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ABSTRACT

Restricted Boltzmann Machines (RBM) are energy-based models that are used
as generative learning models as well as crucial components of Deep Belief Networks
(DBN). The most successful training method to date for RBMs is Contrastive Diver-
gence. However, Contrastive Divergence is inefficient when the number of features is
very high and the mixing rate of the Gibbs chain is slow.

We develop a new training method that partitions a single RBM into multiple
overlapping atomic RBMs. Each partition (RBM) is trained on a section of the
input vector. Because it is partitioned into smaller RBMs, all available data can
be used for training, and individual RBMs can be trained in parallel. Moreover, as
the number of dimensions increases, the number of partitions can be increased to
reduce runtime computational resource requirements significantly. All other recently
developed methods for training RBMs suffer from some serious disadvantage under
bounded computational resources; one is forced to either use a subsample of the
whole data, run fewer iterations (early stop criterion), or both. Our Partitioned-
RBM method provides an innovative scheme to overcome this shortcoming.

By analyzing the role of spatial locality in Deep Belief Networks (DBN), we show
that spatially local information becomes diffused as the network becomes deeper.
We demonstrate that deep learning based on partitioning of Restricted Boltzmann
Machines (RBMs) is capable of retaining spatially local information. As a result, in
addition to computational improvement, reconstruction and classification accuracy of
the model is also improved using our Partitioned-RBM training method.
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CHAPTER 1

INTRODUCTION

In this chapter, we present the motivation for developing Partitioned Restricted

Boltzmann Machines (Partitioned-RBM), specifically in applications where the com-

putational resources are bounded. After a brief introduction to the characteristics of

current datasets and the limitation of RBMs, we introduce Partitioned-RBM as an

alternative training method that addresses computational requirements. Then, we

summarize our major contributions and conclude with an overview of each section of

this dissertation.

1.1 Motivation

As the volume of data is increasing exponentially, the corresponding need for

efficient learning algorithms is also increasing. In addition to the traditional Internet,

in the Internet of Thing (IoT) where a variety of smart devices are connected to

each other and to the Internet, the volume of data generated is immense. There are

some basic characteristics of recent data: 1) it is collected from many sources, 2) it is

very high dimensional, 3) it is complex, having many latent variables with complex

distributions, and 4) it is spatio-temporal. Representing such data efficiently and

developing computationally efficient algorithms is a challenging task. Most of the

training algorithms for learning are based on gradient descent with data likelihood

objective functions that are intractable to compute [1].

An example of data generated by users and sensors is images. Image pixel resolu-

tion is increasing continuously. An image taken by a cheaper camera with 2048×1536
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pixels resolution has 3.1 million total pixels. Thus, without any preprocessing, the

dimension of the image is 3.1 million. If one were to construct a neural network,

the input layer would need to have 3.1 million neurons. If the network had a single

hidden layer, also with 3.1 million neurons, then propagating information from one

layer to next would involve 9 × 1012 calculations. This is even more prohibitive

when deep neural networks with multiple hidden layers are used. As of 2010, Google

indexed approximately 10 billion images [2]. Current machine learning methods can

not handle such datasets when the number of images are on the order of billions.

An immediate solution to overcome the time complexity of training algorithms

is to distribute learning on many nodes for processing. However, in current Deep

Neural Network (DBN) algorithms, to accomplish an optimization task on multiple

machines, a central node is needed for communicating intermediate results. As a

result, the communication becomes a bottleneck.

In addition to training and inference time complexity, representation is an issue:

what is the best model to represent and process features effectively? The performance

of machine learning methods is dependent on the choice of data representation. Re-

cent studies show a representation that maximizes sparsity has properties of the

receptive fields of simple cells in the mammalian primary visual cortex; receptive

fields are spatially localized, oriented, and selective to structure at different spatial

scales [3]. In a sparse representation, most of the extracted features will be sensitive

to variations in data; thus, sparseness is a key component of good representation [4].

Moreover, there is a need for distributed representations where a concept is repre-

sented by many neurons and a neuron is involved in many concepts. Energy-based

models such as Markov Random Fields, Boltzmann Machines, and Autoencoders have

gained significant success. However, these algorithms, although tractable, are slow if

data dimensionality is very high.
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We implemented a partitioned Restricted Boltzmann Machine (RBM) and trained

an individual RBM separately [5]. We realized that partitioned RBMs are not only

more accurate in terms of their generative power, they are also fast. Our results shows

that they are also very accurate in terms of their discriminative power, namely in a

classification task. As a result, a learning method with many partitioned small RBMs

is more accurate and efficient. Training Partitioned-RBMs involves several partition

steps. In each step, the RBM is partitioned into multiple RBMs. We demonstrate

that Partitioned-RBMs have better representation and computational performance

as compared to monolithic RBMs.

1.2 Contributions

In this section, we briefly list the major contributions of this dissertation. A more

comprehensive summary is given in Chapter 8.

• We develop a novel partitioned learning method in Chapter 4 . Partitioned-

RBMs enable data-independent parallelization and since each sub partition has

fewer nodes and weights to be updated, our method has better computational

performance. We find that Partitioned-RBMs possess natural sparsity charac-

teristics because each Partitioned-RBMs are trained on localized regions of the

dataset.

• We show in Chapter 5 that Partitioned-RBMs can be used efficiently as discrim-

inative models with better performance in terms of computational requirements.

• We demonstrate in Chapter 6 that Partitioned-RBMs can be used effectively as

part of Deep Belief Networks while preserving spatially local features.
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• In Chapter 7, we apply Partitioned-RBMs to time series classification datasets,

and show that Partitioned-RBMs perform well in classifying time series with

high dimensions.

1.3 Organization

This section describes the organization of the remaining chapters of the disserta-

tion and gives a brief overview of the focus of each chapter.

In Chapter 2, we review the background work common to this line of research.

We describe concepts related to energy-based models. Most energy-based models

rely on the Boltzmann distribution, the partition function, and free energy. Thus, we

describe these concepts and derive energy functions for the Boltzmann distribution.

We then describe Constrastive Divergence (CD) algorithm in detail. This discussion

is followed by an introduction on deep learning and Deep Belief Networks (DBN).

Finally, we introduce tools for evaluating spatially local features. These tools will be

used in analyzing data and derived features in the subsequent.

In Chapter 3, we review the literature of Deep Belief Networks, Boltzmann Re-

stricted Machines and related approaches.

In Chapter 4, we discuss partitioning theory and develop a generic partitioned

based training procedure. We describe how data and model is partitioned. We then

develop Partitioned Restricted Boltzmann Machine (PRBM). Applying to an image

dataset, we analyze performance characteristics of Partitioned-RBMs.

In Chapter 5, we develop a discriminative version of Partitioned-RBM. We ap-

ply our model to an image classification task and show classification accuracy and

computational performance of the model.
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In Chapter 6, we assess the characteristics of Partitioned-RBMs in the context of

deep learning. Specifically, we carry out analysis on how Partitioned-RBMs used in

DBNs can exploit spatially local features with performance improvements.

In Chapter 7, we apply Partitioned-RBMs to temporal datasets. We demonstrate

that Partitioned-RBMs can classify time series effectively.

In Chapter 8, we draw conclusions and summarize the contributions resulting from

this work. We list future work and conclude with a list of published papers resulting

from this research.

1.4 Notation

All notation used throughout this thesis is described in this section.

a, b, c, w lowercase italic symbols for scalars
a,b, c,x lowercase bold symbols for vectors
W uppercase bold symbols for matrices
x> by default, all vectors a column vectors x> denotes row vector
xi ith element of vector x
xi ith row vector of matrix X
xij the ith row and jth column of matrix X
X(w), or X denotes random variables
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CHAPTER 2

BACKGROUND

Today, most of the data generated by humans and devices is unlabeled and of

very high dimension. Methods in deep learning attempt to manage the data flood and

curse of dimensionality by discovering structure and abstractions in the data. Because

of similarities in how physical systems organize, most energy-based neural networks

have become popular. In this chapter, we present the theoretical foundation for

energy-based models. We derive the necessary energy-based mathematical formulas

and present existing related learning methods. We also describe various methods and

tools for analysis of spatial and temporal features.

2.1 Boltzmann Distribution

In this section, we describe the Boltzmann Distribution, as the foundation of statis-

tical mechanics. In statistical mechanics, a certain quantity of matter under thermo-

dynamic study or analysis is called a system. When the thermodynamic system was

viewed as black box, the Austrian physicist Ludwig Boltzmann(1844-1906) thought

of a system in terms of atoms and molecules and described entropy (a measure of the

number of specific ways in which a thermodynamic system may be arranged) in terms

of possible disposition of atoms [6]. Boltzmann characterized thermodynamic systems

with possible arrangements of atoms and molecules. In other words, he examined the

second law of thermodynamics in terms of its possible atomic arrangements. This

line of thinking helped to create the field of statistical mechanics.
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Figure 2.1: Micro states of two-partitions system with three distinguishable particles

Definition 2.1.1. (Microstate) A microstate in statistical mechanics is identified by

“a detailed particle-level description of the system.” For example, microstates for a

system with equal-volume parts and three distinguishable particles has 23 = 8 different

microstates, as illustrated in Figure 2.1.

Definition 2.1.2. (Macrostate) A macrostate in statistical mechanics consists of

a set of microstates that can be described with a relatively small set of variables.

Specifically, a macrostate is a thermodynamic or equilibrium state that can be defined

in terms of variables energy (E), volume (V ), and particle number (n). For example,
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Figure 2.2: Energy levels or occupation numbers of N particles

Figure 2.1, shows four macrostates one of which is a two-sided system where two

particles are in the left partition and one particle is on the right. This macrostate has

three microstates.

Boltzmann defined special macrostates by the number of particles ni that occupy a

particular energy level i. These macro states are also called “occupation numbers.” A

set of occupation numbers, n1, n2..., nj defines a particular macrostate of the system.

Suppose we have n copies of a system in a heat bath as show in Figure 2.2 where

n is very large. Drawing from n, we want to know how many boxes occupy state i

or energy level i. Since there are an infinite number of states, most of these states

will have zero assignments, and all boxes have the same average energy. Moreover,

assume that the total energy is Etotal = n× Ē, where Ē is the average energy. Then,

the number of ways that occupational numbers can be realized is

Ω =
n!∏n
i=1 ni

.
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The probability that any given box will be in state i is given by P (i) = ni

n
. Thus,

we have following constraints:
n∑
i=1

P (i) = 1 (2.1)

n∑
i=1

niEi = nĒ (2.2)

where the average energy can be written in terms of probability as Ē =
∑n

i=1 P (i)Ei.

Instead of maximizing Ω, it is easier to maximize the log(Ω). Thus, log(Ω) = log(n!)−∑n
i=1 log(ni!). Using Stirling’s approximation, log(n!) ∼= n log(n)− n, we get

log(Ω) ∼= −n
n∑
i=1

P (i) log(P (i)) (2.3)

Note that, −
∑n

i=1 P (i) log(P (i)) is the entropy of a single system. To op-

timize (finding minimum or maximum) Equation 2.3 subject to the constraints

defined in Equation 2.1 and Equation 2.2, we apply Lagrange Multipliers as

−
∑n

i=1 P (i) log(P (i)) − α
∑n

i=1 P (i) − β
∑n

i=1 niEi = 0, where α and β are the La-

grange multipliers. Differentiating the function with respect to P (i), the probability

is obtained as:

P (i) = e−(1+α)e−βEi . (2.4)

The term β is defined in terms of temperature as 1
kbT

where kb is the Boltzmann

constant and T is temperature. Historically, e−(1+α) = 1
Z

where Z is the partition

function. The partition function is the sum over all the microstates of the system.

In probability theory, it is used as normalization constant. Using the constraint in
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Equation 2.1, we rewrite the partition function as:

Z(β) =
n∑
i=1

e−βEi (2.5)

Thus, the probability can be written as:

P (i) =
1

Z
e−βEi (2.6)

This equation is the Boltzmann Distribution. Z ensures that the
∑n

i=1 p(i) = 1.

The partition function contains a great deal of information. For example, average

energy, Ē, can be written as Ē = −∂ logZ
∂β

. The following are important definitions

and equations related to the partition function.

Definition 2.1.3. (Free Energy) Free energy is “useful” work obtainable from a ther-

modynamic system at a constant temperature. It is also called Helmholtz Free energy:

A = − log(Z)

β

Definition 2.1.4. (Average energy of the system)

Ē = −∂ log(Z)

∂β

Definition 2.1.5. (Entropy of the system)

T × S = E − A

S = log(Z)− β∂ log(Z)

∂β
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2.2 Restricted Boltzmann Machine

One of the well known approaches for feature representation is the Restricted

Boltzmann Machine (RBM). An RBM is a type of Hopfield net and a restricted

version of the general Boltzmann Machines (BM). A BM is a network of visible and

hidden stochastic binary units where the network is fully connected. On the other

hand, an RBM network is a bi-partite graph where only hidden and visible nodes are

coupled. There are no dependencies among visible nodes or among hidden nodes. The

RBM model was first proposed by Smolensky [7] in 1986. Hinton et al. developed an

algorithm to train a BM in 1985 as a parallel network for constraint satisfaction [8].

As discussed in Section 2.1, in statistical mechanics, the Boltzmann distribution is

the probability of a random variable that realizes a particular energy level (Equation

2.6) [6]. In machine learning, β is usually set to 1, except in the context of algorithms

such as simulated annealing. In simulated annealing the temperature T controls

the evolution of the states of the system. The partition function, Z, is generally

intractable to compute. However, when Z is computable, all other properties of the

system such as entropy, temperature, etc. can be calculated.

The RBM is a generative model with visible and hidden nodes as shown in Figure

2.3. The model represents a Boltzmann energy distribution [6], where the probability

distribution of the RBM with visible (x) and hidden nodes (h) is given in following

equation:

P (x,h) =
exp(−E(x,h))

Z
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Figure 2.3: Restricted Boltzmann Machine

The conditional probability can be written in terms of the energy function as follows:

P (h|x) =
exp(−E(x,h))∑
h exp(−E(x,h))

The partition function defines configurations over all possible x and h vectors

Z =
∑
x,h

exp(−E(x,h)) (2.7)

The probability of data P (x) is obtained by marginalizing over the hidden vector h.

P (x) =
∑
h

P (x,h) =
∑
h

exp(−E(x,h))

Z
(2.8)
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The energy function of an RBM is then given as

E(x,h) = −h>Wx− b>x− c>h

Here, b and c are bias vectors on visible and hidden layers respectively.

We can rewrite the energy function as a sum over both hidden and visible nodes

as:

E(x,h) = −
n∑
j

m∑
k

hjwjkxk −
m∑
k

bkxk −
n∑
j

cjhj

where n is number of hidden nodes and m number of visible (input) nodes. P (x)

defined in equation 2.8 can be written as the sum over all configurations of size n :

P (x) =
∑

h∈{0,1}n
exp(h>Wx + b>x + c>h)/Z

=
∑

h1∈{0,1}

∑
h2∈{0,1}

· · ·
∑

hn∈{0,1}︸ ︷︷ ︸
h∈{0,1}n

exp(h>Wx + b>x + c>h)/Z

=
∑

h1∈{0,1}

∑
h2∈{0,1}

· · ·
∑

hn∈{0,1}

exp(
n∑
j=1

(hjwjx + b>x + cjhj)/Z

=
∑

h1∈{0,1}

∑
h2∈{0,1}

· · ·
∑

hn∈{0,1}

n∏
j=1

exp(hjwjx + b>x + cjhj)/Z

=
n∏
j=1

∑
hj∈{0,1}

exp(hjwjx + b>x + cjhj)/Z

(2.9)

Since b>x is not dependent on h and it can be taken out of sum and product:

P (x) = exp(b>x)
n∏
j=1

∑
hj∈{0,1}

exp(hjwjx + cjhj)/Z
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Replacing h = 0 and h = 1, we obtain

P (x) = exp(b>x)
n∏
j=1

(1 + exp(wjx + cj))/Z

Using the fact exp(log(x)) = x, P (x) can be written as:

P (x) = exp(b>x +
n∑
j=1

log(1 + exp(wjx + cj)))/Z

Finally, f(x) = log(1+exp(x)) is the softplus function. Writing the above function

in term of softplus, we obtain the following equation:

P (x) = exp(b>x +
n∑
j=1

softplus(wjx + cj))/Z

Inspired from statistical mechanics, the exponential term F (x) = b>x+
∑n

j=1 log(1+

exp(wjx + cj)) is called free energy. Thus,

P (x) = exp(−F (x))/Z (2.10)

2.2.1 Inference in RBM: Conditional Probability

Calculating P (x,h) is not tractable due to the partition function, Z. However, the

conditional probability, P (h|x) = P (x,h)/
∑

h′ P (x,h′), has rather a simple form. To

differentiate from h, we use h′ to represents all hidden vectors (configurations) of size

n. Using equation 2.2, we obtain

P (h|x) =
exp(h>Wx + b>x + c>h)/Z∑

h′∈{0,1}n exp(h′>Wx + b>x + c>h′)/Z



15

The Z and b>x values cancel out. If we write this equation as an explicit sum over

all indices, we obtain

P (h|x) =
exp(

∑n
j=1 hjwjx + cjhj)∑

h′1∈{0,1}

∑
h′2∈{0,1}

· · ·
∑

h′n∈{0,1}︸ ︷︷ ︸
h′∈{0,1}n

exp(
∑n

j=1 h
′
jwjx + cjh′j)

Using c[
∑t

n=s f(n)] =
∏t

n=s c
f(n) rule, we rewrite it as:

P (h|x) =

∏n
j=1 exp(hjwjx + cjhj)∑

h′1∈{0,1}
∑

h′2∈{0,1}
· · ·
∑

h′n∈{0,1}
∏n

j=1 exp(h′jwjx + cjh′j)

Further we can rewrite the denominator as a product:

P (h|x) =

∏n
j=1 exp(hjwjx + cjhj)∏n

j=1

∑
h′j∈{0,1}

exp(h′jWjx + cjh′j)

The denominator can be simplified further using j = 0 and j = 1:

P (h|x) =

∏n
j=1 exp(hjwjx + cjhj)∏n
j=1(1 + exp(wjx + cj))

Using the same product, we obtain

P (h|x) =
n∏
j=1

exp(hjwjx + cjhj)

(1 + exp(wjx + cj))

It turns out the term inside the product is a probability distribution. Thus, it

must be P (hj|x) because of the Markov property. As result, the equation can be

written as follows.

