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ABSTRACT

For small satellite development groups building, testing and launching satellites can be
very expensive. Since satellites can have no physical contact while in space testing satellites
before launch is very important. To test satell#ge®w costsoftware simulation should be used
Several professional software simulation packages exist but they can be expensive to licensed and
be trained for. The goal of this paper is to describe a free open source astrophysics simulator that
can be ued for testing angrototyping The simulator must be flexible and customizable so that
it can be modified for each satellite project. The solution is VideSupra. VideiSupsftware
simulatorwith a built in package for astrophysics simulation. Vide&igpa plug and play
application so can be quickly modified and extended as neEdedmall satellite development
groups VideSupra will provide the needed low cost testing tool.



PROBLEM AND GOALS

Satellite development is costly in both time anadney. Additionally, because of the
nature of satellites, testing them is extremely important but also extremely complicated. Many
satellite groups develop satellites between 1 and 200 kg and typically less than 50 cm per side,
calledsmallsats or nanosafEhese groups are usually noncommercial, such as college satellite
programs. For these groups most testing methods are not feasible because the test cost compared
to the satelliteds cost is so great.redlpr such
reduce the overall cost of development.

The goal of VideSupra is to provide a flexible, extendible, free, open source software
simulator which can be used to test satellites. Although no software testing solution will ever be
able to replace all adhe more expensive physical tests, for many development groups VideSupra
will be an effective means to minimize the number of more expensive tests needed to debug a
satellite. VideSupra can also be used purely as a simulator, while not testing a.datéHiise
mode VideSupra can be used to aid in the research, design, development, and launch trajectory
selection of a potential satellite.

Vi deSuprads capabilities include:

I Written in the C# with .Net Framework 4.0.

1 Dynamically loads via an easily extebigaplug and play system.

1 Contains the PhySim2 library for generating a model view controller physics

simulation.

1 Provides a toolset of data structures used by most simulations.

1 Predefines an astrophysics simulation pinghat comes with several contal

91 Predefines plugn views for displaying raw data, data in 2D graphs, and 3D data



modeling.
9 Ct SEA0fS a0OKSYS F2NJ ONBIiGAYy3a I yR OdzadG2YAIl
1 Scenario setup is done via @ntuitive graphical uer interface.
This reportcontains the following sections:
1 Section 2, Background: An overview of the challenges that satellite development
groups face.
1 Section 3, Attitude Determination And Control Simulation: Montana State
' YAGSNBRAGE QA &l Sttt A0S oRof\EUBIUEdAIY Sy G f S RAY
9 Section 4, PhySim2: A look at the core libraries for running simulations.
9 Section 5, VideSupra: An explanation of the Huillata types and how to extend
VideSupra with dynamically loaded libraries.
1 Section 6, PhySim2AstroPlugin: A dethbreakdown of the Astrophysics ptug
what is provided and how it works together to create satellite simulation scenarios.
9 Section 7, Running an Astrophysics Simulation: An instruction manual for setting up,
running and reviewing a typical astrophysgmulation.
1 Section 8, Conclusions: A review of the goals of VideSupra and a discussion of future
development options.
1 Section 9, Resources: The list of books, papers, websites, and software used during

the development of VideSupra.



BACKGROUND

As wireless technology and global connection become more prevalent, moraadan
satellites will be needed. Not just for the global network and triangulation systems, but more
research satellites and garbage collection satellites must also be flown. Camgntly
government agencies, commercial groups, and educational institutions can afford to create
satellites. The cost for a satellite project is split four ways between the development, testing,
launch, and data collection. For research satellites datctoli is the cheapest section.

The development process costs so much because of the man hours required to design and
assemble space resilient hardware and software. The satellite must endure severe fluctuations in
temperature, extreme vibrations, andsharadiation. The satellite also must run without any
physical contact for the entire duration of th
listen to the commands being transmitted to it, the mission is a failure. Even just transmitting a
signalto it is complicated. If the satellite has an equatorial orbit, the satellite would be travelling
at around 7km / sec. and it would orthie Earthaboutevery 90 minutesThe development team
would have to design the satellite and ground station to h&ra@oppler shift and constant loss
of signal Even if the antenna could broadcsm horizonto horizonthe air density near the
edges would distort the signal leaving a 60 degree window straight above the antenna for
communication. The cheaper systalne n 6t have a network of antennse
for time on an existing network. They only have the connection at their mission command center.
Therefore the satellite can only be reached for 10 minutes every 90 minutes when the orbit syncs
up with the altitude and latitude of the command center. The communication scheme must be
resilient towards a bad connection without having too much redundancy checking and
handshaking so that as much information as possible can be transferred in the liailigdteav

time.
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On top of all that the design of the satellite must handle the high velocity oxygen ions
which burn holes straight through any conductive material on the satellite and free radicals
flipping bits on and off in the electronics. Also thesad air, so the heat generated by the
components could cause them to overheat. A thermal conductive circuit has to be added on top of
the electrical system in order to keep the parts from cooking or freezing. Newer hardware can
either use less power arftetefore produces less heat or provide more processing speed using
more power and producing more heat. Newer hardware also use smaller transistors which are
more vulnerable to the ions and electrons. Typically space tested and proven hardware has to be
usal. Unfortunately they are older and provide less computation power therefore the software
must be very lightweight but still affective.

I f that wasnét enough the satellite wildl b e
the mission even begins. Sttural teams need to design the satellite to be lightweight and very
sturdy. Obviously the design and development of a new satellite cannot be simplified, otherwise
the mission is a failure before it even begins.

The launch of the satellite is expensive because a small group will not have a rocket
powerful enough to launch even a small satellite into space, nor the launch pad and clearance.
The cheapest method to date is to buy a flight from Kazakhstan on a desioned warhead
launch vehicle. If the group is American then they will have to get the US government to help
transport the satellite to Kazakhstan since satellites are considered munitions when they are
crossing international borders. NASA will launchediies but for the smaller groups NASA is
too expensive or to difficult to get a flight with. There are some companies which are willing to
launch a satellite for free if the group enters into a development competition and wins. Typically
this means thahe satellite has to provide a desired functionality for the use of the company
sponsoring the competition. Either way the satellite will only be given a specific orbital

inclination for a steep price. The cheaper the fight the more likely a failurenchlavill occur.



5

This wastes the cost of the building materials and assembly costs. There is insurance that can be
provided for such a failure. The insurance is ideal for large expensive satellites but usually costs
more than the smaller satellites cthemselves. The price is dependent on weight and size so
small satellites do get an advantage there.

That leaves testing. Satellites can be tested in several ways and should be tested in as
many as possible. Launching an incompetent satellite will coshmmore than spending a little
more in testing and a little more in development. There are several physical tests which can be
performed. A prototype of the satellite can be attached to a high altitude balloon to test
communication and some sensors. Tigh altitude balloon has thermal problems because the air
is very cold but not thin enough to have the components or the sun provide the same thermal
conditions as in a flight. A cheap and temporary solution is to include a heater in the test to keep
the @mponents warm. There are drop zones, used by NASA, which will provide about a minute
of free fall down a dark mine shaft or a drop from a high altitude air craft. Both are expensive,
provide a short test, the satellite must be small, and the air pr@ridegh drag that the terminal
velocity is reached. The satellite should be placed in a smooth sphere so that it can tumble freely
without the air catching corners. Even then th
roll of the sphere in the aio provide a good clean test. The small group can also buy or rent a
Ashaker and bakero to test the satellite under
group could also buy or build a vacuum chamber to test out gassing and thermal. Thisebetter
chamber the more expensive. Most vacuum chambers will not be able to even get close to the
vacuum of space, but some of the nicer ones will be able to change the atmosphere to Nitrogen or
Helium rich, or change the temperature of the remaining atmasphe

The nonphysical tests are performed by removing the sensors and replacing them with a
hardwarein-the-loop system (HIL)This setup convinces the satellite that it is in space and the

satellite can then be tested realistically before spending monmgyooaus physical tests.
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Depending on how realistic the HIL is depends on how much time and man power is put into
developing it. Therefore the better the HIL is typically the more expensive it is. A HIL should
simulate Doppler shifts, thermal readimgagnetic readings, GPS, lunar gravitational pull, etc., as
needed to test the satellite. Doppler shifts and GPS can be hard to simulate unless a large chunk
of the hardware below the antenna is removed and only the result from the hardware is sent in via
serial. Since these nonphysical tests can be
with the hardware just laid out flat across a table) they can be done multiple times without
increased cost, other than paying the group members who anegtimm tests. The tests are
repeatable with lots of detailed results. Once the satellite matures it can be run on an alpha
prototype, the full satellite put together but with sensors still replaced by a HIL via a port. Once
the alpha passes the HIL testshould be put into beta and start physical testing. Some groups
will even leave in the HIL port on the final release so that on the way to the launch site the
satellite can run a simple diagnostics to make sure all parts are functioning correctly. These
diagnostics are simply a short HIL test. For the HIL to work it must be a physics simulator which
can predict, using the satellites output, the feedback response the satellite would receive from the

environment.



ATTITUDE DETERMINATION AND CONTROL SIMULATION

VideSupra is based off of several software packages. The software packages were
originally designed as a HIL and physics simulators for the Maia nanosatellite project at Montana
State University (MSU). The Maia project was designed to cteiae near earthariations in
the energetic charged particle of the magnetosphere with a new solid state particle detector. The
ADC (Attitude Determination and Control) team for the Maia project needed to determine the
desired orbital paths and satellite rotation. Thele/pooject had very little budget for
development so software solutions were desirable for testing in the preliminary stages. The ADC
team needed to check that their algorithms cou
determine a correct sdlan for controlling the rotation. The ADC system had a minimal power
budget and a slow processor. The tests that were created would have to be repeatable so that once
a solution was designed it could be optimized to run inthew on the hardware. Theam
selected one member, Grant Nelson, to design and build a simulator that would feed in sensor
information and simulate the resulting response to the control output from the satellite while the
rest developed the embedded software for the satellite.

Thesoftware packages evolved over three years as the Maia project was in development.
The Maia mission lost several of its lead developers and the mission got put on long term hold.

The parts, personal, and development was shifted to a similar projectSjadieeBuoy. Through
the transition the requirements changed and the specialized software packages were deprecated.
After the shift the deprecated software packages were redesigned as a single application that

woul d to work on al & ThishewMlitdtion wasananed VideSupra. pr oj e c



Requirements

Even though VideSupra is flexible enough to work for almost any simulation and HIL, its
main purpose was to test SpaceBaay, although no longer being worked on, still perform the
Maia tests. The requirement for VideSupra was that it must be able to simulate most, if not all, of
the satellitesdéd requirements and environment f

Mai ads ordintat atpiadcm lmad t o maxi mi ze the pay
was mounted on the top of the satellite and the top and sides were fitted with solar panels. The
solar panels had to face the sun as much of the time as possible without affecting therncollect
The satellite could also be sent into a collection mode where the sensor requirement could be
ignored so that more power could be gained by the solar panels. That mode was only initiated if
the battery power became critically low.

