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ABSTRACT

Community detection in networks is an important tool in understanding complex
systems. Finding these communities in complex real-world systems is important
in many disciplines, such as computer science, sociology, biology, and others. In
this research, we develop an algorithm for performing hierarchical fuzzy spectral
clustering. The clustering algorithm is applied to small benchmark problems, as
well as a large real-world campaign finance network. Afterwards, we extend the
hierarchical fuzzy spectral clustering for use in evolving networks. The discovered
communities are tracked through the evolving network and their underlying properties
analyzed. Third, we apply association rule mining on community-based partitions of
the data. A comparison of the results within and between communities show the
effectiveness of this method for adding interpretability to the underlying system.
Fourth, we examine the ability of hierarchical fuzzy spectral clustering on a graph to
predict behavior that is not present in the graph itself. The results are shown to be
effective in predicting votes in the United States legislature based on the campaign
finance networks. Finally, we develop an orthogonal spectral autoencoder that is
used to perform graph embedding. This approximation model avoids the eigenvector
decomposition of the full network, as well as allows out-of-sample spectral clustering.
The results show the embedding performs comparably to the full spectral clustering.
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CHAPTER ONE

INTRODUCTION

Within this chapter we present motivation and background for research in

community detection and analysis. Community detection is a method of graph

analysis used to interpret interactions or relationships in a more complex system. The

simplification obtained by the communities can be used to improve interpretability,

create predictions, or apply reasoning over the underlying system that created the

graph. We develop novel algorithms to find hierarchical and overlapping communities

within networks. Our analysis of communities focuses on social networks in political

campaign finance. The following sections include a summary of relevant social

networks and clustering. Afterwards we summarize the major contributions of this

research. The chapter concludes with an overview of the remaining chapters.

1.1 Motivation

Complex networks, or graphs, are a large and growing area of important research.

Community detection is an important method for simplifying complex systems that

can be difficult to analyze as a whole. Large scale graphs such as social networks

are one area where this analysis can be applied to provide interpretability, discover

patterns in behavior, or find missing relationships. Social networks are a type of graph

that are generated from interactions among members of some population. These

networks have shown up in many different fields such as genetics [1], neuroscience [2],

collaboration networks [3], Internet groups [4], animal social behavior [5], and many
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more.

At their core, networks or graphs are made of points or vertices that are

connected by edges. In many real-world networks, these edges are not distributed

evenly throughout, but instead there are groups of vertices that tend to have more

connections among themselves than connections to the rest of the network [6]. These

groups are commonly referred to as communities. Community analysis on these

networks can be useful in identifying behaviors or structure within the underlying

system that created the graph.

Consider a network made by links between web sites. Web sites that share topics

will likely have a higher proportion of links between themselves than to other websites

that do not cover similar topics. Community analysis on such a network could aid

in categorizing those web sites. As another example, correspondence or associations

among friends can be interpreted as a network. Community detection can be used

to identify shared interest or be involved in recommendations for pairing individuals

who are not directly connected. Clustering the networks into subsets of vertices is

a common way to perform community detection. Clustering should result in sets of

objects that share properties.

There are many examples where improvements to systems can be made by

finding communities. Expanding on the web site example from earlier, clustering

can improve the performance of web site access. Latency can be improved by keeping

related domains within the same server [7]. Related stores or products can form

a network where recommendation systems can increase revenue by showing related

items to consumers [8]. It can also provide a way to classify the vertices, which has

applications in genetics and metabolic networks [9].

Community detection in social networks has been a focus of considerable

research. Finding the communities alone can provide useful information regarding the
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vertices within their sets. Vertices that are centrally located in their clusters provide

control and stability within the group. Those vertices on the boundary between

communities can provide mediation or points of exchange between the different

communities [10, 11]. Thus, it is important to not only identify the communities,

but also the relationship of each vertex to the community at large.

However, much of the early research focused on communities where vertices could

only belong a single set or community. This results in what is called a crisp community

assignment [6, 12, 13, 14]. A popular algorithm for community discovery is spectral

clustering since it is relatively easy to implement and it can find non-convex clusters

[15, 16]. However, there is a limitation with some prior approaches since they do not

allow for vertices in the network to belong to multiple communities. This is an issue

as the individuals within a social network often belong to more than one community

at a time.

Another limitation in some methods is that they do not account for sub-groups

within a community. Such sub-groups can consist of smaller groups of individuals

within a larger community, thus forming a hierarchy of communities. Military,

business, familial, and political hierarchies are all examples of hierarchies where

individual smaller groups combine to create a larger group. There are more recent

approaches that attempt to improve on the older algorithms by allowing fuzzy clusters

as well as creating a hierarchical structure for the communities [17, 18, 19, 20, 21, 22].

1.2 Contributions

This thesis details contributions to the development of community detection.

These contributions involve the creation of new algorithms for performing clustering,

generalization of the communities, and adding interpretability to the clustering. The

specific contributions are listed below.
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� We introduce an algorithm for performing hierarchical fuzzy spectral clustering

[23]. We use outlier detection on the spectral characterization to find the number

of communities and hierarchical structure in real-world networks. Results from

the experiments show the utility of both the overlap and hierarchy of clusters.

We test the hypothesis that overlapping communities in a campaign finance

setting can provide insight into the behavior of the individuals within the

community. Results show the individuals between communities exhibit different

behavior than those entirely within a single community.

� Hierarchical fuzzy spectral clustering is adapted for use in community detection

in evolving networks [24]. Clustering is done on snapshots of evolving networks

through time. A fuzzy Jaccard similarity is used to identify matching communi-

ties for the adjacent snapshots. This method is applied to the campaign finance

network. The community assignments are evaluated against known ideological

estimates as validation of the communities. Results of tracking the communities

through time are shown for a selection of state campaign finance networks.

� We use association rule mining to enhance the interpretability of the com-

munities found using hierarchical fuzzy spectral clustering [25]. We use the

community assignments from hierarchical fuzzy spectral clustering to create

overlapping partitions of the underlying transactions that created the social

network. Association rule mining was applied to the partitions to find the

frequent patterns in each of the partitions. We use the intersection of

the rule sets among sibling communities to find shared properties of the

communities. Those rules that are not in the intersection of the siblings are

useful in determining discriminative properties of the communities. We apply

this method to the campaign finance data to illustrate its ability to provide
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interpretation of the community assignments.

� We show the effectiveness of hierarchical fuzzy spectral clustering in predicting

behavior of community members [26]. This deviates from the prior analysis

which focused on communities and data that created the social network directly.

Instead, we use the community assignments for the individuals by adding them

as features to a different set of data that involves those individuals. The results

show the generalizability of the community assignments in that it is effective

in predicting behavior that was not directly represented in the social network.

We applied the hierarchical fuzzy community assignment results obtained from

the campaign finance networks and use them to predict the voting behavior of

individuals within the United States legislature.

� We developed a novel algorithm for graph embedding referred to as Orthogonal

Spectral Autoencoder (OSAE). By using mini-batch sampling and an approxi-

mate Laplacian, this model approximates the results of the spectral embedding

that is required during hierarchical fuzzy spectral clustering. The model also

provides benefit in allowing for simple out-of-sample extensions for clustering

new data without performing additional spectral decompositions. The model

is validated against the large campaign finance networks, and the results are

compared with the clustering of the exact spectral decomposition.

1.3 Overview

In this section we provide an overview of the following chapters in this

dissertation.

Chapter 2 provides a review of some prior research that is important to the

topic of community detection and clustering. First, we provide definitions of graphs
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and their components. This is followed by a description of various existing clustering

techniques used to find communities within networks. We also discuss metrics for

evaluating the clusters. Following these, we provide a summary of the political

networks used in the later experiments. We also discuss the reasoning behind the

selection of political networks as an application of community detection in graphs.

Chapter 3 includes more review of methods to find overlapping communities in

networks. Following this background, we introduce our approach for hierarchical fuzzy

spectral clustering. This approach iteratively adds eigenvectors to fuzzy c-means,

creating a hierarchy of additional communities. These communities are attached to

their parents via a fuzzy Jaccard similarity metric. The effectiveness of this algorithm

is shown on two small benchmark datasets in addition to a real-world campaign

finance network.

Chapter 4 augments hierarchical fuzzy spectral clustering. This procedure works

by first finding communities at each individual time step of the evolving network.

After this community discovery, the links between the time steps are added by a

similarity metric based on fuzzy set similarity of the adjacent time steps. We analyze

the performance of tracking the communities through time on multiple state campaign

finance, detailing how individuals and communities change behavior over time.

Chapter 5 adds interpretability to the community detection by applying associ-

ation rule mining to partitioned data. As discovered in analyzing the communities

through time, providing useful semantics to the communities can be difficult. We

automate this procedure by partitioning the underlying dataset based on the fuzzy

community assignments provided by hierarchical fuzzy spectral clustering. The results

on rules found in a state campaign finance network show the automatic rule finding

is beneficial in interpreting the community structure.

Chapter 6 considers the generalizability of the communities from HFSC. As-
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suming the communities capture patterns of behavior and ideologies of the campaign

finance networks, we combine the community assignments with a dataset containing

the history of Yea and Nay votes in the United States legislature over a period of

12 different snapshots. The results show the community assignments generalize the

behavior of the legislators and is effective at predicting votes.

Chapter 7 introduces a novel graph embedding structure to resolve two issues

inherent to the spectral decomposition step necessary for HFSC. The first of these

issues is that spectral decomposition can be costly and does not scale well to

large datasets. Second, projecting new data points into the spectral domain is

not straightforward. The usual method for clustering new data points is to redo

the spectral decomposition on the addition data. Instead, the graph embedding

introduced uses an approximate Laplacian to limit the size of the matrix used in

spectral decomposition. In the process, the auto encoder model used to perform the

graph embedding naturally extends to out-of-sample data so that new information

can be efficiently clustered without additional spectral decompositions. While the

approximate graph embedding does not perform quite as well as the full spectral

decomposition, the results are comparable.

Chapter 8 is a summary of the results and contributions. We also give some

direction and areas for future work.
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CHAPTER TWO

BACKGROUND

In this chapter we give a review of terminology and existing methods for

community detection in networks. This review provides many definitions necessary for

later discussion. The existing methods cover a variety of philosophies in performing

community detection. This includes graph partitioning, clustering, and spectral

decomposition methods. Following the discussion of those algorithms, we provide

motivation for using campaign finance networks as the real-world network. In

addition to the practical application, the networks created in political social networks

highlight the benefits of community detection, interpreting found communities, and

the generalization of the community assignments to a task not strictly defined by the

graph.

2.1 Networks

Define a network, or graph, as G = {V,E} where V is a set of vertices, or nodes,

in the graph, and a vertex in the graph is v ∈ V. E is a set of edges connecting the

vertices of the graph. Edge eij defines a connection between vertices vi and vj where

eij ∈ E and vi, vj ∈ V. For the purposes of this work, edges eij ∈ E are considered to

be undirected and some measure of affinity between vertices vi and vj is associated

with each edge. The degree di of vertex vi is the sum of the edges connected to that

node, i.e.

di =
n∑
j=1

eij.

Most real-world networks have been found to have useful structural properties

that help inform or assist in learning useful knowledge concerning the nodes or entities
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within the network. Such real-world graphs usually are not regularly structured like

a lattice, i.e., the connections between vertices in the graph are not evenly distributed

throughout the graph. Instead, there are substructures within the graph where

vertices in that group have a higher proportion of edges with other members of that

group than with members of other groups. These substructures are commonly called

communities. We define a community Ci as a subset of vertices, or Ci ⊂ V.

Using a simple definition of community structure, nodes within a community

should have a high proportion of in-group edges compared with the rest of the network.

This value would be at a maximum when there is an edge between every pair of

vertices in the community, forming a set of vertices that are completely connected.

A completely connected subset of nodes in a network, eij ∈ E∀vi, vj ∈ Ci, is called a

clique.

We consider properties of random graphs to determine in what ways real-

world graphs may differ. In the random graphs proposed by Erdös and Rényi, the

probability of an edge occurring between any pair of vertices is equal for all pairs [27].

With that uniform distribution in the edges, the probability of edge eij being in E is

the same for all possible edges connecting vertices in V. Any vertex is equally likely

to be connected to any other. The degree of any vertex in this graph should be based

on the total number of edges in the graph and the number of nodes. The expected

degree di of vertex vi is given by

E [di] =
|E|
|V|

.

The in-group connectivity Cin of community Ci is defined as the number of edges

between members of that community divided by the number of members in that
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community, i.e.,

Cin (Ci) =
|{eij : vi, vj ∈ Ci}|

|Ci|
.

Consider a community Ci from a random network. In such a community, any

edge between vertices vj, vk ∈ Ci would be equally likely to exist as an edge between

vertices vj ∈ Ci and vl /∈ Ci due to the construction of the network. Therefore, the

expected in-group connectivity of the community would be the same as the network

at large.

E [Cin (Ci)] = E [Cin (V)]

This would be true for any possible community in the network. However, this is not

true for real-world graphs.

Instead, in real-world graphs the distribution of degree for each node often

exhibit a tail corresponding to a power law, i.e., most vertices have a small degree

while some have much larger degree [28]. As one example, campaign finance

networks have been shown to follow a preferential attachment model. In preferential

attachment, the probability of an edge being added between nodes is proportional to

the existing degree.

In contrast to random networks, real-world networks generally have subnetworks

that exhibit community structure. These communities are generally comprised of

groups of vertices that have elements in common with each other. Examples of

networks that have community structure can be drawn from social [11], biological [2],

gene expression [1], and many other types of networks [29]. Since the communities

can represent fundamental properties of the network, their discovery is important for

understanding the nature of the networks [4, 6].

Community structure in graph is in part shown by a transitive property that

is present in real-world networks. In contrast to the random networks, real-world
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vertices are more likely to have an edge between them if there is a third vertex to

which they are both connected. As an example, assume vertices vi, vj, vk and edges

eik and ejk exist in a graph G. Then it is more likely that a connection would form

between vertices vi and vj with edge eij.

One way community information is described is with a local clustering coefficient

[30]. The authors defined a clustering coefficient Ccf as the average of the ratio of edges

within a neighborhood over the maximum number of edges the neighborhood could

have. In this case, the local neighborhood Ni of vi is Ni = {vj : eij ∈ E}. Suppose

vertex vi has k neighbors. If this vertex and its neighbors formed a clique, then that

vertex and its neighbors can have at most be k(k−1)
2

edges between them. The ratio

of edges that actually exist compared to the allowed edges for the neighborhood of vi

is

Cv (vi) =
2 |eij : vi, vj ∈ Ni, eij ∈ E|

k (k − 1)
.

This defines how close to a clique the neighborhood of vi forms. The authors defined

the global clustering coefficient as the average of Ccf (vi) over all vertices in the graph,

i.e., Cg = 1
n

∑
vi∈V Ccf where n is the number of vertices in the graph. A network

with a high average clustering coefficient indicates high connectivity of members of a

neighborhood and that it exhibits community structure.

2.2 Clustering

With some background and definitions of networks and communities, the task

becomes discovering communities within a graph. There is already a wealth of

research on finding communities. Some initial work focused on crisp partition of

the network into non-overlapping, non-hierarchical communities [6, 13]. In this

domain, a crisp partition is one where a vertex can only be a member of a single
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community. Thus, if vi ∈ Cj, then vi /∈ Ck ∀Ck : k 6= j. A variety of approaches

have been developed for finding communities in networks [12, 14]. A very popular

method is spectral clustering [15, 31]. These have proved popular for their ease of

implementation and their ability to handle non-convex clusters.

To best represent the communities, a classification of the vertices into clusters

should satisfy two important realities of many social networks: cluster overlap

and hierarchy. For the first, nodes within the network may belong to multiple

communities. Much like in human social groups, an individual may belong to more

than one community or have multiple affiliations [32]. Hierarchy is another important

component of some social networks wherein smaller communities together make up

larger ones. Military, business, and political hierarchies are all examples of hierarchies

where individual smaller groups combine to create a larger group.

One early method for finding overlapping clusters comes from computational

complexity work done by Karp [33]. Consider a subset of nodes v1, . . . , vk where edge

eij ∈ E for all pairs of nodes v1, . . . , vk. These nodes are completely connected, or

a clique. The minimum clique cover problem is one of Karp’s original NP-complete

problems. A solution to this problem determines the minimum set of cliques necessary

to cover all nodes in graph G. Since a clique can be considered a community, and

these sets of cliques may result overlap, such a solution would result in overlapping

communities. This solution would not inherently provide a degree of membership to

each community as well as have limitations on the kinds of communities it would find.

It is even NP-hard to approximate this problem to a specified tolerance [34].

To find fuzzy communities, a variety of approaches have been presented. Palla

uses a clique percolation method to find adjacent cliques with overlapping nodes [20].

Other methods use fuzzy modularity and simulated annealing or other techniques

to find relevant partitions [17, 19, 22]. Fuzzy c-means is another possibility for
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determining fuzzy clusters and has been used to find hierarchies of clusters [18, 21].

The approach presented here differs in its use of spectral clustering and spectral

characterization to create a top-down algorithm for finding hierarchical fuzzy clusters.

In addition to the previously mentioned methods, there has also been work in

social networks which change over time and methods for tracking and predicting

communities [35, 36, 37]. One such method attempts to predict the emergence of

future communities using link prediction methods [38]. The following sections provide

more detail on some of these methods.

2.2.1 Modularity

Modularity is a metric that is commonly used to evaluate the communities

discovered by those algorithms. The general idea behind this measure is to compare

the fraction of links that connect any nodes in a community, Ci to any other

community, Cj. This ratio of edges is compared against a null model. This null

model is a hypothetical graph where each individual node maintains the same degree,

but each edge is reassigned randomly.

For this, first define A as the adjacency matrix for a graph where ai,j = 1 if there

is an edge between nodes i and j. Assume there exists a community partitioning

C that represents the set of communities and Ci contains the nodes belonging to

community i. Let k = |C| and define E as a k×k matrix that contains data regarding

interconnections between communities. Specifically, for any two communities Ci ∈ C

and Cj ∈ C, element eij represents the fraction of edges that connect nodes in

ci to cj. This leaves the diagonal as the ratio of edges that connect nodes within

the community to other nodes in that same community. From this representation,

determining the value of a partitioning of the graph into communities relies on the

trace of E, namely Tr (E) =
∑

i eii. Furthermore, we define the value di =
∑

j eij,
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which gives the ratio of edges within the graph that connect to all the vertices within

Ci. Then the modularity is then given by

Q =
∑
i

(
eii − d2

i

)
= Tr (E)−

∣∣∣∣E2
∣∣∣∣ . (2.1)

This can alternatively be written using the adjacency matrix for the social network

A directly as

Q =
1

2m

∑
i,j∈V

[
aij −

di · dj
2m

]
δCi,Cj

(2.2)

where m is the number of edges in A, di is the degree of node i, and δCi,Cj
is 1 when

i and j are in the same community and 0 otherwise. For crisp communities, these

values help in determining the quality of the found community assignments.

Using modularity as a tool to perform clustering has a few issues. It has

been shown that maximizing modularity is NP-hard [39]. Additionally, there is a

resolution limit where it is not possible to evaluate communities with modularity

if the community structure is weak and it can be lost in the noise of the network

[40]. Other work has extended modularity to create metrics that work with fuzzy

communities [41].

2.2.2 Divisive Clustering

One of the earliest popular methods for finding communities involved removing

edges from a network based on measures of edge centrality [6, 42]. This metric

estimates the importance of an edge relative to the graph. The general procedure for

this divisive method on graph G:

1. Calculate a measure of betweenness for all edges eij ∈ E.

2. Remove the edge with the highest score.
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3. Reevaluate the betweenness scores for the remaining edges.

4. Repeat.

This process successively removes edges from the network, creating disconnected

components as they are removed. Another relevant method is spectral partitioning.

This was a precursor to spectral clustering where we calculate the random walk

Laplacian of a graph Lrw = D − A where D is a diagonal matrix where dii =∑
j aij. Since all rows and columns of this matrix sum to zero, the eigenvector

z = [1, 1, . . .] always exists and corresponds to the zero eigenvalue. In the event

there are disconnected components of graph G, then the Laplacian matrix will be

block diagonal and there will be multiple zero eigenvalues. However, if the network

is connected, the second eigenvalue λ2 will correspond with how good the split of the

network will be in spectral bisection. The bisection itself works by noting the non-

degenerate eigenvalues of the Laplacian are orthogonal, and thus have positive and

negative components. The sign of the component can be used to assign a community

to each of the nodes that correspond to that value in the vector. This method

is a hierarchical clustering scheme if the procedure is repeated for the subgraphs

containing the communities. Hierarchical clustering schemes are frequently used when

there is not a clear number of communities known prior to performing clustering.

Using a measure of dissimilarity, sets of nodes are split into smaller communities.

2.2.3 Agglomerative Clustering

Agglomerative clustering is one of the general categories of hierarchical cluster-

ing. In agglomerative clustering, sets of smaller communities are iteratively joined in

a tree-like structure. The tree-like nature of this clustering is often represented by a

dendrogram. One early example of this type of network used modularity as a metric

for grouping nodes [43]. Using the definition of modularity Q =
∑

i (eii − a2
i ), the
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task becomes identifying the current communities to determine which ones should be

merged to into a single community. The authors create a sparse matrix ∆Qij for

every pair of communities Ci and Cj where there is at least one edge between the

communities.

The general procedure works by calculating the initial values of ∆Qij and ai =

ki
2m

for all i. A max heap is populated with the largest element of each row of

∆Q. Then we select the largest value ∆Qij from the heap and join the respective

communities i and j. The values of the sparse matrix are updated and the process

repeats.

2.2.4 K-Means Clustering

One early method for performing clustering is K-means [44]. K-means

(Algorithm 2.1) works by identifying k centroids within the data. Each point’s

proximity to the centroid determines its cluster. This is accomplished by randomly

initializing k centroids. Every data point is then classified as belonging to the cluster

associated with the nearest centroid. New centroids are then calculated to be the

centers of the current clustering. This process continues until convergence or a

maximum number of iterations have occurred.

One issue with K-means clustering is that it does not handle non-convex clusters

well. Figure 2.1 shows an example where clusters discovered via K-means do not

correspond to the logical clusters in the data [45]. Expectation maximization (EM)

is a similar technique used in clustering [46, 47]. Using Gaussian Mixture Models,

EM performs an expectation (E) step that calculates the probability of a point xi

belonging to a cluster Ck by

p (xi | Ck) =
N∑
j

P
(
Θj|k | Ck

)
Nk
(
xi; Θj|k

)
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Algorithm 2.1 K-means Clustering

function K-means(X, k)

Initialize cluster centroids c1, c2, . . . , ck ∈ Rn randomly

for t ∈ [1, . . . , T ] do

for i ∈ [1, . . . , k] do

ui = arg minj ‖xi − cj‖2

end for

for j ∈ [1, . . . , k] do

cj =
∑m

i=1 1{ui=j}xi∑m
i=1 1{ui=j}

end for

end for

return u

end function

0 5 10 15 20 25 30 35 40

5

10

15

20

25

Figure 2.1: K-Means Clustering on Non-Convex Data
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where P
(
Θj|k | Ck

)
is the prior probability of the jth component parameter Θj|k given

cluster Ck and Nk
(
xi; Θj|k

)
is the normal density function on the jth component.

The maximization step is a maximum likelihood problem over the parameters. New

probabilities are calculated based on the likelihood function and the process repeats.

EM has been shown to be effective in a wide range of topics.

2.2.5 Spectral Clustering

As mentioned in the previous section, K-means clustering does not handle non-

convex clusters well. The results of K-means clustering are biased towards spherical

clusters centered on the found centroids. Spectral clustering is a popular alternative

that can handle non-convex clusters due to its ease of implementation [15].

Spectral graph partitioning methods already existed that relied on repeatedly

cutting a network into smaller partitions [6]. It had been shown that the second

eigenvector of a graph’s Laplacian could be used to find an approximation of an

optimal partition, typically by the sign of the entries in the vector. Each new partition

would then be divided by isolating its nodes and performing the split again. Spectral

clustering instead uses the top k eigenvectors of the Laplacian instead of doing an

iterative split [15]. A disadvantage to this method is that computing the eigenvectors

of an n×n matrix has a time complexity of O (n3). This can be an issue with spectral

clustering as it can be costly for large datasets. Approximation algorithms can help as

not all eigenvectors are necessary for the calculation [48], but many of these methods

are not much faster or suffer from instability depending on the nature of the matrix.

In addition to the spectral decomposition, calculating a full affinity matrix can be

costly in certain as a full matrix representation requires O (n2) in storage which is

not feasible for large datasets. Social networks have an advantage since the adjacency

matrix can be used as the affinity matrix, and there are sparse representations that
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do not require as much storage.

To perform spectral clustering, consider points within a set of data S =

{s1, . . . , sn} ∈ Rl. Affinity matrix A is created by

aij = exp

(
−‖si − sj‖

2

2σ2

)

where σ is a parameter to control how quickly affinity drops off as the distance

increases. In the case of networks, the adjacency matrix can be used as the affinity

matrix since it describes affinity for neighboring points.

Spectral clustering proceeds by performing the following steps as shown in

Algorithm 2.2. First, using the affinity matrix A, define D as a diagonal matrix

where dii =
∑

j aij and dij = 0 for all i 6= j. The random walk Laplacian is defined

as Lrw = D−A. The work described later uses the normalized symmetric Laplacian

L = D−1/2LrwD−1/2. From there, calculate the k eigenvectors corresponding to

the k smallest eigenvalues of L as x1,x2, . . . ,xk. Those eigenvectors form matrix

X = [x1,x2, . . . ,xk] by stacking the eigenvectors in columns. Each of the rows in

matrix X are normalized to have unit length to create matrix Y. The final step is

to use another clustering algorithm on the rows in Y, typically K-means. Figure 2.2

shows the results of performing spectral clustering on the same sample problem as

before.

2.3 Political Networks

Based on data from the National Institute on Money in Politics 1, contributions

to candidates and committees in 2016 reached $5.5 billion for federal elections and

$3.70 billion for state level politics. For federal House and Senate candidates,

1Based on numbers provided by www.followthemoney.org
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Algorithm 2.2 Spectral Clustering

Require: A ∈ Rn×n

Require: 2 ≤ k < n

1: function Spectral Clustering(A, k)

2: Dii =
∑

j aij∀i = 1, 2, . . . , n . Diagonal matrix of row sums

3: Lsym = I−D−1/2AD−1/2 . The normalized symmetric Laplacian

4: [x1, x2, . . . , xk] = eigs (L, k) . Eigenvectors of k smallest eigenvalues

5: X = [x1, x2, . . . , xk]

6: Y = ∀iXij/ ‖Xi‖ . Normalize the rows of X

7: U = K−means (Y, k)

8: return U . Return the cluster assignments

9: end function
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Figure 2.2: Spectral Clustering on Non-Convex Data

donations reached roughly $1.7 billion. The majority of that money comes from

a relatively small number of donors. There were only 11,479 donors who gave $10,000
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or more. The amount from this group was over $804 million, nearly half the total

amount. The remaining half came from roughly 708,000 entities. State level politics

tell a similar tale. Only $160 million of that total came from 1.3 million donors who

gave less than $1,000 total. The remaining $3 billion came from only 166 thousand

donors. Just like in federal elections, most of the money comes from the wealthy

or special interest groups. The total amounts have increased since. In 2018, the

sum of donations to federal candidates was lower at $4.6 billion, primarily due to

that not being a United States presidential election year. However, donations to

state candidates increased to $6.0 billion, more than all federal data from the prior

presidential election cycle.

With such sums, the question of how such money may impact legislators and

legislation is a very important one. It has been shown that a benefit to donating

to a politician is that it provides access to that politician. While there is no clear

evidence that standard political donations directly influence legislation, those who

donate can more easily get their legislators to listen to them [49]. With this in mind,

we use campaign finance networks as a real-world dataset where community analysis

may provide additional insight, interpretability, and augmentations for additional

research in other domains.

We construct the political social networks used later in this dissertation from

campaign finance datasets. This data is based on transactions where individuals,

businesses, or other organizations make donations to political groups. These groups

can be candidates, politicians or political committees and form the vertices in the

network. The donations to the political groups can be considered links and create the

edges. The following describes areas in where community analysis of political social

networks may provide benefit in augmenting other research.

One method for analysis of the effect of money in politics is to create models
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using economic game theory. One such model analyzed the effects of campaign finance

policy on legislation [50]. The model showed that by introducing caps, the amount of

aggregate contributions is reduced due to the equilibria in the system. This is due to

underlying preferences of the legislator. For example, if a lobbyist targets a politician

who already had a preference for the favored policy of the lobbyist, then that lobbyist

does not need to spend up to the cap since they know that opposition lobbyists would

need to spend more to overcome that bias.

Another model shows how legislators may elect to adopt certain policy choices

based on how interest groups donate [51]. Notably, even without the expectation of

quid pro quo, this money can have an impact based on their temporal model. Since

incumbents need to raise money for reelection, their knowledge of interest group

donations can bias policy choices even in cases where the interest group has donated

to the opposition. Some improvement can be made to these models, however, since

they do not fully capture the group behavior of donations.

Using a randomized field study, [49] raised multiple questions to showcase how

donating to a legislator can improve access. In setting up their experimental design,

they not only asked whether or not campaign contributions to a legislator improved

the chance to get access to that legislator, but also if donating to different legislators

helped gain access to legislators to which they did not donate. Their experiment

used a political organization attempting to arrange meetings with legislators and

constituents who had previously donated. Whether or not they revealed if the

attendees had donated was decided randomly, allowing a better analysis on how

donations impact access. From their results, only 2.4% of the offices arranged

meetings when only told the attendees were constituents. However, 12.5% arranged

meetings for attendees who were donors. Of those meetings, only 5.5% of the

constituents met with a senior staffer, compared with 18.8% for donor attendees
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As related to the work herein, community analysis may help discover and analyze

groups donating to similar candidates, who together, may wield substantially more

power in gaining access to lawmakers than others.

As in many social science disciplines, surveys are also useful in gaining insight

into behaviors, either as a study or for additional variables when doing regression. One

related work concerns the geography of political contributions. Akey notes that most

large campaign donations come from areas where political opinion does not necessarily

reflect the majority of the population [52]. Using Federal Election Commission data

and surveys, it was shown that political opinion from different geographic areas does

not match the nation as a whole, especially from areas with fewer donations. Related

to that work, though not using survey data, Gimpel, Lee, and Kaminsky found that

most money came from areas within major metropolitan areas and not necessarily

from traditional bases of support for either party [53].

As noted, survey data is sometimes used to gather independent variables for

regression. In one such example, Kirkland [54] hypothesized that legislators in

moderate districts would be more likely to be disloyal to their party, whereas

legislators from districts with high ideological variance would have higher party

cohesion [54]. Survey data was used to determine the ideological variance within

states and then used as independent variables in regression to confirm the hypothesis.

These studies are exceptionally useful in providing insight into the nature of political

contributions, but more can still be done.

Analyzing the laws themselves, prior research questions the impact of stricter

campaign finance laws on egalitarian policies [55]. This work shows that states with

stricter laws spend larger portions of their budget on public welfare. Although it

was noted that individuals from working class backgrounds are underrepresented in

politics, it does not appear that stricter campaign finance laws work to improve
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that representation. Benz et. al. [56] analyze indirect relationships between policy

and political action committee donations. Using principal component analysis on

measures of population health in addition to others, they were able to show a

correlation between health care lobbying registrations and the number and size of

political action committee (PAC) donations. Their claim is that this could be

interpreted such that PACs are in effect an extension of lobbying. Other work

attempts to look at the effects of campaign contributions directly on foreign policy

outcomes [57]. In that work, there is a focus on pro- or anti- embargo votes regarding

Cuba along with donations from Cuban American interests. The author was able

to show that contributions from that ethnic identity group do have an impact on

pro-embargo policies.

A lot of work has been done in analyzing industry or business contributions.

Powell and Grimmer [58] used changes in committees after a party loses a majority

to analyze how businesses donate to those members. After a change in party control,

some members of the committee are removed involuntarily from their assignment. By

pairing donation behavior with this information on exiled legislators, they attempt to

identify how behavior changes in response to the loss of power of the former committee

members. It is shown in their results that the PACs focus on short term access and

reduce donations to members who no longer sit on committees that govern their

relevant industry and increase donations to new members. This is in addition to

the possibility of businesses stopping donations to a political party or members if

they feel confident the party will lose their majority, causing these results to be an

underestimate.

Other work has shown certain PAC industries have a political tilt where they

focus donations to specific parties [59]. Using gross contributions to candidates,

Gilbert and Oladi [60] show correlations with industries when analyzing votes on
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trade with China. In particular, agricultural interests were very effective per dollar

spent. Huber and Kirchler [61] used regression to show that company contributions

to winning candidates were correlated with higher returns in the stock market.

There is also substantial work that focuses on election results. Brown [62] was

able to use gubernatorial data to show that self-financing is not as effective in getting

elected as getting external funds. Benoit and Marsh [63] analyzed the effects of

spending in ranked choice voting in Ireland. The hypothesis was that incumbent

spending would be less effective. Using variables for spending, incumbency, party

strength, and others, they confirmed that incumbent spending is approximately half

as effective regarding election success as challengers, although not in the case of same-

party challengers.

Holbrook and Weinschenk [64] attempted to ascertain what effect campaign

expenditures have on voter turnout in local elections. Using generalized least squares,

the experiment analyzed several variables expected to influence turnout in local

elections. Based on their results, for all their models, campaign spending had a

positive significant effect on turnout levels. Basinger et. al. [65] used models where

the voting shares for two parties were modeled independently. Their claim was that

just combining the vote shares does not accurately reflect the way other variables

cause changes to the voting shares. Their primary contribution was in the way

voting shares were modeled, doing comparisons to other methods to reveal additional

correlations. Streb and Frederick [66] relied on a Heckman selection model to analyze

rolloff for judicial elections. In determining the cause for rolloff, the most important

variable was a measure of partisanship and not campaign spending in this case.

More in the area of social networks, Internet presence was also shown to be

effective in fund-raising, especially around small-donor contributions [67]. Crespin

and Deitz [68] attempted to show the effectiveness of female donor networks in
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supporting female candidates. Like many of the other studies, the research used

ordinary least squares over several candidate variables. They note that based on their

results, women raise more in small dollar donations, indicating the donor networks

are effective in that way. The difference between men and women for larger values,

however, was not significantly different. Over all their variables, small individual

contributions favored Democratic women in particular.

