj, we add a corresponding True(T )/False(F ) node Cj to the

network as a child of the three nodes corresponding to its three Boolean variables.

As before, let wj be the clause corresponding to the state of the three parents of Cj,

and let eval(wj) be the truth function for this clause. The function eval is extended

to return False whenever the clause wj contains a node in state S. The conditional

intensity matrices of Cj are

QCj |eval(wj)=T =

0 0

c −c


and

QCj |eval(wj)=F =

0 0

0 0

 .

We set the initial state of each Cj to be the F state (the second row of the matrices).

These conditional intensity matrices mean that there is a non-zero probability of Cj

transitioning from F to T if and only if the states of the parents of Cj correspond to

a satisfying truth assignment to the jth clause.
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Finally, for each clause Cj, we add a True(T )/False(F ) node Dj. Each Dj is

conditionally dependent on Cj and on Dj−1 (except for D1). The conditional intensity

matrices for Dj are

QDj |eval(Cj∧Dj−1)=T =

0 0

c −c


and

QDj |eval(Cj∧Dj−1)=F =

0 0

0 0

 .

As with the Cj nodes, we set the initial state of each Dj to be the F state. As with

the clause nodes, these conditional intensity matrices mean that there is a non-zero

probability of Dj transitioning from F to T if and only if Cj and Dj−1 are T .

The conditional intensity matrices of the CTBN enforce the logical constraints of

the Boolean expression, replacing the conditional probability tables of the network.

As before, a 3SAT instance of |V | variables and |C| clauses generate |V |+ 2|C| nodes

in the corresponding CTBN. Each node still has no more than three parents but

now each intensity matrix has 9 or 4 entries, meaning that there is a maximum of

9|V | + 108|C| + 16(|C| − 1) + 8 conditional intensity matrix entries for the entire

network. Thus the construction of the CTBN is polynomial in the length of the

Boolean expression. Notice also that we have constrained the maximum number of

parents in the CTBN to less than or equal to three.

Let Dm(t) be the state of Dm at time t. The 3SAT instance is satisfiable if and

only if P (Dm(t) = T ) > 0 ∀ t > 0. Assume that the Boolean expression is satisfiable

by some combination of T/F state assignments to the variables in V . The Vi nodes

start in the S state at time t = 0. The time that each variables remains in S is

exponentially distributed, after which the variables transition to either T or F with
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equal probability and remain in that state. Therefore, there is a non-zero probability

for each combination of T/F states in the Vi’s at t > 0. Whenever three of these states

satisfy a clause Cj, there is a non-zero probability for Cj to transition from F to T

when t > 0. Likewise, once the parents of Dj are in T there is a non-zero probability

for Dj to transition from F to T when t > 0. Thus, if the Boolean expression is

satisfiable, there is a non-zero probability that each each clause is satisfied at t > 0,

and therefore P (Dm(t) = T ) > 0. On the other hand, assume that the Boolean

expression is not satisfiable. Then there exists some clause Cj that remains in F

for all t > 0. Therefore, Dj will remain in F for all k ≥ j, which means that

P (Dm(t) = T ) = 0 for all t ≥ 0.

3.2.2 Approximate Inference

We prove similar results for approximate inference with CTBNs as well.

Theorem 3.2.3. Relative approximate inference in continuous time Bayesian net-

works is NP-hard.

Proof. Because the determination is whether P (Dm(t) = T ) = 0 or P (Dm(t) = T ) >

0, a relative approximation for P (Dm(t) = T ) with any error bound also gives a

solution to the satisfiability of the Boolean expression.

We now turn to the absolute approximation. Because even approximate inference

in BNs is NP-hard, it seems reasonable to suspect that a similar conclusion also

holds for approximate inference in CTBNs. We now show how an absolute error

approximation algorithm for CTBNs can be used to find a satisfying assignment to

the Boolean expression or to determine that it is not satisfiable.
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Theorem 3.2.4. Absolute approximate inference in continuous time Bayesian net-

works is NP-hard.

Proof. We start by assuming that the expression has at least one satisfying assign-

ment. A satisfying truth assignment can be found one variable at a time by choosing

t > 0 and conditioning on Dm(t) = T . Whereas the proof for exact inference needed

only to compute P (Dm(t) = T ) to solve the 3SAT instance, the proof for absolute

approximate inference needs to condition on Dm(t) = T to solve the 3SAT instance.

Let t′ ≥ t.

By construction, P (Vi(t
′) = S|Dm(t) = T ) = 0. This is important, because it

ensures that

P (Vi(t
′) = T |Dm(t) = T ) + P (Vi(t

′) = F |Dm(t) = T ) = 1.

Let a ∈ {T, F}, and let P̂ i
a denote the absolute error approximation with ε for the

probability P (Vi(t
′) = a|Dm(t) = T ). Without loss of generality, assume that Vi can

be satisfied only when a = T . Then P (Vi(t
′) = T |Dm(t) = T ) = 1 and P (Vi(t

′) =

F |Dm(t) = T ) = 0. Therefore, it must be that P̂ i
T > P̂ i

F whenever ε < 1
2
. We

compute both P̂ i
T and P̂ i

F and change the initial state of Vi to T if P̂ i
T > P̂ i

F and to F

otherwise. This process continues for i = 1, . . . , |V | to determine truth assignments

for all variables in the Boolean expression. Therefore, if there exists a polynomial-

time approximation algorithm for CTBN inference with ε < 1
2

that can condition on

evidence, it can be used to solve arbitrary instances of 3SAT in polynomial time as

well.
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3.3 Empirical Validation

We can empirically validate these theoretical results by taking Boolean expressions

and performing inference in the corresponding CTBN. Specifically, we demonstrate

three Boolean expressions, listed as follows.

BE1 = (v1 ∨ v2 ∨ v3) ∧ (¬v1 ∨ ¬v2 ∨ v3) ∧ (v2 ∨ ¬v3 ∨ v4)

BE2 = (v1 ∨ v1 ∨ v1) ∧ (¬v2 ∨ ¬v2 ∨ ¬v2) ∧ (v3 ∨ v3 ∨ v3)

BE3 = (v1 ∨ v1 ∨ v2) ∧ (v1 ∨ v1 ∨ ¬v2) ∧ (¬v1 ∨ ¬v1 ∨ v2) ∧ (¬v1 ∨ ¬v1 ∨ ¬v2)

Note that BE1 is the Boolean expression given as an example earlier and with the

CTBN shown in Figure 3.2. A total of 10 out of its 16 possible truth assignments

satisfy the expression. Note that BE2 has a single satisfying assignment and that

BE3 is unsatisfiable.

To determine the satisfiability of each of these expressions using the corresponding

CTBN, we performed forward sampling (Algorithm 2.1) with 100,000 samples and

c = 100 over the interval time [0, 0.2). We queried the proportion of samples with

which Dm(t) = T for t = 0 to t = 0.2 in increments of 0.01. The results are shown in

Figure 3.3. For the two satisfiable expressions, BE1 and BE2, P (Dm(t) = T ) > 0 for

t ≥ 0.01, while for the unsatisfiable query BE3, P (Dm(t) = T ) = 0 for all t ∈ [0, 0.2).

Also note the values to which the probabilities are converging. For BE1, the prob-

ability ended at an estimated 0.622, whereas the proportion of satisfying assignments

is 10/16 = 0.625. For BE2, the probability ended at an estimated 0.127, whereas

the proportion of satisfying assignments is 1/8 = 0.125. As the number of samples

increased, the probabilities converged to the proportion of satisfying assignments.
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Figure 3.3: Empirical satisfiability results for the three Boolean expressions.

Table 3.1: Empirical results for approximating P (Vi(0.2) = T |Dm(0.2) = T ).

V1 V2 V3 V4

BE1 ≈ 0.50 ≈ 0.60 ≈ 0.60 ≈ 0.60

BE2 1 0 1 -

BE3 NaN NaN - -

Next, we validated the approach by which an approximation of P (Vi(t) =

T |Dm(t) = T ) is able to determine a satisfying assignment to each Vi. We used

importance sampling [46] because, unlike forward sampling, it is able to condition on

evidence by weighting the samples with the likelihood of the evidence. To prevent

division by zero when calculating the weights, we smooth the zero entries in the

unconditional intensity matrices with ±10−6. We ignored samples with infinitesimal

weights, as an infinitesimal weight implied that the corresponding sample contained

a transition that violates the Boolean expression. The results with 100,000 samples

are shown in Table 3.1.



53

Figure 3.4: Sample complexity for CTBN inference.

The table shows that the importance sampling algorithm was correctly able to

determine a satisfying truth assignments to each variable or determine that no truth

assignments was possible. For BE1, by setting v2, v3, and v4 to T , the Boolean

expression is satisfied regardless of the value of v1, which is why the estimate was

approximately 0.5, that is, either T or F is equally probably for satisfying the expres-

sion. For BE2, the importance sampling algorithm determined the single satisfying

truth assignment. For BE3, no feasible samples could be generated because it is

conditioned on an impossible event Dm(0.2) = T , indicating that the expression is

unsatisfiable.

While we showed that we are able to solve these instances of 3SAT by CTBN

sampling methods, the complexity is still exponential in the length of the Boolean

expression. To demonstrate this, we show the average sample count necessary to
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determine the satisfiability of the Boolean expression

∧
i=1,...,n

(vi ∨ vi ∨ vi)

for n = 2, . . . 9. Each expression has exactly one truth assignment that satisfies it (all

variables set to True). We count the number of samples generated until we have the

first sample for which Dm(0.2) = T , making P (Dm(0.2) = T ) > 0 and thus showing

that the 3SAT instance is satisfiable. For each number of variables, we averaged the

number of samples generated over 100 runs. The average sample counts along with

confidence intervals for α = 0.01 are plotted in Figure 3.4. The log2 scale on the

y-axis shows that the algorithm is exponential in the length of the expression.

3.4 Conclusion

We have shown that exact and approximate inference in CTBNs is NP-hard, even

when given the initial distribution. Thus, the difficulty of CTBN inference is found

not only in BN inference for calculating this initial distribution, but also in accurately

propagating the probabilities forward in time. Given the similar results with BNs,

these results are not surprising. However, as with BNs, further research may reveal

special cases of the CTBN, whether in their structures or their parameters, which

admit polynomial-time algorithms for approximate or even exact inference. We have

shown that constraining the maximum number of parents to less than or equal to

three is insufficient to guarantee tractable inference.

Proving the complexity of exact and approximate inference in CTBNs under differ-

ent structural conditions may provide further insights into the complexity of working

with these models and possibly suggest ways to modelers that the complexity of spe-
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cific models can be better managed. It may serve as a step toward special-case CTBNs

that can be proved to be tractable. Our results show that merely placing constraints

on the maximum number of parents is insufficient to guarantee the feasibility of exact

or approximate inference.

Even though exact and approximate inference in BNs is known to be NP-hard

in the general case, practical algorithms still exist that are able to perform inference

efficiently for many networks. Similarly, inference in CTBNs is an active and fruitful

area of research. In the subsequent chapters, we focus on extending the CTBN model

itself, as well as extending both the types of inference and the capabilities of inference.
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CHAPTER 4

PERFORMANCE FUNCTIONS

In this chapter, we extend the CTBN model to include performance functions

and show how an existing CTBN inference algorithm can be used to reason over

these performance functions. The original CTBN definition allows users to specify

the dynamics of how the system evolves, but users might also want to place value

expressions over the dynamics of the model. We extend the CTBN to allow for this

by formalizing performance functions for the CTBN. We show how the performance

functions can be factored in the same way as the network, allowing what we argue is

an intuitive and explicit representation. For cases in which a performance function

must involve multiple nodes, we show how to augment the structure of the CTBN

to account for the performance interaction while maintaining the factorization of a

single performance function for each node.

4.1 Background Work

Instead of reasoning over the behavior of the network, performance functions allow

the user to reason over user-defined performance measures over the network. This can

be accomplished by importance sampling for CTBNs, which we briefly review. We

then review the concept of using conditional intensity matrices as logical expressions,

which we use to enable factored performance functions even when the performance is

defined in terms of complex state interactions between multiple nodes.
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4.1.1 Importance Sampling

We briefly review the CTBN importance sampling algorithm, which serves as our

underlying inference method once we introduce our factored performance functions.

While we discuss an extended version of importance sampling in detail in Chapter 7,

in this chapter, we simply use the existing importance sampling algorithm to demon-

strate inference over our CTBN performance functions.

Importance sampling is an example of a particle-based method. These methods

use the model to generate a set of particles. Statistics are taken over the set particles

to approximate the desired distribution. Particle-based methods can also condition

on evidence by constraining and/or weighting the particles in various ways.

Importance sampling is able to estimate E(f |e) for arbitrary functions f defined

over complete trajectories of the system. It takes a partial trajectory e as evidence

and samples a proposal distribution P ′ that conforms to the evidence to fill in the

unobserved intervals to generate a complete trajectory σ. Because the sampler draws

from a different distribution P ′ to force the sampling to conform to the evidence, each

sample is weighted by the likelihood of the evidence to account for sampling from P ′

instead of P . This is calculated as

w(σ) =
P (σ, e)

P ′(σ)
,

with the cumulative weight as

W =
∑
σ∈S

w(σ).
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From a set of i.i.d. samples S, we can approximate the conditional expectation of a

function f given the evidence e as:

Ê(f |e) =
1

W

∑
σ∈S

w(σ)f(σ)

4.1.2 Conditional Intensity
Matrices as Logical Expressions

In Chapter 3, we used the CIMs of the C and D nodes to enforce the logical

constraints of the Boolean expression. However, by the construction of the network,

the clause nodes could only transition in one direction, from False to True, if and

only if the corresponding clause was satisfied. The use of CIMs as logical expressions

were also used in [33], but in this case the nodes are used as temporal logic AND and

OR gates. That is, the node transitions between True and False at various times,

based on the states of the parents.

Suppose the True(T )/False(F ) node X is an AND node. Then the CIMs of X

are given as follows.

QX|(
∧

x∈〈paX 〉
x)=T =

 0 0

∞ −∞

 QX|(
∧

x∈〈paX 〉
x)=F =

−∞ ∞

0 0


These matrices perform conjunction over the states of the node’s parents. Similarly,

suppose the True(T )/False(F ) node X is an OR node. Then the CIMs of X are

given as follows.

QX|(
∨

x∈〈paX 〉
x)=T =

 0 0

∞ −∞

 QX|(
∨

x∈〈paX 〉
x)=F =

−∞ ∞

0 0


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These matrices perform disjunction over the states of the node’s parents. In practice,

∞ is simulated by a sufficiently large value that allows near-instantaneous transitions,

as compared to the other transitions times.

Instead of just AND and OR nodes, we note that the CIMs can be defined

uniquely for each combination of the parent states. Thus, augmenting the CTBN

structure with these nodes can be used for complex performance interactions between

subsystems.

4.2 Inference over Performance Functions

Sometimes the user may not be interested in querying P (X(t)|e) specifically, i.e.,

the expected behavior of the network given a partial trajectory as evidence e. Instead,

the user may place different values on particular behaviors of the network and want

to calculate the expected value of a given instantiation of the system. In other words,

the user has a function f : σ → R defined over the behavior the network and wants to

compute the expected value of f given the evidence, E(f |e). This query is different

from (although related to) the calculation of P (X(t)|e). While G may show X and

Y to be independent in their behavior, there may be a dependence between X and

Y in f because of how the user values their mutual behavior. Whereas the CTBN

allows us to factor a complex system X into interdependent subsystems to tractably

estimate P (X(t)|e), we would like to factor f into a set of functions such that we can

also tractably estimate E(f |e).
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4.2.1 Importance Sampling
with Performance Functions

Note that in the importance sampling algorithm, the entire sample σ is passed to

f(σ). While this allows f to be fully general and discern arbitrary behaviors of the

system, this also means that the evaluation of f must be specially implemented for

each function and for each network. Because the state-space of σ is exponential in

the number of variables, simply enumerating f over all the states of the network is

infeasible. A representation such as a lookup table over even just the relevant states

of the network would also be difficult for a user to define by hand and subsequently

difficult for others to interpret. We would like to find a way to factor f to make

it more manageable and understandable while retaining as much of its expressive

power as possible. To do this, we move into the novel contributions of this chapter,

introducing performance functions local to each node and showing how to incorporate

dependence in the performance functions by augmenting the structure of the CTBN

with what we call synergy nodes.

We factor f according to the nodes in the network, assigning each node X its own

performance function fX . Originally, f is also defined over all the transitions of a

single node. While this may be useful in some cases, the value we place on certain

states of a node are not be dependent on the state of the node several states ago.

Therefore, we also factor each performance function with respect to time. Instead of

defining fX(σ) over a full sample σ, we define fX(ts, te, x) to be over the observations

〈ts, te, X(ts)〉 ∈ σ[X], which are the transitions of only node X in the trajectory σ.

The performance of the entire network can now be factored as

f(σ) =
∑
X∈X

 ∑
〈ts,te,X(ts)〉∈σ[X]

fX(ts, te, X(ts))

 .
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The factored performance function fX is able to represent such things as fixed and

variable costs over the states of X. For example, consider a performance function for

some node X with states x0 and x1. Let ∆t = te − ts. Then suppose

fX(ts, te, X(ts)) =


c1 + c2∆t if X(ts) = x0

0 if X(ts) = x1

,

in which c1 and c2 are two constants representing dollars and dollars per hour, respec-

tively, and the time is in hours. This performance function means that the system

incurs a fixed cost of c1 every time it enters state x0 and accrues a variable cost of c2

for every hour it remains in state x0.

Each performance function is now responsible for calculating the performance of a

single node in the network. The factorization of f also allows for greater flexibility in

generating the set of samples D. If the performance function f is defined (non-zero)

for only a subset of nodes X′ ⊂ X, the sampling algorithm only needs to record

⋃
X∈X′

σ[X]

for each sample σ, instead of every transition of every node in X.

We can further generalize performance functions by noting that a network is not

restricted to a single performance function f . We could define an entire family of

performance functions F = {f 1, f 2, . . . , fm} for a single CTBN. Each performance

function gives one “view” of the network. For example, we could define F to represent

competing metrics, such as quantity vs. quality, and measure the trade-offs incurred

by the current instance of the system. Moreover, we can evaluate F with a single set

of samples S, regardless of the size of F .
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Figure 4.1: Drug effect network.

4.2.2 Synergy Nodes

The factorization of f into a single fX for each node of the CTBN could be

too restrictive for encoding the desired performance function. We now show how

to augment the structure of the CTBN to make the performance functions more

expressive while still preserving the factorization of f onto single nodes. First, we show

how the performance function could be too restricted. Suppose that the performance

functions for Pain (P ) and Drowsy (D) from Figure 4.1 are defined as:

fP (ts, te, P (ts)) =


2∆t if P (ts) = pain-free

0 if P (ts) = in-pain

,

fD(ts, te, D(ts)) =


∆t if D(ts) = non-drowsy

0 if D(ts) = drowsy

.

In other words, we have f = 3∆t when the Pain and Drowsy nodes are in states

pain-free and non-drowsy simultaneously. But suppose a user values being non-drowsy

and pain-free at the same time twice as much as the sum of the values of being

non-drowsy and pain-free separately, and the user wants the following performance
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function defined over P and D together to be:

f{P,D}(ts, te, {P (ts), D(ts)}) =



6∆t if P (ts) = pain-free ∧D(ts) = non-drowsy

2∆t if P (ts) = pain-free ∧D(ts) = drowsy

∆t if P (ts) = in-pain ∧D(ts) = non-drowsy

0 if P (ts) = in-pain ∧D(ts) = drowsy

In this case, f = 6∆t instead of 3∆t when pain-free and non-drowsy. The perfor-

mance function fP∪D does not factor into fP and fD as before. This introduces the

concept of synergy between nodes. Formally, we define synergy as follows.