P (h|x) =
n∏
j=1

P (hj|x)
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Algorithm 2.1 GRADIENT-DESCENT(J(θ), α)

1: Input: J(θ): cost function, α: learning rate.
2: Model Parameters: θ: model parameter,
3: repeat{
4: θi ← θi − α× ∂J(θ)

∂θi
5: }

Now, we can calculate P (hj = 1|x) as follows:

P (hj = 1|x) =
exp(wjx + cj)

(1 + exp(wjx + cj))

If we multiply both numerator and denominator by exp(−wjx− cj), the conditional

probability is simplified as:

P (hj = 1|x) =
1

(1 + exp(−wjx− cj))

The result is a sigmoid function where σ(x) = 1
1+e−x :

P (hj = 1|x) = σ(wjx + cj) (2.11)

2.2.2 Training RBM: Stochastic Gradient Descent

To train an RBM so that it assigns high probability to data, a negative log-

likelihood method is used. In a typical gradient descent, there is a cost objective

function J(θ) we would like to optimize. Here θ is a set of model parameters, so, the

generic algorithm for gradient descent is given as Algorithm 2.1.

Note that all parameters θi should be updated simultaneously. Moreover, this

simple algorithm is used for both Logistic Regression and Linear Regression. The

difference is the respective cost function used in the algorithm. Generally, each pa-
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Algorithm 2.2 STOCHASTIC-GRADIENT-DESCENT(J(θ), α)

1: Input: J(θ): cost function, α: learning rate.
2: Model Parameters: θ: model parameter,
3: shuffle dataset
4: repeat{
5: for each data sample{
6: θi ← θi − α× ∂J(θ)

∂θi
7: }
8: }

rameter update involves the complete batch of the dataset at once. Parameters are

updated until convergence occurs. However, a stochastic gradient descent updates the

model parameters after each data instance. Thus, it optimizes the model to fit the

current data instance. Algorithm 2.2 depicts a generic stochastic gradient descent.

Because the model parameters are updated after each data instance, data is shuffled

beforehand.

For RBMs, we use negative log-likelihood to optimize the energy function. Using

equation 2.2 the log-likelihood is calculated as follows.

−∂ log(P (x))

∂θ
=

∂

∂θ

(
− log

∑
h

exp(−E(x,h))

Z

)

where θ represents the model parameters (W , b, and c). To derive the gradient, first

the log is expanded and Z is replaced with equation 2.7. Then, partial differentiation
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is carried out.

−∂ log(P (x))

∂θ
=

∂

∂θ

(
− log

∑
h

exp(−E(x,h))

Z

)

= − 1

∂θ

(∑
h

exp(−E(x,h)

)
+

1

∂θ

(∑
h,x

exp(−E(x,h)

)

=
1∑

h exp(−E(x,h))

∑
h

exp(−E(x,h)
∂E(x,h)

∂θ

− 1∑
h,x exp(−E(x,h))

∑
h,x

exp(−E(x,h))
∂E(x,h)

∂θ

=
∑
h

P (h|x)
∂E(x,h)

∂θ
−
∑
h,x

P (x,h)
∂E(x,h)

∂θ
.

(2.12)

The first term is the expectation over h, and the negative term is the expectation

over both h and x. Thus, the stochastic gradient becomes

−∂ log(P (x))

∂θ
= Eh

[
∂E(x,h)

∂θ
|x
]

︸ ︷︷ ︸
positive phase

−Eh,x
[
∂E(x,h)

∂θ

]
︸ ︷︷ ︸

negative phase

(2.13)

The gradient contains two terms that are referred as the positive and the negative

phase respectively. The first positive phase increases the probability of the training

data by decreasing free energy, while the negative phase decreases the probability of

a sample generated by the model. Computing the expectation over the first term

is tractable; however, computing the second term is not. Thus, Hinton introduced

the Contrastive Divergence(CD) algorithm that uses Gibbs sampling to estimate the

second term [9].
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2.2.3 Contrastive Divergence

In this section, we describe the Contrastive Divergence (CD) algorithm, the semi-

nal algorithm for training Restricted Boltzmann Machines. CD provides a reasonable

approximation to the likelihood gradient. The CD-1 algorithm (i.e, Contrastive Di-

vergence with one step) is usually sufficient for many applications [1, 10].

To calculate updates in CD, we need to do the derivation of equation 2.13 with

respect to weight vector W.

E(x,h)

∂wjk
=

∂

∂wjk

(
−
∑
j

∑
k

hjwjkxk −
∑
k

bkxk −
∑
j

cjhj

)

= − ∂

∂wjk

(∑
j

∑
k

hjwjkxk

)

= −hjxk

(2.14)

We can find the expectation of the positive term in equation 2.13 with respect to jk

as follows:

Eh

[
∂E(x,h)

∂wjk
|x
]

= Eh [−hjxk|x]

=
∑

hj∈{0,1}

−hjxkP (hj|x)

= −p(hj = 1|x)xk

(2.15)

Since the negative term in equation 2.13 is not tractable to compute in CD, an

approximation x̃ is obtained using Gibbs sampling. Thus, the resulting gradient for

CD becomes −P (hj = 1|x̃)x̃k, similar to equation 2.15 for the positive phase. The



20

W parameter update is carried out as follows:

wjk ← wj,k − α
(
E(x, h)

∂wjk

)
← wjk + α(p(hj = 1|x)xk − p(hj = 1|x̃)x̃k)

(2.16)

where α ∈ (0, 1) is a learning rate. Using the same technique, updates for all param-

eters take the form:

wjk ← wjk + α(P (hj = 1|x)xk − P (hj = 1|x̃)x̃k)

bj ← bj + α(xj − x̃j)

cj ← cj + α(P (hj = 1|x)− P (hj = 1|x̃))

(2.17)

As shown in Figure 2.4, the hidden node activations in each step depend only on

values of visible nodes in the previous step. Similarly, the visible node activations

depend only on the values of hidden nodes in the previous step. Thus, this chain of

sampling back and forth from the model has the Markov property. As a result, the

sampling process is a Markov chain, as follows: First, P (h|x) is calculated using the

sigmoid function and h0 is sampled from P(h|x). Then, P (x|h0) is computed. The

new visible vector, x1 is sampled from P (x|h0). Finally, h1 is calculated the same way

by sampling from P (h1|x1). The process can be repeated k-times. An alternative

description of Contrastive Divergence algorithm is given by Bengio [10].

Finally, Algorithm 2.3 shows the pseudocode for training RBMs using the one

step Contrastive Divergence method. The algorithm accepts a sample data instance

and model parameters; weight vector (W), visible layer bias vector (b), hidden layer

bias vector(c), learning rate (α). It updates model parameters as follows.
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Figure 2.4: CD Markov Chain

Algorithm 2.3 CD-1(xi, α)

1: Input: xi: data sample, α: learning rate.
2: Model Parameters: W: weight vector, b: bias vector on visible nodes, c: bias

vector on hidden nodes
Notation: x ∼ P means x is sampled from P
Positive Phase:

3: x0 ← xi

4: h0 ← σ(c + Wx)
Negative Phase:

5: h̃0 ∼ P(h|x0)
6: x̃ ∼ P(x|h̃0)
7: h1 ← σ(c + Wx̃)

Update parameters:
8: b← b + α(x0 − x̃)
9: c← c + α(h0 − h1)
10: W←W + α(h0x0 − h1x̃)

First, in the positive phase (lines 3-4), the probability of the hidden node is

calculated for all hidden nodes, given the visible vector. In the negative phase (lines

5-7), the probability of each hidden node is determined by sampling from the model.

First a sample of points for the hidden nodes is drawn based on the current estimate of

the distribution P(h|x0) (line 5). Using these sampled points h0, the current estimate

of P(x|h) is used to sample points for the visible nodes x (line 6). Finally, on line

7, the probabilities of the hidden nodes are updated based on the sampled vector for

the visible nodes. The parameters of the network are updated on lines 8-10.
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Contrastive Divergence need not be limited to one forward and backward pass in

this matter, and Algorithm 2.3 can be extended by creating a loop around lines 3–7.

Then for k > 1, the positive and negative phases are repeated k times before the

parameters are updated.

2.3 Autoencoders

An Autoencoder is a feed-forward neural net that predicts its own input [11].

It often introduces one or more hidden layers that have lower dimensionality than

the inputs so that it creates a more efficient code for the representation [3]. As

a generative model, the autoencoder encodes the input x into some representation

c(x); the input can be reconstructed from the resulting code.

Training is done by using reconstruction error. The training process involves

updating model parameters (weights and biases) by minimize this reconstruction

error [10].

Bengio claimed that if the autoencoder is trained with one linear hidden layer by

minimizing squared error, then the resulting code corresponds to principal compo-

nents of the data. However, if the hidden layer is non-linear, the autoencoder has a

different representation than PCA. It has the ability to capture multi-modal aspects

of the input distribution. Often, the following formula is used to minimize negative

log-likelihood of the reconstruction, given the encoding c(x):

reconstruction error = logP (x|c(x))
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For binary x ∈ [0, 1]d, the the loss function can be written as:

logP (x|c(x)) =
n∑
i

xi log fi(c(x)) + (1− xi) log(1− fi(c(x)))

where n is number features and f(·) is the decoder. Thus, the network will generate

the input as f(c(x)). c(x) is a lossy compression. Both encoder and decoder functions

are sigmoid function:

y = c(x = σ(Wx + c)

where W is the weight matrix and c is the bias vector in the hidden nodes. The

decoder can be written as:

z = f(y) = σ(WTy + b)

where c is bias vector on input nodes and z is the reconstructed input vector.

2.4 Deep Learning

The performance of machine learning algorithms depends heavily on set of fea-

tures used in the model. Thus, a feature detector is the first component of a learning

process. Using extracted features, the learning algorithm forms a hypothesis that

functions as a learned model. A feature is one or more attributes of the dataset

(or some transformation of the attributes) considered important in describing the

data. For example, in the handwritten digit recognition task, using raw pixel values

may not be sufficient. Many learning methods either rely on derived features such

as the gradient of histograms, while others project raw pixels onto a higher dimen-

sions. Feature engineering is an expansive process and often requires domain specific
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knowledge. In an attempt to achieve a more generic algorithm, it is desirable that

the algorithm does not depend on this feature extraction process. In other words,

ideally the algorithm should identify the explanatory factors automatically.

According to Bengio et al. [4] a good representation, in the case of a probabilistic

model, is the one that captures the posterior distribution of the underlying explana-

tory factors for the observed input. Deep learning methods learn representations by

composition of multiple non-linear transformations in order to obtain more abstract

representations.

As stated by Bengio et al. [4] a good representation is expressive and distributive;

a reasonable representation can capture many possible input configurations. The

second most important aspect of representation is abstraction. Abstract concepts are

formed in terms of less abstract features and abstract concepts are generally invariant

to local changes of the input. Finally, the third aspect of good representation is that

it must disentangle the factors of variation. Because different explanatory factors of

the data tend to change independently in the input distribution, disentangling these

factors may lead to better representations.

In 2006, Hinton et al. experimented with a deep learning architecture [11] and

demonstrated that a network with multiple layers can represent features superior to

many traditional methods. Since then, deep learning has become one of the most

active research areas in machine learning. The core idea is to learn a hierarchy of

features one level at a time in an unsupervised fashion. Each level is composed with

previously learned transformations. Figure 2.5 illustrates a stack of RBMs where

input to each layer is the output of the previous layer. A typical learning process

involves unsupervised learning of one layer at a time in a greedy fashion. This learning

method is called “greedy layerwise unsupervised training.”
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Figure 2.5: Three-layer Deep Belief Network

Figure 2.6 shows the layerwise training process where weights and biases for pre-

vious layers are frozen. The RBM of the last layer is training by transforming raw

features through the previous two RBMs. Thus, the last layer is trained independent

of other layers. In addition to RBMs, autoencoders can be used as component of deep

neural networks.

When the stack of a deep network is trained with the greedy layerwise unsu-

pervised pre-training process, the resulting deep features can be used as input to a

standard supervised learning method or as initialization for a deep supervised neural
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Figure 2.6: Three-layer Deep Belief Network: Training - Last Layer

network. In the latter case, the first N layers are trained in an unsupervised fashion.

The result of the stack serves as input to a supervised deep neural network.

2.5 Spatial and Temporal Feature Analysis

In this section, we introduce a few spatial and temporal techniques for qualitative

and quantitative analysis of spatial and temporal features. These techniques are

widely used in geostatistics and time series classification. However, here we selective

use spatial techniques that will inform us the existence of spatially local features in a

given dataset. Furthermore, we discuss Temporal Time Warping, a scoring function,

in the context of time series classification task.
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2.5.1 Variograms

Coined after D. G. Krige, a South African mining engineer, in geostatistics, Krig-

ing (or Gaussian process regression) is a regression technique that uses a Gaussian

process. It is widely used in the domain of spatial analysis and prominently applied

to the field of oil exploration. The technique is used for making predictions from

observed spatial data. It predicts a value of a spatial feature at a given point by

interpolating values of surrounding data points, weighted according to the spatial

covariance of the neighboring values [12, 13]. Basic Kriging uses variograms in a

spatial setting.

To introduce Kriging and variograms, let Z(s) be a random process (or a Gaus-

sian process) that produces n data samples Z(s1), Z(s2), ..., Z(sn). Using these data

points, an inference is made on the process to predict a known functional g(Z(·)).

As described by Cressie, a point prediction assumes that g(Z(·)) = Z(s0) for the

known location s0 [12]. Thus, spatial prediction refers to predicting g(Z(·)) from

data collected in n known locations, s1, ..., sn. For ordinary Kriging, one attempts to

minimize squared-error. The process Z(·) is assumed to have the following property:

2γ(h) = var(Z(s+ h)− Z(s)), h ∈ Rd (2.18)

where h is a separation (i.e., distance) vector, and γ(·) is known as the (experimental)

semivariance [14]. The following relationship holds between variograms, variance, and

covariance :

γ(h) = cov(0)− cov(h)

where

cov(h) = E{Z(s+ h) · Z(s)} − E{Z(s)}2
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and

cov(0) = var(Z(s))

Semivariance measures differences in observed values over a set of distance bands or

lags. For such a function to be defined properly, some fairly strong assumptions about

the data must be made (including but not limited to it being sampled from a static,

isotropic spatial distribution).

In order to compute variograms, one has to find the squared differences between

all pairs of values in the dataset first. Then, these differences are allocated to lag

classes (bins) based on the distance separating the pair (often the direction is also

considered). The result is a set of semivariance values for distance lags, h = 0, ..., H

where H is less than the greatest distance between pairs. When plotting bin values

per lag, the resulting graph is called a variogram plot. In a way, the bins are inter-

feature (i.e. sampling location) distances, and the height of each column is the mean

of the variance of the (sample value) differences between all feature pairs that are

that distance apart. If we can model the inter-feature variance with distance using

a variogram, the values at unknown distances can be predicted or estimated by an

interpolation process.

2.5.2 Autocorrelation and Correlograms

In order to estimate linear predictors, the following assumption is also made:

cov(Z(s1), Z(s2)) = C(s1− s2),∀s1, s2
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where C(·) is called covariogram or stationary covariance function [12]. This function

is called autocovariance function by time-series analysts. When C(0) > 0,

ρ(h) = C(h)/C(0) (2.19)

is called correlogram. In the time-series field, this measure is called autocorrelation.

Autocorrelation is used to diagnose non-stationarity in time series. Thus, if Z(·) is

stationary, then the following holds:

2γ(h) = 2(C(0)− C(h)) (2.20)

We can make a similar histogram using correlations (or any other pair-wise statisti-

cal measure) between feature-pairs of a given distance. A serial correlation coefficient

is given below for lag h:

ρ(h) =

n−h∑
t=1

(xt − x̄)(xt+k − x̄)

n∑
t=1

(xt − x̄)

(2.21)

For a random series, the ρ(h) values for all h time steps will be approximately

0. They will be distributed according to N(0, 1/n) [14]. If there is a short term

correlation, the ρ(h) will start at 1.0 and decrease gradually to 0 as the distances

increase. If the overall process shows a steady increase over time, the correlogram

will not be zero. This determines that the time series is not stationary.

In spatial statistics, the concept is adapted to spatial data, but it is not easy to

translate this directly to spatial statistics. Often, on a 2D grid, joint counts of events
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are calculated and the probability of a particular pattern is estimated. This yields

formulas that are similar to the correlogram in time-series.

For a more in depth treatment of variograms, correlograms, and spatial statistics

in general, the reader is directed to books on the subject [12] and [14].

2.5.3 Distributed Stochastic Neighbor Embedding

To embed data in a 2-dimensional space for visualization, t-Distributed Stochastic

Neighbor Embedding (t-SNE) has been shown to be an effective technique [15]. More-

over, t-SNE is also a dimensionality reduction technique that is particularly good for

visualizing high dimensional data.

The t-SNE method is similar to Multidimensional Scaling (MDS) and Locally

Linear Embedding (LLE) techniques. MDS computes the low dimensional embedding

that preserves pairwise distances between data points [16]. On the other hand, LLE

builds a map of similarities in the data by finding a set of the nearest neighbors of

each point. It then computes a weight for each data point as a linear combination of

distances to its neighbor [17]. Both MDS and LLE use eigenvector-based optimization

techniques to find the low-dimenstional embedding of the points.

The t-SNE method builds a map in which distances between points reflect sim-

ilarities in the data. It embeds high-dimensional data in lower dimensional space

by minimizing the discrepancy between pairwise statistical relationships in the high

and low dimensional spaces. For a dataset of n points, let i, j ∈ [1, n] be indices,

and let xi ∈ X and yi ∈ Y refer to the ith datapoint of the original dataset and

the low-dimensional equivalent respectively. Given a candidate embedding, t-SNE

first calculates all pairwise Euclidean distances between data points in each space.

The pairwise Euclidean distance between xi and xj is used to calculate a conditional
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probability, Pj|i, which is the probability that xi would pick xj as its neighbor. This

probability is based on a Gaussian centered at xi. Similarly, pairwise conditional

probabilities qj|i are calculated for each pair (yi, yj) in the low-dimensional embed-

ding. As an objective function, t-SNE tries to minimize the discrepancies between

the conditional probabilities for corresponding pairs in the high dimensional and low

dimensional spaces by using Kullback-Leibler divergence (KL-divergence). This is an

intractable global optimization problem, so often gradient descent is used to find a

local optimum.

One drawback of t-SNE is that for large, high-dimensional datasets, even the local

search can be quite slow. In such cases, PCA is sometimes used as a pre-processing

step to speed up the computation and to suppress high-frequency noise. A typical

example might retain the top 30 eigenvectors and project the original data into the

eigenbasis. t-SNE would then be applied to this 30-dimensional dataset to reduce it

to a 2-dimensional set for visualization.

The resulting 2D plots make the structure (or lack thereof) readily apparent.