Some similar prior work studied how candidates from parties fall ideologically at

local and national [69] This work assumes that under a spatial ideological model, that

opposing candidates should move toward the ideological center of a district in order

to capture more votes. Their results show that the two parties do not converge, but

that there is a correlation regarding policy positions and ideology of candidates with

the ideology of the district. Notably, incumbency was associated with more moderate

positions of candidates in subsequent elections.

There has also been some work in the intersection of politics and social

networks. Some of this prior work looks at social interaction and its effect on

political participation [70, 71, 72]. Additional work analyzes elitism and the behavior

of corporations in politics [73]. There has also been research on the geography of

donations and its usefulness as an indicator for predicting donations [53]. Additional

network analysis has been done showing how donations fit other models. Preferential

attachment in networks—new connections in a network tend to occur in areas with

many preexisting connections—has been shown to help explain how shares of a donor

pool can affect the probability of gaining more donors [74]. This, however, does not

fully answer the question of whether larger groups exist within the networks that are

together having a more significant impact.

While the above methods are useful on their own, the majority of research in this

area relies on linear regression. That research gathers a set of variables to determine
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the effects of independent variables on the dependent variable. Although these works

use similar methods, the variables and questions they are attempting to answer can

vary widely. Especially in cases involving campaign finance or social networks, the

work presented in this dissertation may be of benefit to this type of research. The

fuzzy community values found at each hierarchy can provide additional variables for

use in regression. This can help determine if there are specific groups within politics

who are having a strong impact.

2.3.1 DW-NOMINATE

Identifying ideology of political entities can be a useful tool in predicting or

analyzing behavior. Finding numerical estimates of ideology greatly enhances the

ability of performing quantitative analysis within politics. Considerable prior work

has been performed on analyzing ideological estimates of legislators and the bills upon

which they vote. A widely known and used tool is DW-NOMINATE, which stands

for dynamic, weighted, nominal three-step estimation [75], [76]. At a high level, DW-

NOMINATE is built upon the idea of a random utility model where a legislator i’s

utility for an outcome (Yea) on a bill j is given by Uyij = uyij + εyij where uyij is a utility

function, superscript y represents a Yea vote, and εyij is a random error sampled from

an inverse exponential distribution[77]. The initial DW-NOMINATE work was based

on a normal distribution utility function. In this work, the utility of a legislator’s

choice of voting Yea or Nay is centered around an estimated ideal point. The more

distant an option is to a legislator’s ideology, the less utility is gained by voting for

that option.

As examples, the authors refer to the concepts of alienation and indifference.

Alienation represents where the set of choices are far removed from the ideal point

but on the same side of the ideological space. Indifference is where the choices are far
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away but on either side of the space, as in a moderate politician faced with voting

for two extremes, one on each side of the political spectrum.

Encapsulating this information requires determining the ideal points of legisla-

tion and legislators in order to calculate utility of choices. DW-NOMINATE does so

by maximizing a likelihood function based on the probability of a legislator’s choices

regarding bills. In this model, the utility of a legislator i voting Yea in the kth

dimension is defined by

uyij = β exp

(
−1

2

s∑
k=1

wk(d
y
ijk)

2

)

where (dyijk)
2 is the squared distance of the estimated ideal point in dimension k

to legislator i to a Yea outcome in dimension k, wk are salience weights, and β is

an adjustment for overall noise, which is proportional to the variance of the error

distribution. From this, the probability of voting Yea in the normal utility model

is based upon the relative utilities of voting Yea or Nay. Using those values, this

probability can be written as

P y
ij = P

(
uyij > unij

)
= P

(
εnij − ε

y
ij < uyij − unij

)
= Φ

[
uyij − unij

]
where Φ is the standard normal cumulative distribution function. In the normal

model, this is given by

P y
ij = Φ

[
β

{
exp

(
−1

2

s∑
k=1

wk(d
y
ijk)

2

)
− exp

(
−1

2

s∑
k=1

wk(d
n
ijk)

2

)}]
.

Using these equations, the model is estimated by maximizing the log likelihood as
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defined by

L =

p∑
i=1

q∑
j=1

∑
τ∈{y,n}

Cτ
ij ln(P τ

ij)

where τ is an index for choices Yea and Nay, P τ
ij is the probability of voting τ as

defined above, and Cτ
ij = 1 if the actual choice was τ and zero otherwise. In learning

the model, Rosenthal and Poole estimated a single parameter at a time, holding the

others fixed. The authors claim two dimensions worked well in practice.

Application of the model yields estimates of ideal points for both legislator and

legislation in two dimensions. In practice, the first of the two dimensions is considered

to correspond to a liberal and conservative economic spectrum. The second dimension

corresponds to social issues. In later experiments within Chapters 6 and 7, the

estimates of legislation are used to show the expressive power of the communities

discovered in campaign finance networks. The discovered communities perform well

in predicting votes in those two dimensions without explicitly using the legislators’

ideal points as determined in the model.

2.3.2 CFScore

Recent work by Bonica [78] created an ideological estimate for both donors as

well as candidates. In his work, contributions are assumed to represent evaluations

of a candidate’s ideology. Donors would be more likely to donate to those who share

ideology. This common-space campaign finance score (CFscore) has the advantage of

applying to both types of entities, where prior research focused solely on legislators or

recipients. Calculating the CFScore for federal contribution data begins by creating

an n×m contingency matrix R. The rows of R map to contributors while the columns

map to recipients. Each entry rij in R contains a sum of the contributions from i to

j.

From this matrix, each entry rij is converted into an integer in the range [1, 50]
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by dividing rij by 100 and capping the result to 50. This value is further standardized

by dividing each rij by
∑

i

∑
j rij. From this matrix, singular value decomposition

(SVD) is performed to obtain K = Dr
− 1

2 (R − rc>)Dc
− 1

2 where r and c are vectors

of row and column sums of R. Additionally, Dr and Dc are diagonal matrices where

the values of r and c are placed on the diagonal. From this SVD calculation, ideal

points can then be estimated using θ = UDc
− 1

2 for contributors and δ = VDr
− 1

2 for

recipients. For these equations, the matrix U gives the left eigenvectors of KK>, and

Dr is a diagonal matrix of singular values. The matrix V are the right eigenvectors of

K>K. For state data, these federal ideal points are used as bridge observations in an

iterative procedure that estimates contributor and recipient CFScores across states.
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CHAPTER THREE

HIERARCHICAL FUZZY SPECTRAL CLUSTERING

3.1 Background

In this section we discuss the clustering algorithms that we utilize in the

development of our algorithm for hierarchical fuzzy spectral clustering. We also

discuss methods for evaluating fuzzy clusters and finding the number of clusters using

spectral characterization.

3.1.1 Fuzzy c-Means

As discussed earlier, we use fuzzy clustering since nodes in these real-world

networks can belong to more than one community. In fact, the nodes that are

in multiple communities are of particular interest. Assuming a simple split into

two communities based on a left-right ideological spectrum, nodes that are in both

communities include those that may be more interested in political access than left-

right ideology. One common method for performing fuzzy clustering is fuzzy c-means

clustering (FCM) [79, 80, 81]

FCM is similar to K-means in that it calculates centroids within this data

and assigns communities based on the distance from a centroid to a specific data

point. Where the algorithm differs is that FCM uses fuzzy sets for the community

assignments. Instead of vertex vi belonging to a single community Cj, each vertex

has a fuzzy set ui = {u1, u2, . . . , uk} ∈ U that defines how much that vertex belongs

to each community. For each vertex vi, the sum of its membership to each community

is equal to one, i.e., ∑
j:uj∈ui

uj = 1.
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Algorithm 3.1 Fuzzy C-Means

Require: X ∈ Rn×m

Require: 2 ≤ k < n

Require: 1 ≤ m < inf

1: function FCM(X, k,m)

2: U0 ← dirichlet (n, k) : ∀i ∈ [0, 1, . . . , n)
∑

j uij = 1 . Initialize cluster

assignments.

3: for t ∈ [1, . . . , T ] do

4: for p ∈ [1, . . . , k] do

5: cp =
∑

i[up(xi)]
mxi∑

i[up(xi)]
m . Update centers using membership matrix and m.

6: utp (xi) =

[
1

d̂ip

] 1
m−1

∑
j=1

[
1

d̂ij

] 1
m−1

. Update community assignment matrix.

7: end for

8: if max
∥∥utp − ut−1

p

∥∥ < ε then

9: Stop early

10: end if

11: end for

12: return Ut

13: end function

Details on FCM are shown in Algorithm 3.1. Like K-means, FCM begins by

identifying the number of clusters. Initial cluster assignments are assigned randomly

to each data point wi,j. This initial setting uses a sampling from a Dirichlet

distribution such that each row sums to one. Like K-means, FCM then proceeds

by repeating two steps. The centroid for each cluster is calculated using

ck =

∑
x uk(x)mx∑
x uk(x)m
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where m is an exponential term that determines the amount of fuzzy overlap between

the clusters. A higher value results in fuzzier clusters. The assignments are then

updated with the new centroids using

uij =
1∑

k

(
‖xi−cj‖2

‖xi−ck‖2

) 1
m−1

until the algorithm converges or the maximum number of iterations is reached. The

resulting weights and centroids define the discovered fuzzy clusters. Later work

extended fuzzy c-means for hierarchical clustering that uses a different approach [82].

In this Centroid Auto-Fused Hierarchical FCM algorithm, an `2 norm penalty is

added between cluster centroids to encourage the centroids to fuse. As the algorithm

proceeds, cluster centers coalesce, creating a hierarchy as cluster centers agglomerate.

The authors begin with a large number of centroids and fuse the centroids until an

“optimal” number of clusters is reached. Other methods define a partition function

and a similarity measure between two vertices [83]. The community detection becomes

a nonlinear constrained optimization problem. This is solved using a gradient-based

algorithm and simulated annealing to obtain fuzzy community assignments.

3.1.2 Fuzzy Modularity

Like in fuzzy clustering, there are adaptations of clustering metrics for fuzzy

communities. A fuzzy modularity Q̃ was developed to assess the splits created

by fuzzy clustering [32]. Its form and principle are similar to that of the original

modularity. Q̃ is defined by

Q̃ (Uk) =
k∑
c=1

E (V̄c, V̄c)
E (V, V )

−

(
E
(
V̄c, V

)
E (V, V )

)2
 .
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In the above equation, Uk is a fuzzy partition of k clusters,

E
(
V̄c, V̄c

)
=

∑
i∈V̄c,j∈V̄c

aij

(
uic + ujc

2

)
,

E
(
V̄c, V

)
= E

(
V̄c, V̄c

)
+

∑
i∈V̄c,j∈V \V̄c

aij

(
uic + ujc

2

)
,

and

E (V, V ) =
∑

i∈V,j∈V

Aij.

This gives a method for evaluating different fuzzy community assignments.

By using fuzzy modularity, it is also possible to perform similar agglomerative

clustering techniques as those used for regular modularity [84], or other approaches

like simulated annealing [19].

3.1.3 Spectral Characterization

One important consideration when clustering networks is determining how many

clusters to use. The problem occurs when determining a stopping point during top-

down splitting of communities, when determining the starting number of clusters for

bottom-up clustering, or for the optimal clustering number for other methods. Crisp

clustering has an advantage that a single value is used to describe the community

assignment for each node in a network. Fuzzy clustering requires storing multiple

values for the community assignments for every node in the network. This becomes

unwieldy with a large number of clusters, especially in hierarchical clustering where

there are multiple values for each community. Truncating low values to eliminate

some storage does not necessarily solve the issue. Because of these issues, it becomes

important to try to determine criteria for determining an appropriate number of

clusters k. One possible method is to use spectral characterization to limit the number
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of communities.

To see how spectral characterization can be used to inform the number of

communities, we need to consider the structure of the networks in question. These

networks have non-negative and undirected edges between nodes. Thus, these

networks are both symmetric and positive. This gives some useful properties when

analyzing the eigenvalue decomposition. We start with analyzing the eigenvalues of

the adjacency matrix A of the network. Since the adjacency matrix for the defined

social networks have no negative entries, the matrix satisfies the requirements for the

Perron-Frobenius theorem, indicating the largest magnitude eigenvalue of the matrix

will be real and positive.

As regards communities, what is important are the properties of the eigenvalues

with respect to the number of communities. From other work, it has been shown

that community structure in a network has a certain effect on the eigenvalues. More

specifically, it has been found that a network with k communities will have k large

eigenvalues [40, 85, 86, 87, 88]. To illustrate this, consider an example random network

with 1000 nodes. Suppose edges in the network are added randomly between any pair

of nodes ni and nj with probability p = 0.04. With this construction, the network

as a whole can be considered its own community since there are no special defining

characteristics separating any of the nodes. Figure 3.1 plots the eigenvalues of this

directed network. As can be seen, there is a single eigenvalue outside the main cluster

of nodes.

As predicted, the largest eigenvalue here is related to the average degree of the

nodes in A [89]. Because of the random construction of the test network, this is

approximately the product of the probability of connection between nodes and the

number of nodes, λmax ≈ n × p, or in this case, λmax ≈ 1000 × 0.04 = 40. There

is additional work on Erdös-Rényi uncorrelated random graphs showing the edge
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Figure 3.1: Eigenvalues of a random network for n = 1, 000

of the large cluster of eigenvalues is approximately defined by σ
√
n where σ is the

standard deviation of the values aij ∈ A. However, this does not hold for non-random

graphs. Analysis on real-world campaign finance networks shows that using σ
√
n as

a threshold to determine the k large eigenvalues for those networks, and thus the

number of communities, can yield poor results.

Similar principles apply to networks with community structure. Assuming k

communities in a random network, two nodes are connected with some probability p

if they belong to the same community. Otherwise, the two nodes are connected with

probability q where q < p. Prior work shows that there are eigenvalues corresponding

to s (p− q) where s is the size of the community. Figure 3.2 also shows eigenvalues,

but of a different network of 1000 nodes created with four communities of equal size,

p = 0.1, and q = 0.01. As can be seen in the graph, there are four large eigenvalues,

three of which are approximately 250 × (0.1− 0.01) = 22.5. These principles form

the basis for estimating the number of communities among the contributors and

candidates. Based on these results, the gap in eigenvalues is used to determine an

appropriate maximum number of communities. In another example, Figure 3.3 shows

the eigenvalues of a network created with 6 communities. Each community in this
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Figure 3.2: Eigenvalues of random network with communities

Figure 3.3: Eigenvalues of random network with communities

network contains approximately 166 vertices. This yields the group of eigenvalues at

approximately 166× (0.1− 0.01) = 14.94.

In the case of networks with hierarchical communities, the spectrum of the

network shows multiple groups of eigenvalues when the communities are of similar

size. The network used to generate Figure 3.4 has a top-level hierarchy of 4 nodes

with each having 4 sub-communities, creating 16 total clusters. As can be seen in

the graph, 16 eigenvalues are located outside of the main cloud and are split into two

separate clusters. The gap between eigenvalues, or eigen-gap, indicates a separation

between levels within the hierarchy. This principle is what is used when attempting to
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Figure 3.4: Eigenvalues of a random network with hierarchical communities

determine the number of communities in each hierarchical level relevant for spectral

clustering.

3.2 Hierarchical Fuzzy Spectral Clustering

The approach proposed is primarily based on the spectral clustering work of Ng,

Jordan, and Weiss [15] as well as Zhang, Wang, and Zhang [32]. Firstly, the spectral

composition of the network must be determined. As described in previous section, we

can utilize the spectral characterization in determining the level of hierarchy in the

network and the number of clusters at each hierarchical level. This can be done by

finding outliers in the gaps between eigenvalues of the spectral decomposition. The

method for this outlier detection is given in Algorithm 3.2.

This algorithm proceeds by first finding all the of eigenvalues of matrix A. On

the real-world campaign finance networks, limiting the calculation to only eigenvalues

λi ≥ 1 provided good results in finding k. The set of eigenvalues is then sorted in

ascending order. We then calculate the gap between eigenvalues as δi = λi+1 − λi,

creating the set of eigengaps δi ∈ ∆. The threshold τ = aad (∆) × 1.482 is found
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Algorithm 3.2 Spectral Analysis

1: function NumCommunities(A)

2: Λ = eigenvalues (A) : λi ≥ 1 . Calculate the eigenvalues of matrix A.

3: Λ′ = sort (Λ) . Sort the eigenvalues in ascending order.

4: for all λi ∈ λ′ : i < |λ′| do

5: δi = λi+1 − λi . Calculate the difference between successive eigenvalues.

6: end for

7: τ = aad (∆)× 1.482 . Find average absolute deviation of the eigengaps.

8: ind = first index (δi ∈ ∆ : δi ≥ τ)

9: k = |∆| − ind+ 1 . k is the index of λ with a gap greater than threshold τ .

10: return k

11: end function

using absolute average deviation given by

aad (∆) =
1

n

n∑
i=1

∣∣δi − ∆̄
∣∣

where ∆̄ is the average eigengap. The constant 1.482 is from an assumption on a

Gaussian distribution of the values [90]. The number of clusters k is then calculated

by finding the first δi ≥ τ .

If the results of spectral analysis are inconclusive, it is possible to fall back on

iterative testing of the partitions using fuzzy modularity as an optimization metric.

With the number of clusters at the largest level of the hierarchy determined, an initial

clustering is performed on the eigenvector decomposition of the normalized symmetric

Laplacian Lsym of adjacency matrix A as shown in Algorithm 3.3.

The fuzzy spectral clustering algorithm starts by calculating the Laplacian
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Algorithm 3.3 Fuzzy Spectral Clustering

1: function FSC(A, k)

2: D← {di =
∑n

1 aij} . Create the diagonal matrix D from the row sum of A.

3: Lsym = In×n −D−1/2AD−1/2 . Calculate the normalized symmetric

Laplacian.

4: Z = eigenvectors(L, k) . Compute the top-k eigenvectors.

5: X = [z1, . . . , zk] . Create matrix X where column i in X is eigenvector zi.

6: for all row xi ∈ X do

7: xij = xij/ ‖xi‖ ∀ xij ∈ xi . Normalize each row of matrix X.

8: end for

9: U = FCM (X) . Use fuzzy c-means to get cluster assignments.

10: return U

11: end function

matrix Lsym. The top-k eigenvectors are calculated from matrix Lsym. The top-

k vectors correspond to the k smallest eigenvalues for the normalized symmetric

Laplacian. These eigenvectors are oriented as the columns of matrix X. After

normalizing each row of X, we use fuzzy c-means to find the cluster assignments

U for each of the vertices of the network.

To obtain hierarchical structure, the process is repeated with a varying k

corresponding to the number of clusters in each hierarchical level, shown in pseudo-

code in Algorithm 3.4. In practice, calculating the eigenvectors can be performed

once with the largest k and reused in subsequent iterations of the clustering. The

communities are calculated for each level using FSC to create set of communities

on a hierarchical level i. Each community in level i is connected to its previous by

calculating the fuzzy Jaccard similarity measure Jf of the communities. Jf (Ci,Cj)
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Algorithm 3.4 Hierarchical Generation

1: function HFSC(A, k)

2: for i = 2 to k do

3: Ci = FSC (A, i) . Find the clusters for each level in the hierarchy.

4: end for

5: for all Ci,m ∈ Ci : 3 ≤ i < k do

6: Pi,m,n = arg maxJf (Ci,m, Ci−1,n) . Find parent Pi,m,n for each Ci,m

7: end for

8: end function

between two fuzzy communities Ci and Cj is given by

Jf (Ci,Cj) =

∑
uk∈C1∪C2

min (C1,i, C2,i)

max (C1,i, C2,i)
.

The results give similarity measures for the smaller clusters that can be used to

assign each cluster to its best matching parent. In practice, the possible parent of a

child that has the highest similarity is selected as the parent of the community. To

test the efficacy of the algorithm, we analyze two real-world networks and present

the fuzzy clustering results for those networks. These networks were chosen for their

popularity in benchmark testing for community detection as well as the presence of

hierarchical communities.

3.2.1 Zachary Karate Network

The first real-world example is the Zachary Karate Club network [91], a very

common benchmark set used with community detection algorithms. It is popular

since it is small and has known clusters. As the background story goes, due to conflict

between the club president and the instructor the 34 members split into two separate
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Figure 3.5: Karate Network

groups. This network has another useful property in that there are sub-communities

within the two primary groups corresponding to areas of higher relative in-group

connections. In fact, the best partition of the network, with respect to modularity,

splits the set into four groups [11].

This network and the known clusters and sub-clusters are shown in Figure 3.5,

as shown in [11]. The different node shapes (circles and squares) represent the true

clusters with the highlighted regions covering the sub-clusters.

The corresponding spectrum for the network is given in Figure 3.6. This

spectrum shows two hierarchical levels, based on the large gaps between eigenvalues

located outside the cloud. The two largest eigenvalues correspond to the communities

created by the true clusters. Outside of the primary cloud is another cluster of

eigenvalues that represent the sub-communities within the primary clusters. Using

this information, hierarchical fuzzy spectral clustering is applied to the network.

Using fuzzy spectral clustering as defined earlier, Figure 3.7 shows the overlap-

ping clusters with k = 2. Here we set a threshold τu where we consider a vertex vi
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Figure 3.6: Karate Spectral Characteristic
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Figure 3.7: Karate network overlapping communities: k = 2 and τu = .25

to be part of community Cj if the fuzzy community assignments uij ≥ τu. Assigning

communities with τu = 0.25, nodes 3, 14, and 20 are considered to be overlapping

nodes. This appears to make sense as those nodes are connected to the most connected

and central nodes of the two different clusters. For cluster A, these are nodes 1 and

2, while in B these are 33 and 34.

Next, these results are compared with the sub-clusters. Figure 3.8 shows the

fuzzy clusters with k = 4 and τu = 0.16. At this level, 3, 14, and 20 are no longer

overlapping nodes due to the dissimilarity of the clusters. These clusters are now

less defined by their proximity to the central nodes 1, 2, 33, and 34, and instead

more by their local connections. Thus, the set {1, 5, 6, 7, 11, 17} becomes its own
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Figure 3.8: Karate network overlapping communities: k = 4 and τu = .15

cluster since most of these nodes are only connected to each other. The set A2 =

{24, 25, 26, 28, 29, 32} IS now its own community, separate from A1, which are better

defined by their proximity to 33 and 34. Additionally, nodes 9, 10, and 31 become

assigned to both A1 and B1.

It should be noted that increasing the value of τu to τu = 0.3 results in

an assignment with no overlap where the communities are identical to the sub-

communities shown in Figure 3.5.

3.2.2 Dolphin Network

The Dolphin network is another well-known example of a social network [5].

This network represents a group of dolphins that were tracked over a period of time.

Eventually, the dolphins split into separate groups. From prior work by Lusseau

and Newman [5], one of the communities was further broken down into smaller

communities. In the later figures, the solid black nodes represent one of the true

clusters, and all the grey and white nodes together form the other true cluster. The
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Figure 3.9: Dolphin Spectral Characteristic

different grey-scale colors correspond to the sub-cluster results from Lusseau and

Newman.

Viewing the spectral characteristics of this network in Figure 3.9, it is possible

to see by the spectral characterization that it does not have as strong of a hierarchical

structure when compared to the karate network. There are two hierarchical levels,

but the exact number of sub-communities is difficult to determine as it begins to

merge with the primary cloud.

As the largest eigen-gap between the values occurs after the second largest

eigenvalue, the initial pass clusters into two partitions. The next phase proves more

difficult due to the remaining eigenvalues. Since there is a fairly smooth transition

from the bulk distribution to the other eigenvalues, we use optimal fuzzy modularity,

restricting the search to the approximate number of communities. This procedure

gives a best partition using six clusters.

Using this information to get the smaller clusters, the resulting six communities

are shown in Figure 3.11. These communities align well with previous results, with the

exception of tr88 and tr120, which are added to the community A2. Unfortunately,

these two have considerably different connections in relation to the rest of the members

of B3, weakening their association with those nodes. Since the fuzzy assignment

across all nodes must equal 1, this gets distributed across the other nodes, raising

the association with A2 beyond the τu threshold. Likely, it is most strongly tied with
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Figure 3.10: Dolphin network overlapping communities: k = 2 and λ = .20

these because A2 and B3 share proximity to B4. Raising τu does place them solely

in B3 but weakens other associations and yields lower modularity.

Still, even with that outlier, communities Bk closely correspond to one of the

true communities. Likewise, communities Ak match closely with the other true

community.

Although there are now more communities than what was determined by Lusseau

and Newman, merging B2 and B3 into a community and A1 and A2 into another

community yields very similar results. Attempting to compute k = 4 communities

directly yields different results as shown in Figure 3.12.

3.2.3 Alaska Campaign Finance

Previous work has shown that the primary motivator for donations from

individuals is ideology. However, for non-individuals, they may attempt more
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Figure 3.11: Dolphin network overlapping communities: k = 6 and λ = .17
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Figure 3.13: Alaska Spectral Characteristic

strategic donations [78]. This premise is tested here with hierarchical fuzzy spectral

clustering. This particular set is compiled from donations that were reported in Alaska

during 2012 for general elections and represents business and other non-individual

donations to candidates, creating a bipartite network where each node is a candidate

or donor and an edge is a donation.

In preparing the dataset, vertices were removed if they only contributed once

over the course of the election cycle. Similarly, candidates with only one donor were

also removed. Multiple donations from a donor to the same candidate were collapsed

into a single edge. The remaining data cover 214 nodes and 1426 edges. Despite

the simplicity of the graph here, the full scope of information available for creating

a fully featured and heterogeneous network from campaign finance is substantial and

growing rapidly. Figure 3.13 shows the spectral characteristic of this network. It

is rather similar in nature to the Zachary karate network in that it indicates two

clusters at the top hierarchy and four clusters at a second hierarchical level. The

large negative eigenvalues on the left of the graph are due to the bipartite nature of

the graph and can be ignored.

After obtaining the hierarchy from the above method, there are two communities

at the top level with each having two child communities. Unsurprisingly, in the

parent communities D and R, the candidates mostly split on party lines, and ideology

appears to dominate donations. The overlap between the two groups is especially
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Table 3.1: Historical Alaska Donations

Nodes Ratio to Winners Std. Dev. of %

In Both D and R 4.94 0.094

Solely in D 1.20 0.232

Solely in R 2.80 0.182

interesting, however, as it includes donors who gave evenly between Democrats and

Republicans in Alaska. Moreover, the candidates in this overlap were overwhelmingly

winners, with only one candidate losing the election.

To verify these results, the communities were checked against their entire

historical data. Based on this data from the National Institute on Money in Politics,

these overlap donors have on average given much more to winning candidates with

very little variation. The rest of the donors have not done as well at donating solely

to winners, though there is far more variation in the percentage of dollars that went

to winning candidates, as shown in Table 3.1.

Analyzing the sub-communities at the next hierarchy, there is a clear pattern

in the candidates within each community. Analyzing each community separately, we

find:

� D1 comprises exclusively Democratic candidates, 83% of which lost the election.

The donors have previously given to Democrats, with only one donation ever

to a Republican candidate as well as one to an unaffiliated candidate.

� D2 comprises mostly Democratic candidates at 88%, 56% of which won their

election. The donors have given almost four times as much to Democrats as

Republicans.
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� R1 comprises 10 Democratic and 28 Republican candidates. These candidates

were almost exclusively winners, with only one losing. Similar to D2, the donors

gave four times as much, in this case favoring Republicans.

� R2 comprises only Republican candidates as well as a single unaffiliated

candidate. Only 55% of these candidates won the election. The donors in

this group have, over the years, given over 54 times as much to Republicans as

Democrats.

For the children of D, those who gave exclusively to Democrats generally gave

to losing candidates while those who gave more evenly donated more to winners.

Regarding the children of R, while the donors who gave exclusively to Republicans

chose more winners, those who gave to Democrats as well picked almost nothing but

winning candidates. This shift may be due to the overall political leanings of Alaska

where their legislature has a majority of Republicans.

3.2.4 All States

With the success of Alaska as a baseline, we continued by analyzing all the other

state communities in 2012. For context, Figure 3.14 shows the proportions of money

given to recipients over all the NIMP data. By ratio, donations to Democrats and

Republicans were split evenly in the donations, with Republicans slightly favored

at a ratio of 1.089 compared to Democrats at 0.918. The difference is much larger

when considering winning candidates or incumbents. In the data, winning candidates

raised 1.632 times more money than losing candidates. The number is similar for

incumbents, where incumbents raised 1.561 times more money than non-incumbents.

Deviations from these ratios could indicate different patterns of donations among the

communities.
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Figure 3.14: Sum of Donations to Recipients by Type

Datasets for each of these states was created in the same manner as the data for

Alaska. Each graph is made of non-individual donations in general elections during

2012. Any node i where di = 1 is removed from the network. Table 3.2 shows the

resulting sizes of the graphs for each of the state networks. The following tables give

donation amounts and ratios for k = 2 and k = 4 communities for each of the states.

For all communities, a threshold of 0.3 is used for determining if a node is part of a

fuzzy community.

Using California as another example, Table 3.3 shows the donation history by

members of each community. With the donors in each community at k = 2, there

are different ratios of their giving based on properties of the recipients. From the

results, community c2,0 donated more to Democrats than Republicans, but not by a

large ratio at 1.342. For both Incumbency and Status, the giving ratios are much

higher showing this group of donors has historically given far more to incumbents

and winners at 3.277 and 4.606 respectively. These ratios are higher than the overall
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Table 3.2: Network Sizes using Non-Individual Donations

State Nodes Edges State Nodes Edges State Nodes Edges

AK 214 1,426 LA 297 816 OH 1,126 9,000

AL 97 204 MA 607 3,198 OK 442 4,826

AR 756 6,809 MD 523 2,365 OR 738 8,233

AZ 225 1,201 ME 249 1,067 PA 1,397 13,532

CA 1,964 17,171 MI 901 8,494 RI 331 2,003

CO 467 5,109 MN 797 4,486 SC 884 5,670

CT 68 69 MO 1,768 14,956 SD 351 2,766

DE 432 2,698 MS 69 151 TN 515 6,455

FL 3,351 24,779 MT 491 2,747 TX 2,163 24,223

GA 1,097 11,653 NC 834 7,472 UT 469 4,579

HI 288 1,890 ND 282 1,160 VA 497 4,466

IA 535 5,871 NE 217 1,481 VT 258 733

ID 487 4,665 NH 303 1,640 WA 1,369 14,260

IL 2,038 18,051 NJ 662 3,504 WI 634 3,740

IN 1,157 8,289 NM 661 6,932 WV 387 3,466

KS 843 10,327 NV 688 6,351 WY 165 1,095

KY 379 2,949 NY 2,318 14,069 – – –

underlying data where incumbents raise 1.561 times more than non-incumbents and

winning candidates raise 1.632 times more than losing candidates. Community c2,1

donated at a higher ratio to Democrats than Republicans at 1.678 when compared

to the other community. The ratio of incumbents vs. non-incumbents and winners

vs. losers is lower at 1.47 and 2.09 respectively, showing this group overall prioritized

party more so than the other.
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Table 3.3: Donor History by Community in CA

C Party Total Ratio Inc Total Ratio Status Total Ratio

c2,0 D $462,193,658 1.342 I $622,936,188 3.277 Lost $134,959,301 0.217

c2,0 R $344,442,457 0.745 N $190,093,268 0.305 Won $621,631,277 4.606

c2,1 D $843,949 1.678 I $948,145 1.470 Lost $515,599 0.479

c2,1 R $502,919 0.596 N $644,964 0.680 Won $1,077,510 2.090

c2,0 ∩ c2,1 D $185,200 2.750 I $181,700 2.374 Lost $39,750 0.182

c2,0 ∩ c2,1 R $67,350 0.364 N $76,550 0.421 Won $218,500 5.497

c4,0 D $17,600 0.140 I $109,638 0.542 Lost $198,975 1.760

c4,0 R $125,745 7.145 N $202,375 1.846 Won $113,038 0.568

c4,1 D $164,844,588 16.600 I $107,950,768 1.578 Lost $40,148,123 0.308

c4,1 R $9,930,533 0.060 N $68,428,242 0.634 Won $130,421,379 3.249

c4,2 D $657,249 2.023 I $684,475 1.760 Lost $287,374 0.366

c4,2 R $324,824 0.494 N $388,839 0.568 Won $785,940 2.735

c4,3 D $377,947,946 1.107 I $570,523,492 3.691 Lost $112,038,400 0.200

c4,3 R $341,469,715 0.903 N $154,565,697 0.271 Won $559,562,532 4.994

Table 3.4: Individual Preference by Community in CA

C
∑

Party Party
∑
Inc Inc

∑
Status Status

c2,0 −$117, 751, 201 −0.258 $432,842,921 0.251 $486,671,976 0.517

c2,1 −$341, 030 −0.045 $303,181 0.294 $561,911 0.505

c2,0 ∩ c2,1 −$117, 850 −0.580 $105,150 0.023 $178,750 0.696

c4,0 $108,145 0.321 −$92, 737 0.232 -$85,937 0.343

c4,1 −$154, 914, 055 −0.669 $39,522,526 −0.013 $90,273,257 0.413

c4,2 −$332, 425 −0.323 $295,636 0.368 $498,566 0.647

c4,3 −$36, 478, 231 −0.175 $415,957,795 0.288 $447,524,132 0.533

Moving down the hierarchy to k = 4, other behaviors become apparent.

Community c4,1 heavily favors Democrats at a ratio of 16.6, far higher than any

of the other communities listed in CA. In contrast, community c4,4 donates almost

equally to Democrats and Republicans, but heavily favors both incumbents and
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winning candidates, possibly indicating this group is more interested in political

access than left-right ideology. Communities c4,0 and c4,2 are smaller donors that

favor Republicans and Democrats respectively.

One important consideration is that these numbers could be dominated by

groups who have greater ability to spend large amounts of money. This could cause

individual preferences to be lost. Instead of using the raw numbers, we considered a

rescaling of the data such that it forms a preference to each type of recipient as a range

in [−1, 1]. For each feature of a recipient, the data is scaled such that Party = D → −1

and Party = R → +1. A donor who gives exclusively to Democrats would have a

preference of −1 for party, while a donor who gives exclusively to Republicans would

have a preference of 1 for party. Donors who give equally would have a preference of

0. The data is scaled similarly by incumbency (Inc = N → −1, Inc = I → +1) and

status (Status = L→ −1, Status = W → +1).

