

VIDESUPRA

AN ASTROPHYSICS SIMULATOR

by

Grant Jared Nelson

A thesis submitted in partial fulfillment

of the requirements for the degree

of

Master of Science

in

Computer Science

MONTANA STATE UNIVERSITY

Bozeman, Montana

April 2011

© COPYRIGHT

by

Grant Jared Nelson

2011

All Rights Reserved

ii

APPROVAL

of a thesis submitted by

Grant Jared Nelson

This thesis has been read by each member of the thesis committee and has been found to

be satisfactory regarding content, English usage, format, citation, bibliographic style, and

consistency, and is ready for submission to The Graduate School.

Dr. Denbigh Starkey

Approved for the Department of Computer Science

Dr. John Paxton

Approved for The Graduate School

Dr. Carl A. Fox

iii

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a masterôs degree at

Montana State University, I agree that the Library shall make it available to borrowers under rules

of the Library.

If I have indicated my intention to copyright this thesis by including a copyright notice

page, copying is allowable only for scholarly purposes, consistent with ñfair useò as prescribed in

the U.S. Copyright Law. Requests for permission for extended quotation from or reproduction of

this thesis in whole or in parts may be granted only by the copyright holder.

Grant Jared Nelson

April 2011

iv

TABLE OF CONTENTS

1. PROBLEM AND GOALS ... 1

2. BACKGROUND ... 3

3. ATTITUDE DETERMINATION AND CONTROL SIMULATION .. 7

Requirements ... 8

Solutions .. 9

4. PHYSIM2 .. 10

Variables .. 11

The Variable Pool .. 13

Determining Control Dependencies .. 15

5. VIDESUPRA ... 16

Physics and Mathematics .. 16

Types ... 17

DateTime and TimeZone .. 17

Mass .. 18

Matrix3x3, Matrix4x4 and VecPnt ... 18

Quaternion .. 20

Plug-ins and Pages... 20

6. PHYSIM2ASTROPLUGIN ... 26

Coordinate System Definitions.. 26

Heliocentric-Ecliptic ... 27

Earth-Centric Inertial Reference ... 28

Earth Centered Earth Fixed ... 29

Satellite-Centric Inertial Reference ... 29

Ram/Nadir ... 30

Housing ... 31

Earth Fixed Ground Station .. 31

Coordinate Conversions .. 32

ECIR to HE ... 32

ECIR to ECEF .. 35

ECIR to SCIR ... 37

SCIR to RN ... 38

To HCS ... 40

ECEF to EFGS .. 42

Auto-Generated Conversions .. 43

Conversion Multiplication .. 43

v

TABLE OF CONTENTS ï CONTINUED

Completing the Graph ... 45

Global Points and Vectors .. 49

The Specific Conversions ... 49

Algorithms ... 51

SpaceTrack.Net ... 52

GeoMag.Net .. 53

Rigid Body Dynamics ... 62

Other Sensors .. 63

7. RUNNING AN ASTROPHYSICS SIMULATION .. 66

8. CONCLUSIONS.. 80

 REFERENCES CITED .. 81

vi

LIST OF FIGURES

Figure Page

1. Variable Design for PhySim ... 11

2. Variable Pool Example ... 13

3. Storage Formats for Select PhySim Types ... 19

4. Heliocentric-Ecliptic Coordinate System Diagram... 27

5. ECIR Coordinate System Diagram ... 28

6. ECEF Coordinate System Diagram .. 28

7. SCIR Coordinate System Diagram ... 29

8. Ram/Nadir Coordinate System Diagram .. 29

9. Housing Coordinate System Diagram .. 30

10. Ram Pointing .. 30

11. Nadir Pointing ... 30

12. Cartwheel .. 30

13. Earth Fixed Ground Station .. 32

14. Sidereal and Solar Day Diagram ... 37

15. Completing the Graph Directionality .. 47

16. Completing the Graph Step 1 .. 47

17. Completing the Graph Step 2 .. 47

18. Completing the Graph Step 3 .. 47

19. Completing the Graph Step 4 .. 47

20. Completing the Graph Step 5 .. 47

21. Completing the Graph Step 6 .. 47

vii

LIST OF FIGURES ï CONTINUED

Figure Page

22. Completing the Graph Longest Path ... 47

23. The Specific Conversions ... 50

24. Complete Specific Conversion Graph .. 50

25. Magnetic Declination (D) ... 55

26. Magnetic Total Intensity (F) ... 56

27. Magnetic Horizontal Intensity (H) .. 57

28. Magnetic Inclination (I) .. 58

29. Magnetic North Component (X) ... 59

30. Magnetic East Component (Y) ... 60

31. Magnetic Vertical Intensity (Z) .. 61

32. SpaceBuoy Magnetotorquer Values ... 70

33. Playback Control Bar .. 74

viii

LIST OF EQUATIONS

Equation Page

1. Vector Translation .. 19

2. Point Translation ... 19

3. Symbolic Representation of ECIR to HE ... 33

4. Symbolic Representation of ECIR to ECEF ... 37

5. Symbolic Representation of ECIR to SCIR .. 37

6. Symbolic Representation of ECIR to RN ... 39

7. Symbolic Representation of OrientationRN ... 41

8. Symbolic Representation of ECEF to EFGS .. 42

9. Proof of Matrix Multiplication Order ... 44

10. Symbolic Representation of Rigid Body Dynamics ... 62

ix

LIST OF CODE SNIPPETS

Code Snippet Page

1. CollectionRealTimeScenario .. 22

2. Astrophysics Scenario ... 22

3. ObjGroundStation ... 24

4. ECIR to HE ... 33

5. Earth Constants ... 35

6. ECIR to ECEF .. 36

7. ECIR to SCIR ... 37

8. SCIR to RN ... 38

9. CoordinateSpaceXY ... 38

10. CoordinateSpace ... 39

11. OrientationRN ... 40

12. RotateOnPlane .. 41

13. ECEF to EFGS .. 42

14. Matrix Multiplication .. 44

15. Matrix/Vector Multiplication .. 45

16. Rigid Body Dynamics ... 62

17. Magnetic Rigid Body Dynamics ... 63

x

ABSTRACT

For small satellite development groups building, testing and launching satellites can be

very expensive. Since satellites can have no physical contact while in space testing satellites

before launch is very important. To test satellites at low cost software simulation should be used.

Several professional software simulation packages exist but they can be expensive to licensed and

be trained for. The goal of this paper is to describe a free open source astrophysics simulator that

can be used for testing and prototyping. The simulator must be flexible and customizable so that

it can be modified for each satellite project. The solution is VideSupra. VideSupra is a software

simulator with a built in package for astrophysics simulation. VideSupra is a plug and play

application so can be quickly modified and extended as needed. For small satellite development

groups VideSupra will provide the needed low cost testing tool.

1

PROBLEM AND GOALS

Satellite development is costly in both time and money. Additionally, because of the

nature of satellites, testing them is extremely important but also extremely complicated. Many

satellite groups develop satellites between 1 and 200 kg and typically less than 50 cm per side,

called smallsats or nanosats. These groups are usually noncommercial, such as college satellite

programs. For these groups most testing methods are not feasible because the test cost compared

to the satelliteôs cost is so great. For such groups a simulated testing environment would greatly

reduce the overall cost of development.

The goal of VideSupra is to provide a flexible, extendible, free, open source software

simulator which can be used to test satellites. Although no software testing solution will ever be

able to replace all of the more expensive physical tests, for many development groups VideSupra

will be an effective means to minimize the number of more expensive tests needed to debug a

satellite. VideSupra can also be used purely as a simulator, while not testing a satellite. In this

mode VideSupra can be used to aid in the research, design, development, and launch trajectory

selection of a potential satellite.

VideSupraôs capabilities include:

¶ Written in the C# with .Net Framework 4.0.

¶ Dynamically loads via an easily extendable plug and play system.

¶ Contains the PhySim2 library for generating a model view controller physics

simulation.

¶ Provides a toolset of data structures used by most simulations.

¶ Predefines an astrophysics simulation plug-in that comes with several controls.

¶ Predefines plug-in views for displaying raw data, data in 2D graphs, and 3D data

2

modeling.

¶ CƭŜȄƛōƭŜ ǎŎƘŜƳŜ ŦƻǊ ŎǊŜŀǘƛƴƎ ŀƴŘ ŎǳǎǘƻƳƛȊƛƴƎ ǎŎŜƴŀǊƛƻǎ ǘƻ ǎǳƛǘ ǘƘŜ ǳǎŜǊǎΩ ƴŜŜŘǎΦ

¶ Scenario setup is done via an intuitive graphical user interface.

This report contains the following sections:

¶ Section 2, Background: An overview of the challenges that satellite development

groups face.

¶ Section 3, Attitude Determination And Control Simulation: Montana State

¦ƴƛǾŜǊǎƛǘȅΩǎ ǎŀǘŜƭƭƛǘŜ ŘŜǾŜƭƻǇƳŜƴǘ ƭŜŀŘƛƴƎ ǘƻ ǘƘŜ ŎǊŜŀǘƛon of VideSupra.

¶ Section 4, PhySim2: A look at the core libraries for running simulations.

¶ Section 5, VideSupra: An explanation of the built-in data types and how to extend

VideSupra with dynamically loaded libraries.

¶ Section 6, PhySim2AstroPlugin: A detailed breakdown of the Astrophysics plug-in,

what is provided and how it works together to create satellite simulation scenarios.

¶ Section 7, Running an Astrophysics Simulation: An instruction manual for setting up,

running and reviewing a typical astrophysics simulation.

¶ Section 8, Conclusions: A review of the goals of VideSupra and a discussion of future

development options.

¶ Section 9, Resources: The list of books, papers, websites, and software used during

the development of VideSupra.

3

BACKGROUND

As wireless technology and global connection become more prevalent, more man-made

satellites will be needed. Not just for the global network and triangulation systems, but more

research satellites and garbage collection satellites must also be flown. Currently only

government agencies, commercial groups, and educational institutions can afford to create

satellites. The cost for a satellite project is split four ways between the development, testing,

launch, and data collection. For research satellites data collection is the cheapest section.

The development process costs so much because of the man hours required to design and

assemble space resilient hardware and software. The satellite must endure severe fluctuations in

temperature, extreme vibrations, and harsh radiation. The satellite also must run without any

physical contact for the entire duration of the mission. If the system doesnôt turn on or wonôt

listen to the commands being transmitted to it, the mission is a failure. Even just transmitting a

signal to it is complicated. If the satellite has an equatorial orbit, the satellite would be travelling

at around 7km / sec. and it would orbit the Earth about every 90 minutes. The development team

would have to design the satellite and ground station to handle the Doppler shift and constant loss

of signal. Even if the antenna could broadcast from horizon to horizon the air density near the

edges would distort the signal leaving a 60 degree window straight above the antenna for

communication. The cheaper systems donôt have a network of antennas and canôt afford to pay

for time on an existing network. They only have the connection at their mission command center.

Therefore the satellite can only be reached for 10 minutes every 90 minutes when the orbit syncs

up with the altitude and latitude of the command center. The communication scheme must be

resilient towards a bad connection without having too much redundancy checking and

handshaking so that as much information as possible can be transferred in the limited available

time.

4

On top of all that the design of the satellite must handle the high velocity oxygen ions

which burn holes straight through any conductive material on the satellite and free radicals

flipping bits on and off in the electronics. Also there is no air, so the heat generated by the

components could cause them to overheat. A thermal conductive circuit has to be added on top of

the electrical system in order to keep the parts from cooking or freezing. Newer hardware can

either use less power and therefore produces less heat or provide more processing speed using

more power and producing more heat. Newer hardware also use smaller transistors which are

more vulnerable to the ions and electrons. Typically space tested and proven hardware has to be

used. Unfortunately they are older and provide less computation power therefore the software

must be very lightweight but still affective.

If that wasnôt enough the satellite will be violently shaken by the launch vehicle before

the mission even begins. Structural teams need to design the satellite to be lightweight and very

sturdy. Obviously the design and development of a new satellite cannot be simplified, otherwise

the mission is a failure before it even begins.

The launch of the satellite is expensive because a small group will not have a rocket

powerful enough to launch even a small satellite into space, nor the launch pad and clearance.