SpaceBuoywés horalmidt alot ati on has to maxi mi ze
These sensords are positioned on two of the si
maxi mi ze the amount of data coll ect a@aant he sens
vector whilst also keeping the solar panels facing the sun. The bottom of the satellite, with
thermal reflector, must never face the sun or the bottom of satellite would overheat causing
damage to the circuitry and batteries. The top of the satei auxiliary antennas for high
bandwidth and ham radio. The different requirements were weighted such that the system could
determine which was the most important at a given moment. SpaceBouy could be put into the
same solar collection mode as Maia bgrging the weightings such that the solar gain was
greater than the sensords requirement weightin
weighting could be raised to put SpaceBouy into a higher quality transmission mode.

The full requirements amauch more exhaustively described in the mission
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documentation however the full requirements are not needed for the scope of this paper. The
mission documentation is available under the NAGZRL space scholars program agreement.

Contact MSUSSEL for moe information.

Solutions

The ADC team determined that the solution for the Maia mission was to get the satellite
to rotate in a na pointing motion (see Figure 10, pagg.Zthis motion would best fulfill the
sensor and solar panel requirements. The tearmined the easiest method for this control
would be three perpendicularagnetorquetsThese magnetorquers, or torque coils, could cause
rotational acceleration when turned on perpend
provide the means @btation when they were turned on at the proper time. To determine the
proper coil and strength required a magnetic sensor. The sensors could only be used when the
coils arendét causing a magnetic field of their
For SpaceBouy the team determined thediravheel motion (see Figure)i®ould work
best. They also determined that along with the magnetic sensors, to get proper rotational speed
and determination of relation to earth, a blackbody sensor should be added. The system would
still use the torqueatls for movement.
This meant that the simulator had to detern
would experience at a specific time and location. The location had to be calculated given the
flight path and time. The desired attitude woutd/d to be created and the simulated attitude
would have to be calculated given the magnetic
The coils could be calculated given the configuration and applied voltage. The blackbody sensor
could be simulat wi t h t he position of the Sun and Eart

be found the amount of solar gain for the satellite could also be calculated.
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PHYSIM2

The solution for the ADC team is a dynamic physic simulator which is flexible eriough
handle a variety of configurations. To handle this a library was created called PhySim, short for
physics simulator. PhySim was a set of software tools which another program could use. The
PhySim could run a set of controls which would create theetks#sults for the simulation, the
problem was that the software interface was very complicated to use and setup. PhySim2 was
designed to handle the setup for the programmer and simplify the configuration of the simulation.

PhySim2 is a model view contrell design. The base simulator does not know what it is
calculating nor what the results will be, otherwise flexibility would be lost. The simulator just has
to run a set of controls, but before it can run them it will determine the order in which th@scontr
can be called. This determination stage (the main difference between PhySim and PhySim2)
provided the organization and flexibility sought for. A group of controls were written to calculate
the location of the Earth relative to the Sun, the rotatighegatellite, the magnetic field, and so
on. When these controls are added to PhySim2 a simulation would be run that could be used in
the HIL for a satellite or just to investigate the configuration of the satellite. One set of controls
would simulate thélaia mission and another set would simulate SpaceBouy. Most of the
controls were the same between these two satellites. PhySim2 is flexible enough that controls to
describe a table with pockets, a pool cue, billiard balls, and collision detection cadddzeto
simulate a round in a game of pool.

PhySim2 has a generator class which is used to create the simulator. The controls can be
added and removed freely from the generator. When the configuration is ready the generator is
told to create the simulatn. The generator performs checks to make sure that all the proper

controls are received. These checks include initializing the controls to let them know that they are
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about to be used and to give them the opportunity to request all the variablestteaty 6 | | need.

The requests can be made in any order and the generator can call the controls in any order.

Variables

The data for the simulation used by each control has to be typed and have correct units.
Access to the data had to be restricted to maintaia correctness. The hardest part is that the
data is unknown to the simulator but the controls had to be able to look up data and write data
quickly. The views of the data had to be able to look up data but not be able to write.

During the generationfahe simulator the controls get a chance to request variables that
they will need. Not all variables used by a control need to be declared, only the ones that are
accessible from outside the control. The requests for variables are returned to theasdhgol
variable which they will use when running, however they cannot use it at this time. The variable
uses a proxy pattern to protect from data being set before writing data is allowed. Figure 1 shows

the design for this.

Variable Pending

4 Writer
<<interface>>
Control
< Variable Writer T %77 Variable Active
Control % <<interface>>

Implemenation

J
/
/

Variable Reader

"4 variable Container

Variable Handle

)

Variable Request

Figure 1: Variable Design for PhySim
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The variables can be requested to either write normally, suspend the write until the end of
the simulation cycle, or write a constant variable which then cannot be changed. The variables are
multiple read, singlevrite (MRSW) so that only one control is allowed to write to a variable to
keep conflicts from occurring. The variable writer provides access to modify the value and the
guarantee that the variable will not be read from in that simulation cycle untithedftealue is set.
The pending writer provides access to modify the value at the end of the cycle so that the read
value is from the previous cycle. The controls can read a pending variable at any time since the
value during a cycle is the value that waesa the end of the previous cycle. When a control
writes to the pending variable the new value is not actually set until the end of the cycle
regardless of when it was written. If a constant variable is requested a reader variable is returned.
The values set during the activation of the variables and never allowed to be changed again. The
variable containers just redirect calls to the variable request class or the variable active class.
During the generation of the simulation the variables are altggsiest classes, but once the
simulation is finished being created the last step is to replace all the requests with active variables.

Since the container variable is just a proxy for the current variable, either the request or
active variable, mangontainers can be created for the same variable. Even with many containers
for the same variable the memory overhead is low and no value propagation is needed to set the
value to many controls. The containers always return the newest value, exceptsetbéa
pending writer where the newest value is not set until the end of the cycle. Also by using multiple
containers all the controls which asked for just a specific type get just that specific type. Even
though the writer extends the reader, just dsaler is given to those controls which request it.
That way the control cannot cast up to another type of variable but they can cast down towards
the container. The container is the lowest form of variable. The reader returns a typed value

where as the caainer only returns a netyped value. This makes reading values easy for views

which dondédt know or doné6ét care about the type
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The request variables keep track of which controls asked to read from them and which
controls asked to write tinem. They allow default values to be set and attributes to be modified.
Both the request variables and active variables keep the name, type and units, but only the active
variables keeps the value of the variable. The use of the request variable pievigieserator
the ability to initialize the controls in any order. Once the controls are all initialized the list of

requests are used to determine the dependency order.

The Variable Pool

Since the simulation can be customized, the program needed a way to keep the large
number of active variables without knowing what they are. Some simulations could run much
faster than redime so the simulation should keep the data for review and playbhis also
proves very useful when the simulation runs slower thartireal The results can be collected
for a long time, then the simulation can be reviewed at normal speed. To solve this problem the

variable pool was designed for PhySim.

uIC

System.Iypes.DateTime Previous Time 12/31/2007 23:59:55.300
System. Iypes.DateTime Current Time 1/ 1/2008 0:00:00.000 UIC
System.Iypes.DateTime Next Time 1/ 1/2008 0:00:00.0399 uIC
System.Double Previous Julian Day 24544€¢.45935884 Jo
System.Double Current Julian Day 24544€€.5 JD
System.Double Next Julian Day 24544€¢ 50000116 Jo
System.Double Delta Time 0.1 secs
[t 1.0000000, 0.000000000000, 0.000000000000, 0.0]
Syeven Types. 30 tacrixtns|  Gomvers BCrR 7o 8 : mor R [ s 0 -
[30,824,178.5555746, —146,387,3545.027 . 0.000000000000, 1.011
[r 1.0000000, 0.000000000000, 0.000000000000, 0.0]
System.Iypes. 3D .Matrixdxd Convert HE To ECIR { Eggggggg: _ - . _0:391 ééigég: gg} m
[-30,824,178.555574€, 134,308,317.335503000000, -58,6 223,782 723800000, 1.011

System.Types._3D.VecPnt Sun's Location In HE [0.0, 0.0, 0.0, 1.01 Im
System.Types._3D.VecPnt Sun's Location In ECIR [-30,824,176.5555746, 134,308, 317.335503, -58,223, 7820267238, 1.01 Im
System.Types. 3D.VecPnt | Earth's Location In ECIR [0.0, 0.0, 0.0, 1.01 m
System.Types._3D.VecPnt Earth's Location In HE [30,824, 176.555574¢, -146,387, 545.027145, 0.0, 1.01 Tm
System.String Sun Coordinate System HE Tm
System.Double Sun Radius €35000 km

[[ 0.2112531€4627, 0.577431378888, 0.0, 0.0]
e e ks -

[ 0.000000000000, 0.000000000000, 0.0, 1.011

[[0.211253164627, -0.377431378888, 0.0, 0.0]
System.Iypes. 3D .Matrixixd Convert ECEF To ECIR Log EERMSTEERLD, g.znzsalﬁqe 4 i @, &= m

Figure 2: Variable Podtxample
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When a ontrol or view sets a variable from the variable pool, a variable container or
reader is returned. To get a variable the control must provide the name, the units, and the type.
This helps diminish unit mismatch problems. Too many errors occur from nogithe correct
units. Once a control has gets a variable class it can use the variable without ever having to look
the variable up again.

When the simulation is being created the controls must declare the variables that it
intends to use. The variable pi®then created with those variables in it. The variable pool may
not have variables added nor removed for the rest of the simulation. At the end of each cycle of
the simulator the variable pool will have the new value for that cycle.

At the end of eachycle the values for the changed variables are copied and put into a
frame that is added to the variable lake. The variable lake is a collection of changes to a pool over
time. The lake can be used to replay the simulation as well as fast forward, @mwitay,back at
faster or slower than retime. To playback the lake, a variable pool is gotten from it, then as
requests for different times is sent in to the lake, that pool will be properly updated with the
values for the nearest time to that requegiife 2 shows the viewer, provided with VideSupra,

of the variable pool. The viewer will show the variable pool as a lake is played back.