With these definitions, Table 3.4 shows the results of scaling individual

preference within each community. In the tables listing the scaled preferences,∑
Party is the sum of donations where donations to Democratic candidates are

multiplied by −1. Similarly,
∑

Inc and
∑

Status refer to sums of the totals to those

features where donations to non-incumbents are multiplied by −1 and donations to

losers are also multiplied by −1. The columns Party, Inc, and Status are the average

scaled preference. Based on this scaling, donors in communities c2,0 and c2,1 donate to

winning candidates at a much higher preference than to either party or incumbency.

The donors in c2,1 on average have very little preference for either party, whereas c2,0

show preference for Democratic candidates. Switching to a lower hierarchical level,

communities c4,1 and c4,3 are the children of c2,0. For those, the donors in c4,1 show a

much stronger party preference than the sibling donors from c4,3. Instead, the donors

from c4,3 have a much higher preference for incumbents, and their candidates more
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Table 3.5: Donor History by Community in DE

C Party Total Ratio Inc Total Ratio Status Total Ratio

c2,0 D $49,302,417 0.761 I $100,548,273 6.991 Lost $14,002,157 0.157

c2,0 R $64,780,247 1.314 N $14,383,165 0.143 Won $88,960,053 6.353

c2,1 D $83,628,947 1.331 I $122,664,162 4.960 Lost $21,381,708 0.192

c2,1 R $62,828,631 0.751 N $24,732,871 0.202 Won $111,164,213 5.199

c2,0 ∩ c2,1 D $35,749,106 0.903 I $67,306,486 7.946 Lost $8,378,331 0.140

c2,0 ∩ c2,1 R $39,582,378 1.107 N $8,470,122 0.126 Won $59,706,953 7.126

c4,0 D $56,800,432 0.925 I $103,544,029 6.689 Lost $14,417,455 0.156

c4,0 R $61,379,789 1.081 N $15,480,330 0.150 Won $92,164,854 6.393

c4,1 D $22,841,284 14.945 I $16,062,871 1.866 Lost $6,761,364 0.437

c4,1 R $1,528,349 0.067 N $8,606,722 0.536 Won $15,472,932 2.288

c4,2 D $41,407,115 0.828 I $80,405,994 6.950 Lost $10,845,785 0.151

c4,2 R $50,005,976 1.208 N $11,569,824 0.144 Won $71,770,034 6.617

c4,3 D $896,352 0.195 I $3,388,763 1.555 Lost $1,855,280 0.546

c4,3 R $4,604,434 5.137 N $2,179,473 0.643 Won $3,396,076 1.830

Table 3.6: Individual Preference by Community in DE

C
∑

Party Party
∑
Inc Inc

∑
Status Status

c2,0 $15,477,830 0.244 $86,165,108 0.239 $74,957,897 0.378

c2,1 −$20, 800, 316 −0.691 $97,931,292 0.351 $89,782,505 0.501

c2,0 ∩ c2,1 $3,833,272 −0.339 $58,836,363 0.568 $51,328,623 0.639

c4,0 $4,579,357 −0.462 $88,063,698 0.644 $77,747,398 0.629

c4,1 −$21, 312, 935 −0.911 $7,456,149 −0.053 $8,711,568 0.277

c4,2 $8,598,861 0.023 $68,836,171 0.520 $60,924,249 0.609

c4,3 $3,708,082 0.720 $1,209,290 −0.257 $1,540,796 0.050

often win their election. Communities c4,0 and c4,2 show a similar split where donors

in c4,0 favor winning Republicans, but c4,2 strongly favors winning incumbents with

party being the weakest preference.

The same analysis can be done for other states, such as Delaware. Table 3.5
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contains the donation history for each of the donors in the found communities. In

this case, the top two communities c2,0 and c2,1 both have high ratios of donations to

winning incumbents, far higher than the database average. They differ in that c2,0

favors Republicans while c2,1 favors Democrats. However, the overall giving patterns

of each of their child communities reveal some differences. Donors who were in both

communities had low overall ratios by party, but even higher ratios to incumbents and

winners. The child communities of c2,0 are c4,0 and c4,1. In total, the donors in c4,0

gave at roughly the database average by party; however, they gave at a considerably

higher ratio to incumbents and winning candidates. Donors in c4,1 heavily favored

Democrats at a ratio of 14.945 over Republican candidates. The ratios to incumbents

and winners was quite a bit lower than those of its sibling communities c4,0. A similar

result is found with the children of c2,1: c4,2 and c4,3. Community c4,3 is characterized

by a high ratio of party giving to Republicans at 5.137. The ratios to incumbents and

winners is closer to the database average. Community c4,2 has a party ratio closer

to the database average at 1.208 to Republicans, while the ratio to incumbents and

winners is far higher than the average at 6.950 and 6.617 respectively.

The results for individual preference reinforce the overall community results but

do provide some additional information. Community c2,0 shows a high ratio of giving

to winning incumbents. However, the individual preferences for incumbency and

status are not much different than the party preferences. This can indicate the ratios

of giving in community c2,0 are high in part due to large donors. Preference was

highest to winning candidates at 0.378, with party and incumbency effectively even.

Community c2,1 had a large preference for Democratic candidates at −0.691, with

winners also having high preference at 0.501. For those donors in both c2,0 and c2,1,

the party preference favors Democrats, but had higher overall average preference for

status and incumbency at 0.639 and 0.568 respectively, indicating these donors did
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Table 3.7: Donor History by Community in PA

C Party Total Ratio Inc Total Ratio Status Total Ratio

c2,0 D $149,638,238 0.610 I $340,136,508 5.966 Lost $56,734,601 0.191

c2,0 R $245,213,271 1.639 N $57,010,454 0.168 Won $297,486,327 5.243

c2,1 D $151,624,395 4.616 I $118,112,859 1.754 Lost $53,605,945 0.463

c2,1 R $32,849,300 0.217 N $67,330,689 0.570 Won $115,780,389 2.160

c2,0 ∩ c2,1 D $16,885,302 0.919 I $27,376,235 3.408 Lost $7,477,733 0.302

c2,0 ∩ c2,1 R $18,374,434 1.088 N $8,033,151 0.293 Won $24,780,565 3.314

c4,0 D $60,800,441 12.011 I $37,685,149 1.318 Lost $23,095,177 0.608

c4,0 R $5,062,144 0.083 N $28,598,074 0.759 Won $37,992,954 1.645

c4,1 D $117,777,822 6.056 I $89,002,626 1.816 Lost $38,969,172 0.452

c4,1 R $19,447,071 0.165 N $49,018,365 0.551 Won $86,240,063 2.213

c4,2 D $137,081,746 0.671 I $303,275,194 7.575 Lost $42,692,901 0.163

c4,2 R $204,334,834 1.491 N $40,037,013 0.132 Won $262,332,319 6.145

c4,3 D $34,699,562 0.396 I $98,945,070 4.062 Lost $23,663,560 0.273

c4,3 R $87,730,404 2.528 N $24,356,882 0.246 Won $86,731,143 3.665

not primarily favor party affiliation. Results for the child communities show similar

results to the group dynamic where preference for party in c4,0 trends Democrats but

has stronger preference for incumbents and winners. Its sibling c4,1 has an extreme

preference for Democrats at −0.911, but far less overall preference for incumbency or

status. Communities c4,3 and c4,2 show similar behavior where c4,3 has strong party

preference, and c4,2 has incumbent and winner preference.

Pennsylvania shows some similar patterns for donations (Table 3.7). The top two

communities show some different behavior where c2,0 only slightly favors donations to

Republicans, but it has high ratio to incumbents and winners. In contrast, community

c2,1 has a high ratio to Democrats and relatively lower ratios for incumbents or

winners. Those donors in both communities gave almost evenly by party, but had

higher ratios for incumbents and winners. Moving to the children, only c4,1 is a child

of c2,1, with those donors remaining in this community giving to Democrats at a
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Table 3.8: Individual Preference by Community in PA

C
∑

Party Party
∑
Inc Inc

∑
Status Status

c2,0 $95,575,033 0.428 $283,126,055 0.455 $240,751,726 0.532

c2,1 −$118, 775, 095 −0.709 $50,782,170 0.168 $62,174,443 0.338

c2,0 ∩ c2,1 $1,489,132 −0.271 $19,343,083 0.463 $17,302,832 0.474

c4,0 −$55, 738, 297 −0.907 $9,087,075 −0.101 $14,897,777 0.171

c4,1 −$98, 330, 750 −0.722 $39,984,260 0.347 $47,270,891 0.463

c4,2 $67,253,089 0.253 $263,238,181 0.669 $219,639,418 0.695

c4,3 $53,030,841 0.807 $74,588,188 0.261 $63,067,583 0.413

slightly higher ratio than its parent, but similar ratios for the other two features. In

contrast, the other three communities are all children of c2,0 and show considerably

different behavior than their parent. In c4,0, these donors gave to Democrats at a

ratio of 12.011, far higher than any other community listed. Communities c4,2 and

c4,3 gave more to Republicans, but c4,2 had much higher ratios to incumbents and

winners.

Individual preference results for Pennsylvania show the average preferences for

donors in community c2,0 are strong but close to each other for all of the features.

Community c2,1 has a very strong preference for Democrat candidates, with far smaller

magnitude of preference for incumbents and winners. As expected, its child c4,1 shows

the same preferences. The children of c2,0 have far different preferences from each

other. Communities c4,0 and c4,3 have extreme preference for parties at −0.907 and

0.807 respectively. In contrast, community c4,2 has incumbents and winners at a much

higher preference with 0.669 and 0.695 respectively. The same analysis can be done

for each of the remaining states. Appendix A shows the community and preference

tables for each of the fifty states.



59

3.3 Conclusion

In this chapter, we introduced a new hierarchical fuzzy spectral clustering

algorithm for finding communities in social networks. This HFSC algorithm was

shown to be effective in finding meaningful communities within social networks.

We used an outlier detection method on the spectral characterization to find an

appropriate number of clusters k. We showed the vertices in the overlap of clusters

found by HFSC showed different behavior than the vertices strictly in a single

community. On benchmark datasets, the results of HFSC yielded results consistent

with known ground truths for those communities. Applying the algorithm to state

campaign finance networks, we obtained fuzzy community structure for each of the

fifty states. The results show the community structure is useful in identifying differing

behavior among the donors of those communities. It was possible to find information

in the overlapping communities where the donors showed different patterns of giving

than their siblings within the communities. Additionally, the hierarchical information

was also useful to get additional information and further categorize donor behavior.

This was shown by the overall group donations, as well as preference by each donor

within the communities. The analysis was expanded to all fifty states, highlighting

the patterns of donation in communities at various levels in the hierarchy.
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CHAPTER FOUR

TEMPORAL COMMUNITIES

In this chapter we augment the hierarchical fuzzy spectral algorithm given in

Chapter 3 to track communities in evolving social networks. As social networks

are representative of the interactions of individuals, as those interactions change the

structure of the network should also change. Tracking the communities as the graph

changes can be important in understanding how the behavior of communities may

change over time. By augmenting HFSC, it is possible to connect communities found

at adjacent timesteps. We can then analyze how the behavior of individuals and

communities may change.

4.1 Background

In the previous section we analyzed communities generated from a single year

of campaign finance donations. However, these are networks that change over time.

Different candidates are up for election each year. New donors may start donating,

some may stop, or they give to different recipients in different ratios. In this section

we discuss some prior work performed in trying to discover communities that may

change over time.

Much like how early work in community discovery focused on finding crisp

communities, early work on networks did not concern tracking communities through

time. Early attempts at tracking the communities built upon that work and used

static community discovery on crisp communities at different timesteps in order to

find communities through time. Some prior work highlighted an issue with static

community detection methods in dynamic graphs [37], [92]. Specifically, it was shown
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that trying to connect crisp communities discovered at different timesteps can be

unstable. Using different crisp community detection algorithms, the authors showed

how modularity and communities change when nodes are removed from the graph. As

nodes were removed from the network, the modularity of the community assignments

found after removal would increase. This would increase up to a certain point when

too many nodes were removed, and the modularity sharply fell. Additional analysis

on the communities showed that the set of vertices V in a community Ci would

change dramatically as nodes were removed. This was calculated by the edit distance

of the community assignments at each time step.

More recent work attempts to more comprehensively create a model to describe

communities through time [93]. The authors developed a dynamic Bayesian model

named Dynamic Bayesian Non-negative Matrix Factorization. In their formulation,

they define a temporal network as G = {E1, . . . ,ET} where T is the number of

snapshots of the networks. In this model, the number of communities at each time

step are determined by an automatic relevance determination. Each snapshot of a

graph at t utilizes information from the previous timestep in the community detection.

4.2 Approach

One issue with campaign finance networks is that it is not possible to have a

smoothly changing network. The datasets available typically are available in two-

year increments. The underlying dynamics change dramatically over that time frame

as new elections occur. Based on this, we find communities at each of those two-

year increments. Then a mutual information criterion based on the fuzzy assignment

scores is used to matching communities through time.

The overall approach is similar to the hierarchical fuzzy spectral clustering

defined in Chapter 3. Treating each two-year cycle as its own network, first
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Algorithm 4.1 Fuzzy Spectral Clustering

1: function FSC(A, k)

2: D← {di =
∑n

1 aij} . Create the diagonal matrix D from the row sum of A.

3: Lsym = In×n −D−1/2AD−1/2 . Calculate the normalized symmetric

Laplacian.

4: Z = eigenvectors(L, k) . Compute the top-k eigenvectors.

5: X = [z1, . . . , zk] . Create matrix X where column i in X is eigenvector zi.

6: for all row xi ∈ X do

7: xij = xij/ ‖xi‖ ∀ xij ∈ xi . Normalize each row of matrix X.

8: end for

9: U = FCM (X) . Use fuzzy c-means to get cluster assignments.

10: return U

11: end function

we determine the eigenvectors of the graph Laplacian Lsym where Lsym = I −

D−1/2AD−1/2. Starting with k = 2, we use fuzzy c-means clustering on the

eigenvectors with the smallest eigenvalues. The hierarchical structure is constructed

by repeating the process with increasing k. As before, the communities are connected

to parents using a fuzzy Jaccard similarity. For convenience, the algorithms are shown

again in Algorithms 4.1 and 4.2.

4.2.1 Retention Rates

In addition to the static networks, additional work is done in analyzing different

networks for each of the election cycles and connecting communities between years.

To aid in this, we want to determine the ratio of actors in the network who participate

in successive years. This estimate of the level of continuous political participation over
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Algorithm 4.2 Hierarchical Generation

1: function HFSC(A, k)

2: for i = 2 to k do

3: Ci = FSC (A, i) . Find the clusters for each level in the hierarchy.

4: end for

5: for all Ci,m ∈ Ci : 3 ≤ i < k do

6: Pi,m,n = arg maxJf (Ci,m, Ci−1,n) . Find parent Pi,m,n for each Ci,m

7: end for

8: end function

time for nodes in the network we call the retention rate of the network. For any state

and year, consider the set of vertices Vt and Vt+1 for election cycles t and t+ 1. We

use Jaccard similarity as a metric for the retention rate is defined as the

J (Vt,Vt+1) =
|Vt ∩Vt+1|
|Vt ∪Vt+1|

.

This gives a metric for the number of entities that are in both adjoining years. As

mentioned above, any set of vertices V is first limited by removing those who only

have one link. With these datasets, the average retention rate of entities in those

networks is 20.90% with a median of 21.66%. Alabama is the only notable outlier.

Its retention rate is only 6.52%. Removing this state from consideration, the average

retention rate for the other states moves very close to the median.

4.2.2 Tracking Communities

The above algorithms aid in understanding static networks, either for all of a

state or individual election cycles. However, we are also interested in how communities

may change over time. The addition to track communities through time is given in
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Algorithm 4.3. For this procedure, HFSC is calculated on each timestep t of the

networks to obtain the set of hierarchical communities U′1, . . . ,U
′
T .

Beginning with ki = 2 for time step i, connections are made to time step i + 1

by searching down the tree for matching communities. Then, for each community in

dataset i at ko = 2, we iterate through the hierarchies of dataset i + 1, also starting

with ki+1 = 2 to find the first hierarchy wherein there exists a community with

a fuzzy Jaccard similarity measure Jf greater than a threshold. In this case, the

threshold is determined by the retention rate as it gives an estimate of the number of

entities within the community that can possibly match. From this, the fuzzy Jaccard

similarity between time steps must be greater than J (Di, Di+1)/2. This process is

repeated for the other hierarchy levels with the requirement that a child community

cannot be linked to a hierarchy level equal to or above its parent.

4.3 Political Donation Networks

The dataset used in this section is different from the data used in Chapter

3. The prior data was obtained from the National Institute on Money in Politics.

This was used to determine non-individual donation patterns based on communities

found in the campaign network. However, using augmented data from other areas

may help in improving the community analysis. The Bonica and the Stanford Social

Science Data Collection has an augmented dataset [78, 94]. This dataset combines

data from the Federal Election Commission, the Center for Responsive Politics, the

National Institute for Money in Politics, the Sunlight Foundation, and other reporting

agencies. This combination of data is segmented within each state (and federal) in

two-year election cycles spanning 1979 through 2012.1

1The dataset was updated to include more recent years; however, we continue to use the 1979–
2012 subset. Increasing polarization has shown the prediction problem becomes easier over time.
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Algorithm 4.3 Connecting Communities through Time

1: function TemporalLink(U′1, . . . ,U
′
T )

2: for t = 1 to T − 1 do

3: for Cij ∈ U′t do . For each community at time step t

4: for Cik ∈ U′t+1 do . For each community at time step t+ 1

5: if Jj (Cij,Cik) ≥
J (Vj∈U′t,Vk∈U′t+1)

2
then

6: Mt ← (Cij,Cik) . Add a link between communities if

similarity over the threshold.

7: end if

8: end for

9: end for

10: end for

11: return M

12: end function

In performing the analysis for CFScores, Bonica placed certain restrictions upon

the dataset. Similar restrictions are applied to the networks here for each combination

of state and year. Specifically, an entity is only included as a node in the network if

it has at least two connections to other entities. Only direct or in-kind contributions

are included. Since loans and similar records do not necessarily indicate support of

a candidate, they are removed from consideration. As the data for each state are

poorer in earlier years and the starting point is considerably different for each state,

the following analysis uses only the data for elections cycles 2004 through 2012 in

order to ensure each state has the same number of years of data. It is possible within

the data for donors and recipients to be entirely disconnected from the rest of the

network. Because the spectral clustering views the whole network, isolated entities
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that are not connected to the larger network are also removed from consideration.

Separate files for the list of donors and recipients are also provided. While

the donor data is sparse, the recipient data includes information, such as the state,

district, seat, party, and other pertinent information regarding a candidate running for

office. Further improvements by Bonica include some entity resolution to improve the

connections between years and states. The entity resolution assigns unique identifiers

to the candidates and donors across states and years.

The results presented below focus on three different states: Alaska, New York,

and Wisconsin. Given Alaska’s high retention rate across years, it provides many

opportunities for analyzing how behavior of specific individuals change through time.

Note that all 50 states have been analyzed with the same procedure. For most of those

datasets, splitting into two communities at the top level has very high correlation.

However, in some states and years, splitting into two communities does not result in

a high correlation. This is because there exists a group within the dataset that is

more separate from the rest of the network than those with opposing ideologies. New

York is one such state. Wisconsin was also selected because of the rapid growth in

the dataset due to the increase in contributions surrounding recall and gubernatorial

races.

4.3.1 Alaska

For the state databases, Alaska showed the highest retention rate of entities from

year to year at 29.67% on average. First, communities are found for the entirety of

the state, regardless of the year in which a donation was made. For this dataset,

eliminating all single donors and redundant links across all years in the state gives

12,417 entities and 66,629 edges.

At the top level, we can check the communities against CFScore for validity.
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Table 4.1: Correlation of CFScore and Communities at k = 2

Cycle AK WI NY

2004 0.8984 0.9196 0.121

2006 0.9162 0.9457 0.6139

2008 0.9126 0.9233 0.0173

2010 0.9226 0.9427 0.1207

2012 0.9057 0.9808 0.0575

CFScores represent a range centered on zero where negative values are associated with

liberal ideology and positive with conservative. For Alaska, at the top level, comparing

with the CFScore estimation of ideology, the community assignment values show a

Pearson correlation coefficient of ρ = 0.9133. Restricting the comparison to just the

recipients in Alaska, the correlation coefficient for this limited set is ρ = 0.8715. This

indicates that, for Alaska, the CFScore ideology estimation is highly correlated with

the community assignments.

To make sure the resulting communities still represent ideology well after being

split into individual 2-year cycles, a similar test is performed on the temporal datasets

for Alaska. As before, checking for two communities results in splits where the fuzzy

community assignment is highly correlated with the CFScore for that entity. Table

4.1 shows the correlations for each of the cycles for all entities. For Alaska, these

fuzzy memberships are highly correlated with the CFscore.

Additionally, it is possible to connect the communities in one time step to

communities in the next based on the best fuzzy Jaccard similarity. Table 4.2 shows

the average CFScore of entities for each community with a membership value greater

than 0.3. As shown, the averages shift fairly consistently away from zero for both
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Table 4.2: CFScore of Alaska Communities

k = 2 k = 3

Year C1 C2 C1 C2 C3

2004 -0.839 0.287 -0.924 – 0.387

2006 -0.851 0.346 -0.847 -0.790 0.363

2008 -0.885 0.334 -0.899 -0.318 0.293

2010 -0.895 0.373 -0.913 -0.492 0.391

2012 -0.872 0.391 -0.897 -0.223 0.357

of these communities. The results of this correspond to prior political science work

indicating an increase in partisanship over the years [78].

Moving down the hierarchy, similar results are obtained for k = 3, also shown

in Table 4.2. For all but one year, every community at ti continued into ti+1. The

community C2 at year 2004 did not have a corresponding community in year 2006

based on the threshold set by the fuzzy Jaccard similarity of the community and

the retention rate. At this breakdown, the average CFScore of C1 and C3 does not

deviate from zero as in the previous breakdown, despite having similarly high Jaccard

similarity measures as the communities in k = 2. Additionally, the average estimated

ideology of C3 shifts considerably more than the other two. Viewing additional data

about the recipients in this group, community C2 corresponds to a specific geographic

area, Fairbanks, AK.

4.3.2 New York

In order to highlight different behavior of donors in different states, New York

was also analyzed in a similar manner. As before, communities were found for the

entirety of the state, regardless of the year in which a donation was made. This
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resulted in a network of 69,369 entities and 264,223 edges. Unlike Alaska, when

splitting the network into two communities, the resulting fuzzy assignment values do

not have a high Pearson correlation coefficient when compared with the CFScore.

This is even true if the same analysis is performed with weighted edges where the

weights correspond to the amount of the contributions to an entity. Calculating the

correlation coefficient for all entities within New York at the top hierarchy gives a

value of ρ = 0.4451. For just the recipients within NY, ρ = 0.2921. As seen, CFScore

is not as well correlated with the communities.

In an attempt to better understand the composition of the communities at the

top level, we first look at a strict partitioning of the two top communities where the

fuzzy community assignment value must be greater than 0.5. Analyzing the candidate

information within these communities, it shows all the New York city candidates are

within C2. While not composed solely of city candidates, the dominating factor for

this breakdown appears to be geography and not ideology.

This poor performance on correlation continues when looking at each individual

year, as shown in Table 4.1. Interestingly, the two worst performers-2008 and 2012-

have almost no data for New York City candidates. This seems counter intuitive

since those years would not have extra data highly centralized in a single geographic

location.

Across all years but 2006, viewing the communities at the top hierarchy, what

has happened is that a small set of candidates who mostly lost were separated from the

rest of the network by having similar donor groups, but being considerably different

than the rest of the candidates. Comparing the recipients with their candidate

information indicates there is no significant correlation between party or district.

This indicates that, for New York, ideology is not actually the most dominant factor

in determining the pattern of donations.
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4.3.3 Wisconsin

For Wisconsin, creating the network of contributions across all years as before

results in one that contained 123,396 nodes and 592,407 edges. Part of the reason

for this network being larger are the circumstances surrounded the 2012 recall and

regular elections. As in Alaska, the correlation coefficient for CFScore and fuzzy

community assignment at the top-level hierarchy is quite high at ρ = 0.9745 for all

entities and ρ = 0.9408 for recipients.

Wisconsin also shows high correlation at the top hierarchy when comparing

community assignments and CFScore, shown in Table 4.1. As can be seen, when

the upswing in donations occurred in 2012, the correlation between ideology and

communities is exceptionally high. This seems reasonable given the apparent

polarizing nature of the elections.

Analyzing these communities over time yields similar results to that in Alaska.

At the top-level hierarchy, there are two communities corresponding to left and right

ideologies, shown in Table 4.3. Additionally, as time passes, the overall trend is

for both communities to deviate from the center, corresponding with the increase in

partisanship.

With k = 3, the resulting communities look similar again to AK as shown in

Table 4.3. However, community C2 in this case does not appear to be isolated to a

single geographic area but has recipients from districts all over the state. Given the

overall average CFScore, WI appears to have a considerable, and consistent, set of

moderates.
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Table 4.3: CFScore of Wisconsin Communities

k = 2 k = 3

Year C1 C2 C1 C2 C3

2004 -0.935 0.759 -0.950 0.229 0.872

2006 -0.990 0.853 -1.117 -0.019 0.916

2008 -0.986 0.728 -1.084 -0.134 0.780

2010 -0.865 0.977 -1.084 0.255 1.075

2012 -1.353 1.079 -1.370 -0.029 1.113
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Figure 4.1: Eigenvalues for Alaska Contribution Network, All Years, All Data

4.4 Detailed Results

4.4.1 Alaska

For the state databases, Alaska showed the highest retention rate of entities from

year to year at 29.67% on average. First, communities were found for the entirety

of the state, regardless of the year in which a donation was made. For this dataset,

eliminating all single donors and redundant links across all years in the state resulted

in 12, 417 entities and 66, 629 edges. Figure 4.1 shows the eigen-spectrum for this

dataset, and the red line indicates the point at which the eigengap first exceeds the

average absolute deviation.

Figure 4.2 shows the community assignment values to one of the two found



72

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−2

1

4

7

10

Fuzzy Community Assignment, All Entities

C
F

S
c
o

re

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−2

1

4

7

10

Fuzzy Community Assignment, Recipients

C
F

S
c
o

re

Figure 4.2: Fuzzy Community Assignment for Alaska Contribution Network, All
Years, Two Communities

communities and compares them to the CFScore of the entity. This comparison is

done twice: once for all the entities in the network, the other for just the recipients.

Calculating the Pearson correlation coefficient for all entities gives ρ = 0.9133. The

correlation coefficient for just the recipient limited set is ρ = 0.8715. This indicates

that, for Alaska, the CFScore is highly correlated with the community assignments.

Similar graphs can be seen with Figures 4.3 and 4.4 which show the CFScores and

the community assignments for each of the four sub-communities, both for all entities

and just recipients. Tables 4.4, 4.5, and 4.6 provide context for the 4-community

assignments. The results show the intra-community records for those entities who

have a fuzzy assignment value of at least 0.5. The resulting analysis shows the money

donated strictly within the communities, excluding cross-community records.

In Table 4.4, the column labeled % Dollars shows what percentage of money

that community and party comprise of all donations to that party. Thus, the intra-
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Figure 4.3: Fuzzy Community Assignment for Alaska Contribution Network, All
Years, Four Communities
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Figure 4.4: Fuzzy Community Assignment for Alaska Contribution Network, Recipi-
ents Only, Four Communities
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community giving in C1 makes up 59.43% of all donations to Republicans within

the Alaska dataset. From this table, it can be seen that communities C1 and

C2 identify primarily with Republicans and C3 and C4 with Democrats. More in-

depth analysis shows the makeup of the donations is markedly different within the

communities. Table 4.5 further breaks down the data by whether or not the recipient

won their election. From this, it can be seen that the intra-community giving in

C1 contains 67.07% of the donations to Republican winners. It also has a large

number of donations to Republican losers as well as Republican affiliated committees

or incumbents. C2 donated much more to the losing Republicans than winners, a

considerable difference from C1, showing that the losing candidates in this community

received money from a different set of people as a whole.

Table 4.7 shows the results of the analysis being expanded to all contributions

from the donors in C2, including to those recipients in other communities. From this,

17.95% of the money and 21.18% of the raw number of contributions to Republican

losers came from the donors in this community. However, Republican winners only

received 9.26% of dollars and 12.06% of number of records from donors in this

community, indicating this community consists of, on average, smaller value donations

that did not target winning candidates as effectively as those in C1. Based on this, C1

appears to donate perhaps more strategically than C2. This is supported by winning

Democratic candidates receiving 18.90% of their money from the donors in C1 despite

that group being heavily biased towards Republicans. Communities C3 and C4 mirror

this slightly where the ratio of money from donors in C4 favored winning candidates

despite losing Democratic candidates raising more money overall. Similar results can

be found in Table 4.6, which analyzes incumbency (Incumbent ‘I’, Open Seat ‘O’,

and Challenger ‘C’).

Such analysis can be applied to all levels of the hierarchy. At the level with the
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Table 4.4: Intra-community Records by Party for Alaska Contribution Networks with
Four Communities

C Party Total Dollars % Dollars Records % Records

C1 Republican $13,296,884.92 59.43% 38,811 60.68%

C1 Democratic $573,678.84 2.94% 1,651 2.11%

C1 Independent $102,579.57 3.02% 368 10.16%

C2 Republican $1,590,281.52 7.11% 5,794 9.06%

C2 Independent $354,543.30 10.45% 207 5.72%

C3 Democratic $10,731,133.80 55.05% 47,798 61.11%

C3 Independent $2,349,740.06 69.29% 1,724 47.60%

C3 Republican $11,420.00 0.05% 28 0.04%

C4 Democratic $1,107,494.10 5.68% 6,924 8.85%

C4 Independent $6,177.11 0.18% 32 0.88%

C4 Republican $1,860.00 0.01% 10 0.02%

highest number of communities, the communities start to become much more focused

on the type of individual that strongly identifies with the community. Many of the

communities become centered around specific districts that are more isolated in their

donations when compared with other districts.

To make sure the resulting communities still represent ideology well after being

split into individual 2-year cycles, a similar test was performed on the temporal

datasets for Alaska. As before, looking for two communities resulted in splits where

the fuzzy community assignment was highly correlated with the CFScore for that

entity. Table 4.8 shows the correlations for each of the cycles for both all entities

and just the recipients / candidates. For Alaska, these fuzzy memberships are highly
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Table 4.5: Intra-community Records by Party and Winner for Alaska Contribution
Networks with Four Communities

C Party Winner Total Dollars % Dollars Records % Records

C1 Republican W $9,274,341.69 67.07% 27843 67.94%

C1 Republican L $3,085,176.21 45.36% 8868 45.07%

C1 Republican - $937,367.02 53.72% 2100 63.46%

C1 Democratic W $512,676.84 5.92% 1452 4.06%

C1 Democratic L $61,002.00 0.67% 199 0.54%

C1 Independent L $59,312.15 11.44% 220 11.25%

C1 Independent - $42,527.42 1.53% 146 9.99%

C1 Independent W $740.00 0.84% 2 0.98%

C2 Republican L $963,487.38 14.17% 3250 16.52%

C2 Republican W $626,794.14 4.53% 2544 6.21%

C2 Independent - $344,143.30 12.36% 152 10.40%

C2 Independent L $10,400.00 2.01% 55 2.81%

C3 Democratic L $5,426,429.70 59.45% 23968 64.61%

C3 Democratic W $4,280,814.58 49.40% 20627 57.63%

C3 Independent - $2,101,182.50 75.45% 663 45.38%

C3 Democratic - $1,023,889.52 60.25% 3203 60.13%

C3 Independent L $226,996.56 43.77% 1026 52.45%

C3 Independent W $21,561.00 24.55% 35 17.07%

C3 Republican W $7,425.00 0.05% 19 0.05%

C3 Republican L $3,995.00 0.06% 9 0.05%

C4 Democratic W $759,435.37 8.76% 4123 11.52%

C4 Democratic L $348,058.73 3.81% 2801 7.55%

C4 Independent L $5,987.11 1.15% 30 1.53%

C4 Republican L $1,860.00 0.03% 10 0.05%

C4 Independent - $190.00 0.01% 2 0.14%

correlated with the CFscore.

By using the procedure outlined before, it is possible to track community

behavior over time. Looking at one of the communities originating in 2004, analysis

shows the candidates within that community are primarily Republicans running

for districts in and around Fairbanks. This community continues to show up in
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Table 4.6: Intra-community Records by Party and Incumbency for Alaska Contribu-
tion Networks with Four Communities

C Party Incumbency Total Dollars % Dollars Records % Records

C1 Republican I $5,044,515.85 62.01% 16,068 66.60%

C1 Republican O $3,724,538.79 56.25% 9,811 53.71%

C1 Republican C $2,785,329.26 56.75% 8,771 56.69%

C1 Republican - $932,467.02 54.28% 2,093 64.12%

C1 Republican I,O $810,034.00 81.65% 2,068 72.92%

C1 Democratic I $439,957.07 6.47% 1,228 4.42%

C1 Democratic O $105,846.77 1.83% 324 1.46%

C1 Independent C $58,512.15 16.76% 216 14.18%

C1 Independent - $42,527.42 1.53% 146 10.02%

C1 Democratic C $27,875.00 0.53% 99 0.43%

C1 Independent O $1,540.00 0.72% 6 1.10%

C2 Republican C $572,524.29 11.66% 1,944 12.56%

C2 Republican O $510,127.02 7.70% 1,742 9.54%

C2 Republican I $507,630.21 6.24% 2,108 8.74%

C2 Independent - $344,143.30 12.37% 152 10.43%

C2 Independent O $10,400.00 4.84% 55 10.09%

C3 Democratic C $3,380,720.36 64.29% 15,597 67.78%

C3 Democratic O $3,274,571.83 56.74% 13,873 62.54%

C3 Democratic I $3,054,340.09 44.95% 15,131 54.51%

C3 Independent - $2,097,732.50 75.42% 659 45.23%

C3 Democratic - $1,021,501.52 61.20% 3,197 60.73%

C3 Independent C $177,488.64 50.84% 883 57.98%

C3 Independent O $56,007.92 26.06% 156 28.62%

C3 Independent I $18,511.00 40.38% 26 26.80%

C3 Republican I $5,700.00 0.07% 12 0.05%

C3 Republican C $4,995.00 0.10% 11 0.07%

C3 Republican O $725.00 0.01% 5 0.03%

C4 Democratic I $691,759.31 10.18% 3,543 12.76%

C4 Democratic C $227,493.42 4.33% 2,067 8.98%

C4 Democratic O $188,241.37 3.26% 1,314 5.92%

C4 Independent O $3,120.79 1.45% 14 2.57%

C4 Independent C $2,866.32 0.82% 16 1.05%

C4 Republican C $1,860.00 0.04% 10 0.06%

C4 Independent - $190.00 0.01% 2 0.14%

subsequent years. Figure 4.5 shows the amount of money donors within this group

gave to Republicans over the years. As can be seen from the graph, since 2006, the

amount of money donated to losing candidates over the years has been much higher

than donations to winning candidates. For Republican candidates, the total amount

spent to winners and losers was calculated over the years. The percentages given in
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Table 4.7: All Records in Alaska for C2 with Four Communities

C2 Republican W $1,280,688.01 9.26% 4,943.00 12.06%

C2 Republican L $1,221,147.61 17.95% 4,167.00 21.18%

C2 Independent - $354,082.80 12.71% 191.00 13.07%

C2 Democratic W $127,162.00 1.47% 469.00 1.31%

C2 Republican - $116,426.04 6.67% 252.00 7.62%

C2 Democratic L $72,394.86 0.79% 270.00 0.73%

C2 Independent L $18,560.00 3.58% 92.00 4.70%

C2 Independent W $7,154.00 8.15% 22.00 10.73%

C2 Democratic - $4,650.00 0.27% 10.00 0.19%

Table 4.8: Correlation of Fuzzy Community Assignment and CFScore for Alaska
Networks by Election Cycle

Cycle Correlation for All Entities Correlation for Recipients

2004 0.8984 0.8384

2006 0.9162 0.9158

2008 0.9126 0.8480

2010 0.9226 0.8923

2012 0.9057 0.8238

the figure show how much of that money came from this group that focuses more on

Fairbanks elections.