The cheapest method to date is to buy a flight from Kazakhstan on a decommissioned warhead

launch vehicle. If the group is American then they will have to get the US government to help

transport the satellite to Kazakhstan since satellites are considered munitions when they are

crossing international borders. NASA will launch satellites but for the smaller groups NASA is

too expensive or to difficult to get a flight with. There are some companies which are willing to

launch a satellite for free if the group enters into a development competition and wins. Typically

this means that the satellite has to provide a desired functionality for the use of the company

sponsoring the competition. Either way the satellite will only be given a specific orbital

inclination for a steep price. The cheaper the fight the more likely a failure to launch will occur.

5

This wastes the cost of the building materials and assembly costs. There is insurance that can be

provided for such a failure. The insurance is ideal for large expensive satellites but usually costs

more than the smaller satellites cost themselves. The price is dependent on weight and size so

small satellites do get an advantage there.

That leaves testing. Satellites can be tested in several ways and should be tested in as

many as possible. Launching an incompetent satellite will cost much more than spending a little

more in testing and a little more in development. There are several physical tests which can be

performed. A prototype of the satellite can be attached to a high altitude balloon to test

communication and some sensors. The high altitude balloon has thermal problems because the air

is very cold but not thin enough to have the components or the sun provide the same thermal

conditions as in a flight. A cheap and temporary solution is to include a heater in the test to keep

the components warm. There are drop zones, used by NASA, which will provide about a minute

of free fall down a dark mine shaft or a drop from a high altitude air craft. Both are expensive,

provide a short test, the satellite must be small, and the air provides enough drag that the terminal

velocity is reached. The satellite should be placed in a smooth sphere so that it can tumble freely

without the air catching corners. Even then the moment of inertial isnôt enough to overcome the

roll of the sphere in the air to provide a good clean test. The small group can also buy or rent a

ñshaker and bakerò to test the satellite under extreme temperatures and violent vibrations. The

group could also buy or build a vacuum chamber to test out gassing and thermal. The better the

chamber the more expensive. Most vacuum chambers will not be able to even get close to the

vacuum of space, but some of the nicer ones will be able to change the atmosphere to Nitrogen or

Helium rich, or change the temperature of the remaining atmosphere.

The nonphysical tests are performed by removing the sensors and replacing them with a

hardware-in-the-loop system (HIL). This setup convinces the satellite that it is in space and the

satellite can then be tested realistically before spending money on rigorous physical tests.

6

Depending on how realistic the HIL is depends on how much time and man power is put into

developing it. Therefore the better the HIL is typically the more expensive it is. A HIL should

simulate Doppler shifts, thermal reading, magnetic readings, GPS, lunar gravitational pull, etc., as

needed to test the satellite. Doppler shifts and GPS can be hard to simulate unless a large chunk

of the hardware below the antenna is removed and only the result from the hardware is sent in via

serial. Since these nonphysical tests can be done in house with a ñflat satò (a prototype satellite

with the hardware just laid out flat across a table) they can be done multiple times without

increased cost, other than paying the group members who are running the tests. The tests are

repeatable with lots of detailed results. Once the satellite matures it can be run on an alpha

prototype, the full satellite put together but with sensors still replaced by a HIL via a port. Once

the alpha passes the HIL tests it should be put into beta and start physical testing. Some groups

will even leave in the HIL port on the final release so that on the way to the launch site the

satellite can run a simple diagnostics to make sure all parts are functioning correctly. These

diagnostics are simply a short HIL test. For the HIL to work it must be a physics simulator which

can predict, using the satellites output, the feedback response the satellite would receive from the

environment.

7

ATTITUDE DETERMINATION AND CONTROL SIMULATION

VideSupra is based off of several software packages. The software packages were

originally designed as a HIL and physics simulators for the Maia nanosatellite project at Montana

State University (MSU). The Maia project was designed to characterize near earth variations in

the energetic charged particle of the magnetosphere with a new solid state particle detector. The

ADC (Attitude Determination and Control) team for the Maia project needed to determine the

desired orbital paths and satellite rotation. The whole project had very little budget for

development so software solutions were desirable for testing in the preliminary stages. The ADC

team needed to check that their algorithms could correctly determine the satelliteôs attitude and

determine a correct solution for controlling the rotation. The ADC system had a minimal power

budget and a slow processor. The tests that were created would have to be repeatable so that once

a solution was designed it could be optimized to run in real-time on the hardware. The team

selected one member, Grant Nelson, to design and build a simulator that would feed in sensor

information and simulate the resulting response to the control output from the satellite while the

rest developed the embedded software for the satellite.

The software packages evolved over three years as the Maia project was in development.

The Maia mission lost several of its lead developers and the mission got put on long term hold.

The parts, personal, and development was shifted to a similar project called SpaceBuoy. Through

the transition the requirements changed and the specialized software packages were deprecated.

After the shift the deprecated software packages were redesigned as a single application that

would to work on all of MSUôs satellite projects. This new application was named VideSupra.

8

Requirements

Even though VideSupra is flexible enough to work for almost any simulation and HIL, its

main purpose was to test SpaceBuoy and, although no longer being worked on, still perform the

Maia tests. The requirement for VideSupra was that it must be able to simulate most, if not all, of

the satellitesô requirements and environment for the individual missions.

Maiaôs orbital path and rotation had to maximize the payload sensorôs data. The sensor

was mounted on the top of the satellite and the top and sides were fitted with solar panels. The

solar panels had to face the sun as much of the time as possible without affecting the collection.

The satellite could also be sent into a collection mode where the sensor requirement could be

ignored so that more power could be gained by the solar panels. That mode was only initiated if

the battery power became critically low.

SpaceBuoyôs orbital path and rotation has to maximize the payload sensorsô data as well.

These sensorôs are positioned on two of the sides of the satellite along with the solar panels. To

maximize the amount of data collected the sensorsô field of view has to sweep through the ram

vector whilst also keeping the solar panels facing the sun. The bottom of the satellite, with

thermal reflector, must never face the sun or the bottom of satellite would overheat causing

damage to the circuitry and batteries. The top of the satellite has auxiliary antennas for high

bandwidth and ham radio. The different requirements were weighted such that the system could

determine which was the most important at a given moment. SpaceBouy could be put into the

same solar collection mode as Maia by changing the weightings such that the solar gain was

greater than the sensorôs requirement weighting. This could also be done so that the antenna

weighting could be raised to put SpaceBouy into a higher quality transmission mode.

The full requirements are much more exhaustively described in the mission

9

documentation however the full requirements are not needed for the scope of this paper. The

mission documentation is available under the NASA-AFRL space scholars program agreement.

Contact MSU-SSEL for more information.

Solutions

The ADC team determined that the solution for the Maia mission was to get the satellite

to rotate in a ram pointing motion (see Figure 10, page 29). This motion would best fulfill the

sensor and solar panel requirements. The team determined the easiest method for this control

would be three perpendicular magnetorquers. These magnetorquers, or torque coils, could cause

rotational acceleration when turned on perpendicular to the earthôs magnetic field. This would

provide the means of rotation when they were turned on at the proper time. To determine the

proper coil and strength required a magnetic sensor. The sensors could only be used when the

coils arenôt causing a magnetic field of their own.

For SpaceBouy the team determined that a cartwheel motion (see Figure 12) would work

best. They also determined that along with the magnetic sensors, to get proper rotational speed

and determination of relation to earth, a blackbody sensor should be added. The system would

still use the torque coils for movement.

This meant that the simulator had to determine the Earthôs magnetic field that the satellite

would experience at a specific time and location. The location had to be calculated given the

flight path and time. The desired attitude would have to be created and the simulated attitude

would have to be calculated given the magnetic force of the coils and the Earthôs magnetic field.

The coils could be calculated given the configuration and applied voltage. The blackbody sensor

could be simulated with the position of the Sun and Earth. Since the Sunôs relative location would

be found the amount of solar gain for the satellite could also be calculated.

10

PHYSIM2

The solution for the ADC team is a dynamic physic simulator which is flexible enough to

handle a variety of configurations. To handle this a library was created called PhySim, short for

physics simulator. PhySim was a set of software tools which another program could use. The

PhySim could run a set of controls which would create the desired results for the simulation, the

problem was that the software interface was very complicated to use and setup. PhySim2 was

designed to handle the setup for the programmer and simplify the configuration of the simulation.

PhySim2 is a model view controller design. The base simulator does not know what it is

calculating nor what the results will be, otherwise flexibility would be lost. The simulator just has

to run a set of controls, but before it can run them it will determine the order in which the controls

can be called. This determination stage (the main difference between PhySim and PhySim2)

provided the organization and flexibility sought for. A group of controls were written to calculate

the location of the Earth relative to the Sun, the rotation of the satellite, the magnetic field, and so

on. When these controls are added to PhySim2 a simulation would be run that could be used in

the HIL for a satellite or just to investigate the configuration of the satellite. One set of controls

would simulate the Maia mission and another set would simulate SpaceBouy. Most of the

controls were the same between these two satellites. PhySim2 is flexible enough that controls to

describe a table with pockets, a pool cue, billiard balls, and collision detection could be added to

simulate a round in a game of pool.

PhySim2 has a generator class which is used to create the simulator. The controls can be

added and removed freely from the generator. When the configuration is ready the generator is

told to create the simulation. The generator performs checks to make sure that all the proper

controls are received. These checks include initializing the controls to let them know that they are

11

about to be used and to give them the opportunity to request all the variables that theyôll need.

The requests can be made in any order and the generator can call the controls in any order.

Variables

The data for the simulation used by each control has to be typed and have correct units.

Access to the data had to be restricted to maintain data correctness. The hardest part is that the

data is unknown to the simulator but the controls had to be able to look up data and write data

quickly. The views of the data had to be able to look up data but not be able to write.

During the generation of the simulator the controls get a chance to request variables that

they will need. Not all variables used by a control need to be declared, only the ones that are

accessible from outside the control. The requests for variables are returned to the control as the

variable which they will use when running, however they cannot use it at this time. The variable

uses a proxy pattern to protect from data being set before writing data is allowed. Figure 1 shows

the design for this.

<<interface>>

Variable Handle

Variable Request

Control

Implemenation

Variable Reader

Variable ActiveVariable Writer

Variable Container

Variable Pending

Writer

<<interface>>

Control

Figure 1: Variable Design for PhySim

12

The variables can be requested to either write normally, suspend the write until the end of

the simulation cycle, or write a constant variable which then cannot be changed. The variables are

multiple read, single write (MRSW) so that only one control is allowed to write to a variable to

keep conflicts from occurring. The variable writer provides access to modify the value and the

guarantee that the variable will not be read from in that simulation cycle until after the value is set.

The pending writer provides access to modify the value at the end of the cycle so that the read

value is from the previous cycle. The controls can read a pending variable at any time since the

value during a cycle is the value that was set at the end of the previous cycle. When a control

writes to the pending variable the new value is not actually set until the end of the cycle

regardless of when it was written. If a constant variable is requested a reader variable is returned.

The value is set during the activation of the variables and never allowed to be changed again. The

variable containers just redirect calls to the variable request class or the variable active class.

During the generation of the simulation the variables are all just request classes, but once the

simulation is finished being created the last step is to replace all the requests with active variables.

Since the container variable is just a proxy for the current variable, either the request or

active variable, many containers can be created for the same variable. Even with many containers

for the same variable the memory overhead is low and no value propagation is needed to set the

value to many controls. The containers always return the newest value, except in the case of a

pending writer where the newest value is not set until the end of the cycle. Also by using multiple

containers all the controls which asked for just a specific type get just that specific type. Even

though the writer extends the reader, just the reader is given to those controls which request it.

That way the control cannot cast up to another type of variable but they can cast down towards

the container. The container is the lowest form of variable. The reader returns a typed value

where as the container only returns a non-typed value. This makes reading values easy for views

which donôt know or donôt care about the type of the value.

13

The request variables keep track of which controls asked to read from them and which

controls asked to write to them. They allow default values to be set and attributes to be modified.

Both the request variables and active variables keep the name, type and units, but only the active

variables keeps the value of the variable. The use of the request variable provides the generator

the ability to initialize the controls in any order. Once the controls are all initialized the list of

requests are used to determine the dependency order.

The Variable Pool

Since the simulation can be customized, the program needed a way to keep the large

number of active variables without knowing what they are. Some simulations could run much

faster than real-time so the simulation should keep the data for review and playback. This also

proves very useful when the simulation runs slower than real-time. The results can be collected

for a long time, then the simulation can be reviewed at normal speed. To solve this problem the

variable pool was designed for PhySim.

