

A TAXONOMY OF MODULAR GRIME IN DESIGN PATTERNS

by

Travis Steven Schanz

A thesis submitted in partial fulfillment

of the requirements for the degree

of

Master of Science

in

Computer Science

MONTANA STATE UNIVERSITY

Bozeman, Montana

April 2011

©COPYRIGHT

by

Travis Steven Schanz

2011

All Rights Reserved

ii

APPROVAL

of a thesis submitted by

Travis Steven Schanz

This thesis has been read by each member of the thesis committee and has been

found to be satisfactory regarding content, English usage, format, citation, bibliographic

style, and consistency and is ready for submission to the Division of Graduate Education.

Dr. Clemente Izurieta

Approved for the Department of Computer Science

Dr. John Paxton

Approved for the Division of Graduate Education

Dr. Carl A. Fox

iii

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a master‘s

degree at Montana State University, I agree that the Library shall make it available to

borrowers under rules of the Library.

If I have indicated my intention to copyright this thesis by including a copyright

notice page, copying is allowable only for scholarly purposes, consistent with ―fair use‖

as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation

from or reproduction of this thesis in whole or in parts may be granted only by the

copyright holder.

Travis Steven Schanz

April 2011

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Clemente Izurieta, for the immense amount

of support and direction he provided me throughout my research. His guidance during our

research kept me focused on the road ahead, even when I tended to get sidetracked.

Whenever I felt as though I was out of ideas, a meeting with Clem gave my brain the

restart that it needed.

His general guidance as an advisor was invaluable. I feel as though I have

maximized my learning and research potential in the amount of time that I have had. His

advice allowed me to finish this research as well as publish results along the way. I

couldn‘t have done it without him.