Since the optimization is done on pair-wise vector distances, feature ordering (i.e.

spatially local structure) in the high-dimensional data does not change the qualitative

properties of the low-dimensional data significantly. Moreover, since the mapping is

non-linear and non-parametric, it is relatively insensitive to whether information is

encoded using sparse or distributed representations. As a result, t-SNE allows us

to examine the presence of structure without having to worry about the form of

that structure impacting our analysis. Figure 2.7 shows a 2D embedding of MNIST

dataset using t-SNE.
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Figure 2.7: t-SNE Embedding of the MNIST Dataset

2.5.4 Dynamic Time Warping

Time series classification often involve computing a similarity or distance score

that measures the similarity between two temporal sequences. Dynamic Time Warp-

ing (DTW) is an approach applied to two time series so that the distance measure

between them is minimized. Specifically, DTW uses dynamic programming to find

an optimal alignment with respect to a given distance function. It was developed

by Sakoe and Chiba for speech recognition [18]; however, it has many applications,

including but not limited to gene sequence comparison, time series classification,

speaker recognition, partial shape matching, and other time series data such as video

and audio.
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Consider two time series s and t with length n and m respectively. The key idea

in DTW is that sequences s and t can be arranged to form a n×m grid where each

point (i, j) is the alignment between element si and tj. The warping path, W , is

constructed to align elements of s and t such that it minimizes the distance between

them. Since W forms a sequence of grid points (W = w1, w2, . . . wk), each w value

corresponds to a grid point (i, j) .

The warping path is subject to the following constraints:

• Boundary conditions: the warping path starts at (0, 0) and ends at (n,m).

• Continuity: the warping path only traces adjacent points in the grid.

• Monotonicity: the points must be ordered monotonically with respect to time.

Thus, the DTW is a minimization over potential warping paths. Although there are

an exponential number of paths, we calculate the minimum-cost path using dynamic

programming as follows:

γ(i, j) = δ(i, j) + min{γ(i− 1, j), γ(i− 1, j − 1), γ(i, j − 1)} (2.22)

where γ(i, j) is the cumulative distance and δ(i, j) is the cost function between two

points.

Several distance functions can be used. Following are the two most common

distance functions:

δ(i, j) = ‖si − ti‖

δ(i, j) = ‖si − ti‖2
(2.23)

The pseduocode for dymamic time warping is given in Algorithm 2.4. Essentially,

the cumulative matrix cost is initialized on line 4-7. The cumulative cost function for
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Algorithm 2.4 DTW(s, t)

1: s: time series 1, t: time series 2
2: n← s.size
3: m← t.size
4: γ: matrix of size s and t
5: γ[: 0]←∞
6: γ[0 :]←∞
7: γ[0 : 0]← 0
8: for i← 1 until n {
9: for j ← 1 until m {
10: cost = δ(si, tj)
11: γ(i, j) = cost+ min{γ(i− 1, j), γ(i− 1, j − 1), γ(i, j − 1)}
12: }
13: }
14: return γ(n,m)

each point is calculated on line 11. Since this algorithm iterate over both time series,

the time complexity of the algorithm is O(n2).
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CHAPTER 3

RELATED WORK

In this chapter we present a review of literature related to sampling methods,

Restricted Boltzmann Machines, deep learning, autoencoders, spatial statistics and

time series classification.

3.1 Sampling Methods

Welling and Teh introduced a Bayesian learning method based on Stochastic Gra-

dient Langevian dynamics (SGLD) [19]. They claim that in order for Bayesian meth-

ods to be practical in large scale machine learning, stochastic methods need to be

adapted because a typical Markov Chain Monte Carlo (MCMC) algorithm requires

computations over the whole dataset. Thus, the authors proposed a method that

combines Robbins-Monro type algorithms that stochastically optimize a likelihood

function with Langevin dynamics. Langevin dynamics is stochastic graident that

inject a noise into the parameter update so that the trajectory of the parameters will

converge to the full posterior distribution rather than just the maximum a posterior

mode. In order to sample from the posterior, the authors introduced a mini-batch

technique where parameters are updated after a single mini-batch. In other words, the

stochastic gradient is a sum over the current mini-batch of size n. Thus, this algorithm

requires O(n) computations to generate one sample. Unlike the long burn-in time that

MCMC uses, this technique enable one to use a large dataset. They discovered that if

the injected noise is distributed normally with an ε variance N(0, εt) where et changes

per iteration, the dynamics becomes Langevin. Welling and Teh observed that the
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stochastic gradient noise dominates initially, and the algorithm behaves as an efficient

stochastic ascent algorithm. However, for large t, as ε → 0, the injected noise will

dominate the stochastic gradient and the MH rejection probability will approach 0.

Key findings of this research are, 1) SGLD can generate samples from a posterior

at O(n) complexity where n � N , and 2) under certain conditions, the posterior

can be approximated by a normal distribution. However, one disadvantage of this

method is that, with an increasing number of iterations, the mixing rate of algorithm

decreases. To address this issue, they proposed to keep the step size to a constant

once it has decreased to a critical threshold. Nonetheless, SGLD takes large steps in

the direction of small variance and smalls steps in directions of large variance. This

results in the slow mixing rate.

Anh and Welling followed the same line research to address the slow mixing rate

using Fisher Scoring [20]. The question asked was “Can we approximately sample

from a Bayesian posterior distribution if we are only allowed to touch a small mini-

batch of data-items for every sample we generate?” Based on Bayesian asymptotic

theory, as N becomes large, the posterior distribution becomes Gaussian. This is

called the Bayesian Central Limit Theorem [21]. The theorem states that, under

certain regularity conditions, p(θ|x1, ..., xN) ' N(θ0, I
−1
N ) where IN is the Fisher in-

formation. Moreover, the Fisher information is the average covariance of gradients

calculated from a mini-batch. Thus, the authors replaced Langevin dynamics with

Fisher information. Unlike SGLD, this method was designed such that it samples

from a Gaussian approximation of the posterior distribution for large step sizes, thus,

increasing the mixing rate. Perhaps the most importing aspect of the above is tradein

a small bias in the estimate of posterior against computational gains: this method

allows us to use more samples and as a result, it reduces sampling variance. In our
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partitioned method, we apply the same concept; more partitioning allows us to use

more samples, which in turn results in more accurate generative models.

3.2 Restricted Boltzmann Machines

After first proposed by Smolensky [7] in 1986, the Restricted Boltzmann Ma-

chine did not gain popularity for almost 17 years. Although training of the RBM

was tractable, it was initially inefficient. Slow computers and the limiation to using

small datasets also contributed the slow adoption of RBMs. With better compu-

tational resources and bigger datasets, and Hinton’s et al. development of Con-

trastive Divergence [9], RBMs are now used as basic components of deep learning

algorithms [11, 22, 23] and successfully applied to classification tasks [24–26]. More-

over, RBMs have been applied to many other learning tasks including Collaborative

Filtering [27].

As RBMs became popular, research on training them efficiently increased. Gibbs

sampling is a Markov chain Monte Carlo (MCMC) sampling algorithm [28] for obtain-

ing a sequence of samples from a posterior distribution. It is an iterative process that

samples from a distribution closer to the posterior distribution. The graph of states

over which the sampling algorithm produces samples is called a “Markov Chain.”

As we described in the Section 2.2.3, the Contrastive Divergence algorithm performs

Gibbs sampling for k-steps to compute weight updates. However, for each data sam-

ple, it creates a new Markov Chain. In other words, the state of the Markov chain is

not preserved for subsequent updates. Tieleman modified the Contrastive Divergence

method by making Markov chains persistent [1]. In other words, the Markov chain is

not reset for each training example. This has been shown to outperform Contrastive

Divergence with one step, CD-1, with respect to classification accuracy. Even so,
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many applications have demonstrated minimal (if any) improvement in performance

using persistent Markov chains. Brekal et al. introduced an algorithm to parallelize

training RBMs using parallel Markov chains [29]. They run several Markov chains in

parallel and treat this set of chains as a composite chain; the gradient is approximated

by weighted averages of samples from all chains.

When RBMs are trained in an unsupervised fashion, there is no guarantee that

the hidden layer representing learned features will be useful for a classification task.

Thus, there is considerable research on RBMs in supervised or semi-supervised learn-

ing when labeled data is available [24–26,30–32]. One of the most significant current

research achievements with RBMs by Larochelle et al. is to apply them as a stan-

dalone classifier [25]. In combination with a generative objective function, Larochelle

et al. developed a discriminative objective function to train RBMs as classifiers. It

was demonstrated that when a hybrid objective function is used, the classification

accuracy can be increased significantly. Interestingly, as demonstrated and discussed

in detail in Chapter 5, the results could not be replicated due to an overflow when

computing the gradient of the discriminative objective function.

Schmah et al. took a different approach in applying RBMs to classification tasks:

instead of using a monolithic RBM to represent all classes, the authors trained one

RBM per class label [33]. However, a major drawback of this approach is that it

cannot model latent similarities between classes. Nonetheless, an interesting result of

their study is the demonstration that generative training can improve discriminative

performance, even if all data are labeled. Studying two methods of training, one

almost entirely generative and one discriminative, the authors found that a genera-

tively trained RBM yielded better discriminative performance for one of the two tasks

studied.
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3.3 Deep Learning

As described in Section 2.4, according to Bengio et al., good representation is the

basis for deep learning [4]. Deep learning develops good representation by composi-

tions of multiple non-linear transformations in order to obtain more abstract represen-

tations. Bengio et al. gives most important aspects of good representations: 1) They

must be expressive and distributive. That is, a reasonable representation should cap-

ture many possible input configurations. 2) They must be abstract representations.

Since abstract concepts are formed in terms of lower level features, abstract concepts

must be invariant to the input. 3) They must disentangle the factors of variation. For

instance, images of faces may contain factors of variation such as pose (translation,

scaling, rotation), identity (male, female), and other attributes. Disentangling these

factors results in finding abstract features that minimize dependence and are more

invariant to most of these variations.

There were other attempts to derive a theory to explain the success of deep

learning. Erhan and Bengio [34] suggest that unsupervised pre-training acts as a

regularizer, and we have suggested in previous work [35] that it also takes advantage

of spatially local statistical information in the training data.

Historically, deep networks were difficult to train because of a credit assignment

problem; standard error-backpropagation suffers from gradient diffusion if applied to

a deep network, resulting in generally poor performance [36]. Most deep learning

techniques now get around this problem by performing some form of “unsupervised

pre-training,” which often involves learning the weights to minimize reconstruction

error for (unlabeled) training data, one layer at a time in a bottom up fashion. This is
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then followed by a supervised learning algorithm that, it is hoped, has been initialized

in a good part of the search space.

When Restricted Boltzmann Machines are used to form a DBN, the network is

trained layer-wise while minimizing reconstruction error. This is a form of unsu-

pervised pre-training. Once all layers have been trained, the resultant network can

then be used in different ways, including adding a new output layer and running a

standard gradient descent algorithm to learn a supervised task such as classification.

The aim of stacking RBMs in this way is to learn features in order to obtain a high

level representation.

While techniques similar to modern deep learning algorithms have been proposed

previously (see Fukushima [37], for example), it has only been the past few years that

have seen deep learning come into its own. Hinton et al. were the first to experiment

with deep learning architectures after developing an efficient algorithm for training

RBMs [38]. Their results suggested that networks with multiple layers can represent

features that are distributive and abstract.

Following this seminal discovery, deep learning has become one of the most active

research areas. Several studies on deep learning were quickly published following

Hinton’s discovery in 2006: In the same year, Ranzato et al. developed a deep sparse

encoder [39]. In 2007, Bengio et al. explored variants of DBN and extended it to

continuous input values [22]. Two years later, Lee et al. developed a sparse variant of

the deep belief network [40]. The core idea in these early studies is to learn a hierarchy

of features one level at a time and in unsupervised fashion. A typical learning involves

unsupervised learning of one layer at a time in greedy fashion.

Typically, autoencoders and RBMs are used as components for deep learning

[10, 11, 22, 23, 41, 42]. In other words, RBMs and autoencoders are used to form a
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deep neural network model. It was shown that layerwise stacking of RBMs and auto

encoders yielded better representation [43,44].

With large initial weights, Hinton and Salakhutdinov discovered that autoencoders

typically find poor local minima [11]. On the other hand, with small initial weights,

the gradients in the early layers are tiny, thus, making it infeasible to train autoen-

coders with many hidden layers. Hinton and Salakhutdinov describe a method for

effectively initializing the weights that allows deep autoencoder networks to learn low-

dimensional codes. This is accomplished by pretraining on a stack of RBMs. After

pretraining, the RBMs “unrolled” to create a deep autoencoder. The autoencoder

is then fine-tuned using backpropagation of the error derivatives. It is also possible

that an autoencoder with more hidden nodes than visible/input nodes to learn the

identity [10]. It was shown by Ranzato et al. that when sparsity is introduced in

hidden layers, autoencoders creates more efficient representations [39]. These types

of autoencoders are known as sparse autoencoders.

To make learned representations of autoencoders robust to partial corruption of

the input pattern, Vincent et al. explicitly introduced partial corruption of the input

that is fed to the network [45]. The stochastic corruption process randomly cor-

rupts some inputs to be 0. Hence, the denoising autoencoder is trying to predict the

corrupted (i.e. missing) values from the uncorrupted (i.e., non-missing) values for ran-

domly selected subsets of missing patterns. These denoising autoencoders are shown

have better learned representations [45]. Denoising autoencoders can be defined in

terms of information theory, and Vincent theorized that minimizing the expected

reconstruction error amounts to maximizing a lower bound on mutual information.

Xie et al. argue that training denoising autoencoders with noise patterns that fit to

specific situations can also improve the performance of unsupervised feature learning

[46].
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Convolutional Neural Networks (CNN), developed by LeCun [47,48] are also con-

sidered as deep architectures. CNNs exploit spatially-local features by combining

neurons of adjacent layers. In other words, the input of a hidden unit may come from

a subset of units in the previous layer. Moreover, in CNNs, each hidden node filter is

replicated across the entire visual fields. The replicated units share the same weight

and bias vectors. This enables the model to detect features regardless their position.

CNNs demonstrated good performance for a number of traditionally difficult tasks,

many in the domain of computer vision. Some examples are handwritten character

recognition and object recognition.

Similar to Convolutional Neural Networks, Lee et al. developed a Convolutional

Deep Belief Network (CDBN) model composed of redundant RBMs where each RBM

has V × V visible nodes and K group of H × H binary hidden units [49]. V × V

represents the image dimensions. Each group K is associated with a set of shared

weights. In addition to a hidden layer (detection layer), the network also has a pooling

layer of K groups of units with P × P binary units each. The authors demonstrated

that a DBN based on this model is translation-invariant, and it efficiently learns

hierarchical representations from unlabeled images. These findings are consistent

with other studies on Convolutional Neural Networks.

The Deep Boltzmann Machine (DBM) is another type of deep learning architec-

ture [43]. Like DBNs, the pretraining for DBMs is also greedy layer-wise, but in

DBMs, the training process involves creating two redundant RBMs (doubling the

inputs and doubling the hidden variables) and then using these two modules in esti-

mating the probabilities themselves. When these two modules are composed to form

a single network, the influence of the various nodes are halved. Salakhutdinov et

al. demonstrated that deep Boltzmann machines learn good generative models and

perform well on visual object recognition tasks.
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3.4 Dropout

Dropout is a method to prevent neural networks from overfitting and improving

the performance of neural networks by preventing co-adaptation of feature detectors

by injecting noise in a model. A learning model with a large number of parameters

(e.g., neural networks) can easily overfit the training data. Thus, when a learning

model is trained on a small dataset, it naturally performs poorly on testing data

in that it can overfit the training data. When training a large feedforward neural

network, Hinton et al. introduced a dropout process, where for each training case

each hidden node is randomly omitted from the network with a probability [50]. This

technique assures that a hidden unit cannot rely on other hidden units being present.

Hinton et al. argued that the overfitting is greatly reduced by randomly omitting half

of the feature detectors in a feedforward neural networks.

Applying the same dropout concept to deep neural networks, Dahl et al., carried

out dropout in all hidden layers during supervised training [51]. When calculating

hidden node activations, the authors multiplied the net input from the layer below by

a factor of 1
1−r , where r is the dropout probability for units in the layer below. This

deep neural network with dropout performed well on a large speech recognition task.

In the same line of research, Srivastava et al. developed a dropout Restricted

Boltzmann Machine model and compare it to standard Restricted Boltzmann Ma-

chines. Applying to many speech, vision and text datasets, the authors demonstrated

that the dropout RBMs are better than standard RBMs [52]. However, the authors

noted that a large dropout rate may slow down training.
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3.5 Partitioned Model Learning

While many learning techniques (such as Deep Belief Networks) treat all the

elements of an input vector as whole, some take an approach that partitions the

data vectors into shorter sub-vectors, and performs analysis on the sub-vectors before

re-combining the analyzed data to form a representation of the full data vector. Con-

volutional Networks are the most well known of these, though there are several others,

including [37,53] and [54]. Fukushima developed one of the earliest deep architecture

which he calls Self-organizing Neural Network Model [37]. The architecture strongly

resembles Convolutional networks. With the same line of research, Behnke and Rojas

proposed a hierarchical neural architecture with goal of transforming a given image

into a sequence of representation with increasing level of abstraction [53].

In the context of Deep Belief Networks (DBN), the DistBelief model and data

parallelization framework was developed by Dean et al. [55]. Here, the DBN model

is partitioned into parts. The overlapping parts then exchange messages. Moreover,

models are replicated in different computation nodes and trained on different subsets

of data to provide data parallelization. Although this algorithm is related to our

work, it is primarily a distributed stochastic gradient descent algorithm. In contrast

to this method, we partition a single RBM into multiple small RBMs and combine

the small RBMs to learn the final model.

Work by Schulz et al. is perhaps the first attempt to exploit partitioning in

RBM [56]. The authors observed that the connectivity of RBM is problematic when

they monitored learned features. Specifically, they observed that, typically, RBMs

learned localized features. They observed that in early stages, feature detectors are

global (represent global features). However, most of the detectors had uniform weights
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as a result of very late stages of the learning process. Thus, the most training is

wasted. Similar to Dean et al. described above, they partition the network in fixed

regions. Unlike Dean et al., they also add lateral connections in the hidden layer

(connections between hidden nodes) to improve representational power of the model.

In short, Schulz et al. try to reduce the number of parameters to make learning

feasible at cost of relationships between long-range features. Although they attempt

partially to compensate for the effect of not modeling long-range interactions with

lateral connections, this method is not well-suited for data where long-range features

(e.g., relative configurations of an object in an image) are correlated significantly.

In promising research done by Strasser et al., Factored Evolutionary Algorithms

(FEA) are related to our partitioned training method [57]. Perhaps the most im-

portant aspect of this research is that they convert problems into Factor Graphs

and utilize stochastic or evolutionary algorithms to optimizes a set of parameters by

overlapping partitioned subpopulations. Each subpopulation optimizes a subset of

parameters. In addition to a subpopulation optimizing over a subset of parameters,

the authors defined a competition technique where the algorithm finds the subpop-

ulations with state assignments that have the best fitness for each dimension. In

order for overlapping subpopulations to share their current knowledge, the authors

defined a sharing method. Similarly, an RBM in its pure form can be regarded as a

Factor Graph; for a given visible vector, a hidden node is independent of other hid-

den nodes. Thus, each hidden node connecting to the visible nodes is a factor. One

can think of the each partition in our Partitioned-RBM as a factor Graph. Similar to

FEA, Partitioned-RBM optimizes only a subset of parameters using small partitioned

RBMs. However, our sharing algorithm is implicit. As we create fewer partitions, we

optimize over overlapping set of parameters; therefore, there is no need for an explicit

sharing technique.



