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ABSTRACT

Optical networks form the foundation of today’s information infrastructure. Cur-
rent generation optical networks consist largely of point-to-point electronically trans-
mitted links which switch between nodes and repeaters. There is a trend in optical
networking to move from the current generation opaque networks toward transparent
networks. Transparent networks use only optical devices, eliminating the costly need
for OEO conversions. Unfortunately, transparent networks present a unique challenge
in maintaining acceptable signal quality levels. This research is an investigation of
RWA algorithms in transparent optical networks.

We present RAPTOR, a custom built discrete event program to simulate optical
networks. RAPTOR uses its physically aware modules to accurately calculate three
of the dominant physical impairments. RAPTOR is fast and multi-threaded. We
introduce several new performance metrics. RAPTOR enables us to study transparent
optical networks in a unique and realistic manner.

We conduct an extensive performance analysis of existing RWA algorithms. We
explore many different traffic models, traffic loads, signal quality, and network topolo-
gies in a comprehensive fashion. We directly compare the leading RWA algorithms
in a manner has not been done before.

We studied new RWA algorithms in two fields: Dynamic Programming and Ant
Colony Optimization. Our new Dynamic Programming based algorithm has the best
overall performance in most scenarios. It is flexible and adapts well to all network
conditions we studied. It shows good promise for future optical networks.
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CHAPTER 1

INTRODUCTION

This dissertation is a presentation of my research in optical networking algorithms.

The dissertation begins with some background information and then presents my

results and analysis.

1.1 Context and Motivation

Optical networks form the foundation of today’s information infrastructure. The

main advantages of optical networks, as outlined in [5], are:

1. Huge bandwidth (over 50 Tbps (Terabits per second))

2. Low signal attenuation (as low as 0.2 dB/km)

3. Immunity from electromagnetic interference

4. High security of signal due to no electromagnetic radiation

5. No crosstalk or interference between fibers in a single cable

6. Low signal distortion

7. Low material usage, small space requirements, and cost-effectiveness

8. Low power requirements

The advantages enumerated above give optical networking an advantage over both

traditional copper-wired and wireless networks. Thus, long distance communications

are dominated by optical networking.



2

Optical networking has been around for several decades. In the 1960s, the initial

purpose of fiber optics was the transmission of images through a bundle of glass fibers.

[6] These fibers were extremely lossy (loss > 1000 dB/km). Around 1970, the loss

rates of glass fibers were reduced to below 20 dB/km. [7] Finally, in 1979 the fiber

fabrication process was improved to lower the loss rates to just 0.2 dB/km [8], which

is still the standard today. This improvement lead to the first generation of large

scale optical networks in the 1980s.

Optical networks are capable of broadcasting multiple channels on a single fiber

using a technique known as Wavelengtℎ Division Multiplexing (WDM). Transmis-

sion systems using up to 160 wavelengths, each running at 10 Gbps are becoming

standard. This gives each optical fiber a capacity of 1.6 Tbps. Networks with addi-

tional wavelengths and higher bit rates are being researched, bringing the bandwidth

closer to the theoretical limit of 50 Tbps.[9]

Current generation optical networks consist mainly of point-to-point links which

switch between nodes and repeaters. All intermediate nodes convert the incoming

optical signal into an electric one, process it, and then convert it back into an optical

signal. This processes is called an OEO conversion. Networks which use OEO

conversions are called opaque.

There is a trend in optical networking to move from opaque networks toward

transparent networks. Transparent networks use optical switches to eliminate the

need for OEO conversions. The reason for this transition is simple: electronics capable

of handling Terabits of data per second are prohibitively expensive. Transparent

networks are also more flexible, as they can handle multiple modulation formats,

protocols, and data rates.

Unfortunately, the movement toward transparent networks creates a new problem.

Traditionally, optical networks had bit error rates so low that link error performance
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was never a large concern. Networks depended upon the periodic OEO conversions to

restore the signal quality through the 3R functions (reshaping, retiming, and regen-

eration). With transparent optical networks, the signal stays in the optical domain

for the entire lightpath. This distinction allows physical impairments to accumulate

along the lightpath.

For this reason, future networks must consider signal quality when choosing a

Route and Wavelengtℎ Assignment (RWA). However, minimizing the blocking prob-

ability is also important. RWA algorithms which consider signal quality are said to

be pℎysically aware. Most of the RWA algorithms used today do not consider signal

quality. The few algorithms which do consider signal quality are relatively simple.

New physically aware RWA algorithms are necessary to efficiently manage future

optical networks.

There are many optical network simulation tools available, but none of them meet

our needs. Many of the general network simulation software tools do not support

optical networks well, if at all. Most do not model physical impairments, so they

are not able to model optical networks in a realistic manner. The few that do model

physical impairments do so for small point-to-point networks only. They are very

slow, making it difficult to simulate networks of a reasonable size. Some of these

packages are rather expensive.

To carefully analyze existing RWA algorithms and evaluate new algorithms using

a wide array of performance metrics, it is necessary for us to build an optical network

simulator.
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1.2 Contents

The rest of this dissertation is organized as follows. Chapter 2 presents an overview

of optical networking. Chapter 3 discusses Routing and Wavelength Assignment

in detail. Chapter 4 presents RAPTOR, our custom-built, discrete-event, optical

network simulator. Chapter 5 presents our new approach for solving the RWA problem

based upon dynamic programming. Chapter 6 discusses Ant Colony Optimization and

presents our ACO based approaches for RWA. Chapter 7 presents our comprehensive

analysis and performance evaluation of RWA algorithms. Finally, Chapter 8 is the

conclusion.
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CHAPTER 2

OPTICAL NETWORKING BACKGROUND

This chapter presents a summary of the background information relevant to op-

tical networking. The first section discusses the enabling technologies of an optical

network. The next section discusses the dominant physical impairments in optical

networks. The final section presents metrics used to quantify the signal quality in

optical networks.

2.1 Enabling Technologies

Today’s optical networks are made possible by the use of several key optical tech-

nologies. This section discusses the main components of optical networks: fiber,

transmitters, receivers, amplifiers, and switches.

2.1.1 Optical Fiber

Optical fiber is a thin filament of glass which acts as a waveguide. A waveguide is

simply a transparent physical medium that allows the propagation of electromagnetic

waves, such as light. Optical fibers, as shown in Figure 2.1.1 consist of two main layers:

a core and a cladding. The buffer and jacket protect the fiber from damage, but are

not part of the waveguide. Due to total internal reflection, light can propagate

inside a fiber with little loss.

Light travels at the speed of c ≈ 3 x 108 m/s in a vacuum, but at slower speeds

through other transparent materials. If cmat is the speed of light for a given material,

the ratio of the speed of light in a vacuum to the speed of light in the material is

known as the material’s refractive index (n) and is modeled by nmat = c/cmat. Since
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Figure 2.1: Optical Fiber [1]

nmat ≈ 1.5 for glass, the speed of signal propagation in a fiber is roughly 2 x 108 (3

x 108 / 1.5).

When light travels from a material of one refractive index to a material with a

different refractive index, the angle of the light that is transmitted into the second

material depends on the refractive indexes of the two materials and the angle at

which the light strikes the interface between the two materials. Equation 2.1, known

as Snell’s Law, shows this relationship

nasin�a = nbsin�b (2.1)

where na and nb are the refractive indexes of the two materials, �a the angle of

incidence, and �b is the angle of light in the second material. However, if na > nb and

�a is greater than the critical angle, all of the light rays are reflected back into the

medium of a, causing total internal reflection.

The angle at which total internal reflection will take place is known as the critical

angle. To find the critical angle for a given optical fiber, we only need to consider

the refractive indexes of the core and cladding components of the optical fiber.

We can rewrite Snell’s law into the form of Equation 2.2.

sin�clad =
ncore
nclad

sin�core (2.2)
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And from that, we derive Equation 2.3 which shows the critical angle. [2]

�crit = sin−1nclad
ncore

(2.3)

Attenuation in optical fiber reduces the signal power as the signal propagates

over a distance. The receiver sensitivity determines the minimum power required to

properly detect the signal, and thus, the maximum spacing between the transmitter

and receiver or amplifier. Let P (L) be the power of the optical signal at distance L

from the transmitter and � the attenuation constant of the fiber, the attenuation is

given by Equation 2.4 [10]

P (L) = 10−�L/10P (0) (2.4)

For a typical fiber, centered at roughly 1310 nm is a 200 nm region with attenu-

ation of less than 0.3 dB/km. Centered at 1550 are three bands with attenuation as

low as 0.2 dB/km. These three bands are named the S-band (1460-1530 nm), C-band

(1530-1560 nm), and L-band (1560-1630 nm). Combined, these windows provide a

theoretical limit of 50 THz of bandwidth. [2].

Most of the loss in good fibers is caused by Rayleigh scattering. However, centered

around roughly 1400 nm there is a peak in attenuation caused by the hydroxyl ion

(OH−) impurities in the fiber. Figure 2.2 shows the attenuation of traditional fiber.

Dispersion is the spreading out of a pulse duration as it traverses through the

optical fiber. If the pulse widens enough, it can interfere with neighboring pulses on

the fiber causing intersymbol interference. For this reason, dispersion can limit the

bit rate on fiber-optic channels.

Dispersion is often addressed by combining the usage of Non-Zero Dispersion-

Shifted Fibers (NZDSF) with small positive dispersion rates and Dispersion Com-

pensating Fiber (DCF) with large negative dispersion rates. If the correct length of
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Figure 2.2: Fiber Attenuation and Dispersion [2]

each type of fiber is used, the total dispersion can be nearly zero. The dispersion

characteristics of common types of fiber are shown in Figure 2.2.

2.1.2 Optical Transmitters

Most optical networks use lasers to transmit optical signals. Laser is an acronym

for Light Amplification by Stimulated Emission of Radiation. Stimulated Emission

allows a laser to produce intense high-powered beams of coherent light. [2]

In every atom, there are a number of discrete levels of energy that an electron can

have. They are typically referred to as states. Atoms which are stable have electrons

at the lowest possible energy levels. Atoms move to the excited state by absorbing

energy. Excited atoms are typically unstable, and usually move quickly back to the

stable state by releasing a pℎoton, a particle of light.

Some materials are quasi-stable and capable of staying in an excited state for

longer periods of time. If enough energy is applied to such materials, a population
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Figure 2.3: General Structure of a Laser [2]

inversion occurs, which means that there are more excited electrons than stable

electrons. This inversion allows the material to emit more light that it absorbs.

Figure 2.3 shows the structure of a typical laser. There are two mirrors and a

cavity, a lasing medium inside of the cavity, and an excitation device. The excitation

device applies a current to the lasing medium, which is composed of a quasi-stable

material. When a current is applied to the lasing medium and when an electron in

the lasing medium drops to the stable state, a photon of light is emitted. The photon

will reflect off the mirrors of the cavity and enter the lasing medium again.

Stimulated emission occurs when a photon passes very closely to an excited

electron. The photon causes the electron to release its energy and return to the

ground state. The electron releases another photon with the same direction and

coherence of the stimulating photon. The excitation device will continue to excite

the atoms in the lasing medium and the light will increase in intensity as the mirrors

feed the photons back and forth.



10

One of the mirrors is partially transmitting, meaning some of the photons will exit

the cavity in a narrowly focused beam of light. The frequency of the photon emitted

depends on its change in energy levels. Equation 2.5 shows the relationship,

f =
Ei − Ef

ℎ
(2.5)

where f is the frequency of the photon, Ei is the initial state of the electron, Ef is the

stable state of the electron, and ℎ is Plank’s constant. Many frequencies are possible,

however, only a single frequency, determined by the cavity length, is emitted from

the laser.

To transmit data across an optical fiber, the information has to be modulated, or

encoded, into a laser signal. The preferred method of binary modulation is usually

Amplitude Shift Keying (ASK), also known as On Off Keying (OOK). [2] Under ASK,

a lower power level level represents a ”0” bit and a higher power level represents a

”1” bit.

The simplest way to modulate a laser using ASK is to simply turn the laser on and

off. This technique is known as direct modulation. This leads to a signal chirping,

where the amplitude and frequency variate. The preferred approach in high bit rate

systems (greater than 2 Gbps) is to use an external modulator, a device which blocks

or passes light depending on the current applied to it.

2.1.3 Optical Receivers

Photodetection is the process used by an optical receiver to convert the incoming

optical stream into a digital stream. There are two main methods to achieve this:

direct detection and coherent detection.

In systems using direct detection, a photodetector converts the incoming optical

signal into a stream of electrons. This is accomplished through the use of PN photo-
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diodes and PIN photodiodes. The electric signal is then amplified and tested against

a threshold. Whether a bit is a ”0” or ”1” is dependent upon whether the stream is

above or below the threshold. Simply put, the decision is made based on whether or

not enough light is present during the bit duration.

In systems using coℎerent detection, phase information is used to encode and

detect signals. This is accomplished through the use of a monochromatic laser as a

local oscillator. The incoming optical stream and the signal from the oscillator are

combined, resulting in a signal at the difference frequency. This difference signal is

then amplified and photodetected.

Coherent detection is able to receive weaker signals under noisier conditions. How-

ever, under most optical systems it is too difficult to maintain the phase information

required for coherent detection, which limits the performance of coherent detection

systems. [11]

2.1.4 Optical Amplifiers

Optical signals can propagate long distances (around 80 km) before they need

amplification. However, optical networks, particularly those with long links, can

benefit from optical amplifiers.

Optoelectronic amplification is known as 3R (reamplification, reshaping, and re-

timing). This requires costly OEO (Optical to Electrical to Optical) conversions,

however, it does provide optimal signal quality. Due to the required OEO conver-

sions, transparent optical networks do not use optoelectronic amplifiers. In WDM

(Wavelength Division Multiplexing) systems using 3R, each wavelength needs to be

separated prior to amplification and recombined before transmission.

All-optical amplification is much different from optoelectronic amplification. All-

optical amplification boosts only the power of the signal, but does not otherwise
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restore the shape or timing of the signal. This is known 1R (reamplification). All-

optical amplification is completely data transparent and requires no knowledge of the

underlying protocols, data rates, or modulation formats.

Erbium Doped F iber Amplifiers (EDFAs) are the most common all-optical am-

plifiers. Figure 2.4 shows the structure of a typical EDFA. At one end of the EDFA,

a laser transmits a strong signal at a lower wavelength. The pump wavelength and

original data signal are then coupled together and enter a region of erbium doped

fiber. The pump signal excites the doped atoms to a higher energy level and allows

the data signal to stimulate the excited atoms to release photons through stimulated

emission. This effect amplifies the data signal.

Most EDFAs use pump signals with a wavelength of either 980 nm or 1480 nm.

The 980 nm pump signal has shown gain efficiencies around 10 dB/mW, while the

1480 nm pump signal shows gain efficiencies around 5 dB/mW. Typical gains are on

the order of 25 dB. [2]

One limitation with optical amplification is the unequal gain spectrum. Even

though optical amplifiers provide a gain across a wide range of wavelengths, they do

not amplify all wavelengths equally. A multiwavelength optical signal passing through

a series of EDFAs will result in the power of the wavelengths being uneven. The gain

spectrum of a typical EDFA is shown in Figure 2.5.

EDFAs introduce noise in the form of Amplified Spontaneous Emission (ASE).

EDFAs chained together will further amplify ASE noise (and all other noise in gen-

eral). Thus, the number of EDFAs in a path is often the largest contributor to poor

signal quality.

EDFAs also introduce transients each time a connection is added or dropped. This

is a result of the sudden increase or decrease of EDFA input power. These transients

can be reduced by using a technique known as power sℎaping. [12]
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Figure 2.4: Erbium Doped Fiber Amplifier

Figure 2.5: EDFA Gain [3]
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2.1.5 Optical Switches

The basic function of an optical switch is to switch signals on a wavelength from

an input fiber to the correct output fiber. Through the use of optical switches, optical

fibers from different links can be connected and a lightpath established.

As wavelength converters are generally unavailable, the input wavelength and out-

put wavelength must be identical. This is the reason behind the wavelength continuity

constraint of RWA. The wavelength continuity constraint is the primary difference

between the general network routing problem and RWA. It is the reason that RWA

is NP hard, while the general network routing problem is not.

There are multiple types of optical switches available. While electronic switching is

still used in opaque optical networks, transparent optical networks use optical switches

exclusively. Three types of optical switches are Optical Add-Drop Multiplexer, Micro-

Electro Mechanical Systems, and Wavelength Routing Switches.

2.1.5.1 Optical Add-Drop Multiplexer: Optical Add-Drop Multiplexers (OADMs)

are devices that provide the ability to add and drop channels in the network. They

accomplish this without affecting traffic that is transmitted transparently through

the node and, thus, do not require OEO conversions. This introduces significant cost

savings in the network. Figure 2.6 shows the generic architecture of an OADM.

They are two types of OADMs: static and reconfigurable. In static OADMs,

the add/drop channels are predetermined and can only be adjusted by manually

rearranging the OADM. In reconfigurable OADMs, the add/drop channels can be

dynamically reconfigured as required by the needs of the network.

The Reconfigurable OADMs also fall into two categories: partly-reconfigurable

and fully-reconfigurable. Partly-reconfigurable OADMs are typically used in linear
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Figure 2.6: Generic OADM Architecture [2]

network configurations while fully-reconfigurable OADMs are typically used in ring

networks and networks requiring fault-tolerance.

2.1.5.2 Micro-Electro Mechanical Systems: Micro-Electro Mechanical Sys-

tems (MEMS) based switches are distinguished by being based upon mirrors, mem-

branes, or planar moving waveguides. MEMS based upon mirrors are a popular choice

as it is suitable for compact, large-scale switching fabric. This architecture can scale

to input and output port counts of over one thousand. Another advantage of this

architecture is the minimal degradation of the optical signal-to-noise ratio.

Figure 2.8 shows the basic configuration of a MEMS optical switch. The optical

signals from the input port are switched independently by the gimbal-mounted MEMS

mirrors with a two-axis title control. The mirror focuses the light onto the optical

fiber of the output port. The switch can be reconfigured by controlling the tilt angle

of each mirror.
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Figure 2.7: A MEMS optical switch schematic diagram [2]

MEMS provide compact and stable optical crossconnect switches for simple, fast,

and flexible wavelength applications in today’s optical networks. [13] They provide

very low crosstalk, wavelength insensitivity, polarization sensitivity, and scalability.

2.1.5.3 Wavelength Routing Switch: Wavelength-Routing Switches (WRS),

sometimes referred to as a Wavelength Selective Crossconnect (WSXC), use photonic

switches inside of the routing element. A typical WRS is shown in Figure 2.8.