Figure 2: Variable Pool Example

14

When a control or view sets a variable from the variable pool, a variable container or

reader is returned. To get a variable the control must provide the name, the units, and the type.

This helps diminish unit mismatch problems. Too many errors occur from not having the correct

units. Once a control has gets a variable class it can use the variable without ever having to look

the variable up again.

When the simulation is being created the controls must declare the variables that it

intends to use. The variable pool is then created with those variables in it. The variable pool may

not have variables added nor removed for the rest of the simulation. At the end of each cycle of

the simulator the variable pool will have the new value for that cycle.

At the end of each cycle the values for the changed variables are copied and put into a

frame that is added to the variable lake. The variable lake is a collection of changes to a pool over

time. The lake can be used to replay the simulation as well as fast forward, rewind, or playback at

faster or slower than real-time. To playback the lake, a variable pool is gotten from it, then as

requests for different times is sent in to the lake, that pool will be properly updated with the

values for the nearest time to that request. Figure 2 shows the viewer, provided with VideSupra,

of the variable pool. The viewer will show the variable pool as a lake is played back.

Determining Control Dependencies

Once all the variable requests have been collected the simulation generator must activate

them and determine the dependencies before the simulation is finished being built. The simulation

generator determines the dependencies of the controls using the requested variables while

activating them. When a variable is activated all the variable requests for the same variable are

connected and activated with it. The following rules are run to determine the dependencies while

activating the variables.

15

1. All variables are checked to have one and only one writer. All the variable requests

are checked against that writer to make sure that they have the correct type and

units.

2. All the constants and pending variables are activated.

3. {ƻƳŜ ŎƻƴǘǊƻƭǎ ǿƻƴΩǘ ƘŀǾŜ ŀƴȅ ǊŜŀŘ ǊŜǉǳŜǎǘǎ ōŜŎŀǳǎŜ ƴƻƴŜ ǿŜǊŜ ƳŀŘŜ ŦƻǊ ǘƘŀǘ

control or because all of the ones which were made have been activated. For all the

ŎƻƴǘǊƻƭǎ ǿƘƛŎƘ ŘƻƴΩǘ ƘŀǾŜ ŀƴȅ ǊŜŀŘ ǊŜǉǳŜǎǘǎΣ ƛǘ Ǉǳǘǎ ǘƘŜƳ ƛƴǘƻ ǘƘŜ ŎǳǊǊŜƴǘ ƭŜǾŜƭ ƻŦ

dependency and activates all of its write requests, which activates all of the read

requests that match the write requests.

4. Increase the dependency level. Repeat step 3 until no controls were added during

that step.

5. If all the controls have been put into dependency levels then the simulation has

been activated. If any controls are not in a dependency level then those controls

have a dependency loop. A dependency loop is when a control writes a variable

another needs, while at the same time the other control writes what the first one

needs. Neither can be run first because they depend on the each other. Dependency

loops can be fixed by making one of the controls request a pending variable instead

of a write variable.

16

VIDESUPRA

VideSupra, called VideSupra2 in the code after the update from PhySim to PhySim2.

VideSupra combines PhySim with a GUI and plug-in loader to provide a setup tool which

beginning users will be able to use while still providing the full functionality of PhySim. The

plug-ins provide a way to quickly develop and extend VideSupra.

Physics and Mathematics

The standard units are radians, kilometers, kilograms, seconds, nanoteslas and watts. The

time zone used is Coordinated Universal Time (UTC) as defined in ISO 8601. However, to

simplify some equations and to meet requirements, other units may be used; degrees, meters, days,

or minutes. Even though the variables help enforce units, it may not solve all unit mismatch

problems. Always keep a close watch when dealing with units. The user interface may use an

alternative time zone for convenience. No parts may use, nor should use, United States customary

system, as default units.

The simulator uses IEEE 745, a standard for binary floating-point arithmetic, 64 bit

double-precision storage for fractional values and 32 bit integer storage using twos-complement

for whole numbers. As with the units, for some parts of the simulator other storage types are used.

VideSupra is written entirely in C#, therefore it is compatible with Windows XP with

the .Net 2 Framework or greater, Vista, Windows 7, or above. The current libraries are compiled

so that they can be included into, but not limited to, C, C++, C#, J# and all CLR based languages.

VideSupra will load any CLR based language plug-in, so new libraries do not have to be written

in C#.

17

Types

The types group is made up of seven main classes with some helper classes. Each main

class is a storage type for holding some type of data. This data should be useful in creating a

functional simulator. Using these types, doubles, strings, and integers will make future controls

and maintenance easier to do than each control defining unique types. As always common

features make a system more compatible with future designs.

DateTime and TimeZone

The DateTime and TimeZone classes are designed to accurately handle time. Both are

designed to keep the values accurate and only use one double to store the value. They use

algorithms to calculate the equivalent seconds, minutes, hours, days, etc..

The TimeZone class stores a name and an hour offset. It also includes the 76 main time

zones predefined. There are two methods to note for the TimeZone. They are ToUTC and

FromUTC. Both take in a DateTime and return a DateTime. The methods change the given time

from UTC to the TimeZone whose method was called or vice versa. This is simply done by

adding or subtracting the hour offset from the given DateTime. As stated this is fairly straight

forward.

The DateTime is slightly more complex. DateTime stores the ticks (10,000.0 ticks per

millisecond) since the date and time 1/1/0AD 00:00:00.000. The time can contain fractions of ticks

for very precise simulations, such as light diffraction simulations. The date can be negative to

represent BC dates. The precision for the date and time is 52 bits with an 11 bit mantissa, as

defined by IEEE 754, which means that as the value goes up the precision becomes less. For most

applications this is great because, if the simulation is in centuries typically the steps will only be

at smallest days, and the precision would be in plus minus hours, whereas if the

18

simulation is in days typically the steps will only be in seconds, and the precision is in ticks. The

DateTime can even measure in milliseconds with a precision much smaller than picoseconds.

High precision simulations should ignore the day, month, and year. Set them to 1/1/0AD for best

results.

The DateTime contains methods for getting difference and sum between other dates. It

also contains conversion methods from System.DateTime and methods for getting days, months,

years, hours, minutes, seconds, and so on. It handles the Julian and Gregorian reform. It also

converts to and from Julian days.

Mass

The Mass class is designed to handle a complex rigid body of mass. Mass has three main

fields, the first is the total mass in any unit, the second is the center of mass, and the last is

moment of inertia tensor matrix and its inverse. The moment of inertia tensor is a Matrix3x3

designed to handle only rotational inertia. Linear momentum can be calculated with the total mass.

The center point is a VecPnt. The Mass class contains methods for adding other masses to it,

translating the mass, and rotating relative to its own coordinate system.

The Mass can be set directly or it can be calculated using a list of presets including a

spherical mass, cylindrical mass, cube mass, cone mass, etc. The original mass design has been

tested and proven in the open source ODE (Open Dynamics Engine)
9
. The design has been

changed to better suit the PhySim, and rewritten in C#.

Matrix3x3, Matrix4x4, and VecPnt

The matrix classes, Matrix3x3 and Matrix4x4, are designed to handle fast matrix

rotations, scales, and coordinate setup. The 4x4 matrices are 3x3 minors padded with a vector in

the fourth row. The fourth column is all zeros save the lower right, which is typically a one. The

4x4 matrices use the fourth row and column to perform translations, therefore some of the math

19

operations for the 4x4 matrices leave out the fourth row and column to maintain consistency. The

fourth row and column are also used to handle orthogonal and perspective camera projections for

3D graphics or shadow casting algorithms.

The VecPnt is a vector or point class. The first three values represent the X, Y, and Z.

They are used for all vector mathematics (length, cross product, dot product, etc.) and act as

typical 3x1 matrices. The fourth value, W, is left out of most of the vector mathematics. The W is

designed to determine if the VecPnt is a vector or a point by being set a 0 or a 1, respectively.

Any value other than 0 or 1 will cause the VecPnt to scale its own translation. The VecPnt is

designed to work with matrix classes. For 3x3 matrices the W value is ignored while being

translated. For the 4x4 matrices the matrix multiplication is performed fully to cause the VecPnt

to translate properly, whether the VecPnt is a vector or a point. Equation 1 and 2 show how this

multiplication performs for a vector and a point. Note: The transpose on the VecPnts are just to

make it easier to read. The matrices and VecPnt is stored in doubles to represent the formats

shown in Figure 3.

ὢ
ὣ
ὤ
π

Ὑ Ὑ Ὑ π
Ὑ Ὑ Ὑ π
Ὑ Ὑ Ὑ π
Ὕ Ὕ Ὕ ρ

Ὑ ὢ Ὑ ὣ Ὑ ὤ
Ὑ ὢ Ὑ ὣ Ὑ ὤ
Ὑ ὢ Ὑ ὣ Ὑ ὤ

π

Equation 1: Vector Translation

ὢ
ὣ
ὤ
ρ

Ὑ Ὑ Ὑ π
Ὑ Ὑ Ὑ π
Ὑ Ὑ Ὑ π
Ὕ Ὕ Ὕ ρ

Ὑ ὢ Ὑ ὣ Ὑ ὤ Ὕ
Ὑ ὢ Ὑ ὣ Ὑ ὤ Ὕ

Ὑ ὢ Ὑ ὣ Ὑ ὤ Ὕ
ρ

Equation 2: Point Translation

ὓππ ὓπρ ὓπς
ὓρπ ὓρρ ὓρς
ὓςπ ὓςρ ὓςς

ὓππ ὓπρ ὓπς ὓπσ
ὓρπ ὓρρ ὓρς ὓρσ
ὓςπ ὓςρ ὓςς ὓςσ
ὓσπ ὓσρ ὓσς ὓσσ

ḳ

ụ
Ụ
Ụ
Ụ
ợ
Ὑππ Ὑπρ Ὑπς Ὕὼ

ᴂ

Ὑρπ Ὑρρ Ὑρς Ὕώ
ᴂ

Ὑςπ Ὑςρ Ὑςς Ὕᾀ
ᴂ

Ὕὼ Ὕώ Ὕᾀ ρỨ
ủ
ủ
ủ
Ủ

ὢ
ὣ
ὤ
ὡ

Ὕ
ὼ
ώ
ᾀ

Matrix3x3 Matrix4x4 (coordinate conversion matrix) VecPnt Quaternion

Figure 3: Storage Formats for Select PhySim Types.

20

Quaternion

In some of the more delicate physics calculations a quaternion is used in place of a 3x3

matrix. The Quaternion class handles quaternion mathematics for three dimensional rotations

without the fear of gimbal lock. Gimbal lock occurs while using matrices. If any rotation is very

close to or at 90° an entire axis is lost so that all control falls to the remaining plane. Quaternions

are designed to handle the physics of orientation, rotational velocity, and angular acceleration. A

quaternion used four doubles to store its data, as shown in Figure 3. The first value, óTô, is

represents the real part of the quaternion where as óxô, óyô, and ózô represent the fourth

dimensional imaginary number parts. Therefore the quaternion as a single number would look

like, ὗ Ὕ ὼὭώὮᾀὯ, where óiô, ójô, and ókô are the imaginary dimensions. Quaternions fix

problems that otherwise wouldnôt be solved, and they simplify several algorithms.

Since they arenôt as intuitive as matrices, quaternions are rarely used in VideSupra.

Where they are used, they are the best method or only method for solving that particular

algorithm. One such place is the rigid body dynamics in the control SatelliteRBD found in the

library PhySimAstronomicalControls. In the billiard table example each ball would require the

use of a quaternion to calculate its location given the friction, momentum, and rotational velocity.

To get a better understanding of quaternions read ñQuaternions and Rotational Sequencesò
5
.

Plug-ins and Pages

VideSupra is a plug and play system so that it can be extended to handle new simulations,

controls, and views. When VideSupra starts up it will search the directory it was started from and

all subdirectories of that directory for plug-ins. Plug-ins are loaded as assemblies from COM

dynamic-link library (dll) files. The assemblies are checked for specific class implementations

then use the C# activator to create an instance from that assembly. When a plug-ins is created it is

21

wrapped in a shell class that makes all the calls to and from that plug-in through exception

handlers so that unknown plug-ins will not crash the whole project. During development these

shells can be turned off so that the development environment can properly navigate to the code in

the plug-in which throws an exception. Communication between plug-ins should be protected as

well by the plug-ins themselves since they will not necessarily know the other plug-in. The other

plug-in could be the expected plug-in, a new version or even a different plug-in as long as it

implements the correct interface and name. Not necessarily knowing the other plug-ins is a

desired feature. It allows for fast development, fast maintenance, and extendibility for supporting

new features.