46

3.6 Temporal Classification

DTW was first developed by Sakoe and Chiba for speech recognition [18]. In

addition, Sankof demonstrated that DTW can be applied to gene sequence comparison

[58]. In gene sequencing, for given finite sequences s and t, one needs to determine

the minimum number of substitutions, insertions, and deletions required to change s

into t.

Later, Bemdt and Clifford applied DTW to time series analysis for applications

in knowledge discovery [59]. The authors demonstrated that DTW can be used as

an efficient tool for discovering patterns in large time series datasets. Moreover, the

authors proposed that DTW can be used for both categorical and continuous data

by adding a temporal dimension (creating time series data).

In recent years, indexing large time series became an important task. Euclidean

distance was used in algorithms (e.g., k-Nearest Neighbor) to index the time series

data. Keogh and Ratanamahatana discovered that DTW is a more robust measure

for indexing time series [60]. It was proven that an indexing method based on DTW

not only guarantees no false dismissals, it can also index large datasets efficiently.

Ding et al. carried out a comprehensive study to compare various distance mea-

sures in querying and mining time series data [61]. Considering two key aspects of

time series data—representation methods and similarity measures—they compared

all measures for effectiveness and efficiency. Using 1-Nearest Neighbor (1-NN), the

authors experimented with various comparison measures including DTW and Eu-

clidean distance. Moreover, they demonstrated that for time series classification, as

the size of the training set increases, the accuracy of various measures converge to that
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of Euclidean distance. But on small data sets, DTW is significantly more accurate

than Euclidean distance.

Following the same experiments carried out by Ding et al. described above, Wang

et al. also experimented with various methods for querying and mining time series

data [62]. In order to provide a comprehensive evaluation, they performed the exper-

iments on 38 time series data sets, from the UCR Time Series repository [63]. Their

findings on time series classification were also consistent with that of Ding.

Hu et al., developed a method for classifying of time series; however, they were

only concerned with the task of correctly extracting individual subsequences, such as

gait cycles, heartbeats, gestures, and behaviors. Since classification of a subsequence

is generally much more difficult than the task of actually classifying the whole time

series, they introduced an alignment-free algorithm for classification where it does

not require sequences to be closely related and be aligned perfectly. They maintained

that DTW does not work in subsequence classificaiton task [64].

Contradicting Hu et al., Rakthanmanon et al. maintained that DTW is the best

measure when applied to searching and mining trillions of time series subsequences.

They emphasized that normalizing subsequences is help classification accuracy of k-

NN [65]. In some real datasets, such as in a video sequence, features can be at different

scale and/or different offset. Algorithms that are not invariant to such changes (i.e., k-

NN) perform poorly, because small changes in some features can have a dominating

contribution to the distance function. The authors demonstrated that k-NN had

significantly higher classification accuracy on Z-normalized data as compared with

un-normalized data.
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CHAPTER 4

PARTITIONED LEARNING

In this chapter, we first develop a generic learning method via partitioning the

model into sub components. Each component is in turn trained on a subsection of the

input vector. This training process is the main contribution of this work. We then

apply this technique to Restricted Boltzmann Machines (RBMs). In the remaining

chapters, we demonstrate that this method not only improves runtime complexity of

training algorithms, it also significantly improves performance of the learning methods

in terms of classification accuracy and representation power.

4.1 Data Partitioning Theory

In order to train a partitioned model, we first need to describe how we partition

the input vectors. There are many ways to partition the data; however, any particular

partitioning method may have statistical effects on the learning model. Mitchell et

al. introduced the following notation to describe different partitioning schemes [66].

Given data vectors in Rn, we define a partitioning function π as

π : Rn → {u0, . . . ,uk} ,ui ∈ Rs,

which takes a single input vector in Rn and produces a set of k output vectors in Rs,

where s < n. This partitioning scheme creates subsets that can be either disjoint or
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Figure 4.1: 4× 4-pixels image data

overlapping partitions, we expand the above data partitioning function as follows

π(x, k, ρ) : Rn → {u0, . . . ,uk} ,ui ∈ Rs

where x is one data instance, k is the number of partitions, and ρ is the percent

overlap between partitions.

As a simple example, consider Figure 4.1 where data represents a 4×4-pixel image.

Pixels are numbered from 1 to 16. Data instance x is

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

A näıve partitioning function can split this vector in subinstances as:

[{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}]

where n = 16, s = 4, and k = 4. On the other hand if we consider a function that

simply splits the vector of length 16 into two equal length halves, we obtain following

partitions:

[{1, 2, 3, 4, 5, 6, 7, 8}, {9, 10, 11, 12, 13, 14, 15, 16}]
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Figure 4.2: Quadtree partitioning

where in this case, n = 16, s = 8, and k = 2. But this näıve partitioning does not

preserve any spatially local information. A more advanced partitioning function that

preserves spatially local features is a quadtree [67]. A quadtree is a tree data structure

in which each internal node has four children. Quadtrees are used for partitioning two-

dimensional data by recursively subdividing it into four regions along the two axes.

If we apply quadtree partitioning with k = 4, we obtain the following partitions:

[{1, 2, 5, 6}, {3, 4, 7, 8}, {9, 10, 13, 14}, {11, 12, 15, 16}]

Figure 4.2 depicts quadtree partitioning.

Notice that quadtree partitioning preserves spatially local features. If we join

partitions to create fewer partitions, we still preserve the local features. For example,

if we choose k = 2, the following partitions are obtained:

[{1, 2, 3, 4, 5, 6, 7, 8}, {9, 10, 11, 12, 13, 14, 15, 16}]

Thus, quadtree partitioning has better chance of preserving spatially local features

compared with the näıve partitioning technique. The partitioned-based learning
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method that we describe in next section can exploit spatially local characteristics

of the data.

4.2 Partitioned Learning Algorithm

In this section, we describe a generic learning algorithm that not only partitions

the input vector, it also partitions model parameters. In other words, it converts a

monolithic model into submodels where each submodel is trained on a corresponding

partition of the input vector. However, learning proceeds in a few stages where in

each stage, the model and the input vector are split into fewer partitions. In other

words, as the stages proceed, smaller partitions are combined into larger partitions.

First, we have to show how the model parameters are partitioned. The following

example describes the process.

As an example Figure 4.3 shows an RBM with 4 visible nodes and 2 hidden nodes.

Ignoring biases, model parameters are stored in a weight matrix constructed based

on links between hidden nodes and visible nodes. Thus, the model parameters for

this network are:

W =


x1 x2 x3 x4

h1 w11 w12 w13 w14

h2 w21 w22 w23 w24


If we split the model into two partitions, as shown in Figure 4.4, we obtain two

submodels. Each submodel contains a subset of the parameters and some parameters

are ignored. When trained independently, two sub models work on the same parame-

ter matrix; however, the algorithm only updates a region of the matrix corresponding

to the given submodel. Thus, in the first stage of learning with two splits, one can
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Figure 4.3: A sample RBM with no splits

train two models in parallel. Only the following parameters are updated in the first

stage (shown in bold and underlined):

W =


x1 x2 x3 x4

h1 w11 w12 w13 w14

h2 w21 w22 w23 w24


Thus, the first partitioned RBM works on {w11,w12}, and the second RBM works

on {w23,w24}. The parameters that represent weights between the two partitions

are not updated in the first stage. In other words, we initially ignore long-range

connections. For example, if there is a correlation between features in partitions 1

and 10, this correlation is not exploited in the first stage. However, in the second

stage, when we have only one model with no split, the full parameter matrix is

updated.
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Figure 4.4: A sample RBM with two splits

Definition 4.2.1. (Long-range connection) A long-range connection is a link between

two nodes that takes more than one stage to appear in the same partition.

Algorithm 4.1 shows the main steps for training a learning model via partitioning.

First, this technique is a meta algorithm that divides the parameters into a set of

partitions and runs the training algorithm on each partition. Moreover, it uses a set of

stages where, in each successive stage, it uses fewer partitions so that the algorithm

covers the full parameter matrix. Thus, for each stage (Line 2) it carries out the

partitioning process. On lines 2-5, it partitions the parameter set and data instances.

On lines 6-8, it executes the training algorithm on each partition. Typically, the

last stage will have one partition. In other words, this algorithm will update all

parameters when the last stage contains a single partition. However, this algorithm

provides the following advantage: in early stages, while there are many partitions,

one can afford to use all data samples. For the last stage, most of the parameters are
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Algorithm 4.1 PARTITIONED-LEARNING(D, π, stages, ρ)

1: Input: D:Data instances, π: Partitioning function. ρ: percent overlap. stages:
list of stages. Each stage determines number of splits
W:model parameters

2: for each s in stages{
3: k ← s.partitions //number of partitions
4: W p ← π(W,k, ρ) //Partitioned Model Parameters
5: Dp ← π(D, k, ρ) //Partitioned Dataset
6: for each i in k {
7: TRAIN(W p

i , D
p
i )

8: }
9: }

already optimized, so using fewer samples improves the performance of the algorithm

overall.

Another motivation behind our approach is that when there are small partitions,

they can be trained with more training epochs. As we reduce the number of splits,

training requires fewer epochs because, again, several model parameters are already

optimized within various partitions. Therefore, less time is required to train the final

model with fewer splits.

Another key advantage of this training method is that, when applied to Neural

networks, it acts as a natural dropout technique. Dropout is a method to prevent

neural networks from overfitting and improving neural networks by preventing co-

adaptation of feature detectors by injecting noise in a model, such as hidden nodes in

RBMs [50–52]. Although dropout prevents overfitting, adding so much noise during

training slows down learning. The partitioning based training method we described

does not have this disadvantage.
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4.3 Partitioned Restricted Boltzmann Machines

We propose a training method for RBMs that partitions the network into several

overlapping subnetworks as described in Section 4.2. With our method, training

involves several partition steps. In each step, the RBM is partitioned into multiple

RBMs as shown in Figure 4.5. We call these small RBMs “Atomic RBMs.” In this

figure, the partitions do not overlap; we discuss the version with overlap later in this

section. These atomic RBMs are trained in parallel with a corresponding partition of

training data using CD-1, which describe in Section 2.2.3. In other words, the feature

vector is also partitioned, and each individual RBM is trained on a section of that

feature vector.

Since each stage of a Partitioned RBM is trained using a set of sub-vectors parti-

tioned from the training instances, in effect, each “sub-RBM” is trained on instances

that contain only the features that correspond to the input nodes assigned to that

RBM. Once all partitions have been trained, a new partitioning with fewer splits is

created, which forms the basis for the next stage. As described previously, at each

successive stage, we create fewer partitions. For example, in Figure 4.5, we initially

generate four RBMs. In the second step, we generate two, and final training occurs

on the full RBM. It should be noted that the training process in all steps is over the

same weight matrix. In other words, during training, each RBM partition updates a

subsection of the weight vector defined between all visible nodes and hidden nodes.

As described in Section 4.2, when RBMs are small they can be trained with

more training epochs. However, in later stages when there are fewer partition or a

single partition, training requires fewer epochs because model parameters are already
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Figure 4.5: Example partitioning approach for an RBM

optimized within the various partitions. Therefore, less time is required to train

successive RBMs with fewer splits.

The pseudo-code for our training procedure is given in Algorithm 4.2. The algo-

rithm accepts a list of configurations as input. Each configuration defines training

properties of a layer for training; it describes the number of partitions in each layer, the

learning rate, the number of training samples for each layer, and the number of itera-

tions for each layer. On lines 2-3, it creates the weight matrix, the bias vector for the

visible nodes, and the bias vector for the hidden nodes. Then, for each configuration,

it selects the training samples and calls the PARTITIONED−RBM−UPDATE

procedure (lines 5-8).

The PARTITIONED−RBM−UPDATE procedure creates a list of Atomic

RBMs based on the configuration on line 1. For instance, if the configuration has 10

split points it will create a list of 10 RBMs. Each RBM will operate on a portion

of W, b, and c. Then for each training instance, it splits the training instance into

the number of partitions (line 3). If configuration.overlap is greater than 0, each

split will share configuration.overlap percent elements of the neighboring partition.
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Algorithm 4.2 PARTITIONED-RBM(L, nvisible, nhidden)

1: Input: L a list of configurations that describe splits and training instances for
each network layer training. Each configuration contains the number of splits,
the number of training samples, the learning rate, the overlapping rate. nvisible:
the number of visible nodes. nhidden: the number of hidden nodes.

2: W← Create and initialize weight matrix for nvisible× hidden nodes
3: b← Create and initialize bias vector for visible layer
4: c← Create and initialize bias vector for hidden layer
5: for each l in L:
6: X ←Training instances
7: PARTITIONED-RBM-UPDATE(l, X , W, b, c)
8: end for

Algorithm 4.3 PARTITIONED-RBM-UPDATE(l, X , W, b, c)

1: rbmList← PARTITIONED-RBM-INIT(l,W,b, c)
2: for each xi in X :
3: splits←split xi data instance into number of l.splits partitions
4: for each rbmi in rbmList:
5: rbmi.CD-1(splits(i), l.learningRate)
6: end for
7: end for

Finally, it calls CD-1 algorithm to train an atomic RBM for the given data split and

learning rate.

The PARTITIONED−RBM−INIT procedure creates a list of atomic RBMs

for a given configuration. On lines 2-3, it determines the number of visible and hidden

nodes for each partition. Then for each partition and RBM it creates, it calculates the

base pointer for determining on what part of W, b, and c this particular Partitioned

RBM operates (lines 6-7). Finally, on line 8, it creates an atomic RBM with this

configuration.

Based on the intuition that neighboring RBMs may share some features (nodes),

for overlapping partitions, we define similar partitions as described above. However,
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Algorithm 4.4 PARTITIONED-RBM-INIT(l, W, b, c)

1: Input: l: split configuration, W: weight matrix, b: visible layer bias vector, c:
hidden layer bias vector

2: nvsible← l.visible/l.splits
3: nhidden← l.hidden/l.splits
4: rbms: Atomic RBM list
5: for i in configuration.splits:
6: vbase←base index in visible vector
7: hbase←base index in hidden vector
8: rbmi ← new RBM of {W,b, c, vbase, hbase, nvisible, nhidden}
9: end for
10: return rbms

in this model, each partition has some percent of its nodes overlap with its neighboring

partitions. As shown in the example in Figure 4.6, the RBMs are sharing two hidden

and two visible nodes. Since nodes are shared, partitioned RBMs cannot be trained

concurrently without some kind of synchronization.

Performance gains come from all training stages sharing the same weight matrix.

As each RBM covers its own part of the globally shared weights and biases, this

method enables data-independent parallelization of earlier stages. The later stages,

while allowing less parallelization, begin their training with weights that have been

pre-trained in the earlier stages. This has several advantages. First, when RBMs have

fewer nodes and weights to be updated, they can be trained more quickly; for each

Gibbs step, CD-1 involves O(S×H ×V ) probability calculations per iteration where

S, H and V are number of samples, hidden nodes, and visible nodes respectively.

Thus, we estimate that the total number of Markov chain calculations for a regular

RBM is approximately

ChainOps ' O(I · S ·H · V ) (4.1)
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Figure 4.6: RBM With Overlapping Partitions

where I is the number of iterations for the complete training. Fewer chain operations

translate into less CPU time. Since Partitioned-RBM is split in each stage and

runs in parallel, the number of samples for a stage can be configured to improve

runtime performance. We can then estimate that the total number of Markov chain

calculations for a Partitioned-RBM is

ChainOps ' O

I ·H · V · ∑
n∈{n0,n1,...,1}
s∈{s0,s1,...,}

si
n2
i

 (4.2)
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Figure 4.7: Sample MNIST Images

where ni represents number of splits in stage i, and si represents number of samples

used at each stage for training. If we keep I, H, and V constant, we can vary the

number of samples used in each stage and/or the number of partitions to improve

runtime performance. We show that such a scheme works without degradation of the

classification accuracy of the model.

4.4 Experimental Setup

The MNIST dataset is used for our experiments due to its wider association with

RBMs. The MNIST database (Mixed National Institute of Standards and Technology

database) is a database of handwritten digits, constructed from National Institute of

Standards and Technology’s(NIST) SD-3 and SD-1 databases. MNIST has 60,000

training instances; we repeatedly split this dataset for our cross-validation experi-

ments. Each image is 28 × 28 pixels, and encodes a single handwritten digit (0 to

9). The raw digit images are scaled to fit in a 20 × 20 region (original aspect ratio

maintained), and are then centered in the final 28 × 28 image, resulting in a white

border around every image. This dataset was introduced in [47], and can be obtained

from [68]. Some sample images are presented in Figure 4.7.

We measure performance of our method using reconstruction error, which is de-

fined to be the average pixel differences between the original and reconstructed images.

Unless stated otherwise, we use CD-1 for all training steps. The unpartitioned RBM
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has 500 hidden nodes and 28× 28 = 784 visible nodes. CD-1 training for one sample

is carried out as follows:

• For all hidden nodes, find the probability of hidden node hi as σ(ci+
∑

jWijxj)

and sample hi1 from a binomial distribution given hi.

• For all visible nodes, find the probability of visible node xj as σ(bj +
∑

iWijhi1)

and sample xj1 from a binomial distribution given xj.

• For all hidden nodes, find the probability of hidden node hi2 as σ(ci+
∑

jWijxj1).

• Calculate the gradient:

– W = W + ε(hi1xj − h2ixj1) where ε is the learning rate.

– b = b + ε(xj − xj1)

– c = c + ε(hi1 − hi2)

where σ(x) = 1
1+e−x . Since operations at each step of CD involves visible nodes ×

hidden nodes updates, we estimate that the total number of Markov chain calcula-

tions using Equation 4.1. Fewer chain operations translate into less CPU time.

To get the reconstructed image from the DBN, we propagate the image to the

hidden layer (in case of DBN, all the way to the last hidden layer of Deep Belief

Network), then reconstruct it by reverse propagation to the visible layer. The resulting

vector is binarized and compared with the original vector to calculate a reconstruction

error, E. If x is the original vector, x′ is the reconstruction, and both are of length

n, then E is defined as:

E(x,x′) =
1

n

n∑
i=1

I(xi 6= x′i) (4.3)
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For reconstruction error, we first obtain the binary representation of the original

image and the reconstructed image. Thirty is chosen as the threshold for converting

pixel values [0-255] to binary 0 or 1. Thus, pixel values greater than or equal to 30

are set to 1 while values less than 30 are set to 0. Then, the reconstruction error is

calculated as in Equation 4.3.