A WRS has P incoming fibers and P outgoing fibers. All fibers have a capacity of

M channels. The incoming wavelengths for each fiber are separated using a grating

demultiplexer. The outputs of the demultiplexer are then directed to an array of

MP x P optical switches. All signals on a given wavelength are directed to the same

switch. The switched signals are then directed to multiplexers associated with the

output ports. The signals are multiplexed together before sending them onto the

output fiber.
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Figure 2.8: A PxP WRS with M Wavelengths [2]

Networks built from WRSs can be constructed from components available today.

[2] The WRS switch can be reconfigured each time a connection is added or dropped,

thus they are extremely flexible.

2.2 Physical Impairments

While optical fibers have extremely low attenuation rates, Wavelength Division

Multiplexing still leads to many optical phenomenons that degrade the signal quality

in optical networks. This section discusses some of the physical impairments in optical

networks.

The list of physical impairments presented here is not an exhaustive list. Optical

switches and OADMs, for example, also introduce noise. However, the impairments

presented in this section include the dominant causes of noise in transparent optical

networks.
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2.2.1 Amplified Spontaneous Emission

Amplified Spontaneous Emission (ASE) is noise produced by spontaneous emission

when a laser gain medium is pumped to produce a population inversion. The power

spectral density of ASE noise is

S(f) = 2nsp(G− 1)ℎf (2.6)

where nsp is the spontaneous emission factor, ℎ is Planck’s constant, f is the frequency,

and G is the amplification gain. ASE noise is usually treated as white noise. [4]

ASE accumulates in optical spans that have multiple optical amplifiers between

regenerators. Transparent networks do not use regenerators, so the number of optical

amplifiers in an end-to-end path can be rather high. For this reason, ASE is often a

dominant contributor to noise in all-optical networks.

2.2.2 Self Phase Modulation

In an optical fiber, the index of refraction depends slightly on the optical intensity

of signals propagating through the fiber. [14] In other words, the phase of the light at

the receiver is dependent upon the phase of light sent by the transmitter, the optical

intensity, and the length of the fiber.

Self Phase Modulation (SPM) is caused by variations in the power of the optical

signal. SPM causes variations in the phase of the signal. The phase shift introduced

by SPM is given by the following equation [2]

�NL = n2k0L∣E∣2 (2.7)

where n2 is the nonlinear coefficient for the index of refraction, k0 = 2�/�, L is the

length of the fiber, and ∣E∣2 is the optical intensity. SPM leads to a performance
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degradation since the receiver relies on phase information. SPM also leads to a

broadening of the pulse.

2.2.3 Cross Phase Modulation

Cross Phase Modulation (XPM) is a shift in the phase of a signal caused by the

change in intensity of a signal co-propagating on the fiber at a different wavelength.

XPM leads to asymmetric spectral broadening and may also affect the pulse shape

in the time domain. [2]

Although XPM limits the performance of fiber-optic networks, there are some

advantages of XPM as well. XPM can be used to modulate a pump signal at one

wavelength from a modulated signal on a different wavelength, in effect, performing

a wavelength conversion.

2.2.4 Four Wave Mixing

Four Wave Mixing (FWM) is an intermodulation distortion signal. When three

wavelengths (�1, �2, and �3) interact in a nonlinear medium, such as an optical fiber,

they create a fourth wavelength (�4) due to the scattering of the incident photons

producing a fourth photon. In terms of frequency, inputs f1, f2, and f3 will produce

FWM on f0 if they satisfy this relationship.

f0 = f1 ± f2 ± f3 (2.8)

Two approaches to mitigating FWM are using fiber with a high local dispersion

(such as SMF, NZDSF) or unequally spacing the channels. [15]

FWM can be used to perform an all-optical wavelength conversion. In optical

networks, this technique is seldom used. Thus, most RWA algorithms assume that

wavelength converters are not available.
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2.2.5 Polarization Mode Dispersion

Polarization Mode Dispersion (PMD) is a complex optical effect that occurs in

single-mode optical fibers. Since optical fibers are not perfectly round and free from

all stress, the two perpendicular polarizations of the original transmitted signal travel

at different speeds. The difference in arrival times between the two polarizations

is known as PMD. The mean time differential due to PMD can be modeled by the

following equation

�t ≈ Δ�1

√
2lcL ≡ Dp

√
L (2.9)

where Dp is the PMD parameter, typically in the range of 0.1 to 1 ps/
√
km, and L

is the length of the fiber. [16]

The effects of PMD can lead to bit errors at the receiver, especially with higher

bit rate transmissions over long distances. [17]

2.2.6 Stimulated Raman Scattering

Stimulated Raman Scattering (SRS) is caused by the interaction of the optical

signal with molecular vibrations of the fiber. A portion of the signal traveling at each

frequency is downshifted across a region of lower frequencies. The light generated at

the lower frequencies is called the Stokes wave. In a silica fiber, the Stokes wave has

a maximum gain at a frequency around 13.2 THz less than the optical signal. [2]

The portion of the power that is transfered to the Stokes wave grows rapidly when

the optical signal power is increased. At high power levels, nearly all of the power

will be transfered to the Stokes wave.

In WDM systems, the shorter-wavelength channels lose a portion of their power

to the higher wavelength channels within the Raman gain spectrum. The loss can be
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minimized by keeping the power on each channel below a certain threshold. In [18],

power levels below 3 mW are shown to minimize the effects of SRS.

2.2.7 Stimulated Brillouin Scattering

Stimulated Brillouin Scattering (SBS) is similar to SRS, except the shift in fre-

quency is caused by sound waves rather than molecular vibrations. [14] Other char-

acteristics of SBS are: 1) the Stokes wave propagates in the opposite direction of the

input signal, 2) it occurs at low input powers for wide pulses (greater than 1 �s), and

3) is negligible for short pulses (less than 10 ns). [19] The intensity of the scattered

light is much greater in SBS, but the frequency range of SBS is much lower than SRS.

In WDM systems, SBS can be mitigated by ensuring that the signal power is

below a threshold. SBS can also induce crosstalk between channels. However, the

narrow gain bandwidth of SBS makes the crosstalk relatively easy to avoid.

2.3 Quality Measurement

Traditionally, signal quality was measured by the Optical Signal to Noise Ratio

(OSNR) or the Bit Error Rate (BER). BER and OSNR measurements are not suffi-

cient for optical networks, as optical networks have BERs below 1012. A measurement

of nearly error-free BER can take hours or even days. [20]

In optical networks, quality is usually measured via the Q-factor. The Q-factor is

calculated as

Q = 10 log10

I1 − I0

�1 + �0

(2.10)

where I0 and I1 are the photo-current received at the destination and �0 and �1 is the

standard deviation at the destination when a ”1” and ”0” are transmitted. [21] Once
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the Q-factor is calculated, the BER can be approximated using the formula below.

This formula makes a Gaussian noise assumption. [22]

BER ≈ 0.5erfc
Q√

2
(2.11)

To avoid making assumptions on data modulation and their respective vulnera-

bility to noise, we use the Q-factor exclusively in our research. Quality thresholds

and connection quality are both measured in terms of their Q-factor.
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CHAPTER 3

ROUTING AND WAVELENGTH ASSIGNMENT

This chapter contains a detailed discussion on Routing and Wavelength Assign-

ment (RWA). The first section formally defines the RWA problem. The next section

details the complexity of the problem. The remainder of the chapter presents several

known algorithms for solving RWA.

3.1 RWA Problem Definition

The general objective of the Routing and Wavelength Assignment (RWA) problem

is to maximize the number of established connections on an optical network. Each

connection request must be given a route and wavelength. The wavelength must be

consistent for the entire path, unless the usage of wavelength converters is assumed.

Two connections requests can share the same optical link, provided a different wave-

length is used.

RWA is a problem for WDM optical networks in general. The formal definition

and complexity proofs presented here apply to both opaque and transparent optical

networks.

The RWA problem can be formally defined in a Integer Linear Program (ILP).

The ILP formulation given here is taken from [23].

Maximize :C0(�, q) =
Nsd∑
i=1

mi (3.1)

subject to

mi ≥ 0, integer, i = 1, 2, ..., Nsd (3.2)

cij ∈ 0, 1, i = 1, 2, ..., P, j = 1, 2, ...,W (3.3)
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CTB ≤ 1W×L (3.4)

m ≤ 1WC
TA (3.5)

mi ≤ qi�, i = 1, 2, ..., Nsd (3.6)

Integer Linear Programming is known to be NP Complete, in contrast to the more

general Linear Programming which can be solved polynomially. The purpose of the

ILP is to present a formal definition of the RWA problem, not a method to solve the

problem (although many have attempted to do so [24]).

Nsd is the number of source-destination pairs, while mi is the number of connec-

tions established for each source-destination pair. L is the number of links and W is

the number of wavelengths. P is the set of paths to route connections. A : P ×Nsd

is a matrix which shows which source-destination pairs are active, B : P × L is a

matrix which shows which links are active, and C : P ×W is a route and wavelength

assignment matrix.

Equation 3.1 represents the total number of connections in the network. Equation

3.2 ensures that the number of connections per source destination pair is a non-

negative integer. Equation 3.3 limits the C matrix values to either 1 (active) or 0

(inactive). Equation 3.4 ensures that each wavelength is used only once. Equations

3.5 and 3.6 ensure that the number of established connections are less than or equal

to the requested connections.

Note that the above formulation assumes that the traffic demands are known a

priori. This type of problem is known as Static Lightpath Establishment (SLE). We

are more interested in the Dynamic Lightpath Establishment (DLE) where traffic

demands are not known ahead of time. This requires a dynamic algorithm to adapt

to varying traffic requests over time.
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The above formulation also does not consider the signal quality. We are interested

in solving the more complicated physically aware RWA problem, where algorithms

consider signal quality and attempt to find a route and wavelength with satisfactory

quality.

3.2 RWA Complexity

It is shown in the subsections below that the SLE problem is NP complete. Thus it

is unlikely that an polynomial algorithm exists for optimally solving the SLE problem.

Given that the physically aware DLE problem is at least as difficult as SLE, there is

little hope for an efficient algorithm to optimally solve physically aware DLE.

Note that many of the optical impairments are nonlinear, so a standard shortest

path algorithm can’t be used to solve them optimally even if we know the exact state

of the network. This is often not a safe assumption, so solutions need to be efficient

using only limited network information.

Given the complexity of RWA, there are two general methodologies for approx-

imating the problem. One method is splitting the problem into two subproblems.

The route is calculated first and a wavelength is assigned second. Four types of route

selection are Fixed Path Routing, Fixed Alternate Routing, Adaptive Routing, and

Fault Tolerant Routing. The second approach is to consider both route selection and

wavelength assignment jointly.

3.2.1 Integral Multi-Commodity Flow

The original NP Completeness proof for the SLE problem involved a reduction to

the integral multi-commodity flow (IMCF) problem in 1976. The IMCF problem was
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proved to be NP complete in [25] when the number of commodities is greater than or

equal to two.

It is easy to see how the SLE problem can be reduced to the IMCF problem, and

vice versa. The traffic requests of SLE correspond to the requested flows of IMCF.

The edges in SLE each support a finite integer of channels, while the edges in IMCF

have a capacity that is a finite integer. The formal proof is omitted.

While the IMCF problem is NP Complete, the general Multi-Commodity Flow

(MCF) problem can be solved efficiently using linear programming methods. [26] One

method of approximating SLE is to solve the MCF problem and then use a technique

called path stripping to convert the real edge flows into integral edge flows. [2]

3.2.2 n-graph Colorability

The SLE problem can also be reduced to the n-graph-(vertex)-colorability prob-

lem. The reduction, presented here, is taken from [27].

First, let us show that solving the n-graph-(vertex)-colorability problem would

also solve the SLE problem. Let us create an undirected graph GSLE(VSLE,ESLE). A

vertex v ∈ VSLE is created for each lightpath. Two verticies, v1, v2 ∈ VSLE have an

edge between them e ∈ ESLE if and only if the respective lightpaths of v1 and v2 have

at least one link in common. Any coloring of VSLE with n colors such that no two

adjacent verticies share the same color would also define a wavelength assignment W

where no two lightpaths having a link in common would share a lightpath. Thus, a

feasible coloring in VSLE is also a feasible wavelength assignment, solving SLE.

To complete the proof, we need to show that solving SLE would also solve the

n-graph-(vertex)-colorability problem. First, a polynomial time algorithm is given

that translates any coloring problem into a network and a set of lightpath demands.

Given a graph GC(VC ,EC), let us create a graph GSLE(VSLE,ESLE) as follows:
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Figure 3.1: n-colorability graph

1 2

3 4

1. create a vertex v0
i ∈ VSLE for all verticies v ∈ VC

2. for each edge e = i → j ∈ EC :

∙ create four new verticies: x, y, vki , vlj ∈ VSLE

∙ create five new directed edges: vk−1
i → x, vl−1

j → x, x → y, y → vki , y →

vlj ∈ ESLE

∙ attach a label i to edges going from/to vi and x → y

∙ attach a label j to edges going from/to vj and x → y

Each vertex vki ∈ VSLE corresponds to the kth replication of the node i ∈ VC . As

an example, a simple four node GC is included in Figure 3.1. The corresponding GSLE

is shown in Figure 3.2. The lightpath demand set L is defined by the ∣VC ∣ lightpaths

for which lightpath i requires the usage of all links having the label i. Note that the

complexity of the transformation is O(∣EC ∣).

To complete the proof, one must show that any solution to GSLE with n wave-

lengths implies that the chromatic number of GC is less than or equal to n. This

follows immediately from the construction of the graph. If the lightpaths can be es-

tablished then a function must exist which assigns wavelengths to each lightpath such
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Figure 3.2: Translation to SLE
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that no lightpaths sharing a link are assigned the same wavelength. Two lightpaths

share a link if and only if the respective nodes in GC are adjacent. This implies the

existence of a function which assigns colors to each node in VC , such that no two

adjacent nodes are assigned the same color.

3.3 Fixed Path Routing

Fixed Path Routing is the simplest approach to finding a lightpath. The same fixed

route for a given source and destination pair is always used. Typically this path is

computed ahead of time using a shortest path algorithm, such as Dijkstra’s Algorithm.

While this approach is very simple, the performance is usually not sufficient. If

resources along the fixed path are in use, future connection requests will be blocked

even though other paths may exist.
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The SP-1 (Shortest Path, 1 Probe) algorithm is an example of a Fixed Path

Routing solution. This algorithm calculates the shortest path using the number of

optical switches as the cost function. A single probe is used to establish the connection

using the shortest path. The running time is the cost of Dijkstra’s algorithm: O(n2 +

m), where m is the number of edges and n is the number of edges. The running time

is just a constant if the paths are precomputed.

1. Set the cost of each link L using cost(L) = 1
2. Return the minimal cost path using a shortest path(s) algorithm

Algorithm 3.1: Shortest Path Algorithm (SP)

This definition of SP-1 uses the hop count as the cost function. The SP-1 algorithm

could be extended to use different cost functions, such as the number of EDFAs. In

practice, there is little difference in results between the two cost functions.

3.4 Fixed Alternate Routing

Fixed Alternate Routing is an extension of Fixed Path Routing. Instead of having

just one fixed route for a given source and destination pair, several routes are stored.

The paths can be attempted in a serial or parallel fashion. For each connection

request, the source node attempts to find a connection on each of the paths. If all of

the paths fail, then the connection is blocked. If multiple paths are available, only

one of them would be utilized.

The SP-p (Shortest Path, p Probes, p > 1) algorithm is an example of Fixed

Alternate Routing. This algorithm calculates the p shortest paths using the number

of optical routers as the cost function. The running time using Yen’s algorithm [28]

is O(pn(m + n log n)) where m is the number of edges, n is the number of routers,
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and p is the number of paths. The running time is a constant factor if the paths are

precomputed.

In some cases, having as few as 2 alternate routes leads to better performance

than Fixed Routing with full wavelength switching. [29].

3.5 Adaptive Routing

The major issue with both Fixed Path Routing and Fixed Alternate Routing is

that neither algorithm takes into account the current state of the network. If the

predetermined paths are not available, the connection request will become blocked

even though other paths may exist. Another disadvantage is Fixed Path Routing and

Fixed Alternate Routing are both not physically aware. For these reasons, most of

the research in RWA is currently taking place in Adaptive algorithms. Six examples

of Adaptive Routing are LORA, PABR, IA-BF, IA-FF, QM, and AQoS.

Adaptive algorithms fall into two categories: traditional and physically-aware.

Traditional adaptive algorithms do not consider signal quality, however, physically

aware adaptive algorithms do.

3.5.1 Traditional Adaptive RWA

The Lexicographical Routing Algorithm (LORA) algorithm was proposed in [30].

The main idea behind LORA is to route connection requests away from congested

areas of the network, increasing the probability that connection requests will be ac-

cepted. This is accomplished by setting the cost of each link to be

cost(l) = �usage(l) (3.7)

where � is parameter that can be dynamically adjusted according to the traffic load

and usage(l) is the number of wavelengths in use on link l. A standard shortest path
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algorithm can then be used to find the shortest path(s). This requires each optical

switch to broadcast recent usage information periodically. Note that LORA does not

consider any physical impairments.

When � is equal to one, the LORA algorithm is identical to the SP algorithm.

Increasing the value of � will increase the bias toward less used links. The optimal

value of � can be calculated using the well-known hill climbing algorithm. In [4], the

optimal values of � were between 1.1 and 1.2.

1. Determine the appropriate value of � according to the current network traffic
load

2. Set the cost of each link L using cost(L) = �Ul

3. Return the minimal costs paths using a shortest path(s) algorithm

Algorithm 3.2: Lexicographical Routing Algorithm (LORA)

3.5.2 Physically Aware Adaptive RWA

The Physically Aware Backward Reservation Algorithm (PABR) is an extension of

LORA. [31] PABR is able to improve performance in two ways: by considering phys-

ical impairments and through improved wavelength selection. As PABR searches for

an optical path, paths with an unacceptable signal quality due to linear impairments

are pruned. In other words, PABR can be formalized as

Minimize :
∑

l∈patℎP
�usage(l) (3.8)

subject to

∑
l∈patℎP

ASEnoise(l) < tℎresℎold (3.9)

Note that PABR only considers ASE noise. The algorithm’s basic idea, however, could

be extended to include all linear impairments, such as Polarization Mode Dispersion.
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The nonlinear impairments, on the other hand, are difficult to estimate because they

can not be represented as a sum of individual edge costs. Nonlinear impairment

calculations also require information not available to a distributed algorithm.