Definition 4.2.1 (Synergy). Nodes X1, . . . , Xk exhibit synergy if their joint per-

formance function f{X1,...,Xk} cannot be factored into fX1 , . . . , fXk
such that, for all

x1 ∈ X1, . . . , xk ∈ Xk,

f{X1,...,Xk}({x1, . . . , xk}) = fX1(x1) + · · ·+ fXk
(xk).

Suppose, on the other hand, that f{X1,...,Xk} is able to be factored partially into

fX1 , . . . , fXk
such that the above equality holds for at least one state in each node

x1 ∈ X1, . . . , xk ∈ Xk. Then all other states x′1 ∈ X1, . . . , x
′
k ∈ Xk for which the

equality does not hold exhibit either positive synergy or negative synergy.

Definition 4.2.2 (Positive Synergy). States x1 ∈ X1, . . . , xk ∈ Xk exhibit positive

synergy if and only if

f{X1,...,Xk}({x1, . . . , xk}) > fX1(x1) + · · ·+ fXk
(xk).
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Definition 4.2.3 (Negative Synergy). States x1 ∈ X1, . . . , xk ∈ Xk exhibit negative

synergy if and only if

f{X1,...,Xk}({x1, . . . , xk}) < fX1(x1) + · · ·+ fXk
(xk).

Synergy implies that the performance of multiple nodes is dependent. Synergy

occurs at the state level, and nodes can exhibit both positive and negative synergy at

the different times. To account for synergy in the performance functions while main-

taining the factorization of f , we add what we call synergy nodes into the network. A

synergy node is set as the child of all nodes contributing to the synergy. Suppose that

synergy node XS is added as for synergy between states x1, . . . , xk. Let the states of

XS be ordered as {inactive, active}. Then the conditional intensity matrices of XS

are specified as follows.

QXS
|〈paXS

〉 =



−∞ ∞

0 0

 if 〈paXS
〉 = {x1, . . . , xk}

 0 0

∞ −∞

 otherwise

The performance function fXS
is then specified as follows.

fXS
(xS) =


0 if xS = inactive

f{X1,...,Xk}({x1, . . . , xk}) if xS = active

Thus, the synergy node captures any additional performance between nodes that each

node’s factored performance function cannot represent by itself.
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Table 4.1: Conditional intensity matrices of PD+.

APD+|P (ts)=pain-free,D(ts)=non-drowsy

inactive active

inactive −∞ ∞
active 0 0

APD+|P (ts)=pain-free,D(ts)=drowsy

APD+|P (ts)=in-pain,D(ts)=non-drowsy

APD+|P (ts)=in-pain,D(ts)=drowsy

inactive active

inactive 0 0

active ∞ −∞

For the P and D synergy example, we add a synergy node PD+ (denoting positive

synergy) as a child of P and D. The augmented section of the network is shown in

Figure 4.2, and the conditional intensity matrices for PD+ are given in Table 4.1.

The combination of ∞ and 0 forces the synergy node to transition immediately to

the active (inactive) state and remain there for as long as the logical expression is

satisfied (unsatisfied). Finally, we set the performance function of PD+ as

fPD+(ts, te, PD
+(ts)) =


3∆t if PD+(ts) = active

0 if PD+(ts) = inactive

The CIMs of PD+ act as a logical expression over the states of the parents P and D.

Whenever P is pain-free and D is non-drowsy, the synergy node PD+ immediately

switches to active and yields an additional 3∆t in performance. This yields the

desired performance function with the factorization as f = fP + fD + fPD+ . Thus, f

is still factored onto individual nodes. Furthermore, the synergy node PD+ provides

a graphical representation of the performance function. We can see at a glance in

Figure 4.2 that the performance functions of P and D are dependent. Furthermore,
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Figure 4.2: Positive synergy node for pain-free and non-drowsy.

we can define the synergy between pain-free and non-drowsy as its own value, instead

of having to define it in a combined function f{P,D}.

4.3 Experiments

We demonstrate the use of the synergy node concept on a reliability model adapted

from [33] that describes the uptime of a vehicle system. The model, shown in Fig-

ure 4.3, consists of three subsystems: chassis (CH ), powertrain (PT ), and electrical

(EL). The chassis is comprised of four components, each having their own failure and

repair rates: suspension (SU), brakes (BR), wheels and tires (WT ), and axles (AX ).

Likewise, the powertrain subsystem is comprised of three subsystems: cooling (CO),

engine (EG), and transmission (TR). The initial distributions and intensity matrices

for all the nodes can be found in Appendix C.

For our experiments, we have a fleet of vehicles. Each vehicle model can in-

corporate its own evidence, e.g., repair and usage history. We want to calculate a

synergistic measure of performance across the entire fleet, represented in the node

V +. We compare the use of the synergy node with the brute force approach, i.e.,

of evaluating a performance function defined over all of the Vehicle nodes at once.



67

Figure 4.3: CTBN for fleet of vehicles with synergy node.

Therefore, the network for the brute force approach does not include the V + node.

For the synergy node approach, the V + node becomes active when all vehicles are

running, otherwise it remains inactive. Suppose that the performance function for

V + is defined as

fV +(ts, te, V
+(ts)) =


∆t if V +(ts) = active ∧∆t ≥ 40

0 if otherwise

.

In other words, additional performance is gained when all of the vehicles are running

simultaneously for at least 40 hours. The performance gained is proportional to the

amount of time that all of the vehicles are running until the next repair.

We varied the fleet size from 2 to 16 vehicles and queried the expected performance

over 2000 hours of operation starting with all vehicles in running condition. We simu-

lated∞ in the CIMs of V + as 1010. We used importance sampling to generate 10,000

samples for each fleet size and for the brute force and synergy node approaches. We
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Figure 4.4: Comparison of performance estimates of the brute force and synergy node
approaches.

compared accuracy of the performance estimate, average number of transitions, and

average number of times the sampler must draw from an exponential or multino-

mial distribution. Because we only needed to save the trajectories for the Vehicle

nodes, the average number of transitions per sample dictates how many times the

performance function must be evaluated. Because each sample is a series of sojourn

times and transitions, the number of times the sampler draws from an exponential

or multinomial distribution is the driving factor in the complexity of creating the

samples.

The performance estimates of the brute force approach and the synergy node

approach is shown in Figure 4.4. As the graph shows, the synergy node is able to

return an estimate consistent with the brute force approach. The average relative

error between the two approaches is less than 1%.
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Figure 4.5: Average number of transitions per sample of the brute force and synergy
node approaches.

The average number of transitions per sample of the brute force approach and

the synergy node approach is shown in Figure 4.5. Note that we did not record

transitions for all of the nodes, only the nodes contributing to the performance func-

tion. In other words, the brute force approach used σ = ∪iσ[Vehiclei] for fleet size i,

while the synergy node approach used σ = σ[V +]. As the graph shows, the number

of transitions increases linearly for the brute force approach, as expected. For the

synergy node approach, on the other hand, the curve behaves logarithmically. This

is because, as the number of vehicles increases, the proportion of time that all are

running simultaneously decreases. Therefore, the number of transitions between the

states of the synergy node decreases. This also means that the sample path for the

synergy node takes fewer evaluations to estimate the performance.

Finally, the average number of times the sampler must draw from a distribution

is shown in Figure 4.6. As the graph shows, the addition of the synergy node does
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Figure 4.6: Average number of draws from a distribution per sample of the brute
force and synergy node approaches.

increase the complexity of generating each sample; however, the complexity is not

greatly increased, as the curve suggests only a small, constant-factor increase.

4.4 Conclusions

In this chapter, we formalized factored performance functions for the CTBN.

Existing CTBN inference algorithms support estimating arbitrary functions over the

behavior of the network, but by factoring these functions onto the nodes of the net-

work, we can achieve a representation of performance that we argue is more easily

understood and implemented. Furthermore, to support more complex interactions

in which the performance function cannot be factored in a straightforward manner,

we show how to maintain a factorization by augmenting the structure of the CTBN

with synergy nodes. We argue that such complex performance information is more
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easily understood in terms of the synergistic relationship between nodes. We showed

a real-world example in which the synergy node is able to capture the performance

evaluation between multiple nodes without a significant increase in complexity and

without degrading accuracy.

As future work, we would like to demonstrate other scenarios that use synergy

nodes, as well as families of performance functions, on a wider variety of real-world

networks. The concept of performance function families opens up opportunities for

the CTBN to be useful for continuous-time multi-objective optimization problems.
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CHAPTER 5

NODE ISOLATION FOR APPROXIMATE INFERENCE

In this chapter, we present three novel CTBN marginalization methods that ap-

proximate a set of conditional intensity matrices with a single conditional intensity

matrix. This allows some forms of inference to be carried out in the CTBN without

expanding to the full joint intensity matrix.

5.1 Background Work

The inference problems we consider in this chapter are filtering and prediction

with point evidence. Recall that the state-space of X is exponential in the number of

nodes. Therefore, we need a way to subdivide the network and calculate P (S(t)) for

smaller subnetworks S ⊂ X. The key idea is approximate node marginalization, which

removes the incoming arcs and replaces the set of conditional intensity matrices with a

single unconditional intensity matrix that approximates the node’s former dynamics.

We start by presenting the approximate inference algorithm developed in [17] that

accomplishes this. The algorithm is based on the clique tree algorithm for Bayesian

networks and can be used with their two methods for node marginalization.

5.1.1 Clique Tree Algorithm

In this adaptation of the clique tree algorithm, amalgamation of conditional in-

tensity matrices is used in place of products, and marginalization is done by approx-

imating a single unconditional intensity matrix from a set of conditional intensity
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matrices. Because cycles are allowed in a CTBN, the algorithm does not necessarily

form a tree of connected cliques but an undirected graph of connected cliques in which

cycles are possible.

5.1.1.1 Initialization. First, we construct a graph G consisting of cliques. To do

this, we moralize the graph by connecting all the parents of a common child node

with undirected edges. This creates a clique consisting of each child and all of its

parents, because each child is connected to its parents, and each parent of the child

is connected to each other. We then replace all directed edges with undirected edges.

We associate each node with the clique that contains it and all of its parents.

Let Ai ⊆ Ci be a set of nodes in clique Ci. Let Sij be the set of nodes in Ci ∩Cj.

Let Ni = {Cj|Sij 6= ∅, i 6= j} denote the set of neighboring cliques to Ci. That is,

neighbors are cliques that share at least one node.

For each clique i, we compute the initial distribution P 0
Ci

using Bayesian network

inference on B.

We calculate the initial intensity potential fi for each clique Ci as

fi =
∏
x∈Ci

QX|Pa(X).

That is, we amalgamate the unconditional intensity matrices of Ci.

5.1.1.2 Message Passing. The message passing process is used to calibrate the net-

work, removing all edges between cliques so that inference can be performed over each

clique separately. Its goal is to compute an approximate probability distribution over

the trajectories of the nodes in each Ci by representing each clique as a homogeneous

Markov process.
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To do this, clique Ci passes messages about the dynamics of the nodes in Sij to its

neighbors. Clique Ci sends a message, denoted µi→j to clique Cj once it has received

µk→i for k ∈ Ni, except possibly j. Once all incoming messages have been received,

clique Ci amalgamates the messages with fi and computes outgoing messages to Cj

by marginalizing out all variables in Ci not in Sij. This marginalization, denoted

margPY (QS|C), takes a CIM QS|C and eliminates the nodes in Y . Formally,

µi→j = marg
PCi

(Ci−Sij)

(
fi ×

( ∏
k∈Ni,k 6=j

µk→i

))

After each clique Ci has received all incoming messages, the clique’s local intensity

matrix is computed as

QCi
= fi ×

∏
k∈Ni

µj→i.

In general, this single homogeneous process QCi
is not able to represent the dynamics

of clique Ci exactly. As such, this clique tree algorithm for CTBNs is an approximation

technique.

5.1.1.3 Queries. Once the clique tree algorithm terminates, we estimate the prob-

abilities for any clique i as

P (Ci(t)) ≈ P 0
Ci

exp(QCi
t).

Evidence can be incorporated at instantaneous points in time by re-conditioning the

initial distribution on the evidence at the start of each interval. Let et denote point

evidence at time t. If we have point evidence at the initial time e0, we condition the
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initial distribution on that evidence, P (Ci(0)|e0). Then for t > 0,

P (Ci(t)|e0) ≈ P (Ci(0)|e0) exp(QCi
t).

With point evidence at time t1, we compute P (Ci(t1)|e0) and condition on et1 , which

yields

P (Ci(t1)|e0, et1).

Now suppose there are k observations at times t1 < t2 < · · · < tk. Then for t > tk,

P (Ci(t)|e0, et1 , . . . , etk) ≈ P (Ci(tk)|e0, et1 . . . , etk) exp(QCi
(tk − tk−1)).

5.1.2 Marginalization

The clique tree algorithm depends on the marginalization step—taking a joint

intensity matrix amalgamated over a set of nodes and returning a smaller intensity

matrix amalgamated over a subset of those nodes. The marginalization operator takes

a CIM QS|C , a set of nodes Y ⊂ S, and an initial distribution P over the nodes in S.

It returns a reduced CIM of the form QS′|C = margPY (QS|C), where S ′ = S − Y .

There are multiple ways of approximating these smaller intensity matrices, and

[17] presented two, the linearization method and the subsystem method.

5.1.2.1 Linearization Method. Let s′ ⊕ y be the full state instantiation of S to s′

and y to Y . Consider a transition from s1 = s′1 ⊕ y1 to s2 = s′2 ⊕ y2 during some

interval ∆t. Ideally, the marginalization process would ensure that

P (s′2|s′1, c) =
∑
y1,y2

P (s′2 ⊕ y1|s′1 ⊕ y2, c)P (y1|s′1, c)
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for all ∆t, s1, s2, and c. As this is not generally possible, the linearization approach

takes advantage of two approximations. First, we assume that y does not change over

time such that we can use the values of y at the beginning of the interval, i.e.,

P (s′2|s′1, c) ≈
∑
y

P (s′2 ⊕ y|s′1 ⊕ y, c)P 0(y|s′1, c),

where P 0 is the distribution at the beginning of the interval. Second, we use the

linear approximation to the matrix exponential,

exp(Q∆t) ≈ I + Q∆t,

to give us an approximation of the intensity matrix as

Q(S′|C)(s
′
1 → s′2|c) ≈

∑
y

QS|C(s′1 ⊕ y → s′2 ⊕ y|c)P 0(y|s′1, c).

5.1.2.2 Subsystem Method. Given an entrance distribution P 0
S for subsystem S, we

compute the holding time and the exit distribution PE
S . Let 1 be a column vector of

ones over the states of S. The distribution over the holding time within a subsystem,

holding Y constant in state yi, is

F (t) = 1− P 0
S exp(QSt)1.

To approximate the expected holding times, we set the holding intensity value to be

qi,i = −1/(P 0
S(−QS)−11).



77

The exit distribution is computed from the matrix MS of the embedded Markov chain

for the subsystem S. Let qSi,j denote entry i, j of the intensity matrix QS. The entries

of MS are

mi,j =


0 if i = j

qSi,j/|qSi,i| otherwise

.

The exit distribution is then computed as

PE
S = (I + MS)−1.

The exit distribution of subsystem S is used to weight the transition probabilities

between subsystems, used for computing qi,j for i 6= j.

The subsystem method relaxes the assumption of the linearization method that

the node being marginalized out does not change over time.

5.2 Node Isolation

The linearization and subsystem methods tend to degrade as ∆t increases. To

counteract this, the approximations can be time-sliced. The marginalization is done

over a shorter interval, and the new initial distribution is computed for use in the

next time-slice. As the time-slices become shorter, the accuracy of the two methods

improves. However, this is at the cost of increased computational time.

Instead of trying to marginalize with intensity matrices that approximate the

immediate dynamics of the cliques, we try to marginalize with intensity matrices

that describe the long-term behavior. We call this approach “node isolation.”

The following two sections show three methods for node isolation. First, we show

a sample-based approach for node isolation that estimates unconditional intensity
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Algorithm 5.3 Sample-based node isolation method for computing an unconditional
intensity matrix.

IsolateNode(σ,X)

1: QX ← 0
2: v ← 0
3: for each 〈ts, te, X(ts)〉 ∈ σ[X]
4: xi ← X(ts)
5: xj ← X(te)
6: qi,i ← qi,i + (te − ts)
7: qi,j ← qi,j + 1
8: vi ← vi + 1
9: end for
10: for each xi ∈ X
11: qi,i ← qi,i / vi
12: qi,i ← −(1/qi,i)
13: z ← 0
14: for each xi, xj ∈ X 3 i 6= j
15: z ← z + qi,j
16: end for
17: for each xi, xj ∈ X 3 i 6= j
18: qi,j ← qi,j · (|qi,i|/z)
19: end for
20: end for
21: return QX

matrices from a single, sufficiently long trajectory of the network. Second, we show

a closed-form solution with two variations that more efficiently computes the uncon-

ditional intensity matrices. Note that while these last two are closed-form solutions,

they are still approximations because they are approximating the behavior of multiple

conditional intensity matrices with a single unconditional intensity matrix.

5.2.1 Sample-Based Node Isolation

First we present the sample-based method for node isolation. This method ap-

proximates the unconditional intensity matrix from a trajectory by aggregating the

average sojourn times and transition counts between subsystems.
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Algorithm 5.3 shows the pseudocode for how node isolation can be accomplished

for an arbitrary node in the network. The algorithm accepts a trajectory, as gener-

ated from Algorithm 2.1, and the node to be isolated and returns the unconditional

intensity matrix of the isolated node.

First, lines 1-2 of the algorithm initialize a zero unconditional intensity matrix for

X and a zero vector for the states of X. Although the states of ancestor nodes may be

changing throughout the trajectory, lines 3-9 are concerned only with state changes

of the node to isolate. Specifically, line 6 calculates the total amount of time spent

in each state of the node, line 7 counts how many times the system has transitioned

between each state of the node, and line 8 counts the total number of transitions that

have occurred between states of the node. Next, lines 10-20 transform these statistics

into an unconditional intensity matrix. Line 11 calculates the average sojourn time

(amount of time spent per visit) for each state of the node, which is taken as the

expected sojourn time. Therefore, line 12 takes the negative reciprocal for use in

the exponentially decreasing probability function. The relative number of transitions

from a state to the remaining states represents the transition probabilities, which

lines 13-19 normalize in accordance with the intensity matrix row constraints.

5.2.2 Closed-Form Node Isolation

Now we describe the closed-form solution for CTBN node isolation. First, we

amalgamate all of the ancestors of the node to isolate into a single supernode, creating

a single parent of the node to isolate consisting of m states. Then we amalgamate

the node to isolate and its parent. The states of the amalgamated supernode are

represented as (pk, cl), meaning the parent p is in state k while the child c is in state
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Q =

(p1, c1) . . . (pm, c1) · · · (p1, cn) . . . (pm, cn)



(p1, c1)
... Q1

· · · Q1,n(pm, c1)

...
...

. . .
...

(p1, cn)
... Qn,1 · · · Qn(pm, cn)

.

Figure 5.1: The amalgamated intensity matrix for a node and its parent as a block
matrix.

l. We find the full joint intensity matrix of the parent with m states and the child of

n states as shown in Figure 5.1.

The intensity submatrix Qi along the diagonal of Q denotes the dynamics of

subsystem i when the state of the child is held constant. The intensity submatrix Qi,j

is a diagonal matrix showing the transition probabilities from the states of subsystem

i to the states of subsystem j. Each of these matrices is diagonal because two nodes of

a CTBN cannot transition simultaneously, and an off-diagonal entry in theQi,j would

represent a transition in both p and c. Thus, when the state of the child changes, the

state of the parent must be held constant.

To find the unconditional intensity matrix of the child, we replace each submatrix

Qi with the mean sojourn time in subsystem i and replace each submatrix Qi,j with

the probability of transitioning from subsystem i to subsystem j.