4.4.2 New York

In order to highlight different behavior of donors in different states, New York

was also analyzed in a similar manner. As before, communities were found for the
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Figure 4.5: Donations from Community Members to Alaskan Republicans

entirety of the state, regardless of the year in which a donation was made. This

resulted in a network of 69,369 entities and 264,223 edges. Unlike Alaska, when

splitting the network into two communities, the resulting fuzzy assignment values do

not have a high Pearson correlation coefficient when compared to the CFScore. This

is even true if the same analysis is performed with weighted edges where the weights

correspond to the amount of the contributions to an entity.

Calculating the correlation coefficient for all entities within New York at the top

hierarchy gives a value of ρ = 0.4451. For just the recipients within NY, ρ = 0.2921.

As seen, CFScore is not as well correlated with the communities. Instead, in an

attempt to better understand the composition of the communities at the top level,

we first look at a strict partitioning of the two top communities where the fuzzy

community assignment value must be greater than 0.5. Analyzing the candidate
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Figure 4.6: Fuzzy Community Assignments for New York Contribution Networks, All
Years, Four Communities

information within these communities shows all the candidates for city offices in

New York are within C2. While not composed solely of city level candidates, the

dominating factor for this breakdown appears to be geography and not ideology.

As a comparison to Alaska, Figures 4.6 and 4.7 show the community assignment

scores compared with CFScore for all of New York when split into four sub-

communities. At a glance, these graphs are different in that they do not show the

tighter groupings of CFScores present in the Alaska data, further indicating that the

CFScore ideological estimation is not a good explanation for the patterns of donations

at this level.

Within the data, New York City recipients do not have party, incumbency, or

status information provided. Due to this, breaking down the data into those categories

requires eliminating the city data. After removing that data, Table 4.10 shows the

breakdown of money by party and status for each community. Like the analysis of
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Figure 4.7: Fuzzy Community Assignments for Recipients in New York Contribution
Networks, All Years, Four Communities

Alaska before, the data for this table is limited to intra-community donations. From

this, it is possible to see that the data has been separated into three communities with

primarily Democratic recipients, and only one community for Republican recipients.

This indicates that the pattern of donation for Democrats is not as unified as those

for Republicans. From the Democratic communities, two of them contain high

percentages of the money donated to winning Democratic candidates. The third

contains a large percentage of donations to losing Independents. Considering the

average and standard deviation of the ideological measure of recipients in C3 is notably

different than C1 and C4, this indicates the donation patterns of this group are more

highly ideologically motivated, especially since the recipients come from a wide variety

of districts. The average and standard deviation for the CFScore is shown in Table

4.9.

To better see the difference between the Democratic communities C1 and C4,
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Table 4.9: CFScore Statistics for Four Communities Level in New York Contribution
Networks

Community Average CFScore Std. Dev

C1 -0.458 0.492

C2 0.015 0.626

C3 -0.927 0.989

C4 -0.474 0.497

Table 4.11 shows the money grouped by party and incumbency. Due to the size of

this table, any row in the table containing less than $100,000 has been removed. The

threshold here is larger than in Wisconsin due to the higher overall contribution totals.

These rows only represent a small fraction of the overall data relevant for a community.

The grouping in this table reveals that C4 contains most of the Democratic committees

and political parties. Based on this information, the candidates in C1 did not receive

as much money from those who also donated to political parties directly due to the

information gleaned by the community splitting. This demonstrates that despite the

CFScore correlation not performing as well as in Alaska, there is still considerable

and valuable information to be gained from the community assignments.

As noted in the overall New York results, CFScore does not correlate as well as in

other states overall. This poor performance on correlation continues when looking at

each individual year, as shown in Table 4.12. Interestingly, the two worst performers—

2008 and 2012—have almost no data for New York City candidates. Since this seems

counter intuitive given the full state results, we looked at the demographics of the

candidates in the 2012 dataset.

Viewing the communities at the top hierarchy, what has happened is that a

small set of candidates who nearly isolated from the rest of the network due to their
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Table 4.10: Intra-community Records by Party and Winner for New York Contribu-
tion Networks with Four Communities

C Party Status Total Dollars % Dollars Records % Records

C1 Democratic W $28,288,964 23.78% 37286 25.87%

C1 Democratic L $10,653,103 26.81% 5029 15.04%

C1 Democratic - $6,154,370 8.44% 2584 12.57%

C1 Republican W $2,460,171 4.09% 6012 6.25%

C1 Republican L $927,944 1.78% 3176 9.74%

C1 Independent L $442,733 10.62% 714 11.68%

C1 Independent W $97,959 23.68% 216 27.73%

C2 Republican - $49,127,303 74.26% 17167 80.32%

C2 Republican W $42,323,840 70.35% 71341 74.12%

C2 Republican L $31,621,968 60.75% 19204 58.91%

C2 Democratic W $11,350,791 9.54% 22187 15.40%

C2 Democratic L $6,916,774 17.41% 7698 23.03%

C2 Independent L $1,606,465 38.53% 2387 39.05%

C2 Democratic - $503,881 0.69% 18 0.09%

C2 Independent - $386,809 39.49% 52 69.33%

C2 Independent W $236,507 57.17% 452 58.02%

C3 Democratic W $3,854,056 3.24% 13763 9.55%

C3 Democratic L $1,338,103 3.37% 2478 7.41%

C3 Independent L $1,061,986 25.47% 1553 25.41%

C3 Republican L $497,078 0.95% 1146 3.52%

C3 Republican W $83,925 0.14% 55 0.06%

C3 Independent W $20,275 4.90% 24 3.08%

C4 Democratic - $42,182,503 57.87% 10171 49.46%

C4 Democratic W $31,161,011 26.20% 28864 20.03%

C4 Democratic L $10,341,808 26.03% 11074 33.13%

C4 Republican L $7,324,020 14.07% 2837 8.70%

C4 Republican W $4,468,078 7.43% 5295 5.50%

C4 Republican - $1,685,346 2.55% 312 1.46%

C4 Independent L $169,938 4.08% 427 6.99%

C4 Independent - $125,000 12.76% 4 5.33%

donor groups being considerably different than the rest of the candidates’ groups.

They were not completely disconnected from the rest of the network, however,
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Table 4.11: Intra-community Records by Party and Incumbency for New York
Contribution Networks with Four Communities

C Party Incumbency Total Dollars % Dollars Records % Records

C1 Democratic I $22,488,481 24.90% 32056 26.47%

C1 Democratic O $18,254,466 23.69% 8701 20.89%

C1 Democratic - $2,480,785 5.31% 1015 7.99%

C1 Republican I $2,313,709 3.79% 5689 5.97%

C1 Democratic C $1,872,705 10.69% 3127 13.79%

C1 Republican C $600,918 2.31% 2275 13.30%

C1 Republican O $466,658 1.49% 1193 6.50%

C1 Independent O $227,495 16.87% 331 14.44%

C2 Republican - $44,860,514 74.69% 15759 81.22%

C2 Republican I $39,836,834 65.32% 69082 72.44%

C2 Republican O $24,121,450 77.12% 13134 71.56%

C2 Republican C $14,254,312 54.75% 9737 56.91%

C2 Democratic I $9,624,672 10.66% 19561 16.16%

C2 Democratic C $4,383,723 25.02% 5517 24.33%

C2 Democratic O $4,241,036 5.50% 3604 8.65%

C2 Independent I $794,763 46.11% 1396 51.59%

C2 Independent O $539,883 40.03% 751 32.75%

C2 Democratic - $522,015 1.12% 1221 9.61%

C2 Independent C $514,400 33.94% 624 34.27%

C2 Independent - $380,734 39.07% 120 82.19%

C3 Democratic I $2,331,485 2.58% 10742 8.87%

C3 Democratic C $1,845,159 10.53% 2799 12.35%

C3 Democratic O $988,890 1.28% 2664 6.40%

C3 Independent C $683,657 45.10% 670 36.79%

C3 Republican C $420,248 1.61% 984 5.75%

C3 Independent O $243,126 18.02% 689 30.05%

C3 Independent I $155,478 9.02% 218 8.06%

C4 Democratic - $32,700,882 70.05% 6977 54.93%

C4 Democratic O $22,967,017 29.81% 12158 29.19%

C4 Democratic I $22,220,944 24.60% 23758 19.62%

C4 Democratic C $5,796,479 33.09% 7216 31.83%

C4 Republican C $5,681,259 21.82% 1449 8.47%

C4 Republican I $4,747,704 7.78% 5660 5.94%

C4 Republican - $1,802,519 3.00% 386 1.99%

C4 Republican O $1,245,962 3.98% 949 5.17%

C4 Independent - $125,000 12.83% 4 2.74%

and so not removed from the spectral clustering. Looking at the community as a

non-overlapping community, it consisted of seven candidates, both Democrats and

Republicans, although all their CFScores are less than −0.5. All but one of these

candidates lost their election. This leaves the vast majority of the candidates in
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Table 4.12: Correlation of Fuzzy Community Assignment and CFScore for New York
Networks by Election Cycle

Cycle Correlation for All Entities Correlation for Recipients

2004 0.1215 0.1209

2006 0.6139 0.5050

2008 0.0173 0.0330

2010 0.1207 0.1551

2012 0.0575 0.0875

the other community. Likewise, the number of contributors in this community is

small. These 42 donors gave to only 43 different candidates in NY 2012. Only fifteen

candidates received money from more than one of these donors. Only nine received

money from more than two, seven of those being part of this community.

Moving down the hierarchy, we instead look at the results of splitting the network

into 4 sub-communities. Observing the party affiliation of candidates within these

groups, even splitting into four communities does not separate well by expected

ideology. One of the interesting communities within this group is C4. Within

this group are 70 Democrats, 40 Republicans, and a single third-party individual.

On average, the candidates had a CFScore of −0.26 with a standard deviation

of 0.44. This group happens to be comprised of mostly incumbents and includes

many politicians in leadership roles, regardless of party. Based on the network

of contributions, these individuals have better within community connections than

with the rest of their respective parties. Moving backwards in time, connecting this

community with its corresponding community in 2010 returns many of the same

candidates. However, the group is much more closely aligned ideologically than in

2012.
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Figure 4.8: Fuzzy Community Assignments for Wisconsin Contribution Networks, All
Years, Four Communities

4.4.3 Wisconsin

For Wisconsin, creating the network of contributions across all years as before

results in one which contained 123,396 nodes and 592,407 edges. Part of the reason

for this network being larger are the circumstances surrounding the 2012 recall and

regular elections. As in Alaska, the correlation coefficient for CFScore and fuzzy

community assignment at the top-level hierarchy is high at ρ = 0.9745 for all entities

and ρ = 0.9408 for recipients. Figures 4.8 and 4.9 plot community assignment and

CFScore when splitting the network into 4 sub-communities.

As before, this data is broken into two tables—Tables 4.13 and 4.14—to help

make sense of the resulting communities. Due to the size of Table 4.14, rows with

less than $10,000 are removed. Viewing the party and status first, it is apparent

that C1 and C4 are made almost entirely of Democratic candidates. These two

communities are notably different in that one contains most of the money to winning
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Figure 4.9: Fuzzy Community Assignments for Recipients Wisconsin Contribution
Networks, All Years, Four Communities

candidates whereas the other, C4, has much higher proportion of money going

to losing candidates. The reason for this is explained better when viewing the

incumbency information. With community C1, much of that money went to left-

leaning incumbents, where community C4 is focused much more on challengers.

Community C3 is dominated by Republicans. C2 also is mostly Republican,

but it is more evenly represented with other parties. Looking at the party and

incumbency dataset reveals even more concerning these communities. From there, it

becomes apparent that community C2 is focused on incumbency in making donations.

While the CFScores of the recipients indicate they are conservative leaning, this

group is more ideologically moderate than the others, as shown in Table 4.15. Thus,

the community decomposition reveals an ideologically moderate set of incumbent

recipients who both share a considerable donor pool, as well as that pool being

considerably different than others in their parties.

In individual election years, Wisconsin also shows high correlation at the top
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Table 4.13: Intra-community Records by Party and Winner for Wisconsin Contribu-
tion Networks with Four Communities

C Party Status Total Dollars % Dollars Records % Records

C1 Democratic W $23,874,573 45.89% 168189 27.21%

C1 Democratic - $21,395,110 85.06% 102666 73.40%

C1 Democratic L $18,435,910 26.56% 98571 14.69%

C1 Independent L $5,246,483 37.73% 22032 30.09%

C1 Independent W $3,546,579 31.03% 17480 37.83%

C1 Independent - $1,892,033 53.42% 9102 57.82%

C1 Republican L $2,025 0.00% 12 0.01%

C2 Republican W $3,531,966 3.99% 29187 4.84%

C2 Republican - $3,163,367 13.48% 11418 7.75%

C2 Democratic W $1,624,672 4.68% 12330 2.99%

C2 Independent W $1,233,344 10.79% 1644 3.56%

C2 Democratic L $1,196,893 1.72% 6399 0.95%

C2 Republican L $825,719 1.24% 5346 1.80%

C2 Democratic - $232,955 1.85% 1626 2.33%

C2 Independent L $194,537 1.87% 604 1.10%

C2 Independent - $51,600 0.73% 120 0.38%

C3 Republican W $113,286,410 85.25% 789213 87.29%

C3 Republican L $60,748,953 91.27% 265632 89.32%

C3 Republican - $28,558,583 81.16% 194622 88.08%

C3 Independent W $8,034,255 52.73% 24848 40.33%

C3 Independent L $2,023,522 19.40% 10152 18.49%

C3 Independent - $707,469 6.66% 5079 10.76%

C3 Democratic L $102,246 0.22% 486 0.11%

C3 Democratic W $98,922 0.57% 219 0.11%

C4 Democratic L $25,814,264 37.20% 448410 66.84%

C4 Democratic W $9,517,339 18.29% 313854 50.79%

C4 Independent L $4,721,538 45.27% 29636 53.97%

C4 Independent - $3,199,465 45.16% 20289 64.45%

C4 Democratic - $2,376,667 6.30% 41916 19.98%

C4 Independent W $1,225,168 16.08% 8340 27.07%

C4 Republican L $4,140 0.02% 18 0.02%
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Table 4.14: Intra-community Records by Party and Incumbency for Wisconsin
Contribution Networks with Four Communities

C Party Incumbency Total Dollars % Dollars Records % Records

C1 Democratic I $31,734,548 49.40% 182556 32.33%

C1 Democratic C $12,588,132 42.41% 72657 17.60%

C1 Independent I $5,561,793 66.01% 28194 52.82%

C1 Democratic O $4,792,716 23.17% 31058 23.25%

C1 Democratic - $4,064,613 62.97% 22542 59.04%

C1 Independent O $1,101,560 14.98% 5786 25.69%

C1 Independent C $700,486 55.75% 525 5.40%

C1 Independent - $572,211 9.27% 1338 6.27%

C2 Republican I $4,169,208 3.92% 33117 4.25%

C2 Democratic I $2,389,661 3.72% 17973 3.18%

C2 Republican - $977,313 10.79% 3620 6.37%

C2 Independent I $754,941 13.44% 552 1.55%

C2 Democratic O $392,325 1.90% 1426 1.07%

C2 Republican O $330,243 0.79% 1470 0.85%

C2 Independent O $226,346 3.08% 738 3.28%

C2 Democratic C $76,372 0.51% 243 0.12%

C2 Republican C $59,775 0.47% 336 0.47%

C2 Independent - $27,525 0.30% 135 0.42%

C3 Republican I $88,429,229 83.17% 664302 85.33%

C3 Republican O $56,808,707 90.48% 234558 90.09%

C3 Republican C $23,430,706 91.61% 131798 92.80%

C3 Republican - $7,403,317 81.76% 50970 89.63%

C3 Independent O $3,556,518 48.35% 6848 30.41%

C3 Independent C $1,741,064 46.19% 10848 37.20%

C3 Independent - $818,274 8.84% 1182 3.69%

C3 Independent I $356,687 6.35% 9027 25.37%

C3 Democratic I $98,922 0.46% 219 0.12%

C3 Democratic C $89,528 0.60% 429 0.21%

C4 Democratic C $21,088,075 47.37% 479613 77.45%

C4 Democratic I $6,323,537 9.84% 222666 39.44%

C4 Democratic O $5,693,939 27.53% 58194 43.57%

C4 Independent - $3,174,568 51.45% 19677 92.16%

C4 Independent O $2,092,836 28.45% 6494 28.84%

C4 Independent C $1,064,874 84.74% 15189 156.25%

C4 Democratic - $585,250 9.07% 4870 12.76%

C4 Independent I $280,799 5.00% 4164 11.70%

hierarchy when comparing community assignments and CFScore (Table 4.16). With

the upswing in donations in 2012, the correlation between ideology and communities

is exceptionally high. This seems reasonable given the apparent polarizing nature of

the elections. Viewing some of the data through time, we isolated the community to
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Table 4.15: CFScore Statistics for Four Communities Level in Wisconsin Contribution
Networks

Community Average CFScore Std. Dev

C1 -1.175 0.398

C2 0.389 0.570

C3 1.148 0.386

C4 -1.610 0.222

Table 4.16: Correlation of Fuzzy Community Assignment and CFScore for Wisconsin
Networks by Election Cycle

Cycle Correlation for All Entities Correlation for Recipients

2004 0.9196 0.9186

2006 0.9457 0.9452

2008 0.9233 0.9378

2010 0.9427 0.9357

2012 0.9808 0.9561

which Scott Walker belonged in 2012. This community is interesting as there was a

surge in donations due to a controversial recall election. It is possible to backtrack

and look at this community in different years to see how it changed over time. Table

4.17 shows the average CFScores and standard deviation of the recipients and donors

within that community. This particular community has rather stable CFScore values,

despite the different circumstances.
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Table 4.17: CFScore Statistics for Walker Community in Wisconsin across Election
Cycles

Cycle Ave. Recipient CFScore Std. D. Ave. Donor CFScore Std. D.

2004 1.036 0.475 0.882 0.373

2006 1.161 0.575 1.069 0.283

2008 1.112 0.389 0.994 0.340

2010 1.249 0.463 1.115 0.224

2012 1.077 0.570 1.088 0.331

4.5 Conclusion

In this section we augmented hierarchical fuzzy spectral clustering to track

communities in social networks through time. Despite the volatile nature of the

campaign finance datasets, most communities analyzed were able to be tracked

through the years by use of a fuzzy similarity metric. Analyzing the communities

showed how behavior of the group, and individuals, changed over time.

For Alaska, analyzing the individuals who change communities at the highest

level highlights how their donating behavior changes from year to year. For many

of those who have moderate CFScores, the CFScores of the candidates to whom

they donate may vary considerably, but of which the average CFScore is moderate.

In individual years, the fuzzy clustering scheme highlights how they may donate

primarily to a single ideology in a single year. As an example, consider one of the

entities present in Alaska 2004 and 2006.2. The CFscore for this entity is −0.54.

Viewing the target party and CFscore of this entity’s donations shows most of the

targets are Democrats and have a lower CFscore. This holds true in 2004 where the

2This entity is identified by the entity resolution on the dataset by Bonica ID 52297646020
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donor is solidly in the lower CFscore community. In 2006, however, even though

the entity donated primarily to Democrats, only one of those Democrats was not

moderate. The others had near zero CFScores. Adding the Republican recipients

to that total results in the donor being primarily in the Republican community.

Comparing to the full dataset for Alaska, that same entity is mostly within the low

CFscore community, but also a small assignment within the high CFscore group,

which follows closely with its ideological estimate.

Despite the top-level results not having high correlation, the communities in

New York provide a great amount of information on donation habits. Analyzing the

communities in depth helps to reveal more information about the overall donation

patterns within New York politics. From there it was possible to find a community

that appeared to have more ideological focus in the donations. It also showed that

the donor network of Republicans appears to be tighter than that of Democrats.

Despite the anomalous events regarding the recall election in Wisconsin, the

results of the temporal hierarchical fuzzy spectral clustering showed stability in

the discovered communities. It was possible to track the communities at the top

hierarchies through all the individual years. The resulting communities’ assignments

had high correlation with existing ideological metrics for the recipients and candidates.

Hierarchical fuzzy spectral clustering is able to group entities logically within

political contribution networks. At two communities, the groups closely follow

previous estimates of ideology. Splitting networks into more communities highlights

differing patterns of donations beyond ideological scores within a state and in different

election cycles. The community assignment values could be useful in other regression

analyses in order to better identify correlations. Using ideological estimates and

communities, it was possible to analyze entities who shift ideologies over time, as well

as view groups who differ in their type of donations beyond ideology.
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CHAPTER FIVE

ASSOCIATION RULE MINING

Based on the results of the previous chapters, one issue that occurs is determining

useful semantics for each of the communities. Automated tools for analyzing the types

of data within and between the different clusters would aid in understanding the actual

utility of community detection. Using additional features of the data used in creating

the campaign finance social networks, it is possible to create a transaction database

describing the donation of money to political actors. These transactions include

additional information about the donor and recipient. As examples, the recipient

information includes party, incumbency, status of the election, district, as well as

other information. Donor information varies by state according to what is required

to be filed, but includes address, employer, occupation, and industry codes. Then

these transactions can be used to establish relationships between nodes to generate a

social network.

The previous chapters (3 and 4) have shown the effectiveness of finding

hierarchical fuzzy communities within these networks in relation to ideological

estimates. Even still, a better analysis of the patterns within each of the communities

is desired. To that end, we apply association rule mining to the information contained

within the transactions. The rule mining is conditioned on the fuzzy community

assignment of the entities within those transactions. Motivating this approach is

that donations can be made for a variety of reasons. Some of this is captured in the

descriptive information regarding both the donor and the recipient. One individual

may focus donations on incumbents within a set of districts, for example. By treating

each of the components of an individual transaction as elements in a market basket,
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the rules found highlight associations in the pattern of donations. This allows us to

obtain rules characterizing these communities. Given the hierarchy of communities,

more importantly it is possible to analyze the differences in rules arising between

communities, especially in those that share a parent in the hierarchy.

5.1 Background

The results in Chapters 3 and 4 the hierarchical fuzzy spectral clustering found

communities are correlated with ideological estimates. Further, in cases where the

communities do not reflect ideology as well as in other areas, the resulting communities

still contain useful information on patterns of donations. Part of the issue with

these communities, however, is their “understandability.” Analyzing the resulting

communities, especially in how they are different from each other, can be difficult and

sometimes only the obvious is discovered. Rule mining is proposed in this chapter as

a possible method for assisting in that area. The following sections introduce some

background on association rule mining.

5.1.1 Frequent Itemsets

In classical frequent itemset mining, we are dealing with a set of binary attributes

called items. Additionally, there exists a database D of transactions T. Each

transaction t is a set of items that are a part of that transaction. The support

of an item in xi is the percentage of transactions in the database that contain xi, i.e.,

s (xi) =
|t : xi ∈ t|
|T|

.

A frequent itemset fi = {x1, . . . , xk} is combination of items in the database where

together they have a support s (fi) = |t:xi∈t|
|T| ≥ smin. Such frequent items are useful in



95

that they provide insight into trends within the database. Calculating all the frequent

items in the data due to the exponential combinations of possible itemsets. Apriori

was an early algorithm that aided in finding these frequent itemsets.

5.1.2 A Priori

An early rule mining algorithm uses the concept that a subset of a frequent

itemset must also be large by definition [95]. The Apriori algorithm performs multiple

passes, starting with finding the large 1-itemsets. These are the set of frequent items

where the items f are found that have s (fi) ≥ smin. The next passes generate new

candidate itemsets based on the superset of previous itemsets. Then any non-frequent

items are removed, and the algorithm continues. Algorithm 5.1 details the method

for generating the large frequent itemsets from the database.

Once we obtain frequent itemsets, there is still more that can be done to gain

insight into the relationships of the items. There are a couple of important statistics

that assist in revealing additional relationships in the data. The confidence of a set

of items is how likely an item is part of a transaction if the other items are part of

the transaction. This is measured by the confidence

conf (xi → xj) =
s (xi, xj)

s (xi)
.

Lift is another important measure as it describes how likely it is that item xj is part

of the transactions with xi while controlling for the frequency of xi. This measure is

defined as

lift (xi → xj) =
s (xi, xj)

s (xi)× s (xj)
.

When the lift for a pair of items xi → xj is greater than one, then xj is more likely

to be a part of a transaction if xi is part of that transaction. These measure form
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Algorithm 5.1 Apriori Algorithm for Large Itemsets

function LargeItemsets(database)

L = ∅

F = ∅

while F 6= ∅ do . Make a pass over the dataset

Candidate set C = ∅

for database tuple t do

for itemset f ∈ F do

if cf ∈ C then

cf .count = cf .count+ 1 . Add to the count if it is part of the candidate set

else

cf .count = 0 . If not part of the candidate, reset

C = C + cf

end if

end for

end for . Consolidate

F = ∅

for itemsets c ∈ C do

if count (c) / |D| > smin then

L = L + c

end if

if c should be used as a frontier then

F = F + c

end if

end for

end while

end function

the basis of evaluating the association rules discovered later and highlighting patterns

that may be of use in providing interpretability to the community assignments.
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A similar process can be used to create rules from the data based on these

itemsets. One of the augmentations to association rule mining was to integrate

classification with the rule mining [96]. As noted in their work, the framework they

developed was intended to help solve an “understandability problem” where rules

produced by classification are difficult to understand. The algorithm Classification

Based on Associations, or CBA, contains a rule generator and a classifier builder.

First, a set of frequent ruleitems is found from within a transactional database. One

example listed is 〈{(V1, 1) , (V2, 1)} , (class, 1)〉 where V1 and V2 are attributes. From

these set of frequent rules, multiple passes are performed over the data to generate

candidate rules. This list is refined to create the final rules for use in a classifier, the

results of which gave an improvement on C4.5.

5.2 Association Rules Across Communities

Within this chapter, the network used is based on political donations among

candidates, committees, and donors. Each edge in the network represents a

transaction between two entities. These transactions form both the information used

in creating the community, as well as the transactions used in performing association

rule mining afterwards.

We begin in the same manner as described in Chapter 3. A network is

created from the campaign finance social network and we use hierarchical fuzzy

spectral clustering to find communities within the network. As described before,

once we obtain these communities, it can be difficult to analyze all the communities

to determine behavior. In order to provide interpretability to the results, these

discovered communities are used to create partitions in the transaction data to use in

association rule mining. For the association rule mining, each of these transactions

are tagged with the relevant metadata fields to create lists of features. Table 5.1 has
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Table 5.1: Example transactions for political donations

District Status Party Office Incumb. Donor Type Industry Zip

Assembly 042 Lost D House C Individual Uncoded 92220

Assembly 031 Won D House I Non-Individual Health 95814

Senate 029 Won D Senate O Non-Individual Party 94518

example rows from the data.

Using the fuzzy community values from the clustering procedure, the transac-

tions within the full dataset are separated based on the fuzzy community assignments

of the donors within a community. We allow membership for node i in a community j

if ui,j ≥ 0.3. This creates overlapping communities and overlapping partitions of the

underlying transactions. Using the Apriori Association Rule Mining package within

R, association rules are found within the data based on the membership values of

the donors. This procedure is performed for each community at each level of the

hierarchy.

Since we are interested in discriminatory rules between communities, the focus

of the analysis are on communities who share a parent. Any pair of communities

could be analyzed in the same manner, however. Consider two sibling communities,

Ci,m and Ci,n. First, association rules are discovered for the transactions belonging

to each of those communities, generating rule sets Ri,m and Ri,n. Next, the two rule

sets are compared against each other to generate categories of rules. First, the rules

in common can be found by taking the intersection of the two sets. Such rules help

identify overall trends in the data but are not as useful as discriminatory information.

More interesting is the set of conflicting rules between the sets. This conflict set

can be determined from the rule sets by using the intersection of the antecedents as

A = ant (Ri,m) ∩ ant (Ri,n). For each of the antecedents in common, we determine
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Table 5.2: Fields used for rule association

Field Description Examples

Donor Type An individual or non-individual Individual, Non-Individual, Other

Industry Category for donor industry Health, Labor, Agriculture, etc.

Zip Code ZIP Code reported by the donor 94131, 94028, etc.

District The area a candidate represents Assembly 027, Senate 029, etc.

Office Type Legislative body for the office House, Senate, Gubernatorial, etc.

Party Party affiliation of the candidate Democratic, Republican, etc.

Status Candidate won or lost their election Won, Lost, Withdrew, etc.

Incumbency Incumbency status of candidate Open, Incumbent, Challenger

if there is a conflict in the consequents between the rules in Ri,m and Ri,n. The

resulting conflict sets provide information on discriminative donation patterns within

that community. Additional information can be gleaned from the rules where the

consequent is the same, but the antecedent is different.

The data used in this chapter is taken from the National Institute on Money

in Politics. This particular dataset uses data from California in 2016. As before,

the data is used to generate a social network where edges in the network represent

donations between vertices in the graph. In addition, we use additional features of the

transactions that includes additional information such as party of recipient, industry

categorization of donors, etc. For the analysis below, a variety of fields were selected

for mining association rules for both donors and recipients (Table 5.2. While there

are more fields within the data, many of them are generalizations or specializations of

other fields and including them would create rules defining those relationships instead

of finding more interesting relationships.

For this research, data for each state is analyzed separately. We do not co-mingle
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the state-level datasets since much of the analysis is focused on state elections. In

addition, communities found in combined state data tend to cluster around each state

anyway, instead of across map boundaries. Following prior work in political science,

the network of relationships is subject to filtering [78]. The primary filter is that any

entity who gave or received money only once is removed from consideration. This

eliminates any nodes connected to the network by a single edge. As a second filter,

any isolated subnetwork which is not connected to the largest set of connected nodes

is also removed since any such group becomes its own community by default.

5.3 Results

For state elections, California sees the most money donated to candidates and

committees within that state1. For this reason, we focus on that state for the analysis

presented here. For just candidates and committees involved in 2016 elections,

California had nearly one billion dollars in contributions. Out of that money, non-

individuals outspent individuals at a rate of almost five to one. Using the 2016 data

for initial analysis, the network of relationships for California in that year total 5372

nodes (of which 232 are recipients) and 32,309 edges.

As a baseline, association rule mining based on Apriori is performed over the

transactions without partitioning the data by community. Many of the resulting rules

discovered here are not especially insightful. Most are things already well known,

such as incumbents have a much higher chance of winning their elections, winning

candidates raise more money, non-individuals spend more widely than individuals,

etc. In all, 120 different rules were discovered for the entire set of transactions. A

rendering of the groups of rules discovered is shown in Figure 5.1 where the rules are

1Based on 2016 data from https://www.followthemoney.org
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grouped by common antecedents. In these figures, the size of the circle is relative to

the support of the rules and darker shades indicate higher lift. Additionally, due to

the length of the labels, Incumbency and Donor Type are abbreviated as ICO and

DType respectively.

It is possible to get more interesting results after splitting the data by community.

After performing fuzzy spectral clustering over the California data, the resulting

communities are fairly evenly split. Using the donor membership values, the

transactional data is split into two overlapping datasets. Using 0.3 as a threshold

for membership, there are 3154 entities (141 candidates) in C2,1 and 3382 entities

(180) candidates in C2,2. Rule groups found are shown in Figures 5.2 and 5.3.

The results for mining rules over two communities provides additional informa-

tion. For C2,1, it becomes immediately clear that the members of this community

donate to Democrats since the rule {} ⇒ Party = Democratic has 0.91 support.

Another rule discovered within this community is that of {Incumbency = I} ⇒

Status = Won at a support of 0.35 and confidence 0.94. As expected based on

prior knowledge is that the incumbent is more likely to win their election.

What is more interesting is when these rules are compared with those for C2,2.

One expectation is that for this evenly split data where one community reflects

Democrats is that the other community should be comprised mostly of Republicans.

However, this is not the case. Instead, this group consists of mostly candidates who

won their election, regardless of party. Many of these donations in C22 come from

non-individuals, as shown by the rules

{Party = Democrat} ⇒ Donor Type = Non-Individual

{Party = Republican} ⇒ Donor Type = Non-Individual
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Figure 5.1: Rules visualization for all California 2016 transactions
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Figure 5.2: Rules visualization for California 2016 community C2,1
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Figure 5.3: Rules visualization for California 2016 community C2,2
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While both rules were extracted, the support for the former is 0.63 and the latter is

0.24. Community C2,1 has the only rule referencing individuals of

{Donor Type = Individual} ⇒ Party = Democratic

with 0.39 support and 0.87 confidence. This helps show the difference between the two

communities where C2,1 contained more individuals donating to Democrats whereas

C2,2 is made of non-individuals donating to winning candidates independent of party,

highlighting the differing implicit strategies of the types of donors.