4.5 Results

Table 4.1 shows the results of our first experiment. Single RBM represents a fully

connected RBM that is used as a baseline for comparison. The learning rate is set

to 0.01 for all RBMs (Single RBM performed best with the learning rate 0.01). The

size of training sample for each RBM is shown in samples column. Unless stated

otherwise, for the following experiments, we ran the training algorithm on samples

for one iteration only—at most, each sample is used only once. Each RBM-X rep-

resents a step with X partitions. Samples chosen for RBM-X are always from the

first N samples of the total images. RBM-1 represents the final model. For these

experiments, partitions are trained sequentially. Thus, if we train them concurrently,

the total ChainOperations will be lower. As compared to Single RBM, RBM-1 has

significantly lower reconstruction error. The total ChainOperations for partitioned

RBMs is also less than Single RBM. In the table, using a t-test, significant results with

99% confidence are shown in bold. Partitioned-RBM after training on 20 partitions,

significantly outperformed the Single RBM. Furthermore, the total number of chain

operations for Partitioned-RBM is substantially less than for Single RBM.

Since we want fast convergence for the first step, in the following experiment

we varied the learning rate to enable this. Results are shown in Table 4.2. The
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Table 4.1: Training Characteristics

Configuration
Number of

RBMs
Samples

Learning
Rate

Reconstruction
Error (%)

Chain Operations
(109)

Single RBM 1 60000 0.01 3.85 23.52

RBM-28 28 60000 0.01 4.76 0.84
RBM-20 20 50000 0.01 4.03 0.98
RBM-15 15 40000 0.01 3.19 1.05
RBM-10 10 30000 0.01 2.67 1.18
RBM-5 5 25000 0.01 2.29 1.96
RBM-2 2 20000 0.01 2.33 3.92
RBM-1 1 20000 0.01 2.36 7.84
Total 17.77

Table 4.2: Training Characteristics wrt Learning Rate

Configuration Number of RBMs Samples Learning Rate Reconstruction Error (%) Chain Operations (109)

RBM-28 28 60000 0.03 3.23 0.84
RBM-20 20 50000 0.03 2.93 0.98
RBM-15 15 40000 0.03 2.66 1.05
RBM-10 10 30000 0.025 2.30 1.18
RBM-5 5 25000 0.020 2.08 1.96
RBM-2 2 20000 0.010 2.10 3.92
RBM-1 1 20000 0.010 2.10 7.84
Total 17.77

Partitioned-RBM with 99% confidence intervals outperforms the Single RBM in all

steps including the first stage, RBM-28 (with 28 partitions). Moreover, reconstruction

errors are even lower compared to our previous experiment.

Using the same configuration above, we varied the learning rate (denoted lr in

the results) for the Single RBM and RBM-1. Learning rates for other RBM-X are

fixed as in the configuration given in Table 4.2. Reconstruction errors for different

learning rates are given in Table 4.3. Results demonstrate with 99% confidence that

Partitioned-RBM is less sensitive to different learning rates as compared to the Single

RBM.

We also wanted to determine if overlapping partitions would affect the results.

We ran our experiment with 5% overlap, which means that each RBM shares 5% of
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Table 4.3: Training Characteristics wrt Learning Rate

lr = 0.03 lr = 0.01 lr = 0.005 lr = 0.0005 lr = 0.00005

Single RBM 4.43 3.85 4.22 9.40 23.15
RBM-1 3.45 2.10 1.95 1.83 1.92

Table 4.4: Overlapping Partitions

Configuration Number of RBMs Samples Learning Rate Reconstruction Error (%) Chain Operations(109)

RBM-28 28 60000 0.03 3.11 0.90
RBM-20 20 50000 0.03 2.76 1.10
RBM-15 15 40000 0.03 2.50 1.18
RBM-10 10 30000 0.025 2.19 1.35
RBM-5 5 25000 0.020 1.95 2.27
RBM-2 2 20000 0.010 1.92 4.30
RBM-1 1 20000 0.010 2.08 7.84
Total 18.94

its neighbor’s nodes (5% from the left neighbor and 5% from the right neighbor). We

ran overlapping partitions sequentially. As shown in Table 4.4, reconstruction errors

are even lower with only a modest increase in overhead in terms of ChainOperations.

Using the same configurations in Table 4.4, we compared overlapping with non-

overlapping Partitioned-RBM algorithms. Applying the t-test, results show that the

overlapping algorithm outperforms the non-overlapping algorithm with 99% confi-

dence in almost every stage. However, in the last stage, the results were not sig-

nificantly different, as shown in Table 4.5. We hypothesize that since overlapping

partitions have more connections in each partition, they will require more training

samples.

Finally, 10-fold cross validation results are given in Table 4.6. Rather than using

the provided training and test data sets. we pooled all of the data and split samples

into 10 equal size subsamples. One subsample was used as the validation data for

testing and the remaining 9 subsamples were used for training. We repeated this

process 10 times. It should be noted that the numbers of samples for partitioned

RBMs are not equal (Table 4.6) because we wanted to keep the total time complexity
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Table 4.5: Non-overlapping vs. Overlapping Partitions

Configuration
Overlapping

Reconstruction Error(%)
NonOverlapping

Reconstruction Error(%)
Overlapping

Chain Operations(109)
NonOverlapping

Chain Operations(109)

RBM-28 3.11 3.23 0.90 0.84
RBM-20 2.76 2.93 1.10 0.98
RBM-15 2.50 2.66 1.18 1.05
RBM-10 2.19 2.30 1.35 1.18
RBM-5 1.95 2.08 2.27 1.96
RBM-2 1.92 2.10 4.30 3.92
RBM-1 2.08 2.10 7.84 7.84
Total 18.94 17.77

Configuration
No Overlap:Average

Reconstruction Error (%)
Overlap: Average

Reconstruction Error(%)
Chain Operations per fold
(109) No-Overlap/Overlap

Single RBM 4.06 21.12

RBM-28 3.32 3.32 0.76/0.81
RBM-20 3.07 2.92 0.88/1.00
RBM-15 2.68 2.62 0.94/1.06
RBM-10 2.35 2.29 1.06/1.21
RBM-5 2.12 2.09 1.76/2.04
RBM-2 2.15 2.08 3.53/3.88
RBM-1 2.18 2.14 7.06/7.06
Total 16.00/17.06

Table 4.6: 10-Fold Cross Validation Results

of Partitioned-RBM to be no worse than the Single RBM. Partitioned-RBM outper-

forms Single RBM with 99% confidence. Moreover, overlapping RBMs have lower

average reconstruction error as compared to non-overlapping ones.

To compare the original images visually with the some of our reconstructed images,

we present some examples in Figure 4.8.

Learning behavior with respect to the number of training samples is given in

Figure 4.9. We compare RBM-10 with RBM Single. After each training cycle where

we add 10,000 more images, we tested the algorithms on 10,000 images. RBM-10

outperforms RBM Single with 99% confidence on all training steps.

As we described at the begining of the Section 4.5, so far we ran these experi-

ments for one iteration only. To see how our learning method behaves with additional
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Original

Reconstructed

Figure 4.8: Original vs. Reconstructed Images

Figure 4.9: Reconstruction Error vs. Training Samples

iterations, we ran Partitioned-RBM and Single RBM for 15 iterations. Results are

shown in Table 4.7. Starting with RBM-10, Partitioned-RBM significantly outper-

forms Single RBM with 99% confidence. For Partitioned-RBM, on average, the error

is approximately 5 pixels out of 28 × 28 pixels, whereas it is 10 pixels for the Single

RBM.

The Special Database 19 dataset from the National Institute of Standards and

Technology (NIST) is the official training dataset for handprinted document and

character recognition from 3600 writers, including 810K character images and 402K
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Table 4.7: Training Iterations

Configuration
Number of

RBMs
Samples

Learning
Rate

Reconstruction
Error (%)

Single RBM 1 60000 0.050 1.29

RBM-28 28 60000 0.030 1.75
RBM-20 20 30000 0.030 1.45
RBM-15 15 20000 0.030 1.35
RBM-10 10 20000 0.025 1.08
RBM-5 5 20000 0.020 0.94
RBM-2 2 20000 0.010 0.75
RBM-1 1 30000 0.050 0.67

Table 4.8: Training Characteristics with NIST dataset

Configuration
Number of

RBMs
Training
Samples

Learning
Rate

Reconstruction
Error (%)

Chain Operations
(109)

Single RBM 1 62000 0.010 4.82 507.90

RBM-28 28 62000 0.030 3.74 19.92
RBM-20 20 50000 0.030 3.65 24.09
RBM-15 15 40000 0.030 3.70 25.19
RBM-10 10 30000 0.025 3.69 28.70
RBM-5 5 25000 0.020 3.63 47.78
RBM-2 2 20000 0.010 3.67 90.14
RBM-1 1 20000 0.010 3.74 163.8
Total 399.62

handwritten digits. Unlike the MNIST dataset, images are 128 by 128 pixels. We se-

lected 62K images for training and testing. The dataset consists of 62 types of images

for lowercase and uppercase letters, and numbers. Thus, in our dataset each type has

1,000 images. We used 10% for testing and 90% for training. Hold-out test results

are shown in Table 4.8. Based on the t-test results, Partitioned-RBM significantly

outperforms Single RBM, again with substantially fewer chain operations.
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Finally, Partitioned-RBMed reconstruction error for each character is given in

Table 4.9. The average reconstruction error is lowest for I, i, and 1 and it is highest

for W,Q and B.

4.6 Conclusion

We showed that our Partitioned-RBM training algorithm with small RBM par-

titions outperforms training full RBMs using CD-1. In addition to having superior

results in terms of reconstruction error, Partitioned-RBM is also faster as compared to

the single, full RBM. The reason that Partitioned-RBM is faster is due to having fewer

connections in each training step. However, the reasons for the superior generative

characteristics in terms of reconstruction error is due to the fact that it is not trained

fully in the last stage so that weights or feature detectors become uniform. Thus,

it behaves as a dropout. Moreover, we hypothesize that it can also be explained as,

in each training step, fewer nodes are involved and a small partition RBM settles

in a low energy configuration more rapidly. As we move to other stages with less

partitions, fewer training instances are needed to modify the energy configuration to

obtain lower energy in the full network.
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Uppercase Error Lowercase Error Number Error

A 3.93 a 3.55 0 2.95
B 6.24 b 4.14 1 1.95
C 2.8 c 2.68 2 3.55
D 5.22 d 4.49 3 4.01
E 3.34 e 2.79 4 3.67
F 3.61 f 4.14 5 4.07
G 5.68 g 5.15 6 3.35
H 4.25 h 3.35 7 3.2
I 1.47 i 1.93 8 4.49
J 4.47 j 3.2 9 3.97
K 4.89 k 4.15
L 3.08 l 1.97
M 4.26 m 4.69
N 3.64 n 2.83
O 2.58 o 2.69
P 4.62 p 3.78
Q 6.62 q 4.5
R 3.53 r 2.37
S 3.24 s 2.98
T 3.08 t 3.48
U 3.56 u 3.09
V 3.18 v 2.87
W 6.92 w 4.17
X 4.38 x 3.19
Y 3.75 y 3.37
Z 5.04 z 3.57

Table 4.9: Reconstruction Error per Character
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CHAPTER 5

PARTITIONED DISCRIMINATIVE NETWORKS

Recently, researchers have shown an increased interest in considering Restricted

Boltzmann Machines (RBMs) as a standalone classifiers; however, many researchers

have only aimed at obtaining higher recall and precision of the learning model. So

far, there has been little discussion about runtime performance. In this chapter,

we introduce a partitioned based RBM for classification tasks. The objective of this

chapter is to evaluate the classification accuracy of Partitioned-RBMs under bounded

resources.

5.1 Discriminative Restricted Boltzmann Machines

Larochelle et al. carried out a comprehensive study of RBMs in classification tasks

and successfully applied RBMs as a standalone learning technique, which they call

classRBM [70]. In addition to a generative training objective function for the CD

algorithm, the authors developed a discriminative training objective function as well.

Furthermore, combining these two objective functions, they created a hybrid objective

function that was then used for the gradient calculations. The authors reported that

the hybrid method produced excellent results; however, we could not replicate their

results because the discriminative training objective function calculations resulted

in an overflow for reasonably large networks. The following objective function is a
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Figure 5.1: Class RBM Network

conditional distribution that forms the basis for discriminative learning:

p(y|x) =
exp(dy +

∑N
j s(cj + Ujy +

∑
iWjixi))∑

y∗∈{1,...,C} exp(dy +
∑N

j s(cj + Ujy∗ +
∑

iWjixi))
(5.1)

where c is the weight vector for the bias on the hidden nodes, and U is the weight

vector between hidden nodes and class nodes. Finally, s(x) = log(1 + exp(x)) is

the softplus function. An example network is shown in Figure 5.1. Here, x, h,

and y represent vectors of visible, hidden, and class label nodes (output nodes),

respectively. Class nodes are all set to 0 except for the node corresponding to the

target class label, which is set to 1.0. For instance, when there are 10 classes and

a specific data instance has the third label, the corresponding output vector, y, is

[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0].

Unfortunately, the conditional distribution in Equation 5.1 can only be computed

exactly and efficiently when there is a reasonably small number of classes. Otherwise,

the denominator will result in an exponential number of terms, as we have to sum over

all classes. A more serious weakness with this method, however, is that in practice it

suffers from computational overflow.

For each yi value, ignoring c biases and U, the value in the softplus function

is a vector of WH,V xV,1, where V and H are number of visible and hidden nodes

respectively. If the W matrix is initialized with values randomly chosen between



72

−1.0
max{V,H} and +1.0

max{V,H} and for H = 1500 and V = 784, the resulting matrix values

will be distributed uniformly between −0.00067 and 0.00067. Thus, the value for

exp(∗) in softplus function ranges from 0.9993 to 1.0007. The log(1 + ∗) expression

results in values around 0.69. Then, ignoring dy, the
∑

(∗) expression has value of

H × 0.69. Finally, it results in exp(H × 0.69). Thus, with H = 1500, we have

exp(1035). For modern CPUs, exp(710.0) results in overflow (infinity). Therefore,

the maximum number of hidden nodes one can use is around 710.0/0.69, that is 1028

nodes.

It should be noted that we ignored many variables in this formula to simplify

the analysis. Thus, even for 1028 nodes, it is not guaranteed that the overflow will

not happen. Overflow can be encountered when one uses fewer than 1000 nodes. In

addition to the overflow, the time complexity of an RBM increases with addition of

the discriminative gradient.

Because we could not use classRBM for some reasonably sized experiments, here

we propose a model where we train partitions as described in Chapter 4 without using

class labels except for the last stage. As shown in Figure 5.2, class nodes are added

to the visible vector of the final stage with one node per class. Thus, we train the

final stage in a supervised fashion.

5.2 Discriminative Partitioned Restricted Boltzmann Machines

For discriminative RBMs, we propose Partitioned Restricted Boltzmann Machine

(PRBM) model where we train partitions as described in Chapter 4 without using

class labels except for the last layer. As shown in Figure 5.2, class nodes are added,
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Figure 5.2: Discriminative Partitioned RBM

one node per class, to the visible vector of the final layer. Class nodes are trained by

setting the node that represents the label to 1.0 and the rest to 0.

To classify a new data sample, the input vector will be constructed with all class

nodes set to 0. Then, the input vector will be propagated to the hidden layer using

Equation 2.11. We repeat this equation here for convenience:

P (hj = 1|x) = σ(wjx + cj)
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A new visible vector will be sampled from the model based on the activation of hidden

nodes. Since the visible vector contains class nodes as well, the class nodes’ values

will be used to predict the class label. The class node with the highest activation

value will determine the class label.

Because PRBM is partitioned into smaller RBMs, all available data can be used for

training, and individual RBMs can be trained in parallel. Moreover, as the number

of dimensions increases, the number of partitions can be increased to reduce run-

time computational resource requirements significantly. All other recently developed

methods using RBMs for classification suffer from some serious disadvantage under

bounded computational resources; one is forced either to use a subsample of the

whole data, run fewer iterations (early stop criterion), or both. Our Partitioned-

RBM method provides an innovative scheme to overcome these shortcomings.

As proposed in Chapter 4, the training process for Partitioned-RBM splits a single

RBM into multiple partitions. Each partition is then trained on a subsection of

the data instances. In our experiments, we demonstrated that this training process

improves the performance in terms of both generative power and speed. Moreover,

we will show in Chapter 6, applying spatial statistical analysis tools, we found that

traditional RBMs do not preserve spatially local structure whereas Partitioned-RBMs

are preserve and make use of local structure [69].

We believe that far too little attention has been paid to runtime performance

and far too much attention has been paid to obtaining higher classification accuracy

rates. To the best of our knowledge, using RBMs with bounded computational re-

sources, namely CPU time, has not been considered previously. Hence, the goal of

this chapter is to find out if there exists a method for improving the runtime per-

formance of RBMs without significantly degrading classification accuracy. When we

developed the Partitioned-RBM to obtain better reconstruction accuracy, we noticed
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that runtime performance is also superior to regular RBMs [5]. Thus, our previous re-

sults suggest that Partitioned-RBMs can perform significantly better under bounded

computational resources.

Another key aspect of our Partitioned-RBM is that the training process introduces

an intrinsic sparsity by design. At each training stage, only the weights inside individ-

ual partitions are optimized; the weights connecting the visible layer of one partition

to the hidden layer of another partition are untouched. Thus, the Partitioned-RBM

weights are inherently sparse. This is important because Larochelle et al. showed

that a sparse version of the hybrid RBM significantly outperforms all other tech-

niques in terms of classification error rates; the results were even better than Deep

Belief Network results reported in the literature [25]. Larochelle et al. introduced

sparsity by subtracting a small constant δ value, a hyper-parameter, from biases after

each parameter update. In our case, the training of smaller partitions and gradually

piecing them together accomplishes a similar result.