v

TABLE OF CONTENTS

1. INTRODUCTION ...1

2. BACKGROUND ...3

 2.1 Software Evolution ..3

2.1.1 History...3

2.1.2 Current Work on Evolution ..5

2.1.2.1 Object Oriented Languages ..6

2.1.2.2 New Metrics ...9

2.1.2.3 Open Source Software ...9

2.1.2.4 Meta-evolution ...10

 2.2 Software Decay ..12

 2.3 Design Pattern Evolution ...14

 2.3.1 Design Patterns ...15

2.3.2 Pattern Evolution ..16

 2.4 Design Pattern Decay ...19

 2.4.1 Definitions...19

 2.4.2 Empirical Research ...21

3. MODULAR GRIME TAXONOMY ...23

 3.1 RBML and Pattern Conformity ...23

 3.2 Taxonomy Criteria ...24

 3.2.1 Coupling Strength ...25

 3.2.2 Coupling Scope ...26

 3.2.3 Coupling Direction..27

 3.3 Taxonomy Classes ...28

 3.3.1 Persistent External Afferent Grime (PEAG) ...29

 3.3.2 Temporary External Afferent Grime (TEAG) ..29

 3.3.3 Persistent External Efferent Grime (PEEG) ...29

 3.3.4 Temporary External Efferent Grime (TEEG) ...30

 3.3.5 Persistent Internal Grime (PIG) ..30

 3.3.6 Temporary Internal Grime (TIG) ..30

4. STUDY METHODOLOGY ..31

 4.1 Software Studied ..31

 4.1.1 Apache Tomcat ...31

 4.1.2 Dr. Java ...32

 4.1.1 Apache Derby ...33

 4.2 Tools Used ...34

 4.2.1 Eclipse ...35

 4.2.2 Design Pattern Finder ...35

vi

TABLE OF CONTENTS - CONTINUED

 4.2.2 ObjectAid UML ..35

 4.2.4 Browse By Query ..36

 4.2.5 JQuery ...36

 4.2.6 Dynamic Chart ..37

4.2.6.1 File Input ..37

4.2.6.2 Features ..38

4.2.6.3 Demonstration ..41

 4.3 Data Gathering ...42

 4.3.1 Pilot Study ...42

 4.3.2 Gathering Data Using JQuery ...43

 4.3.3 JQuery Queries ..44

 4.4 Hypotheses ...48

5. RESULTS ..49

 5.1 Apache Tomcat ..50

 5.2 Dr. Java ..54

 5.1 Apache Derby ..62

6. ANALYSIS AND DISCUSSION..69

 6.1 Trend Analysis ...69

 6.1.1 Apache Tomcat ...71

6.1.1.1 PEAG ...72

6.1.1.2 TEAG ...72

6.1.1.3 PEEG..73

6.1.1.4 TEEG ...73

6.1.1.5 PIG AND TIG ..73

6.1.1.6 Tomcat Analysis Summary ..73

 6.1.2 Dr. Java ...74

6.1.2.1 PEAG ...74

6.1.2.2 TEAG ...75

6.1.2.3 PEEG..75

6.1.2.4 TEEG ...75

6.1.2.5 PIG AND TIG ..75

6.1.2.6 Dr. Java Analysis Summary ...76

 6.1.3 Apache Derby ...76

6.1.3.1 PEAG ...77

6.1.3.2 TEAG ...77

6.1.3.3 PEEG..77

6.1.3.4 TEEG ...78

6.1.3.5 PIG AND TIG ..78

vii

TABLE OF CONTENTS - CONTINUED

6.1.3.6 Derby Analysis Summary ..78

 6.1.4 Summary of Statistical Analysis ...78

 6.2 Discussion ..79

 6.2.1 General Discussion ...80

 6.2.2 Apache Tomcat ...82

 6.2.3 Dr. Java ...83

 6.2.4 Apache Derby ...84

7. THREATS TO VALIDITY ...86

8. CONCLUSION AND FUTURE RESEARCH ..88

REFERENCES CITED ..90

APPENDICES ...96

APPENDIX A: Dynamic Chart ...97

APPENDIX B: RBML Conformance Checker..111

APPENDIX C: RBML Diagrams ..115

viii

LIST OF TABLES

Table Page

1. Apache Tomcat release information by month/year. ...32

2. Tomcat design pattern information ..32

3. Dr. Java release information by month/year ..33

4. Dr. Java number of design patterns studied in every release.33

5. Apache Derby release information by month/year. Version is 10.x.34

6. Apache Derby number of design patterns studied in every release.34

7. Aggregate number of design pattern realizations studied in each system49

8. Apache Tomcat number of design patterns studied in every release.49

9. Dr. Java number of design patterns studied in every release.49

10. Apache Derby number of design patterns studied in every release.50

11. Regression data for Apache Tomcat ..72

12. Regression data for Dr. Java ..74

13. Regression data for Apache Derby ..77

14. Slope significance (p-value) for all systems and modular grime categories ...79

ix

LIST OF FIGURES

Figure Page

1. Grime Taxonomy ...29

2. Example input for Dynamic Chart ...38

3. Dynamic Chart display ..41

4. Singleton data (Tomcat) ...51

5. Factory data (Tomcat) ..52

6. Observer data (Tomcat) ...53

7. Total data (Tomcat)..54

8. Singleton data (Dr. Java)..55

9. Strategy data (Dr. Java) ..56

10. Iterator data (Dr. Java) ...57

11. Visitor data (Dr. Java) ..58

12. Factory data (Dr. Java) ...59

13. State data (Dr. Java) ...60

14. Observer data (Dr. Java) ..61

15. Total data (Dr. Java) ..62

16. Adapter data (Derby) ...63

17. Builder data (Derby) ..64

18. Factory data (Derby) ..65

19. Strategy data (Derby) ...66

20. Visitor data (Derby) ...67

x

LIST OF FIGURES - CONTINUED

Figure Page

21. Total data (Derby) ..68

22. Dynamic Chart sample input ...100

23. Dynamic Chart sample display ..101

24. Dynamic Chart typical display...103

25. Dynamic Chart modify data display ..104

26. Dynamic Chart test data after aggregation display ..105

27. Dynamic Chart test data after extension display..106

28. Dynamic Chart modify chart groupings window ...107

29. Dynamic Chart data group members window ...108

30. Dynamic Chart test data after splitting grouping display109

31. Dynamic Chart test data after group merge display.......................................110