Moving down the hierarchy provides even more information. Communities

C3,2 and C3,3 both are composed of many Democrat candidates. To compare these

communities, we calculate the intersection of the rules that were discovered in each

community individually. The intersection of the rules are shown in Table 5.3. In

particular, we look at the rules with the highest lift amongst the two communities.

The top rules help show that both communities contain useful patterns and rules

showing how non-individuals, especially in the labor industry, gave to winning

candidates. Unsurprisingly, in both datasets, incumbents tended to win. The

important information here is that it confirms this is an integral part of the parent

community.

Also important are the ways in which the communities C3,2 and C3,3 differ.

Tables 5.4 and 5.5 contain the highest lift rules that were not shared by the two

communities. The high lift rules in C3,2 immediately highlight behaviors related to

donations to elections where there is no incumbent. Notably, these rules also refer

mostly to individuals. There is no similar rule in the other community. This helps

highlight that, although both communities contain primarily Democratic candidates,

there is considerable difference in the donating habits between individuals and non-
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individuals. Confirming this are the high lift rules for C3,3. These rules focus

on non-individuals and highlight that they are frequently associated with winning

candidates. This is especially true for two different types of donors: those from

the labor industry, and those from ZIP Code 95814. ZIP code 95814 corresponds

the state capital building and area. The rules indicate nearly all donations from

that area were from non-individuals (0.997 confidence) and that this money went to

winning candidates (0.853 confidence). Much of this came from party committees, in

support of candidates likely to win. While this is mostly incumbents as indicated

by the rule {Incumbency = I} ⇒ Status = Won with 0.53 support, the rule

{Incumbency = O} ⇒ Party = Democrat at support 0.33 indicates that money

was funneled to those going for open seats as well, but it seems they were less likely

to win. All of this helps to demonstrate the ability for rule finding to improve analysis

of the communities.

5.4 Conclusion

In this chapter we presented a method for trying to add understandability to

community detection. This was done using hierarchical fuzzy spectral clustering on a

campaign finance social network. The communities were hierarchical overlapping

clusters of entities in California. Since the addition of the hierarchy adds more

complexity in performing analysis, it becomes important to automatically find

shared and discriminatory data between the large number of communities discovered.

Using the additional data provided with the transactions forming the links between

individuals in the network, association rule mining found additional discriminatory

information for the communities. The resulting rules aid in providing insight into the

donation patterns of groups within the data beyond what was readily apparent from

the rules found using the dataset in its entirety. While this work relied on Apriori for
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Table 5.3: Common Rules for C3,2 and C3,3

Antecedent Consequent C3,2 Lift C3,3 Lift

Status=Won
Donor=Non-Individual 2.039 1.421

Industry=Labor

Status=Won

Donor=Non-Individual 2.039 1.421Party=D

Industry=Labor

Office=H
Donor=Non-Individual 2.036 1.421

Industry=Labor

Party=D

Donor=Non-Individual 2.036 1.421Office=H

Industry=Labor

Industry=Labor Donor=Non-Individual 2.025 1.421

Party=D
Donor=Non-Individual 2.025 1.421

Industry=Labor

Party=D
Status=Won 1.574 1.226

Incumbency=I

Party=D

Status=Won 1.557 1.221Office=H

Incumbency=I

Incumbency=I Status=Won 1.520 1.188

Incumbency=I
Status=Won 1.515 1.204

Donor=Non-Individual
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Table 5.4: Rules only in C3,2

Antecedent Consequent Lift

Status=Lost, Party=D, Office=S Incumbency=O 1.736

Status=Lost, Office=S
Incumbency=O 1.719

Donor=Individual

Status=Lost, Office=S Incumbency=O 1.709

Party=D, Office=S, Industry=Uncoded
Incumbency=O 1.617

Donor=Individual

Office=S, Industry=Uncoded
Incumbency=O 1.607

Donor=Individual

Party=D, Office=S
Incumbency=O 1.596

Donor=Individual

Party=D, Incumbency=C Office=H 1.585

Office=S, Donor=Individual Incumbency=O 1.585

Status=Lost, Party=D, Industry=Uncoded
Incumbency=O 1.575

Donor=Individual

Party=D, Office=S, Industry=Uncoded Incumbency=O 1.573

rule mining as a proof of concept, future work can use more sophisticated algorithms

for determining rules as well.
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Table 5.5: Rules only in C3,3

Antecedent Consequent Lift

Status=Won, Party=D
Incumbency=I 1.459

Office=H, Industry=Labor

Status=Won, Party=D, Office=H
Incumbency=I 1.459

Donor=Non-Individual, Industry=Labor

Status=Won, Office=H, Industry=Labor Incumbency=I 1.451

Status=Won, Office=H, Industry=Labor
Incumbency=I 1.451

Donor=Non-Individual

Industry=Labor, ZipCode=95814 Donor=Non-Individual 1.423

Party=D, Industry=Labor, ZipCode=95814 Donor=Non-Individual 1.423

Status=Won, Office=H, Industry=Labor Donor=Non-Individual 1.420

Status=Won, Party=D
Donor=Non-Individual 1.420

Office=H, Industry=Labor

Incumbency=I, ZipCode=95814 Donor=Non-Individual 1.420

Status=Won, ZipCode=95814 Donor=Non-Individual 1.420
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CHAPTER SIX

VOTE PREDICTION

Much of the work described in the preceding chapters focuses on providing

context to the communities and analyzing the behavior directly within donation

patterns. These patterns are drawn directly from HFSC and the transactions

underlying the construction of the social networks. However, we want to determine

if the discovered communities are generalizable to predicting behavior in other areas.

Thanks to the work by Bonica and Voteview, there is information tying the donations

to federal legislators with their voting history beginning in 1980 [94, 97].

Using the communities discovered from the campaign finance, we analyze if it is

possible to generalize the community assignments to predict voting behavior in the

legislature based on estimated ideological of the bills themselves. To do so, we merge

the community assignment features with the voting data and implement random forest

classifiers to predict Yea or Nay votes. As one way to see if donation amounts affect

voting, multiple weighting schemes are tested for the connections between donors

and recipients. In addition to just adjacency, we find communities based on weighted

networks using a logarithmic scale as well as the raw donation sums.

6.1 Background

In this section we discuss some of the classification models used to evaluate the

generalization of the HFSC community assignments.

6.1.1 Decision Trees

For the purposes of this research, once the data is separated into clusters, or

communities, that information is used to predict behavior of the members of the
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network. By combining the cluster data with voting history, the goal is to predict

voting in the future. By training a classification model on current data, it is possible

to predict behavior based on the provided features.

Decision trees perform classification by generating a tree from repeatedly

splitting training data based on tests of the features [98]. Each internal node of

the tree represents a test of a value on some feature or set of features that partitions

the data as a result of that test. The leaf nodes of the tree represent classes based

on the partition of the data at that node. New samples can be classified by applying

the tests, or rules, beginning at the root of tree and proceeding to a leaf node to

determine the class. The appeal of most decision trees are that they are simple to

create and are also simple to interpret due to the rules that can be inferred from the

tree.

As a simple example, consider a set of data with party and policy information

for a bill in the legislature. Positive and negative classes correspond to voting yea or

nay on the bill. Figure 6.1 shows a hypothetical tree from that data. The first test

concerns the general policy position of the bill, progressive or conservative. The next

layer of the tree checks the party position of the legislator and classifies the most

likely vote.

The criteria for choosing a feature and value to partition the data can vary

greatly. There are numerous possible ways to perform the splitting. Common

techniques utilizes information theory to determine what feature and values create

the best partitions. The Iterative Dichotomizer 3 (ID3) algorithm is one well known

decision tree algorithm that uses entropy and information gain [99]. Consider a set

of classes c ∈ C. The entropy of any partition of the data D is defined as

H (D) =
∑
c∈C

−p (c) log2 p (c)
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Policy=P Policy=C 

Party=D Party=R

Y N

Party=R Party=D

Y N

Figure 6.1: Example Decision Tree

where p (c) is a proportion of the data with class c, or

p (c) =
|dc ∈ D|
|D|

.

ID3 works by selecting the test t that maximizes the information gained when

partitioning the data into sets Dt using

H (D)−
∑
Dt

p (Dt)H (Dt) .

Since the entropy of D is fixed for dataset D, this is equivalent to minimizing the

entropy of partitions Dt.

ID3 builds trees in an iterative fashion. Beginning with the root of the tree, the

attribute that maximizes the information gain is selected to partition the data. The

same procedure is applied to the resulting partitions until a stopping criterion is met.

Another method for determining how to split data at each point is Gini impurity,
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which is used in the Classification and Regression Tree (CART) algorithm [98]. The

principle behind this metric is to minimize the impurity at each split. The impurity

is defined by the probability of a data point being associated with the wrong class

when randomly assigning a class to each member in the partition based on the class

distribution [100]. If the partition contains only one class, then the impurity would

be zero as the class distribution would allow only that class. The measure is worst

when there is an even split of classes in the partition. More formally, the probability

of misclassification is defined as

φ = 1−
n∑
j=1

(p (cj|t))2

where p (cj | t) is the probability of assigning the incorrect class based on the class

distribution in partition t.

6.1.2 Random Forests

One issue decision trees can have is that they overfit the data unless pruned.

Random forests were originally created as an ensemble method in an attempt to

avoid overfitting and increase generalization [101, 102]. Random forests work by

creating an ensemble of decision trees that each vote on the predicted class. Each

of the decision trees uses a bootstrap aggregated (bagged) sample of the dataset.

The bagged method samples with replacement from the original data to create an

equal sized dataset for training. This results in approximately one-third of the data

being left out for each tree. In the method used within this dissertation, each tree

randomly selects a subset of the features for split at each point. Performance of

training a random forest can be estimated by the out-of-bag error rate. This rate

OOB is defined by the prediction error of each training sample xi using those trees
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that did not include xi in its bootstrap dataset.

6.2 Dataset Preparation

The dataset of political contributions used in this chapter is the one provided

by Bonica and Stanford’s Social Science Data Collection [78, 94]. As provided, the

Stanford dataset uses two separate identifiers for candidates and donors. Using them

separately would cause duplication of nodes in the network as an individual in the

network may both donate and receive money. The candidate (or recipient) data

include the donor id so that it is possible to bridge the two separate ids and create a

single unique identifier for an entity. This new identifier is used to populate the edges

in the induced social network.

In performing the analysis for CFScores, Bonica placed certain restrictions upon

the dataset. Similar restrictions are applied to the networks here. Specifically, since

loans and similar records do not necessarily indicate support of a candidate, they are

removed from consideration. The included list of transaction types are as follows:

10, 11, 12, 13, 15, 15C, 15E, 15F, 15I, 15J, 15L, 15PD, 15S, 15T, 15Z, 18G, 18H,

18J, 18K, 18S, and 18U. A small description of these types are shown in Table 6.1

as reported by the US Federal Election Commission and Bonica. From this data,

an initial network is created out of all the donations where the edge is weighted as

aij = amount where amount is the sum of all donations or receipts between entities

i and j. As done in the previous chapters, any node i with degree di = 1 is removed

from the network. The largest connected component of the remaining network is

then used as the network of contributions. Below is a summary of the procedure to

generate each network.

1. Load the contributions for each two-year cycle into a database.
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Table 6.1: List of Transaction Types used in the Analysis

Type Description

10 Contribution to Independent Expenditure-Only Committees

11 Native American Tribe contribution

12 Non-federal other receipt

13 Inaugural Donation Accepted

15 Contribution to political committees

15C Contribution from Candidate

15E Earmarked contributions to political committees

15F Loans forgiven by candidate

15I Earmarked contribution passed on to committee

15J Recipient committee’s percentage of contribution from an individual

15T Earmarked contribution entered into intermediary’s treasury

15S Contributions to state elections

15L Contributions to local elections

15PD Contribution made as payroll deduction

15Z In-kind contribution received from registered filer

18G Transfer in from affiliated committee

18H Honorarium received

18J Recipient committee’s percentage of contribution to joint fundraising

committee

18K Contribution received from registered filer

18S Receipts from Secretary of State

18U Contribution received from unregistered committee
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2. Attach the contributions to the recipient and donor information.

3. Create a unique identifier by merging donor and recipient ids.

4. Build the initial edges in the network, limited to relevant transaction types.

5. Determine the degree d of each node i and remove any with di = 1.

6. Using breadth first search, find the largest connected component of the

remaining network.

7. Extract the list of edges of the largest connected component as the final graph.

Using all years from 1979 to 2012, the resulting network consists of over 5.26

million nodes and 29.85 million edges. Each node in the network is attached to

the voting data by use of the Inter-university Consortium for Political and Social

Research identifier (ICPSR id). The voting data includes 9.2 million observations of

‘Yea’ or ‘Nay’ votes on various bills from the years 1979 through 2012. Each bill also

contains two features that are the spatial estimates of the socioeconomic measure:

DW-NOMINATE midpoints mid1 and mid2. These are the ideological estimates

generated from the voting behavior of legislatures as given by Voteview. The final

voting dataset is created by combining the discovered communities’ assignments, the

DW-NOMINATE ideological scores, and the predictive class variable of ’Yea’ or ’Nay’.

6.3 Experimental Design

The entire process of performing the prediction requires two primary steps.

The first step is to perform hierarchical fuzzy spectral clustering on the campaign

contributions network to find the community assignments for the legislatures [23].

In this experiment, communities are found for k ∈ [2, 12]. These values are then

attached to the corresponding entries in roll call data.
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Figure 6.2: Example Hierarchy

An example hierarchy is shown in Figure 6.2. At the top level is the entire

network. Level two splits the network into two overlapping communities. At each

increasing level one more community is added to the network. For the purposes of

the research herein, there are two important types of community assignment values

within the tree. Ti includes all assignments up to level i in the tree. Li is defined only

by those assignments on level i itself. As shown in the example, the portion labeled

by T3 is the tree hierarchy that includes L3 and all ancestors of that hierarchical level.

All of the communities encapsulated by T3 are used in vote prediction instead of just

the lowest level of that sub-tree. This is in contrast to the portion labeled by L3 that

contains only the communities at level three.

In this paper, the communities are used to predict new behavior of the actors

within the network. The behavior in question pertains to voting behavior within

the legislature. Performing this classification relies on additional data provided by



118

Voteview in the form of socio-economic estimates of bills and voting records of United

States legislators [76]. The resulting dataset contains a record for each recorded vote

in the legislature. Each record also contains the fuzzy assignment values for that

legislator, as calculated by U with varying k, the two DW-NOMINATE dimensions

for the bill being voted upon. With each record is the class to be predicted: a ‘Yea’

or ‘Nay’ vote.

The federal datasets used in this chapter are considerably larger than the state

data used in previous chapters. In 2012 there are over 1.36 million nodes and 6.15

million edges. Due to the large nature of the datasets, an approximate eigen-solver

was used to find the eigenvectors of the network to obtain only the vectors and values

of interest. The following chapter describes a graph embedding that avoids calculating

eigenvectors for the entire matrix at once. A value of m = 10 for fuzzy c-means was

used to find the clusters. This was set to ensure highly fuzzy communities instead of

closer to crisp clusters.

Four different primary experiments were performed to investigate properties of

the classifier and data. These include 1) different weighting of the network edges, 2)

using all data combined and individual years separately, 3) varying community types

and numbers, and 4) the performance of random forest when compared to a single

decision tree. For the experiments, each combination of experimental parameters

(3,564 trials) was tested using 10-fold cross validation.

6.3.1 Experiment 1: All vs Yearly Data

Along with the edge weighting, a test is performed to compare the results of

testing the entire dataset against individual election cycles. The full network utilized

the entirety of the data from all available years. Separate networks were also created

for each individual 2-year cycle from 1979 through 2012 as provided in the data. This
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created 17 different networks. The sizes of the networks greatly increase over time

due to the increase in the amount of money in politics. After performing the same

processing step for each cycle, the number of nodes ranged from approximately 34

thousand in 1980 to 1.4 million in 2012. Similarly, the number of edges ranged from

169 thousand in 1980 to 6.2 million in 2012. Table 6.2 shows the growth of both

nodes and edges over time.

6.3.2 Experiment 2: Classifier

In addition, a test was done to compare the relative performance of a single

decision tree to a random forest. Each classifier used implementations provided by

the sklearn package of Python: DecisionTreeClassifier and RandomForestClassifier.

We do not use early stopping or pruning in either classifier. Early experiments showed

that the community assignment features were not equally expressive when trying to

predict votes. Using the common method of limiting the number of features available

during a split to
√

(nfeatures), however, resulted in poor performance. Thus, the

algorithms were allowed to use any feature when determining how to perform a split.

Both classifiers use the Gini impurity metric when performing splits.

Another issue in the data is that the class distribution for ‘Yea’ and ‘Nay’ is

skewed. There are approximately 6 million ‘Yea’ votes and 3.2 million ‘Nay’ votes

for the relevant years. This can be a problem as the skewed data may result in the

classifier defaulting to the dominant class and reducing performance. To prevent this

issue, both the decision tree and random forest weight the classes. The class weight is

inversely proportional to the number of instances of that class. The final parameter

to note is that the random forest used 50 trees. Both the random forest and decision

trees were evaluated using 10-fold cross-validation.
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Table 6.2: Size of Networks by Year, in thousands

Cycle Num of Nodes Num of Edges

1980 34 169

1982 21 142

1984 31 192

1986 32 208

1988 51 271

1990 70 335

1992 115 510

1994 116 514

1996 196 892

1998 359 1,570

2000 435 1,901

2002 604 2,494

2004 728 2,957

2006 779 3,249

2008 1,026 3,992

2010 1,174 4,944

2012 1,362 6,154

6.3.3 Experiment 3: Communities

For each network type, three different applications of the spectral clustering

were applied. The first of these methods used a single level of the hierarchical tree

(shown in the figures as FCM-L). This represents the process of using the best single

performing clustering as would be typical in many hierarchical clustering techniques.
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The second included all parents of the level in question, effectively pruning anything

further down the tree (shown in figures as FCM-A). Finally, as a point of comparison,

the eigenvectors themselves were used directly in performing prediction (shown in

figures as EV). This was chosen as a baseline to show any loss in predictive power by

using fuzzy c-means.

6.3.4 Experiment 4: Edge Weighting

Three different weighting schemes were analyzed with the network in order to

analyze different effects on the results. The first weighting scheme just used 1 to

indicate an edge between two entities in the network, regardless of the amount of

the contribution. The second used the base-10 logarithm of the total amount of

contributions between two entities as aij = log10 (amount). Prior to the calculation,

any amount less than $10 was raised to $10 to ensure a minimum value of 1 on the

edges. Finally, the raw amount aij = amount of total donations between two entities

was used, again with a minimum value of 1. By analyzing these different measures, we

can infer how connectivity versus donation amount impacts the prediction of voting

behavior.

6.4 Results and Discussion

Figure 6.3 shows the results of predicting votes over the matrix formed from all

years of data. In nearly all cases, the random forest ensemble outperformed the single

decision tree, which was as expected. The more interesting result comes from the

differing behavior of the edge weights on the network. For just the adjacency matrix,

performance began by middling but improved until about k = 10 communities. At

this point, the performance of the single level (FCM-L) began to drop. However, the

eigenvector (EV) and full tree (FCM-T) held steady due to not losing the information
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Figure 6.3: Results from using all years of data.

provided by fewer communities.

The raw contributions show almost all the predictive power of these communities
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is held within the first few levels of communities. The large donations appear to

dominate the community analysis at that stage, and additional communities do not

provide much in additional predictive ability. This can be shown in that after k = 7,

the performance of the single level drops rapidly.

Unlike the other two, the scaled contributions performed poorly at first for this

particular set of data. As shown by EV, this was not due to the performance of

FCM, but integral to the structure of the network. As the tree grew, however, the

performance improved and matched that of the other two weightings.

Breaking out the votes by year showed additional evidence of polarization within

the legislature. Beginning with 1980, the prediction accuracy was lower than that of

subsequent years. In general, the accuracy increased as time passed, hitting a peak

in 2010 with votes being predicted at roughly 94% for each of the weighting methods.

This fell back to approximately 90% to 91% in 2012, which was more in line with

2008. The performance of the differing number of communities also flattened over

time, implying that fewer communities are necessary to define splits between members

of Congress.

6.4.1 All vs Yearly Data

A little more information was necessary to compare the models learned from all

the data to those trained on two-year cycles. When calculating the performance of the

all-data models, the accuracy of each individual year was calculated as well as that

of the entire dataset. Using the prediction of the entire dataset, we can determine if

individual years predict votes better for that year than the larger dataset that covers

many years. The notable result from this experiment is that using all the data at

once did not typically do better than using data in a specific year. Instead, out of the

different comparisons, the models built from individual cycle data were statistically
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Figure 6.4: Comparing models trained with 1998 data vs. all data on votes in 1998

better in 91.7% cases. Figures 6.4 and 6.5 show this trend from examples of these

experiments.

The results of the experiments show another issue related to polarization of the

legislature. This can be seen from two different aspects of the results from individual

cycles. First, the overall accuracy of prediction increased over time. This hit a peak in

year 2010, though it was still quite high in the following 2012 cycle. Additionally, the

impact of the number of communities is less pronounced in those later years. More

community information here is not helpful as most of the important information

is captured by the small numbers of communities. This is true even for FCM-L,

which mostly stops behaving as in prior years where there are peaks and valleys in

performance based on the number of communities.
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Figure 6.5: Comparing models trained with 2012 data vs. all data on votes in 2012

6.4.2 Classification

As expected from the results, the random forest outperformed the single decision

tree fairly consistently. It should be noted, however, that the random forest takes

considerably longer to build. In this case, it was building n = 50 individual decision

trees. This was especially noticeable on the larger datasets. Viewing the side-by-side

results as shown in Figure 6.3, the average performance across the folds for random

forest was considerably higher than that of the decision tree. Analyzing the folds

with the Student’s t-test shows that in all but three cases the random forest had

significantly better results at α = 0.05. All of those occur in the scaled weighting

scheme at k = 2 communities. Table 6.3 shows the performance of statistical tests for

all weightings and types of communities at k = 2. As mentioned in the prior section,

this is likely due to the structure of the network and not the performance of FCM as
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Table 6.3: Accuracy with k = 2 Communities using All Data

Weight Type Random Forest Decision Tree

Adj EV 0.778± 4.49E− 04 0.768± 5.74E − 04

Adj FCM-T 0.768± 4.21E− 04 0.759± 8.26E − 04

Adj FCM-L 0.768± 4.09E− 04 0.759± 8.31E − 04

Scaled EV 0.688± 3.88E − 04 0.688± 4.10E − 04

Scaled FCM-T 0.688± 3.97E − 04 0.688± 4.10E − 04

Scaled FCM-L 0.688± 3.41E − 04 0.688± 4.10E − 04

Raw EV 0.819± 3.64E− 04 0.809± 4.96E − 04

Raw FCM-T 0.812± 3.68E− 04 0.802± 3.31E − 04

Raw FCM-L 0.812± 3.84E− 04 0.802± 3.55E − 04

all the different types of clustering and vectors perform similarly.

Out of the 1,782 different comparisons between random forest and decision trees,

the decision tree outperformed random forest in only 33 instances to a significant

degree at α = 0.05. These occurred in varying years, with all but 5 of those examples

at k = 2 communities. In all these cases, despite the statistically significant difference,

the relative performance difference is not large. The largest difference in average

accuracy between random forest and the decision tree is only 1.01%. Based on these

results, the remaining experiments consider only random forests.

6.4.3 Communities

As shown in Figure 6.3, increasing the number of communities (or vectors used)

improved the classification accuracy of the vector (EV) and whole tree models (FCM-

T). Both models showed consistent performance where adding more features helped

the performance, with only small deviations from this pattern. However, this was
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Figure 6.6: Results for 1998

not true when using single levels of the hierarchy (FCM-L). In two of the weighting

schemes, the accuracy increased with the number of communities until a certain point

at which it fell sharply. It is expected that as the number of communities grow in

the scaled weighting, a similar pattern will hold, and the accuracy will begin to drop.

The reason for this is that if the number of communities discovered exceeds that of

the actual strong community structure in the network, then the resulting assignments

will be not be of use in classification.

As a more extreme example, consider the results from the experiments using only

data in 1998 from Figure 6.6. While the performance of FCM-L was consistent in

the case of raw contributions, the performance in both the adjacency matrix and the

scaled values were highly erratic. This can occur when the number of communities

used does not match the proper number of communities at that resolution. This

behavior can explain the performance of FCM-L in these cases. As can be seen, for

certain numbers of communities, the accuracy improved to nearly match that of EV

and FCM-T. However, since both EV and FCM-T have access to the entirety of the

data up to that point, those two methods are far more robust to those changes. Due

to these issues, the selection of k for FCM-L is far more important than in the other

methods and should be done carefully.

Another notable difference between FCM-L and FCM-T can be seen in the
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behavior in the low number of communities. Moving down the hierarchy, the

performance of FCM-L decreased for k = 3 and k = 4 for both the adjacency

and scaled weights. However, despite using those same values from the hierarchy

of community assignments, the performance of FCM-T increased during that period.

This shows that FCM-T is more robust to individually poor community assignments

and that the combination of data from the levels is more useful.

In general, the best performance was obtained using the eigenvectors directly.

This was not always the case, however, especially for small numbers k of communities.

FCM-T was typically comparable in performance and did not suffer the same issues

as FCM-L. EV was more easily computable due to the number of features required.

With EV, k indicates the number of eigenvectors to use. For FCM-T, the entire tree

structure is used up to the level with k communities. This results in k (k − 1) /2

features. This increase in the number of features, along with the large amount of

voting data, resulted in FCM-T taking longer to compute the models than EV.

Note, however, that interpretability is an important factor in the selection and

use of models, and FCM-T has the benefit of being easier to interpret. Two vectors

representing two different entities does not have meaning out of the larger context.

However, two lists of community assignments for those same entities can be more

easily interpreted for anyone attempting to use these data or methods.

6.4.4 Edge Weighting

Edge weighting plays a significant role in the accuracy of prediction across the

different experiments. When looking at the entire dataset, the raw contribution

amounts yielded the best performance when using few communities. Using the

analysis from the prior section, however, it is possible to see that this performance

was dominated by those few communities. Increasing past k = 7, the performance of
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the raw weights dropped rapidly in FCM-L, indicating those communities are not well

representative of voting behavior. This drop happened much later for the adjacency

matrix at k = 11. Despite the poor performance of the scaled data at the start,

it improved quickly, matched the other weighting schemes, and had not fallen in

performance by k = 12.

Overall, the raw values outperformed the other two measures, though not by

much. Out of the possible comparisons, raw weighting was better statistically than

the adjacency matrix 53.1% of the time and better than scaled 50.8% of the time.

Adjacency was better than raw 34.3% of the time and scaled was better than raw

36.9% of the time. From these results, the best communities for predicting votes

were more often those generated by large, raw dollar amounts. This impact is small,

however. Even though the different weights had an impact in different tests, in

aggregate the results from edge weighting were quite similar in their performance.

6.5 Conclusion

As shown, the clusters discovered by hierarchical fuzzy spectral clustering were

generalizable to behavior not present in the underlying system that created the

graphs. This generalizability was demonstrated by predicting voting behavior of

legislators based on campaign finance records. In addition, the expressive power of

the full hierarchy was demonstrated by its superior performance to the predictions

given by a single level in the hierarchy. This full hierarchy performance nearly equals

using eigen-vectors directly, while providing interpretability for those who use the

data. While different weightings of the edges had an impact on the results of the

predictions, overall the best performing weighting was based on raw dollar amounts.

However, both the adjacency matrix and scaled weights were promising. The results

also again highlight the growing issue of partisanship within the legislature.
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CHAPTER SEVEN

ORTHOGONAL SPECTRAL AUTOENCODER FOR GRAPH EMBEDDING

In this chapter we examine approximate methods for finding encodings for the

social networks. There are a couple of notable limitations in the previous methods

for calculating encodings. One of the issues is that these methods for eigenvector

embedding do not easily generalize to new data. Another issue is in the cost of

calculating the eigenvalues and eigenvectors themselves.

Here we develop a mini-batch spectral embedding method using an orthogonal

spectral autoencoder (OSAE). Two different versions of the autoencoder is tested,

one with an orthogonal constraint and loss on the encoding layer (in addition

to the reconstruction error). The second version adds an approximate spectral

decomposition by creating a smaller sampled Laplacian and performing eigenvector

decomposition on the smaller Laplacian. This adds a loss term for the difference

between the orthonormal encoding and the top-k eigenvectors of the approximate

Laplacian.

The results of these experiments show that the network embeddings are effective

in predicting behavior of actors within the graph. In the testing, we cluster the

embeddings using fuzzy c-means. The resulting fuzzy clusters are used as community

assignments for the actors within the graph. Once again we use the federal campaign

finance networks and voting history for the legislators within the graph. Each

legislator is assigned to their communities based on the results from fuzzy c-means.

Those community assignments are used as an ideological approximation and combined

with the voting data to generate a classifier for voting behavior. The results are

comparable to the hierarchical spectral decomposition from prior chapters.
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7.1 Background

Some of the limitations of spectral embedding was discussed in Chapter 2.

Considerable work has been done by other researchers to mitigate some of the

issues of complexity and out-of-sample embedding. The following section discusses

some related work done by these other researchers in related areas of dimensionality

reduction, approximate spectral clustering, and out of sample augmentations.

7.1.1 Deep Learning and Autoencoders

A considerable amount of research has been performed recently in the area of

neural networks and autoencoders. These networks have shown to be very effective

in a variety of tasks. Notably for the work in this dissertation, these tasks include

dimensionality reduction, function approximation, and graph embedding. Early work

on multilayer feedforward networks showed that such a network can be a universal

approximator of a function, provided it has sufficient parameterization [103].

Training these networks can be efficient thanks to the use of graphical processing

units (GPU) which are able to parallelize the matrix computations. This is important

as passing a mini-batch of size b to the network requires matrix multiplication at each

layer, making the computation O (b× n×m). Training multiple batches requires

multiple runs, resulting in O (b× n×m× e). In practice, the performance of training

the network over a GPU is quite effective, however.

Autoencoders are one example of using neural networks for dimensionality

reduction. These are typically neural networks used in unsupervised machine learning

where the autoencoder learns a representation of the data by encoding the information

in a smaller feature space. Bengio introduced a method for training deep autoencoders

by training individual layers and stacking the individual autoencoders [104]. The
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results showed improved performance than when trying to train entire deep networks

at once. Other research has shown the relationship between autoencoders and

principal component analysis [105]. Using a bottleneck layer in the autoencoder, the

network shown was able to eliminate nonlinear correlations in the data and reduce

the dimensionality of the embedded.

Many other methods have been examined for using neural networks in machine

learning. Other researchers have tried to develop functional embedding by using

classification loss and pairwise point similarity [106].

7.1.2 Approximate Spectral Clustering

As mentioned, since spectral clustering on large datasets is difficult due to space

and time complexity, there have been several approximation methods for spectral

clustering developed. Nyström approximation is one such algorithm used to calculate

the eigenvector decomposition [107]. This has been adapted for use in spectral

clustering [108].

In the fast spectral clustering algorithm proposed by Choromanska et al.

(Algorithm 7.1), the process begins by selecting l columns sampled uniformly without

replacement from the affinity matrix. This creates matrix Â. Two diagonal matrices

D and ∆ are created based on the row sums of Â. An approximate Laplacian Ĉ is

calculated using the two diagonal matrices and the sampled columns. Then the best

r-rank approximation is taken of W (usually singular value decomposition) to obtain

approximate eigenvectors given by Û. The remainder of the procedure is the same

as standard spectral clustering where the column matrix containing the eigenvectors

is row normalized followed by clustering the resulting matrix.

Similar work regarding Nyström approximations is used in other work [109]. In

this work the authors treated a sample of the data as landmarks. These landmarks
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Algorithm 7.1 Fast Spectral Clustering

1: function FastSpectralClustering(A, k, l, r)

2: L←indices of l sampled columns . Sample columns from A uniformly

without replacement

3: Â← A (:,L)

4: D ∈ Rn×n : Dij = δ [i = j] 1/
√∑l

j=1 Âij . Diagonal D as row sums of Â

5: ∆ ∈ Rl×l : Dij = δ [i = j] 1/
√∑l

j=1 Âij . Diagonal ∆ as row sums of Â

6: Ĉ← Î−
√

l
n
D× Â×∆

7: W← Ĉ (L, :)

8: Wr ← best r-rank approximation to W

9: Σ̃ = n
l
ΣWr and Ũ =

√
l
n
Ĉ

10: Y = ∀iXij/ ‖Xi‖ . Normalize the rows of X.

11: return U← K −means (Y) . Return clusters.

12: end function

were drawn from the exact eigenvector decomposition as calculated from the data. A

linear transformation from the landmark set to the full set is applied to approximate

the spectral embedding of the original data.

One relevant example for work with autoencoders is that of mini-batch spectral

clustering [110]. As the authors note, calculating the Laplacian of a dataset as well as

the spectrum can be O (n2) in storage for the Laplacian, and O (n3) time complexity

to calculate the spectral decomposition. The primary motivation is to calculate the

spectrum of the Laplacian by finding the principal eigenvectors Z without the direct

calculation. They note this can be reworked to optimize the following trace problem

arg min

{
Tr

(
−1

2
Z>LZ

)}
: Z>Z = I.



134

Algorithm 7.2 Stochastic Riemannian Gradient with Mini-Batches

1: function HTilde(L, p,Nr,W)

2: Initialize G̃ ∈ Rn×k with all elements zero

3: for i = 1 to Nr do

4: Sample the components of ri . Randomly select columns

5: G̃+ = 1
Nr

Lrir
>
i W . Calculate the gradient using sampled Laplacian

6: end for

7: return H̃ =
(
I−WW>) G̃

8: end function

Specifically, they note that the orthonormality constraint causes W to lie on a

Stiefel manifold. The Riemannian gradient on this manifold is H =
(
I−WW>)G.

This allows some theoretical guarantees that a stochastic gradient optimization will

converge. In the case of this work, the authors use the normalized Laplacian

L = D−
1
2AD−

1
2 . In this form, the top-k eigenvectors are those from the largest

k eigenvalues. Algorithms 7.2 and 7.3 describe their algorithm for calculating the

approximate eigenvectors. In Algorithm 7.2, they calculate the stochastic gradient

using samples of the Laplacian. The ri vectors introduce the stochasticity by only

selecting certain columns of the Laplacian. The gradient is used in Algorithm 7.3 to

update the estimate the embedding and then project the space back onto the Stiefel

manifold by way of the QR decomposition. They use this formulation to appeal to

results in Bonnabel [111] such that convergence of the method can be proved in the

limit of iterations.