PABR also considers signal quality when making the wavelength selection. It ac-

complishes this by removing from consideration all wavelengths with an unacceptable

signal quality level. The approach is called Quality First Fit and it is discussed in

the following section.

It should also be noted that both LORA and PABR can be implemented with

either single-probing or multi-probing. The maximum number of probes p is denoted

as LORA-p or PABR-p. With single-probing, only one path is selected by the route

selection. With multi-probing, multiple paths are attempted serially or in parallel,

increasing the probability of connection success.

1. while ℋ is not empty do
2. P = FirstElement(ℋ)
3. if P==D then
4. if number of paths in the result buffer < required number then
5. put the path from S to D in the result buffer
6. else
7. return result buffer
8. end if
9. else

10. for each adjacent node ai of P do
11. if ai /∈ S → P && ASE(S → ai) < threshold then
12. ai.parent = P
13. ai.cost = P.cost + �usage(P−>ai)

14. insert ai into ℋ
15. end if
16. end for
17. end if
18. end while

Algorithm 3.3: Physically Aware Backward Reservation Algorithm (PABR)
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The Impairment Aware Best Fit (IA-BF) algorithm was proposed in [32]. IA-BF

is a centralized algorithm requiring global complete knowledge of the network’s re-

sources. IA-BF uses serial multi-probing. The shortest available path and wavelength

are attempted first, and upon failure, the second shortest available path and wave-

length are attempted. This process continues until a successful path and wavelength

have been found or all wavelengths have been attempted.

The multi-probing approach will allow IA-BF to significantly outperform both

PABR-1 and LORA-1 in terms of blocking probability. However, as the number of

probes increases to 4, the performance gap between the algorithms shrinks. In most

scenarios, IA-BF has the lowest blocking probability. However, the serial nature of

IA-BF leads to longer connection setup times.

1. for each wavelength w do
2. cost(w) = shortest path in w
3. end for
4. m = index with minimum value in cost
5. send probe message using wavelength m to destination to estimate signal quality
6. if response is acceptable then
7. reserve network resources and establish connection
8. else
9. if additional wave available then

10. Goto Step 4
11. else
12. Connection Request Fails
13. end if
14. end if

Algorithm 3.4: Impairment Aware Best Fit (IA-BF)

Impairment Aware First Fit (IA-FF) is a simple extension of IA-BF. [32] Instead of

picking the wavelengths in terms of the minimum cost, the wavelengths are selected

in order according to their index. IA-BF tends to outperform IA-FF under most

scenarios.
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1. Initialize w to 1.
2. Apply shortest path algorithm to find a path Pw. If no path is found, increment
w and repeat step. If all wavelengths have been searched, stop and goto step 5.

3. Attempt to setup the connection using Pw.
4. If successful, then begin transmission. Otherwise, increment w and goto step 2.
5. Connection is blocked

Algorithm 3.5: Impairment Aware First Fit (IA-FF)

Quality Measurement (QM) was proposed in [20]. The algorithm is unique in the

fact that it uses the Q-factor degradation as the link cost. The cost of the itℎ link is

calculated by this formula

Di =

Ni∑
j=1

10 log[Q
(s)
i,j /Q

(d)
i,j ]

Ni

(3.10)

where Ni is the number of lightpaths on the itℎ link, Q
(s)
i,j and Q

(d)
i,j are the Q-factor

measurements of the jtℎ lightpath at the source and destination nodes of the itℎ link,

respectively. The repeated Q-factor estimations are computationally very expensive,

so QM is not as scalable as the other RWA algorithms.

In situations where wavelength blocking dominates quality blocking, QM performs

very poorly. This is due to QM’s single objective of minimizing Q-factor degradation,

which ignores the availability of wavelengths. [20]

1. Initialize link costs.
2. Use a standard shortest path algorithm to compute the shortest paths.
3. If the paths are acceptable, setup the connection and update the link costs.
4. If the path is not acceptable, the link costs do not need to be updated.
5. When the connection is destroyed, link costs will again need to be updated.

Algorithm 3.6: Quality Measurement (QM)

Adaptive Quality of Service (AQoS) was proposed in [20] as an extension to QM.

AQoS works similarly to QM, but with minor changes to avoid the wavelength avail-

ability issues. This algorithm is unique in that each node maintains two counters:
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NBER and Nwave. The purpose of each counter is to determine which issue is a bigger

factor in blocking: Path and wavelength availability or Quality requirements. The

algorithm chooses routes differently based upon the dominant issue.

1. Initialize link costs.
2. Initialize both NBER and Nwave for all nodes.
3. For all connection requests, consider NBER and Nwave.
4. If NBER ≥ Nwave, select the route that gives the least Q-degradation (i.e. use

QM).
5. Else if NBER < Nwave, calculate the k shortest paths and choose the path with

the most available wavelengths.
6. If the request is successful, accept it. Update the link weights.
7. If the request is not successful, block it. Update either NBER or Nwave.
8. When the connection is finished, update the link weights.

Algorithm 3.7: Adaptive Quality of Service (AQoS)

Both QM and AQoS are single probing algorithms. ALT-QM and ALT-AQoS are

multi-probing extensions in which multiple probes are selected. To be consistent with

our naming convention, we will refer to these algorithms as QM-p and AQoS-p.

3.6 Fault Tolerant Routing

In some optical networks, there is a desire to setup multiple edge-disjoint routes

to provide protection against link and node failures in the network. [29, 33] Fixed

alternate routing provides one method of setting up primary and secondary routes,

provided that the routers are link disjoint.

The problem is more difficult for adaptive routing schemes. One way of providing

fault tolerance is to setup the primary route as usual. A secondary or backup route

can then be setup using the same scheme but with the primary route’s edges removed

from the graph.



36

Another scheme of providing fault tolerance is restoration. Under restoration, if

the primary path fails, the same routing algorithm is used to search for a secondary

path. Since one has not been reserved, it may be the case that a secondary path is

not available. Thus there is a trade-off with restoration: no network resources are

reserved for secondary links and fault tolerance is not guaranteed. Restoration will

result in a lower blocking probability.[2]

3.7 Wavelength Assignment

Two of the most common methods for wavelength assignment are First Fit (FF)

and Random Fit (RF). First Fit chooses the available wavelength with the lowest

index. Random Fit, sometimes called Random Pick (RP), determines which wave-

lengths are available and then chooses randomly amongst them. The complexity of

both algorithms is O(w), where w is the number of wavelengths.

The general consensus is that First Fit outperforms Random Fit with regard to

blocking probability due to its ability to tightly pack wavelengths together. Random

Fit spreads connections across wavelengths, which results in a higher average signal

quality.

First Fit can be modified slightly to order wavelengths by their frequency sepa-

ration, not their index. This is called First Fit with Ordering (FFwO). Two other

approaches are Least Quality (LQ) and Most Quality (MQ), where the wavelength

with the Least/Most quality is used.

An extension of several wavelength algorithms was proposed in [4] which considers

signal quality. Quality First Fit (Q-FF) and Quality Random Pick (Q-RP) eliminate

from consideration wavelengths which have an unacceptable signal quality. A similar

technique could be used for Quality First Fit with Ordering (Q-FFwO). The com-
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plexity of these algorithms is higher though, as up to w calls to estimate the Q-factor

are required. Some networks may not have the ability of information to make this

calculation.

There are several other wavelength assignment algorithms: Least Used, Most

Used, Min Product, Least Loaded, Max Sum [34], and Relative Capacity Loss [35].

Most Used outperforms Least Used significantly, and slightly outperforms First Fit

[35]. Min Product, Least Loaded, Max Sum, and Relative Capacity Loss all try

to choose a wavelength that minimizes the probability that future requests will be

blocked.

A significant disadvantage of these algorithms is that they require a significant

communication and computation overhead, making them practical only in a central-

ized SLE situation. DLE networks typically use First Fit.

3.8 Joint Routing and Wavelength Assignment

An alternate approach to selecting a route and wavelength separately is to consider

them jointly. These approaches tend to be more theoretical and not very practical.

As this is a NP-complete problem, any exact solution is likely not possible. The ap-

proximation techniques usually are not very useful either, as they require centralized

control and, usually, predefined traffic demands. One joint approach, using multi-

commodity flows, has already been referenced. Two additional joint approaches are

ILP formulation and Island Hopping.

The ILP formulation listed previously in this chapter can be solved using a tra-

ditional ILP solver. This is typically done by temporarily relaxing the integer con-

straints, solving the problem optimally, and converting the real solution to an integer
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solution. Additional constraints can be added and the process is repeated indefinitely

using a branch and bound approach.

Another approach presented in [36] is called Island Hopping and Path Coloring.

This paper does not attempt to solve RWA but gives solutions for two related prob-

lems: fiber minimization (MinFib) and hop minimization (MinHop).

It is often the case that multiple fibers exist between two optical nodes, but only

a subset of the fibers are actually in use. This is due to economics: the cost of

laying each additional fiber after the first is minimal, but the cost of deploying the

electronics necessary for each fiber is high. The goal of MinFib is thus to minimize

the total number of fibers required to meet a traffic demand. MinFib has only limited

applicability to RWA.

Optical switches are categorized by a degree which measures their ability to switch

optical signals [37]. If the degree of the switch is too low, then an OEO conversion is

required for some connections. MinHop is an algorithm that segregates the network

into transparent islands. Each transparent island can switch optical signals without

an OEO conversion, but each hop between islands would require an OEO conversion.

The goal of MinHop is to minimize the number of hops, i.e. OEO conversions.

In [36], several proofs are given to show the complexity of MinHop using a graph

theory approach. While it is trivial to O(n) approximate MinHop, it is difficult

to do much better. With the increasing degree of optical switches, this problem is

becoming less important. Future networks will have full switching capabilities, so

OEO conversions will not be necessary. [37]
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CHAPTER 4

RAPTOR

RAPTOR (Route Assignment Program for Transparent Optical Routes) is a

custom-built, discrete-event, transparent optical network simulator. RAPTOR is

physically aware and capable of modeling large optical networks with up to 1000

wavelengths. There are roughly 11,000 lines of source code.

This Chapter discusses RAPTOR in detail. First, we discuss the necessity of

RAPTOR. The next section presents the Physically Aware Modules. The following

section discusses the simulation architecture and important classes of RAPTOR. The

next section presents the configurable inputs of RAPTOR. The final section presents

some results from RAPTOR, as an example of its capabilities.

4.1 Motivation Behind RAPTOR

There is a need for a software tool capable of modeling and simulating physically

aware transparent optical networks to determine the performance of existing RWA

algorithms. There are many optical network simulation tools available, but none of

them met our needs completely.

SIMON is a physically aware optical network simulator presented in [38]. SIMON’s

quality estimation modules are very simple, focusing only on noise introduced by

optical switches. The paper is vague in general and provides no presentation of results

or conclusions from SIMON. The paper does not appear to be cited by another paper.

Many of the general network simulation software tools, such as Opnet and ns2,

do not support optical networks well, if at all. The few simulators that are physically

aware, such as PhotoSS and OptSim, are only capable of modeling tiny networks with
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point-to-point links. None of these software packages are capable of modeling large

scale physically aware transparent optical networks.

To make matters worse, these tools are (except for ns2 and SIMON) very expen-

sive. Little support is provided for extending the packages to suit one’s needs. As we

are interested in adding new statistics to complete an extensive performance analysis

of existing RWA algorithms, it became clear that we needed to write the software

package ourselves. RAPTOR is an integral part of the research presented in this

dissertation.

4.2 Physically Aware Modules

RAPTOR currently models three physical effects: Amplified Spontaneous Emis-

sion (ASE), Four Wave Mixing (FWM), and Cross Phase Modulation (XPM). ASE,

FWM, and XPM are considered because they have the most significant influence on

signal quality. [21] These modules are a key advantage of RAPTOR as they allow for

a realistic modeling of a transparent optical network where the effects of the dominant

physical impairments can be observed. Each of the models are described in detail in

this section.

Extensive analysis and simulation in [4] has shown that the modules presented

here present an accurate estimation of both FWM and XPM. I modified the code for

optimization purposes, but took great care to ensure that the accuracy of the modules

was not effected.

Both the XPM and FWM modules assume the usage of NZDSF (Non-Zero-

Dispersion Shifted Fiber) and DCF (Dispersion Compensating Fiber) to compensate

for dispersion. The DCF portion of the fiber is omitted from the XPM and FWM
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calculations, as the nonlinear effects in DCF were shown to be negligible in [39] due

to the large attenuation in the preceding NZDSF.

Both FWM and XPM use a nonlinear sliding window to limit the complexity of

the calculation. In other words, active channels outside of the nonlinear window are

not considered. If the window size is large enough, this assumption has little effect

on the results as the nearer active channels dominate the total noise contribution.

A typical value for the window size is 40 channels, 20 on each side of the center

frequency. With a 50 GHz channel spacing, this represents a windows size of 2 THz.

If the channel spacing is decreased, the window size should be increased.

4.2.1 Amplified Spontaneous Emission

The noise from Amplified Spontaneous Emission (ASE) is often a dominant factor

in the signal quality. [2] An input parameter specifies the amount of noise that each

amplifier contributes. The simple calculation below is used to calculate the ASE noise

on frequency f for an end-to-end path.

�2
ASE = NumberOfAmps ∗ ASEPerAmp(f) (4.1)

The ASEPerAmp can be computed using Equation 4.2

ASEPerAmp(f) = 2PcℎFnℎf(G− 1)Bo (4.2)

where Pcℎ is the channel power, Fn is the EDFA noise figure, ℎ is Planck’s constant,

fc is the channel frequency, G is the EDFA gain, and Bo is the optical bandwidth of

the channel.

The values of ASEPerAmp for each frequency are computed once at program

initialization and stored in an array to avoid repeating the same calculation.
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Figure 4.1: Active Coherent Segments [4]

4.2.2 Cross Phase Modulation

The first step in computing the end-to-end Cross Phase Modulation (XPM) is the

division of the lightpath into active coℎerent segments. An active coherent segment

is a portion of the lightpath which is active using the same connection. For example,

in Figure 4.1, Link 1 forms one active coherent segment, while Links 2 and 3 together

form a second active coherent segment.

Note that the active coherent segment is a function of the center wavelength (�c)

and an active wavelength inside the nonlinear sliding window (�1). The nonlinear

sliding window is necessary to bound the complexity of the nonlinear computations

for optical networks with a high degree of WDM. In practice, this has little impact

upon the results if the window size is large enough since the nearest channels are the

biggest contributors of noise.

Once the end-to-end path is divided into active coherent segments for each of the

wavelengths inside of the window, the FWM can be calculated using Equation 4.3.

�2
XPM =

∑
fi∈W (fc)

ACS∑
�

XPMterm(spans(�), fc, fi) (4.3)
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In Equation 4.3, fi is a channel inside the nonlinear sliding window of fc that when

active will cause XPM on fc. � is an active coherent segment which has a length of

spans(�).

The XPMterm calculation is taken from [4]. The noise due to XPM can be

calculated by Equation 4.4

�2
XPMterm =

1

2�

∑
j∈pumps

∫ ∞
−∞
∣Hi(w)∣2PSDi(w)dw (4.4)

where PSDi(w) is the power spectrum density and Hi(w) is the XPM transfer func-

tion of the channel i. The details of both functions can be found in [4].

The XPM calculations require integration and are computationally expensive. For

this reason, the XPM calculations are computed once at program initialization and

stored in a matrix. The XPMterm function is implemented in Matlab, which is

compiled into a dynamic library and called from RAPTOR.

4.2.3 Four Wave Mixing

The first step in computing Four Wave Mixing (FWM) is to precompute the

combinations of wavelengths that will cause FWM. This is done once as the program

is initialized and the results are stored in a list to avoid repeating the same calculation.

To calculate the FWM for a given path, the list of combinations is checked. If

all of the wavelengths in a particular combination are active, the path is divided

into active coherent segments. FWMterm() is then called for each active coherent

segment.

�2
FWM =

FWM∑
fi,fj ,fk∈W (fc)

ACS∑
�

FWMterm(spans(�), fc, fi, fj, fk) (4.5)
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In Equation 4.5, fi, fj, and fk represent a combination of channels inside the

nonlinear sliding window of fc, that when active, will cause FWM on fc. � is an

active coherent segment which has a length of spans(�).

The FWMterm description is taken from [4]. The power of the FWM noise gen-

erated is

�2
FWMterm = ∣
 d

3
Am(0)An(0)A∗p(0)Leff ∣2∣

N∑
n=1

ej(k−1)(�m+�n−�p−�c)∣2 (4.6)

where d is the degeneracy factor and Am, An, and Ap are the complex amplitudes of

fi, fj, and fk respectively. Leff is calculated using Equation 4.7.

Leff =
e(jΔKc−�)z − 1

jΔKc − �
(4.7)

ΔKc is computed using Equation 4.8,

ΔKc = 2�
�2
c

c
(fm − fc)(fn − fc)[D −

�2
c

c
(
fm + fn

2
− fc)S] (4.8)

where D and S are the dispersion parameter and dispersion slope of the fiber.

In Equation 4.6, ∣
 d
3
Am(0)An(0)A∗p(0)Leff ∣2 is the power of the FWM noise gen-

erated by one span and ∣
N∑
n=1

ej(k−1)(�m+�n−�p−�c)∣2, the link factor, manifests the

accumulation of noise along the entire link.

The link factor can be rewritten as ∣1−ejNΔ�

1−ejΔ� ∣
2. The Δ� term is computed using

Equation 4.9.

Δ� = 2�
�2
c

c
(fm − fc)(fn − fc)[−

�2
c

c
(
fm + fn

2
− fc)(SNZDSFLNZDSF + SDCFLDCF )]

(4.9)

The FWM calculations represent a significant portion of RAPTOR’s running time

(between 5% and 15%). The combinatorial explosion of FWM possibilities makes it

difficult to store the results as we did for XPM. Thus, each time the Q-factor is

recalculated, the FWM noise is also recalculated.



45

4.2.4 Q-Factor

One simplifying assumption is that the impairments are independent. In other

words, we assume that:

�2
total = �2

ASE + �2
FWM + �2

XPM (4.10)

RAPTOR uses the total noise to calculate the Q-factor using Equation 4.11.

Q = 10 log10

P

�total
(4.11)

RAPTOR uses the Q-factor to measure quality thresholds and connection quality.

4.3 Simulation Architecture

RAPTOR (Routing Assignment Program for Transparent Optical Routes) is a

custom-built, C++ discrete-event optical network simulator. There are approxi-

mately 11,000 lines of source code. RAPTOR works on both the Windows and Linux

platforms.