First we find the stationary distribution of the embedded Markov chain of the

entire system. The off-diagonal entries of Q are normalized by the diagonal to get the

transition probabilities and the diagonals are zeroed out. The stationary distribution

of this embedded Markov chain can then be found using a technique called first step
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analysis, which breaks down the problem by analyzing the possible transitions on the

first step and then applying the Markov property [24]. The system of equations for

the stationary distribution of the embedded Markov chain is

Pi,j =
∑

1≤k≤m
k 6=i

(pi,k, cj,j)

|(pi,i, cj,j)|
Pk,j +

∑
1≤l≤n
l 6=j

(pi,i, cj,l)

|(pi,i, cj,j)|
Pi,l (5.1)

and, to ensure that the probabilities form a valid probability distribution,

∑
1≤k≤m

Pk,j +
∑

1≤l≤n

Pi,l = 1, (5.2)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n, where Pi,j is the steady-state probability the parent

being in state i and the child being in state j. In other words, first step analysis sets

up the quantity to be calculated starting from a state i in terms of the probability of

transitioning from i to state j, multiplied by the quantity to be calculated starting

from j, ∀j 6= i. Setting up this relationship from each state results in a system of

equations that can be solved to yield the quantity for each state.

Alternatively, we could use the initial distribution P 0 for the values of Pi,j instead

of the steady-state probabilities. Using the steady-state probabilities attempts to

describe the long-term dynamics of the node, while using the initial distribution

attempts to describe the immediate dynamics of the node. For the mean sojourn

time in the subsystem, we start by examining the diagonal matrices Qi:

Qi =



(p1,1, ci,i) (p1,2, ci,i) · · · (p1,m, ci,i)

(p2,1, ci,i) (p2,2, ci,i) · · · (p2,m, ci,i)

...
...

. . .
...

(pm,1, ci,i) (pm,2, ci,i) · · · (pm,m, ci,i)


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We can compute the expected time to leave the subsystem also using first step anal-

ysis. The system of equations for the expected time Ti,j to leave subsystem i starting

from each state j in the subsystem is:

Ti,j =
1

|(pj,j, ci,i)|
+
∑

1≤l≤m
l 6=j

(pj,l, ci,i)

|(pj,j, ci,i)|
Ti,l (5.3)

for 1 ≤ j ≤ m. This gives the mean time to leave the subsystem starting from

each state. Now we need the entry distribution into the subsystem, which we find by

weighting the transition probability into each state of the subsystem by the originating

state’s stationary distribution. Each of the other subsystems can transition once into

each state of the subsystem, as shown by the off-diagonal matrices Qi,j:

Qi,j =



(p0,0, ci,j) 0 · · · 0

0 (p1,1, ci,j) · · · 0

...
. . .

...

0 0 · · · (pm,m, ci,j)


The transition probability between subsystems i and j is:

ci,j =
m∑
k=1

(
(pk,k, ci,j)

|(pk,k, ci,i)|
Pk,i

)
(5.4)

The expected sojourn time in subsystem i is:

ci =
n∑
l=1

Ti,l


m∑
k=1
k 6=i

(
(pl,l,ck,i)

|(pl,l,ck,k)|Pl,k

)
m∑
k=1
k 6=i

ck,i

 (5.5)
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Having the expected sojourn time in each subsystem and the transition probabilities

betweens subsystems, we can now populate the unconditional intensity matrix Q′ for

the child:

Q′ =



−1/c1 c1,2/z1 · · · c1,n/z1

c2,1/z2 −1/c2 · · · c2,n/z2

...
...

. . .
...

cn,1/zn cn,2/zn · · · −1/cn


, (5.6)

where zi is a normalizer to ensure each row sums to zero.

The pseudocode for the closed-form node isolation method is given in Algo-

rithm 5.4. The algorithm accepts a child node and its parents. The algorithm returns

an unconditional intensity matrix for the child node. Lines 1 and 2 amalgamate all

of the parents of the child node by repeated calls to Algorithm 2.2 to amalgamate all

nodes in Pa(X). This allows each combination of parent states to be represented as a

single parent state. Line 3 then amalgamates the parent and child into one intensity

matrix upon which to work. Line 4 calculates the steady-state distribution of the

parent by solving the system of equations given in Equations 5.1 and 5.2. Line 5

calculates the expected sojourn time in each subsystem of the parent by solving the

system of equations given in Equation 5.3. Lines 6-11 iterate over the states of the

child, while line 9 calculates the transition probabilities between the child states using

Equation 5.4. Lines 12-14 calculate the expected sojourn time in each state of the

child using Equation 5.5. Line 15 uses the individually computed values of lines 9

and 13 to construct the matrix, normalizing the rows of the matrix to create a valid

intensity matrix, as per Equation 5.6.

Compared to the sample-based IsolateNode in Algorithm 5.3, this closed-form

solution performed substantially faster in all experiments. Furthermore, as the

number of samples increased, the unconditional intensity matrix returned by the



84

Algorithm 5.4 Closed-form node isolation method for computing an unconditional
intensity matrix.

IsolateNode(X ∪Pa(X))

1: Y ← Amalgamate(Pa(X)) // Equation 6.7
2: replace Pa(X) with Y
3: QY ∪X ← Amalgamate(Y ∪X)
4: P ← GetSteadyStateDistribution(QY ∪X , Y ) // Equations 5.1 and 5.2
5: T ← GetExpectedTimeInSubsystems(QY ∪X , Y ) // Equation 5.3
6: n← |X|
7: for i = 1, . . . , n
8: for j = 1, . . . , n
9: ci,j ← GetTransitionProbability(QY ∪X , Y, P ) // Equation 5.4
10: end for
11: end for
12: for i = 1, . . . , n
13: ci ← GetExpectedTimeInState(QY ∪X , Y, T, P, c1,i, . . . , cn,i) // Equation 5.5
14: end for
15: QX ← ConstructIntensityMatrix(c1, . . . , cn, c1,1 . . . , cn,n) // Equation 5.6
16: return QX

IsolateNode(σ,X) algorithm converged to the unconditional intensity matrix calcu-

lated by this closed-form solution. The closed-form node isolation method requires

solving an m × n matrix, while the subsystem method requires solving m n × n

matrices. The linearization method is linear in the size of the m× n matrix.

5.2.3 Node Isolation in Cycles

One difficulty of node marginalization is that the dynamics of a node depend on

all of its ancestors. If the network is a directed acyclic graph (DAG), then we can

marginalize each layer in succession, and the complexity of isolation depends on the

number of immediate parents to each node. However, cycles are allowed in CTBNs.

When a cycle is introduced, every node in the cycle must be included to marginalize

any node in the cycle, because every node in the cycle is an ancestor of every other

node in the cycle.
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In this section, we show an iterative step to our node isolation algorithms that

avoids dealing with the entire cycle all at once. The idea is that, given a cycle, we

start at an arbitrary node in the cycle and temporarily remove the incoming arc.

Previously, the node had a set of conditional intensity matrices, whereas now we

need to replace it with one unconditional intensity matrix. While this unconditional

intensity matrix depends on the dynamics of the parent that was just removed, we

simply use an unconditional intensity matrix that is the average of its conditional

intensity matrices.

Now, we isolate its child node, finding its unconditional intensity matrix. De-

pending on the actual parameters, this unconditional intensity matrix of the isolated

child may be a poor approximation, because of how we constructed the unconditional

intensity matrix of its parent. However, it is likely a better approximation of the

unconditional intensity matrix than that of its parent. This process repeats, isolating

nodes around the cycle, back to the originally chosen node. Now, this node is the

child, and its conditional intensity matrices are used for its isolation. This process

continues to loop around the cycle until convergence. This process is analogous to

loopy belief propagation in cyclic graphs, such as in Markov random fields and in

Bayesian networks in which the acyclic constraint has been relaxed [36].

We demonstrate this process on the simple, three-node network given in Figure

5.2. We used the algorithm for finding the closed-form solution from the previous

section on the whole network to isolate node A. This was taken as the ground truth.

We compared this unconditional intensity matrix QA with the unconditional intensity

matrix Q′A calculated from the iterative process described above. Error was calculated

as
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Figure 5.2: Example CTBN to demonstrate iterative isolation in cycle.

3∑
i=1

3∑
j=1

|qi,j − q′i,j|
|qi,j|

,

which is the sum of the relative errors between entries in the two matrices. After

three iterations around the cycle, the process converged and the cumulative relative

error for node A was 1.4%.

This experiment demonstrates the feasibility of iterative node isolation in cycles.

More experiments are needed to analyze how the approach handles larger cycles with

more states and more varied parameters and how these may affect accuracy. Further-
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Figure 5.3: Example CTBN of a simple system.

more, we currently do not know if convergence is guaranteed for the unconditional

intensity matrices in cycles. However, we can see the potential benefit of the approach

even with this single, small cycle. The iterative approach works with at most half of

the state-space at any one time. As cycles grow longer, the ability to work with only

a single node and its immediate parents becomes even more beneficial.

5.3 Experiments

We compared the node isolation techniques with the linearization and subsystem

methods on a simple, synthetic network shown in Figure 5.3 and the drug effect

network from Figure 2.3 by plugging in the different node marginalization methods

into the clique tree algorithm. We computed the exact probabilities for all the nodes

through time using the forward-backward algorithm from Section 2.2.3. We measured

the difference of the approximate distribution from the exact distribution using KL-

divergence, defined formally as follows.



88

Definition 5.3.1. (KL-Divergence) For discrete probability distributions P and Q,

the KL-divergence of Q from P is defined as

DKL(P‖Q) =
∑
i

P (i) log2

(
P (i)

Q(i)

)
.

KL-divergence is also called “relative entropy” and quantifies the cost of using

a wrong distribution Q instead of P [36]. We can use it as a way to compare the

accuracy between approximate distributions based on the true distribution.

In our experiments, we computed the average KL-divergence of all nodes in the

network for each point in time. Let P (X(t)) denote the true distribution of X at

time t, and let P ′(X(t)) denote the approximate distribution for X at time t. For a

given point in time t, we calculate the average KL-divergence as

1

|X|
∑
X∈X

DKL(P (X(t))‖P ′(X(t))).

5.3.1 Synthetic Network

First, we tested node marginalization on the simple, synthetic network. Each node

has 2 or 3 states for a total state-space size of 72 over the entire network. The initial

distributions and intensity matrices for all the nodes can be found in Appendix D.

We computed P (X(t)) and P ′(X(t)) at each point in time on the interval [0, 10)

hours with t advancing in 18-minute increments. First, we compared the lineariza-

tion method (Linear), the subsystem method (Subsystem), and the node isolation

method using the steady-state distributions (Isolation-SS). The results are shown

in Figure 5.4. The results show that the node isolation is better able to estimate
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Figure 5.4: Average KL-divergence for the linearization, subsystem, and isolation
methods on the simple, synthetic network.

the probabilities for this network, meaning that the unconditional intensity matrices

computed by the node isolation method provide a better approximation.

Next, we compare four variations of the node isolation method. The first and

second are the sample-based node isolation method as computed from Algorithm 5.3

using trajectories sampled to 1000 transitions (Isolation-1K) and 10,000 transitions

(Isolation-10K). The third is the closed-form node isolation method using the initial

distribution instead of the steady-state distribution (Isolation-P0). The fourth is the

closed-form node isolation method using the steady-state distribution (Isolation-SS).

The results are shown in Figure 5.5. We see that the Isolation-SS variant maintains

the lowest KL-divergence and that the longer sample improves the accuracy of the

sample-based method.
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Figure 5.5: Average KL-divergence for sample-based and closed-form node isolation
methods.

5.3.2 Drug Effect Network

For the drug effect network, we averaged the KL-divergence of all nodes at each

point in time on the interval [0, 20) hours in 30-minute increments. This time we

incorporated the point evidence of Eating(10.0) = e0. We compared the linearization

method, the subsystem method, the node isolation with the steady-state probabilities

(Isolation-SS), the sample-based node isolation method with 1000 samples (Isolation-

1K), and the node isolation with the initial distribution (Isolation-P0). The results are

shown in Figure 5.6. We notice that the KL-divergence of the linear and subsystem

methods increase as they try to infer further in time. The node isolation methods, on

the other hand, level out in average KL-divergence at the start and again after the

evidence is applied. In this case, node isolation using the initial distribution did better

than the other four on the interval [0, 10). Both node isolation methods become better
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Figure 5.6: Average KL-divergence for different node marginalization methods on the
drug effect network.

than the other two on the interval [10, 20) after the evidence to Eating was applied.

Again the node isolation methods were better able to describe the long-term behavior

of the network, converging to a constant KL-divergence while the linearization and

subsystem methods continue to increase past hour 20. The node isolation methods

did not perform as well as with the synthetic, five-node network of the preceding

section. Recall that the drug effect network includes a three-node cycle. The KL-

divergence of these nodes are higher than that of the other nodes, indicating that

cycles present a challenge for inference for all methods.

5.3.3 Ring Network

The cycle of the drug effect network appears to be especially challenging for these

approximation methods. This experiment explores the difficulty by testing the node
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marginalization methods on cyclic networks of increasing length. For a ring network

of size n, we construct the network by adding n two-state (T/F ) nodes and connecting

them as follows.

X1 → X2 → · · · → Xn → X1

Each node starts in the T state. The conditional intensity matrices for nodes X1 and

Xk for k ≥ 2 are given as follows.

QX1|Xn=T = QXk|Xk−1=T =

−k k

k −k



QX1|Xn=F = QXk|Xk−1=F =

−k k

2k −2k


We query the probability distribution of each node in the cycle on the interval

[0, 5) hours in 6-minute increments. We compute the average KL-divergence of the

approximate distributions from the exact distributions over all the nodes in the cycle.

We vary the size of the cycle from n = 3 to n = 6.

First, we tested the closed-form node isolation by itself as the length of the cycle

increased. The results are shown in Figure 5.7. For the networks with these parame-

ters at least, increasing the length of the cycle actually improved the approximation.

We note that the closed-form method converges to non-zero average KL-divergence

for the 3-node cycle, similar to what we saw with the drug effect network. There-

fore, while the node isolation methods attempt to describe the long-term behavior,

the unconditional intensity matrices calculated from the method are not guaranteed

to converge to the true long-term behavior, as observed in these cases with cycles.

Note that the temporary increase in KL-divergence around hour 1 is a result of the
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Figure 5.7: Average KL-divergence over all nodes for closed-form node isolation with
increasing cycle length.

node isolation method’s emphasis on approximating long-term behavior rather than

immediate behavior, which results in less accurate approximations early on.

However, the node isolation methods still offer advantages over the linearization

and subsystem methods. We show the five methods, the linearization method, the

subsystem method, the closed-form node isolation method with the steady-state prob-

abilities, the closed-form node isolation with the initial distribution, and the sample-

based node isolation method with 1000 samples. For each method, we averaged the

KL-divergence over all nodes and over all of the 6-minute increments. The results are

shown in Figure 5.8.

The length of the cycle did not have much of an impact on the average KL-

divergence for any of the methods. However, the experiments again show that the

node isolation methods maintain lower KL-divergence. In this case, the node isolation
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Figure 5.8: Average KL-divergence over all nodes and all timesteps for marginaliza-
tion methods with increasing cycle length.

method with the initial distribution is nearly identical to the subsystem method, mak-

ing them difficult to distinguish in Figure 5.8 because the two curves are overlapping.

The magnitude of the KL-divergence for these cycles are small, as compared to the

drug effect network. This seems to imply that the difficulty is not simply the presence

of cycles but the parameters of the conditional intensity matrices of the nodes of those

cycles. Further experiments on cycles with “hard” parameters is future work.

5.3.4 Cardiac Assist System

Finally, we compared the inference methods on a larger, real-world network. We

used the model for a cardiac assist system (CAS), presented in [33], which is broadly

used in the literature and based on a real-world system [82, 83]. In [33], they show

how the CTBN is able to encode Dynamic Fault Trees (DFTs), which are reliability



95

Figure 5.9: Cardiac assist system model.

models that use Boolean logic to combine series of lower-level failure events while

preserving failure sequence information [84]. The intensity matrices of the CTBN are

used to represent the gates available in the DFT, including AND, OR, warm spare

(WSP), sequence enforcing (SEQ), probabilistic dependency (PDEP), and priority

AND (PAND). Our model for this experiment is the DFT for the CAS system rep-

resented as a CTBN. The network is shown in Figure 5.10. The initial distributions

and intensity matrices for all the nodes can be found in Appendix E. Of the various

repair policies evaluated in [33], we use the repair rate of µ = 0.1 for all components.

The names of the nodes are given in Table 5.1.

We query the probability distribution of the System node’s failed and non-failed

states from 0 to 50 hours in 2 hour increments. For this model, exact inference is

intractable, because the size of the state-space is over 6.6 million. Instead, we ran

importance sampling for 100,000 samples and used this as our true distribution for

calculating KL-divergence. The results are shown in Figure 5.10.

The results are consistent with the results of the previous experiments. While

the KL-divergence increases early on for the both the sample-based node isolation
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Table 5.1: CAS component names.

Abbreviation Name Subsystem

P primary CPU CPU

B warm spare CPU CPU

CS cross switch CPU

SS system supervision CPU

MA primary motor Motor

MB cold spare motor Motor

MS switching component Motor

PA pump A Pump

PB pump B Pump

PS cold shared pump Pump

Figure 5.10: KL-divergence of System node for all marginalization methods.

method and the steady-state, closed-form node isolation method, it decreases below

the other methods as the query progresses further out in time.
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5.4 Conclusion

We have shown novel methods for approximate CTBN node marginalization that

can better approximate a node’s long-term behavior than previous methods. The node

isolation methods take into account the probabilities of transitioning into and out of

specific states of the subsystems to be marginalized out, rather than just computing

the exit distribution and the mean time in the subsystem and then multiplying these

by the entrance distribution.

Currently, the node isolation methods can only incorporate point evidence. Ex-

tending these methods to be able to support other types of evidence, in addition to

being able to condition on later evidence, are left as future work.

Although node isolation is not a general CTBN inference algorithm, its ability to

accurately estimate the long-term behavior of subsystems becomes especially useful

in the next chapter, in which we apply the closed-form node isolation method to

sensitivity analysis of CTBNs.
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CHAPTER 6

SENSITIVITY ANALYSIS

In this chapter, we show how to perform sensitivity analysis on the performance

functions introduced in Chapter 4. Sensitivity analysis looks at how variations in

the input to a model affect the model’s output and is useful in several contexts. In

modeling, for example, sensitivity analysis can aid in model design, validation, and

calibration. It can also be used to measure the robustness of model inference (the

extent to which noise and uncertainty in the input affects model output) or to run

hypothetical scenarios.

6.1 Background Work

We provide a formal definition of sensitivity analysis for probabilistic graphical

models as follows.

Definition 6.1.1 (Sensitivity Analysis). LetM denote a probabilistic graphical model

specified with parameters P. Let R be the result of some inference task over M.

Sensitivity analysis is the study of the relationship between ∆P and ∆R given M.

Research has been done on sensitivity analysis for many probabilistic networks,

such as Bayesian networks [85, 86], Markov chains [87, 88, 89], Markov processes

[90, 91, 92, 93, 94], and queuing networks [95, 96, 97]. To our knowledge, we present

the first methods for sensitivity analysis specific to the CTBN model.

In our application of sensitivity analysis to CTBNs, the input is in perturbations

to the parameters of the CTBN. Sensitivity analysis tests how changes to the network
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parameters affect the expected performance of the modeled system. Our application

uses the CTBN for reliability modeling. We use the performance functions to repre-

sent reliability measures, such as mean time between failures (MTBF) and availability.

Sensitivity analysis can then be performed with respect to these measures.

Reliability describes the ability of a system to function under stated conditions

for a specified period of time [98]. To determine the reliability of a system, a model

of the system is created and inference is performed over the model. Markov chains

and Markov processes have often been used as reliability models. As a factored

Markov process, the CTBN is a natural next step for reliability modeling, as it is able

to represent more complex systems. As a relatively new model, the CTBN is only

recently starting to be explored in the context of reliability analysis.