Algorithm 5.1 is a slightly modified version of the CD-1 training technique for

classification tasks. On line 2-6, we calculate hidden node activations. When the

training is done for the classification (when there are class nodes), we add the con-

tribution of the class input nodes by multiplying with the U matrix. In other words,

the squashing function that calculates hidden node activations, in addition to Wx,

has the Uy component. On line 7, new values for h are sampled from the hidden

activations. Using sampled h values, the new values for x and y are calculated on

lines 8-11. Using new predicted values of x and y, new hidden activation probabil-

ities are obtained on lines 12-16. Depending on whether the network is trained for

classification or not, the contribution of Uy is added to the probability calculations
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Algorithm 5.1 PARTITIONED-DISC-RBM

1: W: weight matrix from hidden nodes to visible nodes, U: weight matrix from
hidden nodes to output nodes. b: bias on visible nodes, c: bias on hidden nodes,
d: bias on class nodes. ε: is the learning rate. x ∼ p means x is sampled from p.
σ(x) = 1

1+e−x

2: if classification then
3: hi ← σ(ci +

∑
jWijxj +

∑
j Uijyj)

4: else
5: hi ← σ(ci +

∑
jWijxj)

6: end if
7: hi1 ∼ p(hi) {sample hi1 from a binomial distribution given hi}
8: xj ← σ(bj +

∑
iWijhi1)

9: xj1 ∼ p(xj)
10: yj ← σ(dj +

∑
i Uijhi1)

11: yj1 ∼ p(yj)
12: if classification then
13: hi2 ← σ(ci +

∑
jWijxj1 +

∑
j Uijyj1)

14: else
15: hi2 ← σ(ci +

∑
jWijxj1)

16: end if
Update parameters:

17: W←W + ε(hi1xj − h2ixj1)
18: b← b + ε(xj − xj1)
19: c← c + ε(hi1 − hi2)
20: if classification then
21: U← U + ε(hi1yj − h2iyj1)
22: d← d + ε(yi1 − yi2)
23: end if

as described above. Finally, all network parameters are updated on line 17-23. Of

course for CD-k, this process is repeated k steps before updating parameters.

5.3 Experimental Design

We used the MNIST dataset for our experiments due to its wide use in evaluating

RBMs and deep learning algorithms for classification accuracy. The MNIST dataset

is described in Section 4.4.
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Rather than using the pre-defined test set of 10,000 images, we repeatedly split

the training dataset for our cross-validation experiments. Unless stated otherwise,

for all experiments, we trained models for 20 iterations. Moreover, when we compare

methods in terms of the significance of results, we compare them using a paired t-test

with 99% confidence intervals.

5.4 Results

Table 5.1 shows the results of our Partitioned-RBM experiments with 1500 hidden

nodes. In the configuration column, Single RBM represents the traditional RBM and

Partitioned-RBM represents a Partitioned RBM. The number of partitions in each

training stage is defined in parentheses; (16-4-1) indicates that we trained the RBM

first with 16 splits, then 4, and finally trained it as a single partition. Note that

each successive Partitioned-RBM configuration starts with the output of the previous

configuration, as described in Chapter 4. The Samples column gives the number of

training instances, selected at random from the total training set, that were used to

train the given RBM. As the number of partitions decreases, we decrease the training

set size to match the time complexity of the full Partitioned-RBM training process to

that of the Single RBM. Each RBM was run for 20 iterations, and the classification

accuracy rates reported are the mean values from 10-fold cross-validation (not using

MNIST’s predefined split between training and test data). As shown, Partitioned-

RBM significantly outperforms the Single RBM.

By design, the computational complexity of the Partitioned-RBM is significantly

better than that of the Single RBM trained on the entire dataset; it is evident that less

computation would have been necessary for the Partitioned-RBM to yield superior

performance. Based on Equation 4.2 (repeated below for convenience) we could tune
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Table 5.1: Classification Accuracy Rates

Configuration Samples (103) Accuracy (%)
Chain

Operations (1010)

Single RBM 54 96.97 131.71
Partitioned-RBM-(16-4-1) 54-50-30 97.18 78.42

the number of samples used in each stage and/or the number of partitions, in order to

adjust the runtime performance. Thus, we are seeking ways to obtain reasonable clas-

sification accuracy rates under bounded resources. Nevertheless, Partitioned-RBM

significantly outperforms Single RBM as shown in Table 5.1 in terms of classification

accuracy with significantly lower CPU requirements.

ChainOps ' O

I ·H · V · ∑
n∈{n0,n1,...,1}
s∈{s0,s1,...,}

si
n2
i


In addition to classification accuracy, we analyzed recall and precision of the al-

gorithms using F1 scores (which is the harmonic mean of precision and recall). Table

5.2 shows F1 scores for all class labels. Partitioned-RBM results are comparable to

Single RBM if not better. This indicates that Partitioned-RBM has robust accuracy

even though we partition the whole network into atomic partitions.

Indeed, when Partitioned-RBM has a smaller number of stages, the runtime per-

formance will improve. However, ideally, the runtime performance gain should not be

at the cost of degradation in classification accuracies. In the following experiments,

we ran Partitioned-RBM with fewer stages. Table 5.3 demonstrates that classification

accuracy is still comparable but runtime is less. This is important, because training

the model with many samples in the first stage appears to optimize the weights
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Table 5.2: Classification F1 Scores

Labels PRBM (%) Single RBM (%)

0 98.27 98.49
1 98.00 98.13
2 97.01 96.99
3 96.15 96.63
4 97.31 97.27
5 96.67 97.34
6 98.32 98.09
7 97.09 96.94
8 95.51 96.12
9 95.17 95.75

Table 5.3: Partitioned-RBM Classification Accuracy

Configuration Samples (103) Accuracy (%)
Chain

Operations (1010)

Partitioned-RBM-(16-4-1) 54-50-30 97.18 78.42
Partitioned-RBM-(16-1) 54-30 96.78 71.07

sufficiently; one does not have to use more samples when there are fewer splits to

maintain a reasonable accuracy.

The purpose of the current study was to determine if RBM can be a viable learning

technique under bounded computational resources. We can claim that increasing the

number of partitions in the first stage is sufficient to optimize network weights to a

degree that fewer samples or fewer training epochs are required in the last stage. In

other words, the last stage with one split does not need to run on the entire dataset.

Most of the computational effort is spent in the last stage when there is only one

split, because the training needs to cover the whole weight matrix.

We ran a series of experiments to determine the effects of sample size in last

the stage and compared the results with Single RBM. As seen in Table 5.4, keeping

runtime approximately the same, Partitioned-RBM performs significantly better than
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Table 5.4: Classification Accuracy Rates with samples

Configuration Samples (103) Accuracy (%)
Chain

Operations (1010)

Single RBM 20 96.43 47.04
Single RBM 10 95.47 23.52
Single RBM 5 94.15 11.76
Partitioned-RBM-(16-4-1) 54-10-20 96.90 49.02
Partitioned-RBM-(16-4-1) 54-10-10 96.25 25.50
Partitioned-RBM-(16-4-1) 54-10-5 95.44 13.74

Single RBM for all experiments when the sample size decreases. This is not surprising,

since Partitioned-RBM uses the full data set in the first stage. However, the result

is important because the number of computations in the first stage is insignificant

compared to the total number of operations. Thus, the following conclusions can be

made: 1) If dimensions of the data are too high, increasing the number of partitions or

splits will improve the runtime performance. 2) If the volume of data is too high, using

more samples in early stages and fewer samples in later stages with fewer partitions

will improve runtime performance.

Finally, to show how fast Partitioned-RBMs optimize weights, we ran experiments

with different training epochs. As seen in Table 5.5, Partitioned-RBM performs signif-

icantly better than Single RBM when trained for fewer epochs (for all experiments).

This again demonstrates that Partitioned-RBM can perform well under bounded

computational resources. On the other hand, Single RBM must run many iterations

in order to obtain reasonable accuracy. The evidence from this experiment suggests

that if one cannot afford to train a regular RBM for many iterations, partitioning will

allow it to run for many iterations and will yield competitive results.
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Table 5.5: Classification Accuracy Rates with iterations

Configuration Samples (103) iterations Accuracy (%)
Chain

Operations (1010)

Single RBM 54 1 93.72 6.59
Single RBM 54 5 96.50 32.93
Single RBM 54 10 96.89 65.86
Partitioned-RBM-(16-4-1) 54-50-50 1 94.30 6.27
Partitioned-RBM-(16-4-1) 54-50-50 5 96.67 31.37
Partitioned-RBM-(16-4-1) 54-50-50 10 97.26 62.73

5.5 Conclusion

This study set out to improve the runtime performance of RBMs without signif-

icant cost to precision and recall rates. From the results of our experiments, we are

led to the conclusion that the Partitioned-RBM performs as well as or better than a

Single RBM with less CPU time. Table 5.1 demonstrates that the Partitioned-RBM

has significantly better accuracy than Single RBM, with only about half the CPU

time. This is important because Partitioned-RBM can run on very high dimension

and high volume datasets. A single RBM cannot be run efficiently on high volume

data, while Partitioned-RBM can use all samples in the first stage, with many par-

titions running in parallel. When weights are optimized in early stages with many

samples, the final stage requires a smaller number of samples.

Under bounded computational resources, with Partitioned-RBM we can either

increase the number of splits and train it on many data samples, or adjust sample

size and number of iterations to obtain better runtime performance, as seen in Tables

5.3, 5.4, and 5.5. We demonstrated that a single RBM, in general, requires many iter-

ations and many training samples. However, this is not practical when computational

resources are bounded.
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One might ask why we did not add class nodes in early stages. Our initial results

indicated that such a scheme does not provide any advantage. It appears that when

weights between hidden nodes and class nodes, U, are updated by all partitions, the

weight matrix takes a long time to be optimized; one partition changes the effect of a

previous partition. However, we plan to investigate each partition optimizing its own

U matrix, and, we need to find a better mechanism to combine all U matrices when

we move to the next stage in the training process.
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CHAPTER 6

PARTITIONED DEEP BELIEF NETWORKS

To show how the performance can be improved while simultaneously decreasing

total training time, a DBN composed of the Restricted Boltzmann Machines (RBMs)

will be explored next. We present this by introducing the vector-partitioning de-

scribed in Chapter 4. We then analyze the input data to see if we can identify the

statistical properties that are being exploited by the Partitioned-RBM to achieve

this performance. Our goal is to investigate the representation bias of the deep,

vector-partitioning approaches in general. Examination of that bias is critical to

understanding and improving our learning algorithms, as Tom Mitchell pointed out

in his seminal paper [71], in which he also noted that a bias necessary for learning.

Moreover, we analyze the role of spatial locality in Deep Belief Networks (DBN) and

show that spatially local information becomes diffused as the network becomes deeper.

We demonstrate that our method is capable of retaining spatially local information

when training DBNs. Specifically, we find that spatially local features are completely

lost in DBNs trained using the “standard” RBM method, but are largely preserved

using our partitioned training method. In addition, reconstruction accuracy of the

model is improved using our Partitioned-RBM training method.

6.1 Deep Belief Networks with Partitioned Restricted Boltzmann Machines

In the past few years, the area of exploration known as Deep Learning has demon-

strated the ability of multilayer networks to achieve good performance on a range

of difficult machine learning problems and has been gaining increasing prominence
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and attention in the machine learning and neural network communities and rapid

adoption in commercial products. While these techniques have achieved great suc-

cess on a number of difficult classification problems, for example in computer vision,

the role of representation bias has not been thoroughly explored. In other words, we

do not know the underlying reasons why these techniques perform well on particular

problems. A deeper understanding of how and why deep learning algorithms work

will help us to decide which problems they are best applied to, and may also lead to

improvement of existing techniques or extending them to in novel contexts.

We demonstrated in Chapters 4 and 5 that partitioned learning can be applied

effectively to RBMs. Here, we apply that same thought to deep learning. As a first

step to examine the role of representation bias, we use statistical models to examine

how much spatially local structure exists in the MNIST dataset. We then present

experimental results from training RBMs using partitioned data and demonstrate

the advantages they have over non-partitioned RBMs. Through these results, we

show how this performance advantage depends on spatially local structure by demon-

strating the performance impact of randomly permuting the input data to destroy

local structure. Overall, our results support the hypothesis that a representation bias

relying on spatially local statistical information can improve performance if this bias

is a good match for the data. We also suggest statistical tools for determining a priori

whether a dataset has spatially local features that will make it a good match for this

bias.

The question we want to answer is, “Do deep learning algorithms make use of

spatially local structure in their input data to help them achieve good performance?”

There has long been an intuition in the deep learning community that this hypothesis

is likely to hold, based partly on everyday experience, and partly on the structure
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of the human visual cortex. To our knowledge, however, there has been no previous

attempt to test this hypothesis.

Deep networks have a built-in regularization effect that remains strong even when

working with large amounts of data [34]. This gives them an advantage on data

with noise or complexities resembling noise. In addition, for partitioned deep models

like Convolutional Networks, exploiting spatially local information is important to

performance [35].

Partitioned deep models work by partitioning nodes within layers of a network.

As shown in Figure 4.5, this can be visualized as an RBM in which layers are not fully

connected. Instead, the nodes of each layer are broken into subsets, and each subset

of nodes is fully connected. As an example, in a classic Convolutional Networks, a

data vector represents an input (e.g. an image) and is effectively split into several

small overlapping regions (image patches).

In a typical DBN, a Restricted Boltzman Machine is at each layer and the network

is trained layer-wise by non-linearly transforming the input while minimizing recon-

struction error. Once all layers have been trained, the resultant network can then be

used in different ways, including adding a new output layer and running a standard

gradient descent algorithm to learn a supervised task such as classification. We use the

same architecture and training process; however, instead of using a monolithic RBM,

we use Partitioned-RBMs and carry out the partitioned training process described in

Chapter 4 at each layer of the DBN.

Performance gains come from all training stages sharing the same weight matrix.

As each RBM covers its own part of the globally shared weights and biases, this

method enables data-independent parallelization of earlier stages.1 The later stages,

1If we allow for overlap of partitions, parallelization becomes problematic. However, Fortier et
al. suggest an approach that enables parallelization while exploiting overlap [72–74].
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while allowing less parallelization, begin their training with weights that have been

pre-trained by the earlier stages. This has several advantages. First, when RBMs have

fewer nodes and weights to be updated, they can be trained more quickly. While the

results of the disjoint training will not be perfect because some relationships will be

missing, they can be allowed to run for many epochs and on large dataset. At the

later stages, as the RBMs cover more links, the training requires fewer epochs than

normal to converge because the weights are closer to their optimal values than would

be the case with random initialization. This enables the overall Partitioned-RBM

hierarchy to achieve the same or higher performance in a fixed time period than a

single RBM trained all at once.

This type of partitioning method can have detrimental effects on performance.

After all, any statistical information relating two features that are not contained in

the same partition is completely hidden from the model. In practice, however, for

most real-world problems, we have neither enough samples nor the computational

capacity to generate a fully optimal statistical model of our data. Most of the models

we are interested in yield exponential complexities, so we must rely on approximations

to estimate them. The central issue in neural networks, going back to McCulloch and

Pitts [75], is the intractability of finding the optimal set of connection weights. The

history of the field has largely been a progressive improvement of gradient descent-

based approximation algorithms, which have enabled more complex network architec-

tures to be trained. Simplifying assumptions often allow more tractable approaches

to problem solving, but assumptions made should be consistent with the original

problem.

We suggest that deep learning algorithms, and in particular the ones that partition

data vectors, are taking advantage of spatially local statistical structure for their

performance. This requires not only that such structure exists, but that it be highly
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relevant to the performance criterion being optimized. If this hypothesis is correct,

it means we may be able to exploit this structure in other contexts as well.

We can now describe the statistical properties of random variables across the

dataset. For individual features, we can compute statistical measures like mean and

variance. For any given pair of features (i, j), we can compute statistical measures

like correlation, covariance, mean-deltas, and so forth.

By applying a partitioning function π (not to be confused with the partition

function defined for Boltzmann Distribution) in Equation 4.1 to every element of a

dataset D, we can generate a new dataset, which will be a set of the sets created

by applying π to the xi. In some instances, we may be able to treat the partitioned

sub-vectors uniformly, in which case we may want to combine them into a single set

by taking the union of the subsets created by the partitioning.

Dπ = {π(x0) ∪ . . . ∪ π(xm)}, (6.1)

This will be appropriate for datasets where all features are interpreted the same way.

However, this may not hold for data where features need to be interpreted differently.

It also helps if the data is isotropic (i.e., changes are independent of direction) and

spatially invariant (i.e., a given pattern is equally likely to occur anywhere in the data

vector). Natural image data tends to fit these assumptions fairly well, as do some

types of time-series data, geological and meteorological data (for which this type

of analysis is called geostatistics), and location-based medical, social, or economic

datasets (e.g. for the analysis of cancer clusters).

The main advantage of using the union in Equation 6.1 is that we get a larger

number of samples, which allows for better estimation. As an example, for natural

image data, using the union is generally safe, since we frequently want to create
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spatially invariant models anyway. In a more structured dataset, such as the MNIST

dataset analyzed in this dissertation, we do not expect spatial invariance in the data

(because the images are always centered and surrounded by a white border, the

location of the digit does not vary), so taking the union would create more samples.

However, if samples are not from a uniform distribution, this will not help.

When partitioning, we will need to keep track of how random variables in the

original dataset map to element(s) in the partitioned dataset. If we do so, we will

then be in a position to describe which statistical quantities can be calculated and

which cannot. So long as the partitioning function preserves locally adjacent blocks of

the original vectors, it will be the case that we can still measure statistical properties

of feature pairs that are “near” each other in the original vectors, but we will be unable

to measure statistical properties of features that are “far apart” in the original vectors

(here, we use Euclidean distance as the measure of how far apart two features are).

In other words, spatially local statistical information is preserved, even while much

of the non-local information is lost.

This emphasis on spatial locality means that we will draw from the field of spatial

statistics. While some of the techniques used in geostatistics, for example, will not

be relevant to all types of data, there are a number of principles and techniques that

can be used in our analysis of the impact of partitioning.

6.2 Analysis of Spatial Features

To analyze the spatial behavior of different learning algorithms, we need tools to

measure and describe spatial structure in data. For this, we look primarily to the

field of spatial statistics. In this work, we apply two different methods for detecting

spatial structure. The first is to measure how inter-feature variance and correlation
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changes with spatial distance between features. This gives us a quantitative measure,

but tells us only about pair-wise relationships on average. The second is a more

holistic qualitative analysis that can be done by using dimensionality reduction to

embed the data in a plane so it can be visualized. In this way, we can find what

kind of clusters or structure exists in the data and compare the amount of structure

present in different datasets.

For quantitative analysis, we use a tool from spatial statistics called a variogram,

which lets us examine the relationship between spatial distance and statistical corre-

lation. Note again that we use spatial in the sense of spatial statistics; the distances

here are between features, not between datapoints.

The generic equation for a variogram is described in Section 2.5 as:

2γ(h) = var(Z(s+ h)− Z(s)), h ∈ Rd

where {Z(s) : s ∈ D ⊂ Rd} is a random process which produces n data samples

Z(s1), Z(s2), ..., Z(sn) and h is separation (distance) vector. Generally, this function

will be plotted and examined to observe the relationship between distance and dif-

ference. In geostatistics where variograms are used for predictive modeling, these

assumptions are often closely matched by the underlying problems. Here, we use an

empirical estimation of the variogram as a descriptive analytic tool. We acknowledge

that the assumptions are violated by natural image data, so a “true” variogram is not

well defined. Instead, we calculate an “average” empirical variogram. A “sample”

in the context of image analysis is basically a pixel, so the location of the sample is

merely the pixel location, and the value of the sample is the pixel value.