Determining Control Dependencies

Once all the variable requests have been collected the simulation generator ivatst act
them and determine the dependencies before the simulation is finished being built. The simulation
generator determines the dependencies of the controls using the requested variables while
activating them. When a variable is activated all the varianeests for the same variable are
connected and activated with it. The following rules are run to determine the dependencies while

activating the variables.
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All variables are checked to have one and only one writer. All the variable requests
are cheked against that writer to make sure that they have the correct type and
units.
All the constants and pending variables are activated.
{2YS O2yiNRfa ¢2yQli KIFI@S lye NBIFIR NBIljdsSai
control or because all of the ones which wenade have been activated. For all the
O2yiNRfa gKAOK R2y Qi KI@S yed NBIFIR NBIdzSa
dependency and activates all of its write requests, which activates all of the read
requests that match the write requests.
Increasethe dependency level. Repeat step 3 until no controls were added during
that step.
If all the controls have been put into dependency levels then the simulation has
been activated. If any controls are not in a dependency level then those controls
have adependency loop. A dependency loop is when a control writes a variable
another needs, while at the same time the other control writes what the first one
needs. Neither can be run first because they depend on the each dependency
loops can be fixed lbyaking one of the controls request a pending variable instead

of a write variable.
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VIDESUPRA

VideSupra, called VideSupra2 in the code after the update from PhySim to PhySim2.
VideSupra combines PhySim with a GUI and pindpader to provide aesup tool which
beginning users will be able to use while still providing the full functionality of PhySim. The

plug-ins provide a way to quickly develop and extend VideSupra.

Physics and Mathematics

The standard units are radians, kilometers, kilograemgralsnanoteslaand watts. The
time zoneused isCoordinated Universal Tim@TC) as defined inSO 8601 However, to
simplify some equations and to meet requirements, other units may be used; degrees, meters, days,
or minutes. Even though the variabledp enforce units, it may not solve all unit mismatch
problems. Always keep a close watch when dealing with units. The user interface may use an
alternative time zone for convenience. No parts may use, nor shouldnitesgl States customary
system as @fault units.
The simulator uses IEEE 745, a standard for binary flogdoigt arithmetic, 64 bit
doubleprecision storage for fractional values and 32 bit integer storage usingdawmement
for whole numbers. As with the units, for some parts of ittellator other storage types are used.
VideSupra is written entirely in C#, therefore it is compatible with Windows XP with
the .Net 2 Framework or greater, Vista, Windows 7, or above. The current libraries are compiled
so that they can be included inbut not limited to, C, C++, C#, J# and all CLR based languages.
VideSupra will load any CLR based language plugso new libraries do not have to be written

in C#.
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Types

The types group is made up of seven main classes with some helper classemiiach
class is a storage type for holding some type of data. This data should be useful in creating a
functional simulator. Using these types, doubles, strings, and integers will make future controls
and maintenance easier to do than each control defimiiogie types. As always common

features make a system more compatible with future designs.

DateTime and TimeZone

The DateTime and TimeZoraasses are designed to accurately handle time. Both are
designed to keep the values accurate and only use one double to store the value. They use
algorithms to calculate the equivalent seconds, minutes, hours, days, etc..

The TimeZone class stores a reaand an hour offset. It also includes the 76 main time
zones predefined. There are two methods to note for the TimeZone. They are ToUTC and
FromUTC. Both take in a DateTime and return a DateTime. The methods change the given time
from UTC to the TimeZonerhose method was called or vice versa. This is simply done by
adding or subtracting the hour offset from the given DateTime. As stated this is fairly straight
forward.

The DateTime is slightly more complex. DateTime stores the tidk8(0.0ticks per
millisecond since the date and time 1/14@00:00:00.000. The time can contain fractions of ticks
for very precise simulations, such as light diffraction simulations. The date can be negative to
represent BC dates. The precision for the date and time iss5&ith an 11 bit mantissa, as
defined by IEEE 754, which means that as the value goes up the precision becomes less. For most
applications this is great because, if the simulation is in centuries typically the steps will only be

at smallest days, and theecision would be in plus minus hours, whereas if the



18

simulation is in days typically the steps will only be in seconds, and the precision is in ticks. The
DateTime can even measure in milliseconds with a precision much smaller than picoseconds.
High precisionsimulations should ignore the day, month, and year. Set them taplfdy®est
results.

The DateTime contains methods for getting difference and sum between other dates. It
also contains conversion methods from System.DateTime and methgeéstifoy days, months,
years, hours, minutes, seconds, and sdt dvandles the Julian and Gregorian reform. It also

converts to and from Julian days.

Mass

The Mass class is designed to handle a complex rigid body of mass. Mass has three main
fields, thefirst is the total mass in any unit, the second is the center of mass, and the last is
moment of inertia tensonatrix and its inverse. The moment of inertia tensor is a Matrix3x3
designed to handle only rotational inertia. Linear momentum can be calcwithiethe total mass.
The center point is a VecPnt. The Mass class contains methods for adding other masses to it,
translating the mass, and rotating relative to its own coordinate system.

The Mass can be set directly or it can be calculated usingad fistsets including a
spherical mass, cylindrical mass, cube mass, cone mass, etc. The original mass design has been
tested and proven in the open sBUODE (Open Dynamics Engifiehe design has been

changed to better suit the PhySim, and rewritted#n

Matrix3x3, Matrix4x4, and VecPnt

The matrix classes, Matrix3x3 and Matrix4x4, are designed to handle fast matrix
rotations, scales, and coordinate setup. The 4x4 matrices are 3x3 minors padded with a vector in
the fourth row. The fourth column is akros save the lower right, which is typically a one. The

4x4 matrices use the fourth row and column to perform translations, therefore some of the math
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operations for the 4x4 matrices leave out the fourth row and column to maintain consistency. The
fourth row and column are also used to handigogonaland perspective camera projections for
3D graphics or shadow casting algorithms.

The VecPnt is a vector or point class. The first three values represent the X, Y, and Z.
They are used for all vectorathematics (length, cross product, dot product, etc.) and act as
typical 3x1 matrices. The fourth value, W, is left out of most of the vector mathematics. The W is
designed to determine if the VecPnt is a vector or a point by being set a 0 or a 1 vedgpecti
Any value other than O or 1 will cause the VecPnt to scale its own translation. The VecPnt is
designed to work with matrix classes. For 3x3 matrices the W value is ignored while being
translated. For the 4x4 matrices the matrix multiplication isoperdd fully to cause the VecPnt
to translate properly, whether the VecPnt is a vector or a pa@joatienl and 2 show how this
multiplication performs for a vector and a point. Note: The transpose on the VecPnts are just to
make it easier to read. The tmiees and VecPnt is stored in doubles to represent the formats

shown in Figure 3.

@ Y Y Y m Yo YR Y®
@ Y Y Y m YO YO YD
w Y Y Y m YO YD YO
n Y Y Y p n
Equationl: Vector Translation
A Y Y Y @ YO YD Y QY
A Y Y Y m YO YO Y QOY
o Y Y Y m YO YD YO Y
o Y Y Y p p

Equation2: Point Translation

O Omp Dpc o7 p 7P 2me Do
1° ‘ N
Ypm Ypp Ypc Ypo, I:{pn Yoo Yoc ﬁ’

.-;anr !an 'Yrrc ’ SN
P

Vpom Vpp Upg

e- E:E: ¢
2ee g

N 0 0 ) ) T ‘ - g2,
Ucn Ugp VUgg [)Cni)qp i)cc Dco Wen Yoo Yoo g‘e','
oT ap 0¢ ele} U{) X) % p U
Matrix3x3 Matrix4x4 (coordinate conversion matrix) VecPnt Quaternion

Figure 3: Storage Formats for Select PhySypés.



20

Quaternion

In some of the more delicate physics calculations a quaternion is used in place of a 3x3
matrix. The Quaternion class handles quaternion mathematics for three dimensional rotations
without the fear of gimbal lock. Gimbal lock occurs while using matri¢esy rotation is very
close to or at 90° an entire axis is lost so that all control falls to the remaining plane. Quaternions
are designed to handle the physics of orientation, rotational velocity, and angular acceleration. A
quaternion used fourdoubleso st ore its data, as shown in Fig
represents the real part of the quaternion whe
dimensional imaginary number parts. Therefore the quaternion as a single number would look
like,0 Y Q0 QaQ whik jbe6 @ndcard@ the i maginary di mens|
problems that otherwise wouldndét be solved, an
Since they arenoét as intuitive as. matri ces,
Where they are used, they are the best method or only method for solving that particular
algorithm. One such place is the rigid body dynamics in the control SatelliteRBD found in the
library PhySimAstronomicalControls. In the billiard table example &athwvould require the
use of a quaternion to calculate its location given the friction, momentum, and rotational velocity.

To get a better under st ainodnisnganod Rjoutaatteironn aoln sS er

Plugins and Pages

VideSupra is a plug ahplay system so that it can be extended to handle new simulations,
controls, and views. When VideSupra starts up it will search the directory it was started from and
all subdirectories of that directory for phirgs. Plugins are loaded as assemblies frl6@M
dynamiclink library (dll) files. The assemblies are checked for specific class implementations

then use the C# activator to create an instance from that assembly. Wheina gugeated it is
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wrapped in a shell class that makes all the calls to and from thaihpifmgpugh exception
handlers so that unknown phirgs will not crash the whole project. During development these
shells can be turned off so that the development environment camlyprmggdgate to the code in
the plugin which throws an exception. Communication between-piaghould be protected as
well by the plugins themselves since they will not necessarily know the othefipldge other
plug-in could be the expected phiig, a new version or even a different plingas long as it
implements the correct interface and name. Not necessarily knowing the othirsphkig
desired feature. It allows for fast development, flaagintenanceand extendibility for supporting
new fedures.

Currently VideSupra supports only three plagypes through the
VideSupra2.PluginCommons library. The PluginCommons require the use of some other libraries
such as PhySim2 and Types. There are four interfaces and a class in PluginCommondiéOne of t
interfaces is not a plui interface. It is the MainControlinterface. This interface is implemented
by the main control for VideSupra. This interface provides a way foripkitp call back to the
main control. The main control provides methods toautiremove tool strips and pages from
the main form. It also has methods to post for or show a popup for errors, warnings, notices, and
comments.

The only class in the PluginCommons is called CollectionResult. This class is used by the
simulation during &ollection to mark a pool returned from the simulation. This class can be
extended to carry other frame information as needed by the scenario and is used when placing a
pool in the | ake. Typically this watinfothe need
pool instead. A scenario plig will require the use of this class.

The Scenario interface allows new scenarios and scenario formats to be created.
VideSupra already implements an abstract scenario designed to rtimeeahd collection

scerarios, as seen in Code Snippet 1.