The work presented in this chapter shows how to perform reliability analysis more

efficiently, taking advantage of the factored nature of the network and calculating

quantities called potentials, which can be re-used for different queries. Instead of

running inference over the whole network all at once and for each variation of pa-

rameters (e.g., uncertainty in the failure rates), the method presented here is able to

isolate different subnetworks and only update the potentials when necessary.

6.1.1 Perturbation Realization

Although there are several methods for sensitivity analysis of Markov processes,

this chapter builds on perturbation realization. Perturbation analysis using a single

trajectory σ of an ergodic Markov process is discussed in [90], where the authors study

the sensitivity of the steady-state performance of a Markov process with respect to its

intensity matrix. They use trajectories to avoid costly computations on the intensity

matrix itself. Because the full joint intensity matrix of the CTBN is exponential in
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the number of nodes, their approach is a natural candidate for extending sensitivity

analysis to CTBNs. They are interested in the steady-state performance, regardless

of the Markov process’s initial state. Thus, they only need to use a single trajectory,

provided the trajectory is long enough to converge to within some desired preci-

sion. The ergodic assumption assures that each state is reachable throughout the

process and that the process will never reach an absorbing state, which would come

to dominate the estimate the longer the process is run. Hence, the node isolation

of Chapter 5, which effectively estimates long-term unconditional intensity matrices

using the steady-state probabilities, can be used to subdivide the network and perform

sensitivity analysis independently for different subnetworks.

6.1.1.1 Steady-State Probability Vector. Using the definition of the Markov pro-

cess given in Section 2.2.1, let π = (π1, π2, . . . , πn) denote the row vector represent-

ing the steady-state probabilities of the n states of the Markov process X. Letting

1 = (1, 1, . . .)T be a transposed n-sized vector, we have

π1 = 1 and πQ = 0.

6.1.1.2 Performance Measure. Let f : X → R (mapping the state space of the

Markov process to the real numbers) be a performance function of the process. This

function is used to calculate the performance measure, defined as the function’s ex-

pected value,

η =
n∑
i=1

πif(xi) = πf, (6.1)
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where f = (f(x1), f(x2), . . . , f(xn))T is a column vector and each entry is a state’s per-

formance function value. By themselves, the transition intensities of a Markov process

do not encode state values, only transition probabilities. The performance function

f , on the other hand, allows us to attach cost/reward values to the states. The

performance measure represents the expected cost/reward per unit time of running

the process. Furthermore, the performance measure gives direction for performing

sensitivity analysis, because now we can measure how changes to the intensity matrix

affect performance.

6.1.1.3 Partial Derivatives. Suppose that the intensity matrix QX changed to

Q′X = QX + ε∆QX with ε being an arbitrarily small positive number and with ∆QX

being an n × n matrix (referred to as the perturbation matrix) such that each row

in ∆QX is also constrained to sum to zero,
∑

j qi,j = 0 ∀i, such that Q′X maintains

the same constraints on the intensity matrix as given in Section 2.3.1. Therefore,

ε∆QX perturbs the values of QX to Q′X . Let X ′ be the Markov process with tran-

sition intensity matrix Q′X . The performance measure of X ′ can be decomposed as

ηε = η + ∆η. The derivative of η with respect to ∆QX is then defined as

∂η

∂∆QX

= lim
ε→0

ηε − η
ε

. (6.2)

Analogously,

∂QX

∂∆QX

= lim
ε→0

Q′X −QX

ε
= QX .

As a derivative, Equation (6.2) can be thought of as the sensitivity of η with respect

to the changes in QX , i.e., in the direction of ∆QX .
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6.1.1.4 Perturbation Realization. The concept of perturbation realization is the

idea that any change in a parameter’s value can be decomposed into a sum of the

effects of many individual changes on a trajectory [90]. Therefore, the average effect

of each individual change in the ∆QX matrix can be measured and recorded in an

n×n matrix called the realization matrix, denoted DX , where each entry di,j is called

a realization factor.

Let X(t′){j} denote the state of the Markov process X at time t′ > t having been

in state xj at time t. Let S(t, i){j} be the first time a transition from state xj to state

xi occurs since time t, defined as

S(t, i){j} = inf{t′ : t′ ≥ t,X(t′){j} = i}.

Then, provided the performance measure is bounded, Cao and Chen [90] show that

each entry di,j in the realization matrix DX is

di,j = E

[∫ S(t,i){j}

t

(
f(X(t′){j})− η

)
dt

]
, for xi, xj ∈ X.

Each realization factor measures the difference of being in state xj instead of

xi on the performance measure of the system. In the terminology of perturbation

analysis, if the process at t is perturbed from being in state xi to state xj, then at

t′ = t + S(t, i){j} the perturbation is realized by the process. That is, at t′ ≥ t, the

perturbed trajectory makes it back to state xi, and the process continues the same

as before it was perturbed.

6.1.1.5 Performance Potential. Shown in [90], we have
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di,j = di,k + dk,j, for xi, xj, xk ∈ X,

which, they point out, is a property similar to that of potential energy in physics.

A quantity gi, called the performance potential of state xi, can be defined by

choosing a base state xk ∈ X and a real number c such that

gk = c and gi = gk + dk,i.

They prove that,

di,j = gj − gi,

or that each realization factor is the difference of two potentials. The vector of

state performance potentials g = (g1, g2, . . . , gn) is called the potential vector. A

potential can be thought of as the expected cost/reward over a set period of time

having started from each state. While the performance function gives the cost/reward

per unit time of being in each state, the potentials go further. They include the

expected performance gains/losses that are reachable from the state as well. Thus,

some states might be assigned zero value from the performance function, but they

still have potential because the system has a specific probability of transitioning to a

cost/reward state from that state.

The realization matrix and the potential vector give two different quantities by

which we can calculate the derivative of the performance measure. Proven in [90],

∂η

∂∆QX

= π∆QT
XDXπ

T = π∆QXg. (6.3)
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6.1.1.6 Algorithms for Single Trajectory. The perturbation matrix ∆QX of Equa-

tion (6.3) is supplied by the user, but the other quantities must be calculated to

determine ∂η
∂∆QX

. Algorithms for computing π and g based on a single trajectory,

summarized below, are provided in [91].

Let Tk be the kth transition epoch of X (the time of the kth transition), Sk be

its kth sojourn time (the time it remains in the kth state), and Xk be its state after

the kth transition. The indicator function I(Xk) is 1 if Xk = xi for state xi and 0

otherwise. Then the steady-state probability πi and potential gi of each state xi can

be calculated from a single trajectory of N → ∞ transitions, with probability one,

as:

πi = lim
N→∞

1

TN

{
N−1∑
k=0

I(Xk)Sk

}
and (6.4)

gi = lim
N→∞

∑N
k=0

{
I(Xk)

∫ Tk+T

Tk
f(X(t))dt

}
∑N

k=0 I(Xk)
. (6.5)

Equation (6.4) sums the amount of time spent in a state and divides by the total

running time of the process, giving the steady-state probability of that state, which

becomes the expected value within the limit. Equation (6.5) averages the realization

factor of a state across the trajectory, giving the potential for that state within the

limit. The parameter T is a tunable parameter controlling the amount of time used

to estimate the realization factors. We found that our heuristic of setting T equal

to the longest sojourn time in the trajectory gave consistently accurate results across

the different networks and trajectories. The benefit of using Equation (6.3) is that

once π and g are computed from a single trajectory, ∂η
∂∆QX

can be calculated for any

number of user-defined perturbation matrices.
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Note that closed-form solutions exist for calculating π without having to esti-

mate it from the trajectory using Equation (6.4). Furthermore, we found that the

accuracy of the ∂η
∂∆QX

estimates were greatly improved, especially for large pertur-

bations, when using the steady-state probabilities of the perturbed intensity matrix

rather than the original intensity matrix. The closed-form solution for the perturbed

steady-state probabilities is found by calculating the normalized left eigenvector of

Q′X corresponding to the zero eigenvalue [24],

πQ′X = 0. (6.6)

6.1.2 Other Methods for Sensitivity Analysis

In addition to perturbation realization, there are two other approaches that have

been developed for performing sensitivity analysis on Markov processes, namely, the

likelihood ratio method and the reduced augmented chain method.

6.1.2.1 Likelihood Ratio Method. The likelihood ratio (LR) method [99, 100, 101]

takes the ratio of the likelihood of a trajectory from the original process with the like-

lihood of one that incorporates small changes to the transition rates. After this ratio

is simplified and differentiated, it can be estimated using the number of transitions

between states and the state sojourn times, as taken from a trajectory. This estimate

is then used with the performance function to estimate the expected performance

measure derivative. The LR method faces an inherent trade-off between variance in

the estimator and bias in the estimate of the steady-state probabilities depending on

the length of the trajectory that the estimator is given. One benefit of using LR,
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however, is that the process yields confidence intervals on the performance measure

derivatives without extra effort.

6.1.2.2 Reduced Augmented Chain Method. The reduced augmented chain (RAC)

method [93, 89] also uses a single trajectory, but instead of simulating the nominal

process by itself, it first creates a combined process of both the nominal and the

perturbed process, representing a superposition of nominal and perturbed states.

Depending on the number of states that have been perturbed, this could represent a

substantial increase in the number of states that must be simulated. On the other

hand, the method does not rely on knowing the intensity matrix values, working

instead with direct observation of the system, and can be used for on-line estimation

of the steady-state probability sensitivities. This method allows sensitivity analysis

to be performed on the actual system itself without first constructing a model of the

system on which to perform sensitivity analysis.

There is another important feature trade-off between the RAC method and per-

turbation realization. For perturbation realization, multiple perturbations can be

tested for a given trajectory while the performance function remains fixed (otherwise

the performance potentials would need to be re-estimated). With the RAC method,

the performance function can be varied for a given reduced augmented chain. After

varying the parameter perturbations, however, a new reduced augmented chain must

be created and sampled.

Note that LR and RAC could also be incorporated into our approach to CTBN

sensitivity analysis. Even so, we chose perturbation realization for use in our ex-

periments. Our goal is efficient sensitivity analysis of CTBNs, and the ability of

perturbation realization to calculate and retain potentials for different subnetworks

is directly applicable to that end. LR does not compute potentials that can be reused



107

between queries, while that is one of the main features of perturbation realization.

RAC actually increases the size of the state-space, which is counter-productive when

trying to deal with the already-exponential size of the state-space for CTBNs.

6.2 Perturbation Realization on CTBNs

As the CTBN is a generative model as shown in Section 2.3.3, the sample-based

method of perturbation realization for Markov processes is a natural candidate for

CTBN sensitivity analysis. A straightforward application of perturbation realization

to CTBNs would result in simply amalgamating the entire network into one large

Markov process, as described in Section 2.3.4. But this fails to take advantage of the

factored nature of CTBNs, which attempts to reduce complex state-spaces into more

compact representations that model conditional dependencies instead of the full joint

distributions. The näıve approach to sensitivity analysis requires working with the

full joint intensity matrix, ignoring the very reason for having the factored representa-

tion in the first place. Generating trajectories becomes exponentially expensive, and

perturbation realization becomes infeasible. The factored nature of the networks en-

ables sensitivity analysis to work on smaller subnetworks. These subnetworks can be

sampled, the performance potentials calculated, and multiple perturbation matrices

tested—all separately.

For a CTBN sensitivity analysis example, consider the network shown in Figure

5.3 as a reliability model. Suppose that a performance function is attached to the

two states of the E node, which denote the failed and non-failed states of the system.

Instead of amalgamating all of the nodes into one large Markov process, we would

like to divide the system into smaller subnetworks. Smaller subnetworks limit the
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state-space size of any one subnetwork and allow for more tractable evaluation of

Equation 6.3 for calculating the change in performance for given perturbations.

6.2.1 Sufficient Conditions for CTBN Ergodicity

Another issue to address when dividing the network into different subnetworks

is ensuring ergodicity, required by the algorithms for perturbation realization. The

CTBN, although in factored form, still represents a single process. Therefore, we

would like to show that if each of the nodes (as a subprocess) is ergodic, then the

process represented by larger sets of nodes in the CTBN (including the network as a

whole) is also ergodic. If this is the case, then perturbation realization can be applied

to trajectories generated from subsets of nodes as well.

Suppose we have two nodes with the most general case that both A → B and

A ← B. If |A| denotes the number of states of A, then the number of states in the

amalgamated supernode AB is |A||B|. Assume that A and B are each ergodic. In

other words, A and B are each irreducible and positive recurrent, defined formally as

follows.

Definition 6.2.1 (Irreducible). Let xi and xj be any two states of X. X is irreducible

if, for all t, there exist t′ > t such that

P (X(t′) = xi|X(t) = xj) > 0 and P (X(t′) = xj|X(t) = xi) > 0.

That is, there is a non-zero probability of transitioning from xi to xj and from xj to

xi.
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Definition 6.2.2 (Positive Recurrent). A node X is positive recurrent if, for all

x ∈ X, ∫ ∞
0

P (X(t) = x|X(0) = x,X((0, t)) 6= x) dt = 1

That is, the probability of starting in state x, transiting out of x, and then returning

to state x after some finite amount of time is 1.

Let aij|bk denote the entry at i, j of the conditional intensity matrix A|bk. (Note

that if A or B have additional parents, the following procedure applies individually

to each conditional intensity matrix conditioned on the parents’ states.) Each entry

(aijbkl) in the combined intensity matrix of A and B is calculated by the following:

(aijbkl) =



aij|bk if i 6= j and k = l

bkl|ai if i = j and k 6= l

aij|bk + bkl|ai if i = j and k = l

0 otherwise

(6.7)

Lemma 6.2.1. Let each conditional intensity matrix of A and B be irreducible. Then

each conditional intensity matrix of the amalgamated supernode AB is irreducible.

Proof. Because of the factorization of AB into A and B, the state of AB cannot

change in both A and B simultaneously, represented by the zero value of the 4th

case. We note that if both A and B are irreducible, then AB is also irreducible, as

every state is reachable in at most 2 steps. The worst case would require a state

change in both A and B individually (the state of A changes, then the state of B

changes, or vice-versa), which is possible because of the non-zero transition values

of the 1st and 2nd cases. In other words, for any state aibk, we have a non-zero

probability of transitioning to (ajbl), because (aijbk) and (ajbkl) are non-zero and
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(aibkl) and (aijbl) are non-zero. In other words, there exists t′ > t such that

P (AB(t′) = (ajbl)|AB(t) = (aibk)) > 0 and P (AB(t′) = (aibk)|AB(t) = (ajbl)) > 0.

Lemma 6.2.2. Let each conditional intensity matrix of A and B be positive recurrent.

Then each conditional intensity matrix of the amalgamated supernode AB is positive

recurrent.

Proof. Because A is ergodic, there is a non-zero probability of transitioning to any of

its states during that time.

∫ ∞
0

P (A(t) = ai|A(0) = ai, A((0, t)) 6= ai) dt = 1.

Similarly, because B is ergodic, there is a non-zero probability of transitioning to any

of its states during that time.

∫ ∞
0

P (B(t) = bk|B(0) = bk, B((0, t)) 6= bk) dt = 1.

Now consider the conditional intensity matrices of AB. The negative values along the

diagonals, controlling state sojourn times, only add with other diagonals as shown in

the 3rd case of Equation 6.7, meaning that these values will never go to zero, which

would result in an absorbing state. There is a non-zero probability of transitioning

from (aibk) to (ajbk) and from (aibk) to (aibl) for all states in ai, aj ∈ A and bk, bl ∈ B.

This implies that

∫ ∞
0

P (AB(t) = (aibk)|AB(0) = (aibk), AB((0, t)) 6= (aibk)) dt = 1
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Therefore, each conditional intensity matrix of the amalgamated supernode AB is

positive recurrent.

Theorem 6.2.3. If each conditional intensity matrix of a CTBN is ergodic, then

the conditional intensity matrices from the amalgamation of any sets of nodes is also

ergodic.

Proof. From lemma 6.2.1 and lemma 6.2.2, amalgamation of two nodes with ergodic

conditional intensity matrices will produce another node with ergodic conditional

intensity matrices. Therefore, this process can be repeated to amalgamated any num-

ber of nodes in the CTBN and the resulting nodes will still have ergodic conditional

intensity matrices.

6.2.2 Estimating CTBN Performance Derivative

Using perturbation realization and the method for isolating subnetworks, we can

describe a generalized method for performing sensitivity analysis on CTBNs. The

primary obstacle to overcome is that the state-space size is exponential in the num-

ber and cardinality of the CTBN nodes. For complex CTBNs, even relatively long

trajectories never reach all possible states. Because of these unvisited states, pertur-

bation realization has no information on the state’s performance potential and the

value returned from Equation (6.3) becomes inaccurate. Thus, being able to create

and analyze trajectories from smaller subnetworks, and then being able to combine

the results, becomes essential.

Algorithm 6.5 shows the pseudocode for estimating the performance derivative.

The algorithm accepts a CTBN and a set of perturbation matrices for the nodes of the

CTBN that represent changes to the nodes’ intensity matrices. The algorithm returns

an estimate of the change in performance per unit time given the perturbations in
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Algorithm 6.5 CTBN sensitivity analysis method for estimating performance mea-
sure derivative.
EstimateDerivative(N , ∆QN )

1: G ′ ← CollapseCycles(G)
2: ∂η/∂∆QN ← 0
3: repeat until termination

4: X←
⋃
X∈G′

X where Pa(X) = null

5: if X = null then terminate
6: for X ∈ X
7: QX ← QX + ∆QX

8: end for
9: Y ←

⋃
X∈X

Ch(X) where Pa(Ch(X)) ⊆ X

10: for Y ∈ Y
11: σ ← Sample(Y ∪ Pa(Y )) // Algorithm 2.1
12: Y ′ ← IsolateNode(σ, Y ) // Algorithm 5.3
13: QY |Pa(Y ) ← QY |Pa(Y ) + ∆QY |Pa(Y )

14: σ′ ← Sample(Y ∪ Pa(Y ))
15: Y ′′ ← IsolateNode(σ′, Y )
16: ∆QY ← ∆QY + (QY ′′ −QY ′)
17: QY ← Amalgamate(Y ∪Pa(Y )) // Equation 6.7
18: π ← CalculateSteadyStateProbabilities(QY ) // Equation 6.6
19: ∆QY ∪Pa(Y ) ← Amalgamate(∆QY ∪∆QPa(Y ))
20: g ← CalculatePotentialVector(σ′) // Equation 6.5
21: ∂η/∂∆QN ← ∂η/∂∆QN + π∆QY ∪Pa(Y )g
22: for X ∈ Pa(Y )
23: remove edge (X, Y ) in G ′
24: end for
25: replace Y with Y ′ in G ′
26: end for
27: end repeat
28: return ∂η/∂∆QN

the intensity matrices. It calls four helper methods in addition to Algorithm 2.1

and the node isolation of Chapter 5. CollapseCycles(G) detects cycles in G, amal-

gamates each cycle’s intensity matrices, and replaces each cycle with a single node.

Amalgamate(Y ∪Pa(Y )) expands the full joint intensity matrix of the CTBN subnet-

work Y ∪Pa(Y ) by repeatedly combining pairs of nodes as described in Section 2.3.4.
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CalculateSteadyStateProbabilities(QX) calculates the steady-state probabilities π of

the intensity matrix QX by calculating the normalized eigenvector corresponding to

the zero eigenvalue as per Equation (6.6). CalculatePotentialVector(σ) parses the

trajectory σ and calculates the potential vector g as per Equation (6.5).