To generate the variogram plots, we compute the variance of each pair of features

(computed across all images in the set). For each pair of features (i.e. pixels) (i, j),
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Figure 6.1: Variogram and mean-correlation plots for the MNIST.

we have n samples (one per image in the dataset); this can be thought of as two

vectors of values, where the length of the vector is n. We take the difference between

these vectors, and then compute the variance of the resulting vector, var(X i −Xj).

This gives us one scalar term for each pair of features. At this point, to make the

distance-based function static and isotropic, we average together all feature pairs with

equal inter-feature distances. Figure 6.1 shows the variogram and mean-correlation

of the original MNIST dataset; note that artifact at the far right side of the plots is

caused by the white “border pixels” that are an artifact of MNIST.
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In fact, we can make similar plots for any other pairwise statistical measure; for

example, we have done something similar using correlation in place of variance-of-

differences.

6.3 Experimental Setup

Here we again used the MNIST dataset for our experiments, due to its wide use

in evaluating RBMs and deep learning algorithms. A description of the dataset is

given in Section 4.4.

We measured the performance of the DBNs using reconstruction error, which is

defined to be the mean difference between the original and reconstructed images. We

used a binary reconstruction error with a fixed threshold value of 30 to map pixels in

the range [0− 255] to a binary 1 or 0 for the original images. To get the reconstructed

image from the DBN, we propagate the image all the way to the last hidden layer of

Deep Belief Network, then reconstruct it by reverse propagation to the visible layer.

The resulting vector is binarized and compared with the original vector to calculate

a reconstruction error using following equation:

E(x,x′) =
1

n

n∑
i=1

I(xi 6= x′i)

To examine whether spatially local features are being preserved, we constructed

a 2-layer deep belief network, where each layer is composed of 784 hidden nodes. We

calculated the variogram and mean-correlation plot for the output of hidden nodes

at each layer.

To apply t-SNE to hidden nodes, we generated sample points by setting a se-

lected hidden neuron to 1.0 and all other hidden nodes to 0, and then computing
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corresponding input node activations. Thus, the weights between that hidden node

to all visible nodes captures a “feature” (this can also be referred to as a filter, or

template, depending on context).

6.4 Results

To examine what statistical information is being exploited by the Partitioned-

RBMs, we performed a series of experiments on a randomly permuted version of the

data set. Since permuting the data will destroy spatially local features, this allows

us to asses how a learning model makes use of these features. To generate this new

data set, a mapping was defined that assigned each element of an input vector to

each element of the output vector with equal probability. The resultant mapping is

1-to-1 and onto, and is referred to as a random permutation. While the generation

of the mapping is randomized, once a permutation has been generated its operation

on input vectors is deterministic.

The permutation experiments were performed by generating a random partitioning

of data, applying it to each vector in the original dataset to generate a permuted

dataset, and then training the RBMs on this dataset. We can then compare the

performance of the RBMs using raw and permuted data to see whether or not the

RBMs make use of any statistical information that is disrupted by the permutation.

See the last row of Figure 6.2 for example permuted images. The last row shows the

randomly permuted images corresponding with the original images in the first row.

We also generated a variogram and a mean correlation plot for both the original

dataset and the permuted dataset to determine the presence and strength of local

statistical structure in the two versions of the dataset.
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Figure 6.2: Sample images from the MNIST dataset.

Table 6.1 shows the results of our RBM experiments. In the configuration col-

umn, Single RBM indicates the RBM was trained on the raw data vectors (i.e. no

partitioning); RBM-n indicates a Partitioned-RBM with n partitions. RBM-1 is

equivalent to Single RBM in terms of its configuration, but the RBM-1 is trained on

fewer samples. Note that each successive RBM-n configuration starts with the output

of the previous configuration, as described in Chapter 4. The Samples column gives

the number of training instances that were used to train the given RBM, selected

at random from the total training set. As the number of partitions decreases, we

decrease the training set size to match the time complexity of Single RBM. Each

RBM was run for 15 iterations, and the error rates reported are the mean values

from 10-fold cross-validation (not using MNIST’s predefined split between training

and test data).

For the original MNIST dataset, the Partitioned-RBM outperforms the Single

RBM not only for RBM-1, but in all configurations except RBM-28. Additionally,

when Single RBM is trained using the same reduced-size dataset as the final level
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Table 6.1: Reconstruction Errors

Configuration Samples
Original data

Error (%)
Permuted Data

Error (%)

Single RBM 60000 2.46 2.44
Single RBM 30000 2.55 2.55

RBM-28 60000 3.32 7.00
RBM-20 50000 2.20 6.42
RBM-15 40000 1.87 6.13
RBM-10 30000 1.64 5.00
RBM-5 25000 1.49 3.88
RBM-2 20000 1.44 2.89
RBM-1 30000 1.42 2.24

Table 6.2: Reconstruction Errors for 2-layer DBN

Configuration Samples (103) Error (%)

Single RBM 60 2.59
Partitioned-RBM-(16-4-1) 60-50-30 1.05

of the Partitioned-RBM, its performance decreases even further. By design, the

computational complexity of the full stack of Partitioned-RBMs is comparable to

that of the Single RBM trained on the entire dataset; however, it is evident that less

computation would have been necessary for the Partitioned-RBM to yield superior

performance.

For the Partitioned-RBM, reconstruction error on the permuted dataset is signif-

icantly worse (using a paired t-test with 99% confidence intervals) than the original

dataset. Permutation has no statistically significant impact on the performance of

the standard Single RBM, as we would expect.

Table 6.2 shows the results of training our DBN with two layers. The configuration

column specifies the training method used. The number of partitions in each training

stage is defined in parentheses: (16-4-1) indicates that we trained a Partitioned-RBM
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first with 16 splits, then 4, and finally trained as a single partition. As before, when

the number of partitions decreases, we decrease the training set size to match the time

complexity of the full Partitioned-RBM training process to that of the Single RBM.

Each RBM was run for 15 iterations, and the error rates reported are the mean values

from 10-fold cross-validation (not using MNIST’s predefined split between training

and test data).

Partitioned-RBM significantly outperforms the Single RBM (p > 99.99% us-

ing a paired t-test). By design, the computational complexity of the full stack of

Partitioned-RBMs is comparable to or faster than that of the Single RBM trained

on the entire dataset; however, it is evident that less computation would have been

necessary for the Partitioned-RBM to yield superior performance.

We generated variogram and mean correlation plots as described in Section 6.2.

Figure 6.3 shows the variogram plots for subsets of the data corresponding to digits

0, 5 and 9 (from top to bottom). The first column shows variograms of the raw input

vectors for each subset, the second column shows results of the Single RBM, and

the third shows results of the Partitioned-RBM. The y−axis represents the mean

variance of differences, and the x−axis represents Euclidean pixel distance between

points. Labels of the form N−P indicate data for hidden layer N of a Deep Belief Net-

work based on Partitioned-RBMs with P partitions. For all digits, Partitioned-RBM

produces an “arch” pattern consistent with the original digit plot. In comparison,

the hidden layers of the traditional RBM do not preserve the relationship between

distance and difference. Variograms for other digits can be found in Appendix A.

Similar to variogram, Figure 6.4 shows the mean correlation plots for subsets of

the data corresponding to digits 0, 5 and 9. As with variograms, the first column

depicts digits, the second column shows results of the Single RBM, and the third
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Figure 6.3: Variograms: labels 0, 5 and 9.

column shows results of the Partitioned-RBM. These are consistent with the vari-

ogram results: The Single RBM does not show any relationship between distance and

mean correlation, while the raw data and the Partitioned-RBM output both show

correlation that changes with distance. Mean correlations for other digits can be

found in Appendix B.

We also used t-SNE (as described in Sec. 2.5.3) to visualize the activations at

the hidden nodes. For this experiment, we constructed a 3-layer Deep Belief Network

where each layer has 784 nodes. Results are shown in Figure 6.5. The first row shows

the results for the Partitioned-RBM and the second row for a Single RBM. Columns

corresponds to network layers 1–3. The scatter plot of activations shows that the
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Figure 6.4: Correlations: labels 0, 5 and 9.

Figure 6.5: Hidden node activations: 15 iterations

Partitioned-RBM has some natural clusters, whereas the Single RBM output closely

approximates a zero-mean Gaussian.
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Figure 6.6: MNIST t-SNE mappings

To ensure that the t-SNE method is correctly accounting for possible re-ordering

of features, we applied t-SNE to both permuted and non-permuted MNIST data.

Figure 6.6 shows results of these experiments. The left figure is for the original data

and right figure corresponds to permuted data. The permuted data generates a t-

SNE plot with qualitatively similar structure to that generated from the original data;

importantly, this resembles the output generated from the Partitioned-RBM, but it

does not resemble the Gaussian-like output generated from the traditional RBM.

To explore how diffusion progresses across layers in the Partitioned-RBM, we

paused the training between stages (i.e. just before the number of partitions was

decreased). As the number of partitions changed, we plotted the t-SNE mapping

for the first hidden layer of the DBN (first RBM). Figure 6.7 shows that structure

continues to be present, though some consolidation does take place as partitions are

joined.
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Figure 6.7: Hidden node activations: Partitions

6.5 Discussion

The plots for the original data exhibit some interesting structure. The first is that

adjacent features have high correlation, and the variance of the inter-pair differences

is low. As the feature-pairs get farther apart, the degree of correlation drops off

rapidly. By a distance of 5 pixels, there remains on average little statistical rela-

tionship between feature pairs. This is likely related to the average line-width of the

hand-written digits, which is generally 2-3 pixels. The fact that correlation improves

again as distances increase may seem counterintuitive; however, this is an artifact of

the construction of the MNIST dataset. Recall that the MNIST images all have a

centered digit surrounded by a white border. Since background pixels have the same

value in all images, correlation scales with the likelihood that both members of a

pair are background. The greater the distance between a pair of features, the more

likely that both features will be a part of the background; in fact, beyond a distance

of 30 (note that maximum distance is 28 ×
√

2 ≈ 40) both pixels are guaranteed to

be background pixels, meaning they are guaranteed to always have the same value.

Note that most correlation measures are actually undefined when correspondence is

perfect; for the purposes of Figure 6.1, we have set these values to 1.
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From the results of our experiments using the permuted dataset, we believe that

the Partitioned-RBM is making use of statistical information that is spatially local-

ized, where the Single RBM is not. The permutation results in no loss of information

for the Single RBM. It simply re-orders the elements of the vectors. For this reason,

any pair-wise correlation between a given pair of features will be unaltered by the

permutation. The unchanged behavior of the Single RBM is, therefore, exactly what

we expected.

Things are different for the Partitioned-RBM, however, since the location of the

two features in a given pair will be altered. This means that two features that would

have been assigned to the same partition in the original dataset might not be assigned

to the same partition in the permuted dataset. Since each piece of a Partitioned-

RBM only has access to features in its partition, this means that whatever statistical

information was contained in the correlation between this pair of features is no longer

available to the Partitioned-RBM.

In fact, Partitioned-RBM will always be cut off from a great many of the pair-

wise feature correlations; the difference between the original and permuted datasets

is simply in which correlations are lost. The fact that the Partitioned-RBM performs

significantly worse on the permuted dataset implies that not all correlations are of

equal value. In particular, it means that correlations between pairs of features that are

spatially close in the original data are more important to the success of the algorithm

than correlations between arbitrary pairs (which will, on average, be significantly

farther apart in the original image).

Thus, the results lead us readily to the conclusion that the Partitioned-RBM is

making use of spatially local statistical information in the MNIST dataset to achieve

its performance. Work described [35] that partitioned deep learning algorithms rely

on such local information.
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We have begun to explore one of the potential representation biases that deep

learning techniques leverage to achieve their performance. Our experimental results

suggest that partitioned-data techniques are able to make use of spatially local in-

formation, and we have in the variogram and the mean-correlation plot some crude

tools for analyzing how much spatially local structure exists in a dataset. While these

results are promising, they offer only a first jumping off point for the work that could

be done in the area of understanding and exploiting the biases that underpin deep

learning.

In partitioned learning models, the partitioning can be thought of as a simplify-

ing assumption that reduces both the total number of parameters and the number

of inter-parameter dependencies, thus simplifying the learning process. If the data

conform to this assumption, this should provide an advantage. We have tested the

validity of this assumption by training partitioned models on both “normal” images

and “scrambled” images (in which spatially a local structure was intentionally de-

stroyed by permutation, but no statistical information was lost if the full vectors

were considered). As expected, if the data badly violates the assumption of spa-

tially local patterns, performance of partitioning techniques is severely degraded, but

performance on non-scrambled images is increased by using partitioning [35].

One problem with these results is that they do not cover all deep learning meth-

ods; DBNs, for example, do not normally take a partitioned approach, so there may

be different principles at play in their success. We mainly focused on the question

of whether DBNs are in fact making use of spatially local statistical information,

and if not whether we can modify the training procedure to incorporate this spatial

locality prior and improve the performance of the network (without modifying the

overall architecture or operation of the final DBN model). From the results of our

experiments using spatial statistics and t-SNE, we conclude that the Partitioned-
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RBM in a Deep Belief Network is making use of spatially local information, where

the Single RBM-based DBN is not. The variograms (Fig. 6.3) demonstrate that the

Partitioned-RBM output has broadly similar spatial statistics as the original dataset.

While the plots are not identical, similar overall trends are present. Partitioned-RBM

training preserves these statistical patterns even in higher layers of the network. The

same plots for Single RBM training show that spatial locality is lost in the first hidden

layer.

Figure 6.6 shows what happens when the original data is scrambled beforehand, by

generating a random permutation, and then applying it to each input vector. Despite

the disruption of spatial organization of features, the transformation is lossless, and

structure obtained in the t-SNE projection is similar to that for the original data.

This suggests that if the Single RBM had preserved any spatial features, we should

see similar structure in the t-SNE projection (even if the spatial organization of those

features was not preserved). As the t-SNE results show, there is no structure in the

t-SNE projection after the first layer of the Single RBM; the projected distribution

closely approximates a Gaussian (i.e., it is indistinguishable from noise). Thus, we

conclude that the traditional RBMs do not retain spatially local statistical informa-

tion in any recoverable form. As a result, any deep network trained using standard

RBMs will lose all spatial information in the first hidden layer. On the other hand, the

Partitioned-RBM training technique preserves spatially local information, meaning a

deep network trained using this method can make use of spatial patterns in all layers

of the network.

This result, combined with the performance edge the Partitioned-RBM has in

practice, reinforces the hypothesis that the MNIST data has relevant spatially lo-

cal structure, and that like other partitioned deep methods, the Partitioned-RBM

achieves its performance due to an implicit model bias that assumes (and exploits) the



103

presence of spatially local features. DBNs trained with the standard RBM method

lose spatially local features, and are therefore at a disadvantage because they are

attempting to solve a harder problem. Without the constraint imposed by the as-

sumption of local structure, the standard RBM training algorithm is left with a much

larger hypothesis space to search.
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CHAPTER 7

TIME SERIES CLASSIFICATION VIA PARTITIONED NETWORKS

Since time series data are typically very high dimensional, the use of RBMs in

time series tasks is not common. But, in recent years, there have been a few attempts

to use RBMs in high dimensional data such as time series and motion data. The

following sections summarizes these studies. In the rest of this chapter, we describe

Temporal Partitioned Restricted Boltzmann Machines (TPRBM), using partitioned-

based training. We apply our partitioned model and Dynamic Time Warping (DTW)

to several time series datasets for a sequence classification task.

7.1 Time Series Classification

We begin with a definition of time series data type.

Definition 7.1.1. (Time Series) T = t1, . . . , tn is an ordered set of n real-valued

variables.

Depending on classification task, some times we are interested in the classifying

the whole time series and sometimes a subsequence of the dataset. However, often the

whole time series is not informative. For instance, four hours recording of a patient’s

heartbeat may not tell us if the hearbeat is abnormal or not. But, a subsequence of

dataset may contain an abnormal pattern.

Definition 7.1.2. (Subsequence) Given a time series T of length n, a subsequence

Ts = ts, . . . , ts + w where w < n is the length of subsection.
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In addition to DTW scoring method described in Section 2.5.4, Euclidean Distance

is one of the most common measure for clasification.

Definition 7.1.3. (Euclidean Distance) Given two time series T and S with both of

length n, Euclidean distance is the square root of the sum of the squared differences

between each pair of time values:

d(T, S) =

√√√√ n∑
n=1

(ti − si)2

Time series prediction is a process of finding the value of ti for given previous

t1, . . . , tj−1 values. Time series classification on the other hand, involves finding a

categorical label for a giving time series. Classification is a specifically useful tool for

indexing and querying a database of time series.

Definition 7.1.4. (Time Series Classification) Given a set of unlabeled time series,

the task of time series classification is assign a label from one of the predefined classes.

A considerable amount of literature has been published on time series prediction

and classification. In fact, time series prediction has been studied in statistics over

many decades. One of the most successful models, Autoregressive Moving Average

(ARMA), was developed by Peter Whittle in 1951 [76] and popularized by George E.

P. Box and Gwilym Jenkins in 1971 [77]. ARMA and its extension, Autoregressive

Integrated Moving Average (ARIMA), are still very popular time series prediction

models today. It has only been over the last couple of decades that machine learning

has been used for time series prediction tasks using methods such as Neural Networks

and Support Vector Machines.

On the other hand, the need for time series classification mainly has arisen when

people need to store/index large volumes of time series data and query that. For
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example, querying a gene sequence database for given sequence pattern requires clas-

sification. Dynamic Time Warping (DTW), discussed in Chapter 2, is one of the most

important tools for time series classification.

7.2 Temporal Restricted Boltzmann Machines

The Conditional Restricted Boltzmann Machine (CRBM) is a non-linear genera-

tive model designed to model human motion where real-valued visible variables repre-

sent joint angles and hidden/latent variables represents motion [78]. The model is the

same as a regular RBM; however, the hidden and visible layers are both conditioned

on visible variables from the last few time-steps.

As shown in Figure 7.1a, the hidden layer and visible layer both have direct

connections from the visible layer in previous time steps. Given data at n previous

steps, hidden layers are independent. With a minor change to the energy function,

the Contrastive Divergence algorithm is used for training CRBMs. The only change

required is to use direct connections from previous layers to update hidden and visible

biases. For a regular RBM, the energy function is the following:

E(x,h) = −hTWx− bTx− cTh,

whereas the CRBMs, the energy function becomes:

E(x,u,h) = −hTWx− bTx− cTh− uTWx− uTWh

where u is an input vector that represents a visible layer from the previous time step.

So, the only change is including components with the u term.
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(a) Conditional Restricted Boltzmann
Machine

(b) Temporal Restricted Boltzmann Ma-
chine

After the full training of CRBM, the last model parameters capture the repre-

sentation of motion. Thus, the CRBM is the first successful temporal RBM model

applied to human motion and video textures.