One possible solution to the out-of-sample issue for spectral embedding a graph

is to use neural network to find a function f (x) mapping a data point to the

corresponding row of an eigenvector decomposition. Using the top-k eigenvectors,
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Algorithm 7.3 Mini-Batch Spectral Clustering

1: function Mini-Batch Spectral Clustering(L, k, ε)

2: Initialize W(0) ∈ Rn×k as a random orthonormal matrix

3: Initialize M(0) ∈ Rn×k with all elements zero

4: for t = 1 to T do

5: H̃(t) = Htilde
(
L, p,Nr,W

(t−1)
)

6: M
(t)
ij = M

(t−1)
ij +

∣∣∣H̃(t)
ij

∣∣∣2
7: Ĥ

(t)
ij =

H̃
(t)
ij

ε+
√

M
(t)
ij

8: W(t) = W(t−1) − λĤ
(t)
ij

9: W(t) = QRQ

(
W(t)

)
10: end for

11: Apply K-means on W(T )

12: end function

the goal is to find f (x) = zi where z ∈ Rk. Prior work has developed this idea with

a stacked autoencoder [112]. This method is a two-step procedure wherein the initial

step is to train the network to encode the graphs using a stacked autoencoder. Once

the autoencoder is trained over the input data, the decoder portion is removed and

the encoder is fine-tuned on learning the mapping from the input to the eigenvectors.

Deep embedded clustering attempts to simultaneously learn the set of cluster

centers in the feature space along with the parameters that maps the data points into

the reduced feature space [113]. Their algorithm alternates between updating the

network parameters and cluster centers. Using a kernel derived from the Student’s

t-distribution to calculate similarity between the embedded points and the cluster

centers, the authors use a Kullback-Leibler divergence loss function for a selected

target distribution. These descriptions only cover a small fraction of the work being
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performed in this field. There are many different techniques for attempting to use

neural networks for clustering [114, 115], or improve the out of sample clustering

performance using embedding [116, 117, 118, 119].

7.2 Kernels and Spectral Clustering

One of the benefits of using the adjacency matrix for spectral clustering is that

it does not require use of an additional kernel function. This is useful as many

kernel functions require tuning a bandwidth parameter to improve the clustering

performance. However, in the Orthogonal Spectral Autoencoder, an approximate

Laplacian is calculated by use of one of these kernel functions. Optimizing the

selection of bandwidth for a kernel can be difficult. When there are known class

labels for the data, it can be possible to tune the bandwidth by using multiple trials

and selecting the best option. With unlabeled data, other metrics such as within-

cluster similarity may need to be used to estimate the clustering.

Krbf (v1, v2) = exp

(
−‖v1 − v2‖2

2σ2

)

To highlight the effect of the bandwidth hyperparameter on clustering, consider

a spiral dataset as shown in Figure 7.1a. This graph contains non-convex clusters and

is not suited for clustering with algorithms that assume convex clusters such as K-

means. Using K-means clustering directly over the dataset yields the poor clustering

shown in Figure 7.1b.

Instead of performing K-means on the data points directly, spectral clustering

uses a kernel function to find pairwise affinity among the individual data points.

Using an optimal bandwidth σ for this dataset yields the spectral clustering shown

in Figures 7.2a and 7.2b. However, a poor selection of σ has no better performance
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(a) Spiral Dataset (b) K-means on Spiral Dataset

Figure 7.1: Spiral Dataset and Convex Clustering

than K-means, as shown in Figures 7.2c and 7.2d.

Unfortunately, the results of the clustering here is worse than it appears as

it regards fuzzy clustering. To better understand the effect of the bandwidth σ,

consider the graphs of the eigenvectors of the spectral decomposition in Figure 7.3.

This decomposition uses the normalized symmetric Laplacian Lsym defined in previous

chapters. Despite spectral clustering finding the exact clusters for σ = 0.5 (Figure

7.3a) and σ = 1 (Figure 7.3b), the eigenvector decomposition is considerably different

between the two. The small value of σ = 0.5 separates the three communities entirely,

compressing all the data into the same point for each cluster. In contrast, there is

some variation in the values of the eigenvectors for σ = 1. Increasing σ further would

have an effect of increasing the overlap between the communities, but at the expense

of the overall clustering accuracy.

We attempt to mitigate the issue of tuning σ in an unsupervised setting by use

of methods for selecting an appropriate bandwidth prior to clustering. There are a
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(a) Spectral Clustering on Spiral, σ = 0.5 (b) Spectral Clustering on Spiral, σ = 1

(c) Spectral Clustering on Spiral, σ = 2 (d) Spectral Clustering on Spiral, σ = 4

Figure 7.2: Spiral Dataset and Spectral Clustering for Varying σ

few methods that have been developed for selecting an appropriate bandwidth prior

to performing the clustering, especially regarding the radial basis function kernel

[120, 121]. In this dissertation, we make use of a self-tuning σ as described by Zelnik-

Manor and Perona[122].
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(a) Eigenvectors with Krbf and σ = 0.5 (b) Eigenvectors with Krbf and σ = 1

(c) Eigenvectors with Krbf and σ = 2 (d) Eigenvectors with Krbf and σ = 4

Figure 7.3: Spiral Dataset and Eigenvectors of Lsym for Varying σ

Local density adaptive similarity calculates a σi for each vertex vi based on

a distance to its local neighborhood. Consider the neighborhood of vertex vi as

the nearest points based on Euclidean distance ‖vi − vj‖ ∀ vj ∈ V The nth nearest

neighbor vn = NN (vi) provides an approximation of the density of the neighborhood
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around vi. Using this principle, the scaling sigma is calculated by σij = σiσj where

σi = ‖vi −NN (vi)‖. The numerator in the RBF kernel remains the same, yielding a

scaled kernel function

Krbfs =
−‖v1 − v2‖2

σiσj

The authors of that work claim that the seventh nearest neighbor of vi consistently

provided good clustering performance.

7.3 Orthogonal Spectral Autoencoder

Our approach allows for out-of-sample clustering as well as limiting the size of

the Laplacian needed in the calculations of the eigenvectors such that l � n. The

primary framework for the orthogonal spectral autoencoder is a deep undercomplete

autoencoder. In this architecture, there are multiple hidden layers between the input

and output. The encoding layer is termed undercomplete since the dimension of this

layer is smaller than the input layer. This structure can be useful in performing

feature extraction and dimensionality reduction on the data. In general, this type of

autoencoder uses a reconstruction loss based on the distance from values of the input

and output, commonly mean squared error.

Figure 7.4 describes the general structure of the orthogonal spectral autoencoder.

Our additions to this framework include another layer between the encoder and

decoder that orthogonalizes the output of the encoding layer E by use of QR

decomposition where E = QR. There are two additional components to the loss

function that penalize encoding layers that are not orthogonal, as well as approximate

the eigenvectors of a sampled Laplacian.

Each of the hidden layers within the networks are linear layers which apply the

function y = wH> + β where w is the weight vector, H is the input to the layer,
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Figure 7.4: Structure of the Orthogonal Spectral Autoencoder

and β is an additive bias. The output of each hidden layer uses the SELU activation

function defined as

SELU (y) = s× (max (0, y) + min (0, α× (exp (y)− 1))) .

For these autoencoders, we use k < b, where k is the maximum number of clusters

and the dimension of the encoding layer. Scalar b is the size of the batch. Therefore,

the matrix generated by the autoencoder at the layer E is E ∈ Rb×k. Matrix Q

is an orthogonal matrix such that the columns are orthogonal. Since AR−1 = Q,

the inverse R−1 is saved within the QR Orthogonalization layer during each training

step. The output of the QR Orthogonalization layer becomes Z = ER−1. During

evaluation, the last calculated R−1 is used to project the results of the encoding layer.

The loss function for OSAE is comprised of three parts. The first is the
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reconstruction error on the input data. In addition, there is a separate orthogonality

loss, and a spectral loss. Total loss is then given by

Loss = LossR + LossO + LossS.

Reconstruction loss LossR is the mean squared error of the batch input Ab and the

output of decoder portion of the autoencoder A′b. This is calculated by

LossR = MSE (Ab,A
′
b) =

1

n2

n∑
i=1

n∑
j=1

(
aij − a′ij

)2

where Ab = A [I, :] and I are the indices of the minibatch input.

LossO is the orthogonalization loss and is defined as the mean absolute error of

the identity matrix Ik and the product of the transpose of E with itself. By definition,

if E is column orthogonal, then E> × E = Ik

Losso =
1

n2

k∑
i=1

k∑
j=1

∣∣Ik − êij∣∣
where Ê = E>E.

The spectral loss is calculated by using the orthogonal output of the QR de-

composition layer and an estimate of the Laplacian L. In the spectral decomposition

defined in earlier chapters, the normalized symmetric Laplacian Lsym was defined as

Lsym = I−D−
1
2 AD−

1
2 .

Since the input of the graph is a sparse adjacency matrix, slicing the matrix such

that it contains only the rows and columns of the indices I of minibatch Ab would
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result in a mostly empty matrix. Instead, we use the Laplacian kernel

KL (Ab,Ab) = exp

(
−‖ab,x − ab,y‖

σ

)

where σ is the kernel bandwidth for each pair of rows x and y in Ab. In the experiments

given later we use σ = 2. The Laplacian kernel KL ∈ Rk×k yields a new affinity

matrix AL
b for minibatch Ab. Using the pairwise Laplacian similarity, we calculate

the normalized symmetric Laplacian of AL
b as

Lsym = I−D−
1
2 AL

b D−
1
2

where D is a diagonal matrix where dii =
∑k

j=1 âij where âij is element i, j in AL
b . The

next step calculates the k eigenvectors corresponding to the smallest eigenvalues of

Lsym for AL
b . Matrix Z′ is constructed by the top-k eigenvectors as given by the eigen

decomposition eigs (Lsym, k). With this matrix, the spectral loss can be calculated

as the mean absolute error of the approximate eigenvectors and the orthogonalized

encoding.

LossS =
1

n

b∑
i=1

k∑
j=1

∣∣Zij − Z′ij
∣∣

Those three losses (LossR, LossO, and LossS) summed together make the full loss

calculation for each batch during the training phase.

For every epoch during training, we sample b rows from the adjacency matrix

A. For a single batch b, the rows of the adjacency matrix A are sample uniformly

without replacement to create minibatch Ab. Matrix Ab ∈ Rb×n will have b rows

from A. This sample is the training data for a single epoch. At the next epoch, a

new batch is sampled in the same manner from A. With this sampling method, some

rows may be selected more than once during the full training session. Other rows
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may not be sampled at all. We repeat this procedure until reaching the maximum

number of training epochs.

The final trained network is then used for performing clustering over the entire

set of data. Using the orthogonal encoder portion of the network, the output of the

QR decomposition layer (Z) is used as the n× k embedding for the graph. Much like

in spectral clustering, we normalize each row of Z as

z`i =
zi√∑k
j=1 z

2
ij

.

The normalized rows of Z are used as the data points for fuzzy c-means

clustering. The resulting U from FCM are the fuzzy cluster assignments for the

embedding. As before, it is possible to use the embedding for hierarchical spectral

clustering as well. Since the spectral loss imposes an ordering on the columns of

the output based on the ordering of the approximate spectral decomposition, we

can similarly use the ordered columns of Z as the top-k′ for clusters k′ < k. The

construction of the hierarchy is the same as that detailed in prior chapters.

7.4 Vote Prediction using OSAE Graph Embedding

Using the same federal data from the prior chapters, we run several experiments

testing the efficacy of using orthogonal spectral autoencoders for vote prediction.

The general procedure for performing the clustering is as follows. A weighted graph

adjacency matrix is used as input to the neural network. Each element aij in A is

scaled logarithmically by aij = log (
∑

amtij) where amtij is the value of a donation

between nodes i and j in the graph.

For each different year of data, we keep the structure and procedure of training

the autoencoder the same. The only exception to this is that the input and
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output dimension must change for each cycle to fit the different data. No other

hyperparameters are changed between runs. All runs were done with a mini-batch

size of b = 128. Based on the results from the clustering on the previous results, we

set k = 8 as the maximum number of clusters, and thus the dimension of the encoding

layer. Each network is trained over 500 epochs.

In the following experiments we test the effectiveness of the graph embedding for

predicting future behavior for each 2-year cycle separately. The classification method

is the same as described in Chapter 6. In each cycle, a random forest is used to

predict if a legislator will vote Yea or Nay based on their community assignments and

the ideological estimate of the bill in question. For these experiments, we work with a

smaller dataset than the full vote data used in Chapter 6. A sample of 200, 000 votes

is drawn from the relevant set of Yea and Nay votes for that two-year cycle. The

random forest is constructed with an ensemble of 50 trees. As we are more interested

in the relative performance, the random forests are not optimized or pruned.

The first experiment listed in the results is a baseline for comparison. Multiple

trials were performed using the spectral decomposition in Chapter 6. In each trial, the

spectral decomposition with k = 8 clusters calculated for each of the networks in years

1980, 1982, . . . , 2012. For each of those years, we use three separate feature sets to

predict behavior of the community members. The three separate feature sets are the

row normalized top-k eigenvectors of the normalized symmetric Laplacian Lsym, the

hierarchical fuzzy c-means community assignments for each k = 2, . . . , 8. In addition

to testing the performance of spectral decomposition on the entire adjacency matrix,

we add a comparison to the vote prediction when using the CFScore ideological

estimates. This is done to add more context to the relative performance of the

algorithms. Each of these features are assigned to the individual nodes within the

graph. These features are then attached to the voting history that pairs legislators
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within the graph to bills. Each bill has its own ideological estimate from DW-

NOMINATE that gives an estimate of the policy position of each bill.

The next experiments test the efficacy of the embeddings for an orthogonal

autoencoder and OSAE. Each network is trained for 500 epochs, where every epoch

samples a minibatch from the adjacency matrix and uses stochastic gradient descent

to update the weights. The row normalized graph embedding Z is then used in

the calculation of the features that are assigned to each legislator in the campaign

finance network. As before, we analyze the results of different treatments of the

graph embedding: embedding itself, fuzzy c-means clustering, and hierarchical fuzzy

spectral clustering. For all the following experiments, trials were repeated 10 times

to get the average performance of each experiment.

First we test OSAE on clustering of a dataset of points on a 2-dimensional

plane. In this dataset, the 2-dimensional data is fed into the same orthogonal

spectral autoencoder architecture as that used by the later experiments on graph

embedding. The Laplacian of the entire data set is approximated using the Krbfs

described in Section 7.2. The network is trained over mini-batches of size 128 until

the loss function fails to improve by ε = 0.001 using a patience window of 100 epochs.

Results of consecutive K-means clustering on the graph using the true number of

clusters is shown in Figures 7.5 and 7.6. As seen in the graphs, the results do not

perfectly capture the true clusters in the data, although the results still show promise

in providing an embedding that can be useful for other networks.

We analyze the results of training the encoders for each cycle of the data. As

baseline points of comparison, the following figures show results for predictive voting

behavior of legislators within the networks for each cycle. Included in these results

are the results for using the CFScore ideological measure to predict voting behavior

instead of the spectral decomposition and clustering. Table 7.1 shows the results of
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Figure 7.5: Example Runs of OSAE on 2-Dimensional Data

predicting voting behavior on the sampled dataset.

When generating the results given in the table, the sample of votes was the same

across the three different classifiers for each individual trial within a cycle. In the

table, “Eigs” refers to directly clustering on the row-normalized top-k eigenvectors

of the spectral decomposition. The number of clusters and eigenvectors is k = 8 for

each of the following trials. “HFSC” is the result of predicting using the hierarchical
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Figure 7.6: Additional Runs of OSAE on 2-Dimensional Data

community assignments after performing FCM on the eigenvectors. “CFScore” is

using just the ideological metric as provided by Bonica [78].

The results from the table are as expected based on the larger experiments

performed in Chapter 6. Clustering directly on the top-k eigenvectors is effective

in predicting voting behavior. Using the community hierarchy from HFSC did not

perform quite as well as the raw top-k eigenvectors, but the performance is still
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Table 7.1: Prediction baselines on each cycle

Cycle Eigs HFSC CFScore

1980 0.815± 5.27E − 04 0.806± 1.06E − 03 0.799± 4.21E − 04

1982 0.823± 3.96E − 04 0.816± 4.68E − 04 0.806± 2.63E − 04

1984 0.834± 3.80E − 04 0.827± 4.37E − 04 0.814± 3.88E − 04

1986 0.824± 2.64E − 04 0.818± 5.83E − 04 0.808± 3.54E − 04

1988 0.861± 4.02E − 04 0.857± 3.60E − 04 0.845± 2.90E − 04

1990 0.820± 3.19E − 04 0.803± 8.33E − 04 0.826± 4.68E − 04

1992 0.827± 5.03E − 04 0.815± 4.06E − 04 0.825± 1.99E − 04

1994 0.835± 5.19E − 04 0.800± 1.46E − 03 0.842± 4.07E − 04

1996 0.819± 4.87E − 04 0.778± 1.13E − 02 0.848± 2.23E − 04

1998 0.838± 6.33E − 04 0.826± 6.34E − 04 0.854± 3.11E − 04

2000 0.860± 2.83E − 04 0.852± 4.31E − 04 0.872± 2.00E − 04

2002 0.892± 4.52E − 04 0.881± 6.50E − 04 0.901± 3.06E − 04

2004 0.922± 3.81E − 04 0.920± 3.94E − 04 0.914± 2.42E − 04

2006 0.896± 5.39E − 04 0.888± 4.95E − 04 0.894± 2.32E − 04

2008 0.914± 2.33E − 04 0.911± 3.13E − 04 0.908± 2.26E − 04

2010 0.922± 2.23E − 04 0.912± 7.93E − 03 0.928± 1.95E − 04

2012 0.897± 3.56E − 04 0.893± 3.01E − 04 0.883± 2.96E − 04

comparable. As shown, eigenvalue decomposition and hierarchical fuzzy spectral

clustering outperforms the CFScore ideological metric during earlier cycles. This is

likely due to CFScore being trained on the entire dataset of campaign contributions.

The much higher proportion of data in later cycles would skew the CFScore. These

results will serve as a point of comparison to the graph embedding generated from
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Figure 7.7: Vote Prediction using Spectral Embedding

the orthogonal spectral autoencoder.

The results of vote prediction on the spectral embedding of Z is shown in Figure

7.7. As can be seen, in general OSAE outperforms OAE in predicting behaviors

among the legislators. The average performance per cycle of using the eigenvectors

directly in prediction are also shown as a baseline.

Performing hierarchical fuzzy spectral clustering on the graph embeddings gives

the results shown in Figure 7.8. The out-of-bag accuracy for this classifier shows it

is not quite as effective as using the spectral embeddings themselves, although the

results are still very close. This mirrors the results from Chapter 6 where HFSC was

similar in effectiveness to using eigenvectors directly.

Figure 7.9 shows the results of the vote classification when using fuzzy c-means

to cluster the spectral embedding at k = 8. As before, the embeddings of OSAE

outperform those of OAE, although not always to a significant degree. In 2010 where
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Figure 7.8: Vote Prediction using HFSC of Spectral Embedding

Figure 7.9: Vote Prediction using Fuzzy C-Means of Spectral Embedding
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Table 7.2: Accuracy of vote prediction by cycle using spectral embedding

Cycle OSAEEmb OAEEmb OSAEHFSC OAEHFSC OSAEFCM OAEFCM

1980 0.792 0.760 0.787 0.755 0.777 0.755

1982 0.799 0.778 0.792 0.774 0.789 0.768

1984 0.804 0.782 0.801 0.779 0.789 0.775

1986 0.802 0.760 0.798 0.758 0.785 0.748

1988 0.830 0.800 0.827 0.800 0.827 0.794

1990 0.812 0.791 0.810 0.790 0.798 0.776

1992 0.801 0.783 0.799 0.783 0.783 0.767

1994 0.796 0.767 0.794 0.767 0.784 0.740

1996 0.791 0.750 0.783 0.738 0.754 0.720

1998 0.812 0.796 0.808 0.795 0.790 0.775

2000 0.830 0.825 0.823 0.824 0.819 0.788

2002 0.865 0.850 0.864 0.849 0.844 0.832

2004 0.869 0.858 0.863 0.858 0.848 0.837

2006 0.847 0.827 0.841 0.823 0.805 0.799

2008 0.852 0.822 0.848 0.823 0.833 0.819

2010 0.875 0.860 0.874 0.863 0.855 0.868

2012 0.828 0.827 0.826 0.825 0.809 0.785

OAE had better out-of-bag accuracy in the random forests, it was not statistically

significantly better than OSAE. Still, this shows that the orthogonalization in OAE

is useful in finding a network embedding for predicting behavior of the communities.

The full side-by-side results for each of the uses of the embeddings are shown

in Table 7.2. These results help highlight once again that predictions using HFSC

are quite close to the performance of the spectral embeddings themselves and can
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significantly outperform just using FCM clustering.

7.5 Conclusion

In this chapter we defined the Orthogonal Spectral Autoencoder. This neural

network allows embedding a graph into a lower dimensional space approximating

the spectral decomposition. Results show the orthogonal spectral loss function is

effective at obtaining a graph embedding that is useful in predicting some behavior of

the individuals in the graph. The results were comparable to that of the full spectral

decomposition. Based on the preliminary results, this avenue appears promising for

refinement. There are many areas where improvements may be possible, either in

modifying the structure of the autoencoder, or additional hyperparameter searching.

Some of these will be explored in future work.
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CHAPTER EIGHT

CONCLUSION

In the previous chapters we provided details on novel architectures for finding

hierarchical and overlapping clusters in social networks. These architectures were

validated against multiple campaign finance social networks that exhibited important

features of the community assignment embeddings. The following sections summa-

rizes these results and provides avenues for future work.

8.1 Summary

We introduced an approach for hierarchical fuzzy spectral clustering. This

approach iteratively added eigenvectors and used fuzzy c-means to create a hierarchy

of fuzzy community assignments. The hierarchical portion of the algorithm created

the hierarchy by attaching child nodes to their parents based on a fuzzy Jaccard

similarity. The effectiveness of this algorithm was shown on two small benchmark

datasets in addition to a real-world campaign finance network. These results showed

HFSC found communities that corresponded to known ground truths. Additionally,

we showed that the discovered communities were crucial in identifying varying

behaviors of the individuals within social networks. This was true for the hierarchical

communities, where children shared some behaviors with their parent, but had

different behavior between the siblings. It was also true for vertices in the overlap

between communities as it was shown they behaved differently than those vertices who

were entirely within a single community. We used the hierarchical communities on a

campaign finance network to isolate k = 2 communities that corresponded to party

alignment. The overlap of these two communities showed that the fuzzy communities
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provide additional insight into the behaviors of the individuals since the donors in the

overlap historically donated to both parties in equal amounts. The children of the

k = 2 show how the communities at k = 4 differ from their parents in that the child

communities split into sibling communities that heavily favored party for one and

favored winning candidates of the party for the other sibling. These results show the

effectiveness of HFSC in creating community assignments that highlight behaviors of

the underlying networks.

We subsequently used fuzzy similarity metrics to connect communities found

in snapshots of data through time. After the initial community discovery using

HFSC on individual time steps, the links between communities in adjacent time

steps were added based on that similarity metric. We analyzed the ability of this

algorithm to track communities through time on multiple state campaign finance

networks, detailing how individuals and communities change behavior over time. The

results showed that the campaign finance communities persisted through time in the

campaign finance networks despite the relatively high churn of vertices in the graph

at each time step. These communities were validated against ideological scores as

well as their behavior detailed through time.

During those experiments, the issue of interpretability of the communities was

apparent. Enumerating the ways in which behavior was shared among communities,

as well as in how they differed was time consuming. We utilized association rule

mining on transaction data partitioned by the hierarchical fuzzy spectral clustering

to improve the interpretability of the community assignments. The results on rules

found within a state campaign finance network showed the automatic rule finding was

beneficial in interpreting the community structure.

In the following chapter we showed the generalizability of the community

detection by using the community assignments in a prediction task. This task required
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predicting behavior of individual within a social network. This behavior was one that

was not directly described in the underlying data that generated the network. This

predictive task took the form of predicting voting of legislators in the United States

legislature. We combined the community assignments with a data set bill ideological

estimates and the history of Yea and Nay votes over a period of 12 different snapshots.

The results showed the hierarchical fuzzy community assignments were generalizable

and effective at predicting votes.

In the final chapter we introduced a novel graph embedding structure, Orthog-

onal Spectral Autoencoder, in order to resolve two issues inherent to the spectral

decomposition step necessary for HFSC. This allowed for embedding the graph

without performing spectral decomposition over the entire adjacency matrix. This

neural network architecture naturally allowed for projecting new data points into

the spectral domain without having to recalculate the Laplacian matrix or spectral

decomposition. This allows for out-of-sample clustering of the new data. While

the approximate graph embedding did not perform quite as well as the full spectral

decomposition, the results were comparable.

8.2 Future Work

There are many ways in which improvements to hierarchical fuzzy spectral

clustering could be made. The algorithms connecting communities through time

could be improved by utilizing information in adjacent time steps to smooth the

changes in the community assignments. In addition to the smoothing effect, such

improvements could more easily match communities through time, as well as better

identify areas where communities merge, split, or otherwise change.

Additional interpretability improvements could be made by modifying the item

set detection. Instead of complete partitions, a weighted frequent itemset algorithm
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may be used to find the important rules in the data. Developing better pruning to

reduce the extraneous rules would also aid in rapid interpretation of the communities

in social networks.

The introduction of the Orthogonal Spectral Autoencoder in particular opens

many avenues for new research. Additional research in hyperparameter and structure

tuning may yield a better approximation without further modifications to the

underlying algorithm. Preliminary work has already begun on replacing the spectral

loss function with an optimization function that approximates the eigenvectors

without performing the direct decomposition. Additions to the neural network

architecture, such as graph convolution networks could tag the communities via

embedding the node and edge heterogeneous information. These graph convolution

networks could also be used in a recurrent network to capture the dynamic properties

of the social networks.
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The tables below show the results of hierarchical fuzzy spectral clustering on data
provided by the National Institute on Money in Politics for each individual state in
2012. Each network is comprised of non-individuals who donated to more than one
candidate. The largest connected component was retained, and hierarchical fuzzy
spectral clustering applied to the generated networks. While Connecticut is included
in these results, the resulting graph is small and sparse due to the restrictions imposed
when creating the graph. Each table contains summary information regarding the
donation history for donors within the found clusters. This summary includes all
historical data those donors across all states in order to illustrate possible differing
donation strategies among donors. For these examples, a threshold λ = 0.3 on the
membership values is used to assign a community.

Table A.1: Donor History by Community in AK

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $6,231,206 0.576 I $13,356,519 3.522 Lost $2,671,707 0.202
c2,0 R $10,821,130 1.737 N $3,792,117 0.284 Won $13,207,194 4.943
c2,1 D $27,187,814 9.163 I $19,441,452 1.753 Lost $9,311,200 0.515
c2,1 R $2,967,028 0.109 N $11,088,941 0.570 Won $18,083,491 1.942

c2,0 ∩ c2,1 D $316,847 1.420 I $395,911 2.615 Lost $114,579 0.269
c2,0 ∩ c2,1 R $223,054 0.704 N $151,415 0.382 Won $425,896 3.717

c4,0 D $25,613,250 8.561 I $19,065,511 1.929 Lost $8,197,997 0.466
c4,0 R $2,991,708 0.117 N $9,884,314 0.518 Won $17,574,767 2.144
c4,1 D $2,971,304 0.450 I $7,298,018 3.154 Lost $1,706,765 0.243
c4,1 R $6,596,901 2.220 N $2,313,532 0.317 Won $7,012,928 4.109
c4,2 D $1,378,731 23.496 I $297,804 0.256 Lost $1,102,884 3.081
c4,2 R $58,679 0.043 N $1,164,765 3.911 Won $357,994 0.325
c4,3 D $3,459,270 0.814 I $6,283,352 4.247 Lost $949,159 0.149
c4,3 R $4,250,760 1.229 N $1,479,631 0.235 Won $6,376,948 6.719

Table A.2: Donor History by Community in AL

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $34,485,704 0.541 I $80,323,659 4.398 Lost $17,586,843 0.255
c2,0 R $63,706,690 1.847 N $18,264,635 0.227 Won $69,069,634 3.927
c2,1 D $33,447,824 4.189 I $26,682,042 1.761 Lost $14,520,483 0.657
c2,1 R $7,985,424 0.239 N $15,148,532 0.568 Won $22,108,843 1.523

c2,0 ∩ c2,1 D $1,347,249 0.425 I $3,530,416 3.525 Lost $1,114,123 0.392
c2,0 ∩ c2,1 R $3,167,732 2.351 N $1,001,565 0.284 Won $2,838,704 2.548

c4,0 D $31,249,475 13.929 I $20,471,555 1.535 Lost $12,266,109 0.703
c4,0 R $2,243,447 0.072 N $13,340,692 0.652 Won $17,450,943 1.423
c4,1 D $33,543,754 0.564 I $76,283,859 4.445 Lost $15,820,918 0.238
c4,1 R $59,504,215 1.774 N $17,160,010 0.225 Won $66,372,234 4.195
c4,2 D $942,350 0.339 I $2,889,820 3.226 Lost $1,269,750 0.620
c4,2 R $2,782,245 2.952 N $895,775 0.310 Won $2,047,195 1.612
c4,3 D $2,080,379 0.269 I $7,303,229 2.907 Lost $2,889,425 0.497
c4,3 R $7,730,057 3.716 N $2,512,207 0.344 Won $5,809,661 2.011
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Table A.3: Donor History by Community in AR

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $78,622,556 2.084 I $89,025,514 3.110 Lost $23,636,478 0.292
c2,0 R $37,725,817 0.480 N $28,621,244 0.321 Won $80,890,589 3.422
c2,1 D $88,114,927 0.653 I $194,101,446 6.326 Lost $25,838,692 0.149
c2,1 R $134,923,801 1.531 N $30,684,267 0.158 Won $173,135,986 6.701

c2,0 ∩ c2,1 D $24,680,610 0.742 I $52,009,877 7.993 Lost $5,794,934 0.128
c2,0 ∩ c2,1 R $33,276,511 1.348 N $6,507,051 0.125 Won $45,212,127 7.802

c4,0 D $79,409,745 0.718 I $168,528,211 7.350 Lost $20,100,069 0.135
c4,0 R $110,653,982 1.393 N $22,927,875 0.136 Won $149,395,090 7.433
c4,1 D $57,979,598 2.896 I $57,597,684 2.712 Lost $17,148,743 0.323
c4,1 R $20,023,915 0.345 N $21,238,922 0.369 Won $53,012,859 3.091
c4,2 D $25,336,914 19.730 I $15,378,144 1.340 Lost $9,327,911 0.598
c4,2 R $1,284,190 0.051 N $11,473,785 0.746 Won $15,596,465 1.672
c4,3 D $15,923,977 0.460 I $41,722,561 4.525 Lost $7,546,470 0.200
c4,3 R $34,586,570 2.172 N $9,220,123 0.221 Won $37,815,840 5.011

Table A.4: Donor History by Community in AZ

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $171,550 1.796 I $234,180 7.116 Lost $23,780 0.119
c2,0 R $95,540 0.557 N $32,910 0.141 Won $199,910 8.407
c2,1 D $82,005,227 1.086 I $127,180,257 3.997 Lost $26,559,550 0.228
c2,1 R $75,544,659 0.921 N $31,821,648 0.250 Won $116,627,976 4.391

c2,0 ∩ c2,1 D $171,550 1.812 I $233,480 7.129 Lost $23,780 0.119
c2,0 ∩ c2,1 R $94,680 0.552 N $32,750 0.140 Won $199,050 8.370

c4,0 D $33,545,933 12.278 I $22,182,368 1.534 Lost $12,011,405 0.561
c4,0 R $2,732,169 0.081 N $14,461,703 0.652 Won $21,415,110 1.783
c4,1 D $16,288,066 0.683 I $34,326,596 5.374 Lost $4,671,557 0.146
c4,1 R $23,855,814 1.465 N $6,387,439 0.186 Won $32,072,341 6.865
c4,2 D $23,958,651 0.592 I $56,062,909 6.266 Lost $7,735,460 0.153
c4,2 R $40,499,007 1.690 N $8,947,790 0.160 Won $50,638,475 6.546
c4,3 D $32,712,701 1.817 I $40,159,567 3.663 Lost $9,226,313 0.258
c4,3 R $18,003,450 0.550 N $10,962,699 0.273 Won $35,783,542 3.878

Table A.5: Donor History by Community in CA

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $462,193,658 1.342 I $622,936,188 3.277 Lost $134,959,301 0.217
c2,0 R $344,442,457 0.745 N $190,093,268 0.305 Won $621,631,277 4.606
c2,1 D $843,949 1.678 I $948,145 1.470 Lost $515,599 0.479
c2,1 R $502,919 0.596 N $644,964 0.680 Won $1,077,510 2.090

c2,0 ∩ c2,1 D $185,200 2.750 I $181,700 2.374 Lost $39,750 0.182
c2,0 ∩ c2,1 R $67,350 0.364 N $76,550 0.421 Won $218,500 5.497

c4,0 D $17,600 0.140 I $109,638 0.542 Lost $198,975 1.760
c4,0 R $125,745 7.145 N $202,375 1.846 Won $113,038 0.568
c4,1 D $164,844,588 16.600 I $107,950,768 1.578 Lost $40,148,123 0.308
c4,1 R $9,930,533 0.060 N $68,428,242 0.634 Won $130,421,379 3.249
c4,2 D $657,249 2.023 I $684,475 1.760 Lost $287,374 0.366
c4,2 R $324,824 0.494 N $388,839 0.568 Won $785,940 2.735
c4,3 D $377,947,946 1.107 I $570,523,492 3.691 Lost $112,038,400 0.200
c4,3 R $341,469,715 0.903 N $154,565,697 0.271 Won $559,562,532 4.994
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Table A.6: Donor History by Community in CO