The heart of RAPTOR consists of a priority queue of events. The priority queue

ensures that events are handled in the correct order. When a workstation is activated,

it generates Connection Requests. Connections are then setup using the Create Con-

nection Probes and Create Connection Confirmations, while they are destroyed using

the Destroy Connection Probe. RAPTOR’s implementation of a priority queue is

called the EventQueue.

RAPTOR currently simulates the following RWA algorithms: DP-RWA, ACO-

RWA,ℳℳ-ACO-RWA, IA-BF, IA-FF, LORA, PABR, SP, QA SP, AQoS, and QM.

DP-RWA is presented in Chapter 5. ACO-RWA and ℳℳ-ACO-RWA are discussed

in Chapter 6. The user can choose to simulate any subset of the algorithms at one
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time. The program is flexible so additional algorithms can easily be added in the

future.

The distribution of the workstations, and thus the traffic, can be uniform, random

with a uniform distribution, or user-specified. The distribution of each connection

request’s destination can be uniform, distance weighted, or inverse distance weighted.

The number of wavelengths per fiber is also configurable. RAPTOR is fast enough

to allow simulations of up to 1000 wavelengths per fiber. The methodology for cal-

culating noise due to impairments is described in the previous Section.

RAPTOR can be run as either a console application or with a graphical interface

(GUI). The GUI has proven to be an effective tool in analyzing algorithms and looking

for improvements.

As with any C++ application, RAPTOR begins with a function call to Main. This

function only serves two purposes: 1) generate a schedule of tasks and 2) manage the

schedule of tasks. The second goal is accomplished by tasking an instance of the

Thread class with a specific task, starting a chain of events. The Thread class, along

with the other important classes of RAPTOR, are described in the following sections.

4.3.1 Thread Class

RAPTOR creates p threads, where p is an input parameter. The purpose of each

Thread is to independently complete a task from the schedule. A task is simply a

specified Routing Algorithm, Wavelength Assignment Algorithm, Probe Style (Single,

Serial, or Parallel), and Offered Load. The Threads run simultaneously through the

usage of the POSIX threads library.

A pointer to each Thread is stored in a dynamically sized array. The first Thread

instance is the Main Tℎread. The Main Thread has access to the Network Topology

through the Router, Edge, and Workstation classes, as well as the ResourceManager,
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Figure 4.2: RAPTOR Parallel Architecture
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EventQueue, and Message Logger classes. Each of these classes is discussed in detail

in the following sections.

If p > 1, RAPTOR will create p − 1 Minor Tℎreads. Each Minor Thread has

its own Network Topology and EventQueue. However, it uses the ResourceManager

and MessageLogger from the Main Thread to avoid unnecessary instances of those

classes. The parallel architecture of RAPTOR is shown in Figure 4.2.

Table 4.1 shows the speedup factor with various numbers of threads. The number

of threads was cut off at 8 as the simulation was run on an 8 core machine. Further

multi-threading gains could likely be achieved on a machine with additional cores,

but we could not find such a machine.

Once a Thread is initialized with a task, the Thread runs by removing an Event

from the EventQueue and handling it. Each Event has its own function associated

with it, which in turn, usually generates more Events. For example, the Connection-

RequestEvent will likely create a CreateConnectionProbeEvent. The Thread runs

until all of the Events have been processed.
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Table 4.1: RAPTOR Parallel Performance

Threads Total Run Time (sec) Speedup
1 2290.7 1.000
2 1187.7 1.929
3 827.3 2.769
4 667.0 3.434
5 553.0 4.142
6 494.0 4.637
7 443.0 5.171
8 398.0 5.756

4.3.2 ResourceManager Class

ResourceManager has three main functions: 1) compute the signal quality, 2)

compute a path from a source to a destination, and 3) run the appropriate Wavelength

Assignment algorithm. The signal quality calculation has already been presented in

detail, so this section will focus on the last two functions.

All of the Routing Algorithms presented thus far (SP, QA SP, LORA, PABR,

IA, QM, AQoS) are implemented using a standard k-shortest path calculation. If

k, the number of probes, is equal to one, Dijkstra’a Algorithm is used. For cases

where k > 1, Yen’s Algorithm is used. [28] The running time of Yen’s Algorithm is

O(kn(m+ n log n)) where m is the number of edges, n is the number of routers, and

k is the number of paths. This is a factor of kn times slower than Dijkstra’s running

time, O(m+ n log n).

DP-RWA, ACO-RWA, and ℳℳ-ACO-RWA, which will be presented later, do

not use a shortest path algorithm to calculate the route.

PABR is unique as it places an additional constraint that keeps the number of

EDFAs in a path below a threshold. Such paths can be found by incrementally
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increasing k until enough satisfactory paths have been found. Another approach

would be to use Dynamic Programming.

The Wavelength Assignment algorithms are also implemented in ResourceMan-

ager. Each algorithm takes a list of candidate wavelengths and selects one of them.

The implementation of each algorithm is straight-forward, so the code description has

been omitted.

4.3.3 EventQueue Class

The EventQueue is used to store Events. Each Thread has its own EventQueue.

The EventQueue contains an instance of the C++ Standard Template Library (STL)

priority queue. The priority queue stores its elements in a partial ordering, such

that the first element is always the highest (a max priority queue) or lowest (a min

priority queue).

Each Event has a time property that specifies exactly when the Event should

occur. The EventQueue is a min priority queue, so the first element always has the

lowest time. This requires the < operator for the Event structure to be overwritten.

This ordering allows events to be processed in the correct order.

The STL implementation of priority queue uses a balanced binary search tree.

This allows both insertions and deletions to run in just O(log n) time.

4.3.4 MessageLogger Class

The MessageLogger is used to write Events to a log file. One log file is sufficient

for all of the Threads, so there is only one instance of the MessageLogger. The system

time, and thread index are written to the log file along with the Event information.

There are two options for the log file: 1) standard and 2) detailed. The standard

log file only writes the final statistics to the log file (blocking probability, average
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quality, etc). This is sufficient in most cases. The detailed log file will record the

setup and destruction of connections, along with path and quality information. This

is useful for debugging purposes.

4.3.5 Router Class

The Router class stores pointers to its adjacent Edges. While the term Router

is used for convenience, a more accurate term is an Optical Switch. Router provides

an interface to access the edges via their destination or their index. This interface is

used to periodically update the Edge usage (for PABR and LORA), QM Degradation

(for AQoS and QM), and the Q-factor stats (if the Q-factor stats flag is set).

The Router class also processes the probe messages that are used to setup and de-

stroy connections. This involves forwarding probe messages toward their destination

Router and processing the probe message when it arrives at the destination.

4.3.6 Edge Class

The Edge class is used mainly as a container to store information about the

Edges. This includes the information about the physical Edge, such as the source

router, destination router, and the number of spans. This also includes an array with

the current status information (EDGE FREE or EDGE USED).

The Edge class also contains the source code used to update the Edge usage (for

PABR and LORA), QM Degradation (for AQoS and QM), and the Q-factor stats (if

the Q-factor stats flag is set).

4.3.7 Workstation Class

The Workstation class is used solely to generate traffic on the network, when the

Workstation is active. Each Workstation is attached to a parent Router.
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Figure 4.3: RAPTOR Screen Shot

4.3.8 GUI

RAPTOR has an optional graphical user interface (GUI). The GUI was developed

primarily by Andrew Albers, an undergraduate student in the Computer Science

Department at Montana State University.

The GUI requires the usage of the Allegro library. Precompiler directives (#ifdef

RUN GUI and #endif) were added around the GUI specific portions. This allows

the user to choose between running the GUI version and the Console version. The

directives also remove the GUI overhead from the Console version.

The GUI version provides a couple additional features. First, as the simulation

is running progress bars appear for each Thread. This can be convenient for large
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simulations which take days to run. The GUI version also tracks some additional

usage information, that is stored in a text file. This file can then be used to review

the simulation. An example of this is given in Figure 4.3.

The optical links are color coded based upon their utilization, from green (low

utilization) to red (high utilization). In Figure 4.3, the interior links each have

high utilization rates, serving as a bottleneck preventing new connections from being

added. The visualization of hot spots in the network improve our understanding of

RWA algorithms.

The GUI also has a temporal aspect to it. There is a graph at the bottom the

GUI that is used to show the link utilization of a particular edge over time. From the

example given, we can conclude that the traffic increased from zero very suddenly,

remained roughly constant, and then tailed off at the end of the simulation.

There is also a topology builder, that can be used to view, build, and modify

network topologies.

One drawback is that the GUI version takes roughly 35% longer to run than the

console version.

4.4 Simulation Inputs

The user can configure RAPTOR through various input parameters. The impor-

tant parameters are discussed in this section.

4.4.1 Algorithm Parameters

The Algorithms parameters file specifies which algorithms to run. Each line in

the file should have the following structure: ”RA=a,WA=b,PS=c,QA=d,RUN=e”.
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a specifies the Routing Algorithm (SP, LORA, PABR, QM, AQoS, IA, DP-RWA,

ACO-RWA, ℳℳ-ACO-RWA). b specifies the Wavelength Algorithm (FF, FFwO,

BF, RP, Q-FF, Q-FFwO, Q-RP, LQ, MQ). In general, any combination of RA and

WA can be specified. There are two exceptions, in that IA must have either FF or

BF as a WA and BF can only be used with IA.

c specifies the probe style (SINGLE, SERIAL, PARALLEL). d specifies whether

the algorithm is quality aware (0 for false or 1 for true). A quality aware algorithm will

estimate connection quality at setup and block connections with insufficient quality.

This is meaningful only for non quality aware wavelength algorithms (FF, FFwO, BF,

RP) as the quality aware wavelength algorithms require testing the signal quality (Q-

FF, Q-FFwO, Q-RP, LQ, MQ).

e specifies whether the algorithm should be scheduled or ignored. (0 for ignored, 1

for scheduled). It may be useful to turn certain lines of the input file off for debugging

purposes. While this can be accomplished by deleting the line entirely, often keeping

the line and just ignoring it is more convenient.

Unless otherwise specified, the Quality First Fit (Q-FF) wavelength algorithm is

used for the physically aware algorithms while First Fit (FF) is used for the non

physically aware algorithms. The maximum number of probes per connection request

is set to 4.

4.4.2 Topology Parameters

The Topology parameters file specifies the network topology to simulate. The file

is divided into two segments, a Router section and an Edge section.

The Router section must be placed in the file first. While the term Router is

used for convenience, a more accurate description is an Optical Switch. Each Router

is specified on a single line using the syntax ”Router=x,y”, where x and y are the
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Figure 4.4: NSF Network Topology

coordinates of the Router. The coordinates are used only for the GUI’s display of the

routers.

The Edge section is placed after the Router section. Each Edge is specified on a

single line using the syntax ”Edge=r1,r2,s”, where r1 and r2 are Router indexes and

s is the number of spans (EDFAs). All edges are assumed to be bidirectional, so both

Edges r1→ r2 and r2→ r1 are created.

There are many common network topologies implemented in RAPTOR. The NSF

network topology is given in Figure 4.4. The NSF network is a 16 node, 25 edge

network. One drawback of the NSF network is the lack of connectivity between

the edges. This reduces the viability of alternate paths, making it difficult to route

requests away from congested areas in the network.

The UC Davis Mesh network topology was first proposed in [32]. The UC Davis

Mesh network topology is given in Figure 4.5. For simplicity, the network will be

named the Mesh network. This is a 24 node, 43 edge network. The Mesh network

has a higher degree of connectivity.
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Figure 4.5: UC Davis Mesh Network Topology

Other network topologies include a standard x-x Mesh. RAPTOR has been tested

with 6x6, 8x8, and 10x10 Mesh files.

4.4.3 Quality Parameters

All of the Quality parameters are included in Table 4.2. The arrival interval and

duration specify the traffic load. Since arrival interval = duration, each workstation

adds 1 Erlang of offered load on average. To adjust the traffic load, the user can

either add workstations or adjust the arrival interval and duration parameters.

Note that both the nonlinear sliding window size W and the number of wave-

lengths (�) parameters specify just half of the size of the window and number of

wavelengths. The size of the nonlinear window is actually 2W , or W channels on

each side of the channel under consideration. The number of wavelengths is actually

2�+ 1, in other words, � channels on each side of the center frequency.

The Q-factor factor f is used to calculate the threshold of acceptable quality.

Upon initialization, RAPTOR calculates the maximum-minimum distance between

routers in spans. This distance is used to calculate the ASE noise of that distance,
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Table 4.2: Quality Parameters

Quality Parameter Value Description

arrival interval 250 seconds Mean inter arrival time for each connection
duration 250 seconds Mean duration time for each connection

nonlinear halfwin 20 channels Half of the nonlinear sliding window size
halfwavelenth 10 - 640 Half of the total number of wavelengths

fc 193.1 THz Frequency of the center channel
f step 50 GHz Frequency spacing between channels

channel power 1 mW Power per channel
NZDSF L 80 km Length of each NZDSF fiber span

NZDSF alphaDB 0.25 dB/km Attenuation of the NZDSF
NZDSF D 4 ps/(km*nm) Dispersion coefficient of the NZDSF
NZDSF S 0.08 ps/km*nm2) Dispersion slope of the NZDSF
NZDSF 
 2 1/(km*W) Nonlinear coefficient of NZDSF

Q-factor factor 0.95 Used to calculate the Q-factor threshold
ASEPerEDFA 8e-10 W ASE noise per EDFA
usage update 0.0625 - 4 seconds Interval between usage updates
gui update 6 seconds Interval between GUI updates

� 1.1 - 1.2 Parameter for PABR
refractive index 1.5 Refractive Index of the optical links
q factor stats 0 or 1 Track connection quality (1=yes, 0=no)
detailed log 0 or 1 Keep a detailed log (1=yes, 0=no)

and then the Q-factor Q, assuming no nonlinear impairments. The Q-factor threshold

is set to Qf . Values of f below 1 increase the viability of alternate paths by lowering

the Q-factor threshold.

4.4.4 Other Parameters

Some parameters are passed to RAPTOR via the command line. These parame-

ters are not included in an input file as they are frequently changed. Leaving them

as command line parameters allows scripts to run RAPTOR with a minimal number

of input files.

The first two command line arguments are the network topology and wavelengths

per fiber. The following network topologies are supported: NSF, Mesh, Mesh6x6,

Mesh8x8, and Mesh10x10. The following numbers are valid for the number of wave-
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lengths per fiber: 21, 41, 81, 161, 321, 641, 1281. The user can create a custom

network topology if desired.

The next command line parameter is the random seed. This number is used to

seed the random number generator for the destination router of connections, the

duration of connections, and the arrival interval of connections. This allows a user to

run several random seeds, usually for the purpose of averaging the results.

The fourth command line parameter is the number of iterations. In most cases

each RWA algorithm is run several times with varying levels of traffic demands to

produce a graph. The number of intervals is typically set to 10, to allow for 10 data

points per algorithm.

The final command line parameter is the maximum number of probes. This is used

only for the multi-probing algorithms which will attempt up to p probes in either a

parallel or serial fashion. Typical values for p are between 2 and 8.

4.5 Simulation Outputs

RAPTOR outputs many metrics which can be used to evaluate the performance

of RWA algorithms. Overall blocking probability is the percentage of connections

that are denied. There are 3 types of blocking: collision blocking, resource blocking,

and quality blocking. Overall blocking is the sum of the 3 types.

Collision blocking occurs in a distributed algorithm where two different connec-

tion requests attempt to utilize the same resource. Resource blocking occurs when

an RWA algorithm is unable to find a free route and wavelength. Quality blocking

occurs in a physically aware algorithm when a path and wavelength are free, but they

have insufficient signal quality.
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RAPTOR also outputs the average number of probes per connection request and

the average request delay time. In a centralized algorithm, the probes per request

will always be 1. The request delay time is the time elapsed between the message

sent to the network controller and the response.

In distributed algorithms, probe messages are required to ensure the path selected

is actually available. Single probing algorithms will attempt only one path, while

multi-probing algorithms will attempt multiple paths. The paths can be attempted

in a serial or parallel style. The request delay time is the time elapsed between sending

the first probe message and receiving the final probe response.

Many statistics are tracked for connections that are successfully setup. RAPTOR

outputs the average path length, in terms of both hops (optical switches) and spans

(EDFAs). The average amount of ASE, FWM, and XPM per connection at the time

of setup is also tracked. These three metrics are unique to RAPTOR.

The user can opt to allow connection quality stats as well. This can be compu-

tationally expensive, especially as the number of wavelengths per fiber increases. If

this option is enabled, the quality of a connection is tracked over its duration. Each

time a connection c is added or dropped on the network, the quality of all connections

using at least one of the edges in c is recomputed.

This allows RAPTOR to output several important performance metrics. The

Average Q Factor is defined as the average of the average Q factor over time for

each of the successful connections. The Percent T ime Below Tℎresℎold is the av-

erage time a connection spends below the quality threshold. While physically aware

algorithms test the quality threshold as connections are setup, as additional connec-

tions are added the signal quality can drop below the threshold. Both the Average Q

Factor and Percent Time Below Threshold are unique to RAPTOR.
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Figure 4.6: Overall Blocking - RAPTOR
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RAPTOR also computes the time spent computing the path and selecting a wave-

length. For applications where network delay is important or connection requests have

a short duration, this is an important metric.

4.6 Simulation Results

To demonstrate the capabilities of RAPTOR, we consider the Mesh network. All

edges are assumed to be bi-directional and have a capacity of 81 wavelengths. The

QA SP, PABR, AQoS, and IA-BF algorithms are considered.

All of the results presented here are the average of 5 random seeds: 12210, 24239,

38979, 50877, and 54075.

The Overall Blocking probability is shown in Figure 4.6. SP has the worst per-

formance in terms of blocking probability, as SP is limited to using the same fixed

route for all connection requests. IA-BF outperforms PABR and AQoS, exploiting its

knowledge of the complete state of the network. PABR, despite being a completed

distributed algorithm, outperforms AQoS, which requires centralization.
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Figure 4.7: Quality Blocking - RAPTOR

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

Offered Load (Erlangs)

B
lo

ck
in

g 
P

ro
ba

bi
lit

y

 

 

QA SP
IA−BF
PABR
AQoS

Figure 4.8: Resource Blocking - RAPTOR
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Figure 4.9: Connection Length - RAPTOR
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The Quality Blocking probability is shown in Figure 4.7 and the Resource Blocking

probability is shown in Figure 4.8. IA-BF is able to use its centralized knowledge to

find a path and wavelength nearly all of the time, however, this leads to the dominance

of Quality blocking. For PABR and AQoS, Quality blocking and Resource blocking

are comparable. QA SP has a high amount of resource blocking due to its fixed path

constraint.