First, line 1 collapses the cycles of the CTBN. This is necessary before the top-

down isolation begins, because node isolation requires a trajectory with all of the

node’s ancestors, and every node in a cycle is an ancestor to every other node in

the cycle. This turns the network into a directed acyclic graph. Line 2 initializes

the performance measure derivative estimate, which will be updated incrementally

during the top-down isolation process. Lines 3-27 repeat until the condition of line 5

is satisfied, that is, when every node has been isolated. Line 4 finds the roots of the

network, those without any parents. Lines 6-8 apply any perturbations to those root

nodes. Line 9 finds all the immediate children of root nodes, i.e., all the second-level

nodes. These will be isolated and become the new root nodes. Lines 10-26 iterate over

the children. Line 11 creates a trajectory for the child node, while line 12 uses that

trajectory to isolate it. Line 13 applies any perturbations to the child’s conditional

intensity matrices, and lines 14-15 isolate the perturbed child node. Line 16 adds the

difference between the unconditional intensity matrices to the child perturbations.

Lines 17-18 calculate the steady-state probabilities of the child node and its parents.

Line 19 calculates the perturbation matrix for the child node and its parents. Line

20 calculates the potential vector from the perturbed trajectory. Line 21 calculates

the performance measure derivative for the subnetwork consisting of the child and

its parents. Lines 22-25 finish the isolation of the child, removing the arcs from its

parents and replacing the conditional intensity matrices with the single unconditional

intensity matrix calculated in line 12. After reaching the leaves of the CTBN, the

aggregated performance measure derivative is returned in line 28.
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Algorithm 6.5 avoids handling the whole CTBN at once. Trajectories only have

to be created for a node and its parents. Thus, the complexity of the algorithm is

driven by the size of the cycles that have to be collapsed into single nodes and the

number of parents of each node (reminiscent of tree width in clique tree inference on

Bayesian networks). However, the algorithm is able to take advantage of the network

factorization and only deal with smaller subnetworks at any one time.

6.3 CTBN Reliability Measures

While our approach for sensitivity analysis applies to general CTBNs and general

performance functions [102], we now present how CTBNs can model reliability mea-

sures such that our algorithm can be used to perform sensitivity analysis with respect

to those measures.

6.3.1 Mean Time Between Failures

The measure for MTBF does not actually rely on the performance function, but

is a value derived from the network parameters themselves. The MTBF can be com-

puted as a direct result of node isolation. Isolation of the performance nodes yields

their unconditional intensity matrices. The diagonal parameters of these uncondi-

tional intensity matrices give the expected sojourn times in the failed and non-failed

states, from which can be derived the MTBF. Take a two-state node in which the non-

failed state is 0 and the failed state is 1. After finding the node’s single unconditional

intensity matrix, the MTBF can be estimated as:

1

|q0,0|
.
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In fact, our algorithm for sensitivity analysis provides the MTBF as a direct

result of applying our node isolation method of Section 5.2. Perturbations applied to

ancestors in the network are carried down in the node isolation in parallel with the

node isolation of the original network. Thus, the algorithm gives the MTBF for the

original network and the new MTBF as a result of the perturbations. The change

in MTBF is the difference between the MTBF results of these two unconditional

intensity matrices.

6.3.2 Point Availability

Point availability is the proportion of time that a system is in a functioning con-

dition. We can represent this reliability measure in the CTBN using our concept of

performance functions from Section 4.2. In this case, a unit cost is associated with

the network’s failed state. As the performance function represents cost per unit time,

a performance function value with unit cost gives the proportion of time that the

system remains in the failed state, from which we can derive the point availability of

the system. Take an n-state node in which the failed state is n− 1. The performance

function is:

f(i) =


1 i = n− 1

0 otherwise

.

The performance measure η is the proportion of time that the system is in the

failed state. The point availabity is therefore:

1− η.
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Sensitivity analysis allows us to measure how perturbations in the ancestors will be

expected to impact availability. Suppose that the failure rates of different individual

components in a complex system are perturbed. How does this affect the point

availability and the MTBF of the overall system?

6.4 Experiments

We demonstrate the algorithms for CTBN sensitivity analysis on three networks.

The first is a small, synthetic network in which the exact answers can be computed

easily. The second is the DFT for the cardiac assist system encoded as a CTBN. The

third is a model of a milling machine learned from run-to-failure data.

For each network in our experiments, the point availability and MTBF are calcu-

lated using our algorithms for sensitivity analysis and compared to the ground truth,

taken as either the exact solutions for the synthetic network or estimated from brute-

force sampling over the whole network for the two real-world networks. We measure

relative error between our algorithm and the ground truth, as well as measure com-

plexity by comparing state-space sizes of different subnetworks and total number of

samples generated.

6.4.1 Simple Network

This is the example network shown in Figure 5.3. The initial distributions and

intensity matrices for all the nodes can be found in Appendix D. This network is

simple enough that the exact solutions can be computed easily using Equation 6.1.

Node E has two states, representing failed and non-failed states. Suppose that

we want to observe how the parameters of C affect system reliability. The näıve
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approach would be to amalgamate the entire CTBN into a single Markov process and

apply perturbation realization directly. For this simple network, this is possible, but

ignores the advantages of having the factored representation. Using the approach

presented here, we can perform top-down isolation of the levels in the network and

avoid ever having to deal with the entire network all at once.

Let the conditional intensity matrix for D given c0 and the corresponding pertur-

bation matrix be as follows.

QD|c0 =

−1 1

2 −2

 ∆QD|c0 =

0.9 −0.9

10 −10


We test this perturbation on the MTBF and the point availability. These are relatively

extreme perturbations for this conditional intensity matrix, changing the expected

sojourn time in d0 to be 10 times longer and the expected sojourn time in d1 to be

6 times shorter whenever C is in state c0. Note that perturbations that represent

uncertainty in the parameters will most likely not be this severe. However, the per-

formance measure derivative becomes harder to estimate as the magnitude of the

perturbations increases. Therefore, by choosing these large perturbations, we show

that the method is still able to maintain accuracy even for extreme cases.

Before the perturbations are applied, the closed-form solution yields an availability

of 94.30%, and a MTBF of 16.55 time units. After the perturbations are applied, the

closed-form solution shows that the availability increases to 96.02% and the MTBF

increases to 24.10 time units.

Now we apply our sensitivity analysis algorithm to the network, performing top-

down isolation of each level and cascading the perturbations down to each uncondi-

tional intensity matrix. For each isolation, we generate trajectories of 100,000 tran-
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Table 6.1: Perturbed reliability estimates of simple network.

Availability MTBF Sample Count

Exact 96.02% 24.10 time units N/A

Brute-Force 96.05% 24.26 time units 12.3 million

Node Isolation 96.04% 24.31 time units 2.6 million

sitions in the node to isolate. Applying the perturbations, our sensitivity analysis

algorithm estimates the point availability at 96.04% and the MTBF at 24.31 time

units. In both cases, this is less than 1% relative error. If required, the trajectories

can be lengthened to further improve the accuracy.

Although this network is small enough that we can work with the full joint in-

tensity matrix directly, we also compare our sensitivity analysis approach with the

brute-force approach over the whole network. When we sampled over the whole

network all at once, it took almost 12.3 million transitions to be generated before we

reached 100,000 transitions in node E. By isolating each level separately, we reached

100,000 transitions in all of the isolated nodes with around 2.6 million total samples

generated across all levels. Our sensitivity analysis algorithm restricted the largest

state-space size of any subnetwork to only 18 states (the A-B-C subnetwork). The

brute-force approach was 4 times as large, sampling from the whole network with 72

states. The results for this network are summarized in Table 6.1.

For this simple network, the reliability measures could be computed exactly. How-

ever, we note that as the networks become more complex, some form of approximate

solution, such as the brute-force or node isolation sampling methods, is required to

keep inference tractable. For this network, we showed that node isolation can be more

efficient than the brute-force approach without a loss in accuracy. With node isola-

tion, sampling can be targeted to specific subnetworks. The brute-force approach is

more susceptible to over-sampling and under-sampling different parts of the network.
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Figure 6.1: Cardiac assist system model.

6.4.2 Cardiac Assist System

As mentioned in Section 5.3.4, specially constructed CTBNs have been used to

represent DFTs specifically for reliability modeling, in which each of the gates of a

DFT can be mapped onto CTBN nodes. In this experiment, we use the cardiac assist

system (CAS) model as given in [33]. The network is shown in Figure 6.1. The initial

distributions and intensity matrices for all the nodes can be found in Appendix E. Of

the various repair policies evaluated in [33], we use the repair rate of µ = 0.1 for all

components.

The network is divided into three subsystems: the CPU, pump, and motor. Here,

we can see the advantage of the CTBN’s factored representation by how it can model

the different subsystems as different subnetworks. In fact, as a starting point for

reliability analysis, we can look at the reliability of each of the subsystems separately

using our node isolation technique. We divide the network into the three subsystems

and find the unconditional intensity matrices of CPU, Pump, and Motor to get the

MTBF of each. The MTBF estimates are shown in Table 6.2.
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Table 6.2: MTBF estimates of CAS subsystems.

CPU 154 hours

Pump 4.1× 106 hours

Motor 4.2× 108 hours

From the table, we see that the CPU subsystems contributes most to the unrelia-

bility of the system. This is not surprising, because the pump and motor subsystems

have multiple redundancies, while the CPU subsystem does not, requiring both the

cross-switch (CS) and system supervision (SS) to be in the non-failed state. Now that

we have identified the CPU subsystem as the most unreliable subsystem, we can run

scenarios on how variations (such as bounds on the parameter’s uncertainty) in the

subsystem parameters affect the system as a whole.

Before we apply our sensitivity analysis technique, we use the brute-force approach

of generating samples from the entire network. We generate samples over the entire

network until we have one million instances of failure of the entire system. From

these samples, we estimate the MTBF to be 163 hours and the point availability to

be 94.3%. Now suppose that the best-case failure rates of both CS and SS changed

the parameters from λ = 2 × 10−4 to λ = 1 × 10−6. Applying these changes and

generating samples over the entire network again until we have one million instances

of failure of the entire system, we estimate the new MTBF to be 176 hours and the

point availability to be 94.8%.

Using our sensitivity analysis technique, we can isolate the three nodes for the

different subsystems: CPU, Pump, and Motor. We estimate the unconditional inten-

sity matrix of CPU with and without the perturbations to CS and SS. The difference

between the two becomes the perturbations to CPU. We then perform perturbation

realization on just these four lowest nodes. These results also estimate the MTBF to
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be 176 hours and the point availability to be 94.8%, with less than 1% relative error

in both cases.

The brute-force approach is sampling from a state-space size of over 6.6 million

states over the whole network. When isolating individual subsystems, the state-

space sizes are 144, 144, and 160 states for the CPU, pump, and motor subsystems,

respectively. Once isolated, the three subsystems are combined into the lower four-

node subnetwork of only 16 states.

We note that, in this case, the sensitivity analysis approach had to generate sub-

stantially more samples than the brute-force approach, specifically in isolating the

pump and motor subsystems. This is explained by the large difference in reliability

between those subsystems and the CPU subsystem. Because of the rarer occurrence

of failure in these subsystems, it required more samples before one million transitions

in each of Pump and Motor were collected. However, this also suggests that the brute-

force approach was over-sampling the CPU subnetwork in order to get its estimate.

Thus, node isolation offers a way to ensure that different subnetworks are sampled

adequately.

Furthermore, saving the potentials and the unconditional intensity matrices of

the three subsystem nodes, we could apply different perturbations to different nodes

throughout the network, compute the perturbations on the unconditional intensity

matrices of the three subsystem nodes and update the reliability estimates without

ever having to generate samples from the entire network all at once.

6.4.3 Milling Machine

For this experiment, the CTBN was learned from run-to-failure data. The data

were collected from 16 cases of a milling machine under various operating conditions
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Figure 6.2: Milling machine model.

measuring the flank wear of the cutting tool [103]. The data consisted of over 1.5 mil-

lion timestamped records. Intervals for equal-frequency discretization were computed

from 100,000 samples drawn uniformly at random from these records. All variables

were discretized into 3 bins, except for the flank wear, which was discretized into

2 bins, representing failed and non-failed states. All records were then discretized,

and the CTBN structure was learned using the Continuous Time Bayesian Network

Reasoning and Learning Engine (CTBN-RLE) [104]. The edges were pruned and

oriented to balance network complexity and place flank wear (VB) as a descendant

of the other variables. The network is shown in Figure 6.2, and the node names are

given in Table 6.3. The initial distributions and intensity matrices for all the nodes

can be found in Appendix F. Parameter estimation was then performed, also using

the CTBN-RLE. Each of the 16 cases described one run-to-failure of the cutting tool

but did not include tool replacement. To make the model ergodic, a repair rate of

µ = 0.1 was added to the conditional intensity matrices of VB.

First, we perform reliability analysis without any perturbations. From the brute-

force approach generating 100,000 transitions in VB using the entire network, we



123

Table 6.3: Milling machine node names.

Abbreviation Name

smcAC AC spindle motor current

smcDC DC spindle motor current

vib spindle spindle vibration

vib table table vibration

AE table acoustic emission at table

AE spindle acoustic emission at spindle

VB flank wear

have an estimated MTBF of 44,047 time units and an estimated point availability of

99.977%. Now suppose we apply the perturbations to the intensity matrix of smcAC,

given as follows.

QsmcAC =


−0.134 0.132 0.002

0.134 −0.267 0.133

0.002 0.131 −0.133

 ∆QsmcAC =


−1.0 0.5 0.5

0.5 −1.0 0.5

0.5 0.5 −1.0


These perturbations speed up the transitions between the states of smcAC by almost

a factor of 10. Using the brute-force approach, the new estimated MTBF changes to

40,873 time units while the estimated point availability hardly changes, at 99.976%.

Using our sensitivity analysis technique, we can divide the network in half by first

isolating AE table with and without the perturbations applied to smcAC. Running

perturbation realization on the lower half of the network, we have an estimated MTBF

of 40,744 time units and an estimated point availability of 99.976%, which is less than

1% relative error in both cases.

Again, perturbations in the upper half of the network can be included in the

perturbations of the unconditional intensity matrix of AE table, and the potentials

can be re-used. By dividing the network into upper and lower halves, the size of the
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Table 6.4: Summary of sensitivity analysis results.

Node State State count of Magnitude of Sample Rel.

Network count count largest subnetwork perturbation count error

Synthetic 5 72 18 ×10 100K < 1%

CAS 19 6.6M 160 ×200 1M < 1%

Milling 7 1458 81 ×10 100K < 1%

state-space for sampling is 81 and 54 states, respectively, instead of 1458 states when

sampling over the entire network.

The brute-force approach had to generate close to two billion samples to get

100,000 transitions in VB. The sensitivity analysis approach generated less than

360,000 samples to isolate AE table and then also around two billion samples to

get 100,000 transitions in VB. While the total number of samples generated by the

two approaches is similar, the advantage of using perturbation realization is to calcu-

late potentials and be able to plug in any number of perturbation matrices without

resampling. However, by first dividing the network into upper and lower halves,

the sizes of the perturbation matrices and system of equations for the steady-state

probabilities are reduced from 1458×1458 to 54×54. Any perturbations in the upper

network can be included in the perturbation matrix for AE table after generating a

relatively small numbers of samples. Thus, our method for sensitivity analysis in

CTBNs combines the advantages of both perturbation realization and the factored

nature of the networks to manage complexity. The results for all three networks are

summarized Table 6.4.
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6.5 Conclusion

We have demonstrated how sensitivity analysis can take advantage of the factored

nature of CTBN models to perform efficiently. Specifically, we have devised a method

that is able to exploit the conditional independence of the CTBN to analyze subnet-

works independently. For large, complex networks, the node isolation method can

be used to counteract the exponential blow-up in the size of the state-space. Node

isolation also provides a mechanism for more selectively sampling different parts of the

network so that different subnetworks are neither over-sampled nor under-sampled.

Furthermore, this is the first time a method for sensitivity analysis has been developed

for CTBNs.

As noted earlier, the node isolation is an approximation method that approximates

the behavior of multiple nodes with a single node. The performance potentials are also

approximated by a trajectory of the system. The relationship between the length of

the trajectories (computational complexity) and the accuracy of the estimates, both

of the performance measure derivatives and the unconditional intensity matrices, are

areas for future work.
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CHAPTER 7

CONTINUOUS-TIME EVIDENCE

In this chapter, we define both uncertain and negative types of continuous-time

evidence and show how to support these definitions in the context of CTBN inference.

Probabilistic models, such as the BN and CTBN, provide a mathematically rigor-

ous framework for reasoning under uncertainty. Given observations about the system

the network represents, the network can update the posterior probabilities of other

states in light of that evidence. However, the representation of uncertainty in BNs has

been extended further to allow for uncertainty in the evidence as well, such as with

soft evidence or virtual evidence, in which there is uncertainty in the observations

themselves. Uncertain evidence provides a generalization of evidence, in which the

evidence also has degrees of uncertainty associated with it.

As a relatively new model, the CTBN currently only supports “crisp” evidence, in

which all of the temporal state evidence is trusted with complete confidence. However,

in many applications, such as fault prognosis in which we rely on instrument measure-

ments, the evidence may contain noise or errors and can be trusted only to a certain

degree. Uncertain evidence for CTBNs has not yet been defined, and algorithms have

not been extended to allow for incorporating the uncertainty of temporal evidence.

The inclusion of continuous time into the evidence gives rise to subtleties in negative

evidence, as well.
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7.1 Background Work

This section briefly describes existing techniques for handling uncertain and neg-

ative evidence in the context of BNs and describes why these do not carry over to

the CTBN. In BNs, uncertain evidence is when the state of a node is only known

with a given probability. Negative evidence is when a node is known to not be in a

particular state.

One approach for uncertain evidence in BNs is called virtual evidence, as described

in [105]. To represent this type of uncertain evidence, a node is added as a child to an

observation node. This child node then becomes the node that is observed, and the

conditional probabilities of this child are set to match the strength of the evidence.

In effect, virtual evidence sets up a ratio of likelihoods to represent the confidence

of an observation correctly observing a particular state. Another approach is soft

evidence, as differentiated from virtual evidence in [106, 107]. Soft evidence changes

the marginal distribution of the evidence itself, using a generalization of conditioning

on observed variables to condition on an observation of a probability distribution, in

which the observed distribution holds the uncertainty of the observations.

In this section we describe the types of evidence currently used in inference with

BNs, which include certain, uncertain, and negative evidence. We then review the

types of evidence currently defined for CTBNs.

7.1.1 Evidence in Bayesian Networks

We start by reviewing the types of evidence used in BNs. We distinguish between

certain/uncertain types and positive/negative types.
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7.1.1.1 Certain Positive Evidence. Traditional evidence in a BN falls under certain

evidence. That is, the observations are trusted with complete confidence, and the

observations are of specific states. Suppose that we had a set of observations e. To

perform inference with this evidence, we would compute the posterior probabilities

P (X|e). Once we observe the state of a variable, the probability of that state for that

variable becomes 1. From this, we can generalize to uncertain evidence, in which the

probabilities of observed states can become less than 1.

7.1.1.2 Uncertain Positive Evidence. One approach for uncertain evidence in BNs

is called virtual evidence [105]. To simulate this type of uncertain evidence, a node is

added as a child to an observed node, as shown in Figure 7.1. This child node then

becomes the node that is observed, and the conditional probabilities of this child are

set to match the strength of the evidence. In effect, virtual evidence sets up a ratio

of likelihoods to represent the the confidence of an observation observing a particular

state.

Suppose the uncertain evidence for node X is given as η. Then for x ∈ X we set

P (η|X = x) = λx, (7.1)

where λx denotes the likelihood of being in state x.

Let α be an event in the BN but not in X. Because the added child node is

only dependent on X, η and α are conditionally independent given X. Therefore, for

x ∈ X,

P (η|X = x, α) = P (η|X = x). (7.2)
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Figure 7.1: Example of virtual evidence for node X.

Then the probability of event α given the uncertain evidence η is

P (α|η) =

∑
y∈X

λyP (α,X = y)∑
z∈X

λzP (X = z)
. (7.3)

By so doing, virtual evidence weights the marginal probabilities P (X) by the likeli-

hood of the evidence λx for x ∈ X.