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $78,185,123 2.174 I $83,803,125 2.715 Lost $24,852,684 0.318
c2,0 R $35,968,415 0.460 N $30,865,344 0.368 Won $78,229,814 3.148
c2,1 D $42,466,738 0.557 I $98,718,086 4.718 Lost $20,361,434 0.233
c2,1 R $76,268,501 1.796 N $20,925,503 0.212 Won $87,215,502 4.283

c2,0 ∩ c2,1 D $21,295,477 0.811 I $41,546,229 6.696 Lost $5,521,860 0.152
c2,0 ∩ c2,1 R $26,257,692 1.233 N $6,204,760 0.149 Won $36,427,443 6.597

c4,0 D $54,280,283 9.202 I $36,734,215 1.547 Lost $18,695,045 0.502
c4,0 R $5,898,518 0.109 N $23,747,822 0.646 Won $37,227,987 1.991
c4,1 D $2,408,341 0.110 I $17,302,589 2.373 Lost $9,089,230 0.677
c4,1 R $21,841,569 9.069 N $7,291,473 0.421 Won $13,418,359 1.476
c4,2 D $4,873,156 0.909 I $7,703,093 2.971 Lost $1,767,610 0.258
c4,2 R $5,358,292 1.100 N $2,592,461 0.337 Won $6,861,954 3.882
c4,3 D $39,137,658 0.722 I $80,867,136 6.189 Lost $10,868,592 0.148
c4,3 R $54,239,001 1.386 N $13,066,422 0.162 Won $73,365,682 6.750

Table A.7: Donor History by Community in CT

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $5,390 0.596 I $8,870 1.537 Lost $5,150 0.543
c2,0 R $9,050 1.679 N $5,770 0.651 Won $9,490 1.843
c2,1 D $12,987,096 0.854 I $24,655,426 6.741 Lost $3,163,494 0.143
c2,1 R $15,209,527 1.171 N $3,657,647 0.148 Won $22,054,806 6.972

c2,0 ∩ c2,1 D $0 NA I $0 NA Lost $0 NA
c2,0 ∩ c2,1 R $0 NA N $0 NA Won $0 NA

c4,0 D $25 0.004 I $3,675 1.329 Lost $2,545 0.653
c4,0 R $6,415 256.600 N $2,765 0.752 Won $3,895 1.530
c4,1 D $4,290 10.094 I $3,260 1.970 Lost $1,400 0.398
c4,1 R $425 0.099 N $1,655 0.508 Won $3,515 2.511
c4,2 D $3,060 NA I $1,475 0.931 Lost $1,080 0.545
c4,2 R $0 NA N $1,585 1.075 Won $1,980 1.833
c4,3 D $12,985,111 0.854 I $24,655,886 6.741 Lost $3,163,774 0.143
c4,3 R $15,211,892 1.171 N $3,657,567 0.148 Won $22,054,906 6.971

Table A.8: Donor History by Community in DE

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $49,302,417 0.761 I $100,548,273 6.991 Lost $14,002,157 0.157
c2,0 R $64,780,247 1.314 N $14,383,165 0.143 Won $88,960,053 6.353
c2,1 D $83,628,947 1.331 I $122,664,162 4.960 Lost $21,381,708 0.192
c2,1 R $62,828,631 0.751 N $24,732,871 0.202 Won $111,164,213 5.199

c2,0 ∩ c2,1 D $35,749,106 0.903 I $67,306,486 7.946 Lost $8,378,331 0.140
c2,0 ∩ c2,1 R $39,582,378 1.107 N $8,470,122 0.126 Won $59,706,953 7.126

c4,0 D $56,800,432 0.925 I $103,544,029 6.689 Lost $14,417,455 0.156
c4,0 R $61,379,789 1.081 N $15,480,330 0.150 Won $92,164,854 6.393
c4,1 D $22,841,284 14.945 I $16,062,871 1.866 Lost $6,761,364 0.437
c4,1 R $1,528,349 0.067 N $8,606,722 0.536 Won $15,472,932 2.288
c4,2 D $41,407,115 0.828 I $80,405,994 6.950 Lost $10,845,785 0.151
c4,2 R $50,005,976 1.208 N $11,569,824 0.144 Won $71,770,034 6.617
c4,3 D $896,352 0.195 I $3,388,763 1.555 Lost $1,855,280 0.546
c4,3 R $4,604,434 5.137 N $2,179,473 0.643 Won $3,396,076 1.830
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Table A.9: Donor History by Community in FL

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $648,096 0.600 I $1,584,383 2.737 Lost $372,425 0.226
c2,0 R $1,080,700 1.667 N $578,820 0.365 Won $1,647,328 4.423
c2,1 D $194,741,889 0.753 I $372,580,657 4.403 Lost $64,770,104 0.191
c2,1 R $258,665,258 1.328 N $84,616,868 0.227 Won $339,882,967 5.248

c2,0 ∩ c2,1 D $339,345 0.387 I $898,037 2.204 Lost $189,600 0.189
c2,0 ∩ c2,1 R $876,975 2.584 N $407,520 0.454 Won $1,003,207 5.291

c4,0 D $175,552,537 0.688 I $356,614,284 4.621 Lost $58,605,624 0.180
c4,0 R $255,314,179 1.454 N $77,172,389 0.216 Won $325,301,080 5.551
c4,1 D $632,371 1.115 I $999,551 2.207 Lost $326,873 0.338
c4,1 R $566,945 0.897 N $452,869 0.453 Won $967,873 2.961
c4,2 D $18,886,050 5.971 I $15,463,158 2.129 Lost $5,987,107 0.423
c4,2 R $3,162,904 0.167 N $7,262,860 0.470 Won $14,157,626 2.365
c4,3 D $18,451,966 7.141 I $14,949,135 2.187 Lost $5,698,052 0.419
c4,3 R $2,583,784 0.140 N $6,834,466 0.457 Won $13,605,827 2.388

Table A.10: Donor History by Community in GA

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $185,161,097 0.414 I $366,200,801 1.361 Lost $262,926,440 0.823
c2,0 R $447,190,453 2.415 N $269,035,421 0.735 Won $319,395,546 1.215
c2,1 D $4,277,540 0.967 I $7,263,474 3.885 Lost $1,832,268 0.289
c2,1 R $4,423,022 1.034 N $1,869,696 0.257 Won $6,349,895 3.466

c2,0 ∩ c2,1 D $1,490,691 0.680 I $3,171,124 5.129 Lost $580,695 0.206
c2,0 ∩ c2,1 R $2,192,841 1.471 N $618,317 0.195 Won $2,812,494 4.843

c4,0 D $1,801,099 1.242 I $2,655,115 2.997 Lost $874,197 0.377
c4,0 R $1,450,596 0.805 N $885,879 0.334 Won $2,317,897 2.651
c4,1 D $61,616,592 1.808 I $72,968,794 3.056 Lost $20,657,723 0.318
c4,1 R $34,088,798 0.553 N $23,875,574 0.327 Won $64,907,617 3.142
c4,2 D $11,915,765 2.238 I $13,878,204 3.835 Lost $3,222,953 0.277
c4,2 R $5,324,555 0.447 N $3,618,374 0.261 Won $11,629,756 3.608
c4,3 D $134,388,233 0.309 I $321,869,190 1.288 Lost $246,380,244 0.879
c4,3 R $435,293,182 3.239 N $249,861,239 0.776 Won $280,241,706 1.137

Table A.11: Donor History by Community in HI

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $2,638,248 0.150 I $14,522,002 2.496 Lost $7,840,631 0.684
c2,0 R $17,558,132 6.655 N $5,817,827 0.401 Won $11,462,052 1.462
c2,1 D $47,274,085 1.002 I $79,022,708 4.862 Lost $14,330,164 0.201
c2,1 R $47,193,318 0.998 N $16,253,268 0.206 Won $71,287,481 4.975

c2,0 ∩ c2,1 D $623,090 0.246 I $2,587,591 4.329 Lost $630,584 0.272
c2,0 ∩ c2,1 R $2,532,141 4.064 N $597,739 0.231 Won $2,318,557 3.677

c4,0 D $17,489,799 1.361 I $22,947,689 2.987 Lost $6,760,165 0.323
c4,0 R $12,851,908 0.735 N $7,683,370 0.335 Won $20,931,724 3.096
c4,1 D $60,289 26.795 I $33,550 1.076 Lost $20,750 0.550
c4,1 R $2,250 0.037 N $31,189 0.930 Won $37,739 1.819
c4,2 D $2,563,298 0.146 I $14,480,002 2.505 Lost $7,810,881 0.684
c4,2 R $17,554,482 6.848 N $5,779,927 0.399 Won $11,421,152 1.462
c4,3 D $38,388,470 0.866 I $71,699,662 6.088 Lost $10,272,231 0.159
c4,3 R $44,340,973 1.155 N $11,777,054 0.164 Won $64,446,193 6.274
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Table A.12: Donor History by Community in IA

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $76,855,763 0.654 I $164,720,790 5.252 Lost $28,005,873 0.189
c2,0 R $117,569,381 1.530 N $31,361,832 0.190 Won $148,193,906 5.292
c2,1 D $64,096,047 7.524 I $48,602,790 1.976 Lost $19,864,704 0.441
c2,1 R $8,519,086 0.133 N $24,599,921 0.506 Won $45,016,162 2.266

c2,0 ∩ c2,1 D $6,975,872 2.036 I $7,725,878 2.861 Lost $2,306,996 0.315
c2,0 ∩ c2,1 R $3,426,573 0.491 N $2,700,251 0.350 Won $7,326,153 3.176

c4,0 D $56,228,356 14.480 I $39,130,558 1.817 Lost $17,194,771 0.475
c4,0 R $3,883,084 0.069 N $21,541,577 0.551 Won $36,229,379 2.107
c4,1 D $14,243,306 0.488 I $32,897,511 3.049 Lost $9,076,089 0.294
c4,1 R $29,206,553 2.051 N $10,787,956 0.328 Won $30,912,857 3.406
c4,2 D $17,827,599 1.451 I $24,046,123 3.834 Lost $5,847,307 0.269
c4,2 R $12,287,966 0.689 N $6,271,723 0.261 Won $21,758,603 3.721
c4,3 D $66,890,469 0.662 I $147,765,801 6.835 Lost $19,716,670 0.150
c4,3 R $101,000,423 1.510 N $21,618,882 0.146 Won $131,481,793 6.669

Table A.13: Donor History by Community in ID

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $72,054,345 0.688 I $150,311,673 5.327 Lost $23,560,714 0.173
c2,0 R $104,734,825 1.454 N $28,215,833 0.188 Won $136,335,510 5.787
c2,1 D $39,741,691 15.785 I $28,215,980 1.932 Lost $11,955,699 0.465
c2,1 R $2,517,743 0.063 N $14,602,667 0.518 Won $25,706,475 2.150

c2,0 ∩ c2,1 D $7,349,467 8.826 I $5,595,833 2.086 Lost $2,110,343 0.426
c2,0 ∩ c2,1 R $832,685 0.113 N $2,682,549 0.479 Won $4,953,249 2.347

c4,0 D $9,512,687 23.213 I $6,969,118 2.317 Lost $2,400,199 0.381
c4,0 R $409,803 0.043 N $3,008,122 0.432 Won $6,297,241 2.624
c4,1 D $3,307,030 1.492 I $4,196,084 2.953 Lost $1,134,967 0.287
c4,1 R $2,216,582 0.670 N $1,420,733 0.339 Won $3,950,730 3.481
c4,2 D $39,474,990 15.143 I $28,058,048 1.920 Lost $11,899,485 0.462
c4,2 R $2,606,883 0.066 N $14,612,899 0.521 Won $25,779,639 2.166
c4,3 D $61,543,900 0.603 I $141,049,375 5.835 Lost $20,372,614 0.159
c4,3 R $102,126,018 1.659 N $24,172,293 0.171 Won $127,884,832 6.277

Table A.14: Donor History by Community in IL

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $15,827,551 3.041 I $16,056,603 2.897 Lost $4,609,219 0.320
c2,0 R $5,205,134 0.329 N $5,543,027 0.345 Won $14,424,322 3.129
c2,1 D $375,017,586 1.294 I $554,878,715 4.725 Lost $109,552,706 0.228
c2,1 R $289,734,099 0.773 N $117,435,278 0.212 Won $480,518,701 4.386

c2,0 ∩ c2,1 D $10,876,921 2.813 I $11,362,723 3.130 Lost $2,991,256 0.293
c2,0 ∩ c2,1 R $3,867,326 0.356 N $3,629,749 0.319 Won $10,204,742 3.412

c4,0 D $163,041,830 4.762 I $154,015,609 3.260 Lost $42,110,231 0.321
c4,0 R $34,241,052 0.210 N $47,241,854 0.307 Won $131,164,128 3.115
c4,1 D $247,636,179 1.000 I $436,649,227 7.025 Lost $62,233,639 0.166
c4,1 R $247,554,294 1.000 N $62,159,423 0.142 Won $373,900,447 6.008
c4,2 D $1,454,310 0.059 I $10,270,230 0.630 Lost $13,341,576 1.148
c4,2 R $24,710,568 16.991 N $16,307,248 1.588 Won $11,625,320 0.871
c4,3 D $17,912,863 4.937 I $17,115,783 3.373 Lost $4,175,202 0.278
c4,3 R $3,627,995 0.203 N $5,074,937 0.297 Won $15,014,409 3.596
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Table A.15: Donor History by Community in IN

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $117,997,990 0.594 I $274,424,272 6.195 Lost $37,616,716 0.153
c2,0 R $198,635,595 1.683 N $44,298,769 0.161 Won $246,107,013 6.542
c2,1 D $107,337,869 11.333 I $76,119,451 1.831 Lost $36,261,182 0.550
c2,1 R $9,471,564 0.088 N $41,566,026 0.546 Won $65,980,129 1.820

c2,0 ∩ c2,1 D $956,756 0.735 I $1,892,831 4.558 Lost $356,301 0.212
c2,0 ∩ c2,1 R $1,301,430 1.360 N $415,316 0.219 Won $1,680,405 4.716

c4,0 D $105,099,561 14.532 I $72,520,865 1.785 Lost $35,393,653 0.564
c4,0 R $7,232,478 0.069 N $40,617,055 0.560 Won $62,792,004 1.774
c4,1 D $54,622,800 0.512 I $135,958,529 5.082 Lost $20,785,521 0.165
c4,1 R $106,764,709 1.955 N $26,751,391 0.197 Won $125,647,694 6.045
c4,2 D $11,679,310 3.570 I $12,294,084 4.415 Lost $2,699,051 0.309
c4,2 R $3,271,429 0.280 N $2,784,717 0.227 Won $8,727,724 3.234
c4,3 D $83,103,288 0.681 I $182,351,826 7.694 Lost $21,856,956 0.136
c4,3 R $121,956,785 1.468 N $23,700,131 0.130 Won $160,494,121 7.343

Table A.16: Donor History by Community in KS

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $31,382,439 14.873 I $20,966,162 1.632 Lost $11,285,916 0.574
c2,0 R $2,109,961 0.067 N $12,850,552 0.613 Won $19,674,667 1.743
c2,1 D $139,480,540 0.803 I $264,985,896 5.270 Lost $43,154,592 0.180
c2,1 R $173,655,433 1.245 N $50,283,768 0.190 Won $239,389,010 5.547

c2,0 ∩ c2,1 D $25,589,740 12.350 I $18,296,974 1.892 Lost $8,273,774 0.486
c2,0 ∩ c2,1 R $2,072,111 0.081 N $9,668,641 0.528 Won $17,021,444 2.057

c4,0 D $13,981,351 24.433 I $7,734,849 1.124 Lost $5,998,595 0.761
c4,0 R $572,238 0.041 N $6,882,418 0.890 Won $7,880,713 1.314
c4,1 D $35,913,755 10.371 I $26,574,820 2.017 Lost $10,843,154 0.438
c4,1 R $3,462,797 0.096 N $13,174,855 0.496 Won $24,769,352 2.284
c4,2 D $79,661,362 0.567 I $192,622,074 6.607 Lost $25,368,786 0.147
c4,2 R $140,593,932 1.765 N $29,152,549 0.151 Won $172,825,497 6.813
c4,3 D $41,226,812 0.708 I $86,952,284 6.550 Lost $11,303,252 0.143
c4,3 R $58,238,924 1.413 N $13,275,766 0.153 Won $79,313,365 7.017

Table A.17: Donor History by Community in KY

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $124,374,074 1.249 I $180,336,438 3.973 Lost $38,845,423 0.241
c2,0 R $99,602,966 0.801 N $45,387,628 0.252 Won $161,203,396 4.150
c2,1 D $13,500 0.004 I $2,318,308 2.132 Lost $2,290,457 2.069
c2,1 R $3,357,281 248.687 N $1,087,563 0.469 Won $1,107,013 0.483

c2,0 ∩ c2,1 D $13,500 0.279 I $38,675 1.655 Lost $14,716 0.316
c2,0 ∩ c2,1 R $48,441 3.588 N $23,366 0.604 Won $46,575 3.165

c4,0 D $28,390,364 0.614 I $66,625,435 7.872 Lost $8,204,242 0.141
c4,0 R $46,225,266 1.628 N $8,463,623 0.127 Won $58,083,469 7.080
c4,1 D $603,027 0.095 I $4,742,445 2.080 Lost $3,263,382 1.021
c4,1 R $6,325,221 10.489 N $2,279,543 0.481 Won $3,195,010 0.979
c4,2 D $63,121,551 18.935 I $40,543,024 1.526 Lost $21,479,688 0.551
c4,2 R $3,333,541 0.053 N $26,560,655 0.655 Won $38,989,017 1.815
c4,3 D $43,212,696 0.688 I $94,985,795 8.113 Lost $10,787,238 0.130
c4,3 R $62,832,887 1.454 N $11,708,054 0.123 Won $82,773,894 7.673
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Table A.18: Donor History by Community in LA

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $4,669,561 0.421 I $11,073,659 2.279 Lost $3,405,658 0.298
c2,0 R $11,101,047 2.377 N $4,858,974 0.439 Won $11,427,573 3.355
c2,1 D $29,033,073 0.612 I $64,663,196 5.250 Lost $9,707,142 0.164
c2,1 R $47,466,530 1.635 N $12,316,571 0.190 Won $59,343,873 6.113

c2,0 ∩ c2,1 D $1,737,468 0.253 I $5,939,015 2.204 Lost $1,756,483 0.290
c2,0 ∩ c2,1 R $6,857,021 3.947 N $2,694,450 0.454 Won $6,055,779 3.448

c4,0 D $1,669,768 0.274 I $5,591,973 2.542 Lost $1,816,626 0.350
c4,0 R $6,085,606 3.645 N $2,199,876 0.393 Won $5,186,221 2.855
c4,1 D $6,718,832 0.608 I $13,655,382 3.177 Lost $2,834,698 0.206
c4,1 R $11,046,823 1.644 N $4,298,192 0.315 Won $13,729,711 4.843
c4,2 D $25,350,055 0.680 I $54,424,811 6.369 Lost $7,154,127 0.146
c4,2 R $37,261,481 1.470 N $8,545,864 0.157 Won $49,106,573 6.864
c4,3 D $1,677,050 0.572 I $3,626,056 3.314 Lost $801,050 0.219
c4,3 R $2,933,181 1.749 N $1,094,175 0.302 Won $3,659,031 4.568

Table A.19: Donor History by Community in MA

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $1,405,346 0.309 I $3,870,167 1.789 Lost $1,621,156 0.415
c2,0 R $4,541,654 3.232 N $2,163,254 0.559 Won $3,901,805 2.407
c2,1 D $60,402,169 2.722 I $67,194,067 4.222 Lost $13,856,940 0.228
c2,1 R $22,191,544 0.367 N $15,916,568 0.237 Won $60,863,768 4.392

c2,0 ∩ c2,1 D $249,000 1.526 I $370,550 8.897 Lost $50,850 0.157
c2,0 ∩ c2,1 R $163,200 0.655 N $41,650 0.112 Won $324,700 6.385

c4,0 D $400 0.031 I $2,060 0.186 Lost $8,070 1.586
c4,0 R $12,759 31.896 N $11,099 5.388 Won $5,089 0.631
c4,1 D $60,402,169 2.722 I $67,194,067 4.222 Lost $13,856,940 0.228
c4,1 R $22,191,544 0.367 N $15,916,568 0.237 Won $60,863,768 4.392
c4,2 D $1,156,046 0.265 I $3,496,347 1.662 Lost $1,554,002 0.435
c4,2 R $4,358,125 3.770 N $2,104,220 0.602 Won $3,572,755 2.299
c4,3 D $175 0.008 I $2,385 0.113 Lost $20,359 6.536
c4,3 R $23,174 132.423 N $21,089 8.842 Won $3,115 0.153

Table A.20: Donor History by Community in MD

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $121,206,819 1.098 I $198,347,456 5.720 Lost $31,463,573 0.181
c2,0 R $110,385,020 0.911 N $34,674,436 0.175 Won $173,444,742 5.513
c2,1 D $28,742,640 1.539 I $39,227,632 4.684 Lost $6,979,755 0.203
c2,1 R $18,670,363 0.650 N $8,374,843 0.213 Won $34,314,762 4.916

c2,0 ∩ c2,1 D $16,061,726 1.050 I $26,854,967 5.805 Lost $3,907,244 0.164
c2,0 ∩ c2,1 R $15,294,331 0.952 N $4,626,040 0.172 Won $23,853,073 6.105

c4,0 D $52,537,099 2.770 I $56,562,810 3.673 Lost $13,544,081 0.279
c4,0 R $18,968,770 0.361 N $15,397,890 0.272 Won $48,534,502 3.583
c4,1 D $25,690,956 1.387 I $37,116,769 5.103 Lost $6,157,975 0.190
c4,1 R $18,519,834 0.721 N $7,273,543 0.196 Won $32,367,745 5.256
c4,2 D $46,846,172 0.760 I $95,833,652 7.241 Lost $12,148,267 0.144
c4,2 R $61,648,065 1.316 N $13,235,257 0.138 Won $84,399,103 6.947
c4,3 D $19,231,343 0.755 I $40,062,979 8.050 Lost $5,193,784 0.150
c4,3 R $25,472,312 1.325 N $4,976,858 0.124 Won $34,649,716 6.671
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Table A.21: Donor History by Community in ME

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $9,139,779 1.552 I $11,373,459 2.893 Lost $3,521,290 0.333
c2,0 R $5,888,252 0.644 N $3,931,572 0.346 Won $10,585,946 3.006
c2,1 D $13,361,671 0.497 I $34,934,839 6.142 Lost $5,224,790 0.169
c2,1 R $26,897,823 2.013 N $5,687,743 0.163 Won $30,981,152 5.930

c2,0 ∩ c2,1 D $1,987,176 0.614 I $4,695,376 8.466 Lost $557,925 0.133
c2,0 ∩ c2,1 R $3,235,775 1.628 N $554,625 0.118 Won $4,179,401 7.491

c4,0 D $13,941,704 0.631 I $32,482,223 8.013 Lost $3,657,126 0.128
c4,0 R $22,110,079 1.586 N $4,053,449 0.125 Won $28,536,342 7.803
c4,1 D $2,479,367 0.245 I $10,054,582 3.700 Lost $2,335,697 0.255
c4,1 R $10,131,091 4.086 N $2,717,174 0.270 Won $9,175,374 3.928
c4,2 D $6,495,629 2.982 I $5,704,958 1.773 Lost $2,874,640 0.534
c4,2 R $2,178,027 0.335 N $3,217,647 0.564 Won $5,381,345 1.872
c4,3 D $4,160 0.010 I $184,922 0.779 Lost $195,822 1.248
c4,3 R $417,344 100.323 N $237,282 1.283 Won $156,917 0.801

Table A.22: Donor History by Community in MI

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $156,357,241 1.059 I $242,211,275 3.617 Lost $52,540,906 0.240
c2,0 R $147,613,350 0.944 N $66,963,985 0.276 Won $219,328,462 4.174
c2,1 D $652,426 1.029 I $1,097,657 1.938 Lost $557,250 0.510
c2,1 R $634,178 0.972 N $566,462 0.516 Won $1,093,308 1.962

c2,0 ∩ c2,1 D $125,015 1.171 I $215,281 1.883 Lost $136,945 0.757
c2,0 ∩ c2,1 R $106,760 0.854 N $114,314 0.531 Won $180,875 1.321

c4,0 D $4,527,941 2.001 I $4,735,679 1.985 Lost $1,692,107 0.389
c4,0 R $2,262,946 0.500 N $2,385,977 0.504 Won $4,351,566 2.572
c4,1 D $86,189,788 0.600 I $200,031,149 5.961 Lost $28,064,179 0.160
c4,1 R $143,698,292 1.667 N $33,558,596 0.168 Won $175,891,914 6.267
c4,2 D $306,240 0.842 I $579,983 2.411 Lost $228,735 0.392
c4,2 R $363,520 1.187 N $240,560 0.415 Won $583,983 2.553
c4,3 D $67,800,981 18.672 I $40,427,982 1.241 Lost $23,802,757 0.567
c4,3 R $3,631,064 0.054 N $32,584,211 0.806 Won $41,954,867 1.763

Table A.23: Donor History by Community in MN

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $65,518,584 3.259 I $57,847,903 2.020 Lost $23,423,914 0.434
c2,0 R $20,104,427 0.307 N $28,636,013 0.495 Won $53,985,075 2.305
c2,1 D $1,550 0.016 I $33,750 0.504 Lost $60,378 1.567
c2,1 R $98,003 63.228 N $66,903 1.982 Won $38,525 0.638

c2,0 ∩ c2,1 D $150 0.023 I $600 0.098 Lost $4,333 6.666
c2,0 ∩ c2,1 R $6,583 43.887 N $6,133 10.222 Won $650 0.150

c4,0 D $4,779,603 4.395 I $4,422,478 3.021 Lost $1,465,053 0.393
c4,0 R $1,087,535 0.228 N $1,464,059 0.331 Won $3,726,495 2.544
c4,1 D $5,782,767 0.583 I $13,204,575 5.106 Lost $2,332,804 0.204
c4,1 R $9,917,754 1.715 N $2,586,037 0.196 Won $11,418,607 4.895
c4,2 D $10,471,997 0.627 I $22,642,982 4.666 Lost $4,088,930 0.202
c4,2 R $16,707,299 1.595 N $4,852,326 0.214 Won $20,231,243 4.948
c4,3 D $53,084,769 20.682 I $33,246,177 1.449 Lost $18,468,523 0.576
c4,3 R $2,566,747 0.048 N $22,939,183 0.690 Won $32,053,480 1.736
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Table A.24: Donor History by Community in MO

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $87,415,306 0.536 I $210,326,112 5.063 Lost $39,535,667 0.213
c2,0 R $163,032,534 1.865 N $41,543,403 0.198 Won $185,354,635 4.688
c2,1 D $168,090,569 1.157 I $258,016,511 4.495 Lost $48,862,198 0.210
c2,1 R $145,278,193 0.864 N $57,396,243 0.222 Won $232,317,120 4.755

c2,0 ∩ c2,1 D $61,306,856 0.652 I $136,070,185 6.774 Lost $18,072,369 0.150
c2,0 ∩ c2,1 R $93,973,701 1.533 N $20,086,942 0.148 Won $120,405,524 6.662

c4,0 D $114,043,222 0.662 I $251,073,642 6.793 Lost $32,371,720 0.145
c4,0 R $172,237,365 1.510 N $36,963,116 0.147 Won $223,214,224 6.895
c4,1 D $63,607,849 12.558 I $44,441,701 1.789 Lost $20,140,999 0.474
c4,1 R $5,065,188 0.080 N $24,836,239 0.559 Won $42,513,729 2.111
c4,2 D $4,176,831 0.113 I $27,851,029 2.070 Lost $15,256,262 0.664
c4,2 R $36,949,622 8.846 N $13,455,223 0.483 Won $22,970,436 1.506
c4,3 D $27,507,787 1.649 I $35,066,128 3.742 Lost $7,682,895 0.235
c4,3 R $16,684,778 0.607 N $9,370,861 0.267 Won $32,718,695 4.259

Table A.25: Donor History by Community in MS

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $12,553,477 0.821 I $24,432,422 6.927 Lost $3,057,484 0.140
c2,0 R $15,286,469 1.218 N $3,527,250 0.144 Won $21,806,915 7.132
c2,1 D $7,495,422 0.382 I $22,650,205 4.017 Lost $4,440,037 0.206
c2,1 R $19,636,505 2.620 N $5,638,605 0.249 Won $21,516,616 4.846

c2,0 ∩ c2,1 D $0 NA I $0 NA Lost $0 NA
c2,0 ∩ c2,1 R $0 NA N $0 NA Won $0 NA

c4,0 D $12,553,477 0.821 I $24,432,422 6.927 Lost $3,057,484 0.140
c4,0 R $15,286,469 1.218 N $3,527,250 0.144 Won $21,806,915 7.132
c4,1 D $5,424,663 0.488 I $13,679,598 3.854 Lost $2,692,055 0.202
c4,1 R $11,112,325 2.048 N $3,549,340 0.259 Won $13,320,053 4.948
c4,2 D $300,835 0.322 I $989,467 2.881 Lost $290,361 0.323
c4,2 R $934,880 3.108 N $343,447 0.347 Won $900,153 3.100
c4,3 D $2,316,380 0.262 I $9,237,786 3.681 Lost $1,930,905 0.219
c4,3 R $8,828,986 3.812 N $2,509,313 0.272 Won $8,816,767 4.566

Table A.26: Donor History by Community in MT

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $85,270,697 2.917 I $82,268,986 2.485 Lost $27,627,618 0.366
c2,0 R $29,232,553 0.343 N $33,106,412 0.402 Won $75,568,663 2.735
c2,1 D $32,914,998 0.511 I $81,877,003 4.899 Lost $13,743,141 0.184
c2,1 R $64,383,485 1.956 N $16,714,123 0.204 Won $74,738,882 5.438

c2,0 ∩ c2,1 D $8,059,669 0.710 I $17,423,185 7.961 Lost $2,088,981 0.136
c2,0 ∩ c2,1 R $11,358,090 1.409 N $2,188,526 0.126 Won $15,411,980 7.378

c4,0 D $16,563,784 0.508 I $40,914,900 4.659 Lost $6,876,592 0.180
c4,0 R $32,611,980 1.969 N $8,782,122 0.215 Won $38,235,845 5.560
c4,1 D $71,767,032 2.330 I $76,742,439 2.887 Lost $22,042,678 0.315
c4,1 R $30,795,432 0.429 N $26,586,025 0.346 Won $70,081,251 3.179
c4,2 D $10,385,248 0.427 I $28,686,701 4.281 Lost $5,548,617 0.217
c4,2 R $24,332,406 2.343 N $6,701,333 0.234 Won $25,584,244 4.611
c4,3 D $15,252,791 20.000 I $9,215,290 1.333 Lost $5,987,202 0.671
c4,3 R $762,626 0.050 N $6,913,226 0.750 Won $8,916,906 1.489
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Table A.27: Donor History by Community in NC

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $51,769,921 12.905 I $36,272,515 1.815 Lost $18,095,752 0.552
c2,0 R $4,011,545 0.077 N $19,981,527 0.551 Won $32,782,543 1.812
c2,1 D $107,467,660 0.622 I $246,695,555 7.009 Lost $32,123,285 0.146
c2,1 R $172,813,218 1.608 N $35,198,388 0.143 Won $219,611,778 6.837

c2,0 ∩ c2,1 D $1,972,874 1.750 I $2,593,979 4.687 Lost $554,200 0.248
c2,0 ∩ c2,1 R $1,127,615 0.572 N $553,430 0.213 Won $2,238,359 4.039

c4,0 D $1,603,314 0.131 I $8,265,790 1.451 Lost $3,073,534 0.302
c4,0 R $12,249,778 7.640 N $5,697,272 0.689 Won $10,185,464 3.314
c4,1 D $6,356,762 0.942 I $11,528,916 6.997 Lost $1,630,034 0.163
c4,1 R $6,747,319 1.061 N $1,647,805 0.143 Won $10,003,824 6.137
c4,2 D $49,009,025 20.029 I $32,850,437 1.728 Lost $17,351,930 0.582
c4,2 R $2,446,862 0.050 N $19,005,631 0.579 Won $29,800,516 1.717
c4,3 D $102,253,371 0.644 I $233,704,860 8.098 Lost $28,464,259 0.139
c4,3 R $158,853,551 1.554 N $28,860,146 0.123 Won $205,274,613 7.212

Table A.28: Donor History by Community in ND

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $67,741,718 65.329 I $32,838,603 0.908 Lost $28,316,314 0.816
c2,0 R $1,036,936 0.015 N $36,157,633 1.101 Won $34,722,282 1.226
c2,1 D $46,993,949 0.328 I $151,133,436 3.762 Lost $37,143,077 0.276
c2,1 R $143,484,392 3.053 N $40,174,929 0.266 Won $134,820,570 3.630

c2,0 ∩ c2,1 D $2,325 3.100 I $1,800 1.412 Lost $1,025 0.526
c2,0 ∩ c2,1 R $750 0.323 N $1,275 0.708 Won $1,950 1.902

c4,0 D $40,558,246 0.311 I $135,816,736 3.795 Lost $33,895,241 0.281
c4,0 R $130,410,642 3.215 N $35,786,005 0.263 Won $120,545,939 3.556
c4,1 D $9,218,937 0.524 I $21,747,148 4.061 Lost $4,042,770 0.202
c4,1 R $17,610,172 1.910 N $5,355,352 0.246 Won $20,001,948 4.948
c4,2 D $3,602,621 58.037 I $1,438,226 0.640 Lost $2,345,587 1.852
c4,2 R $62,075 0.017 N $2,245,780 1.561 Won $1,266,619 0.540
c4,3 D $66,897,686 68.381 I $32,354,782 0.906 Lost $27,744,666 0.807
c4,3 R $978,311 0.015 N $35,719,697 1.104 Won $34,382,823 1.239

Table A.29: Donor History by Community in NE

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $26,330,817 14.188 I $18,794,817 1.627 Lost $9,411,263 0.526
c2,0 R $1,855,913 0.070 N $11,550,208 0.615 Won $17,891,986 1.901
c2,1 D $63,096,062 0.680 I $139,592,832 6.529 Lost $18,004,296 0.143
c2,1 R $92,768,841 1.470 N $21,379,969 0.153 Won $126,031,089 7.000

c2,0 ∩ c2,1 D $344,850 0.730 I $790,565 4.411 Lost $99,040 0.126
c2,0 ∩ c2,1 R $472,215 1.369 N $179,225 0.227 Won $788,575 7.962

c4,0 D $2,874,096 0.629 I $7,330,511 4.406 Lost $1,165,712 0.165
c4,0 R $4,566,621 1.589 N $1,663,759 0.227 Won $7,050,042 6.048
c4,1 D $25,985,667 20.045 I $17,634,429 1.619 Lost $9,048,131 0.547
c4,1 R $1,296,368 0.050 N $10,890,683 0.618 Won $16,531,804 1.827
c4,2 D $31,500,738 0.671 I $70,446,954 6.232 Lost $9,141,692 0.145
c4,2 R $46,952,248 1.491 N $11,304,913 0.160 Won $63,001,131 6.892
c4,3 D $33,261,054 0.661 I $74,273,861 6.725 Lost $9,802,418 0.146
c4,3 R $50,351,730 1.514 N $11,045,013 0.149 Won $66,997,585 6.835
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Table A.30: Donor History by Community in NH