The average accepted connection length, shown in Figure 4.9, initially increases

for all of the algorithms and then decreases sharply. As the traffic load increases,

for a limited range of offered load, all of the RWA algorithms are able to choose

a slightly lower alternate path. However, as the load increases further the longer

paths are blocked due to increasing ASE, FWM, and XPM. Connections requiring

a shorter path have a higher probability of being accepted, and thus the average

accepted connection length decreases.

The average connection quality, shown in Figure 4.10 has the inverse relationship.

As the average path length increases, the average connection quality decreases. This

is due largely to the dominance of ASE noise.
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Figure 4.10: Connection Quality - RAPTOR
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Figure 4.11: Connection Time Below Threshold - RAPTOR
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Figure 4.12: FWM Noise - RAPTOR
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Physically aware algorithms (QA SP, IA-BF, PABR, and AQoS) all block con-

nections with insufficient signal quality at the time that the connection request is

initiated. A connection request with adequate quality will be affected by subsequent

connections. Existing connection quality can decrease below the threshold when ad-

ditional connections are added. The average percent time below threshold is shown

in Figure 4.11.

QA SP has the lowest average time below threshold, a result of shorter connection

lengths and a higher blocking probability. PABR has the longest path length and the

largest time below the threshold. Longer paths have more noise due to ASE, FWM,

and XPM, increasing the likelihood of the quality falling below the threshold.

Figures 4.12 and 4.13 show the amount of FWM and XPM for accepted connec-

tions. The FWM contribution is higher than the XPM on average, however, there

are certainly individual cases where XPM dominates FWM. The dominant noise

contributor is ASE.

RAPTOR has been shown to be a powerful tool capable of modeling large scale

transparent optical networks. RAPTOR models three of the dominant physical im-

pairments (ASE, FWM, and XPM). RAPTOR is fast and flexible. It includes new
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Figure 4.13: XPM Noise - RAPTOR
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performance metrics. While there are other network simulation tools available, only

RAPTOR meets our needs.

Without this software package, it would be impossible to perform a detailed per-

formance evaluation of existing RWA algorithms. The ability to develop and compare

new and improved RWA algorithms would also be significantly more difficult. RAP-

TOR is an integral part of the research presented in this discussion.
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CHAPTER 5

DYNAMIC PROGRAMMING - ROUTING AND WAVELENGTH ASSIGNMENT

Current RWA algorithms are unable to meet the needs of future transparent op-

tical networks, with dynamic traffic demands and end-to-end optical transmission.

Current algorithms yield a high level of blocking, do not scale well to large networks,

and do not consider nonlinear impairments. We present a new algorithm based upon

dynamic programming that addresses these shortcomings. We show through theory

and simulation that our algorithm scales well to large networks. We show through

simulation that our algorithm yields the lowest blocking probability in a variety of

simulations. It is flexible and can adapt to situations where either linear or nonlinear

impairments dominate.

Our findings have been submitted for publication. A conference version of the

paper [40] is waiting to be accepted.

5.1 Dynamic Programming RWA

Our new RWA algorithm is named Dynamic Programming - RWA (DP-RWA or

DP). The technique is based upon the dynamic programming paradigm. The light

path is recursively computed in a bottom-up fashion. Note the optimal sub-structure

property does not always hold for RWA, so this is not a true dynamic programming

approach.

Each node n on the network stores a list of candidate paths, Pn. Each list contains

a maximum of k paths. Each item on the list must store the path, path weight, optimal

wavelength, and a list of available wavelengths.
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INPUT: Connection request from s to t, G = (V , E)

Repeat until no candidate path changes

For all e ∈ E
DP-Relax(e)

Algorithm 5.8: Dynamic Programing - RWA (DP-RWA)

INPUT: Edge e = (u, v)

For all p ∈ Pu

1. � = p ∪ e
2. Generate a list of wavelengths that are available on �. Let Λ be the set of

available wavelengths.

3. Compute the path weight of all wavelengths in Λ and let � be the wave-
length with optimal path weight.

4. Remove all wavelengths from Λ with insufficient quality.

5. If Weight(�) > Weight(Pv,k) for any k

Insert � into Pv.

Algorithm 5.9: DP-Relax
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DP-RWA operates by repeatedly calling DP-relax. Each iteration of calling DP-

relax for all of the edges is called a phase. DP-RWA terminates after none of the

candidate paths change in a phase.

DP-relax iterates over the candidate lightpaths in the head of the edge (Pu). Each

path is extended by an edge and compared against the worst path in the tail of the

edge (Pv). If the new path is better, it is inserted into the candidate light path.

The weight of path p is calculated using Equation 5.1. � is a parameter in the

range of 0 ≤ � ≤ 1 used to bias the weight toward the best quality (� = 0) or the

shortest path with acceptable quality (� = 1). Qp is the quality of path p and lp is

the length in EDFAs of path p.

Wp = (1− �)
Qp

Q̄p

+ �
lp
l̄p

(5.1)

Q̄p and l̄p represent estimates of the path quality and path length. l̄p is typically

the average of the shortest path and the diameter of the network. Q̄p is usually the

quality factor after l̄p EDFAs, assuming zero nonlinear impairments.

A pruning technique can be used to limit the candidate path search space. There

is a fixed level of ASE noise that any path will always add to a connection based upon

the number of EDFAs. When considering any path, we can ignore any path where

the noise on the path plus the ASE noise on the optimal shortest path to the actual

destination is unacceptable.

A chief advantage of DP-RWA is the combination of route selection and wavelength

selection in a single step. Each candidate path stores the wavelength with the greatest

path weight. Thus, when the path computation is complete, the k shortest paths

with the optimal wavelength are returned. As the degree of wavelength division

multiplexing increases, this advantage becomes even more significant.
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Figure 5.1: Example of Dijkstra Failure
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Another advantage of DP-RWA is the incorporation of nonlinear impairments

into path selection. Paths with an unacceptable level of noise are pruned from the

search space, freeing the algorithm to find alternate routes. As nonlinear impairments

become more significant in the future with higher degrees of WDM, this advantage

will become even more significant.

Our approach is similar to the Bellman-Ford Algorithm, which relaxes the edges

of the graph. We can not use an approach based upon Dijkstra’s Algorithm, which

relaxes the nodes of the graph. Dijkstra’s Algorithm visits each node exactly one

time. If DP-RWA used this approach, many paths would never be discovered, even

with infinite path queues. An example is given in Figure 5.1.

Consider a connection request from s to t. Dijkstra’s Algorithm would visit node

i and then node j. At this point, node j would contain the candidate path (s, i, j).

Node k would be visited next and contain the candidate path (s, k). Node t is visited

last. Due to the wavelength continuity constraint, the path (s, i, j, t) is not valid.

Thus, a Dijkstra based search would not discover a path.

A path does exist (s, k, j, t) with a free wavelength. This path is not discovered

by Dijkstra because node k is visited after node j. A Bellman-Ford approach would

discover this path after a maximum of 3 phases.
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5.1.1 Computational Complexity

There are two ways to compare the computational requirements of DP-RWA. The

theoretical analysis is presented here and the experimental results are presented later.

Lemma 1. After the pth phase, all paths less than or equal to p in length will not

change. In future phases, only paths greater than p will be created.

Proof. The proof is by induction on the number of phases completed. Upon comple-

tion of phase 1, all edges of the form (s, u) will have been relaxed to create paths of

length 1 from s. If an edge (s, u) is relaxed again in a subsequent phase, the path

(s, u) will already belong to u’s queue (or have been displaced by a path of higher

quality). In either case, (s, u) will not create a new path. By the inductive hypothesis,

after phase p − 1, all paths of length p − 1 will have been created (and will not be

recreated in a subsequent phase). So, by the end of phase p all possible paths of

length p will have been created. It follows that after phase p, any new path created

must have a length greater than p.

Theorem 2. DP-RWA runs in O(V EQ) time, where V is the number of verticies,

E is the number of edges, and Q is the maximum queue length.

Proof. At phase p, no paths of lengths less than p will be created (see Lemma 1). We

are interested only in simple paths, so the maximum number of phases is V - 1. Each

phase calls DP-relax E times, and each call to DP-relax takes O(Q) time. Thus, the

run time is O(V EQ).

In practice, DP-RWA offers good performance with a queue size of one. The

optimal values of Q vary based on the network. In our simulations, the optimal value

for the NSF network is 4 and the UC Davis Mesh network is 7.
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It should also be noted that DP-RWA is called just once per connection request,

independent of the number of wavelengths. If Λ is the number of wavelengths on the

network, IA-BF takes Λ calls to Dijkstra’s algorithm, or O(Λ(V 2 + E)) [41]. Thus,

DP-RWA scales much better than IA-BF to large networks.

PABR and AQoS both require a k shortest path library, as using a single path

leads to higher connection blocking. Yen’s Algorithm runs in O(KN(E + V log V )

[28], where K is the number of paths. Both algorithms also require time to update

the edge weights when a connection is added or dropped.

5.2 Simulation Setup

RAPTOR (Routing Assignment Program for Transparent Optical Routes) was

used to compare DP-RWA with existing RWA algorithms. RAPTOR is a custom

built C++ discrete event simulator. RAPTOR is capable of modeling linear (ASE)

and nonlinear impairments (FWM, XPM) in transparent optical networks.

To determine the performance of DP-RWA, three networks were used. The NSF

network is a small 15 node network with limited connectivity. The UC Davis Mesh is

a medium sized 24 node network with moderate connectivity. A standard 8x8 mesh

network is a large scale network with a high degree of connectivity.

Workstations were attached to each of the nodes. The number of active worksta-

tions, and thus network load, was then varied. Each active workstation generates one

Erlang of traffic.

Three scenarios were considered to determine the performance of DP-RWA across

a variety of network conditions. In the first scenario, ASE is the dominant impairment.

In the next scenario, the linear and nonlinear impairments are balanced and neither

dominate. In the final scenario, the nonlinear effects of XPM and FWM are the
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Table 5.1: Varied Simulation Parameters
Parameter ASE Dominant Balanced Nonlinear Dominant
Channel Power (mW) 1.0 1.5 2.0
NZDSF 
 ( 1

km∗W ) 2.6 2.75 2.9
EDFA Noise Figure (dB) 3.5 3.0 2.5
Minimum Q-factor 5.489 5.526 5.059

Table 5.2: Constant Simulation Parameters
Parameter Value
Arrival Interval (Mean) 250 seconds
Connection Duration (Mean) 250 seconds
Nonlinear Half Window 20 channels
Frequency Center 193.1 THz
Frequency Spacing 50 GHz
EDFA Spacing 80 km
NZDSF � 0.25 dB/km
NZDSF D 4 ps/(km*nm)
NZDSF S 0.08 ps/(km*nm2)

dominant impairments. The parameters listed in Table 5.1 each denote one of the

scenarios.

In all cases, the � value for DP-RWA was set to 1.0. There is a trade-off, lower

values of alpha lead to higher signal quality but also a higher blocking probability.

The parameters listed in Table 5.2 are held constant for all of the scenarios.

The PABR, AQoS, DP-RWA, and IA-BF algorithms are compared. These algo-

rithms were used as they represent the state of the art physically aware RWA algo-

rithms. PABR, and AQoS use parallel multi-probing with a maximum of 4 probes

per request. IA-BF and DP-RWA are centralized and thus do not use probes.
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Figure 5.2: Overall Blocking - DP-RWA on Mesh Network
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5.3 Results

This section presents the results for the DP-RWA algorithm. The UC Davis Mesh

network results are presented first, followed by the NSF network. The 8x8 Mesh

network results are presented last.

5.3.1 UC Davis Mesh Network

The results from the balanced scenario are presented in Figures 5.2 - 5.5. Figure

5.2 shows the overall blocking probability. DP-RWA blocks 3.7% fewer connections

than IA-BF. DP-RWA outperforms PABR by 10.7% and AQoS by 23.8%.

Figure 5.3 displays the average time of path computation for a connection request.

IA-BF has the highest time, growing linearly with the wavelengths. AQoS, PABR,

and DP-RWA grow much more slowly. DP-RWA grows due to the increased numbers

of wavelengths for which it has to track availability and quality. AQoS and PABR

grow due to the increased time spent updating the edge costs. At 161 wavelengths,

DP-RWA requires just 5.6% of the run time IA-BF. DP-RWA has the lowest run time.
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Figure 5.3: Run Time - DP-RWA on Mesh Network
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Figure 5.4: Connection Length - DP-RWA on Mesh Network
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DP-RWA’s search process prunes paths with an unacceptable signal quality, re-

sulting in paths that are slightly longer than the other algorithms. Figure 5.4 shows

the average connection length of accepted connections. The use of these longer paths

enabled DP-RWA to achieve the best overall blocking probabilities.

A side effect of longer paths and more active connections is lower signal quality,

displayed in Figure 5.5. IA-BF has an average Q-factor that is 0.3% greater than

DP-RWA. PABR and AQoS outperform DP-RWA by 1.7% and 1.9% respectively. It

should be noted that average connection quality is not a primary concern of RWA, the
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Figure 5.5: Connection Quality (threshold ≈ 5.526) - DP-RWA on Mesh Network
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Figure 5.6: Overall Blocking - ASE Dominant Scenario on Mesh
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objective is typically to maximize the number of active connections with an acceptable

level of quality. The thresholds for the minimum Q-factor are listed in Table 5.1.

The results from the ASE dominant simulation are presented in Figure 5.6. In

this scenario, the effects of ASE are roughly four times greater than the sum of the

FWM and XPM effects, on average. DP-RWA outperforms IA-BF, PABR, and AQoS

by 2.0%, 2.4%, and 10.7%, respectively.

The results from the nonlinear dominant simulation are presented in Figure 5.7.

In this scenario, the effects of FWM and XPM are roughly four times greater than
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Figure 5.7: Overall Blocking - Nonlinear Dominant Scenario on Mesh
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ASE noise, on average. DP-RWA outperforms IA-BF, PABR, and AQoS by 4.0%,

7.7%, and 20.3%, respectively.

In all 3 scenarios, DP-RWA has the lowest blocking probability. As the nonlinear

effects become more significant, the gap between DP-RWA and IA-BF (and the other

algorithms as well) grows larger. This is due to DP-RWA pruning paths where the

noise (both linear and nonlinear) is too high. IA-BF does not consider the nonlinear

effects in its path computation. As future networks will utilize an increasing number

of wavelengths, DP-RWA likely will perform even better when compared to IA-BF.

5.3.2 NSF Network

Simulations also were run on the NSF network topology. The diameter of the

NSF network is just 71 spans, smaller than the UC Davis Mesh network’s diameter

of 85 spans. For this reason, the Q factor thresholds are a little higher. The other

parameters were left unchanged from Table 5.2.

In terms of blocking probability, DP-RWA outperformed IA-BF by 1.9%. The

results are presented in Figure 5.8. DP-RWA outperformed AQoS by 7.3% and
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Figure 5.8: Overall Blocking - DP-RWA on NSF Network
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Figure 5.9: Run Time - DP-RWA on NSF Network
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PABR by 12.2%. DP-RWA’s ability to choose alternate paths was muted by the

NSF network’s lack of connectivity.

Figure 5.9 shows the run time per connection request. Again, DP-RWA yields

the lowest run time, requiring 96.7% less time per connection request than at 161

wavelengths. The time for IA-BF grows linearly with the wavelengths, while DP-

RWA grows very slightly.

The average connection length is shown in Figure 5.10. DP-RWA is able to setup

connections where the other algorithms fail, however, these connections have a longer
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Figure 5.10: Connection Length - DP-RWA on NSF Network
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Figure 5.11: Connection Quality (threshold ≈ 5.839) - DP-RWA on NSF Network
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length. Due to the increased path length and higher acceptance rate, DP-RWA has

the lowest average signal quality, as shown in Figure 5.11. The results on the NSF

network are similar to the Mesh results presented earlier.

DP-RWA also performs the best in both the linear dominant and nonlinear dom-

inant scenarios. In the linear dominant scenario (shown in Figure 5.12), DP-RWA

blocks 1.2%, 5.4%, and 3.8% fewer connections than IA-BF, AQoS, and PABR.

In the nonlinear dominant scenario, DP-RWA blocks 2.0%, 4.9%, and 9.5% fewer

connections than IA-BF, AQoS, and PABR. The results are displayed in Figure 5.13.
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Figure 5.12: Overall Blocking - ASE Dominant on NSF
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Figure 5.13: Overall Blocking - Nonlinear Dominant on NSF
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As with the Mesh network results, the gap in performance increases with the nonlinear

impairments.

5.3.3 8x8 Mesh Network

Simulations also were run on a standard 8x8 Mesh network topology. The diameter

of the 8x8 Mesh network is 112 spans (8 EDFAs / span * 14), larger than the UC

Davis Mesh network’s diameter of 85 spans. For this reason, the Q factor thresholds

are a little smaller. The other parameters were left unchanged from Table 5.2.
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Figure 5.14: Overall Blocking - DP-RWA on 8x8 Mesh
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The 8x8 Mesh network results are different. In the balanced scenario, IA-BF

outperforms DP-RWA by 0.1%. However, DP-RWA greatly outperforms AQoS and

PABR, blocking 71.8% and 50.5% fewer connections. This gap in performance is

tremendous and much greater than in the NSF or UC Davis topologies. With the

high level of connectivity in the 8x8 Mesh network, the centralized approaches of

DP-RWA and IA-BF are much better at managing the resources of the network than

AQoS and PABR, which are distributed algorithms.

The running time of the 8x8 Mesh is roughly 10 times longer than the NSF network

and 5 times longer than the UC Davis Mesh network. At 161 wavelengths, connection

requests require approximately 0.104 seconds per connection request for IA-BF. In

scenarios where delay is a primary concern, this is likely not acceptable. DP-RWA

requires just 4.1% of the run time of IA-BF

The average connection length is presented in Figure 5.4. As the traffic load in-

creases, the path length increases slightly for DP-RWA and IA-BF, while decreasing

for PABR and AQoS. In the NSF and UC Davis Mesh topologies, the path length

decreased as load increased for all four algorithms. With the high degree of connec-

tivity in the 8x8 Mesh network, DP-RWA and IA-BF are able to find longer alternate
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Figure 5.15: Run Time - DP-RWA on 8x8 Mesh
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Figure 5.16: Connection Length - DP-RWA on 8x8 Mesh
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paths where PABR and AQoS are not. This provides insight into the extremely high

blocking rates of PABR and AQoS.

Figure 5.5 shows the average connection quality for accepted connections. While

DP-RWA and IA-BF accept roughly the same amount of connections, DP-RWA has a

1.1% higher Q-factor on average. PABR and AQoS have the highest quality, a result

of their high blocking probability.