Currently VideSupra supports only three plug-in types through the

VideSupra2.PluginCommons library. The PluginCommons require the use of some other libraries

such as PhySim2 and Types. There are four interfaces and a class in PluginCommons. One of the

interfaces is not a plug-in interface. It is the MainControlInterface. This interface is implemented

by the main control for VideSupra. This interface provides a way for plug-ins to call back to the

main control. The main control provides methods to add and remove tool strips and pages from

the main form. It also has methods to post for or show a popup for errors, warnings, notices, and

comments.

The only class in the PluginCommons is called CollectionResult. This class is used by the

simulation during a collection to mark a pool returned from the simulation. This class can be

extended to carry other frame information as needed by the scenario and is used when placing a

pool in the lake. Typically this wonôt need to be extended. Extra information can be put into the

pool instead. A scenario plug-in will require the use of this class.

The Scenario interface allows new scenarios and scenario formats to be created.

VideSupra already implements an abstract scenario designed to run real-time and collection

scenarios, as seen in Code Snippet 1.

22

1

2

VideSupra2.CommonTools.Scenarios

{

 /// <summary>

 /// This is an abstract scenario for collection and real - time scenarios.

 /// </summary>

 abstract public class CollectionRealTimeScenario:

 VideSupra2.PluginCommons .Scenario

 {

 ...

 }

}

Code Snippet 1: CollectionRealTimeScenario
(line 28 in Libraries\CommonTools\Scenarios\CollectionRealTimeScenario.cs)

As with the other plug-ins, extending, inheriting and implementing the scenario can be

done to make a common class for other scenarios. The plug-in loader will not load these because

of two things. First it will not load abstracts, statics or interfaces because they cannot be

constructed. Similarly, scenarios with private or protected constructors or those which donôt have

the public default constructor, a constructor with no parameters. Secondly it will not load the

scenario implementation just because it inherits the scenario. The class must have a special

attribute tag on it too. Only when the attribute is on a class which inherits the plug-in interface

will it be loaded. Code Snippet 2 shows the scenario plug-in for the astrophysics package.

1

2

3

/// <summary>

/// This is the main scenario plug - in for the Astronomical Simulator.

/// </summary>

[VideSupra2.PluginCommons .ScenarioAttribute]

public class Scenario:

 VideSupra2.CommonTools .Scenarios.CollectionRealTimeScenario

{

 ...

 public Scenario()

 {

 ...

 }

 ...

}

Code Snippet 2: Astrophysics Scenario
(line 27 in Plugins\PhySim2AstroPlugin\Scenario.cs)

The second plug-in interface is for a scenario object called ScenarioObject. Scenario

objects are used to build a tree representing a specific setup to collect data for. The root scenario

23

may not be removed from the tree. The root is provided by the scenario. The objects can be added

as needed to the tree but they can also accept or reject being used in some tree formations. For

example, the astrophysics scenario provides a root object called the universe. The universe can

have the Sun, the Earth, or a satellite added to it but not all three. If the Sun has been added to the

universe, the universe will keep an Earth, a satellite or another Sun object from being added. The

Sun will only accept an Earth object yet only one can be added. The Earth will accept any number

of satellites. When the tree is finished being built the objects define which controls are added to

the simulator and set them with some values. The object is how controls get added, the controls

themselves can be in the same library as the object or in any other. It doesnôt matter where the

controls are as long as the plug-in object can create them.

The scenario object is presented to the user in a property grid (System.Windows.Forms.

PropertyGrid). This means that class attributes are directly visible, unless otherwise marked, to

the user. No extra user interface code is needed unless the type of the value being displayed is

unique. All of the built in C# types and all the types in the VideSupraôs Types library already

have user interface controls for the property grid created for them. Code Snippet 3 shows how to

customize the user interface for a double value for an object. The attribute tags arenôt required but

it will provide more information to the user when they are using the property grid. The

description is shown with the value. The display name can make complicated identifiers into

simple to read text. For example ñrAscensionò could be renamed so that the user sees ñRight

Ascension Angleò. The category attribute will allow the user to group values in the same category

for convenience. For more information about attributes see the MSDN documentation on the

property grid attributes.

24

1

2

3

4

5

6

7

/// <summary>This gets or sets the longitude, in degees.</summary>

[SCM.Category("Properties")]

[SCM.DisplayName("Longitude")]

[UIT.NoDefaultValue()]

[SCM.Description("This is the longitude in degrees.")]

public double Longitude

{

 get { return Math.ToDeg(this.longitude); }

 set { this.longitude=Math.ToRad(value); }

}

Code Snippet 3: ObjGroundStation
(line 311 in Plugins\PhySim2AstroPlugin\Objects\ObjGroundStation.cs)

The third and last plug-in interface is the page interface called, PageInterface. The page

interface is fairly simple. Each scenario implementation should extend a page that will work

properly with it. Both the real-time and collection implementations of the scenario pages were

designed for specifically to be used with it, VideSupra2.CommonTools.Scenarios.Collection.

CollectionPage and VideSupra2.CommonTools.Scenarios.RealTime.RealTimePage. These

extended pages to have new methods added to them that the scenario can use to give a page data,

usually in the form of a variable pool. Simple pages which arenôt associated with a specific

scenario can be added as well. The page interface can put a page icon onto the main menu when

necessary and they can add their own menu strips as needed. The scenario may choose to activate

and remove certain pages for different conditions. The suggested method is that interfaces or

abstract pages are created then the scenario activates or removes all the pages of that type for

certain conditions. This will allow new pages to be added to a scenario without the scenario

having to be updated or even aware of that page implementation.

For more information on scenarios, scenario objects, and pages read the commenting

provided with the interfaces and the commenting on the abstract classes which extend the

functionality for a specific purpose. Some of the interfaces are large (14 methods) but they are

quick to implement. Most of the methods return a constant value used as an identifier, an image,

or a title. The interfaces were designed such that C# knowledge is required (or any other COM

development language) but beginner programmers should be able to handle creating plug-ins.

25

This is needed because although the scenario and the pages are usually written by a programming

team, the scenario objects should be able to be written by a physics team.

The following sections discuss in detail the controls for the astrophysics scenario. These

controls are added as plug-ins through scenario objects. The objects share the same name. A few

of the scenario objects will create multiple controls but for the most part they are one to one. The

control goes into the simulation and the object provides methods for setting and creating the

controls.

26

PHYSIM2ASTROPLUGIN

The PhySim2Astro plug-in provides controls, objects, and a scenario for astrophysics

simulation specifically to simulate the environment required for developing and testing satellites.

The following sections discuss the different parts of the plug-in.

Coordinate Systems Conversions

In order for a simulation, specifically VideSupra, to work right, coordinate systems, as

frames of reference, have been designed and built in as the backbone. PhySim2AstroControls

defines several conversions between coordinate systems. VideSupra will implicitly and

automatically generate the coordinate conversions not defined explicitly by the

PhySim2AstroControls package. To prove the correctness of these coordinate conversions, first

the definition of the coordinate systems will be presented followed by the mathematical

representation and implementation for a specific conversion defined by the

PhySim2AstroControls package. Every auto-generated coordinate conversion will not be

mathematically derived, however the correctness of the auto-generation process will be

scrutinized.

Note that some minor changes from the standard coordinate systems may be present but

those changes still maintain the validity of the data in that coordinate system. Some of the

changes are to handle the discreet nature of the software and others are for enforcing

compatibility. The main practice is to use matrices and vectors using the right hand rule for a

three dimensional Cartesian coordinate system. These coordinate systems typically use the XY

plane to define the movement path and the Z vector points up.

27

Heliocentric-Ecliptic

The Heliocentric-Ecliptic Coordinate System (HECS) has the sun in the center and uses

the earth as a point of reference (Figure 4). The X vector is pointing at the Vernal Equinox

direction, when the days and nights on earth are the same duration and the northern hemisphere is

heading into winter, also known as the first day of autumn. Since the Vernal Equinox occurs at

noon in spring the vector is extended towards the sun and out the other side, hence it is out the

autumn side of the orbit. The X vector points towards the constellation Aries, the ram, therefore

the astronomy symbol for Aries will sometimes replace X in different documentation. The X

vector is the guiding vector such that when the vectors become homogenous the X vector remains

in the same direction. Since the Earthôs axis wobbles slightly the Vernal Equinox will vary

slightly from year to year. The X vector is associated with an epoch or year in which the Vernal

Equinox is based off. The XY plane is defined by the ecliptic in which the earth moves around

the sun hence the coordinate system is called the Heliocentric-Ecliptic Coordinate System. The Y

vector points towards the northern hemisphereôs winter solstice, the shortest day of the year. The

planet then rotates counter clockwise around the sun on the Z axis. The length between two points

in this coordinate system is in kilometers. However, the standard outside of VideSupra is in

Figure 4: Heliocentric-Ecliptic Coordinate System Diagram

28

Astronomical Units (AU), the average distance from the sun to earth, 149,598,000 kilometers.

Earth-Centric Inertial Reference

 The Earth-Centric Inertial Reference Coordinate System (ECIR) is closely related to the

HECS. This coordinate system is also called the Geocentric-Equatorial (GECS) or Earth Centered

Coordinate System (ECCS). The X is still pointing in the same direction as the HECS, towards

the vernal equinox direction. However, the Z points out of the Earthôs Geographic North Pole,

forcing the Y to point out the side according to the right hand rule (see Figure 5). This coordinate

system is not fixed to the surface of the planet, therefore no matter the hour of day nor day of year

the X, Y and Z will always point in the same direction. In fact, this coordinate system stays

relative to the stars with the exception of the precession of the equinoxes and parallax of the orbit.

The XY plane bisects the planet through the equator, hence the reason this coordinate system is

called Geocentric-Equatorial. The I, J, and K vectors are unit vectors, in kilometers,

corresponding to the X, Y, and Z axis respectively. This is the most common coordinate system

for astrodynamics. It can be used to locate the stars, satellites, and other planets.

Figure 5: ECIR Coordinate System Diagram

Figure 6: ECEF Coordinate System Diagram

29

Earth Centered Earth Fixed

The Earth Centered Earth Fixed (ECEF) is also known as the Absolute Coordinate

System for Earth (ACSE), shown in Figure 6. The ACS is similar to ECIR except for the XY

plane rotates with the planet, such that X is the point where the Equator and Prime Meridian meet

(0.0°N, 0.0°E). The Z is still out the Geographic North Pole and Y is at 90° Longitude so that the

coordinate system is right handed. The ECEF is in kilometers causing the earthôs surface to be

roughly 6371.2km from the origin (average sea level, WGS84). It is usually paired with the

equivalent ECIR Coordinate System for quick conversion. This coordinate system is designed for

locating ground stations and handling geomagnetic data.

Satellite-Centric Inertial Reference

The Satellite-Centric Inertial Reference Coordinate System (SCIR) is identical to the

ECIR except that the origin of the coordinate system has been translated to the center of mass for

the satellite (see Figure 7). When no torque is applied to satellite which is not currently rotating,

the satellite will remain stationary relative to this coordinate system. The drag coefficient, B*, is

considered negligible as a torque on most low budget. The Satellite is located with the VideSupra

package SpaceTrack.Net.

Figure 7: SCIR Coordinate System Diagram

Figure 8: Ram/Nadir Coordinate System Diagram

30

Ram/Nadir

The Ram/Nadir Coordinate System (RN) is similar to a Perifocal Coordinate System for

the satellite. The main difference is that the RN is centered on the satellite and the X and Y axes

are defined by the velocity and the direction to the earth (nadir), shown in Figure 8. Unless the

elasticity is equal to zero, the velocity vector and nadir vector are not typically perpendicular; the

X remains unchanged and the Y is shifted to a homogenous vector. The Z axis is parallel to the

Perifocal Coordinate Systemôs Z axis. The Perifocal Z axis is the normal to the orbital plane. The

unit for this axis is kilometers. The coordinate system is not fixed to the satelliteôs orientation.

This coordinate system is specialized for an ADCS which must keep a payload fixed relative to

the ram direction, as required by Montana State Universityôs ï Space Buoy Project.