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $29,912,728 9.445 I $21,109,643 1.717 Lost $10,257,385 0.513
c2,0 R $3,166,914 0.106 N $12,292,017 0.582 Won $19,992,009 1.949
c2,1 D $61,923,295 0.727 I $130,284,428 7.389 Lost $16,556,695 0.143
c2,1 R $85,199,104 1.376 N $17,632,756 0.135 Won $115,925,828 7.002

c2,0 ∩ c2,1 D $1,486,695 0.810 I $3,048,387 10.724 Lost $255,404 0.099
c2,0 ∩ c2,1 R $1,836,409 1.235 N $284,267 0.093 Won $2,569,111 10.059

c4,0 D $28,987,020 14.651 I $19,162,151 1.581 Lost $10,098,497 0.551
c4,0 R $1,978,491 0.068 N $12,123,979 0.633 Won $18,342,061 1.816
c4,1 D $49,496,324 0.779 I $100,926,093 7.947 Lost $12,112,361 0.136
c4,1 R $63,508,805 1.283 N $12,699,366 0.126 Won $89,198,366 7.364
c4,2 D $25,442,031 0.665 I $55,941,987 6.913 Lost $7,757,110 0.155
c4,2 R $38,234,621 1.503 N $8,091,872 0.145 Won $50,205,666 6.472
c4,3 D $116,190 0.327 I $293,220 1.643 Lost $170,281 0.705
c4,3 R $355,092 3.056 N $178,462 0.609 Won $241,601 1.419

Table A.31: Donor History by Community in NJ

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $7,038,910 0.682 I $15,349,793 7.151 Lost $1,945,478 0.140
c2,0 R $10,326,637 1.467 N $2,146,554 0.140 Won $13,896,308 7.143
c2,1 D $160,298,141 1.559 I $222,545,179 5.311 Lost $36,232,730 0.177
c2,1 R $102,828,154 0.641 N $41,899,549 0.188 Won $204,438,130 5.642

c2,0 ∩ c2,1 D $637,110 1.312 I $1,011,465 9.036 Lost $73,675 0.071
c2,0 ∩ c2,1 R $485,540 0.762 N $111,935 0.111 Won $1,038,675 14.098

c4,0 D $110,242,012 1.496 I $155,268,232 5.208 Lost $25,896,936 0.181
c4,0 R $73,708,954 0.669 N $29,811,516 0.192 Won $143,280,666 5.533
c4,1 D $63,062,832 4.059 I $61,931,586 3.613 Lost $14,211,834 0.250
c4,1 R $15,536,286 0.246 N $17,139,934 0.277 Won $56,900,139 4.004
c4,2 D $6,624,520 0.667 I $14,643,463 7.147 Lost $1,886,103 0.143
c4,2 R $9,936,912 1.500 N $2,048,769 0.140 Won $13,158,118 6.976
c4,3 D $22,503,897 1.124 I $37,708,190 7.628 Lost $4,302,627 0.123
c4,3 R $20,022,229 0.890 N $4,943,391 0.131 Won $34,947,257 8.122

Table A.32: Donor History by Community in NM

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $102,633,713 0.676 I $223,196,003 6.711 Lost $29,535,288 0.148
c2,0 R $151,919,890 1.480 N $33,257,297 0.149 Won $199,529,157 6.756
c2,1 D $60,320,143 10.020 I $41,326,640 1.622 Lost $20,986,852 0.528
c2,1 R $6,020,229 0.100 N $25,473,528 0.616 Won $39,736,201 1.893

c2,0 ∩ c2,1 D $3,636,419 1.317 I $5,470,412 5.774 Lost $848,648 0.175
c2,0 ∩ c2,1 R $2,760,718 0.759 N $947,380 0.173 Won $4,857,176 5.723

c4,0 D $3,742,370 0.249 I $13,453,945 2.422 Lost $4,038,552 0.298
c4,0 R $15,032,503 4.017 N $5,555,803 0.413 Won $13,572,454 3.361
c4,1 D $17,744,567 0.949 I $31,979,631 6.899 Lost $4,498,730 0.164
c4,1 R $18,706,789 1.054 N $4,635,449 0.145 Won $27,495,091 6.112
c4,2 D $56,557,048 17.700 I $35,711,940 1.459 Lost $20,108,303 0.579
c4,2 R $3,195,317 0.056 N $24,479,566 0.685 Won $34,729,404 1.727
c4,3 D $93,608,267 0.705 I $201,664,035 7.625 Lost $24,300,448 0.136
c4,3 R $132,864,439 1.419 N $26,449,446 0.131 Won $178,761,471 7.356
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Table A.33: Donor History by Community in NV

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $158,965,056 1.300 I $225,025,227 3.775 Lost $47,543,067 0.228
c2,0 R $122,306,458 0.769 N $59,605,989 0.265 Won $208,251,253 4.380
c2,1 D $8,731,174 0.266 I $31,046,607 2.883 Lost $11,613,868 0.442
c2,1 R $32,825,328 3.760 N $10,770,372 0.347 Won $26,273,418 2.262

c2,0 ∩ c2,1 D $4,437,348 0.679 I $9,190,367 4.925 Lost $1,357,219 0.159
c2,0 ∩ c2,1 R $6,533,880 1.472 N $1,865,939 0.203 Won $8,525,645 6.282

c4,0 D $35,636,945 0.722 I $72,771,322 5.394 Lost $10,735,308 0.163
c4,0 R $49,352,688 1.385 N $13,491,350 0.185 Won $65,906,928 6.139
c4,1 D $78,654,444 0.855 I $146,693,913 5.742 Lost $21,356,570 0.162
c4,1 R $91,942,866 1.169 N $25,545,624 0.174 Won $131,895,928 6.176
c4,2 D $70,498,664 9.667 I $48,663,872 1.615 Lost $23,344,450 0.472
c4,2 R $7,292,713 0.103 N $30,126,580 0.619 Won $49,420,421 2.117
c4,3 D $6,339,268 0.215 I $26,196,703 2.667 Lost $10,829,362 0.495
c4,3 R $29,448,192 4.645 N $9,821,335 0.375 Won $21,891,598 2.022

Table A.34: Donor History by Community in NY

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $483,225 0.293 I $1,194,102 1.216 Lost $1,051,995 0.948
c2,0 R $1,650,714 3.416 N $982,367 0.823 Won $1,109,524 1.055
c2,1 D $295,219,012 1.195 I $445,189,439 4.399 Lost $91,539,282 0.222
c2,1 R $247,092,123 0.837 N $101,193,213 0.227 Won $412,876,484 4.510

c2,0 ∩ c2,1 D $181,400 0.308 I $540,375 2.283 Lost $387,800 0.997
c2,0 ∩ c2,1 R $588,068 3.242 N $236,743 0.438 Won $388,918 1.003

c4,0 D $197,075,437 1.812 I $245,638,942 3.920 Lost $51,670,230 0.223
c4,0 R $108,785,405 0.552 N $62,667,078 0.255 Won $231,800,994 4.486
c4,1 D $6,879,527 0.217 I $23,879,340 1.591 Lost $16,921,310 0.796
c4,1 R $31,718,127 4.611 N $15,009,776 0.629 Won $21,271,009 1.257
c4,2 D $161,430,736 0.875 I $307,367,202 7.514 Lost $39,081,879 0.140
c4,2 R $184,540,350 1.143 N $40,907,173 0.133 Won $278,926,754 7.137
c4,3 D $398,839 0.119 I $1,554,493 0.695 Lost $2,339,541 1.631
c4,3 R $3,338,540 8.371 N $2,236,296 1.439 Won $1,434,748 0.613

Table A.35: Donor History by Community in OH

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $117,544,949 10.620 I $85,241,256 1.856 Lost $41,259,359 0.549
c2,0 R $11,068,296 0.094 N $45,934,000 0.539 Won $75,100,745 1.820
c2,1 D $135,438,609 0.601 I $317,869,465 6.508 Lost $46,264,730 0.169
c2,1 R $225,418,505 1.664 N $48,845,417 0.154 Won $274,120,954 5.925

c2,0 ∩ c2,1 D $5,140,967 1.158 I $7,872,409 3.995 Lost $1,739,284 0.239
c2,0 ∩ c2,1 R $4,439,420 0.864 N $1,970,528 0.250 Won $7,286,157 4.189

c4,0 D $62,083,311 0.689 I $134,711,997 6.731 Lost $18,746,931 0.161
c4,0 R $90,083,971 1.451 N $20,013,368 0.149 Won $116,790,889 6.230
c4,1 D $81,148,254 18.718 I $56,033,545 1.793 Lost $28,838,212 0.603
c4,1 R $4,335,263 0.053 N $31,253,367 0.558 Won $47,808,194 1.658
c4,2 D $98,660,519 0.533 I $251,488,703 6.879 Lost $35,089,901 0.162
c4,2 R $185,253,218 1.878 N $36,559,534 0.145 Won $216,065,284 6.157
c4,3 D $74,880,366 8.445 I $56,713,304 1.973 Lost $24,281,000 0.463
c4,3 R $8,866,475 0.118 N $28,744,175 0.507 Won $52,474,576 2.161
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Table A.36: Donor History by Community in OK

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $800 0.001 I $267,691 0.459 Lost $250,000 0.437
c2,0 R $850,191 1.062E3 N $583,300 2.179 Won $571,991 2.288
c2,1 D $104,307,442 0.712 I $211,684,987 5.190 Lost $33,717,577 0.176
c2,1 R $146,470,889 1.404 N $40,785,128 0.193 Won $191,611,024 5.683

c2,0 ∩ c2,1 D $0 NA I $98,841 0.371 Lost $98,250 0.369
c2,0 ∩ c2,1 R $365,591 NA N $266,750 2.699 Won $266,341 2.711

c4,0 D $35,995,280 0.492 I $94,035,012 6.020 Lost $12,478,812 0.147
c4,0 R $73,169,015 2.033 N $15,621,197 0.166 Won $84,807,010 6.796
c4,1 D $20,956,162 13.744 I $14,832,050 1.869 Lost $6,681,686 0.489
c4,1 R $1,524,754 0.073 N $7,935,051 0.535 Won $13,661,094 2.045
c4,2 D $54,812,673 0.582 I $129,432,539 6.276 Lost $16,916,874 0.144
c4,2 R $94,162,794 1.718 N $20,622,121 0.159 Won $117,665,346 6.956
c4,3 D $8,211,271 1.131 I $12,522,610 4.190 Lost $2,795,397 0.245
c4,3 R $7,262,906 0.885 N $2,988,847 0.239 Won $11,403,837 4.080

Table A.37: Donor History by Community in OR

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $31,650 63.300 I $22,000 0.330 Lost $17,150 0.242
c2,0 R $500 0.016 N $66,580 3.026 Won $70,930 4.136
c2,1 D $171,425,635 0.875 I $297,890,883 4.053 Lost $62,079,180 0.229
c2,1 R $195,912,111 1.143 N $73,498,025 0.247 Won $271,464,553 4.373

c2,0 ∩ c2,1 D $7,500 NA I $3,950 0.244 Lost $3,500 0.210
c2,0 ∩ c2,1 R $0 NA N $16,200 4.101 Won $16,650 4.757

c4,0 D $1,626,070 0.061 I $16,962,663 1.442 Lost $13,726,569 1.020
c4,0 R $26,640,043 16.383 N $11,762,591 0.693 Won $13,463,633 0.981
c4,1 D $81,662,944 0.638 I $180,814,833 5.894 Lost $26,545,625 0.162
c4,1 R $127,957,378 1.567 N $30,675,229 0.170 Won $163,608,029 6.163
c4,2 D $44,175,965 9.538 I $31,865,471 1.747 Lost $12,912,275 0.399
c4,2 R $4,631,724 0.105 N $18,241,983 0.572 Won $32,346,356 2.505
c4,3 D $70,617,449 1.024 I $118,765,705 5.486 Lost $16,302,193 0.152
c4,3 R $68,950,251 0.976 N $21,650,840 0.182 Won $107,565,246 6.598

Table A.38: Donor History by Community in PA

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $149,638,238 0.610 I $340,136,508 5.966 Lost $56,734,601 0.191
c2,0 R $245,213,271 1.639 N $57,010,454 0.168 Won $297,486,327 5.243
c2,1 D $151,624,395 4.616 I $118,112,859 1.754 Lost $53,605,945 0.463
c2,1 R $32,849,300 0.217 N $67,330,689 0.570 Won $115,780,389 2.160

c2,0 ∩ c2,1 D $16,885,302 0.919 I $27,376,235 3.408 Lost $7,477,733 0.302
c2,0 ∩ c2,1 R $18,374,434 1.088 N $8,033,151 0.293 Won $24,780,565 3.314

c4,0 D $60,800,441 12.011 I $37,685,149 1.318 Lost $23,095,177 0.608
c4,0 R $5,062,144 0.083 N $28,598,074 0.759 Won $37,992,954 1.645
c4,1 D $117,777,822 6.056 I $89,002,626 1.816 Lost $38,969,172 0.452
c4,1 R $19,447,071 0.165 N $49,018,365 0.551 Won $86,240,063 2.213
c4,2 D $137,081,746 0.671 I $303,275,194 7.575 Lost $42,692,901 0.163
c4,2 R $204,334,834 1.491 N $40,037,013 0.132 Won $262,332,319 6.145
c4,3 D $34,699,562 0.396 I $98,945,070 4.062 Lost $23,663,560 0.273
c4,3 R $87,730,404 2.528 N $24,356,882 0.246 Won $86,731,143 3.665
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Table A.39: Donor History by Community in RI

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $1,595,237 0.505 I $3,642,215 3.117 Lost $987,252 0.301
c2,0 R $3,160,874 1.981 N $1,168,620 0.321 Won $3,280,219 3.323
c2,1 D $79,690,867 3.353 I $76,480,417 2.763 Lost $22,789,085 0.321
c2,1 R $23,764,090 0.298 N $27,675,543 0.362 Won $71,002,040 3.116

c2,0 ∩ c2,1 D $92,800 4.852 I $101,600 8.311 Lost $17,250 0.179
c2,0 ∩ c2,1 R $19,125 0.206 N $12,225 0.120 Won $96,325 5.584

c4,0 D $18,364,498 38.962 I $10,853,806 1.340 Lost $6,070,350 0.509
c4,0 R $471,340 0.026 N $8,099,932 0.746 Won $11,914,870 1.963
c4,1 D $1,502,387 0.481 I $3,535,115 3.091 Lost $959,947 0.302
c4,1 R $3,123,930 2.079 N $1,143,526 0.323 Won $3,175,580 3.308
c4,2 D $37,856,156 17.133 I $27,970,066 2.234 Lost $10,623,583 0.420
c4,2 R $2,209,545 0.058 N $12,521,364 0.448 Won $25,305,435 2.382
c4,3 D $24,867,550 1.052 I $40,757,435 5.132 Lost $6,875,706 0.187
c4,3 R $23,638,710 0.951 N $7,941,547 0.195 Won $36,732,834 5.342

Table A.40: Donor History by Community in SC

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $101,535,588 0.642 I $230,025,796 7.376 Lost $29,067,526 0.144
c2,0 R $158,048,921 1.557 N $31,184,381 0.136 Won $201,761,931 6.941
c2,1 D $2,990,430 1.584 I $3,398,973 2.222 Lost $1,407,296 0.453
c2,1 R $1,888,135 0.631 N $1,529,707 0.450 Won $3,108,583 2.209

c2,0 ∩ c2,1 D $946,584 0.869 I $1,631,769 3.863 Lost $365,414 0.239
c2,0 ∩ c2,1 R $1,089,802 1.151 N $422,364 0.259 Won $1,532,051 4.193

c4,0 D $1,790,822 0.403 I $4,971,590 3.639 Lost $1,203,365 0.278
c4,0 R $4,439,218 2.479 N $1,366,283 0.275 Won $4,325,637 3.595
c4,1 D $51,399,851 0.700 I $110,850,903 7.618 Lost $13,669,505 0.142
c4,1 R $73,378,076 1.428 N $14,552,110 0.131 Won $96,366,491 7.050
c4,2 D $90,970,148 0.665 I $203,374,886 7.885 Lost $24,034,101 0.135
c4,2 R $136,832,501 1.504 N $25,793,718 0.127 Won $178,593,651 7.431
c4,3 D $2,104,080 2.547 I $1,857,297 1.677 Lost $1,053,363 0.635
c4,3 R $825,940 0.393 N $1,107,638 0.596 Won $1,659,228 1.575

Table A.41: Donor History by Community in SD

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $34,099,617 39.554 I $19,704,685 1.277 Lost $11,952,173 0.589
c2,0 R $862,102 0.025 N $15,425,442 0.783 Won $20,293,985 1.698
c2,1 D $51,360,286 0.696 I $106,971,152 5.561 Lost $16,573,094 0.172
c2,1 R $73,846,165 1.438 N $19,235,228 0.180 Won $96,633,950 5.831

c2,0 ∩ c2,1 D $7,786,855 19.521 I $5,758,133 2.326 Lost $1,890,340 0.352
c2,0 ∩ c2,1 R $398,893 0.051 N $2,476,065 0.430 Won $5,373,558 2.843

c4,0 D $25,530,792 65.582 I $13,485,220 1.074 Lost $9,825,788 0.686
c4,0 R $389,299 0.015 N $12,550,329 0.931 Won $14,325,442 1.458
c4,1 D $20,223,936 0.696 I $43,465,188 7.093 Lost $5,516,411 0.144
c4,1 R $29,054,805 1.437 N $6,127,873 0.141 Won $38,201,627 6.925
c4,2 D $8,571,735 17.798 I $6,224,671 2.160 Lost $2,126,905 0.356
c4,2 R $481,623 0.056 N $2,881,688 0.463 Won $5,979,803 2.812
c4,3 D $30,395,055 0.535 I $75,096,740 5.812 Lost $11,373,534 0.167
c4,3 R $56,798,693 1.869 N $12,921,888 0.172 Won $68,033,381 5.982



185

Table A.42: Donor History by Community in TN

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $106,902,225 0.688 I $227,586,463 6.272 Lost $32,159,426 0.161
c2,0 R $155,287,273 1.453 N $36,284,462 0.159 Won $199,947,505 6.217
c2,1 D $35,724,535 14.939 I $25,236,325 1.891 Lost $10,932,374 0.478
c2,1 R $2,391,415 0.067 N $13,345,490 0.529 Won $22,887,583 2.094

c2,0 ∩ c2,1 D $8,724,038 24.360 I $6,131,233 2.033 Lost $2,413,383 0.422
c2,0 ∩ c2,1 R $358,128 0.041 N $3,016,383 0.492 Won $5,722,798 2.371

c4,0 D $37,356,171 13.590 I $26,628,068 1.897 Lost $11,779,887 0.493
c4,0 R $2,748,765 0.074 N $14,033,971 0.527 Won $23,870,404 2.026
c4,1 D $5,322,249 0.797 I $10,166,360 5.209 Lost $2,068,093 0.242
c4,1 R $6,674,749 1.254 N $1,951,838 0.192 Won $8,541,619 4.130
c4,2 D $70,924,395 0.687 I $154,269,350 7.426 Lost $19,373,408 0.143
c4,2 R $103,177,801 1.455 N $20,774,440 0.135 Won $135,368,117 6.987
c4,3 D $36,919,826 0.517 I $93,694,061 6.118 Lost $12,611,413 0.154
c4,3 R $71,420,834 1.934 N $15,313,970 0.163 Won $81,885,075 6.493

Table A.43: Donor History by Community in TX

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $280,373,449 0.743 I $545,315,209 4.704 Lost $105,731,641 0.216
c2,0 R $377,111,259 1.345 N $115,914,858 0.213 Won $488,680,578 4.622
c2,1 D $12,637,745 0.580 I $26,169,595 3.328 Lost $7,073,731 0.279
c2,1 R $21,783,521 1.724 N $7,863,896 0.300 Won $25,385,967 3.589

c2,0 ∩ c2,1 D $5,130,534 0.840 I $7,942,375 2.382 Lost $2,851,784 0.368
c2,0 ∩ c2,1 R $6,110,724 1.191 N $3,334,283 0.420 Won $7,742,291 2.715

c4,0 D $4,548,594 0.453 I $11,871,811 4.718 Lost $2,339,794 0.208
c4,0 R $10,033,408 2.206 N $2,516,030 0.212 Won $11,266,527 4.815
c4,1 D $18,570,940 0.795 I $27,393,183 1.888 Lost $11,541,097 0.410
c4,1 R $23,362,868 1.258 N $14,511,728 0.530 Won $28,148,295 2.439
c4,2 D $269,555,486 0.731 I $532,883,432 4.876 Lost $99,903,849 0.210
c4,2 R $368,886,621 1.368 N $109,277,253 0.205 Won $476,365,686 4.768
c4,3 D $2,390,848 1.116 I $3,575,972 4.544 Lost $960,038 0.280
c4,3 R $2,142,754 0.896 N $787,014 0.220 Won $3,430,889 3.574

Table A.44: Donor History by Community in UT

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $36,596,582 14.744 I $24,894,727 1.706 Lost $11,827,031 0.490
c2,0 R $2,482,069 0.068 N $14,594,387 0.586 Won $24,153,996 2.042
c2,1 D $101,526,047 0.757 I $200,620,736 5.459 Lost $31,072,428 0.171
c2,1 R $134,049,613 1.320 N $36,750,431 0.183 Won $181,435,202 5.839

c2,0 ∩ c2,1 D $2,770,577 6.286 I $2,297,463 2.352 Lost $535,248 0.199
c2,0 ∩ c2,1 R $440,750 0.159 N $977,014 0.425 Won $2,694,904 5.035

c4,0 D $8,860,553 10.682 I $6,227,325 1.771 Lost $2,763,967 0.440
c4,0 R $829,501 0.094 N $3,516,429 0.565 Won $6,285,389 2.274
c4,1 D $85,119,826 0.640 I $190,737,203 6.563 Lost $25,291,515 0.148
c4,1 R $133,032,197 1.563 N $29,064,128 0.152 Won $170,522,548 6.742
c4,2 D $32,825,723 18.551 I $22,084,263 1.719 Lost $10,664,777 0.511
c4,2 R $1,769,519 0.054 N $12,850,296 0.582 Won $20,878,920 1.958
c4,3 D $19,978,906 3.092 I $17,809,334 2.020 Lost $6,673,817 0.366
c4,3 R $6,460,650 0.323 N $8,816,251 0.495 Won $18,215,496 2.729
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Table A.45: Donor History by Community in VA

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $153,582,752 0.773 I $305,667,205 6.248 Lost $47,583,033 0.175
c2,0 R $198,651,556 1.293 N $48,925,890 0.160 Won $271,187,351 5.699
c2,1 D $7,499,091 1.384 I $9,494,653 2.684 Lost $2,375,821 0.232
c2,1 R $5,418,633 0.723 N $3,537,874 0.373 Won $10,260,231 4.319

c2,0 ∩ c2,1 D $781,770 0.611 I $1,774,846 5.853 Lost $383,827 0.227
c2,0 ∩ c2,1 R $1,279,344 1.636 N $303,222 0.171 Won $1,690,741 4.405

c4,0 D $7,635,933 1.910 I $7,874,003 2.052 Lost $2,740,774 0.328
c4,0 R $3,998,608 0.524 N $3,836,437 0.487 Won $8,345,026 3.045
c4,1 D $451,314 0.198 I $2,126,087 3.384 Lost $771,523 0.400
c4,1 R $2,277,022 5.045 N $628,248 0.295 Won $1,928,712 2.500
c4,2 D $70,882,098 1.162 I $110,598,192 4.997 Lost $20,753,310 0.210
c4,2 R $61,002,142 0.861 N $22,134,898 0.200 Won $98,992,761 4.770
c4,3 D $100,283,458 0.621 I $232,900,107 7.615 Lost $30,721,930 0.150
c4,3 R $161,455,602 1.610 N $30,585,470 0.131 Won $205,159,405 6.678

Table A.46: Donor History by Community in VT

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $40,000,763 0.769 I $81,682,206 7.471 Lost $10,155,625 0.140
c2,0 R $52,003,291 1.300 N $10,933,935 0.134 Won $72,299,481 7.119
c2,1 D $81,251,612 2.161 I $92,960,719 3.460 Lost $22,074,319 0.264
c2,1 R $37,604,793 0.463 N $26,869,642 0.289 Won $83,510,295 3.783

c2,0 ∩ c2,1 D $28,741,480 0.828 I $56,726,731 7.915 Lost $6,513,956 0.131
c2,0 ∩ c2,1 R $34,717,843 1.208 N $7,166,812 0.126 Won $49,663,757 7.624

c4,0 D $32,886,802 0.806 I $65,715,396 7.778 Lost $7,755,765 0.133
c4,0 R $40,779,115 1.240 N $8,449,381 0.129 Won $58,421,969 7.533
c4,1 D $1,512,947 0.340 I $4,872,164 4.248 Lost $1,197,654 0.271
c4,1 R $4,446,421 2.939 N $1,147,003 0.235 Won $4,414,549 3.686
c4,2 D $35,262,465 20.273 I $23,901,052 1.788 Lost $10,306,157 0.454
c4,2 R $1,739,353 0.049 N $13,368,954 0.559 Won $22,703,604 2.203
c4,3 D $72,900,147 1.876 I $88,943,879 3.747 Lost $19,793,015 0.249
c4,3 R $38,867,047 0.533 N $23,734,834 0.267 Won $79,367,425 4.010

Table A.47: Donor History by Community in WA

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $144,263,691 0.722 I $297,147,724 5.963 Lost $46,476,765 0.175
c2,0 R $199,715,633 1.384 N $49,833,854 0.168 Won $265,424,990 5.711
c2,1 D $81,435,401 7.887 I $60,627,626 1.865 Lost $25,147,831 0.420
c2,1 R $10,324,868 0.127 N $32,502,538 0.536 Won $59,910,532 2.382

c2,0 ∩ c2,1 D $11,505,965 2.137 I $13,803,726 4.125 Lost $3,577,234 0.298
c2,0 ∩ c2,1 R $5,383,496 0.468 N $3,346,183 0.242 Won $11,999,964 3.355

c4,0 D $76,551,146 13.357 I $52,515,674 1.692 Lost $23,817,235 0.453
c4,0 R $5,731,021 0.075 N $31,035,493 0.591 Won $52,551,252 2.206
c4,1 D $38,934,515 0.896 I $71,965,131 6.472 Lost $9,451,076 0.145
c4,1 R $43,457,220 1.116 N $11,118,888 0.155 Won $65,308,001 6.910
c4,2 D $118,805,276 0.712 I $251,205,663 6.817 Lost $32,582,054 0.145
c4,2 R $166,887,680 1.405 N $36,847,403 0.147 Won $224,881,185 6.902
c4,3 D $13,724,910 0.372 I $40,370,174 3.755 Lost $11,792,766 0.331
c4,3 R $36,878,219 2.687 N $10,751,179 0.266 Won $35,666,660 3.024
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Table A.48: Donor History by Community in WI

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $59,894,805 15.724 I $40,531,574 1.684 Lost $19,714,059 0.548
c2,0 R $3,809,096 0.064 N $24,075,667 0.594 Won $35,984,131 1.825
c2,1 D $57,326,408 0.583 I $135,824,919 6.405 Lost $18,743,600 0.156
c2,1 R $98,384,044 1.716 N $21,207,587 0.156 Won $120,056,802 6.405

c2,0 ∩ c2,1 D $2,353,534 2.140 I $2,985,702 5.848 Lost $743,088 0.402
c2,0 ∩ c2,1 R $1,100,000 0.467 N $510,567 0.171 Won $1,847,881 2.487

c4,0 D $54,979,584 0.565 I $132,842,093 6.417 Lost $18,004,242 0.152
c4,0 R $97,284,044 1.769 N $20,700,853 0.156 Won $118,211,901 6.566
c4,1 D $23,916,915 17.589 I $16,444,287 1.782 Lost $7,329,345 0.484
c4,1 R $1,359,746 0.057 N $9,226,758 0.561 Won $15,157,416 2.068
c4,2 D $27,747,143 11.419 I $20,296,272 1.980 Lost $8,612,065 0.519
c4,2 R $2,429,805 0.088 N $10,252,745 0.505 Won $16,583,280 1.926
c4,3 D $19,208,736 10.757 I $12,774,014 1.484 Lost $7,248,531 0.627
c4,3 R $1,785,735 0.093 N $8,606,952 0.674 Won $11,563,515 1.595

Table A.49: Donor History by Community in WV

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $58,907,989 0.646 I $133,547,525 7.518 Lost $17,088,670 0.146
c2,0 R $91,234,606 1.549 N $17,762,752 0.133 Won $116,737,601 6.831
c2,1 D $84,388,861 5.441 I $72,091,258 2.509 Lost $22,811,084 0.346
c2,1 R $15,509,133 0.184 N $28,731,644 0.399 Won $65,919,047 2.890

c2,0 ∩ c2,1 D $9,610,121 0.897 I $18,599,240 10.549 Lost $1,766,869 0.110
c2,0 ∩ c2,1 R $10,718,698 1.115 N $1,763,169 0.095 Won $16,002,559 9.057

c4,0 D $42,180,436 1.673 I $52,898,862 3.496 Lost $12,766,549 0.273
c4,0 R $25,210,254 0.598 N $15,132,022 0.286 Won $46,814,112 3.667
c4,1 D $62,050,437 14.569 I $44,353,754 1.946 Lost $17,871,427 0.432
c4,1 R $4,259,115 0.069 N $22,786,715 0.514 Won $41,344,418 2.313
c4,2 D $5,911,107 0.729 I $12,425,855 7.615 Lost $1,651,293 0.155
c4,2 R $8,107,265 1.372 N $1,631,697 0.131 Won $10,647,208 6.448
c4,3 D $51,228,240 0.671 I $113,970,282 7.819 Lost $14,063,970 0.141
c4,3 R $76,311,442 1.490 N $14,575,496 0.128 Won $99,479,862 7.073

Table A.50: Donor History by Community in WY

C Party Total Ratio Inc Total Ratio Status Total Ratio
c2,0 D $35,830,320 0.576 I $84,939,099 6.101 Lost $11,921,889 0.156
c2,0 R $62,179,740 1.735 N $13,922,138 0.164 Won $76,230,556 6.394
c2,1 D $9,737,211 1.971 I $10,644,068 2.470 Lost $3,656,496 0.367
c2,1 R $4,939,454 0.507 N $4,309,170 0.405 Won $9,968,500 2.726

c2,0 ∩ c2,1 D $2,328,613 0.529 I $5,999,011 6.292 Lost $718,722 0.130
c2,0 ∩ c2,1 R $4,401,518 1.890 N $953,420 0.159 Won $5,547,609 7.719

c4,0 D $63,150 0.192 I $226,925 1.369 Lost $76,075 0.240
c4,0 R $329,550 5.219 N $165,775 0.731 Won $316,625 4.162
c4,1 D $13,229,296 0.596 I $30,432,763 5.531 Lost $4,270,834 0.152
c4,1 R $22,187,686 1.677 N $5,502,496 0.181 Won $28,163,749 6.594
c4,2 D $24,107,370 0.556 I $58,370,882 6.198 Lost $8,378,451 0.162
c4,2 R $43,323,769 1.797 N $9,417,607 0.161 Won $51,842,457 6.188
c4,3 D $6,393,438 1.295 I $9,062,999 3.568 Lost $2,200,332 0.267
c4,3 R $4,938,548 0.772 N $2,540,177 0.280 Won $8,248,228 3.749
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APPENDIX B

VOTE PREDICTION RESULTS
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The following figures show the results of classification using both the random
forests and decision trees on Yea and Nay votes in the United States legislature, as
described in Chapter 6.
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Figure B.1: Decision Tree and Random Forest Vote Prediction for 1980 using
Hierarchical Fuzzy Spectral Clustering
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Figure B.2: Decision Tree and Random Forest Vote Prediction for 1982 using
Hierarchical Fuzzy Spectral Clustering
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Figure B.3: Decision Tree and Random Forest Vote Prediction for 1984 using
Hierarchical Fuzzy Spectral Clustering
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Figure B.4: Decision Tree and Random Forest Vote Prediction for 1986 using
Hierarchical Fuzzy Spectral Clustering
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Figure B.5: Decision Tree and Random Forest Vote Prediction for 1988 using
Hierarchical Fuzzy Spectral Clustering
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Figure B.6: Decision Tree and Random Forest Vote Prediction for 1990 using
Hierarchical Fuzzy Spectral Clustering
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Figure B.7: Decision Tree and Random Forest Vote Prediction for 1992 using
Hierarchical Fuzzy Spectral Clustering
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Figure B.8: Decision Tree and Random Forest Vote Prediction for 1994 using
Hierarchical Fuzzy Spectral Clustering
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Figure B.9: Decision Tree and Random Forest Vote Prediction for 1996 using
Hierarchical Fuzzy Spectral Clustering
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Figure B.10: Decision Tree and Random Forest Vote Prediction for 1998 using
Hierarchical Fuzzy Spectral Clustering
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Figure B.11: Decision Tree and Random Forest Vote Prediction for 2000 using
Hierarchical Fuzzy Spectral Clustering
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Figure B.12: Decision Tree and Random Forest Vote Prediction for 2002 using
Hierarchical Fuzzy Spectral Clustering
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Figure B.13: Decision Tree and Random Forest Vote Prediction for 2004 using
Hierarchical Fuzzy Spectral Clustering
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Figure B.14: Decision Tree and Random Forest Vote Prediction for 2006 using
Hierarchical Fuzzy Spectral Clustering
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Figure B.15: Decision Tree and Random Forest Vote Prediction for 2008 using
Hierarchical Fuzzy Spectral Clustering
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Figure B.16: Decision Tree and Random Forest Vote Prediction for 2010 using
Hierarchical Fuzzy Spectral Clustering
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Figure B.17: Decision Tree and Random Forest Vote Prediction for 2012 using
Hierarchical Fuzzy Spectral Clustering
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