81

Figure 5.17: Connection Quality (threshold ≈ 5.048) - DP-RWA on 8x8 Mesh
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Figure 5.18: Overall Blocking - ASE Dominant on 8x8 Mesh
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The results are similar in the ASE dominant scenario (shown in Figure 5.18). IA-

BF blocks 0.1% fewer connections than DP-RWA, while DP-RWA is able to soundly

outperform AQoS and PABR by 76.5% and 54.9%.

In the nonlinear dominant scenario, DP-RWA outperforms all of the algorithms.

It blocks 4.9%, 69.8%, and 43.6% fewer connections than IA-BF, AQoS, and PABR.

The results are displayed in Figure 5.19.
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Figure 5.19: Overall Blocking - Nonlinear Dominant on 8x8 Mesh
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5.3.4 Statistical Analysis

To determine the significance of the differences between DP-RWA and the other

algorithms, we performed a statistical analysis. We used 50 random seeds, resulting

in millions of connection requests for each data point. The analysis was performed

on the UC Davis Mesh network, focusing only on the blocking probability.

The results for the arithmetic mean of the blocking probability are shown in Table

5.3. DP-RWA has the lowest blocking probability in all cases but one, followed by

IA-BF, PABR, and AQoS. The lone exception is that PABR has a lower blocking

probability at 600 Erlangs.

Table 5.4 presents the standard error of the mean of the blocking probability. The

standard error is greatest at the moderate traffic levels. In most cases, the difference

between DP-RWA and IA-BF is greater than several times the standard error.

The most convincing argument for DP-RWA’s performance is in the p-values pre-

sented in Table 5.5. We used a one-sided heteroscedastic T-test to calculate the

p-values. In all cases but one, the hypothesis that DP-RWA has the lowest blocking

probability is supported by a p-value of less than 0.01. In most cases, the p-values
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Table 5.3: Arithmetic Mean of the Blocking Probability

Traffic Load DP �̂ IA-BF �̂ PABR �̂ AQoS �̂
60 Erlangs 0.00000000 0.00000000 0.00000000 0.00001622
120 Erlangs 0.00000000 0.00000000 0.00001492 0.00295098
180 Erlangs 0.00030082 0.00081496 0.00452866 0.02079638
240 Erlangs 0.01882528 0.02507148 0.04094620 0.06251236
300 Erlangs 0.07733730 0.08477522 0.09826898 0.11479810
360 Erlangs 0.13907384 0.14418284 0.15242564 0.16507742
420 Erlangs 0.19092860 0.19449840 0.19837020 0.20933274
480 Erlangs 0.23524412 0.23761338 0.23866574 0.24780436
540 Erlangs 0.27323652 0.27490198 0.27441602 0.28163524
600 Erlangs 0.30678242 0.30814374 0.30612852 0.31243502

Table 5.4: Standard Error of the Mean of the Blocking Probability

Traffic Load DP SE IA-BF SE PABR SE AQoS SE
60 Erlangs 0.0000000 0.0000000 0.0000000 0.0000065
120 Erlangs 0.0000000 0.0000000 0.0000077 0.0002148
180 Erlangs 0.0000335 0.0000084 0.0002205 0.0004708
240 Erlangs 0.0003966 0.0004362 0.0005629 0.0006529
300 Erlangs 0.0005443 0.0005788 0.0005931 0.0005596
360 Erlangs 0.0004272 0.0004244 0.0004363 0.0004451
420 Erlangs 0.0004007 0.0003753 0.0004018 0.0003845
480 Erlangs 0.0003634 0.0003361 0.0003125 0.0003194
540 Erlangs 0.0003219 0.0003913 0.0003583 0.0003699
600 Erlangs 0.0002787 0.0002946 0.0002900 0.0002548
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Table 5.5: P-value Results
Hypothesis DP � < PABR � DP � < IA-BF � DP � < AQoS �
180 Erlangs 6.442E-25 2.579E-07 3.699E-41
240 Erlangs 2.422E-50 5.878E-18 4.176E-67
300 Erlangs 1.637E-45 2.442E-15 9.941E-70
360 Erlangs 2.076E-39 1.779E-13 1.980E-64
420 Erlangs 2.580E-23 2.294E-09 6.835E-55
480 Erlangs 1.282E-10 3.685E-06 3.202E-45
540 Erlangs 8.614E-03 7.919E-04 6.038E-31
600 Erlangs 5.541E-02 6.276E-04 5.630E-27

are much smaller than 0.01. This is a product of simulating millions of connection

requests per data point.

The only exception is the 600 Erlang case when comparing DP-RWA and PABR.

As PABR has a lower blocking probability than DP-RWA, the hypothesis has to be

rejected for this case. However, in all other cases, there is very strong statistical

evidence that DP-RWA has the lowest blocking probability.

5.4 Conclusion

Our results have shown that DP-RWA is better than IA-BF, AQoS, and PABR

with regard to blocking probability for the NSF and UC Davis Mesh networks. IA-BF

and DP-RWA perform similarly in the 8x8 Mesh network, although DP-RWA does

outperform IA-BF in the nonlinear dominant scenario. In all cases, the performance

of DP-RWA improved as the nonlinear impairments became more dominant.

A statistical analysis has shown that the differences in blocking probabilities be-

tween DP-RWA and the other algorithms is very significant.

DP-RWA accomplishes this performance despite the fact that DP-RWA uses signif-

icantly fewer computational resources than IA-BF. DP-RWA scales well to networks
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with a large number of wavelengths. DP-RWA is a very flexible algorithm that can

adapt to networks where either linear or nonlinear effects dominate. When blocking

probability and running time (or network delay) are jointly considered, DP-RWA has

been shown to be the best algorithm.
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CHAPTER 6

ANT COLONY OPTIMIZATION BASED RWA APPROACHES

Ant Colony Optimization (ACO) was proposed in [42]. ACO is a metaheurstic

from the field of Artificial Intelligence (AI). Metaheuristics, such as ACO, Tabu

Search, and Genetic Algorithms, can be applied to a range of Computer Science

optimization problems.

This chapter presents our research into ACO approaches for solving RWA. The

first section discusses ACO and presents our own implementation. The next section

presents our research in applyingℳAXℳℐN ACO (ℳℳ-ACO). We then compare

the two approaches. The final section compares the performance of ACO-RWA and

ℳℳ-ACO-RWA to the other RWA algorithms.

6.1 Ant Colony Optimization

Ant colonies are intelligent distributed systems. Even though individual ants have

severe limitations (some are even blind), through their social organization they are

able to accomplish complex tasks that greatly exceed the capabilities of an individual

ant. A detailed presentation on ACO can be found [43].

Ants communicate with each other through chemicals called pheromones. Trail

pheromones are used by ants to mark paths on the ground, for example, paths from

the nest to a food source. Foraging ants are able to sense these chemicals to find

paths to food sources. This mechanism is known as stigmergy, where a trace left on

the environment by current actions influences the performance of future actions.

Nature’s process of stigmergy can be simulated by a computer, providing a foun-

dation for the swarm intelligence based approaches in artificial intelligence. ACO
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is a common swarm intelligence approach, but others also exist (Particle Swarm

Optimization, Stochastic Diffusion Search).

In a typical ACO implementation, artificial ants are given a task (example: find a

shortest path to food). Each individual ant detects the pheromone levels, calculates a

set of probabilities of choosing each edge, and then randomly selects an edge. When an

ant reaches its goal node, it returns to the colony laying pheromone levels proportional

to the path’s quality. The idea is that over time the pheromone levels on the bad path

choices will evaporate, while the pheromone levels on better paths increase. Usually,

the ants will converge on one solution if they are given sufficient time.

Artificial ants are given capabilities that real world ants do not have, for opti-

mization purposes. For example, individual ants are likely unable to adjust their

pheromone drop rate based upon a calculation of the path quality. These optimiza-

tions generally decrease the time to convergence and increase the final path’s quality.

ACO is used to solve problems that can be reduced to finding paths in a graph.

Typically these problems are optimization problems known to be NP Complete. The

most studied application of ACO is the Traveling Salesman Problem (TSP). ACO

has been used for the general network routing program. [43]

Others have attempted to solve RWA using ACO. Two approaches are [44, 45].

In both papers, the authors show that their ACO approach is able to outperform

a simple Fixed Path routing scheme, however the authors state that the computa-

tional requirements to do so prevent the implementation from scaling to real world

applications.

It is difficult to replicate these approaches directly, as many of the important

details were omitted from the papers. Presented here is our unique application of

ACO to solve RWA, named ACO-RWA or ACO.
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The paths are ranked using the same formula as DP-RWA. The weight of path p

is calculated using Equation 6.1. � is a parameter in the range of 0 ≤ � ≤ 1, used to

bias the weight toward best quality (� = 0) or shortest path with acceptable quality

(� = 1). Qp is the quality of path p and lp is the length in EDFAs of path p.

Wp = (1− �)
Qp

Q̄p

+ �
lp
l̄p

(6.1)

Q̄p and l̄p represent estimates of the path quality and path length. l̄p is typically

the average of the shortest path and the diameter of the network. Q̄p is usually the

quality factor after l̄p EDFAs, assuming zero nonlinear impairments. To achieve the

lowest blocking probability, a value of � = 1.0 is used.

The pseudo-code for the ACO algorithm is shown in Algorithm 6.10. The number

of iterations, I and number of ants per iteration, A, are configurable parameters.

INPUT: Connection request from s to t, G = (V , E)

Initialize the pheromone levels

For i = 1 to I

For a = 1 to A

Calculate a path from s to t

Evaporate Pheromone levels

For a = 1 to A

Deposit Pheromone levels

Return the best path(s) found

Algorithm 6.10: Ant Colony Optimization - RWA (ACO-RWA)

The initial pheromone levels will be set based upon an approximation of the level

of pheromones each iteration will add. Each edge will be initialized with a pheromone
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Table 6.1: ACO-RWA Parameters

Parameter Value Description
Number of Ants 20 Number of Ants Per Iteration

� 1 Pheromone Power Index
� 5 Heuristic Information Power Index
� 0.1 Pheromone Evaporation Rate

level of n
l
, where n is the number of ants per iteration and l is the length of the shortest

path from source to destination.

All ants will deposit pheromones on the edges based upon the length of the path

found. Specifically, each ant will add 1
l

of pheromone, where l is the length of the

path found.

Only simple paths with an acceptable signal quality will be considered. If a cycle

is detected or if there are no wavelengths available with acceptable quality, the ant’s

search will terminate. Another ant will start searching in its place, beginning at the

source node.

As the ant is searching for a path, it chooses the next destination node probabilis-

tically based upon the pheromone levels and a heuristic function. The probability

that ant k, currently at node i will select node j is based upon the formula below.

pki,j =
[�i,j]

�[�i,j]
�∑

l∈Nk
i

[�i,l]
�[�i,l]

�
, j ∈ Nk

i (6.2)

In the formula above, �i,j represents the pheromone level on edge (i, j). �i,j is a

heuristic function, which in our simulation is set to 1
dj,v

, where v is the goal node.

The values of � and � are set by the user, in our simulations we use the values in

Table 6.1. The notation Nk
i represents the set of nodes that are a neighbor of ant k

at node i.
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After each iteration, some of the pheromone levels will evaporate. This value is

controlled by the input parameter �.

The values presented here are believed to be appropriate selections based upon

suggestions in previous research and extensive tuning. Initially, parameters were set

to values described in [43]. Each of the parameters were then varied to determine

which combination yielded the best results.

6.1.1 Convergence Analysis

The stochastic nature of ACO-RWA makes it difficult to analyze the time to

convergence on the optimal solution. The technique presented here named Associated

Discrete Deterministic Process (ADDP) is taken from [46].

The main idea of ADDP is that ACO is a stochastic process, as each iteration is

based upon the random paths of the ants. Since the paths selected by the ants are

random, so are the pheromone vectors in each iteration. As the number of ants per

iteration, S, increases, the impact of their behavior collectively become less stochastic

due to statistical laws (such as the Law of Large Numbers). This allows ADDP to

approximate the pheromone values. ACO-RWA fits in the framework of ADDP.

The approximation performed by ADDP can be extended to provide an asymptotic

convergence result. In [46], Theorem 2.1 shows that after a period containing a fixed

number of iterations, the pheromone vectors of ADDP deviate from ACO by less than

some � with a probability of at least 1 - �. This requires that S is sufficiently high

based upon �.
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6.2 MAX MIN Any Colony Optimization

ℳAXℳℐN Ant Colony Optimization (ℳℳ-ACO) is an extension of ACO pro-

posed in [47]. To our knowledge, no one outside of Montana State University has

attempted to use a ℳℳ-ACO approach for solving RWA.

The ℳℳ-ACO approach presented here, named ℳℳ-ACO-RWA or ℳℳ-

ACO, is a fair approach for Dynamic Lightpath Establishment (DLE), like the other

RWA algorithms we are considering.

ℳℳ-ACO adds four modifications to ACO. First, in ACO each ant adds

pheromone levels. In ℳℳ-ACO, only the ant which found the best path adds

pheromone levels. This strategy may lead to a stagnation early in the search process,

so pheromone levels are bounded by the interval [�min, �max]. Third, pheromone levels

are initialized to the upper limit, making the initial search iterations very exploratory.

The final modification is related to stagnation. If after several iterations, the best

path(s) found do not change, the algorithm will start over.

The pseudo-code for theℳℳ-ACO-RWA algorithm is shown in Algorithm 6.11.

As with ACO-RWA, the number of iterations, I and number of ants per iteration,

A, are configurable parameters. bs is used to store the best-so-far path(s). ℳℳ-

ACO-RWA adds another parameter S, which is the number of iterations to detect

stagnation. If after S iterations a better bs is not found, the pheromone levels will

reset.

The parameters used in our ℳℳ-ACO-RWA simulations are given in Table 6.2.

As with ACO-RWA, the values presented here are believed to be appropriate selec-

tions based upon suggestions in previous research and extensive tuning. Initially,

parameters were set to values described in [43]. Each of the parameters were then

varied to determine which combination yielded the best results.
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INPUT: Connection request from s to t, G = (V , E)

For i = 1 to I

Initialize the pheromone levels

For s = 1 to S

For a = 1 to A

Calculate a path from s to t

If (Weight(apatℎ) > Weight(bspatℎ))

bs = a

s = 1

Evaporate Pheromone levels

Deposit Pheromone levels for bs only

Return the best path(s) found

Algorithm 6.11: MAX MIN Ant Colony Optimization - RWA (MM-ACO-RWA)

Table 6.2: MM-ACO-RWA Parameters

Parameter Value Description
Min Pheromone Value 0.1 Minimum value for a pheromone level
Max Pheromone Value 1.0 Maximum value for a pheromone level

Stagnation Value 20 Number of iterations to detect stagnation
Number of Iterations 2 Number of iterations
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6.2.1 Convergence Proof

It can be shown that ℳℳ-ACO-RWA is guaranteed to find an optimal solution

with a probability arbitrarily close to 1 if ℳℳ-ACO-RWA is given sufficient time.

In practice, the time required may be astronomically large. The proofs presented here

are based upon work in [43].

Theorem 3. Let P ∗(�) be the probability that ℳℳ-ACO-RWA finds an optimal

solution at least one time within the first � iterations. For an arbitrarily small � > 0

and for a sufficiently large � it holds that

P ∗(�) ≥ 1− �, (6.3)

lim
�→∞

P ∗(�) = 1. (6.4)

Proof. Due to the pheromone trail limits �min and �max, any feasible solution (includ-

ing the optimal one) can be found with a probability pmin > 0. A trivial lower bound

for pmin can be given by:

pmin ≥ p̂min =
��min

(NC − 1)��max + ��min
, (6.5)

where NC is the cardinality of the set of paths. This derivation is based upon the

worst-case situation, where the pheromone trail associated with the optimal solution

is �min while the other choices (NC − 1 of them) have pheromone levels of �max.

Any generic solution s′, including the optimal solution s∗, can be generated with

the probability p̂ ≥ p̂nmin > 0, where n < +∞ is the maximum length of a path

(n = ∣V ∣ in our case). Only one ant needs to find an optimal solution, so a lower

bound for P ∗(�) is given by:
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P ∗(�) = 1− (1− p̂)�. (6.6)

If we choose a sufficiently large �, the probability can be made larger than any

value 1− �. Thus, it follows that lim
�→∞

P ∗(�) = 1.

The proofs can be extended to cases where local search and heuristic information

are added to ℳℳ-ACO-RWA.

Using the technique of level-reacℎing, the process of convergence to the optimal

solution can be investigated. The proof presented here is based upon a proof shown

in [48].

With � = 1, the fitness of lightpaths in ℳℳ-ACO-RWA can be grouped into

classes based upon their length in spans. Let f1, ..., fd, be the different lengths on

the finite set S, where the lengths are sorted to that f1 > ... fd. The jth level set is

defined as Aj = {x ∈ S∣f(x) = fj}.

Consider our ℳℳ-ACO-RWA algorithm. If we denote the best-so-far solution

as x̂ ∈ Aj, then x̂ will not change until an ant finds a better solution than x̂. A

lower bound on the probability of finding a better solution than x̂ is given by �j. The

expected running time at level j is thus bounded by 1/�j.

Theorem 4. An upper bound on the overall runtime of ℳℳ-ACO-RWA before

convergence on the optimum path is 1/�1 + ... + 1/�d−1.

Proof. By the definition of x̂, once x̂ has left level set j it can never return to Aj.

This follows from the best-so-far approach of ℳℳ-ACO-RWA. Thus, each level is

set is visited at most one time (A1 to Ad−1). In the worst case, x̂ visits each level set

exactly once before reaching the optimal level set (Ad).
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The proof presented here depends on the best-so-far approach of ℳℳ-ACO-

RWA. Approaches that use an iteration best ant or all ants to deposit pheromones

(such as ACO-RWA) can not be analyzed using this proof.

It should also be noted that the ADDP presented with ACO-RWA can be applied

to ℳℳ-ACO-RWA.

6.3 ACO-RWA vs. MM-ACO-RWA

To compare our ACO-RWA andℳℳ-ACO-RWA approaches, we ran simulations

varying the number of ants. The other parameters listed in Tables 6.1 and 6.2 were

left unchanged. The simulations were conducted on the UC Davis Mesh network

with a high traffic load and 21 wavelengths per fiber. The physical impairments were

balanced, so that neither the linear or nonlinear effects dominated.

The results presented in this section are the average of five simulations, with each

seed simulating ten hours of traffic. A statistical analysis is presented at the end of

this chapter to show the significance of our results.