Figure 10: Ram pointing

Figure 11: Nadir pointing

Figure 12: Cartwheel

Figure 9: Housing Coordinate System Diagram

31

Housing

The Housing Coordinate System (HCS) is how the ADCS and anything else on the

satellite view the universe. This coordinate system is fixed to the housing such that the front

(which may be arbitrarily decided) is the X axis, the top (typically opposite side of the light band)

is the Z axis and the Y keeps the coordinate system proper to the right hand rule (see Figure 9).

The ADCS sensors and actuators are all stationary in the HCS. For many magnetically driven

satellites, the X and Y line up with the side magnetotorquers and the Z is opposite the base plane

(light band connection) magnetotorquer.

Typically the HCSôs Z axis is the axis of rotation for the satellite. The light band can

assist with an initial rotation. If the HCSôs rotational axis lines up with the RNôs Z axis the

satellite is in a cartwheel or skid orientation. When the satellite is rotating counter-clockwise

around the Z axis, as viewed towards negative Z, then the satellite is in a cartwheel orientation,

otherwise it is in a skid. If the HCSôs rotational axis aligns with the RNôs Y axis then the satellite

is nadir pointing, and finally, if the HCSôs rotational axis is lined up with the RNôs X axis then

the satellite is ram pointing.

Earth Fixed Ground Station

The Earth Fixed Ground Station (EFGS) coordinate system is a location on the earth

given an altitude, longitude, and latitude. The coordinate system starts with Z directly away from

the center of the planet, the Y axis points towards the rotational axis of the Earth, North (towards

the Z axis of ECEF), and the X axis points East. The altitude is the distance, in kilometers, from

sea level (WGS84 å 6378.15 Km), the latitude and longitude are in degrees, as standard. The

coordinate system is then rotated given an elevation and an azimuth. The elevation is the angle, in

radians, from the XY plane towards the normal (Z axis) of this coordinate system. The azimuth is

the angle, in radians, from the North vector (Y axis) clockwise around the XY plane of this

32

coordinate system. For most ground stations the elevation and azimuth are zero. The ground

station can also be used as a satellite dish location, in which case the elevation and azimuth is set

to the tilt of the dish.

Coordinate Conversions

All VideSupra Cartesian coordinate conversions are performed with 4x4 matrices, which

are formed from a 3x3 rotational matrix with the fourth dimension being the translation vector.

The format for this type of 4x4 matrices is shown in Figure 3. The current version (v1.2) of

VideSupra does not accept coordinate conversions to change units; both sides must be in the same

units, typically kilometers. This scheme allows for simple vector and point conversions using the

VecPnt structure.

ECIR to HE

The coordinate conversion from ECIR to HE requires only the current UTC. This

conversion has two tasks. The first is to locate where the Earth is at the given time and the second

is to tilt the Earth as shown in Figure 4. Since both HE and ECIR base the X axis off of the

Vernal Equinox the X vector must remain unchanged. The resolution required by SSEL for the

conversion is low. The Earthôs orbit is considered circular and the variance in Vernal Equinox

Figure 13: Earth Fixed Ground Station

33

and Earthôs obliquity is ignored. Greater resolution is not required since the only reason SSEL

needs the HE is so that the simulation can be used to simulate the SSEL sensors. The sensorôs

requirements at top resolution is °1° of accuracy and the Sun will only appear as a 0.5° width

object as seen by the sun sensors. For more specifics about the resolution requirements, read

about the simulated sensors in the Algorithms Section. The code found in Code Snippet 4 is the

method for calculating the ECIR to HE conversion.

Ὓόὲίὒέὧ πὯά πὯά πὯά ρ in HE

ὉὥὶὸὬίὒέὧ πὯά πὯά πὯά ρ in ECIR

ώ᷃ὩὥὶὙέὸς“
ὧόὶὝὭάὩὟὝὅὓὥὶὧὬ ςπȟςπππ χȡςυȡπȢπ

σφυȢςτςρωωὨὥώί

ὉὅὍὙὸέὌὉ

ụ
Ụ
Ụ
Ụ
ợ

ρ π π π
π ὧέίςσЈςφςρȢττψͼ ίὭὲςσЈςφςρȢττψͼ π

π ίὭὲςσЈςφςρȢττψͼ ὧέίςσЈςφςρȢττψͼ π

ὧέίώὩὥὶὙέὸᶻ
ρτωȟυωψȟπππȢπὯά

ίὭὲώὩὥὶὙέὸᶻ
ρτωȟυωψȟπππȢπὯά

πὯά ρ
Ứ
ủ
ủ
ủ
Ủ

Equation 3: Symbolic Representation of ECIR to HE

1

2

3

4

5

6

7

8

9

/// <summary>

/// This ca lc ulates the conversion from Earth Centered

/// Inertial Referenced (ECIR) to Heliocentric Ecliptic (HE).

/// </summary>

public ove rr ide void Calculate(PS.SimulatorArgs args)

{

 // The Sun's location in HE and Earth's location in ECIR is always zero.

 this.sunsLoc.Point=VecPnt.Point();

 this.earthsLoc.Point=VecPnt.Point();

 // Get the days and fraction of days for the Earth since Earth's epoch...

 double days=(this.curTime.Value - Const.VernalEquinox).TotalDays;

 // Get the rotational angle for th e year...

 double yearRot=Math.PI2*((days/Const.EarthOrbitalPeriod)%1.0);

 // Get Earth's location in HE...

 VecPnt eLocHE=VecPnt.Point(Const.EarthSemiMajorAxis*Math.Cos(yearRot),

 Const.EarthSemiMajorAxis*Math.Sin(yearRot), 0.0);

 // Rotate b y Earth's tilt and offset to location...

 this.CoordValue=

 Mat4x4.PadMinor(Mat3x3.XRotation(- Const.EarthAxisTilt), eLocHE);

 // Run base calculate methods...

 this.sunsLoc.Calculate(args);

 this.earthsLoc.Calculate(args);

 base.Calculate(ar gs);

}

Code Snippet 4: ECIR to HE
(line 104 in Libraries\PhySim2AstroControls\SolarSystem\ECIRtoHE.cs)

34

Line 1 in Code Snippet 4 sets the location of the center of the Sun in HE to the origin.

The variable sunsLoc is a global point. It is easier to set it to all zeros in this coordinate system

and let the auto-generators distribute it to all other coordinate systems, then try to calculate it out

of other conversion matrices. This does cause redundant data to be stored but makes the Sunôs

location easier to get.

Line 2 is the same as line 1 except it sets the center of the Earth in ECIR to the origin.

Again this is a global point so it will be propagated to all other coordinate systems. In line 5 the

Earthôs location is calculated in the HE, but by setting this value to zero in the ECIR the location

is slightly more accurate since it will require one less matrix multiplication and inversion before

reaching the coordinate systems based off of the ECIR.

Line 3 takes the current time for the simulator then subtracts the Vernal Equinox from it.

This will get the change in time since the Earth was directly on the X axis of the HE. This change

is given in days and fraction of days.

Line 4 will take the days and fraction of days since the Vernal Equinox and convert it to

the angle in radians for the Earth around the Sun. This is done by converting the days and fraction

of days into years and fractions of years since the given Vernal Equinox date. The whole part is

removed leaving just the fraction of the year since the Vernal Equinox. That fraction is multiplied

by 2́ to get the angle.

Line 5 uses the angle calculated on the previous line to get the location of the Earth in the

HE. Since the orbital plane is only in the X and Y axis, the Z offset for the Earthôs location will

be defaulted to zero. The X and Y are scaled by the mean distance between the Sun and Earth.

The X offset is calculated by taking the cosine of the angle and the Y offset is calculated by

taking the sine of the angle. This will cause the Earth to be positive X during the Vernal Equinox

the move counter clockwise to positive Y during the Winter Solstice.

35

Line 6 creates a rotational matrix, tilted clockwise down the X axis, for the Earthôs

obliquity. The rotational matrix will then be padded by the Earthôs location. Remember that this

matrix is for converting from ECIR to HE for any point or vector. That means that the frame of

reference is the Sun as if it was locating the Earth, as shown in Figure 5. If the X, Y, and Z

vectors for the Earth are sent through the ECIR to HE, the X axis would remain the same but the

Y and Z would have to tilt clockwise around the X axis as stated above. If the center of the Earth

is sent through the ECIR to HE it would have to shift the Earthôs location also as state above. The

lines 7, 8, and 9 execute the inherited code for the auto-generators.

/// <summary>Distance From Sun To Earth = 149,598,000.0 km</summary>

static public readonly double EarthSemiMajo rAxis = 149598000.0;

/// <summary>Radius Of Earth = 6,378.15 km</summary>

static public readonly double EarthRadius = 6378.15;

/// <summary>

/// Earth's Obliquity = 23 deg 26 min 21.448 sec = 0.4090928 rad

/// </summary>

static public readonly double Ear thAxisTilt = 0.409092804222329;

/// <summary>Days In An Earth Year = 365.242199 days</summary>

static public readonly double EarthOrbitalPeriod = 365.242199;

/// <summary>Earth's Sidereal Days = 0.997269566 days</summary>

static public readonly double Si derealDays = 0.997269566;

/// <summary>

/// Near March 21 (northern hemisphere) when night and

/// day are nearly the same length.

/// </summary>

static public readonly Time VernalEquinox = Time .UTC(2000, 3, 20, 7, 25, 0, 0);

Code Snippet 5: Earth Constants
(line 30 in Libraries\PhySim2AstroControls\Tools\Constants.cs)

ECIR to ECEF

Just like the ECIR to HE the ECIR to ECEF coordinate conversion only requires the

current simulation time in UTC. As shown in conversion Figures 5 and 6, this conversion is

required to take the inertial referenced coordinate system ECIR and rotate it around the Z axis to

create the ECEF coordinate system. The first requirement is that on any day at 12:00 UTC the

36

vector formed from the prime meridian and the orbital plane points towards the Sun given some

leniency for Earth obliquity. The other requirement is that the frequency of the rotation around

the Z axis is once per sidereal day in a counter-clockwise motion as viewed from the top (positive

Z looking towards negative Z) of the Earth. This also means that the Z axis must remain

unchanged during the conversion from ECIR to ECEF. The following code also uses the

constants shown in Code Snippet 5.

1

2

3

4

5

/// <summary>

/// This calculates the conversion from Earth Ce ntered Inertial Referenced

/// (ECIR) to Earth Centered Earth Fixed (ECEF).

/// </summary>

public override void Calculate(PS.SimulatorArgs args)

{

 // Get days and fractions of days since earth's epoch...

 double days=(this.curTime.Value - Const.VernalEquinox).TotalDays;

 // Get vernal equinox day off set in fractions of a day...

 double offset=Const.VernalEquinox.TotalDays%1.0;

 // Get fract ion of sidereal days then the rotational angle for the day...

 double dayRot=Math.PI2*(((days+offset)/Const.SiderealDays)%1.0);

 // Rotate earth for sidereal day and get the conversion matrix...

 this.CoordValue=Mat4x4.ZRotation(dayRot);

 base.Calc ulate(args);

}

Code Snippet 6: ECIR to ECEF
(line 94 in Libraries\PhySim2AstroControls\SolarSystem\ECIRtoECEF.cs)

Line 1 in Code Snippet 6 calculates the days and fraction of days since the Vernal

Equinox. Line 2 gets the fraction of a day since midnight on the day of the Vernal Equinox. This

is when the vector formed from the Prime Meridian and the orbital plane points towards the X

axis in the ECIR.Line 3 gets the angle of rotation around the North Pole (Z axis) for the day. The

offset for the Vernal Equinox is added to the total days of the year then divided by the fraction of

a day for a sidereal day. This causes the Earth to make one full rotation every sidereal day

causing noon (12:00:00.000 UTC) to be pointing towards the sun each and every day as seen in

Figure 14. Line 4 converts the angle into the rotational matrix and line 5 calls the base method

causing the auto-generators to run.

37

Ὠ᷃ὥώὙέὸς“
ὧόὶὝὭάὩὟὝὅὓὥὶὧὬ ςπȟςπππ πȡπȡπȢπ

πȢωωχςφωυφφὨὥώί

ὉὅὍὙὸέὉὅὉὊ

ὧέίὨὥώὙέὸίὭὲὨὥώὙέὸπ π
ίὭὲὨὥώὙέὸὧέίὨὥώὙέὸπ π

π π ρ π
πὯά πὯά πὯά ρ

Equation 4: Symbolic Representation of ECIR to ECEF

Figure 14: Sidereal and Solar day diagram

ECIR to SCIR

The ECIR to SCIR is simple. It only requires the satelliteôs location in the ECIR. The

ECIR to SCIR translates by the negative of the satelliteôs location. The satelliteôs location is

calculated using SpaceTrack.Net library and stored as a global point.