Along similar lines, Sutskever et al. came up with the Temporal Restricted Boltz-

mann Machine (TRBM) [79] to represent sequential data that can be learned one

hidden layer at a time. Similar to CRBM, TRBM also conditions on the previous

states as shown in Figure 7.1b. It should be noted that in a TRBM, the hidden layer

is not only conditioned on previous visible layers but also on previous hidden layers.

Thus, the model resembles a dynamic Bayesian network [80].
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Figure 7.2: RBM with Feedforward

The resulting sequence model is defined as a product of regular RBMs, where

each RBM is conditioned on previous RBMs and trained independently using Con-

trastive Divergence. These models are also applied successfully to video sequences

and evolution of objects.

Häusler et al. extended the TRBM with only hidden-to-hidden layer connections

[81]. Similar to CRBMs, RBMs are stacked side by side. The connections between

them (between hidden layers ) are trained using Autoencoders. Thus, the model

is called “Temporal Autoencoding Restricted Boltzmann Machines (TARBM).” The

model has also been successfully applied to time series classification tasks.

Hrasko et al. took a hybrid approach when applying RBMs to time series pre-

dictions [82]. As show in Figure 7.2, the output of an RBM is fed to a Feedforward

Neural network for prediction.
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7.3 Partitioned Restricted Boltzmann Machines

Here, we show that Partitioned-RBM is a natural model for learning time series

classification for the following reasons. 1) Each partition can learn local features or

trends efficiently since sub-RBMs are small. 2) As we combine partitions, at the

later stages of the learning, the model can learn longer trends and features. 3) Time

series have very high dimensions; thus, by partitioning the data as well as the model,

Partitioned-RBM will significantly improve the computational performance.

TPRBM is basically the same model as Partitioned-RBM described in Chapter

5. However, instead of using quadtree partitioning, here we use a näıve partitioning.

The whole time series is divided into k sub-vectors without overlap. The remainder

of the training is the same. For example, Figure 7.3 represents a time series of length

132 and four partitions. Each RBM works on one section of the time series.

The idea here is that each individual RBM will capture local trends/features

within the window. Thus, distant features will not be represented. However, in

later stages, when we have fewer splits, distant features will also be captured. We

demonstrated in Chapter 6 that regular RBMs do not preserve spatially local features.

We assert that regular RBMs will not preserve temporal local trends and features

either. Moreover, as demonstrated by Schulz et al., a monolithic RBM will not

capture local features as most of its detectors will have uniform weights after the

training is done [56].

Training time complexities of regular RBMs and Partitioned-RBMs are given in

Equations 4.1 and 4.2, which are repeated here for convenience. The time complexity

of regular RBM is O(I · S · H · V ) where I, S, H, and V are number of iterations,

number of samples, number of hidden nodes, and number of visible nodes respectively.
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Figure 7.3: Partitioned Time Series

The time complexity for Partitioned-RBM is

O

I ·H · V · ∑
n∈{n0,n1,...,1}
s∈{s0,s1,...,}

si
n2
i


where ni represents the number of splits in stage i, and si represents the number

of samples used in stage i for training. If we keep I, H, and V constant, we can

vary the number of samples used in each stage and/or the number of partitions to

improve runtime performance of Partitioned-RBMs significantly. For instance, for a

very high dimensional dataset, we can increase the number of partitions to reduce the

number of computations over each set of partitions. For large datasets, we can use

more samples in earlier stages where the training is fast, but fewer training samples

in later stages as training slows. This flexibility enables tuning of Partitioned-RBM

performance to suit the particular dataset being studied.

7.4 Experimental Setup

We selected five time series from the UCR Time Series Classification Archive

[63]. Each dataset has series of different lengths, numbers of classes, and numbers of
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Table 7.1: Partitioned-RBM configuration

Data
Series

Size Labels Samples Partitions
Hidden
nodes

FaceAll 131 14 2250 50-20-5-1 1000
RefrigerationDevices 720 3 750 50-20-5-1 1000
ECG5000 140 5 5000 50-20-5-1 1000
ElectricDevices 96 7 16637 20-5-1 1000
ShapesAll 512 60 1200 50-20-5-1 1000

samples. The UCR time series are split into test and training sets. Generally, the

training set is a lot smaller than the test set because prior studies mostly used the k-

Nearest-Neighbor algorithm for classification (k-NN). k-Nearest-Neighbor Classifiers

is a lazy learner [83]; the model is constructed during query or classification time. In

query time, however, using a large training set is inefficient. Thus, we did not use

the pre-defined test and training batches. Instead, we combined both to create a full

dataset so that we could use 10-fold cross-validation. Moreover, we binarized data

using the following näıve method: anything less than or equal to 0 was set 0 and

anything greater than 0 was set to 1.

The time series datasets that we used are shown in Table 7.1. The size column

indicates the time series length, and the partitions column indicates the number of

partitions used to train Partitioned-RBM. 50−20−5−1 means, we initially trained the

model with 50 partitions followed by 20 partitions in the second stage, and 5 partitions

in third. In the final stage, we trained the model as a full RBM. It should be noted,

however, that we selected samples in each stage such that the time complexity of

Partitioned-RBM is comparable to or better than that of Single RBM.
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Table 7.2: Time Series Classification Accuracy

Data
Series

Accuracy
Single

Accuracy
TPRBM

Accuracy
1-NN DTW

FaceAll 76.22± 0.038 90.00± 0.020 96.98± 0.016
RefrigerationDevices 46.27± 0.057 53.60± 0.052 57.87± 0.046
ECG5000 89.88± 0.032 91.62± 0.020 92.96± 0.011
ElectricDevices 39.33± 0.051 53.99± 0.031 67.19± 0.021
ShapesAll 59.08± 0.028 59.17± 0.029 79.42± 0.033

7.5 Results

The average classification accuracies and standard deviation of folds are shown in

Table 7.2. Here, 1−NNDTW is 1-Nearest-Neighbor classifier using DTW distance

measure. Partitioned-RBM significantly outperforms regular RBM on all datasets

except ShapesAll using a paired t-test with 99% confidence intervals. This demon-

strates that using more examples improves model accuracy of Partitioned-RBM with

the same or better computation performance. We also compared our method to

DTW, but DTW outperformed all RBMs on these datasets. We believe the reason

for this is that these data do not have a sufficient number of dimensions to fully

exploit temporal features.

We also decided to study how our algorithm behaves when the same pattern in

repeated in a time series. For this, we created a modified version of the FaceAll

dataset by repeating each time series three times. For example, abC is modified as

abCabCabC. As shown in Table 7.3, although Partitioned-RBM still outperforms

Single RBM, DTW is still superior in terms of classification accuracy.

In previous experiments, the test and training datasets had equal lengths. Thus,

alignment is done on the whole sequence. To show how subsequence classification will
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Table 7.3: Classification Accuracy with Repeated Patterns of FaceAll

Model Accuracy

Single RBM 77.82± 0.027
Partitioned-RBM 80.04± 0.028
1-NN DTW 96.84± 0.018

Table 7.4: Subsequence Classification Accuracy with Repeated Patterns of FaceAll

Model Accuracy

Single RBM 81.78± 0.029
Partitioned-RBM 90.06± 0.026
1-NN DTW 14.04± 0.024

work, we created training data with repeated patterns as described above. However,

when we created the test dataset, we did not repeat the sequence. In other words,

the test set contains the original pattern as a subsequence of the training time series.

Thus, when we do classification, we are comparing a short test sequence with long re-

peated sequences. However, for both Single RBM and Partitioned-RBM, we appended

zeros to test sequences for classification because number of visible nodes in RBM are

equal to the length of training data. Table 7.4 demonstrates that Partitioned-RBM

outperforms both DTW and Single RBM. In fact, the results of DTW are close to

random guessing. Thus, DTW does not work well when test and template time series

have different lengths.

7.6 Conclusion

Lazy learning algorithms that require query-time computation are not efficient

because time series data often has high dimensions. For example, an algorithm using

DTW score and k-NN during query has the following drawbacks. 1) If the database

that we run the query against is fairly large, the response time of the algorithm is
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very slow. 2) Because of the first drawback, one has to select a subset of the dataset

for runtime query; however, this kind of knowledge engineering is expensive. We

selected samples in each stage such that the time complexity of Partitioned-RBM

is comparable to or better than that of Single RBM. Thus, we demonstrated that

Partitioned-RBM can effectively be applied to time series datasets without these

drawbacks.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

In this dissertation, we presented a partitioned learning approach and applied it

to Restricted Boltzmann Machines. Specifically, we demonstrated the effectiveness of

this method in the context of both standalone RBMs and DBNs. In this chapter, we

conclude with a summary of our contributions and directions for future work.

8.1 Summary of Contributions

8.1.1 Partitioned Learning

This study set out to develop a generic learning algorithm that not only partitions

the input vector, but also the model parameters. Thus, we developed a novel meta-

algorithm that converts a monolithic model into submodels where each submodel is

trained on a corresponding partition of the input vector. However, learning proceeds

in multiple stages where the model and the input vector are split into fewer partitions

in each successive stage. In other words, as the stages proceed, smaller partitions are

combined into larger partitions. This dissertation has shown that this partitioned

approach results in better feature representation.

8.1.2 Computational Efficiency

As we demonstrated in Chapter 4, training Partitioned-RBMs is faster than

training non-partitioned versions. In addition, we demonstrated that Partitioned-

RBMs have the same or better feature representation power as a monolithic RBM,
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Partitioned-RBMs yield two major improvements: 1) a faster algorithm for learn-

ing with high dimensional data; and 2) a novel algorithm for training RBMs under

resource-bounded conditions. When there are limited computational resources, the

algorithm can terminate early with a good generative performance.

8.1.3 Efficient Classification

We demonstrated in Chapter 4 that Partitioned-RBM can be used efficiently as a

discriminative model. We demonstrated that Partitioned-RBM has the same or better

classification accuracy as regular RBMs. However, it requires less computation.

8.1.4 Preserving Spatially Local Features

As shown in Chapter 6, Partitioned-RBM can be used effectively as part of Deep

Belief Networks. We further demonstrated that Partitioned-RBM preserves spatially

local features while regular RBM-based DBN does not.

8.1.5 Sparsity

A sparse RBM is a model that, when trained, has most of the weights close to zero

and only a few either highly positive or highly negative. In a sparse RBM, only a few

neurons (hidden nodes) will be active at any given time. This enables the network

to learn sparse representations. Researchers often limit the number of neurons that

are active for a given input by explicitly adding a sparsity factor in the training

process so that most of the weights between visible and hidden nodes are close to

zero. Partitioned-RBMs possess natural sparsity because each Partitioned-RBM is

trained on a reduced region of the dataset.



117

8.1.6 Time Series Classification

In Chapter 7, we demonstrated that Partitioned-RBMs are effective in a time

series classification task. The partitioned training model fits well with time series

datasets because such datasets have very high dimensions. Both regular RBMs and

DTW-based k-Nearest Neighbor algorithms cannot perform well when the dimen-

sionality is very high. Moreover, since DTW requires query time model construction,

knowledge engineering is needed to select a subset of the whole data, making this

method impractical.

8.2 Publications

This study resulted in several published papers and more papers to be submitted

for publication. The related publications are:

• H. Tosun and J. W. Sheppard, Training restricted Boltzmann machines with

overlapping partitions, in Proceedings of the European Conference on Machine

Learning-Principles and Practice of Knowledge Discovery in Databases (ECML-

PKDD). Springer, 2014, vol. 8726, pp. 195-208.

• B. Mitchell, H. Tosun, and J. Sheppard, Deep learning using partitioned data

vectors, in Proceedings of the IEEE International Joint Conference on Neural

Networks (IJCNN), 2015, pp. 1–8.

• H. Tosun, B. Mitchell, and J. Sheppard, Assessing diffusion of spatial features

in deep belief networks, to appear in IEEE International Joint Conference on

Neural Networks (IJCNN), 2016.
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• H. Tosun and J. Sheppard, Fast classification under bounded computational

resources using partitioned-rbms, to appear in IEEE International Joint Con-

ference on Neural Networks (IJCNN), 2016.

• H. Tosun and J. Sheppard, Fast time series classification using Partitioned Re-

stricted Boltzmann Machines, conference or journal to be identified.

8.3 Future Work

Our approach opens the door to many potential applications. Since training is

done on partitioned small RBMs, we believe the method will learn multi-mode data,

that is data from multiple sources, more accurately. Other directions for future work

include carrying out additional experiments to demonstrate that this training method

can be applied to domains with a high volume of features.

Our algorithm also has similarities to transfer learning. Since in each stage we

learn some weights and those weights are used as a base configuration for the next

stage, it is analogous to feature representation transfer [84]. One interesting direction

for future work would be to investigate whether other methods of transfer learning

can be used during training.

In Chapter 5 we demonstrated that Partitioned-RBM performs significantly better

than single RBM under bounded computational resources. To see our method perform

even better, we need to run it on a dataset with extremely high volume and high

dimensions. We speculate that a single RBM cannot be trained optimally unless it

runs many iterations, which will take days to train. On the other hand, Partitioned-

RBM can run many iterations in the first stage with all data samples efficiently. We
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are planning to use this scheme to run classification tasks on many datasets with high

dimensions and high volume.

Moreover, better runtime performance also enables us to create an ensemble of

Partitioned-RBMs. Therefore, we plan to run experiments using ensembles. We

hypothesize that an ensemble of Partitioned-RBMs will result in even better classifi-

cation accuracy.

The results of our classification study also suggest that Partitioned-RBM will

provide even better runtime improvement when used as a component of a DBN. As we

stack up more layers of RBMs, the runtime performance becomes more relevant. Our

preliminary experiments indicate that Partitioned-RBM has comparable classification

accuracy rates with Single RBM when used in DBNs. Contrary to expectation, the

results were not significantly better. Additionally, we found that a DBN does not

increase accuracy rates drastically as compared to a regular RBM. It is possible this

is because of the relative simplicity of the MNIST data set. Hence, we plan to 1)

explore methods to improve classification accuracy of Partitioned-RBM when used

as a component of a DBN, 2) investigate why a DBN does not drastically improve

accuracy rates, and 3) investigate alternative data sets.

As we demonstrated with DBNs, Partitioned-RBM preserves statistical spatial

features in all layers of the network, while regular RBMs diffuse all spatially local

features. We plan to carry out further experiments to determine whether preserving

statistically local features will result in higher classification accuracy.

Traditional DBNs achieve remarkable performance when applied to classification,

image recognition and many other applications. We have begun to explore applica-

tions where we can apply partitioned-data techniques, and we are in the process of

comparing a partitioned-data DBN to a traditional DBN in terms of classification

performance (as opposed to the reconstruction task examined here). This is impor-
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tant in two ways: 1) we would like to determine whether preserving spatially local

structure in higher layers of the network can improve classification accuracy, and 2)

we would like to explore further how and why deep learning works, by analyzing how

traditional DBNs achieve their performance even without exploiting any spatially

local information.

When applied to time series classification, we demonstrated that Partitioned-RBM

outperforms regular RBMs. However, the time series in the datasets we have chosen

have relatively short lengths. Applying query-based algorithms to time series with

very long lengths will become impractical. However, with Partitioned-RBM, we can

increase the number of partitions and therefore, thereby increase the computation

performance. As a result, we should be able to obtain even better classification

accuracies.

Finally, we also plan to develop with a better Partitioned-RBM subset classifi-

cation of time series. So far, we have implemented a fairly näıve method by setting

all missing values to 0. A reasonable approach in this direction will be to have each

partition to return a classification score. In other word, each sub RBM will have

its own classification nodes. Some kind of majority-voting mechanism needs to be

applied to obtain final classification score.
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Here we include variogram plots for all MNIST labels. The first row shows var-

iograms of the raw input vectors, the second row shows results of the Single RBM,

and the third shows results of the Partitioned-RBM. The y−axis represents the mean

variance of differences, and the x−axis represents Euclidean pixel distance between

points. Labels of the form N−P indicate data for hidden layer N of a Deep Belief

Network based on Partitioned-RBMs with P partitions.
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Figure A.1: Variogram: Label 0
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Figure A.2: Variogram: Label 1
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Figure A.3: Variogram: Label 2
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Figure A.4: Variogram: Label 3
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Figure A.5: Variogram: Label 4
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Figure A.6: Variogram: Label 5
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Figure A.7: Variogram: Label 6
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Figure A.8: Variogram: Label 7
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Figure A.9: Variogram: Label 8
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Figure A.10: Variogram: Label 9
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Here we include mean-correlation plots for all MNIST labels. The first row shows

correlations of the raw input vectors, the second row shows results of the Single

RBM, and the third shows results of the Partitioned-RBM. The y−axis represents

the mean correlations, and the x−axis represents Euclidean pixel distance between

points. Labels of the form N−P indicate data for hidden layer N of a Deep Belief

Network based on Partitioned-RBMs with P partitions.
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Figure B.1: Mean Correlation: Label 0
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Figure B.2: Mean Correlation: Label 1
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Figure B.3: Mean Correlation: Label 2
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Figure B.4: Mean Correlation: Label 3
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Figure B.5: Mean Correlation: Label 4
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Figure B.6: Mean Correlation: Label 5
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Figure B.7: Mean Correlation: Label 6
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Figure B.8: Mean Correlation: Label 7
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Figure B.9: Mean Correlation: Label 8
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Figure B.10: Mean Correlation: Label 9


	Titlepage
	Copyright
	Acknowledgements

	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms

	Abstract
	Chapter 1 — Introduction
	Motivation
	Contributions
	Organization
	Notation

	Chapter 2 — Background
	Boltzmann Distribution
	Restricted Boltzmann Machine
	Autoencoders
	Deep Learning
	Spatial and Temporal Feature Analysis

	Chapter 3 — Related Work
	Sampling Methods
	Restricted Boltzmann Machines
	Deep Learning
	Dropout
	Partitioned Model Learning
	Temporal Classification

	Chapter 4 — Partitioned Learning
	Data Partitioning Theory
	Partitioned Learning Algorithm
	Partitioned Restricted Boltzmann Machines
	Experimental Setup
	Results
	Conclusion

	Chapter 5 — Partitioned Discriminative Networks
	Discriminative Restricted Boltzmann Machines
	Discriminative Partitioned Restricted Boltzmann Machines
	Experimental Design
	Results
	Conclusion

	Chapter 6 — Partitioned Deep Belief Networks
	Deep Belief Networks with Partitioned Restricted Boltzmann Machines
	Analysis of Spatial Features
	Experimental Setup
	Results
	Discussion

	Chapter 7 — Time Series Classification via Partitioned Networks
	Time Series Classification
	Temporal Restricted Boltzmann Machines
	Partitioned Restricted Boltzmann Machines
	Experimental Setup
	Results
	Conclusion

	Chapter 8 — Summary and Conclusions
	Summary of Contributions
	Publications
	Future Work

	References Cited
	APPENDICES
	APPENDIX A:  Variances
	APPENDIX B:  Correlations