Another approach for representing uncertainty in an observation is through what

is called soft evidence [106, 107]. Soft evidence uses Jeffrey’s rule as a generalization

of conditioning on observed variables to condition on an observation of a probability

distribution, in which the observed distribution holds the uncertainty of the observa-

tions. Suppose that, for x ∈ X, the evidence is specified by a set of probabilities

P ′(X = x) = qx. (7.4)

Then the new posterior distribution for event α is calculated as

P ′(α) =
∑
x∈X

qx
P (α,X = x)

P (X = x)
. (7.5)
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As shown by Equation 7.4, soft evidence actually transforms the marginal distribution

of X from P (X) to P ′(X) such that it conforms exactly to the probability of the

evidence.

Because each approach specifies uncertain evidence differently, virtual evidence

and soft evidence yield different probabilities given the same values for qx and λx, but

conversions exist to derive the resulting probability of one given the other [105].

While the name “continuous time Bayesian network” suggests that the model as

a special type of Bayesian network, we have seen that the underlying model is quite

different from that of a BN. Thus, the methods for including uncertain evidence in

BNs do not translate over to CTBNs. No literature for uncertain evidence has been

found in the context of continuous-time Markov processes or CTBNs. In these cases,

the evidence is temporal, containing state information over a real-valued period of

time, which prohibits the uncertain evidence techniques of BNs (even DBNs) from

being applied directly.

7.1.1.3 Certain Negative Evidence. In a BN, certain negative evidence is just a

special case of uncertain positive evidence. If we observe the variable to not be in

some states, this is the same as uncertain evidence in which there is zero probability

of those states and the remaining probabilities for all other states are re-normalized.

Let A ⊂ X be a subset of states of X that can be ruled out. Negative evidence

states that P (x ∈ A) = 0. We can use virtual evidence to support negative evidence

in BNs by setting

λx =


0 for x ∈ A

c for x 6∈ A and any constant c

. (7.6)
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It follows that for every event α given the virtual event η that the states of A can be

ruled out with likelihoods λx given above,

P (α|η) =

∑
y∈X

λyP (α,X = y)∑
z∈X

λzP (X = z)
=

c
∑
y 6∈A

P (α,X = y)

c
∑
z 6∈A

P (X = z)
=
P (α,X 6∈ A)

P (X 6∈ A)
= P (α|X 6∈ A).

(7.7)

Thus when static, uncertain evidence is sufficient to represent negative evidence.

However, we can differentiate between positive and negative evidence when the evi-

dence becomes temporal. Temporal evidence introduces subtleties between uncertain

evidence and negative evidence, because now evidence must be defined in terms of

state and time.

7.1.2 Evidence in CTBNs

While static BNs use evidence as observations of states, evidence in CTBNs must

include temporal information. Three types of evidence in CTBNs have been defined

so far: point, transition, and interval.

7.1.2.1 Certain Point Evidence. The first inference algorithms defined for CTBNs

supported only point evidence [17]. Certain point evidence in a CTBN is defined

formally as follows.

Definition 7.1.1 (Certain point evidence). Let t be an instantaneous point in real-

valued time. Let X be a node in the CTBN, and let x be a state of X. Node X was

observed to be in state x at time t.

Point evidence would result when the system cannot be monitored continuously, and

sensors can only “poll” the state at various instantaneous points in time.
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7.1.2.2 Certain Transition Evidence. Unlike a static model, the states of the CTBN

could be changing throughout time. When monitoring a system, we might be able

to detect changes in the state of the system. We would like to be able to incorporate

this transition information into our inference procedures. Certain transition evidence

in a CTBN is defined formally as follows.

Definition 7.1.2 (Certain transition evidence). Let t be an instantaneous point in

real-valued time. Let X be a node in the CTBN, and let x1 and x2 be two distinct

states of X. Node X was observed to change from state x1 to state x2 at time t.

Transition evidence would result when sensors can detect certain changes in the

system. In this case, the sensors can detect exactly when and how the change occurs.

Note that if the sensors can detect every state change, they observe the complete

trajectory of the system.

7.1.2.3 Certain Interval Evidence. For continuous-time systems, however, evidence

at an instantaneous point in time is not powerful enough. We might be monitoring

the system continuously and be able to make claims about the state of the system

throughout an interval of time. When this was first introduced, it was called negative

evidence, but the “negative” referred to transitions rather than states [77]. The idea

was that a transition did not occur over an interval of time. Since then, it has been

referred to as continuous evidence or interval evidence. Certain interval evidence in

a CTBN is defined formally as follows.

Definition 7.1.3 (Certain interval evidence). Let t1 and t2 be two instantaneous

points in real-valued time such that t1 < t2. Let X be a node in the CTBN, and let x

be a state of X. Node X was observed to be in state x throughout the interval [t1, t2).
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Figure 7.2: Example of evidence for CTBN.

Certain interval evidence is able to approximate both certain point and certain

transition evidence [43]. For point evidence, we set the interval as ε for some infinites-

imal value. For certain transition evidence, this becomes two successive instances of

infinitesimally short interval evidence such that on a real-valued interval of time

[t − ε, t), node X was observed to be in state x1, while on a real-valued interval of

time [t, t+ ε), the state of node X was observed to be in state x2.

An example of these three evidence types is shown in Figure 7.2 for a two-state

node. The evidence can be thought of as a partial trajectory, a sequence of state and

time pairs with gaps during which the state becomes unknown. In the example, point

evidence at time t = 1 observes the node to be in state 0. Transition evidence at time

t = 2 observes the state to transition from state 1 to state 0. Interval evidence from

time t = 3 to t = 4 observes the state to remain in state 0. Figure 7.2 also shows two

possible complete trajectories that conform to the evidence.
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7.2 Extending Evidence in CTBNs

As seen with the advance from point evidence to transition and interval evidence,

the temporal nature of the model gives rise to more varied types of continuous-time

evidence. However, uncertain evidence, as used in BNs, has not yet been extended to

CTBNs. Furthermore, the introduction of time adds another dimension. In this case,

uncertain evidence and negative evidence in continuous-time become two distinct

types of evidence. We now present the first definitions for these types of evidence in

the CTBN.

7.2.1 Uncertain Positive Evidence

In this section, we define and describe uncertain positive evidence for CTBNs.

First, we have uncertain point evidence, defined formally as follows.

Definition 7.2.1 (Uncertain point evidence). Let t be an instantaneous point in real-

valued time. Let X be a node in the CTBN, and let λX be a set of likelihoods over

the states of X. Node X was observed to be state x at time t with likelihood λx.

Uncertain point evidence would result when the sensors can only be trusted to a

certain degree, such as when they are known to have certain false positive and non-

detect rates.

The likelihoods are analogous to λx of Equation 7.1. Because the observation is

at a single instant in time, uncertain point evidence is sufficient to represent negative

point evidence.

We can also have uncertainty in an observed transition. Uncertain transition

evidence is used when the destination of the transition is known only with some

probability. Uncertain transition evidence in a CTBN is defined formally as follows.
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Definition 7.2.2 (Uncertain transition evidence). Let t be an instantaneous point in

real-valued time. Let X be a node in the CTBN, and let λSX and λEX be two sets of

likelihoods over the states of X. Node X was observed to change from state xi with

likelihood λSxi and transition to state xj with likelihood λExj at time t.

Uncertain transition evidence would result when the sensor is able to determine

only partially the source and/or destination state. The set of likelihoods can also be

used to represent uncertainty that the state actually changed. This is done by setting

λEx to be non-zero whenever λSx is non-zero. Because a state does not transition to

itself in a continuous-time model, this implies that the state simply remained in state

x at time t.

The definitions above represent uncertainty in the state. However, we could have

uncertainty in the timing information as well. Therefore, we can formally define

temporally uncertain transition evidence as follows.

Definition 7.2.3 (Temporally uncertain transition evidence). Let t1 and t2 be instan-

taneous points in real-valued time such that t1 < t2. Let X be a node in the CTBN,

and let xi and xj be two distinct states of X. Node X was observed to transition from

state xi to xj sometime during the interval [t1, t2).

Temporally uncertain transition evidence would result when the sensor is able to

detect state changes in the system, but not instantaneously. The sensor might have

a non-constant time-delay before the state change is detected.

Lastly, we have uncertain positive interval evidence. In this case, uncertain interval

evidence cannot be used for negative interval evidence. Therefore, uncertain interval

evidence must be identified as either positive or negative. Negative interval evidence

is discussed in the next section, while uncertain positive interval evidence is defined

formally as follows.
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Definition 7.2.4 (Uncertain positive interval evidence). Let t1 and t2 be instanta-

neous points in real-valued time such that t1 < t2. Let X be a node in the CTBN, and

let λX be a set of likelihoods over the states of X. Node X was observed to be in one

state over the entire interval [t1, t2), each state x with likelihood λx.

Uncertain positive interval evidence would result when the sensor is able to detect

states of the system, but is unable to determine the state with certainty. For uncertain

interval evidence, the state of node X is known to be in exactly one state over the

entire interval, but the identity of that state is known only with some likelihood.

7.2.2 Negative Evidence

In CTBNs, uncertain evidence is distinct from negative evidence. Uncertain inter-

val evidence, for example, says that the system was in different states with different

likelihoods, but whichever it was, the system stayed in that state over the whole inter-

val. Negative evidence is saying something different. Negative interval evidence, for

example, says that the system was never in a certain state over an interval; however,

the system could have experienced multiple transitions between the other states over

that interval. Formally, we define negative evidence as follows.

Definition 7.2.5 (Negative point evidence). Let t be an instantaneous point in real-

valued time. Let X be a node in the CTBN, and let X ′ ⊂ X. Node X was observed

to not be in any state x ∈ X ′ at time t.

Definition 7.2.6 (Negative transition evidence). Let t be an instantaneous point in

real-valued time. Let X be a node in the CTBN, and let XS ⊆ X and XE ⊂ X.

Node X was observed to transition at time t from state xS ∈ XS but not to any state

xE ∈ XE.
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Definition 7.2.7 (Negative interval evidence). Let t1 and t2 be instantaneous points

in real-valued time such that t1 < t2. Let X be a node in the CTBN, and let X ′ ⊂ X.

Node X was observed to not be in states X ′ on a real-valued interval of time [t1, t2).

Note that uncertain and negative evidence are not mutually exclusive. We could

have uncertainty in our negative evidence, in which we can rule out some states only

with a certain probability. For instantaneous evidence, such as point evidence and

transition evidence, uncertain evidence is sufficient to represent these. Uncertain

positive interval evidence, on the other hand, cannot represent uncertain negative

interval evidence, which is defined formally as follows.

Definition 7.2.8 (Uncertain negative interval evidence). Let t1 and t2 be instanta-

neous points in real-valued time such that t1 < t2. Let X be a node in the CTBN, let

X ′ ⊆ X, and let λX′ be a set of likelihoods over the states of X ′. Node X was observed

to not be in state x′ ∈ X ′ on a real-valued interval of time [t1, t2) with likelihood λx′.

7.2.3 Relationships Between Types of Evidence

Given these definitions, note that, unlike with BNs, uncertain evidence is insuf-

ficient to represent all types of negative evidence. Uncertain evidence introduces

uncertainty in the state, not the duration of the evidence. In other words, for an

interval of uncertain evidence e on [ts, te),

P (X(t1)|e) = P (X(t2)|e), ∀ t1, t2 ∈ [ts, te). (7.8)

On the other hand, for an interval of negative evidence e on [ts, te), we can say that

P (X(t) ∈ A|e) = 0, ∀ t ∈ [ts, te), (7.9)
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Figure 7.3: Relationships between types of continuous-time evidence.

but the probabilities P (X(t) = x|e) for x 6∈ A could be changing throughout t ∈

[ts, te).

As already seen, the various types of evidence are related, whether through gen-

eralizations or combinations. These relationships are summarized in Figure 7.3. The

solid arrows show when the child type is a special case of the parent type, while the

dashed arrows show when the child type is a combination of the parent type. We now

provide the proofs for these relationships.

Proposition 7.2.1. Uncertain point evidence is a special case of uncertain positive

interval evidence.

Proof. Set t2 = t1 + ε for infinitesimal value ε.

Proposition 7.2.2. Uncertain point evidence is a special case of uncertain negative

interval evidence.
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Proof. Set t2 = t1 + ε for infinitesimal value ε.

Proposition 7.2.3. Negative point evidence is a special case of uncertain point evi-

dence.

Proof. Set

λx =


0 if x ∈ X ′

1
|X|−|X′| otherwise

.

Proposition 7.2.4. Negative point evidence is a special case of negative interval

evidence.

Proof. Set t2 = t1 + ε for infinitesimal value ε.

Proposition 7.2.5. Certain point evidence is a special case of negative point evi-

dence.

Proof. Let y be the observed state. Set X ′ = X/{y}.

Proposition 7.2.6. Certain point evidence is a special case of certain interval evi-

dence.

Proof. Set t2 = t1 + ε for infinitesimal value ε.

Proposition 7.2.7. Uncertain transition evidence is a combination of two instances

of uncertain point evidence.

Proof. Let t1 and t2 be the times of the two instances of uncertain point evidence.

Set t2 = t1 + ε for infinitesimal value ε.

Proposition 7.2.8. Temporally uncertain transition evidence is a combination of

two instances of certain point evidence.
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Proof. Set t1 and t2 as the times of the two instances of certain point evidence.

Proposition 7.2.9. Negative transition evidence is a special case of uncertain tran-

sition evidence.

Proof. Set

λSx =


0 if x ∈ XS

1
|X|−|XS |

otherwise

and

λEx =


0 if x ∈ XE

1
|X|−|XE |

otherwise

.

Proposition 7.2.10. Certain transition evidence is a special case of negative tran-

sition evidence.

Proof. Let state xS be the observed source state and xE be the observed destination

state. Set XS = X/{xS} and XE = X/{xE}.

Proposition 7.2.11. Certain transition evidence is a special case of temporally un-

certain transition evidence.

Proof. Set t1 = t2 as the times of the two instances of certain point evidence.

Proposition 7.2.12. Negative interval evidence is a special case of uncertain negative

interval evidence.

Proof. Set

λx =


1 if x ∈ X ′

0 otherwise
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Proposition 7.2.13. Certain interval evidence is a special case of uncertain positive

interval evidence.

Proof. Let state y be the observed state. Set

λx =


1 if x = y

0 otherwise

.

Proposition 7.2.14. Certain interval evidence is a special case of negative interval

evidence.

Proof. Let state y be the observed state. Set X ′ = X/{y}.

7.3 CTBN Inference Algorithms with Extended Evidence Types

The types of continuous-time evidence defined up to this point are only useful if

we can incorporate them into inference over the system. In this section, we show how

exact inference and importance sampling can be extended to support the new types

of evidence.

We note that we cannot represent uncertain and negative evidence simply by

modifying the network itself. This is in contrast to the DBN with virtual evidence,

for example. When unrolled, the DBN has distinct nodes in each timestep to which

the virtual evidence nodes can be attached. In a CTBN, there is a single node for

each variable that persists throughout the entire process. Therefore, the uncertain

evidence must be applied to the node at the right time during the inference process

itself.
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We now show how exact inference and importance sampling can be extended to

reason with uncertain and negative evidence. For the case of exact inference with

uncertain negative evidence, we have not yet found a closed-form solution, so we

use a rejection sampling step to validate that our extensions to importance sampling

correctly incorporate uncertain negative evidence.

7.3.1 Exact Inference for
Uncertain and Negative Evidence

As described in Section 2.2.3, exact inference for CTBNs can be achieved by

amalgamating all of the nodes into the full joint intensity matrix (turning the CTBN

into one large Markov process) and performing the forward-backward algorithm for

Markov processes. Because the size of the full joint intensity matrix is exponential in

the number of nodes, this algorithm quickly becomes intractable. We still show how

to include uncertain and negative evidence with exact inference to provide a baseline

for comparison to approximate methods.

7.3.1.1 Exact Inference with Uncertain Evidence. For uncertain evidence over

node X on segment i, the rows and columns representing transitions between the

states of X are zeroed out, because the uncertain evidence knows that the state is

constant during the interval but is uncertain as to the identity of that state. The

matrix Qi−1,i starts as the identity matrix. The diagonal elements corresponding to

each state of X are multiplied by the uncertain evidence for that state. This weights

the transition into each state according to the uncertainty in the evidence.

7.3.1.2 Exact Inference with Negative Evidence. Negative evidence is a straight-

forward extension for exact inference. In this case, the rows and columns of Qi are
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zeroed out in accordance with uncertain evidence. For certain evidence, all but one

state of X are zeroed out. For negative evidence, there can be multiple states of X

that are not zeroed out in Qi.

7.3.1.3 Exact Inference with Uncertain Negative Evidence. Suppose that segment

i contains uncertain negative evidence. Exact inference over this segment will require

more than just modifying the entries of the Qi matrix. In fact, new matrices Qi
<t

and Qi
>t need to be calculated first for each t ∈ [ti, ti+1) to compute

P (X(t) = k|σ[0,T )) =
1

Z
αti exp(Q<t

i (t− ti))∆k,k exp(Q>t
i (ti+1 − t))βti+1

. (7.10)

This equation is a modification of the forward-backward equation introduced in

Section 2.2.3 that attempts to account for uncertain negative evidence. The matrix

Qi
<t is the intensity matrix for segment i prior to the query time t, the matrix Qi

>t is

the intensity matrix for segment i after the query time t, but note that Qi
<t 6= Qi

>t

for uncertain negative evidence. This is because the uncertainty in the negative

evidence concerns the entire interval. Specifically, the magnitude of the uncertainty

dictates how the probability decreases for the negative states being entered any time

during the interval. On the other hand, Qi specifies the instantaneous probability of

entering those states. Depending on how the system is evolving, the probability of

transitioning to the negative states during [ti, t) may be different than during [t, ti+1).

Thus, the entries of Qi need to be re-weighted, but these weights are not constant

over the interval. It is not clear whether there is a closed-form solution for calculating

Q<t
i , Q>t

i , or even Qi for a past or future segment of uncertain negative evidence.

This is left as future work.



144

Algorithm 7.6 CTBN rejection sampling - subroutine for performing inference with
uncertain negative evidence.

CTBNAcceptOrRejectSample(σ, e′)

1: for each 〈λX , [t1, t2)〉 ∈ e′

2: for each x ∈ X
3: u ∼ Uniform(0, 1)
4: if ∃ 〈X, t〉 ∈ σ 3 (t ∈ [t1, t2) ∧X = x)
5: if u < λx
6: return Reject
7: end if
8: end if
9: end for
10: end for
11: return Accept

7.3.2 Rejection Sampling for
Uncertain Negative Evidence

Instead of exact inference for validating the case of uncertain negative evidence, we

can use rejection sampling. Here, rejection sampling refers to the process of approx-

imating P (X(t) = x|e) by generating samples from P (X(t)), removing all samples

that violate e, and computing the proportion with which X(t) = x occurs in the

remaining samples. Algorithm 7.6 shows the pseudocode for determining whether to

accept or reject a sample with uncertain negative evidence. The algorithm is passed

a trajectory σ that was generated using forward sampling (which can be generated

using Algorithm 7.7 with no evidence). This sample is either accepted or rejected

based on whether it conforms to the evidence e′. In this case, e′ consists of only un-

certain negative interval evidence, consisting of likelihoods defined over time intervals

〈λX , [t1, t2)〉. The value λx ∈ λX gives the likelihood with which state x of node X

can be ruled out on the time interval [t1, t2). Thus, to incorporate this uncertainty in

the negative evidence, trajectories are rejected in accordance with the likelihood of

the uncertain negative evidence. For example, suppose that the likelihood that state
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x0 of node X can be ruled out is 50% during the time interval [t1, t2). The rejection

sampling algorithm generates trajectories by forward sampling and randomly rejects

50% of all trajectories in which state x0 occurred any time on [t1, t2).