ὉὅὍὙὸέὛὅὍὙ

ρ π π π
π ρ π π
π π ρ π

ὛὥὸὒέὧὛὥὸὒέὧὛὥὸὒέὧρ

Equation 5: Symbolic Representation of ECIR to SCIR

1

2

/// <summary>This calculates the coordinate conversion matrix.</summary>

public override void Calculate(PS.SimulatorArgs args)

{

 this.CoordValue=Mat4x4.Translation(- this.hndlLoc.Value);

 base.Calculate(args);

}

Code Snippet 7: ECIR to SCIR
(line 93 in Libraries\PhySim2AstroControls\Satellites\ECIRtoSCIR.cs)

38

SCIR to RN

The SCIR to RN coordinate conversion requires the Satelliteôs Location in ECIR and the

Satelliteôs Velocity in ECIR. The velocity when normalized is the ram direction and the negative

location is the nadir vector. Using these two vectors a coordinate space can be calculated using

the following methods.

1

2

3

/// <summary>This calculates the coordinate convertion matrix.</summary>

public override void Calculate(PS.SimulatorArgs args)

{

 Mat3x3 orient=Mat3x3.Transpose(Mat3x3.CoordinateSpaceXY(

 this.hndlVel.Value, - this.hndlLoc.Value));

 this.CoordValue=Mat4x4.PadMinor(orient);

 base.Calculate(args);

}

Code Snippet 8: SCIR to RN
(line 94 in Libraries\PhySim2AstroControls\SolarSystem\SCIRtoRN.cs)

Line 1 in Code Snippet 8 gets the coordinate space using the velocity (hndlVel) and the

negative of the location (hndlLoc). The coordinate space is a 3x3 matrix. Since all the coordinate

conversions have to be 4x4 matrices, line 2 adds on the fourth dimension with a translation of

zero. There is no translation from SCIR to RN and the rotation is caused by the coordinate space.

1

2

3

4

5

/// <summary>

/// This transforms from identity coordinate space into a different

coordinate

/// space. The x axis remains directionally unchanged.

/// </summary>

/// <param name="Xaxis">This is the new x axis.</param>

/// <param name=" Yaxis">This is the new y axis.</param>

/// <returns>The coordinate space transformation matrix.</returns>

static public Matrix3x3 CoordinateSpaceX Y(VecPnt Xaxis, VecPnt Yaxis)

{

 VecPnt x = VecPnt.Normalize(Xaxis);

 VecPnt y = VecPnt.Normalize(Yaxis);

 VecPnt z = VecPnt.Normalize(VecPnt.Cross(x, y));

 y = VecPnt.Normalize(VecPnt.Cross(z, x));

 return CoordinateSpace(x, y, z);

}

Code Snippet 9: CoordinateSpaceXY
(line 564 in Libraries\System.Types_3D\Matrix3x3.cs)

39

ὠὩὰ ᴁὛὥὸὠὩὰᴁ

ὒέὧ ᴁὛὥὸὒέὧᴁ

ὄὭὔ ὠὩὰὒέὧ

ὔὶά ὄὭὔὠὩὰ

ḈὠὩὰṶὄὭὔṶὔὶάṶὠὩὰ ÁÎÄ ὠὩὰ ὄὭὔ ὔὶά ρ

ὉὅὍὙὸέὙὔ

ụ
Ụ
Ụ
Ụ
ợὠὩὰ ὠὩὰ ὠὩὰπ

ὔὶά ὔὶά ὔὶά π

ὄὭὔ ὄὭὔ ὄὭὔ π

πὯά πὯά πὯά ρỨ
ủ
ủ
ủ
Ủ

Equation 6: Symbolic Representation of ECIR to RN

The coordinate space matrix requires three vectors. Code Snippet 9 shows how to use two

vectors, specified as the new coordinate space X axis and Y axis, to get all three vectors

orthonormal while keeping the X axis unchanged directionally.

1

2

3

4

5

/// <summary>

/// This transforms from identity coordinate space into a scaled skewed

coordinate /// space. Note: The given axii should be homogeneous orthogonal.

/// </summary>

/// <param name=" Xaxis">This is the new x axis.</param>

/ // <param name="Yaxis">This is the new y axis.</param>

/// <param name="Zaxis">This is the new z axis.</param>

// / <returns>The coordinate space transformation matrix.</returns>

static public Matrix3x3 CoordinateSpac e(VecPnt Xaxis, VecPnt Yaxis, VecPnt

Zaxis)

{

 Matrix3x3 mat = new Matrix3x3();

 mat.m[0, 0]=Xaxis.X; mat.m[0, 1]=Xaxis.Y; mat.m[0, 2]=Xaxis.Z;

 mat.m[1, 0]=Yaxis.X; mat.m[1, 1]=Yaxis.Y; mat.m[1, 2]=Yaxis.Z;

 mat.m[2, 0]=Zaxis.X; mat.m[2, 1]=Zaxis. Y; mat.m[2, 2]=Zaxis.Z;

 return mat;

}

Code Snippet 10: CoordinateSpace
(line 545 in Libraries\System.Types_3D\Matrix3x3.cs)

Once all three vectors are orthonormal they are entered into the coordinate space matrix

as shown in Code Snippet 10. The coordinate space will make the satelliteôs velocity in RN

project directly down the X axis. The earthôs location will be mostly on the Y axis with a little on

the X axis caused by a non-circular orbit.

40

To HCS

This conversion can be done by many different methods. The three implemented in the

PhySim2Astro-Controls are the identity orientation, standard orientation and RBD orientation.

The identity orientation uses the SCIR as the HCS. If the satellite was positioned in the SCIR and

no external forces are applied the satellite will stay aligned with the SCIR. The B* drag

coefficient and gravity gradient is ignored by SCIR. This is simply a 4x4 identity matrix as a

coordinate conversion matrix. The RBD (Rigid Body Dynamics) orientation is discussed under

the algorithms section, since it handles much more than just the conversion from SCIR to HCS.

The standard orientation provides methods to rotate around a stable axis in the RN coordinate

system. This means if rotating counter-clockwise around the Z axis the standard orientation

simulates a desired cartwheel orientation. Code Snippet 11 shows how the standard orientations

are calculated. It requires the change in time, the rpms (rotations per minutes), and the rotational

axis.

1

2

3

4

5

6

/// <summary>This calculates the orientation of this satellite.</summary>

public override void Calculate(PS.SimulatorArgs args)

{

 double freq=this.rpm*Math.PI2/Time.secPerMin;

 this.rotVel.Vector=this.rotAxis*freq;

 this .rotation+=(this.hndlDt.Value*freq);

 this.Orientation=Mat3x3.RotateOnPlane(VecPnt.ZAxis(), this.rotAxis)*

 Mat3x3.ZRotation(this.rotation);

 this.rotVel.Calculate(args);

 base.Calculate(args);

}

Code Snippet 11: OrientationRN
(line 195 in Libraries\PhySim2AstroControls\Satellites\OrientationRN.cs)

Line 1 in Code Snippet 11 calculates the radians per second, or frequency of rotation.

Line 2 sets a global vector where the length is the frequency and the direction is the rotational

axis. The rotational axis was normalized before this method. Line 3 uses delta time and the

frequency to determine the angle swept in the last time step. This angle is then added to the

41

current accumulated rotational angle. Line 4 creates a 3x3 rotation matrix which rotates the first

given vector (X axis) to the second given vector (rotational axis) using the cross product and

angle between them, as shown in Code Snippet 12. This causes an arbitrary starting rotational

angle but typically the housingôs rotational angle will have no direct correlation to time, only the

change in the rotational angle will correlate to time.

ὪὶὩήὶὴά
ς“

φπ

ὶέὸὠὩὰ ὶέὸὃὼὭίὪzὶὩήὶέὸὃὼὭίὪzὶὩήὶέὸὃὼὭίὪzὶὩήπ

— — Ўὸz ὪὶὩή

ὕὶὭὩὲὸὥὸὭέὲὙὔ ד ᷂ὢȟὶέὸὃὼὭίzד —

Equation 7: Symbolic Representation of OrientationRN

1

2

3

4

5

/// <summary>

/// This rotates the start axis onto the end axis

/// on the plane from both axes .

/// </summary>

/// <param name="startAxis">This is the axis to start with.</param>

/// <param name="endAxis">This is the axis to end up on.</param>

/// <returns>This is the rotational matrix.</returns>

static public Matrix3x3 RotateOnPlane(VecPnt startAxis , VecPnt endAxis)

{

 if(startAxis==endAxis)

 return Identity();

 if(startAxis== - endAxis)

 return Rotate(VecPnt.ArbitraryPerpendicular(startAxis), Math.PI);

 return Rotate(VecPnt.Cross(startAxis, endAxis),

 VecPnt.Angle(startAxis, endAxis));

}

Code Snippet 12: RotateOnPlane
(line 397 in Libraries\System.Types_3D\Matrix3x3.cs)

Code Snippet 12 computes the rotation on a plane given the start axis and the end axis. If

the start axis and end axis are the same (line 1 and 2) then a 3x3 identity matrix is returned. If the

start axis is opposite the end axis (line 3 and 4) then an arbitrary perpendicular axis, defined as

ὺ ὺ ὺ ὺ ὺ ὺ ὺ where ὺ is the start axis, is rotated around by “. Otherwise

(line 5) the rotation matrix is created by using the cross product as the rotational axis and the

angle between the start and end axis as the angle to rotate by. This causes all points along the start

axis to be mapped to the end axis. The other points will be mapped similarly except that there is a

42

rotation around the end axis caused by the rotation around the cross product.

ECEF to EFGS

The ECEF to EFGS creates a point at the correct altitude away from the center of ECEF

then rotates it around the center of ECEF so that the point is in the correct location and the axes

are rotated correctly. The conversion uses CoordinateSpaceZX which is very similar to

CoordinateSpaceXY, see Code Snippet 9. The difference is it uses the Z and X vectors as the

basis for the coordinate system instead of X and Y. If Z and X are not perpendicular Z will

remain unchanged and X will be orthogonalized. When the location is at either pole where the Y

axis and Z axis will be collinear, the Z axis will still point away from the center but the Y axis

1

2

3

4

5

6

7

8

9

10

/// <summary>This calculates the coordinate converter.</summary>

public override void Calculate(PS.SimulatorArgs args)

{

 double earthSeaLevel = 6378.15; // Earth ôs Sea Level (WGS84) in Km

 double d=Math.Abs(this. altitude+earthSeaLevel);

 double r=Math.Cos(Math.ToRad(this. latitude))*d;

 double x =Math.Cos(Math.ToRad(this. longitude))*r ;

 double y=Math.Sin (Math.ToRad(this. longitude))*r ;

 double z=Math.Sin(Math.ToRad(this. latitude))*d;

 this.point= new VecPnt(x, y , z, 1.0);

 this.normMat=Mat3x3.CoordinateSpaceZX(thi s.point , VecPnt.ZAxis());

 this.rotMat=Mat3x3.Y Rotation(this.elevation)*

 Mat3x3.ZRotation(this. azimuth);

 this.CoordValue= Mat4x4.PadMinor(this. normMat*this.rotMat, this.point);

}

Code Snippet 13: ECEF to EFGS
(line 227 in Libraries\PhySim2AstroControls\SolarSystem\ECEFtoLLA.cs)

Ὠ ȿὥὰὸὭὸόὨὩφσχψȢρυὯάȿ

ὶ ÃÏÓ ὰὥὸὭὸόὨὩὨ

ὴέὭὲὸ ÃÏÓ ὰέὲὫὭὸόὨὩὶ ÓÉÎὰέὲὫὭὸόὨὩὶ ÓÉÎὰὥὸὭὸόὨὩὨ

ὲέὶά #ÏÏÒÄÉÎÁÔÅ3ÐÁÃÅὴέὭὲὸȟ
π
π
ρ

ὶέὸ דὩὰὩὺὥὸὭέὲz᷂ד ᷂ὥᾀὭάόὸὬ

ὉὅὉὊὸέὉὊὋὛ
ὲέὶάzὶέὸ

π
π
π

ὴέὭὲὸρ

Equation 8: Symbolic Representation of ECEF to EFGS

43

will point towards the prime meridian. When the location is the center of the Earth the coordinate

system is the same as ECEF. Once the correct location and initial rotation have been determined

the coordinate system is rotated around its center point with the elevation and azimuth.