22

VideSupra2.CommonTools.Scenarios
{
/Il <summary>
/Il This is an abstract scenario for collection and real - time scenarios.
/Il </[summary>
1 abstract public class CollectionRealTimeScenario:
2 VideSupra2.PluginCommons  .Scenario

{
}

Code Snippet ICollectionRealTimeScenario
(line 28 inLibrariesaCommonToolsScenariogCollectionRealTimeScenario)cs

As with the other plugns, extending, inheriting and implementing #eenario can be
done to make a common class for other scenarios. Thémlagder will not load these because
of two things. First it will not load abstracts, statics or interfaces because they cannot be
constructed. Similarly, scenarios with privatgpor ot ect ed constructor s
the public default constructor, a constructor with no parameters. Secondly it will not load the
scenario implementation just because it inherits the scenario. The class must have a special
attribute tag ontitoo. Only when the attribute is on a class which inherits theiplirderface

will it be loaded. Code Snippet 2 shows the scenario-ipldigr the astrophysics package.

/Il <summary>
/Il This is the main scenario plug - in for the Astronomical Simulator.
/Il <[summary>
1 [ VideSupra2.PluginCommons .ScenarioAttribute]
2 public class Scenario:
VideSupra2.CommonTools .Scenarios.CollectionRealTimeScenario
{

3 .p”ublic Scenario()

Code Snippet 2Astrophysics Scenario
(line 27in PlugindPhySim2AstroPlugitScenario.cs

The second plugn interface is for acenarioobjectcalled ScenarioObjecEcenario

objects are used to build a tree representing a specific setup to collect data for. The root scenario
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may not be removed from the tree. The root is provided by the scenario. The objects can be added
as needed to the tree but they can ateet or reject being used in some tree formations. For
example, the astrophysics scenario provides a root object called the universe. The universe can
have the Sun, the Earth, or a satellite added to it but not all three. If the Sun has been added to the
universe, the universe will keep an Earth, a satellite or another Sun object from being added. The
Sun will only accept an Earth object yet only one can be added. The Earth will accept any number
of satellites. When the tree is finished being built theatsjdefine which controls are added to
the simulator and set them with some values. The object is how controls get added, the controls
themselves can be in the same | ibrary as the o
controls are as long dse plugin object can create them.

The scenario object is presented to the user in a propertySystem.Windows.Forms.
PropertyGrid. This means that class attributes are directly visible, unless otherwise marked, to
the user. No extra user interfamade is needed unless the type of the value being displayed is
uni que. All of the built in C# types and all t
have user interface controls for the property grid created for them. Code Snippet 3 shows how to
customize the user interface for a double valu
it will provide more information to the user when they are using the property grid. The
description is shown with the value. The display name can mahglicated identifiers into
simple to read text. For example ArAscensiono
Ascension Angled. The category attribute wil!/l
for convenience. For more informatiobaaut attributes see the MSDN documentation on the

property grid attributes.
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/Il <summary>This gets or sets the longitude, in degees.</summary>
[SCM.Category("Properties")]

[SCM.DisplayName("Longitude")]

[UIT.NoDefaultValue()]

[ SCM.Description("This is the longitude in degrees.")]

public double Longitude

{

6 get { return Math.ToDeg(this.longitude); }

7 set { this.longitude=Math.ToRad(value); }

O WNBE

Code Snippet 3DbjGroundStation
(line 311in PlugindPhySim2AstroPlugitObjectdObjGroundStation.gs

The third and last plun interface is the page interface called, Pagelnterface. The page
interface is fairly simple. Each scenario implementation should extend a page that will work
properly with it. Bah the reatime and collection implementations of the scenario pages were
designed for specifically to be used withMideSupra2.CommonTools.Scenarios.Collection
CollectionPagandVideSupra2.CommonTools.Scenarios.RealTRealTimePage. These
extendecpages to have new methods added to them that the scenario can use to give a page data,
usually in the form of a variable pool. Simple
scenariccan be added as well. The page interface can put a page icoheontaibh menu when
necessary and they can add their own menu strips as needed. The scenario may choose to activate
and remove certain pages for different conditions. The suggested method is that interfaces or
abstract pages are created then the scenavatast or removes all the pages of that type for
certain conditions. This will allow new pages to be added to a scenario without the scenario
having to be updated or even aware of that page implementation.

For more information on scenarios, scenario dbjeand pages read the commenting
provided with the interfaces and the commenting on the abstract classes which extend the
functionality for a specific purpose. Some of the interfaces are large (14 methods) but they are
quick to implement. Most of the meitis return a constant value used as an identifier, an image,
or a title. The interfaces were designed such that C# knowledge is required (or any other COM

development language) but beginner programmers should be able to handle creaiimg) plug
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Thisis needed because although the scenario and the pages are usually written by a programming
team, the scenario objects should be able to be written by a physics team.
The following sections discuss in detail the controls for the astrophysics scenario. These
controls are added as phigs through scenario objects. The objects share the same name. A few
of the scenario objects will create multiple controls but for the most part they are one to one. The
control goes into the simulation and the object providethads for setting and creating the

controls.
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PHYSIM2ASTROPLUGN

The PhySim2Astro plugn provides controls, objects, and a scenario for astrophysics
simulation specifically to simulate the environment required for developing aijteatellites.

The following sections discuss the different parts of the-piug

Coordinate Systems Conversions

In order for a simulation, specifically VideSupra, to work right, coordinate systems, as
frames of reference, have been designed and bai#t the backbone. PhySim2AstroControls
defines several conversions between coordinate systems. VideSupra will implicitly and
automatically generate the coordinate conversions not defined explicitly by the
PhySim2AstroControls package. To prove the corrastioé these coordinate conversions, first
the definition of the coordinate systems will be presented followed by the mathematical
representation and implementation for a specific conversion defined by the
PhySim2AstroControls package. Every agemerateadoordinate conversion will not be
mathematically derived, however the correctness of thegareration process will be
scrutinized.

Note that some minor changes from the standard coordinate systems may be present but
those changes still maintain the ditly of the data in that coordinate system. Some of the
changes are to handle the discreet nature of the software and others are for enforcing
compatibility. The main practice is to use matrices and vectors using the right hand rule for a
three dimensionaCartesian coordinate system. These coordinate systems typically use the XY

plane to define the movement path and the Z vector points up.
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HeliocentricEcliptic

The HeliocentrieEcliptic Coordinate System (HECS) has the sun in the center and uses
the arth as a point of reference (Figure 4). The X vector is pointing at the Vernal Equinox
direction, when the days and nights on earth are the same duration and the northern hemisphere is
heading into winter, alsknownasthe first day of autumn. Since thernal Equinox occurs at
noon in spring the vector is extended towards the sun and out the other side, hence it is out the
autumn side of the orbit. The X vector points towards the constellation Aries, the ram, therefore
the astronomy symbol for Aries wilbbmetimes replace X in different documentation. The X
vector is the guiding vector such that when the vectors become homogenous the X vector remains
in the same direction. Since the Earthoés axis
slightly fromyear to year. The X vector is associated with an epoch or year in which the Vernal
Equinox is based offThe XY plane is defined by the ecliptic in which the earth moves around
the sun hence the coordinate system is called the HeliocEtijtic Coordirate System. The Y
vector points t owar dwintetsblsticetheoshartdstedayrof the geari Thep her e 6
planet then rotates counter clockwise around the sun on the Z axis. The length between two points

in this coordinate system is in kilometeHowever, the standard outside of VideSupra is in

First day
of spring

First day
7 of summer

of winter

vernal equinox X First day
direction <y £ of autumn (Seasons are for Morthern Hemisphere)

Figure 4: Heliocentridcliptic Coordinate System Diagram
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Astronomical Unis (AU), the average distance from the sun to earth, 149@®&ilometers

Earth-Centric Inertial Reference

The EarthCentriclnertial Referenc€oordinate System (ECIR) is closely related to the
HECS. This coordinate system is also called the Geocdffuatorial (GECS) dEarth Centered
Coordinate System (ECCS). The X is still pointing in the same direction as the HECS, towards
the vernal equinox directi on GeobraphieNomole, t he

forcing the Y to point out the side according to tightrhand rule (see Figure 5). This coordinate

4

system is not fixed to the surface of the planet, therefore no matter the hour of day nor day of year

the X, Y and Z will always point in the same direction. In fact, this coordinate system stays

relative to he stars with the exception of the precession of the equinoxes and parallax of the orbit.

The XY plane bisects the planet through the equator, hence the reason this coordinate system is

called Geocentriequatorial. The I, J, and K vectors are unit vegtior&ilometers,
corresponding to the X, Y, and Z axis respectively. This is the most common coordinate system

for astrodynamics. It can be used to locate the stars, satellites, and other planets.

Jr4

Eau alol

vernal equinox

direction X

Figure 5: ECIR Coordinate System Diagrai Figure 6: ECEF Coordinate System Diagrar

p
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Earth Centered Earth Fixed

The Earth Centered Earffixed (ECEF) is also known as the Absolute Coordinate
Systemfor Earth (ACSE), shown in Figure 6. The ACS is similar to ECIR except for the XY
plane rotates with the planet, such that X is the point where the Equator and Prime Meridian meet
(0.C°N, 0.CE). The Z is still out th&seographidNorth Pole and Y is at 9Q.ongitude so that the
coordinate systemisrighthand@ddh e ECEF i s in kil ometers causin
roughly6371.Xm from the origin (average sea level, WGS84). It is usualhggavith the
equivalent ECIR Coordinate System for quick conversion. This coordinate system is designed for

locating ground stations and handling geomagnetic data.

SatelliteCentric Inertial Reference

The SatelliteCentric Inertial Reference CoordinatesB&m (SCIR) is identical to the
ECIR except that the origin of the coordinate system has been translated to the center of mass for
the satellite (see Figure 7). When no torque is applied to satellite which is not currently rotating,
the satellite will remia stationary relative to this coordinate system. The drag coefficient, B*, is
considered negligible as a torque on most low budget. The Satellite is located with the VideSupra

package SpaceTrack.Net.

z

vernal X
equirux
direction

Figure 7: SCIR Coordinate System Diagre Figure8: Ram/Nadir Coordinate System Diagra
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Ram/Nadir

The Ram/Nadir Coordinate System (RN) is similar to a PerifGoakdinate System for
the satellite. The main difference is that the RN is centered on the satellite and the X and Y axes
are defined by the velocity and the direction to the earth (nadir), shown in Figure 8. Unless the
elasticity is equal to zero, thelgeity vector and nadir vector are not typically perpendicular; the
X remains unchanged and the Y is shifted to a homogenous vector. The Z axis is parallel to the
Perifocal Coordinate Systembs Z axis..Thehe Per i
unit for this axis is kilometers. The coordina
This coordinate system is specialized for an ADCS which must keep a payload fixed relative to

the ram direction, as required by Montana State Uriivery $pace Buoy Project.

z

x &

Figure 9 Housing Coordinate System Diagrar

VAR

Figure 10 Ram pointing Figure 11 Nadir pointing Figure 12 Cartwheel
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Housing

The Housing Coordinate System (HCS) is how the ADCS and anythingretbe
satellite view the universe. This coordinate system is fixed to the housing such that the front
(which may be arbitrarily decided) is the X axis, the top (typically opposite side of the light band)
is the Z axis and the Y keeps the coordinate syg@per to th right hand rule (see Figurg 9
The ADCS sensors and actuators are all stationary in the HCS. For many magnetically driven
satellites, the X and Y line up with the side magnetotorquers and the Z is opposite the base plane
(light band connéion) magnetotorquer.