In general, rejection sampling is not feasible for inference in CTBNs. If the evi-

dence includes any transition, rejection sampling cannot be used, as there is a zero

probability of creating a trajectory that includes a transition at that exact time by

chance. Even when evidence does not include transitions, the probability of generat-

ing a trajectory that conforms to that evidence by chance decreases as the evidence

becomes more complex and its likelihood decreases. However, when there are only

a few intervals of disjoint evidence, rejection sampling can provide a way to validate

the extension to importance sampling for uncertain negative evidence.

7.3.3 Importance Sampling for
Uncertain and Negative Evidence

The size of the matrices in the forward-backward algorithm for exact inference are

exponential in the number of nodes in the CTBN. Furthermore, rejection sampling

will break down for all but the most likely of evidence. For uncertain and negative

evidence to be useful, we need to extend existing approximation algorithms to be able

to handle these new types of evidence.

In this section, we extend the importance sampling algorithm [43]. The algorithm

generates a set of weighted samples that conform to a partial trajectory e taken

as evidence. The algorithm samples a proposal distribution P ′ that conforms to the

evidence to fill in the unobserved intervals, generating a complete trajectory. Because

the samples are drawn from P ′ to force each sample to be consistent with the evidence,

each complete trajectory σ is weighted by the likelihood of the evidence, calculated

as w(σ) = P (σ,e)
P ′(σ)

, with the cumulative weight as W =
∑

σ∈S w(σ). After generating
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a set of i.i.d. samples S, the algorithm approximates the conditional expectation of

any function f given the evidence e as:

Ê(f |e) =
1

W

∑
σ∈S

w(σ)f(σ) (7.11)

While the extended importance sampling algorithm is similar in structure to the

original algorithm of [43], the introduction of negative evidence requires several mod-

ifications that must be made throughout the entire algorithm. Because of these

substantial differences, we present the extended importance sampling algorithm in

full. The pseudocode for the main loop is given in Algorithm 7.7. This algorithm

calls several helper methods, given in Algorithms 7.8 through 7.10. The algorithm

uses the following notation:

• t is the current time of the sample.

• σ is the trajectory, consisting of a sequence of timestamp/state pairs.

• w is the likelihood (weight) of the sample.

• e′ is a set of certain and/or uncertain observations, while e is a set containing

only certain observations.

• evalX (t) is the value of X at time t according to the evidence or null if X has no

evidence at time t. In the case of negative evidence, evalX (t) could be a set of

values.

• etypeX (t) is the type of evidence for X at time t, with values pos and neg for

positive and negative evidence, respectively.

• x(t) is the state of node X at time t.
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Algorithm 7.7 CTBN importance sampling for performing inference with uncertain
and negative evidence.

CTBNImportanceSample(N , e′, tend)
1: t← 0
2: Time← null
3: 〈e, w〉 ← SampleEvidence(e′)
4: 〈X, σ, w〉 ← SampleInitialStates(N , e)
5: loop until termination
6: Time← SampleTransitionTimes(Time,N , e)
7: X ← arg minX∈X[Time[X]]
8: if Time[X] ≥ tend
9: w ← UpdateWeight(X,w, t, tend,N , e)
10: break
11: else
12: w ← UpdateWeight(X,w, t, T ime[X],N , e)
13: end if
14: t← Time[X]
15: if eendX (t) = t ∧ (evalX (t) = null ∨ x(t) = evalX (t) ∨ etypeX (t) = neg)
16: Time[X]← null
17: else
18: if etypeX (t) = pos ∧ evalX (t) 6= null ∧ x(t) 6= evalX (t) ∧ eendX (t)− t < ε
19: w ← w · θx(t)|uX(t)[e

val
X (t)]

20: x(t)← evalX (t)
21: else
22: θ ← θx(t)|uX(t)

23: if (etypeX (t) = neg)
24: w ← w · (1−

∑
e∈evalX (t) θ[e])

25: Constrain(θ, evalX (t))
26: end if
27: x(t) ∼ Multinomial(θ)
28: end if
29: X ← x(t)
30: Append(σ, 〈X, t〉)
31: Time(X)← null
32: for each Y ∈ Ch(X)
33: Time(Y )← null
34: end for
35: end if
36: end loop
37: return 〈σ,w〉
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• θBX|paB(X) is the prior probability distribution of X given the parents of X in B.

• Time[X] is the proposed transition time of node X.

• etimeX (t) is the first time after t when evalX (t) is defined.

• eendX (t) is the first time after or equal to t when evalX (t) changes value or becomes

null.

• qx(t)|uX(t) is the exponential parameter of node X in state x(t) given the parent

states of X at time t.

• θx(t)|uX(t) is the transition probabilities out of state x(t) given X’s parents’ states

at time t.

• econfX (x(t), t) is the soonest time at which the current state conflicts with upcom-

ing evidence, either positive or negative, or null if there is no future evidence

or the current state matches the soonest positive evidence.

The method Constrain(θ, e) takes the probabilities for a multinomial distribution

θ, zeroes out the states in θ listed in e, and then re-normalizes θ. This is used for

negative evidence, ensuring that a node can still transition but never to negated

states.

The method SampleEvidence(e) handles uncertainty in the evidence, whether pos-

itive or negative. The states of any uncertain evidence are re-sampled before the

generation of each sample. This applies to both uncertain positive and uncertain

negative evidence. The method also checks to make sure the evidence sampled is

feasible. For example, uncertain negative evidence must not rule out every state.

Thus, for each sample generated by the sampling algorithm, all of the evidence can

be treated as certain. However, the certain evidence could change between samples,
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according to the uncertainty of the evidence, and the weights of the final set of samples

will reflect this in the given query.

The main method CTBNImportanceSample(N , e′, tend) generates a single, weighted

trajectory σ that conforms to the evidence e and is weighted according to the likeli-

hood of that evidence. Line 1 initializes the current time t to 0, while line 2 initializes

the set of proposed transition times. Line 3 samples any uncertain evidence in e′ and

updates the weight w based on the likelihood of sampling that evidence. During the

generation of this sample, the sampled evidence in e is treated as certain evidence.

Line 4 generates the initial states for all nodes according to the prior distribution B

while conforming to any evidence in e defined at t = 0. The weight of the sample is

updated according to the likelihood of this evidence.

Lines 5-36 continue to generate transitions until the duration of the trajectory is

at least tend. Line 6 ensures all nodes have potential transition times. Line 7 gets

the node with the soonest potential transition time. In lines 8-37, if that time is

later than tend, the trajectory is finished. The weight is updated through the last

segment up until tend, and the trajectory and its likelihood are returned. Otherwise,

lines 11-13 update the weight over the current segment. Line 14 updates the current

time to the end of the segment. A transition may not always occur at the end of

the segment (hence the term “potential transition time”). A transition will not occur

if the end of the segment falls on a change in evidence, such that the current time

falls on the end or beginning of a segment of positive evidence for this node or the

evidence is negative. In this case, lines 15-16 reset the potential transition time

for this node, and the process returns to line 5. Otherwise, a transition will occur.

Lines 18-20 handle the case when the evidence specifies the transition. This occurs

when there is positive evidence at the current time (or within ε of the current time)

and the current state of the node does not match the evidence. Thus, to conform to
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Algorithm 7.8 CTBN importance sampling subroutine - sample initial states.

SampleInitialStates(N , e)

1: σ ← null, w ← 1
2: for each X ∈ X
3: if evalX (0) 6= null
4: if etypeX (0) = pos
5: x(0)← evalX (0)
6: w ← w · θBx(0)|paB(0)

7: else
8: θB ← θBx(0)|paB
9: Constrain(θB, evalX (0))
10: x(0) ∼ Multinomial(θB)
11: w ← w · (1−

∑
e∈evalX (0) θ

β[e])

12: end if
13: else
14: x(0) ∼ Multinomial(θBX|PaB(X))
15: end if
16: X ← x(0)
17: Append(σ, 〈X, 0〉)
18: end for
19: return 〈X, σ, w〉

the evidence, a transition is forced in line 20. Line 19 updates the weight with the

likelihood of that transition. Otherwise, the node can transition to multiple states,

and the destination state must be sampled. If there is negative evidence, lines 23-26

zero out the transition probabilities for these states and update the weight with the

likelihood that the node did not transition to these states. In line 29, the state of the

node is updated. Because a transition has occurred, line 30 adds the transition to

the trajectory. Furthermore, lines 31-34 reset the potential transition times for the

node and all of its children, as the change of state in the parent changes the current

intensity matrix of each child. The process returns to line 5 to generate new potential

transition times.

The helper method SampleInitialStates(N , e) is given in Algorithm 7.8. The

method is responsible for sampling the initial states of the trajectory while conform-
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Algorithm 7.9 CTBN importance sampling subroutine - sample sojourn times.

SampleTransitionTimes(Time,N , e)

1: for each X ∈ X
2: if Time[X] = null
3: if evalX (t) 6= null and etypeX (t) = pos
4: ∆t← eendX (t)− t
5: else
6: tconf ← econfX (x(t), t)
7: if tconf 6= null
8: ∆t ∼ Exponential(qx(t)|uX(t)) given ∆t < (tconf − t)
9: else
10: ∆t ∼ Exponential(qx(t)|uX(t))
11: te = etimeX (t)
12: if x(t) = evalX (te) and t+ ∆t > te
13: ∆t← te − t
14: end if
15: end if
16: end if
17: Time[X]← t+ ∆t
18: end if
19: end for
20: return Time

ing to the evidence. Line 1 creates an initially empty trajectory σ and initializes the

weight w. Lines 2-18 loop over all nodes in N . Lines 3-12 handle the case when the

node has evidence set at t = 0. If the evidence is positive, lines 4-6 set the node to

that state and update the weight with the likelihood of that evidence. If the evidence

is negative, lines 7-12 zero out the transition probabilities for these states and update

the weight with the likelihood that the node did not transition to these states. If no

evidence is specified for this node at t = 0, line 14 samples from the prior distribution,

and no weighting is necessary. Line 16 sets the initial state of the node, and line 17

adds the initial states to the trajectory. The current states, the current trajectory,

and the current weight are returned in line 19.
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The helper method SampleTransitionTimes(Time,N , e) is given in Algorithm 7.9.

The method is responsible for generating proposed transition times that conform

to the evidence. These are only proposed transition times, and transitions are not

guaranteed to occur at these times. For example, whenever a parent node transitions,

the children’s proposed transition times will be re-sampled to account for their new

conditional intensity matrix, and the proposed transitions times will change. If a node

is currently within an interval of positive evidence or has upcoming positive evidence,

the proposed transition times will be the start or end of the interval, respectively.

However, a transition will not occur, because the state must be kept constant during

the interval of positive evidence.

Lines 1-19 loop over all nodes in N , while line 2 checks whether the current node

needs a new proposed transition time. Line 3 checks whether the node is currently

within positive evidence. If so, line 4 sets the node’s proposed transition time as the

end of the evidence. This does not mean that the node will transition immediately

after the interval of positive evidence, but will have its proposed transition time

sampled again once it becomes unobserved. If the node is not currently observed,

then line 6 gets the soonest time (if it exists) at which the current state of the node

conflicts with upcoming evidence. Line 7 checks whether the current state conflicts

with upcoming evidence (if the time of the soonest conflict is set). This could be

positive evidence (the current state will need to transition to the observed state at

some point) or negative evidence (the current state will need to transition away from

the set of states that are ruled out). In either case, the proposed transition time must

be sampled from a truncated exponential distribution, shown in line 8, to condition

on the upcoming evidence. Otherwise, line 10 simply samples from an exponential

distribution. While the current state could be conforming to upcoming evidence,

the sampled transition time could be past the end of the upcoming evidence. Thus,
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Algorithm 7.10 CTBN importance sampling subroutine - update weight for interval
evidence.
UpdateWeight(Y,w, t1, t2,N , e)

1: for each X ∈ X
2: te ← eendX (t1)
3: if evalX (t1) 6= null ∧ etypeX (t1) = pos ∧ (evalX (te) = null ∨ etypeX (te) = neg)
4: w ← w · exp(−qx(t1)|uX(t1)(t2 − t1))
5: else
6: tconf ← econfX (x(t), t)
7: if tconf 6= null
8: if X = Y
9: w ← w · (1− exp(−qx(t1)|uX(t1)(te − t1)))
10: else
11: w ← w · 1−exp(−qx(t1)|uX (t1)

(te−t1))

1−exp(−qx(t1)|uX (t1)
(te−t2))

12: end if
13: end if
14: end for
15: return w

line 11 gets the time of the next change in the evidence, and lines 12-14 make sure

the sampled transition time does not exceed this time. Line 17 sets the proposed

transition time for this node, and the set of proposed transition times for all nodes

are returned in line 20.

The helper method UpdateWeight(Y,w, t1, t2) is given in Algorithm 7.10. The

method is responsible for weighting the likelihood of the transition times, whether

the state was observed over an interval or the transition time was sampled from a

truncated exponential to conform to upcoming evidence.

Lines 1-14 loop over all nodes in N . Line 2 gets the time of the next change in

observation for this node. Line 3 checks whether the state of the node is currently

known but will become unobserved before transitioning to another state. If this is the

case, line 4 updates the weight by the likelihood that the node remained in the state

for at least the interval observed. Otherwise, if the state was unknown, the transition

time might have been sampled from a truncated exponential distribution. Line 6 gets
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the time at which the current state of this node conflicts with upcoming evidence,

if it exists. Line 7 checks whether this time is set, i.e., whether the most recent

proposed transition time for this node was sampled from a truncated exponential

distribution. If the current node was the node with the soonest proposed transition

time, the weight is updated with the likelihood of sampling the transition time from

the truncated exponential, as per line 9. Otherwise, the proposed transition time

must be later, and the weight is updated according to line 11. The weight for this

segment over all of the variables is returned in line 15.

Note the extended importance sampling algorithm is able to estimate the condi-

tional expected value Ê(f |e′) for uncertain and negative evidence e′, which means

that our extension for uncertain and negative evidence is fully compatible with the

performance functions of Chapter 4. Thus, we can still reason about the performance

of a system using factored performance functions even with uncertain and negative

evidence. Although the approximate inference algorithms of Chapter 5 are not de-

signed for interval evidence, they are compatible with the uncertain and negative

point and transition evidence presented in this chapter.

7.4 Experiments

We demonstrate the extended types of evidence on the drug effect network pre-

sented by [17] as shown in Figure 7.4. All of our observations involve state c0 of

Concentration. This node has three states, which allows us to show uncertain transi-

tions and to show how negative evidence rules out one of those states and renormalizes

the probability between the other two states. The node also has parents and children,

which allows us to show how the new types of evidence affect the probabilities of nodes

around the observed node. For each setting of evidence, we ran the modified impor-
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Figure 7.4: Drug effect network.

tance sampling algorithm with 100,000 samples over the time interval [0.0, 10.0). We

query the probabilities over time in 0.4 increments. For exact inference, we interpo-

late the points and plot the curves. We plot the probabilities returned by importance

sampling and rejection sampling as points, shown as circles and crosses, respectively.

We can evaluate the accuracy of the approximate sampling methods by how far the

points deviate from the curves.

7.4.1 Uncertain Positive Interval Evidence

For uncertain positive evidence, we vary the likelihood of the system being in

state c0 over the interval [3.0, 7.0) from 0.0 to 1.0 in increments of 0.2 and divide the

remaining probability uniformly between c1 and c2. The top-most curve of Figure 7.5a

shows when c0 can be ruled out with complete certainty. The bottom-most curve of

Figure 7.5a shows when c0 is observed with complete certainty.

As expected, the uncertain positive observation of Concentration affects the prob-

ability of the states of other nodes as well. Figure 7.5b shows the evolving probabilities

of state d0 of Drowsy given the same varying uncertain positive observations to Con-

centration. The top-most curve of Figure 7.5b shows the effect on d0 when c0 can be

ruled out with complete certainty, while the bottom-most curve shows the effect on
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(a) Probability of c0 through time.

(b) Probability of d0 through time.

Figure 7.5: Uncertain positive interval evidence.
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d0 when c0 is observed with complete certainty. As we can see by how the points fall

close to the curves, the importance sampling algorithm is able to accurately estimate

the probabilities with uncertain positive evidence.

7.4.2 Uncertain Negative Interval Evidence

Now we show uncertain negative interval evidence. For the uncertain negative

evidence, we vary the probability of state c0 being ruled out over the interval [3.0, 7.0),

from 0.0 to 1.0 in increments of 0.2. The top-most curve of Figure 7.6a shows when

c0 cannot be ruled out with any certainty, which is the same as no observation. The

bottom-most curve of Figure 7.6a shows when c0 can be ruled out with complete

certainty. Hence, the probability of c0 is exactly 0.0 for the entire interval [3.0, 7.0).

As above, the uncertain negative observation of Concentration affects the other

node. Figure 7.6b shows the evolving probabilities of state d0 of Drowsy given the

same varying uncertain negative observations to Concentration. The top-most curve

of Figure 7.6b shows the effect on d0 when c0 cannot be ruled out with any certainty,

while the bottom-most curve shows the effect on d0 when c0 can be ruled out with

complete certainty.

To more easily distinguish between the points arising from the two sampling meth-

ods, the probabilities calculated from rejection sampling are offset in time from im-

portance sampling by 0.2. As we can see by how the points fall close to the curves,

both importance sampling and rejection sampling are able to accurately estimate the

probabilities with certain negative evidence (top and bottom curves), thereby validat-

ing both approaches. For uncertain negative evidence, we can see that the two give

consistent results, indicating that they are correctly incorporating the uncertainty in

the negative evidence.
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As already discussed, uncertain and negative evidence become distinct types of

evidence when the evidence is temporal. The difference between them becomes ap-

parent when comparing Figures 7.5 and 7.6. Uncertain positive evidence observes the

state to be constant over the interval, shown by the constant probability of Figure 7.5a

on the interval [3.0, 7.0). However, the uncertain negative evidence rules out states

with some probability, but does not rule out state transitions. Therefore, as time

progresses, the state probability might also vary, even if it has a non-zero probability

of being ruled out. Because the system is tending toward c0, the probability of c0

increases even with negative evidence on c0 when there is uncertainty in that evidence.

7.4.3 Duration of Uncertain Interval Evidence

Next we demonstrate how the duration of an observation can affect uncertain

evidence. We set the likelihoods for the states of Concentration to be 0.2, 0.4, and

0.4 for states c0, c1, and c2, respectively. We vary the duration of this observation

from point evidence at time 3.0 to interval evidence over [3.0, 7.0) in increments of

1.0. The bottom-most curves of Figure 7.7 show the effect of point evidence on

the probabilities of c0 and d0, while the top-most curves show the effect of interval

evidence over [3.0, 7.0) on the probabilities of c0 and d0.

As we can see from these results, if an observation is uncertain, the duration of the

observation affects the probabilities. In this network, Concentration tends to remain

in c0 longer than in c1 or c2. Therefore, if we know that the state of Concentration

did not change over an interval, c0 becomes more and more likely as the length of

that interval increases, even when given the same likelihoods in the observations.
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(a) Probability of c0 through time.

(b) Probability of d0 through time.

Figure 7.6: Uncertain negative interval evidence.
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(a) Probability of c0 through time.

(b) Probability of d0 through time.

Figure 7.7: Varying duration of uncertain interval evidence.
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(a) State probabilities of Concentration through time.

(b) State probabilities of Concentration through time.

Figure 7.8: Uncertain transitions to and from a given state.
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7.4.4 Uncertain Transition Evidence

Lastly, we give an example of uncertain transition evidence. Figure 7.8 shows the

state probabilities of Concentration when an uncertain transition is observed at time

5.0. Figure 7.8a shows the probabilities when the state is known to transition from

state c0, but the destination state is unknown with λc1 = λc2 = 0.5. Figure 7.8b

shows the probabilities when the state is known to transition to state c1, but the

source state is unknown with λc0 = λc2 = 0.5.