Auto-Generated Conversions

The auto-generated conversions implement graph theory and matrix multiplication to

create the entire set of relative conversions given as a small group of defined conversions. This

allows the user to only implement the basic and simple conversions but make requests of the

simulation using conversions not specifically defined.

Conversion Multiplication

The auto-generators are based off of one concept: to solve for a missing conversion two

defined conversions may be multiplied together. For example if ñA to Cò is needed but all that is

given is ñA to Bò and ñB to Cò then multiply ñA to Bò by ñB to Cò to get ñA to Cò. The

validation that is required here is to prove that since matrix multiplication is not commutative that

the auto-generators will multiply in the correct order.

As shown in Figure 3, the vectors and points are represented as 1x4 matrices. This means

that during multiplication the vector or point must be at the left of the equation. This is important

to the order of multiplication. A 4x1 would require the reverse order.

Given that PA is a point in the coordinate system A, MAB is the matrix for ñA to Bò

coordinate conversions, and MBC is the matrix for ñB to Cò coordinate conversions. The matrix

required is MAC.

44

ὖὓ ὖ

ὖὓ ὖ

ὖὓ ὓ ὖὓ ὖ

ὓ ὓ ὓ

ὖὓ ὖ

Equation 9: Proof of Matrix Multiplication Order.

By definition the first two equations are true. By replacing the PB in the second equation

with the equivalent found in the first equation, the resulting third equation is found to also be true.

Using the associative property of matrices, the forth equation can be derived from the third. Using

the forth equation, the third equation can be simplified into the final equation. That equation is the

wanted result of the auto-generators. Therefore the forth equation can be used when acquiring

required coordinate conversions which have not been defined.

Code Snippet 14 and 15 are how these matrices and vectors get multiplied together.

Notice that the vector matrix multiplication only allows the vector to be on the left.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

/// <summary>This multiplies two matrices together.< /summary>

/// <param name="a">This is the left matrix.</param>

/// <param name="b">This is the right matrix.</param>

/// <returns>This is the product of the two matrices.</returns>

static public Matrix4x4 operator*(Matrix4x4 a, Matrix4x4 b)

{

 Matrix4x4 mat=new Matrix4x4();

 // C[x,y]=Sum(A[x,i]*B[y,i]; i=0..3);

 mat[0,0] = a[0,0]*b[0,0] + a[0,1]*b[1,0] + a[0,2]*b[2,0] + a[0,3]*b[3,0];

 mat[0,1] = a[0,0]*b[0,1] + a[0,1]*b[1,1] + a[0,2]*b[2,1] + a[0,3]*b[3,1];

 mat[0,2] = a[0,0]*b[0,2] + a[0,1]*b[1,2] + a[0,2]*b[2,2] + a[0,3]*b[3,2];

 mat[0,3] = a[0,0]*b[0,3] + a[0,1]*b[1,3] + a[0,2]*b[2,3] + a[0,3]*b[3,3];

 mat[1,0] = a[1,0]*b[0,0] + a[1,1]*b[1,0] + a[1,2]*b[2,0] + a[1,3]*b[3,0];

 mat[1,1] = a[1,0]*b[0,1] + a[1,1]*b[1,1] + a[1,2] *b[2,1] + a[1,3]*b[3,1];

 mat[1,2] = a[1,0]*b[0,2] + a[1,1]*b[1,2] + a[1,2]*b[2,2] + a[1,3]*b[3,2];

 mat[1,3] = a[1,0]*b[0,3] + a[1,1]*b[1,3] + a[1,2]*b[2,3] + a[1,3]*b[3,3];

 mat[2,0] = a[2,0]*b[0,0] + a[2,1]*b[1,0] + a[2,2]*b[2,0] + a[2,3]*b[3,0];

 mat[2,1] = a[2,0]*b[0,1] + a[2,1]*b[1,1] + a[2,2]*b[2,1] + a[2,3]*b[3,1];

 mat[2,2] = a[2,0]*b[0,2] + a[2,1]*b[1,2] + a[2,2]*b[2,2] + a[2,3]*b[3,2];

 mat[2,3] = a[2 , 0]*b[0,3] + a[2,1]*b[1,3] + a[2,2]*b[2,3] + a[2,3]*b[3,3];

 mat[3,0] = a[3,0]*b[0, 0] + a[3,1]*b[1,0] + a[3,2]*b[2,0] + a[3,3]*b[3 , 0];

 mat[3,1] = a[3,0]*b[0,1] + a[3,1]*b[1,1] + a[3,2]*b[2,1] + a[3,3]*b[3,1];

 mat[3,2] = a[3,0]*b[0,2] + a[3,1]*b[1,2] + a[3,2]*b[2,2] + a[3,3]*b[3,2];

 mat[3,3] = a[3,0]*b[0,3] + a[3,1]*b[1,3] + a[3,2]*b[2,3] + a[3,3]*b[3,3];

 return mat;

}

Code Snippet 14: Matrix Multiplication
(line 61 in Libraries\System.Types_3D\Matrix4x4.cs)

45

1

2

3

4

5

6

/// <summary>This multiplies a vector by a matrix.</summary>

/// <param name="a"> This is the vector</param>

/// <param name="b">This is the matrix.</param>

/// <returns>This is the resulting vector.</returns>

static public VecPnt operator*(VecPnt a, Matrix4x4 b)

{

 VecPnt vec=new VecPnt();

 vec.X = b.m[0, 0]*a.X + b.m[1, 0]*a.Y + b .m[2, 0]*a.Z + b.m[3, 0]*a.W;

 vec.Y = b.m[0, 1]*a.X + b.m[1, 1]*a.Y + b.m[2, 1]*a.Z + b.m[3, 1]*a.W;

 vec.Z = b.m[0, 2]*a.X + b.m[1, 2]*a.Y + b.m[2, 2]*a.Z + b.m[3, 2]*a.W;

 vec.W = b.m[0, 3]*a.X + b.m[1, 3]*a.Y + b.m[2, 3]*a.Z + b.m[3, 3]*a.W;

 r eturn vec;

}

Code Snippet 15: Matrix/Vector Multiplication
(line 91 in Libraries\System.Types_3D\Matrix4x4.cs)

Completing the Graph

Given a set of edges, Ὡᴂ, in a finite graph Ὃ, where Ὡᴂ Ṗ Ὁ and Ὁ is all the possible

connections in Ὃ, as defined by ᶅὩȟᶰὉȟὩȟ ὼ ώȿ ὼȟώᶰὋȟὼ ώ, the auto-generators

will create Ὁ Ὡᴂ ὩӶ, this causes Ὃ to be a complete graph. An edge is the connection between

two coordinate systems, where the coordinate system is known as a vertex or node in the graph.

Note that if the defined conversions do not fully connect, that is that they create separate graphs,

then the auto-generators will treat them as separate graphs. The auto-generators will not make

guesses or assumptions of any kind, only create the ὩӶ ɴὉ for all graphs. The auto-generators

take advantage of the fact that each Ὡ is added in individually, therefore the auto-generators only

have to run after another edge is added to a graph. Coordinate conversions are one directional but

by definition the conversion matrix must be invertible to be an actual conversion, therefore the

first thing that the auto-generators do is generate the inverse matrix and add it to the simulator.

Since the inverse is immediately added to the simulator these connections may be treated as

undirected edge by the auto-generator, ɱὩȟᶰὉ Ḉɱ ὩȟᶰὉ, however the output equations will

use only one direction. The conversion matrix for the edge going one direction is always the

inverse of the conversion matrix for the edge going the opposite direction between the same two

nodes.

46

For example, given ὩȟȟὩȟȟὩȟȟὩȟȟὩȟ Ὡᴂ the following occurs assuming that

they are added in the order as stated in the list. This example will demonstrate how the code, on a

high level, performs the auto-generation. Note that the number of connections in a graph, for the

graph to be complete, is ȿὉȿ , where ὲ is the number of vertices in Ὃ.

¶ When Ὡȟ is added the auto-generators only create the inverse Ὡȟ which causes

the graph to be complete, see Figure 15. Since there will always be both directions

the drawing can simplify to look like Figure 16.

¶ When Ὡȟ is added to the graph, the auto-generator notices the vertex B is shared

between two edges. It creates Ὡȟ Ὡzȟ Ὡȟ and Ὡȟ Ὡzȟ Ὡȟ, as shown in

Figure 17, to complete the graph. ὲ σ ḈȿὉȿ σ.

¶ Next Ὡȟ is added to the simulation. The auto-generations cannot find a shared

Ǉƻƛƴǘ ǎƻ ƛǘ ŘƻŜǎƴΩǘ ŀŘŘ ŀƴȅǘƘƛƴƎ ǘƻ ǘƘŜ ǎƛƳǳƭŀǘƛƻƴΣ ƻǘƘŜǊ ǘƘŀƴ ǘƘŜ ƛƴǾŜǊǎŜ ƳŀǘǊƛȄ ŦƻǊ

Ὡȟ of course. See Figure 18.

¶ Ὡȟ is added to the simulation. The auto-generators notice that the vertex E is

shared by Ὡȟ with both Ὡȟ and the auto-generated Ὡȟ. Therefore it creates the

connections Ὡȟ, Ὡȟ and the complement inverse connections, as shown in Figure

19.

¶ When Ὡȟ is added the auto-generator notices several connections since Ὡȟ

bridged the two graphs together. For the shared vertex E, it located Ὡȟ, Ὡȟ, and

Ὡȟ which it uses to create Ὡȟ, Ὡȟ, and Ὡȟ seen in Figure 20. It also notices that

the vertex D is shared, not only by Ὡȟ but also by the newly created edges, Ὡȟ,

Ὡȟ, and Ὡȟ. It adds the four new connections, shown in Figure 21.

47

A B

Coordinate System

Defined Edge

Auto-Generated Edge

Figure 15

Figure 16

Figures 15-24 Key

A B

E

A B

E D

C

A B

E D

CF

A B

E D

CF

Figure 17

Figure 18

Figure 19

Figure 20

A B

E D

CF

A B

E D

CF

 Figure 21 Figure 22

In this example the edge count is 15, which since ὲ φ the graph is again complete. The

total coordinate conversions defined are 5 meaning 25 are auto-generated. For each complete

graph defined by ὲ coordinate conversions, ὲ coordinate conversions are auto-generated. The

resulting coordinate conversions will be added to the simulation in the following order:

Ὡ ȟȟὩȟȟ Ὡ ȟȟὩȟȟ ὩȟȟὩȟȟὩ ȟȟὩȟȟ ὩȟȟὩȟȟ Ὡ ȟȟὩȟȟ ὩȟȟὩȟȟ ὩȟȟὩȟȟ

ὩᴂȟȟὩȟȟ ὩȟȟὩȟȟ ὩȟȟὩȟȟ ὩȟȟὩȟȟὩȟȟὩȟȟ ὩȟȟὩȟȟ ὩȟȟὩȟȟ ὩȟȟὩȟ. Note that

defined conversions are marked as ὩᴂȟᶰὩ.

The dependency of the conversion is important so that the multiplication of auto-

generated conversions occur only after the conversions it relies on have been updated. Even

though the inverse is dependent on the original conversion they are considered both on the same

dependency level because the inverse is always calculated immediately after the original is

calculated. The maximum dependency level for a graph will be one less than the maximum path

48

length of the graph when only the defined connections are present, as shown in Figure 22. In this

example, the maximum path length is 4, following the path {A, B, E, D, C}. This means that the

dependency level of Ὡȟ is 3. The auto-generators built Ὡȟ Ὡȟ Ὡzᴂȟ. Ὡᴂȟ is defined,

therefore its dependency level is 0, however Ὡȟ Ὡȟ Ὡzᴂȟ and Ὡȟ Ὡᴂȟ Ὡzᴂȟ. It

follows that Ὡȟ Ὡȟ Ὡzȟ Ὡȟ Ὡzȟ Ὡzȟ Ὡȟ Ὡzȟ Ὡzȟ Ὡzȟ, therefore

showing why the dependency is 3.