Typically the HCS6s Z axis is the axis of r
assist with an initial rotation. | f the HCSOs
satellite is in a cartwheel or skid orientati¥vihen the satellite is rotating countdockwise
around the Z axis, as viewed towards negative Z, then the satellite is in a cartwheel orientation,
otherwise it is in a skid. I f the HCS06s rotati
ismdir pointing, and finally, if the HCSO0s rot e

the satellite is ram pointing.

Earth Fixed Ground Station

The Earth Fixed Ground Station (EFGS)prdinate system is a location on the earth
given an altitude dngitude, and latitude. The coordinate system starts with Z directly away from
the center of the planet, the Y axis points towards the rotational axis of the Earth, Northgtoward
the Z axis of ECEF), and theakis points EdasThe altitude is the distaagcin kilometersfrom
sea |level (WGS84 a4 6378.15 Km), the | atitude a
coordinate system is then rotated given an elevation and an azimuth. The elevation is the angle, in
radians, from th&Y plane towards the mmal (Z axis) of this coordinate systefrhe azimuth is

the angle, in radians, from the North vector (Y axis) clockwise around the XY plane of this
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Figure 13 Earth Fixed Ground Station

coordinate system. For most ground stations the elevation and azimuth are zero. The ground
station can also be used as a satellite dish location, in which case the elevation and azimuth is set

to the tilt of the dish.

Coordinate Conversions

All VideSupraCartesian coordinate conversions are performed with 4x4 matrices, which
are formed from a 3x3 rotational matrix with the fourth dimension being the translation vector.
The format for this type of 4x4 matrices is shown in Figure 3. The current versiondf/1.2
VideSupra does not accept coordinate conversions to change units; both sides must be in the same
units, typically kilometers. This scheme allows for simple vector and point conversions using the

VecPnt structure.

ECIR to HE

The coordinate conversioroin ECIR to HE requires only the current UTC. This
conversion has two tasks. The first is to locate where the Earth is at the given time and the second
is to tilt the Earth as shown in Figure 4. Since both HE and ECIR base the X axis off of the

Vernal Equnox the X vector must remain unchanged. The resolution required by SSEL for the

conversion is | ow. The Earthoés orbit i s consi

d
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and Earthoés obliquity is ignored. Greater reso
needs the HE is so that the simulation can be
requirements at top resolution®i$® of accuracy and the Sun wihly appear as a C.%idth
object as seen by the sun sensors. For more specifics about the resolution requirements, read
about the simulatedeasors in the Algorithms Section. Thede found in Code Snippet 4 is the
method for calculating the ECIR to HiBnversion.
Yo ¢ i 0énua QA Q4 p inHE
O ®iRod ¢ wmQa mQa mQda p inECIR
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Equation 3 Symbolic Representation of ECIR to HE

/Il <summary>
/Il This ca Ic ulates the conversion from Earth Centered
/I Inertial Referenced (ECIR) to Heliocentric Ecliptic (HE).
/Il </[summary>
public ove rr ide void Calculate(PS.SimulatorArgs args)
{
/I The Sun's location in HE and Earth's location in ECIR is always zero.
1 this.sunsLoc.Point=VecPnt.Point();
2 this.earthsLoc.Point=VecPnt.Point();
/I Get the days and fraction of days for the Earth since Earth's epoch...
3 double days=(this.curTime.Value - Const.VernalEquinox).TotalDays;
/I Get the rotational angle for th e year...
4 double yearRot=Math.PI2*((days/Const.EarthOrbitalPeriod)%1.0);
/I Get Earth's location in HE...
5 VecPnt eLocHE=VecPnt.Point(Const.EarthSemiMajorAxis*Math.Cos(yearRot),
Const.EarthSemiMajorAxis*Math.Sin(yearRot), 0.0);
/I Rotate b y Earth's tilt and offset to location...
6 this.CoordValue=
Mat4x4.PadMinor(Mat3x3.XRotation( - Const.EarthAxisTilt), eLocHE);
/I Run base calculate methods...
7 this.sunsLoc.Calculate(args);
8 this.earthsLoc.Calculate(args);
9 base.Calculate(ar gs);
}

Code Snippet 4: ECIR to HE
(line 104in LibrariedPhySim2AstroControlSolarSystenE CIRtoHE.cs)
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Line 1 in Code Snippet 4 sets the location of the center of the Sun in HE to the origin.
The variablesunsLods a global point. It is easier to set it to all zeros in this coordinate system
and let the autgenerators distribute it to all other coordinate systems, then try to calculate it out
of other conversion matrices. This does cause redundant datato leedto but makes t he
location easier to get.

Line 2 is the same as line 1 except it sets the center of the Earth in ECIR to the origin.
Again this is a global point so it will be propagated to all other coordinate systems. In line 5 the
Ear t h 6 siscaleulatadtin thee HE, but by setting this value to zero in the ECIR the location
is slightly more accurate since it will require one less matrix multiplication and inversion before
reaching the coordinate systems based off of the ECIR.

Line 3 takes the current time for the simulator then subtracts the Vernal Equinox from it.
This will get the change in time since the Earth was directly on the X axis of the HE. This change
is given in days and fraction of days.

Line 4 will take the dayand fraction of days since the Vernal Equinox and convert it to
the angle in radians for the Earth around the Sun. This is done by converting the days and fraction
of days into years and fractions of years since the given Vernal Equinox date. The witisle par
removed leaving just the fraction of the year since the Vernal Equinox. That fraction is multiplied
by 2° to get the angle.

Line 5 uses the angle calculated on the previous line to get the location of the Earth in the
HE. Since the orbital planeislory i n t he X and Y axi s, the Z off
be defaulted to zero. The X and Y are scaled by the mean distance between the Sun and Earth.
The X offset is calculated by taking the cosine of the angle and the Y offset is calculated by
taking the sine of the angle. This will cause the Earth to be positive X during the Vernal Equinox

the move counter clockwise to positive Y during the Winter Solstice.
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Line 6 creates a rotational matrisx, tilted
obliquity. The rotational matrix will then be
matrix is for converting from ECIR to HE for any point or vector. That means that the frame of
reference is the Sun as if it was locating the Earth, as simokigure 5. If the X, Y, and Z
vectors for the Earth are sent through the ECIR to HE, the X axis would remain the same but the
Y and Z would have to tilt clockwise around the X axis as stated above. If the center of the Earth
is sentthroughthe ECIRt¢éE it woul d have to shift the Earth

lines 7, 8, and 9 execute the inherited code for thegenerators.

/Il <summary>Distance From Sun To Earth = 149,598,000.0 km</summary>
static public readonly double EarthSemiMajo rAxis = 149598000.0;

/Il <summary>Radius Of Earth = 6,378.15 km</summary>
static public readonly double EarthRadius = 6378.15;

/Il <summary>

/Il Earth's Obliquity = 23 deg 26 min 21.448 sec = 0.4090928 rad

/Il </summary>

static public readonly double Ear thAXxisTilt = 0.409092804222329;

/Il <summary>Days In An Earth Year = 365.242199 days</summary>
static public readonly double EarthOrbitalPeriod = 365.242199;

/Il <summary>Earth's Sidereal Days = 0.997269566 days</summary>
static public readonly double Si derealDays = 0.997269566;

/Il <summary>

/Il Near March 21 (northern hemisphere) when night and

/Il day are nearly the same length.

/Il <[summary>

static public readonly Time VernalEquinox = Time .UTC(2000, 3, 20, 7, 25, 0, 0);

Code Snippet 5: EartBonstants
(line 30 in LibrariedPhySim2AstroControl§ oolsConstants.cs)

ECIR to ECEF

Just like the ECIR to HE the ECIR to ECEF coordinate conversion only requires the
current simulation time in UTC. As shown in conversion Figures 5 and 6, this comvisrsio
required to take the inertial referenced coordinate system ECIR and rotate it around the Z axis to

create the ECEF coordinate system. The first requirement is that on any day at 12:00 UTC the
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vector formed from the prime meridian and the orbital plane points towards the Sun given some
leniency for Earth obliquity. The other requirement is that the frequency of the rotation around
the Z axis is once per sidereal day in a coudli@rkwise motioras viewed from the top (positive
Z looking towards negative Z) of the Earth. This also means that the Z axis must remain
unchanged during the conversion from ECIR to ECEF. The following code also uses the

constants shown in Code Snippet 5.

/Il <summary>
/Il This calculates the conversion from Earth Ce ntered Inertial Referenced
/Il (ECIR) to Earth Centered Earth Fixed (ECEF).
/Il </[summary>
public override void Calculate(PS.SimulatorArgs args)
{
/I Get days and fractions of days since earth's epoch...
1 double days=(this.curTime.Value - Const.VernalEquinox).TotalDays;
/I Get vernal equinox day off set in fractions of a day...
2 double offset=Const.VernalEquinox.TotalDays%1.0;
/I Get fract ion of sidereal days then the rotational angle for the day...
3 double dayRot=Math.PI2*(((days+offset)/Const.SiderealDays)%1.0);
/I Rotate earth for sidereal day and get the conversion matrix...
4 this.CoordValue=Mat4x4.ZRotation(dayRot);
5 base.Calc ulate(args);
}

Code Snippet 6: ECIR to ECEF
(line 94 in LibrariedPhySim2AstroControlSolarSystentE CIRtoECEFcs)

Line 1 in Code Snippet 6 calculates the days and fraction of days since the Vernal
Equinox. Line 2 gets the fraction of a day since midnight on the day of the Vernal Equinox. This
is when the vector formed from the Prime Meridian and the orbital plants poivards the X
axis in the ECIR.Line 3 gets the angle of rotation around the North Pole (Z axis) for the day. The
offset for the Vernal Equinox is added to the total days of the year then divided by the fraction of
a day for a sidereal day. This caudes Earth to make one full rotation every sidereal day
causing noon (12:00:00.000 UTC) to be pointing towards the sun ed@verry day as seen in
Figure 14 Line 4 converts the angle into the rotational matrix and line 5 calls the base method

causing theutocgenerators to run.
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Equation 4 Symbolic Representation of ECIR to ECEF

Figure 14 Sidereal and Solar day diagram

ECIR to SCIR
The ECIR to SCIR is simple. intheEQRThe requir e
ECIRtoSCIRt r ansl| ates by the negative of the satel!]l

calculated using SpaceTrack.Net library and stored as a global point.