The transition probabilities between the states of Concentration are determined

by the current states of its parents (Uptake and Full stomach). Thus, Figure 7.8a

takes into account the probable states of the parents at time 5.0, in addition to

Concentration’s transition probabilities. Likewise, Figure 7.8b shows that, reasoning

over all the state combinations of Concentration’s parents, a transition to c1 most

likely originated from c2.

7.5 Conclusion

Continuous-time systems allow for much greater variety in the types of evidence

(as opposed to DBNs, for example) that would be useful to know about the system.

For CTBNs, evidence can be over an interval or at a single point, corresponding to the

system being observed in a particular state. The types of continuous-time evidence

can be further generalized to include uncertain and negative evidence. Uncertain and

negative evidence in continuous-time systems represents a novel and useful general-

ization of evidence that makes the models more applicable and versatile.

We presented the first definitions for uncertain and negative variations with point,

transition, and interval evidence in CTBNs and showed the relationships between
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these evidence types. We showed how to extend the CTBN importance sampling al-

gorithm to support all of these evidence types, how to extend the forward-backward

algorithm in CTBNs to support uncertain positive evidence and certain negative

evidence, and how to use a rejection sampling technique in CTBNs for uncertain neg-

ative evidence. As discussed in Section 2.3.6, there are several other CTBN inference

algorithms that have been developed, each with their own strengths and weaknesses.

Thus, to give the greatest flexibility to CTBN modelers who have evidence that is

uncertain or negative (or both), it would be useful to extend these algorithms to

support uncertain and negative evidence as well.
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CHAPTER 8

CONCLUSION

We conclude with a summary of our contributions and directions for future work.

8.1 Summary

In this dissertation, we described five novel and useful extensions to CTBN mod-

eling and inference.

First, we extended the complexity theory of inference in CTBNs. While the NP-

hardness results of exact and approximate CTBN inference given the initial states

are not surprising (considering what we know about Bayesian networks), such results

did not exist previously. These results for the CTBN are now proved explicitly. The

proof for exact inference justifies the focus of researchers on approximate methods for

CTBN inference. However, the proofs for approximate inference warn modelers that

even approximate inference may not be tractable, regardless of whether the maximum

number of parents is constrained to be less than or equal to three. Our experiments

demonstrated the reduction and showed the exponential behavior of the sampling

algorithm as predicted by the theorem. The complexity proofs for the general case

may motivate efforts toward finding efficient exact or provably bounded approximate

inference methods for useful special cases of CTBNs.

Second, we introduced and formalized factored performance functions over the

nodes of the CTBN. These performance functions place user-defined values on various

behaviors of the model, allowing for a much greater variety in the types of queries that

can be asked of the model. The factorization of the performance functions allows in-
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dividual performance functions to be assigned to individual nodes, which makes them

easier for a modeler to interpret and easier to implement in a CTBN reasoner. For

values placed on complex interactions between multiple states of multiple nodes, we

show how to augment the network structure with synergy nodes. For modelers these

synergy nodes provide a visual representation of the dependence between performance

functions in much the same way that the CTBN arcs show dependence between the

behaviors of subsystems. They also provide a way to compute synergistic functions

directly during the inference process. We showed an application of the performance

functions and synergy nodes to a real-world network consisting of fleet of vehicles.

Through the use of a synergy node, the sampling algorithm could compute the ex-

pected performance of the system after evaluating fewer samples than the brute-force

approach.

Third, we presented two novel node isolation algorithms for node marginalization

that builds on previous node marginalization methods. Node isolation provides a

more nuanced treatment of the entry and exit distributions of the subsystem being

marginalized. By weighting the entrance and exit distributions of the subsystems with

entries from the steady-state distribution, node isolation tends to be better at esti-

mating the long-term behavior of the unconditional Markov process than the previous

methods. We compared the existing linearization and subsystem methods with two

variations of the node isolation approach. Whereas the linearization and subsystem

methods rely on the immediate behavior of the CTBN for their approximations, the

experiments demonstrated that the node isolation concept is better able to describe

the long-term behavior of the CTBN.

Fourth, we leveraged both the factored performance functions and the node iso-

lation method to show how sensitivity analysis can be applied to the CTBN model.

Sensitivity analysis is a new form of inference for CTBNs, allowing modelers to mea-
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sure how changes in model parameters affect the expected performance of the sys-

tem. Extending beyond a straightforward application of Markov process sensitivity

analysis to CTBNs, we showed how to use node isolation to follow the factorization

of the network in order to perform sensitivity analysis on different subnetworks in-

dependently, without having to confront the exponential state-space of the system

as a whole. We demonstrated sensitivity analysis on three reliability models—one

synthetic network and two real-world networks. The experiments demonstrated the

benefit of subdividing the CTBN into independent subnetworks on which to perform

sensitivity analysis.

Fifth, we defined, for the first time, uncertain and negative continuous-time ev-

idence for CTBNs. We showed how the new “dimensions” of uncertainty and neg-

ativity can be applied to the existing point, transition, and interval evidence types.

We categorized the different combinations of evidence and proved the generalization

and specialization relationships between them. We extended the CTBN importance

sampling algorithm to be able to reason over all of these new types of evidence. Thus,

modelers are now able to include a wider variety of available observations and reason

about uncertainty in the observations, as well as uncertainty in the system’s behav-

ior. We demonstrated the impact of different types of evidence on the probability

distributions of observed and unobserved nodes through time, showing variations in

the magnitude of the uncertainty in the state, duration, and transition.

8.2 Future Work

As with the BN model when it was introduced, the CTBN model continues to

be extended, refined, and applied to new domains. While we have advanced several
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areas, there are other directions for CTBN modeling, learning, and inference that

have yet to be explored.

In complexity theory, the CTBN has several potential special-case complexity re-

sults. For example, there could be constrained structures and/or parameters that ad-

mit tractable inference algorithms, analogous to polytree-based inference in BNs. The

complexity theory behind CTBN structure learning and parameter estimation could

be extended beyond the proof for finding the k highest-scoring parents in polynomial-

time. Our experiments seemed to indicate that the CTBN for deciding the satisfiabil-

ity of a Boolean expression could also give the fraction of satisfying truth assignments

by examining the convergence of the probabilities of the Dm node. Formally proving

this is left as future work but would most likely proceed by examining the limiting

distribution of the full joint intensity matrix in relation to the corresponding clause.

We would like to explore further applications for our factored performance func-

tions. In particular we would like to demonstrate an application that uses families

of performance functions over the nodes of the CTBN. The families could represent

trade-offs in the behavior of the system, such as cost vs. availability. From there

one could perform multi-objective optimization over the CTBN. For example, our

approach for CTBN sensitivity analysis could be used to find model parameters that

meet acceptable trade-off criteria for competing performance functions.

Our node isolation methods show promise over the previous linearization and

subsystem methods for filtering and prediction with point evidence by better approx-

imating the long-term behavior of the nodes. Future work for the node isolation

methods would be to extend these methods to be able to include interval evidence,

as well as perform smoothing. More research can be done on the quality of the

approximation of the node isolation method, especially in the presence of cycles.
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We have shown how perturbation realization and node isolation can be used to

perform more efficient sensitivity analysis of CTBNs. However, the node isolation

methods produce approximating unconditional intensity matrices from which pertur-

bation realization generates trajectories to approximate potentials. Analyzing the

correlation between the quality of approximation of the potentials and the quality of

the approximation of the unconditional intensity matrices is an area for future work.

Our definitions for uncertain and negative evidence in CTBNs expand the types of

observations that CTBN inference algorithms can incorporate. While we extended the

exact forward-backward algorithm and the importance sampling algorithm to be able

to support these new types of evidence, extending other CTBN inference algorithms

to also support uncertain and negative evidence is future work. Other sampling

algorithms, such as Gibbs sampling, might be able to use some of the concepts used

in the importance sampling algorithm, such as sampling from uncertain observations

to determine the evidence for each sample. Methods that use the forward-backward

algorithm on a marginalized subnetwork, such as expectation propagation, might

be able to use our extensions for exact inference to include uncertain and negative

evidence separately. As we do not yet have an exact formulation for uncertain nega-

tive evidence, solving this problem in the exact case may enable this approximation

method to handle uncertain negative evidence as well.

We have shown CTBN sensitivity analysis as a new form of inference, which cal-

culates expected changes in system performance given changes in system parameters

rather than calculating expected system behavior given system observations. There

are other types of inference that could be useful for CTBNs. For example, adaptive

inference is the task of recalculating the results of inference after the inference prob-

lem has been slightly changed from previously calculated results. Suppose we have

used CTBN importance sampling to compute Ê(f |e′1). Can we calculate Ê(f |e′2) for
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some e′2 that is similar to e′1 by reusing some of the calculations from Ê(f |e′1)? For

another example, abductive inference is the problem of computing the most probable

explanation for a set of observations. That is, given a set of observations about the

states of the nodes, find states for (at least some of) the remaining nodes that best

explains the observations. One of the first problems in extending abductive inference

to the CTBN is to formulate exactly what this means in continuous-time setting.

Lastly, we have focused on CTBN modeling and inference. As a data-driven model,

CTBNs can be learned from data. This includes learning the structure of the network,

the dependencies between subsystems, and learning the parameters, the entries in the

conditional intensity matrices. The first CTBN structure learning algorithm used a

scoring-based metric to determine the parents of a node. Algorithms for BN struc-

ture learning include these types of algorithms but also constraint-based algorithms

that test for conditional dependence and independence in the data and construct a

structure that matches the results of these tests. One of the first problems in extend-

ing constraint-based structure learning for CTBNs is to extend the dependence and

independence tests for continuous-time data. There are only a few CTBN learning

algorithms that exist for learning when the data is incomplete and for learning the

parameters of hidden nodes (additional nodes that are not directly represented in

the data but are inferred from other values in the data). These algorithms rely on

heuristics and provide only approximate solutions. Thus, advances to CTBN learning

that improve these approximations would also be valuable future work.

These are just some examples, inspired by a similar progression in modeling,

learning, and inference in BNs. Given the prevalence of continuous-time systems, the

application of CTBNs to real-world problems will likely increase as well, motivating

further research to make the CTBN more powerful and more applicable to solving

these problems.
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Figure B.1: Drug effect network

These are the initial distributions and conditional intensity matrices for the drug

effect network, shown in Figure B.1 and referenced in Sections 2.3.1, 5.3.2, and 7.4.

Each node is abbreviated to its first letter.
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Figure C.1: CTBN for fleet of vehicles with synergy node

These are conditional intensity matrices for the vehicle reliability network, shown

in Figure C.1 and referenced in Section 4.3. The notation QX|∗ is used to specify the

conditional intensity matrices of X for all state combinations of Pa(X) that are not

specified previously. The initial state of each node is state 0.
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 0 0

1e10 −1e10

 QV |ch0,pt0,el0 =

 0 0

1e10 −1e10


QV |ch2,pt0,el0 =

 0 0

1e10 −1e10

 QV |ch2,pt2,el0 =

 0 0

1e10 −1e10



QV |∗ =

−1e10 1e10

0 0



QV +|all good =

 0 0

1e10 −1e10

 QV +|∗ =

−1e10 1e10

0 0


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APPENDIX D

SIMPLE SYNTHETIC MODEL
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Figure D.1: Example CTBN of a simple system

These are conditional intensity matrices for the simple, synthetic reliability net-

work, shown in Figure D.1 and referenced in Section 5.3.1 and Section 6.4.1. Each

node uses a uniform initial distribution.

QA =


−3 1 2

1 −2 1

2 0 −2

 QB =

−1 1

2 −2



QC|a0,b0 =


−2 1 1

2 −3 1

1 1 −2

 QC|a1,b0 =


−3 2 1

2 −4 2

2 1 −3



QC|a2,b0 =


−5 4 1

2 −5 3

3 1 −4

 QC|a0,b1 =


−6 4 2

2 −6 4

4 1 −5



QC|a1,b1 =


−7 6 1

2 −7 5

5 1 −6

 QC|a2,b1 =


−2 1 1

2 −3 1

1 6 −7



QD|c0 =

−1 1

2 −2

 QD|c1 =

−3 3

1 −1

 QD|c2 =

−3 3

2 −2


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QE|d0 =

−0.01 0.01

1 −1

 QE|d1 =

−0.1 0.1

1 −1


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APPENDIX E

CARDIAC ASSIST SYSTEM MODEL
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Figure E.1: Cardiac assist system model

These are conditional intensity matrices for the reliability model of the cardiac

assist system shown in Figure E.1 and referenced in Sections 5.3.4 and 6.4.2. The

notation QX|∗ is used to specify the conditional intensity matrices of X for all state

combinations of Pa(X) that are not specified previously. Because the model is used

for long-term reliability analysis, uniform initial distributions were used for all nodes.

QB|

p1, trigger0

p1, trigger2

 =

−5e-4 5e-4

0.1 −0.1



QB|


p0, trigger1

p1, trigger1

p2, trigger1

 =

−1e+20 1e+20

0.1 −0.1



QB|∗ =

−2.5e-4 2.5e-4

0.1 −0.1


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QCPU |


b0, p0

b0, p1

b1, p0

 =

 0 0

1e+20 −1e+20



QCPU |∗ =

−1e+20 1e+20

0 0



QCS =

−2e-4 2e-4

0.1 −0.1



QMA|ms0 =



−1e-3 1e-3 0 0 0

0.1 −0.1 0 0 0

0.1 0 −0.1 0 0

0 0 0 0 0

0 0 0 0 0



QMA|∗ =



−1e-3 0 0 1e-3 0

0 0 0 0 0

0 0 0 0 0

0.1 0 0 −0.1 0

0.1 0 0 0 −0.1



QMB|

ma1

ma3

 =

−1e-3 1e-3

0.1 −0.1


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QMB|∗ =

 0 0

0.1 −0.1



QMotor|motors1,mp1 =

−1e+20 1e+20

0 0



QMotor|∗ =

 0 0

1e+20 −1e+20



QMotors|



ma0,mb0

ma0,mb1

ma1,mb0

ma3,mb0


=

 0 0

1e+20 −1e+20



QMotors|∗ =

−1e+20 1e+20

0 0



QMP |ma0,ms0 =

 0 0

1e+20 −1e+20



QMP |

ma1,ms1

ma2,ms1

 =

−1e+20 1e+20

0 0



QMP |∗ =

0 0

0 0


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QMS =

−1e-5 1e-5

0.1 −0.1



QP |trigger1 =


−1e+20 9e+19 1e+19

0.1 −0.1 0

0.1 0 −0.1



QP |∗ =


−0.1 0.09 0.01

0.1 −0.1 0

0.1 0 −0.1



QPA =


−1e-3 8e-4 2e-4

0.1 −0.1 0

0.1 0 −0.1



QPB =


−1e-3 8e-4 2e-4

0.1 −0.1 0

0.1 0 −0.1



QPS|


pa0, pb0

pa0, pb2

pa1, pb2

 =

−5e-4 5e-4

1e-4 −1e-4


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QPS|


pa0, pb1

pa1, pb0

pa1, pb1

 =

−1e-3 1e-3

1e-4 −1e-4



QPS|∗ =

0 0

0 0



QPump|pumpa1,pumpb1 =

−1e+20 1e+20

0 0



QPump|∗ =

 0 0

1e+20 −1e+20



QPumpA|


pa0, ps0

pa0, ps1

pa1, ps0

 =

 0 0

1e+20 −1e+20



QPumpA|∗ =

−1e+20 1e+20

0 0



QPumpB|


pb0, ps0

pb0, ps1

pb1, ps0

 =

 0 0

1e+20 −1e+20


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QPumpB|∗ =

−1e+20 1e+20

0 0



QSS =

−2e-4 2e-4

0.1 −0.1



QSystem|cpu0,motor0,pump0 =

 0 0

1e+20 −1e+20



QSystem|∗ =

−1e+20 1e+20

0 0



QTrigger|cs0,ss0 =


0 0 0

1e+20 −1e+20 0

1e+20 0 −1e+20



QTrigger|∗ =


−1e+20 9e+19 1e+19

0 0 0

0 0 0


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APPENDIX F

MILLING MACHINE MODEL
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Figure F.1: Milling machine model.

These are conditional intensity matrices learned for the milling machine reliability

network, shown in Figure F.1 and referenced in Section 6.4.3. The notation QX|∗ is

used to specify the conditional intensity matrices of X for all state combinations of

Pa(X) that are not specified previously. Because the model is used for long-term

reliability analysis, uniform initial distributions were used for all nodes.

QsmcAC =


−0.1336 0.1316 0.0020

0.1340 −0.2669 0.1329

0.0022 0.1309 −0.1331



QsmcDC|smcAC0
=


−0.0095 0.0095 0

0.0043 −0.0145 0.0102

0 0.0091 −0.0091


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QsmcDC|smcAC1
=


−0.0017 0.0017 0

0.0048 −0.0100 0.0052

0.0003 0.0075 −0.0078



QsmcDC|smcAC2
=


−0.1444 0.1302 0.0142

0.1707 −0.3207 0.1500

0.0019 0.2636 −0.2655



Qvib table|vib spindle0 =


−0.1444 0.1302 0.0142

0.1707 −0.3207 0.1500

0.0019 0.2636 −0.2655



Qvib table|vib spindle1 =


−0.1650 0.1330 0.0320

0.1679 −0.3391 0.1712

0.0044 0.2363 −0.2408



Qvib table|vib spindle2 =


−0.2114 0.1644 0.0470

0.1318 −0.3374 0.2056

0.0026 0.1516 −0.1542



Qvib spindle =


−0.1897 0.1784 0.0113

0.1846 −0.3399 0.1553

0.0033 0.1651 −0.1684



QAE table|smcDC0,vib table0 =


−0.0266 0.0238 0.0028

0.4166 −0.4919 0.0753

0.0078 0.6708 −0.6786


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QAE table|smcDC0,vib table1 =


−0.1680 0.1630 0.0050

0.1279 −0.3249 0.1970

0 0.2450 −0.2450



QAE table|smcDC0,vib table2 =


−0.0776 0.0634 0.0142

0.0639 −0.3264 0.2625

0 0.0891 −0.0891



QAE table|smcDC1,vib table0 =


−0.1505 0.1403 0.0102

0.3203 −0.3783 0.0580

0.0027 0.4714 −0.4741



QAE table|smcDC1,vib table1 =


−0.2397 0.2314 0.0083

0.1648 −0.3047 0.1399

0.0001 0.3013 −0.3014



QAE table|smcDC1,vib table2 =


−0.5263 0.3723 0.1540

0.0961 −0.3549 0.2588

0.0001 0.1511 −0.1512



QAE table|smcDC2,vib table0 =


−0.3948 0.3439 0.0509

0.1905 −0.2923 0.1017

0.0004 0.2823 −0.2827



QAE table|smcDC2,vib table1 =


−0.4187 0.3683 0.0504

0.0997 −0.2679 0.1682

0 0.2837 −0.2837


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QAE table|smcDC2,vib table2 =


−0.7074 0.6061 0.1013

0.0807 −0.3982 0.3175

0 0.1230 −0.1230



QAE spindle|AE table0 =


−0.0410 0.0400 0.0010

0.4733 −0.5141 0.0408

0.0037 0.9298 −0.9335



QAE spindle|AE table1 =


−0.4894 0.4692 0.0202

0.1164 −0.2021 0.0857

0.0001 0.4311 −0.4312



QAE spindle|AE table2 =


−3.8803 2.9045 0.9758

0.0147 −0.4459 0.4312

0 0.07183 −0.07183



QV B|vib spindle0,AE spindle0 =

−1.30062e-4 1.30062e-4

0.1 −0.1



QV B|vib spindle0,AE spindle1 =

−5.46581e-5 5.46581e-5

0.1 −0.1



QV B|vib spindle0,AE spindle2 =

−2.07019e-5 2.07019e-5

0.1 −0.1



QV B|∗ =

−1e-6 1e-6

0.1 −0.1


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