32. RBML Conformance Checker input ..112

33. RBML Conformance Checker results ..113

34. Adapter Pattern ..116

35. Builder Pattern ...117

36. Façade Pattern ..117

37. Factory Pattern ...118

38. Iterator Pattern ...118

39. Observer Pattern...119

40. Singleton Pattern ..119

41. State Pattern ...120

xi

LIST OF FIGURES – CONTINUED

Figure Page

42. Strategy Pattern ..120

43. Visitor Pattern ..121

xii

ABSTRACT

Software designs decay over time. While most studies focus on decay at the

system level, this research studies design decay on well understood micro architectures,

design patterns. Formal definitions of design patterns provide a homogeneous foundation

that can be used to measure deviations as pattern realizations evolve. Empirical studies

have shown modular grime to be a significant contributor to design pattern decay.

Modular grime is observed when increases in the coupling of design pattern classes

develop in ways unintended by the original designer. Further research is necessary to

formally categorize distinct forms of modular grime. We identify three properties of

coupling relationships that are used to classify subsets of modular grime. A taxonomy is

presented which uses these properties to group modular grime into six disjoint categories.

We gather data from three open source software systems to test hypotheses about the

significance of grime buildup for each of the six taxonomy categories. The results reveal

that one form of modular grime is more apt to develop than others. This was observed in

all the systems in the study. We also found that some types of modular grime show

insignificant growth while others vary between systems. We conclude that certain types

of modular grime are more likely to contribute to design pattern decay.

1

1. INTRODUCTION

Software evolution has been the subject of empirical research for the last 35 years

[52]. Evolution occurs as software changes over time. Changes occur as a result of

functionality being added, operating environment changes, defect fixes, etc. Developers

cannot reasonably predict all future changes during the initial development, and changes can

create new problems. Software decay is a type of evolution and the consequences of decay

result in software that is less maintainable. The possible implications of decay reveal a

predicament. As the complexity and fault-proneness of the software increases as a result of

decay and code size [8], developers must spend more time maintaining and adapting the

source code. Software decay research has been sparse [28], [62]. There is little or no research

on techniques for decay detection.

The introduction of design patterns in object oriented software has had a significant

effect on development techniques. Design patterns are defined by Gamma, et. al. [30] as

―simple and elegant solutions to specific problems in object-oriented software design‖. The

extensibility of design patterns has led to their common use in object oriented software. This

suggests another question. How do design patterns decay?

Izurieta [39] initially proposed a hierarchical definition of design pattern decay.

Empirical studies [39], [41] revealed that one form of decay called modular grime was most

prominent. Modular grime occurs when design pattern classes develop new relationships

unintended by the original designer over time. Relationships become increasingly coupled to

other classes as systems evolve.

2

The significant buildup of modular grime in Object Oriented systems studied by

Izurieta [39] provides the motivation for this research. In order to discover the underlying

causes of modular grime buildup, we study how modular grime develops in design patterns.

We propose a taxonomy for modular grime. The taxonomy is created using

characteristics of coupling relationships which form the basis of modular grime. We use three

characteristics apparent in all coupling relationships: strength, scope, and direction to classify

each relationship contributing to modular grime. We propose six disjoint subsets of modular

grime. To validate the taxonomy, we conduct an empirical study to determine which parts of

the taxonomy contribute to the buildup of modular grime. We pose hypotheses about the

growth trends of each type of modular grime and gather data from 3 open source software

systems. We use statistical analysis to test our hypotheses.

Section 2 presents a literature review. Section 3 defines the criteria for classification

along with the resulting taxonomy. The study methodology and resulting data are discussed

in sections 4 and 5. Sections 6, 7, and 8 contain analysis, discussion, issues with validity and

concluding remarks.

3

2. BACKGROUND

This section provides the necessary background on state of the art and relevant

research on software evolution, software decay, and design pattern decay.