/Il <summary>This calculates the coordinate conversion matrix.</summary>
public override void Calculate(PS.SimulatorArgs args)
{
1 this.CoordValue=Mat4x4.Translation( - this.hndlLoc.Value);
2 base.Calculate(args);
}

Code Snippet 7: ECIR to SCIR
(line 93in LibrariesPhySim2AstroControlSatelliteSECIRtoSCIR.cy
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Equation 5: Symbolic &rresentation of ECIR to SCIR
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SCIR to RN

The SCIR to RN coordinate conversion requir
Satellitebs Vel oci t ynorinalizedEisttheRam diflettien andehe nwegativey wh e
location is the nadir vector. Using these two vectors a coordinate space can be calculated using

the following methods.

/Il <summary>This calculates the coordinate convertion matrix.</summary>
public override void Calculate(PS.SimulatorArgs args)

{
1 Mat3x3 orient=Mat3x3.Transpose(Mat3x3.CoordinateSpaceXY (

this.hndIVel.Value, - this.hndlLoc.Value));
2 this.CoordValue=Mat4x4.PadMinor(orient);
3 base.Calculate(args);

Code Snippet 8: SB®Ito RN
(line 94 in LibrariedPhySim2AstroControlSolarSystenSCIRtoRNCcs)

Line 1 in Code Snippet @ets the coordinate space using the velotibd(Vel) and the
negative of the locatiorhidILog. The coordinate space is a 3x3 matrix. Since all the coordinate
conversions have to be 4x4 matrices, line 2 adds on the fourth dimension with a translation of

zero. There is no translation from SCIR to RN and the rotation is caused by the coordireate spac

/Il <summary>

/Il This transforms from identity coordinate space into a different
coordinate

/Il space. The x axis remains directionally unchanged.

/Il </[summary>

/Il <param name="Xaxis">This is the new x axis.</param>

/Il <param name="Yaxis">This is the new y axis.</param>

/Il <returns>The coordinate space transformation matrix.</returns>

static public Matrix3x3 CoordinateSpaceX Y(VecPnt Xaxis, VecPnt Yaxis)
{

VecPnt x = VecPnt.Normalize(Xaxis);

VecPnty = VecPnt.Normalize( Yaxis);
VecPnt z = VecPnt.Normalize(VecPnt.Cross(x, ¥));
y = VecPnt.Normalize(VecPnt.Cross(z, x));

return CoordinateSpace(X, y, z);

O WN R

Code Snippet:CoordinateSpaceX
(line 564in LibrariedSystem.Types 3D\Matrix3x3.c9
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Equation 6 Symbolic Representation of ECIR to RN

The coordinate space matrix regsitaree vectors. Code Snippettftbws how to use two

vectors, specified as the new coordinate space X axis and Y axis, to get all three vectors

orthonormabhile keepinghe X axis unchanged directionally.

s wWwN PP

/Il <summary>
/Il This transforms from identity coordinate space into a scaled skewed

coordinate /// space. Note: The given axii should be homogeneous orthogonal.
/Il </[summary>
/Il <param name=" Xaxis">This is the new x axis.</param>

/Il <param name="Yaxis">This is the new y axis.</param>
/Il <param name="Zaxis">This is the new z axis.</param>
/I | <returns>The coordinate space transformation matrix.</returns>
static public Matrix3x3 CoordinateSpac e(VecPnt Xaxis, VecPnt Yaxis, VecPnt
Zaxis)
{
Matrix3x3 mat = new Matrix3x3();
mat.m[0, O]=Xaxis.X; mat.m[0, 1]=Xaxis.Y; mat.m[0, 2]=Xaxis.Z;
mat.m[1, O]=Yaxis.X; mat.m[1, 1]=Yaxis.Y; mat.m[1, 2]=Yaxis.Z;
mat.m[2, O]=Zaxis.X; mat.m[2, 1]=Zaxis. Y; mat.m[2, 2]=Zaxis.Z;
return mat;

Code Snippet 1@CoordinateSpace
(line 545in LibrariedSystem.Typés 3D\Matrix3x3.cs)

Once all three vectors are orthonormal they are entered into the coordinate dpace ma

as shown in Code Snippet.-thec oor di nat e space wi ||

make t he

project directly down the X axis. The earthos

the X axis caused by a naircular orbit.

S
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To HCS

This conversion can be done by many different methods. The three implemented in the
PhySim2AstreControls are the identity orientation, standard orientation and RBD orientation.
The identity orientation uses the SCIR as the HCS. If the satellite wa®peditn the SCIR and
no external forces are applied the satellite will stay aligned with the SCIR. The B* drag
coefficient and gravity gradient is ignored by SCIR. This is simply a 4x4 identity matrix as a
coordinate conversion matriXhe RBD (Rigid BodyDynamics) orientation is discussed under
the algorithms section, since it handles much more than just the conversion from SCIR to HCS.
The standard orientation provides methods to rotate around a stable axis in the RN coordinate
system. This means if rotat) counterclockwise around the Z axis the standard orientation
simulates a desired cartedl orientation. Code Snippet $hiows how the standard orientations
are calculated. It requires the change in time, the rpms (rotations per minutes), and tmakotati

axis.

/Il <summary>This calculates the orientation of this satellite.</summary>
public override void Calculate(PS.SimulatorArgs args)
{
double freg=this.rpm*Math.P12/Time.secPerMin;
this.rotVel.Vector=this.rotAxis*freq;
this .rotation+=(this.hndIDt.Value*freq);
this.Orientation=Mat3x3.RotateOnPlane(VecPnt.ZAxis(), this.rotAxis)*
Mat3x3.ZRotation(this.rotation);
this.rotVel.Calculate(args);
base.Calculate(args);

A WNPEF

o Ol

Code Snippet 210rientationRN
(line 195in LibrariesPhySim2AstroControlSatellite§OrientationRN.cp

Line 1 in Code Snippet 1dalculates the radians per second, or frequency of rotation.
Line 2 sets a global vector where the length is the frequency and the direction is the rotational
axis. The rotational axis was normalized before this methate 3 uses delta time and the

frequency to determine the angle swept in the last time step. This angle is then added to the
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current accumulated rotational andle 4 creates a 3x3 rotatiomatrix which rotates the first
given vector (X axis) to the second given vector (rotational axis) using the cross product and
angle betweerhem, as shown in Code Snippet This causes an arbitrary starting rotational
angl e but typi tatoha angletwil baveno dirsct corgeléation ta time, only the

change in the rotational angle will correlate to time.
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Equation 7: Symbolic &resentation of OrientationRN

/Il <summary>
/Il This rotates the start axis onto the end axis
/Il on the plane from both axes
/Il </summary>
/Il <param name="startAxis">This is the axis to start with.</param>
/Il <param name="endAxis">This is the axis to end up on.</param>
/Il <returns>This is the rotational matrix.</returns>
static public Matrix3x3 RotateOnPlane(VecPnt startAxis , VecPnt endAxis)
{
if(startAxis==endAXxis)
return ldentity();
if(startAxis== - endAxis)
return Rotate(VecPnt.ArbitraryPerpendicular(startAxis), Math.Pl);
return Rotate(VecPnt.Cross(startAxis, endAxis),
VecPnt.Angle(startAxis, endAxis));

O WNBE

Code Snippet 12RotateOnPlane
(line 397in LibrariedSystem.Typés 3D\Matrix3x3.cs)

Code Snippet 12omputes the rotation on a plane given the start axis and the end axis. If
the start axis and end axis are the same (line 1 and 2) then a 3x3 identity matrix is returned. If the
start axis is opposite the end axis (line 3 and 4) then an arbitrary pexydandkis, defined as

b U U 0 U U U wherevis the start axis, is rotated around“byOtherwise
(line 5) the rotation matrix is created by using the cross product as the rotational axis and the
angle between the start and end axithasangle to rotate by. This causes all points along the start

axis to be mapped to the end axis. The other points will be mapped similarly except that there is a
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rotation around the end axis caused by the rotation around the cross product.

ECEFto EFGS

TheECEF to EFGS®reates a poirdatthe correct altitude away from the center of ECEF
then rotates it around the center of ECEF so that the point is in the correct lacatithe axes
are rotated correcthf.he conversion uses Coordinata&ZX which is very similar to
CoordinateSpaceX, see Code Snippet Bhe difference is itises the Z and X vectors as the
basis for the coordinate system instead of X and Y. If Z and X are not perpendicular Z will
remain unchanged and X will lmethogonalizedWhenthe location is at either pole where the Y

axis and Z axis will be collinear, the Z axis will still point away from the center but the Y axis

/Il <summary>This calculates the coordinate converter.</summary>
public override void Calculate(PS.SimulatorArgs args)
{
1 double earthSealevel = 6378.15; /I Earth 6 s Sea Level (WGS84) in Km
2 double d=Math.Abs( this. altitude+earthSealevel );
3 double r=Math.Cos( Math.ToRad( this. latitude ) )*d;
4 double x =Math.Cos( Math.ToRad( this. longitude ))*r ;
5 double y=Math.Sin (Math.ToRad( this. longitude ))*r ;
6 double z=Math.Sin( Math.ToRad( this. latitude ) )*d;
7 this.point= new VecPnt( x,y ,z, 1.0);
8 this.normMat=Mat3x3.CoordinateSpaceZX(thi s.point , VecPnt.ZAxis());
9 this.rotMat=Mat3x3.Y Rotation(this.elevation)*
Mat3x3.ZRotation(this. azimuth);
10 this.CoordValue= Mat4x4.PadMinor(this. normMat*this.rotMat, this.point );
}

Code Snippet 2ECEF to EFGS
(line 227in LibrariesPhySim2AstroControlSolarSystenE CEFtoLLA.c9
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Equation 8 Symbolic Representation dECEF to EFGS



43
will point towards the prime meridian. When the location is the center of the Earth the coordinate
system is the same as ECEce the correct location and initial rotation have been determined

the coordinate system is rotated around its center point with the elevation and azimuth.

Auto-Generated Conversions

The autegenerated conversions implement graph theory and matrix nedtiph to
create the entire set of relative conversions given as a small group of defined conversions. This
allows the user to only implement the basic and simple conversions but make requests of the

simulation using conversions not specifically defined.