Figure 6.1 shows the overall blocking probability. As the number of ants increases,

the blocking probability decreases for ACO-RWA. With more than 15 ants per con-

nection request, ACO-RWA has a lower blocking probability thanℳℳ-ACO-RWA.

Note that this simulation is at a high traffic load and the performance may differ at

other traffic levels.

ℳℳ-ACO-RWA is not as sensitive to the number of ants; it is able to find

good routes with fewer numbers of ants. This is likely caused by two distinctions.

First, ℳℳ-ACO-RWA adds pheromones to the best-so-far path only. This leads to

stagnation, meaning many of the ants find the same path. Thus, adding additional

ants are less beneficial. The second reason is that ℳℳ-ACO-RWA restarts after
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Figure 6.1: Overall Blocking - Ants Per Request
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Figure 6.2: Run Time - Ants Per Request
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stagnation is detected. This leads to additional iterations, meaning each ant generates

more paths. With each ant attempting additional paths, there is less gain from adding

additional ants.

The run time per connection request is shown in Figure 6.2. ℳℳ-ACO-RWA

has the highest run time, a result of the restarting after stagnation. With just 20 ants

per connection request, both algorithms have a very high run time (0.04123 seconds

for ACO-RWA and 0.11513 seconds for ℳℳ-ACO-RWA). At that rate, only 8.69

paths are computed per second for ℳℳ-ACO-RWA (24.22 for ACO-RWA).
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Figure 6.3: Connection Length - Ants Per Request
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The run times compare very unfavorably to the other RWA algorithms. The

average for IA-BF is 3.8985e-3 and 5.3056e-4 for DP-RWA. The high run times likely

mean that ACO based RWA algorithms are not a practical solution for some network

applications.

It should be noted that our ACO-RWA approaches are centralized. A significant

advantage of ACO is the ability to distribute the computation, which would achieve

considerable speedup. ACO-RWA uses its global knowledge to evaluate paths, so

changes would be required to distribute the ACO-RWA route calculation.

As the number of ants increase, the connection length of accepted connections

increases, as shown in Figure 6.3. This may be counter-intuitive to some. With a

greater number of ants, the algorithms are able to search more exhaustively. They

accept more connection requests, but the average path length increases.

ACO-RWA’s average path length is 32.9615 spans, while the average for ℳℳ-

ACO-RWA is 33.7076 spans. ACO-RWA’s ability to find shorter paths that use fewer

resources is a chief reason why ACO-RWA has a lower blocking probability. This is

likely a result of the differences in the way ACO-RWA andℳℳ-ACO-RWA search for
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Figure 6.4: Connection Quality (threshold ≈ 5.526) - Ants Per Request
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paths. While ACO-RWA’s approach is very exploratory, ℳℳ-ACO-RWA’s rapidly

converges to a solution.

Figure 6.4 displays the average connection quality. ACO-RWA has a 0.82% higher

average signal quality on average. This is a large accomplishment considering ACO-

RWA has a higher connection acceptance rate. ACO-RWA accomplishes this by

finding shorter paths. A p-value of 0.001636 from a one-sided heteroscedastic T-test

shows this small difference is significant.

The results presented above are for a simulation with a very high traffic load. The

results may be different at lower traffic levels and with different network topologies.

6.4 Results

This section presents a more detailed analysis comparing ACO-RWA and ℳℳ-

ACO-RWA against the other RWA algorithms. Results for the NSF, Mesh, and 8x8

Mesh network are presented. We also discuss scenarios where linear and nonlinear

impairments dominate.
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Figure 6.5: Overall Blocking - ACO-RWA on Mesh Network
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ACO-RWA and ℳℳ-ACO-RWA are compared against IA-BF and DP-RWA.

These algorithms were selected as they represent the state-of-the-art in RWA algo-

rithms. The remaining algorithms are not displayed in the graphs to maximize the

graph’s readability, but will also be considered in this section.

6.4.1 UC Davis Mesh Network

The overall blocking probabilities for the UC Davis Mesh network are shown in

Figure 6.5. DP-RWA and IA-BF both have lower blocking probabilities than ACO-

RWA andℳℳ-ACO-RWA. ACO-RWA andℳℳ-ACO-RWA block 13.1% and 4.3%

more connections, respectively, than DP-RWA. IA-BF has a slightly lower blocking

probability than ℳℳ-ACO-RWA.

Between the two AI algorithms,ℳℳ-ACO-RWA offers the lowest blocking prob-

ability. The average ℳℳ-ACO-RWA blocking probability is 0.114786, compared to

0.126400 for ACO-RWA.

Both ACO-RWA and ℳℳ-ACO-RWA have a lower blocking probability than

PABR, LORA, AQoS, QM, and IA-FF. These algorithms are not displayed in the

graph to avoid cluttering the results.
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Figure 6.6: Connection Length - ACO-RWA on Mesh Network
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A statistical analysis of the significance of the blocking probability differences is

presented in Section 6.4.4.

ACO-RWA has the shortest average accepted connection length of 38.105, followed

by IA-BF (38.478), ℳℳ-ACO-RWA (38.485), and DP-RWA (38.969). The results

are shown in Figure 6.6. ACO-RWA’s inability to find longer routes is likely a main

reason it has a higher blocking probability.

Figure 6.7 presents the average connection quality for accepted connections. ACO-

RWA has the highest quality, a product of its lower connection acceptance rate and

connection length. ACO-RWA is followed by IA-BF, ℳℳ-ACO-RWA, and DP-

RWA. The main objective of RWA is to maximize the number of accepted connection

requests with sufficient quality, not the average connection quality.

The results presented earlier in this section are from a balanced scenario, where

the linear and nonlinear impairments are roughly equivalent. To evaluate as many

scenarios as possible, simulations were run where the linear and nonlinear impairments

dominate.

The overall blocking probabilities from the ASE dominant scenario are shown

in Figure 6.8. DP-RWA and IA-BF again have the lowest blocking, followed by
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Figure 6.7: Connection Quality (threshold ≈ 5.526) - ACO-RWA on Mesh Network
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Figure 6.8: Overall Blocking - ACO-RWA on Mesh Network with ASE Dominant
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ℳℳ-ACO-RWA, IA-FF, ACO-RWA, PABR, AQoS, and QM. The performance of

ℳℳ-ACO-RWA is close to IA-BF, asℳℳ-ACO-RWA’s bias toward shorter paths

works well in scenarios where the linear impairments (ASE) dominate.

Figure 6.9 shows the overall blocking probability for the nonlinear dominant sce-

nario. ACO-RWA has the highest blocking probability, then ℳℳ-ACO-RWA, IA-

BF, and DP-RWA. ACO-RWA and ℳℳ-ACO-RWA attempt shorter paths and are

unable to route connection requests away from congested areas in the network. Both
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Figure 6.9: Overall Blocking - ACO-RWA on Mesh Network with Nonlinear Dominant
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ACO-RWA and ℳℳ-ACO-RWA have a lower blocking probability than IA-FF and

QM.

6.4.2 NSF Network

Figure 6.10 shows the overall blocking rate in the NSF network. As in the Mesh

network, ACO-RWA and ℳℳ-ACO-RWA have a higher blocking probability than

DP-RWA and IA-BF.ℳℳ-ACO-RWA is the best performing AI algorithm, blocking

11.06% fewer connections than ACO-RWA. DP-RWA is the top performing overall

algorithm, followed by IA-BF.

ℳℳ-ACO-RWA and ACO-RWA outperform PABR, LORA, and IA-FF in terms

of blocking probability, but they are unable to outperform AQoS and QM. In the

loosely connected NSF network, AQoS and QM perform best when compared against

the other RWA algorithms.

The average connection length of accepted connections is shown in Figure 6.11.

There are large differences between the algorithms. ACO-RWA has the shortest length

of 35.62 spans. DP-RWA is able to setup connections with a longer length, having
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Figure 6.10: Overall Blocking - ACO-RWA on NSF Network
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Figure 6.11: Connection Length - ACO-RWA on NSF Network
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the highest average of 36.40 spans. IA-BF has the second highest connection length

(36.39), followed by ℳℳ-ACO-RWA (36.09).

Figure 6.12 shows the average connection quality. ACO-RWA has the highest

quality, followed byℳℳ-ACO-RWA, IA-BF and DP-RWA. The ordering is a reversal

of the overall blocking ranking, showing the trade-off. Algorithms which accept more

connections will have a lower average signal quality.



104

Figure 6.12: Connection Quality (threshold ≈ 5.839) - ACO-RWA on NSF Network
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Figure 6.13: Overall Blocking - ACO-RWA on 8x8 Mesh Network

200 250 300 350 400 450 500 550 600
0

0.05

0.1

0.15

0.2

0.25

Offered Load (Erlangs)

B
lo

ck
in

g 
P

ro
ba

bi
lit

y

 

 

IA−BF
ACO
MM−ACO
DP

6.4.3 8x8 Mesh Network

Figure 6.13 shows the overall blocking results for the 8x8 Mesh network. DP-RWA

again has the lowest blocking probability, narrowly outperforming IA-BF. Among

the AI algorithms,ℳℳ-ACO-RWA has an average blocking probability of 0.028627,

lower than ACO-RWA’s 0.036463.

Both ACO-RWA and ℳℳ-ACO-RWA have a lower blocking probability than

PABR, LORA, AQoS, QM, and IA-FF. While ACO-RWA andℳℳ-ACO-RWA can
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Figure 6.14: Connection Length - ACO-RWA on 8x8 Mesh Network
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not match the blocking probability of DP-RWA and IA-BF, they are able to outper-

form the other RWA algorithms in most scenarios.

The average connection length is shown in Figure 6.14. ACO-RWA has the lowest

average connection length, followed byℳℳ-ACO-RWA. The AI algorithms deposit

pheromones based on the length of the path, biasing the results toward shorter paths.

DP-RWA has the longest path length, followed by IA-BF.

Figure 6.15 displays the average connection quality. ACO-RWA has the highest

average quality, followed by ℳℳ-ACO-RWA. They have the highest quality due to

having a lower connection acceptance rate. DP-RWA has the lowest average connec-

tion quality, while IA-BF has the second lowest.

6.4.4 Statistical Analysis

To determine the significance of the differences between ACO-RWA,ℳℳ-ACO-

RWA, and the other RWA algorithms, we performed a statistical analysis. We used

50 random seeds, resulting in millions of connection requests for each data point. The

analysis was performed on the UC Davis Mesh network under the balanced scenario,

focusing only on the blocking probability.
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Figure 6.15: Connection Quality (threshold ≈ 5.048) - ACO-RWA on 8x8 Mesh
Network
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Table 6.3: Arithmetic Mean of the Blocking Probability - ACO-RWA

Load ACO �̂ MM-ACO �̂ DP �̂ IA-BF �̂ PABR �̂ AQoS �̂
60 0.0102754 0.0017852 0.0000000 0.0000000 0.0000000 0.0000162
120 0.0097678 0.0016581 0.0000000 0.0000000 0.0000149 0.0029509
180 0.0116944 0.0023159 0.0003008 0.0008149 0.0045286 0.0207963
240 0.0401891 0.0255446 0.0188252 0.0250714 0.0409462 0.0625123
300 0.0990690 0.0848917 0.0773373 0.0847752 0.0982689 0.1147981
360 0.1579320 0.1454255 0.1390738 0.1441828 0.1524256 0.1650774
420 0.2078869 0.1967897 0.1909286 0.1944984 0.1983702 0.2093327
480 0.2504209 0.2400469 0.2352441 0.2376133 0.2386657 0.2478043
540 0.2873219 0.2776639 0.2732365 0.2749019 0.2744160 0.2816352
600 0.3199957 0.3109823 0.3067824 0.3081437 0.3061285 0.3124350

The results for the arithmetic mean of the blocking probability are shown in Table

6.3. ℳℳ-ACO-RWA has a lower blocking probability than ACO-RWA, PABR, and

AQoS, on average. Both DP-RWA and IA-BF both outperform ℳℳ-ACO-RWA,

although the differences between ℳℳ-ACO-RWA and IA-BF are small.

Table 6.4 presents the standard error of the mean of the blocking probability. The

standard error is very small for all algorithms, peaking at the moderate traffic levels.

The differences between the algorithms is greater than many times the standard error,
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Table 6.4: Standard Error of the Mean of the Blocking Probability - ACO-RWA

Load ACO SE MM-ACO SE DP SE IA-BF SE PABR SE AQoS SE
60 0.0001865 0.0003120 0.0000000 0.0000000 0.0000000 0.0000065
120 0.0001300 0.0002246 0.0000000 0.0000000 0.0000077 0.0002148
180 0.0002389 0.0002031 0.0000335 0.0000084 0.0002205 0.0004708
240 0.0004664 0.0005354 0.0003966 0.0004362 0.0005629 0.0006529
300 0.0005963 0.0006212 0.0005443 0.0005788 0.0005931 0.0005596
360 0.0004233 0.0004538 0.0004272 0.0004244 0.0004363 0.0004451
420 0.0003522 0.0004765 0.0004007 0.0003753 0.0004018 0.0003845
480 0.0003359 0.0003849 0.0003634 0.0003361 0.0003125 0.0003194
540 0.0004020 0.0004218 0.0003219 0.0003913 0.0003583 0.0003699
600 0.0002886 0.0003573 0.0002787 0.0002946 0.0002900 0.0002548

in most situations. This provides compelling evidence that our conclusions regarding

blocking probability are significant.

In the majority of cases, the standard error for ACO-RWA andℳℳ-ACO-RWA

is somewhat higher than the other RWA algorithms. This is expected as the ACO

algorithms are stochastic and thus more sensitive to random number generator fluc-

tuations. ℳℳ-ACO-RWA has a greater standard error than ACO-RWA.

The most convincing argument for ℳℳ-ACO-RWA’s performance is in the p-

values presented in Tables 6.5 and 6.6. We used a one-sided heteroscedastic T-test to

calculate the p-values. The first table comparesℳℳ-ACO-RWA against ACO-RWA,

PABR, and AQoS. The p-values are significantly below 0.01, strongly supporting our

hypothesis thatℳℳ-ACO-RWA has a lower overall blocking probability than ACO-

RWA, PABR, and AQOS.

Table 6.6 comparesℳℳ-ACO-RWA against IA-BF and DP-RWA. In all scenar-

ios, our hypothesis that DP-RWA has a lower blocking probability thanℳℳ-ACO-

RWA is supported. For traffic loads of 240 and 300 Erlangs, we have to reject our
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Table 6.5: P-value Results - ACO-RWA #1

Load MM-ACO � < ACO � MM-ACO � < PABR � MM-ACO � < AQoS �
180 3.2155E-50 3.8325E-11 1.9105E-45
240 4.8714E-37 5.5771E-36 2.0972E-64
300 6.1863E-30 3.1619E-28 1.4732E-57
360 1.6995E-36 4.0854E-19 3.0576E-52
420 7.9671E-33 6.8805E-03 2.3354E-36
480 1.6133E-36 3.4998E-03 9.5343E-28
540 3.8988E-30 4.1238E-08 1.6557E-10
600 6.0299E-35 1.0728E-17 7.5168E-04

Table 6.6: P-value Results - ACO-RWA #2

Load MM-ACO � > IA-BF � MM-ACO � > DP �
180 2.3076E-09 1.6373E-13
240 2.4964E-01 1.4952E-16
300 4.4612E-01 7.8041E-15
360 2.5271E-02 4.0399E-17
420 1.5494E-04 2.3242E-15
480 4.0960E-06 1.0113E-14
540 3.4792E-06 5.3259E-13
600 1.3370E-08 5.9772E-15

hypothesis thatℳℳ-ACO-RWA � > IA-BF �. At higher traffic levels (360 Erlangs

and higher), the hypothesis is supported.

Both ACO-RWA andℳℳ-ACO-RWA are interesting RWA algorithms. We have

shown that ℳℳ-ACO-RWA outperforms AQoS, PABR, and ACO-RWA by a sta-

tistically significant margin. While DP-RWA has a lower blocking probability,ℳℳ-

ACO-RWA has the advantage of extending to distributed applications.
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CHAPTER 7

PERFORMANCE EVALUATION AND COMPARISON OF RWA STRATEGIES

This section includes conclusions drawn from a wide array of scenarios, including

different network topologies and modifying some of the parameters listed in Table 5.2.

The goal of this chapter is to expand the current understanding of RWA performance

in transparent optical networks. RAPTOR gives us the ability to compare algorithms

using various scenarios and new performance metrics. We explore domains where both

linear and nonlinear impairments dominate.

Our findings have been submitted for publication. A conference version of the

paper [49] and a journal version of the paper [50] are waiting to be accepted.

7.1 Signal Quality

Physically aware algorithms have a tremendous benefit to signal quality. Consider

two simple routing algorithms: a standard shortest path algorithm (SP) and a quality

aware shortest path algorithm (QA SP) which blocks paths with unacceptable signal

quality level. QA SP has a 7.6% higher average signal quality (shown in Figure 7.1).

QA SP connections spend only 9.61% of their time below the quality threshold, for

SP the number is 25.63%. (shown in Figure 7.2).

The benefit to quality comes with a minimal cost. The top performing physically

aware algorithms (DP-RWA and IA-BF) have a blocking probability that is compa-

rable to SP, despite the fact they block connections with insufficient quality. Figure

7.3 shows the blocking probability of DP-RWA and IA-BF compared to SP.

At low traffic levels, DP-RWA and IA-BF have a lower blocking probability while

at high traffic levels SP has a lower blocking probability. This is due to DP-RWA
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Figure 7.1: Connection Quality (threshold ≈ 5.526) - SP vs. QA SP
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Figure 7.2: Percent Time Below Threshold - SP vs. QA SP

150 200 250 300 350 400 450 500
5

10

15

20

25

30

Offered Load (Erlangs)

P
er

ce
nt

 T
im

e 
B

el
ow

 T
hr

es
ho

ld

 

 

SP
QA SP

Figure 7.3: Overall Blocking - DP-RWA and IA-BF vs SP

150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

Offered Load (Erlangs)

B
lo

ck
in

g 
P

ro
ba

bi
lit

y

 

 

SP
IA−BF
DP



111

and IA-BF’s ability to find alternate, but longer, paths. This is advantageous at

low to moderate traffic levels. Network operators are unlikely to tolerate blocking

probabilities above 10%, so the low to moderate traffic levels (where DP-RWA and

IA-BF have the lowest blocking) are likely to be predominant.

When considering physically aware options, adaptive routing algorithms offer a

significant improvement over both fixed path routing or fixed alternate routing. QA

SP, a fixed alternate routing algorithm has the worst performance in every simula-

tion we attempted. For the UC Davis Mesh network, DP-RWA blocks 29.3% fewer

connections when compared to QA SP.