The dependencies built by the auto-generators, assuming all defined conversions have a

dependency level of 0, for all edges are as follows for this example:

¶ Level 0: ὩᴂȟȟὩᴂȟȟὩᴂȟȟὩᴂȟȟὩᴂȟ

¶ Level 1: ὩȟȟὩȟȟὩȟȟὩȟȟὩȟ

¶ Level 2: ὩȟȟὩȟȟὩȟȟὩȟ

¶ Level 3: Ὡȟ

PhySim will determine the final dependencies base off of the variable requests from each

controller. The auto-generators will add a new control for each conversion and inverse pair. The

new control will request the four conversion matrices required by the new conversion and inverse.

By making these requests PhySim will enforce the dependencies, to guarantee that the new

conversion and inverse will be updated only after the four conversions they need are updated.

The reason four conversions are requested instead of two is because making the extra two

requests and extra multiplication takes less time than performing an inverse. The only inversions

performed will be on the original defined matrices. Since the graph is complete it is guaranteed

that all four conversions will exist before a new conversion is created.

49

Global Points and Vectors

The auto-generators will also create all global points and vectors in all related coordinate

systems. When a global vector or point is added that point or vector checks for all conversions

which start at the coordinate system they are in, then, using those conversions creates new points

or vectors in the ending coordinate systems. When a new coordinate conversion is added, and all

the subsequent coordinate conversions have been added, the auto-generators check the list of

defined global points and vectors for any which are in effected coordinate system. If a point or

vector exists the auto-generators will create a new point for each new coordinate conversion

starting from that point or vectors base coordinate system.

Given a graph, Ὃ, a set of connections, Ὡ ᶰὉ for that graph and a point or vector ὖ

where ὺɴ ὠ and V is the set of vertices in the graph P can be propagated as follows:

ὖᶅȠ ɱὖ P Ὡɱ ᶰὉȠ ὼȟώɴ ὠȠ Simply stated, for each point or vector with the base

coordinate system of x, there exists a complement point or vector with the base coordinate system

of y, if and only if there exists an edge between both coordinate systems. Since the graph is

complete the auto-generators will distribute a global point or vector into all connected coordinate

systems by multiplying the vector or point by the conversion matrix. Once again the auto-

generators will not make guesses or assumptions of any kind. If there is no connection between a

group of coordinate systems and another the global vector or point will remain confined in the

group in which its base coordinate system exists.

The Specific Conversions

As a more specific example of how the auto-generators work with the

PhySim2AstroControls, assume the given conversions, vector, and points are created in the

following order and the satellite is called ñSat1ò:

50

1. Convert ECIR to HE

2. Sunôs Location in HE

3. Earthôs Location in ECIR

4. Convert ECIR to ECEF

5. Sat1ôs Location in ECIR

6. Sat1ôs Velocity in ECIR

7. Convert ECIR to Sat1 SCIR

8. Convert Sat1 SCIR to Sat1 RN

9. Sat1ôs Rotational Velocity in Sat1 RN

10. Sat1 RN to Sat1 Housing

The defined graph is shown in Figure 23. The auto-generators create the graph shown in

Figure 24 as well as distribute the global vectors and points to all other coordinate systems. The

following list shows the defined value being added and the resulting auto-generated values. It can

be seen that all 30 connections are made as well as all 18 global points and 12 global vectors as

expected.

1. Convert ECIR To HE
a. Convert HE To ECIR

2. Sun's Location In HE
a. Sun's Location In ECIR

3. Earth's Location In ECIR
a. Earth's Location In HE

4. Convert ECIR To ECEF
a. Convert ECEF To ECIR
b. Convert ECEF To HE
c. Convert HE To ECEF
d. Earth's Location In ECEF
e. Sun's Location In ECEF

5. Sat1's Location In ECIR
a. Sat1's Location In HE
b. Sat1's Location In ECEF

6. Sat1's Velocity In ECIR
a. Sat1's Velocity In HE

HE ECIR

ECEF

SCIRRN

HCS

RN SCIR

ECEF

ECIRHE

HCS

Figure 23 Figure 24

51

b. Sat1's Velocity In ECEF

7. Convert ECIR To Sat1 SCIR
a. Convert Sat1 SCIR To ECIR
b. Convert Sat1 SCIR To HE
c. Convert HE To Sat1 SCIR
d. Convert Sat1 SCIR To ECEF
e. Convert ECEF To Sat1 SCIR
f. Earth's Location In Sat1 SCIR
g. Sat1's Location In Sat1 SCIR
h. Sun's Location In Sat1 SCIR
i. Sat1's Velocity In Sat1 SCIR

8. Convert Sat1 SCIR To Sat1 RN
a. Convert Sat1 RN To Sat1 SCIR
b. Convert Sat1 RN To ECIR
c. Convert ECIR To Sat1 RN
d. Convert Sat1 RN To HE
e. Convert HE To Sat1 RN
f. Convert Sat1 RN To ECEF
g. Convert ECEF To Sat1 RN
h. Earth's Location In Sat1 RN
i. Sat1 's Location In Sat1 RN
j. Sun's Location In Sat1 RN
k. Sat1 's Velocity In Sat1 RN

9. Sat1 Rotational Velocity In Sat1 RN
a. Sat1 Rotational Velocity In Sat1 SCIR
b. Sat1 Rotational Velocity In ECIR
c. Sat1 Rotational Velocity In HE
d. Sat1 Rotational Velocity In ECEF

10. Convert Sat1 RN To Sat1 Housing
a. Convert Sat1 Housing To Sat1 RN
b. Convert Sat1 Housing To Sat1 SCIR
c. Convert Sat1 SCIR To Sat1 Housing
d. Convert Sat1 Housing To ECIR
e. Convert ECIR To Sat1 Housing
f. Convert Sat1 Housing To HE
g. Convert HE To Sat1 Housing
h. Convert Sat1 Housing To ECEF
i. Convert ECEF To Sat1 Housing
j. Earth's Location In Sat1 Housing
k. Sat1 's Location In Sat1 Housing
l. Sun's Location In Sat1 Housing
m. Sat1 Rotational Velocity In Sat1 Housing

n. Sat1 's Velocity In Sat1 Housing

Algorithms

There are two very important algorithms for VideSupra. The first determines where the

satelliteôs location is based on the time and orbital information. The second is an algorithm for

52

determining the magnetic force from the Earth given a time and location. These algorithms are in

SpaceTrack.Net and GeoMag.Net respectively. They have been included into VideSupra as

individual libraries for general purpose access to the algorithms. They also have been wrapped in

controls which can be easily added to the simulator. The algorithms were originally created by

third parties, Spacetrack
16

 and WMM
11

, but had to be translated into C# and updated to work

properly with VideSupra, Spacetrack.Net
17

 and GeoMag.Net
12

.

SpaceTrack.Net

In SpaceTrack.Net is a managed implementation of the Space Track Report Number 3
15

.

Just as the GeoMag.Net is extended from the original so is the SpaceTrack.Net. The original takes

only a TLE and returns six values representing the ECIRôs x, y, and z, in kilometers, and dx, dy,

dz, in kilometers per second. The extension allows the space track solver to be changed out so

that the simulation can quickly change between SGP, SGP4, SGP8, SDP4, and SDP8. Also the

extension parses a TLE into a Data storage type, however the Data storage type can be filled

without using the TLE allowing other forms of sending the data to the solver. This also allows the

use of the managed System.DateTime to handle the time. Finally, the constants are stored in an

external interchangeable file so that the planet description can be changed.

The values required by the solvers to calculate the location and velocity of a satellite are

all stored in the Data storage type. These values are as follows, where the names are inherited

from the FORTRAN IV implementation:

¶ EPOCH: YYDDD.FFFF, 2 digit year, 3 digit day of year, fractional period of day.

¶ XNDT2O: The time rate of change of "mean" mean motion at epoch.

¶ XNDD6O: The second time rate of change of "mean" mean motion at epoch.

¶ BSTAR: The drag coefficient (B*).

¶ XINCL: The "mean" inclination at epoch (i0).

53

¶ XNODEO: Right Ascension of the Ascending Node (RAAN in degrees).

¶ EO: The "mean" eccentricity at epoch (e0).

¶ OMEGAO: The "mean" argument of perigee at epoch (w0).

¶ XMO: The "mean" mean anomaly at epoch (M0).

¶ XNO: The "mean" mean motion at epoch (n0).

¶ XNODP: The orbital period.

For more information about the SpaceTrack satellite propagation algorithms see [15] or

the included library in the VideSupra project package, SpaceTrack.Net.

GeoMag.Net

The GeoMag.Net library was created for the Astrophysics Plug-in. GetMag.Net is a C#

implementation of the algorithm defined in the ñUS/UK World Magnetic Model for 2005-2010ò

11
 (WMM). It also adds methods to make using the library easier for the simulator.

During initialization the GeoMag.Net model loads a set of magnetic readings from a file

provided by the NOAA's (National Oceanic and Atmospheric Administration) NGDC (National

Geophysical Data Center). Then given a time and location the library will calculate the Earthôs

magnetic field for that point at that time.

The following diagrams, see Figure 25, are excerpts from the WWM document paired

with the corresponding image captures from the GeoMag.Net library. The excerpts are from

pages 48 to 58 of the WMM document. The annual rate of change is not show in this document

since the library is not currently setup to calculate the rate of change. The libraries accurately and

precisely predicted all the test values located on page 45 and 46 of the WWM document. The

simulator gathered 15480 points of data at 700km above sea-level (WGS 84) for 01-01-2008

using the 2005 WMM.cof file.

54

The image captures show this data with the minimum value as black and maximum value

as white. The maximum and minimum values matched the test values provided with the

document. They use the set of discreet points taken from the simulator and are plotted using a

simple rendering tool (the rendering tool is not provided with VideSupra). Any inconsistent

artifacts in the images are due to the rendering process, such as the black line in the upper left

corner of all Mercator (rectangular) images and two white dots in most of the polar (round)

images. These artifacts do not exist in the data. Finally, note that the pole images show from the

equator to the pole, the entire hemisphere, whereas the excerpt shows only about 60 degrees from

the pole.

It can clearly be seen in the Figures 25-31 images that the GeoMag.Net is a valid

implementation of the WMM algorithm. The results from GeoMag.Net library match the results

in the WMM documentation. The GeoMag.Net is a managed version of the National Geophysical

Data Centerôs geomag.c algorithms that use the same WMM.cof file as a data source. It

determines the magnetic field at a given location and time.

The GeoMag.Net has been extended from the geomag.c so that it can give a variety of

output formats and take a variety of input formats as well. The original geomag.c could only take

longitude, latitude, altitude and decimalized year. It would only return a declination, inclination,

horizontal strength and total field strength. The GeoMag.Net allows the use of the managed

System.DateTime for its time input and output and on top of the original input/output types, it can

also give absolute coordinates in ECEP. With these extensions the results from the

SpaceTrack.Net can be piped into the GeoMag.Net to get the nanotulsas (nT) at the satellites

current location.

55

Figure 25: Magnetic Declination (D)
Mercator, North polar region, and South polar region.

Contour interval is 5 degrees, red contours positive (east); blue negative (west); black ï zero (agonic) line.

Mercator and polar stereographic projections at 2005.0 for the World Magnetic Model 2005.

56

Figure 26: Magnetic Total Intensity (F)

Mercator, North polar region, and South polar region.

Mercator projection contour interval is 2000 nT. North and South polar region contour interval is 1000 nT.

Mercator and polar stereographic projections at 2005.0 for the World Magnetic Model 2005.

57

Figure 27: Magnetic Horizontal Intensity (H)
Mercator, North polar region, and South polar region.

Mercator projection contour interval is 2000 nT. North and South polar region contour interval is 1000 nT.

Mercator and polar stereographic projections at 2005.0 for the World Magnetic Model 2005..

58

Figure 28: Magnetic Inclination (I)

Mercator, North polar region, and South polar region. Mercator projection contour interval is 5 degrees, red

contours positive (down); blue negative (up); black ï zero (agonic) line. North and South polar region

contour interval is 1 degree. Mercator and polar stereographic projections at 2005.0 for the World Magnetic

Model 2005

59

Figure 29: Magnetic North Component (X)

Mercator, North polar region, and South polar region. Mercator projection contour interval is 2000 nT,

North and South polar region contour interval is 1000 nT, red positive (north), blue negative (south), black

ï zero. Mercator and polar stereographic projections at 2005.0 for the World Magnetic Model 2005