Conversion Multiplication

The autegenerators are based off of one concept: to solve for a missing conversion two
defined conversions may be multiplied together
given is AA to BoOo d&mdtimB Btoo b@0 AtBhaem MWl ttioplgyet
validation that is required here is to prove that since matrix multiplication is not commutative that
the autegenerators will multiply in the correct order.

As shown in Figure 3, the vectors and points are septed as 1x4 matrices. This means
that during multiplication the vector or point must be at the left of the equation. This is important
to the order of multiplication. A 4x1 would require the reverse order.

Given thatP, is a point in the coordinate systemMyzi s t he matri x for AA
coordinate conversions, aiMkci s t he matri x f or AB to CO coordi

required iMac.
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C: ca ca
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Equation 9 Proof ofMatrix Multiplication Order.

By definition the first two equations are true. By replacingRha the second equation
with the equivalent found in the first equation, the resulting third equation is found to also be true.
Using theassociativgproperty of matrices, the forth equation can be derived from the third. Using
the forth equation, the tlirequation can be simplified into the final equation. That equation is the
wanted result of the autgenerators. Therefore the forth equation can be used when acquiring
required coordinate conversions which have not been defined.

Code Snippet 14 and Hsehow these matrices and vectors get multiplied together.

Notice that the vector matrix multiplication only allows the vector to be on the left.

/Il <summary>This multiplies two matrices together.< /summary>

/Il <param name="a">This is the left matrix.</param>

/Il <param name="b">This is the right matrix.</param>

/I <returns>This is the product of the two matrices.</returns>

static public Matrix4x4 operator*(Matrix4x4 a, Matrix4x4 b)

{
1 Matrix4x4 mat=new Matrix4x4();

Il C[x,y]=Sum(A[x,i]*Bly,i]; i=0..3);

2 mat[0,0] = a[0,0]*b[0,0] + a[0,1]*b[1,0] + a[0,2]*b[2,0] + a[0,3]*b[3,0];
3 mat[0,1] = a[0,0]*b[0,1] + af0,1]*b[1,1] + af0,2]*b[2,1] + af0,3]*b[3,1];
4 mat[0,2] = a[0,0]*b[0,2] + af0,1]*b[1,2] + af0,2]*b[2,2] + af0,3]*b[3,2];
5 mat[0,3] = a[0,0]*b[0,3] + af0,1]*b[1,3] + af0,2]*b[2,3] + af0,3]*b[3,3];
6 mat[1,0] = a[1,0]*b[0,0] + a[1,1]*b[1,0] + a[1,2]*b[2,0] + a[1,3]*b[3,0];
7 mat[1,1] = a[1,0]*b[0,1] + a[1,1]*b[1,1] + af1,2] *b[2,1] + a[1,3]*b[3,1];
8 mat[1,2] = a[1,0]*b[0,2] + a[1,1]*b[1,2] + a[1,2]*b[2,2] + a[1,3]*b[3,2];
9 mat[1,3] = a[1,0]*b[0,3] + a[1,1]*b[1,3] + a[1,2]*b[2,3] + a[1,3]*b[3,3];
10 mat[2,0] = a[2,0]*b[0,0] + a[2,1]*b[1,0] + a2,2]*b[2,0] + a[2,3]*b[3,0];
11 mat[2,1] = a[2,0]*b[0,1] + a[2,1]*b[1,1] + a[2,2]*b[2,1] + a[2,3]*b[3,1];
12 mat[2,2] = a[2,0]*b[0,2] + a[2,1]*b[1,2] + a[2,2]*b[2,2] + a[2,3]*b[3,2];
13 mat[2,3] = a2 , 0]*b[0,3] + a[2,1]*b[1,3] + a[2,2]*b[2,3] + a[2,3]*b[3,3];
14 mat[3,0] = a[3,0]*b[o, 0]+ a[3,1 ]*b[1,0] + a[3,2]*b[2,0] + a3,31*b[3 , 0];
15 mat[3,1] = a[3,0]*b[0,1] + a[3,1]*b[1,1] + a[3,2]*b[2,1] + a[3,3]*b[3,1];
16 mat[3,2] = a[3,0]*b[0,2] + a[3,1]*b[1,2] + a[3,2]*b[2,2] + a[3,3]*b[3,2];
17 mat[3,3] = a[3,0]*b[0,3] + a[3,1]*b[1,3] + a[3,2]*b[2,3] + a[3,3]*b[3,3];
18 return mat;

}

CodeSnippetl4: Matrix Multiplication

(line 61in LibrariedSystem.Typeas 3D\Matrix4x4.cs)
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/Il <summary>This multiplies a vector by a matrix.</summary>
/Il <param name="a"> This is the vector</param>

/Il <param name="b">This is the matrix.</param>

/Il <returns>This is the resulting vector.</returns>

static public VecPnt operator*(VecPnt a, Matrix4x4 b)

{
1 VecPnt vec=new VecPnt();
2 vec.X= b.m[0, O]*a.X + b.m[1, O]*a.Y + b .m[2, 0]*a.Z + b.m[3, O]*a.W;
3 vec.Y = b.m[0, 1]*a.X + b.m[1, 1]*a.Y + b.m[2, 1]*a.Z + b.m[3, 1]*a.W;
4 vec.Z= b.m[0, 2]*a.X + b.m[1, 2]*a.Y + b.m[2, 2]*a.Z + b.m[3, 2]*a.W;
5 vec.W = b.m[0, 3]*a.X + b.m[1, 3]*a.Y + b.m[2, 3]*a.Z + b.m[3, 3]*a.W;
6 r eturn vec;
}

Code Snippet 15: Matrix/Vector hitiplication
(line 91in LibrariedSystem.Typés 3D\Matrix4x4.c9

Completing the Graph

Given a set of edgeSgin a finite graphiQ whereéeP ‘OandOis all the possible
connections ifiQ as defined by Qf N ‘Ch'Qj, ® sy 'O, the autegenerators
will createO ‘e 'Qthis cause¥to be a complete graph. An edge is the connection between
two coordinate systems, where the coordinate system is known as a verbebe an the graph.
Note that if the defined conversions do not fully connect, that is that they create separate graphs,
then the autg@enerators will treat them as separate graphs. Thegautrators will not make
guesses or assumptions of any kind, anbate th&l™ ‘Ofor all graphs. The autgenerators
take advantage of the fact that e&ik added in individually, therefore the atgenerators only
have to run after another edge is added to a graph. Coordinate conversions are one directional but
by definition the conversion matrix must be invertible to be an actual conversion, therefore the
first thing that the autgenerators do is generate the inverse matrix and add it to the simulator.
Since the inverse is immediately added to the simulatoe tt@wnections may be treated as
undirected edge by the augeneratornQy N 'O CmQp N ‘O, however the output equations will
use only one direction. The conversion matrix for the edge going one direction is always the
inverse of the conversion matifiar the edge going the opposite direction between the same two

nodes.
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For example, givenQy M M iy AQr  ‘CGathe following occurs assuming that
they are added in the order as stated in the list. This example will demonstrate how the code, on a
high level, performs the autgeneration. Note that the number of connections in a graph, for the

graph to be completes S0Os ——, whereg is the number of vertices 1@

1 WhenQj, is added the autagenerators only create the inver&e which causes
the graph to be compte, see Figure 155ince there will always be both directions
the drawing carsimplify tolook like Figure 16

T WhenQy is added to the graph, the autgenerator notices the vertex B is shared
between two edges. It creaté@; 2 Qy Qi andQp 2 Qi Qp, as shownin
Figure 17to complete the graplt o C<Os  ©.

1 NextQy is added to the simulation. The augenerations cannot find a shared
LRAYG a2 AG R2SayQiG FRR lyeidKAy3d (2 GKS
‘Qp of course. See Figure 18

1 Qj is added to the simulation. The autnerators notie that the vertex E is
shared byQ  with both'Q and the autegeneratedQy, . Therefore it creates the
connectionQ ; , Q}; and the complement inverse caections, as shown in Figure
19.

1 WhenQy is added the autggenerator notice several connections sin€e;;
bridged the two graphs together. For the shared vertex E, it loc&tgdQ, , and
‘Qp which it uses to creat® , , Q , andQ ;; seen in Figure 20t also notices that
the vertex D is shared, nonly byQ ; but also by the newly created edgé3;; ,

Q4 , andQy . It adds the four neweonnections, shown in Figure 21
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() Coordinate System

g ® ——— Defined Edge
enn — — — Auto-Generated Edge
Figure 15 Figure 16 Figures 1524 Key

® (B)

I

I ©

I

® ©

Figure 17 Figure20

Figure 2 Figure 2

In this example the edge count is 15, which since @ the graph is again complete. The
total coordinate conversions defined are 5 meaning 25 argean&rated. For each complete
graph defined by coordinate conversions, coordinate conversions are aygfenerated. The
resulting coordinate conversions will be added to the simulation in the following order:
QO Q A QO 1N QrMEhQ QN Qr QLR QEAQR N
g Qrh QI hQrQr h QR QIR QEAQLhQFQFh QR QR . Note that
defined conversions arearked a&xg; N Q.

The dependency of the conversion is important so that the multiplication ef auto
generated conversions occur only after the conversions it relies on have been Eeated.
though the inverse is dependent on the original convetisgynare considered both on the same
dependency level because the inverse is always calculated immediately after the original is

calculated. The maximum dependency level for a graph will be one less than the maximum path
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length of the graph when ontllge defined connections gpoeesent, as shown in Figure.2a this
example, the maximum path length is 4, following the path {A, B, E, D, C}. This means that the
dependency level @j, is 3. The autaenerators buil;  Qp 2 (e . Qe is defined,
therefore its dependency level is 0, howegr Qj 2z G, andQp 'Gg, 2 gy . It
follows thatQr  Qp 2Qj Qr2Qr 2Qp QR 2Qr 2Qp 2Qp, therefore
showing why the dependency is 3

The dependencies built by the agienerators, assuming all defined conversions have a
dependency level of O, for all edges are as follows for this example:

T Level 0Cag; FGaear FCxer, Ficeer Ficesy

1 Level 1Q; 0y FQ; FQ; HQj

T Level 2Q; FQ\ QO

1 Level 3Qj

PhySim will determine the final dependencies base off of the variable requests from each
controller. The autgenerators will add a new control for each conversion and inverse pair. The
new control will request the four conversion matrices required by the new conversion and inverse.
By making these requests PhySim will enforce the dependencies, to guarantee that the new
conversion and inverse will be updated only after the four conversiepsded are updated.

The reason four conversions are requested instead of two is because making the extra two
requests and extra multiplication takes less time than performing an inverse. The only inversions
performed will be on the original defined ma#&s. Since the graph is complete it is guaranteed

that all four conversions will exist before a new conversion is created.