7.2 DP-RWA versus IA-BF

DP-RWA and IA-BF choose paths in a similar manner and thus have a similar

blocking performance. IA-BF finds the shortest path on each wavelength, ranks them

according to distance, and then tests their quality. DP-RWA simply attempts to find

the shortest paths with acceptable quality, pruning intermediate paths with an unac-

ceptable signal quality. The subtle difference of eliminating paths with unacceptable

signal quality of DP-RWA allows the algorithm to slightly lower the blocking proba-

bility, in general. The additional connections from the higher acceptance rate have a

side effect of lowering the signal quality by a small margin.

A significant benefit of DP-RWA over IA-BF is a dramatic reduction in route

computation time. Figure 7.4 compares the difference in run time between DP-RWA

and IA-BF. DP-RWA requires just 5.6% of the run time of IA-BF.

As optical networks move toward connections with shorter durations (and even-

tually to Optical Burst Switching (OBS) and Optical Packet Switching (OPS)) this
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Figure 7.4: Run Time - DP-RWA vs IA-BF
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distinction becomes very important. This is also significant in applications where

network delay is a primary concern.

The run time of IA-BF grows linearly with the number of wavelengths, while DP-

RWA does not. As the number of wavelengths per fiber continues to increase, IA-BF’s

run time will become an even greater disadvantage.

PABR and AQoS offer run times similar to DP-RWA. However, PABR and AQoS

have an additional overhead of recomputing the edge weights each time a connection

is added or deleted. For AQoS, the edge weight computation time grows linearly with

the number of wavelengths.

7.3 Traffic Levels

The differences among the algorithm’s blocking probabilities is greatest under a

moderate traffic load. At lower traffic levels, the algorithms have a very similar level

of minimal blocking. This gap increases in the moderate traffic ranges, only to shrink

again as the load becomes high.
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Figure 7.5: Overall Blocking - Low Traffic Levels
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The overall blocking probability at lower traffic levels is shown in Figure 7.5. It

is important to consider lower traffic levels as optical networks will ideally operate in

these ranges.

DP-RWA and IA-BF accept all connection requests in the 120 or fewer Erlang

scenarios, and nearly all requests at 180 Erlangs. Both algorithms easily outperform

PABR and AQoS in term of blocking probability.

7.4 Traffic Models

Most of the research in RWA algorithms has focused on the same traffic model:

a Poisson process generating connection requests. The destination of the request is

chosen randomly with each node having an equal probability of being selected. This

results in a uniform spreading of the traffic.

RAPTOR has three different options for choosing the destination. The first model

is the standard uniform model, as described above. Another option is a distance

weighted model, where the probability of selecting a destination node is proportional

to the node’s distance from the source. In other words, there is a bias toward destina-
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tions with a greater distance. The final option is an inverse distance weighted model,

where the probability of selecting a destination node is proportional to the inverse of

the node’s distance from the source. This creates a bias toward destinations with a

small distance.

7.4.1 Distance Weighted Model

In the distance weighted traffic model, destination nodes are selected randomly

with a bias toward destinations with a greater distance. The probability of selecting

node j as a destination from node i, pi,j is proportional to the distance between i and

j, di,j. The formula is given in Equation 7.1.

pi,j =
di,j∑

i ∕=k
di,k

(7.1)

Networks using a distance weighted traffic model can accept fewer connection

requests, as each connection request takes more resources due to its longer length.

For the UC Davis Mesh network, the distance weighted traffic model accepts between

15% and 20% fewer connections.

The overall blocking probability using a distance weighted traffic model is dis-

played in Figure 7.6. DP-RWA has the lowest blocking probability, followed by IA-BF,

PABR, and AQoS. DP-RWA blocks 6.0%, 14.7%, and 39.2% fewer connections than

IA-BF, PABR, and AQoS. The differences are larger than in the uniform distribution,

showing that DP-RWA has a great ability to adapt to various network conditions.

The average connection length for accepted connections is shown in Figure 7.7.

For DP-RWA, the average accepted connection has a length of 47.9 EDFAs. This is

a 26% increase over the random uniform traffic model for DP-RWA (which had an

average of 38.0). The other RWA algorithms have similar increases.
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Figure 7.6: Overall Blocking - Distance Weighted Traffic Model

50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Offered Load (Erlangs)

B
lo

ck
in

g 
P

ro
ba

bi
lit

y

 

 
IA−BF
PABR
AQoS
DP

Figure 7.7: Connection Length - Distance Weighted Traffic Model
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Figure 7.8: Connection Quality (threshold≈ 5.526) - Distance Weighted Traffic Model
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Figure 7.8 shows the average connection quality using the distance weighted traffic

model. In terms of signal quality, DP-RWA has the worst performance. This is a

result of DP-RWA having a higher acceptance rate, adding additional noise into the

network.

Figure 7.9 shows the percent time the average connection spends below the quality

threshold. Under this metric, the performance of the algorithms (from best to worst)

is AQoS, PABR, IA-BF, and DP-RWA. This list is identical to a ranking of the

algorithms by their acceptance rate (from lowest to highest). There is a trade-off.

Algorithms that accept more connections have a lower signal quality and spend more

time below the quality threshold, on average.

7.4.2 Inverse Distance Weighted Model

In the inverse distance weighted traffic model, destination nodes are selected ran-

domly with a bias toward destinations with a smaller distance. The probability of

selecting node j as a destination from node i, pi,j is proportional to the inverse of the

distance between i and j, d−1
i,j . The formula is given in Equation 7.2.
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Figure 7.9: Percent Time Below Threshold - Distance Weighted Traffic Model
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pi,j =
d−1
i,j∑

i ∕=k
d−1
i,k

(7.2)

When using the inverse distance weighted traffic model, the network can handle

additional connection requests, as each connection request uses fewer resources due to

its reduced connection length. For the UC Davis Mesh network, the inverse distance

weighted traffic model can support twice as many connections as the uniform model.

The overall blocking probability is displayed in Figure 7.10. There is only a

minimal difference between the algorithms. The RWA choice is simpler for shorter

connection requests, reducing the advantages of the more sophisticated algorithms.

DP-RWA has the lowest blocking probability, followed by PABR, IA-BF, and AQoS.

This is one of the few scenarios where PABR outperforms IA-BF.

Figure 7.11 shows the average connection length of accepted connections. As

expected, the average length of 27.1 is significantly lower than the random uniform

(38.0) and distance weighted (47.9) models.

The average connection quality for accepted connections is shown in Figure 7.12.

Using this metric, the ranking of the algorithms (from best to worst) is AQoS, PABR,
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Figure 7.10: Overall Blocking - Inverse Distance Weighted Traffic Model
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Figure 7.11: Connection Length - Inverse Distance Weighted Traffic Model
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Figure 7.12: Connection Quality (threshold ≈ 5.526) - Inverse Distance Weighted
Traffic Model
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Figure 7.13: Percent Time Below Threshold - Inverse Distance Weighted Traffic Model
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IA-BF, and DP-RWA. This is the same ranking as the random uniform and distance

weighted scenarios.

Figure 7.13 shows the percent time the average connection spends below the

quality threshold. DP-RWA has the highest percent time below threshold, due to

DP-RWA having a higher acceptance rate which introduces additional noise into the

network.

RAPTOR currently supports only a Poisson process to generate the connection

requests. A Poisson process effectively simulates circuit switched networks such as
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Figure 7.14: Overall Blocking - NSF Network
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the current generation of optical networks. It would be beneficial to add a Pareto

distribution. Pareto distributions are used to simulate packet switched networks, such

as optical networks using Optical Burst Switching (OBS) [51] and Optical Packet

Switching (OPS) [52].

7.5 Network Topologies

It is important to consider other network topologies. Our previous research has

focused on the UC Davis Mesh network. The NSF network (16 nodes, 25 edges) is

a smaller network which suffers from a lack of connectivity between the eastern and

western regions. A standard 8x8 Mesh network contains 64 nodes and 112 edges. The

8x8 Mesh network has a high degree of connectivity.

The results of the NSF network simulations are displayed in Figure 7.14. The

difference in blocking between the algorithms is minimal. The advantages of DP-RWA

and IA-BF are muted by the lack of connectivity. In less connected networks, the

RWA algorithm choice is less important. DP-RWA has the lowest blocking probability,

followed by IA-BF, AQoS, and PABR.
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Figure 7.15: Overall Blocking - 8x8 Mesh Network
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Figure 7.15 shows the results of the 8x8 Mesh simulations. Once again, DP-RWA

and IA-BF are the top performing algorithms. For this network topology, IA-BF has

the lowest blocking probability followed closely by DP-RWA. There is a very large

difference between PABR and AQoS. DP-RWA blocks 50.5% fewer connections than

PABR and 72.2% fewer connections than AQoS. In the highly connected 8x8 Mesh

network, the RWA choice is very significant.

The performance of QM and AQoS are very dependent upon the network topology.

It was expected that AQoS would offer significantly lower blocking probability than

QM. This was the case for the highly connected 8x8 Mesh network, but QM has the

lower blocking probability for both the NSF and UC Davis Mesh networks.

LORA and PABR are also dependent upon the network topology. These algo-

rithms depend on a parameter � used to control the bias toward choosing longer, but

less utilized, paths. The optimal values of � are not obvious, and network opera-

tors will need to tune the variable for optimal performance considering the network

topology and current traffic load.
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Figure 7.16: Overall Blocking - ASE Dominant
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The dependence of QM, AQoS, LORA, and PABR on the network topology is a

concern. IA-BF and DP-RWA are adaptable and perform well across a wide variety

of simulations.

7.6 Physical Impairments

It is also important to consider scenarios where both linear and nonlinear impair-

ments dominate. In the previous simulations, the impairments were balanced so that

neither dominated. The results of a simulation where ASE noise is a dominant factor

are presented in Figure 7.16. In this scenario, ASE is roughly 3 to 4 times greater

than the sum of FWM and XPM, with some variance among the different algorithms.

DP-RWA is the best performing algorithm. DP-RWA outperforms IA-BF, PABR,

and AQoS by 2.0%, 2.4%, and 10.7% respectively with regard to blocking probability.

The differences are smaller than in the balanced scenario. As the linear impairments

become more significant, the RWA problem becomes more like the traditional routing

problem and the RWA choice becomes less important.
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Figure 7.17: Overall Blocking - Nonlinear Dominant
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The nonlinear dominant results are presented in Figure 7.17. In this scenario,

the total nonlinear effects (XPM and FWM) are roughly 2.5 to 3.5 times greater

than ASE, with some variance between the algorithms. Using realistic parameters, it

becomes difficult to increase of the nonlinear effects beyond the levels discussed here.

DP-RWA is again the top performing algorithm. DP-RWA outperforms IA-BF,

PABR, and AQoS by 4.0%, 7.7%, and 20.3% respectively. The differences between

the algorithms are larger than in the ASE dominant and balanced scenarios. This

supports our conclusion that as nonlinear impairments increase, the RWA selection

is more important. In fact, the difference between DP-RWA and IA-BF has doubled.

7.7 Wavelength Assignment Algorithms

Most of the research in RWA has focused on the Routing Algorithm (RA), relying

on standard Wavelength Assignment (WA) algorithms such as First Fit (FF) and

Random Pick (RP). A general consensus is that FF offers the tightest wavelength

packing and thus lowest blocking probability, while Random Pick offers the highest

signal quality.
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Figure 7.18: Overall Blocking - FF vs RP
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Figure 7.19: Average Connection Quality - FF vs RP
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To evaluate the performance of FF and RP, we ran simulations using the two WAs

while using QA SP as the RA. The blocking probability is shown in Figure 7.18. FF

offers the lowest overall blocking, as expected. However, the margin is small as FF

blocks 2.9% fewer connections than RP.

RP offers better signal quality than FF. Figure 7.19 shows that RP has a 3.2%

higher average signal quality. RP connections also spend less time below the quality

threshold, as shown in Figure 7.20. This is a consequence of FF accepting more

connections.
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Figure 7.20: Percent Time Below Threshold - FF vs RP
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Simulations from RAPTOR support the previous research that FF offers the low-

est blocking probability and RP offers the highest signal quality. The differences

between the two algorithms is minimal, the RA selection is much more important

than the WA selection.

7.8 Wavelength Division Multiplexing

Future optical networks will increase the number of wavelengths per fiber. DP-

RWA, LORA, and PABR’s complexity does not increase with the number of wave-

lengths, but QM, AQoS, IA-BF, IA-FF all have a complexity that grows with the

number of wavelengths.

Simulations were run where the number of wavelengths per fiber and traffic load

were varied. The wavelength count and traffic load were always increased by the same

rate, so the traffic load per wavelength was unchanged.

The overall blocking probability of QA SP is shown in Figure 7.21. Interestingly,

the blocking probability declines even though the traffic load per wavelength is held
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Figure 7.21: Overall Blocking - Various Number of Wavelengths
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Figure 7.22: Noise - Various Number of Wavelengths
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constant. This is due to the WA algorithm having more options to select from,

allowing an increasing rate of connection acceptance.

The impairments from this simulation are displayed in Figure 7.22. The nonlinear

impairments grow slightly as the wavelengths per fiber increase. This may be an

unexpected result to some. Our investigation has shown when considering the noise

on a specific channel, only the nearest neighbors of the channel contribute meaningful

noise. Thus adding new channels does not directly increase the noise.

The reason for the small increase in noise is that the channels with the lowest and

highest frequencies do not have as many neighboring channels contributing noise.
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Consider, for example, the channel with the lowest frequency. There are no channels

with a lower frequency than it, so only channels with a higher frequency can contribute

to the noise. This contrasts to a frequency in the middle of the range, where both

lower and higher frequencies are active. As the number of channels per wavelength

increase, the percentage of channels with a full window (and thus more nonlinear

impairments) increases.

7.9 Hot Spots

RAPTOR’s GUI has proven a valuable tool in detecting hot spots in the network.

Hot spots typically occur in the interior links of the network. These links have to

carry local traffic, plus the traffic from one region of the graph to another. They serve

as a bottleneck in the network, limiting the number of connections that can be setup.

RAPTOR currently supports static configurations of a network. In other words,

once the topology is set, the resources can not change. It could be extended to support

network faults, where a resource is temporarily unavailable. This might occur for a

planned maintenance upgrade, a power outage, or an accidental cutting of a cable.

Hot spots could also be created due to unbalanced traffic demands. Currently,

each node adds the same level of traffic. Traffic demands will naturally variate for

many reasons, such as the time of day, natural disasters, and local events. The

addition of unbalanced traffic loads would be valuable addition to RAPTOR.

It would be interesting to determine which algorithms are able to adapt to dynamic

network topologies and unbalanced traffic demands.
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7.10 Conclusion

RAPTOR is a useful tool for evaluating transparent optical networks and freely-

available to the academic community for non-commercial use. Various network

topologies and parameters, larger number of wavelengths, and alternative traffic pat-

terns can be easily simulated with RAPTOR. This chapter provided valuable insight

into the performance of a variety of RWA algorithms for all-optical networks.

Physically aware RWA algorithms offer major improvements to signal quality with

a minor impact to blocking probability. In most scenarios, DP-RWA is the best per-

forming RWA algorithm. As next generation optical networks move toward the goal

of transparency and higher degrees of Wavelength Division Multiplexing, nonlinear

impairments will increase. These changes will make the development of new and more

sophisticated RWA algorithms very important.
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CHAPTER 8

CONCLUSION

Optical networks form the foundation of today’s information infrastructure. Cur-

rent generation optical networks consist largely of point-to-point electronically trans-

mitted links which switch between nodes and repeaters. There is a trend in optical

networking to move from the current generation opaque networks toward transparent

networks. Transparent networks use only optical devices, eliminating the costly need

for OEO conversions. Unfortunately, transparent networks present a unique challenge

in maintaining acceptable signal quality levels. The goal of this research is to expand

the current understanding of RWA performance in transparent optical networks.

Our research achieved this goal in three ways. First, we developed RAPTOR,

a custom built optical network simulator. Using RAPTOR, we performed an ex-

tensive analysis of existing RWA algorithms. Last, we presented our new dynamic

programming based RWA algorithm with promising results.

RAPTOR enables us to perform an in-depth study of transparent optical networks

in a unique and realistic manner. None of the existing network simulation tools come

close to modeling transparent optical networks like RAPTOR. RAPTOR contains

physically aware modules, allowing us to accurately estimate signal quality. RAPTOR

is fast and multi-threaded, allowing us to study large optical networks. RAPTOR is

an integral part of the research presented in this dissertation.

Using RAPTOR, we conducted an extensive performance analysis of existing RWA

algorithms. We explored many different traffic models, traffic loads, signal quality,

and network topologies in a comprehensive fashion. We showed the importance of

using physically aware RWA algorithms. We directly compared the leading RWA

algorithms in a manner has not been done before.
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We presented Dynamic Programming - RWA, or DP-RWA, a new physically aware

RWA algorithm. DP-RWA has the best overall performance in most scenarios. It is

flexible and adapts well to all network conditions we studied. It scales very well to

large optical networks. It shows good promise for future optical networks.

We discussed Ant Colony Optimization and its applicability to the RWA problem.

We created ACO-RWA and ℳℳ-ACO-RWA, two Ant Colony Optimization based

RWA algorithms. The results were mixed, although ACO-RWA andℳℳ-ACO-RWA

might be useful in some applications.

8.1 Future Work

While RAPTOR has proved to be a very useful tool, there are a couple areas

in which it could be improved. RAPTOR studies three of the dominant physical

impairments, it would be helpful to consider other nonlinear impairments, such as Self

Phase Modulation. The calculation of ASE noise could be expanded to a cascading

formula, allowing for a heterogeneous mix of amplifiers with different noise figures

and gains.

RAPTOR simulates only Poisson process based traffic models, which work well for

circuit switched networks. It would be beneficial to consider Pareto distributions as

well, especially since research has shown they are effective in modeling packet switched

networks. While today’s optical networks are circuit switched, there is much research

into Optical Burst Switching (OBS) and Optical Packet Switching (OPS). A Pareto

distribution might model OBS and OPS more accurately.

RAPTOR’s GUI has shown a tremendous capability to visualize optical networks,

helping us to perform an extensive analysis. It would be beneficial to add additional
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functionality to the GUI. The user interface is a little awkward and unstable at times,

so it would benefit from a little fine tuning.

Finally, RAPTOR would benefit from the addition of hot spots. Hot spots could

be added in two ways. First, there could be a network resource that goes offline

temporarily. Another method of creating hot spots would be to use a non uniform

traffic generation pattern. It would be interesting to determine how the algorithms

adapt to hot spots.
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