49

Global Points and Vectors

The autegenerators will also create all global points and vectors in all related coordinate
systemsWhen a global vector or point is added that point or vector checks for all conversions
which start at the coordinate system they are in, then, using those conversions creates new points
or vectors in the ending coordinate systems. When a new coordimarsion is added, and all
the subsequent coordinate conversions have been added, tigerertators check the list of
defined global points and vectors for any which are in effected coordinate system. If a point or
vector exists the autgenerators wiltreate a new point for each new coordinate conversion
starting from that point or vectors base coordinate system.

Given a graph)Q a set of connection® N ‘Ofor that graph and a point or vector
whereb N wandV is the set of vertices in thggaphP can be propagated as follows:

1O Mmd P mQ w~ 'ONafod cnSimply stated, for each point or vector with the base

coordinate system of there exists a complement point or vector with the base coordinate system
of y, if and only if there eists an edge between both coordinate systems. Since the graph is
complete the autgenerators will distribute a global point or vector into all connected coordinate
systems by multiplying the vector or point by the conversion matrix. Once again the auto
generators will nomake guesses or assumptions of any kind. If there is no connection between a
group of coordinate systems and another the global vector or point will remain confined in the

group in which its base coordinate system exists.

The Specific Cowversions

As a more specific example of how the agamerators work with the
PhySim2AstroControls, assume the given conversions, vector, and points are created in the

foll owing order and the satellite is called

i S
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Convert ECIR to HE

S u nLécstion in HE

Earthdés Location in ECIR

Convert ECIR to ECEF

Satl16s Location in ECIR

Satl6s Velocity in ECIR

Convert ECIR to Satl SCIR

Convert Satl SCIR to Satl RN

. Sat16s Rotational Velocity in Satl RN
0. Satl RN to Satl Housing

Figure 3 Figure 24

POONO G A~WNE

The defined taph is shown in Figure 23 he autegenerators creéa the graph shown in
Figure 24as well as distribute the global vectors and points to all other coordinate systems. The
following list shows the defined value being added and the resultinggantrated values. It can
be seen that all 30 connections are made as well as all 18 ghittalgnd 12 global vectors as

expected.

1. Convert ECIR To HE

a. Convert HE To ECIR
2. Sun's Location In HE

a. Sun's Location In ECIR
3. Earth's Location In ECIR

a. Earth's Location In HE
4. Convert ECIR To ECEF
Convert ECEF To ECIR
Convert ECEF To HE
Convert HE To ECEF
Earth's Location In ECEF
. Sun's Location In ECEF
5. Satl's Location In ECIR

a. Satl's Location In HE

b. Satl's Location In ECEF
6. Satl's Velocity In ECIR

a. Satl's Velocity In HE

Paoow
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Satl's Velocity In ECEF

7. Convert ECIR To Satl SCIR

TT@Tmoa0 Ty

Convert Satl SCIR To ECIR
Convert Satl SCIR To HE
Convert HE To Satl SCIR
Convert Satl SCIR To ECEF
Convert ECEF To Satl SCIR
Earth's Location In Satl SCIR
Satl's Location In Satl SCIR
Sun's Location In Satl SCIR
Satl's Velocity In Satl SCIR

8. Convert Satl SCIR To Satl RN

AT T TQT0a0 o

Convert Satl RN To Satl SCIR
Convert Satl RN To ECIR
Convert ECIR To Satl RN
Convert Satl RN To HE
Convert HE To Satl RN
Convert Satl RN To ECEF
Convert ECEF To Satl RN
Earth's Location In Satl RN
Satl 's Location In Satl RN
Sun's Location In Satl RN
Satl 's Velocity In Satl RN

9. Satl Rotatlonal Velocity In Satl RN

a.
b.
c.
d.

Satl Rotational Velocity In Satl SCIR
Satl Rotational Velocity In ECIR
Satl Rotational Velocity In HE

Satl Rotational Velocity In ECEF

10. Convert Satl RN To Satl Housing

There are two very important algorithms for VideSupra. The first determines where the

sat el

S3—ATTs@moaooTe

Convert Satl Housing To Satl RN
Convert Satl Housing To Satl SCIR
Convert Satl SCIR To Satl Housing
Convert Satl Housing To ECIR
Convert ECIR To Satl Housing
Convert Satl Housing To HE
Convert HE To Satl Housing
Convert Satl Housing To ECEF
Convert ECEF To Satl Housing
Earth's Location In Satl Housing
Satl 's Location In Satl Housing
Sun's Location In Satl Housing

Satl 's Velocity In Satl Housing

Algorithms

tedbs |l ocation is

. Satl Rotational Velocity In Satl Housing

based

on

t

he

t

me

and
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determining the magnetic force from the Earth given a time antddoc&@hese algorithms are in
SpaceTrack.Net and GeoMag.Net respectively. They have been included into VideSupra as
individual libraries for general purpose access to the algorithms. They also have been wrapped in
controls which can be easily added toshaulator. The algorithms were originally created by
third parties, Spacetra@andWMM **, but had to be translated into C# and updated to work

properly with VideSupraSpacetrack.N&tand GeoMag.Nét

SpaceTrack.Net

In SpaceTrack.Net is a managed inmpémtation of the Space Track Repdumber 3™.
Just as the GeoMag.Net is extended from the original so is the SpaceTrack.Net. The original takes
only a TLE and returns six values representing
dz, in kilometers per second. The extension allows the space track solver to be changed out so
that the simulation can quickly change between SGP, SGP4, SGP8, SDP4, and SDP8. Also the
extension parses a TLE into a Data storage type, however the Data storage bgéliemh
without using the TLE allowing other forms of sending the data to the solver. This also allows the
use of the managed System.DateTime to handle the time. Finally, the constants are stored in an
external interchangeable file so that the planetrifgon can be changed.

The values required by the solvers to calculate the location and velocity of a satellite are
all stored in the Data storage type. These values are as follows, where the names are inherited
from the FORTRAN IV implementation:

1 EPOCHYYDDD.FFFF, 2 digit year, 3 digit day of year, fractional period of day.

T XNDT20O: The time rate of change of "mean" mean motion at epoch.

1 XNDDG60O: The second time rate of change of "mean" mean motion at epoch.

1 BSTAR: The drag coefficient (B*).

1 XINCL: The "ean" inclination at epoch (i0).
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XNODEDO: Right Ascension of the Ascending Node (RAAN in degrees).

EO: The "mean" eccentricity at epoch (e0).

OMEGAO: The "mean" argument of perigee at epoch (w0).
XMO: The "mean" mean anomaly at epoch (MO).

XNO: The "medrmean motion at epoch (n0).

XNODP: The orbital period.

For more information about the SpaceTrack satellite propagation algorithms see [15] or

the included library in the VideSupra project package, SpaceTrack.Net.

GeoMag.Net

The GeoMag.Net library was created for the Astrophysics-irlugetMag.Net is a C#

implementation of the algorithm defined inthdJ S/ UK Wor | d

1 (WMM). It also adds methods to make using the library easier for the simulator.

Magn€0Dil® oModel

During initialization the GeoMag.Net model loads a set of magnetic readings from a file

provided by theNOAA's (National Oceanic and Atmospheric Administratibd@DC (National

Geophysical Data CendeiThen given a time and location the library will ealc a t e

magnetic field for that point at that time.

The followingdiagrams, see Figure 2&re excerpts from th& WM documentaired
with the corresponding image captures from@amMag.Net libraryThe excerpts are from

pages 48 to 58 of the WiMIdocument. The annual rate of change is not show in this document

t

he

since thdibrary is not currently setup to calculate the rate of changelibfagiesaccurately and

precisely predicted all the test values located on page 45 and 46 of the WWM dodumeent.

simulator gathered 15480 points of data at 700km aboviegela WGS 84) for 0401-2008

using the 2005 WMM.cof file.

Eartt
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The image captures show this data with the minimum value as black and maximum value
as white.The maximum and minimum values matched the test values provided with the
documentThey use the set of discreet points taken from the simulator and are plotted using a
simple rendering todqthe rendering tool is not provided with VideSuprahy inconsisent
artifacts in the images are due to the rendering process, such as the black line in the upper left
corner of all Mercator (rectangular) images and white dots in most of the poléound)
images. These artifacts do not exist in the déatally, nde that the pole imageshow from the
equatorto the polethe entire hemisphere, whassthe excerpt shows only about 60 degrees from
the pole.

It can clearly be seen in the Figar@531images that the GeoMag.Net is a valid
implementation of the WMM gbrithm. The results from GeoMag.Net library match the results
in the WMM documentation. The GeoMag.Net is a managed version Nftimnal Geophysical
DataCentdis geomag. ¢ algorithms that use the same
determines the ngmetic field at a given location and time.

The GeoMag.Net has been extended from the geomag.c so that it can give a variety of
output formats and take a variety of input formats as well. The original geomag.c could only take
longitude, latitude, altitudand decimalized year. It would only return a declination, inclination,
horizontal strength and total field strength. The GeoMag.Net allows the use of the managed
System.DateTime for its time input and output and on top of the original input/output tyqzes, i
also give absolute coordinates in ECEP. With these extensions the results from the
SpaceTrack.Net can be piped into the GeoMag.Net to get the nanotulsas (nT) at the satellites

current location.



Figure 25 Magnetic Declinatior{D)
Mercator North polar regionand South polar region.
Contour interval is 5 degrees, red contours positive (east); blue negative (west}; dackagonic) line.
Mercatorand polar stereographic projectiats2005.0 for the World Magnetic Mod2005
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Figure 26 Magnetic Total Intensity (F)
Mercator North polar regionand South polar region.
Mercator projectiortontour interval is 2000 nTNorth and South polar region contour interval is 1000 nT.
Mercatorand polar stereographic projectiats2005.0 for the World Magnetic Model 2005



Figure 27 Magnetic Horizontal Intensity (H)
Mercator North polar regionand South polar region.
Mercator projectiortontour interval is 2000 nTNorth and South polar region contour interval is 1000 nT.
Mercatorand polar stereographic projectiats2005.0 for the World Magnetic Model 2005



Figure 28 Magnetic Inclination (1)
Mercator North polar regionand South polar regioMercatorprojection ontour interval is 5 degrees, re
contours positive (down); blue negative (up); bladero (agonic) lineNorth and South polar region
contour interval is 1 degre®lercatorand polar stereographic projectiats?005.0 for the World Magneti
Model 2005
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Figure 29 Magnetic North Component (X)
Mercator North polar regionand South polar regioMercatorprojection ontour interval is 2000 nT
Northand South polar regioroatour interval is 1000 nT, red positive (north), blue negative (south), b
I zero.Mercatorand polar stereographic projecticaats2005.0 for the World Magnetic Model 2005