2.1 Software Evolution

Software changes over time. External attributes that influence the source code (e.g.

changes to requirements, addition of features, bug fixes) cause incremental changes to the

software structure over time. Software evolution refers to the sequential series of changes

that occur during a development lifecycle.

2.1.1 History

Seminal work in software evolution began in the 1970‘s when Lehman released

research results from his study on the OS/360 system [52]. The study documented the growth

(defined by module count) of the system over several revisions. The results showed growth

trends that continued through all revisions of the software. This seminal study led to the

creation of three software laws for E-type systems. An E-type system is defined by Lehman

as ―one implementing some computer application in the real world‖ [56]. The three laws are:

1. Continuing Change: E-type systems must be continually adapted to stay satisfactory.

2. Increasing Complexity: Complexity increases as the system evolves.

3. Self Regulation: Evolution is self regulatory.

4

Later research [53], [54], [56] added 5 more laws of evolution:

4. Invariant work rate: Average activity rate is invariant.

5. Conservation of familiarity: As a system evolves, everyone involved must stay familiar.

Excess growth does not allow this so incremental growth occurs.

6. Continuing growth: Functional content increases to keep users satisfied.

7. Declining quality: Quality seems to decline unless great steps are taken to maintain the

system and adapt it to the operational system changes.

8. Feedback System: Evolution processes are feedback systems.

These laws started the first historical phase of research into how software evolves.

Subsequent studies focused on gathering data to test the laws.

A study in 1998 by Lehman [55] as part of the FEAST/1 project, sought to examine

the effects of feedback on software evolution. Lehman, et. al. used an expanded set of

metrics in addition to basic size metrics to gather data on a much larger set of software

systems. The expansion of the metrics set was necessary to increase the range of tests on the

laws of evolution. New metrics are continually created to measure characteristics of

software; they can be further applied to evolution by measuring changes in these

characteristics over time. The results from the study were supportive of laws 1, 2, 4, 6, and 8

while the evidence was inconclusive for laws 3, 5, and 7. Research by Yuen [18] on different

software systems supported the first 5 laws. The results, however, did not support the laws 6,

7, and 8. Yuen concluded that these laws were system specific. Cook and Roesch [20] used

standard complexity metrics such as McCabe‘s cyclomatic [58] complexity and Halstead‘s

complexity [36] measures to examine phone switch software in 1994. Their results were also

supportive of laws 1, 2, and 3. More recently, a study in 2009 by Ali and Maqbool [1]

5

gathered data on modules added, deleted, and changed. Their results supported the 5
th

 law of

evolution.

In the last 30 years, research has continued to expand the set of metrics used to test

the hypothesized laws. The number of systems studied also continues to increase. Further

research [8], [32] shows that software evolution is still a popular research topic. The first era

of research from the 1970s to the 1990s studied E-type systems and most experiments [10]

used size metrics (LOC, module count, etc.) to analyze the laws of software evolution created

by Lehman. Although testing of the original laws continues, research on software evolution

has itself evolved with the introduction of new technologies and new paradigms of software

distribution. As a result, today‘s software evolution research presents new challenges that

must be considered by researchers.

Although Lehman‘s laws were a seminal part of evolution research, they are not

easily quantifiable. Thus limiting their testability and making them controversial in the

research community.

2.1.2 Current Work on Evolution

Today, software evolution research is defined by changes in the areas of technology,

software research, and software distribution. Specifically, there are three major changes that

have affected how researchers study software evolution. First, the development and

popularity of object oriented programming languages has changed how people view software

systems. Object oriented software is fundamentally different from procedural software,

which was the focus of most studies in early evolution research. Encapsulation, inheritance,

and polymorphism are features of object oriented languages but not procedural languages.

6

Initial research [49] showed that these features should be taken into account when gathering

data from object oriented systems. Secondly, advances in metrics created for empirical

software research have given researches more tools to analyze how software systems change.

Examples are complexity metrics such as [58], and other advanced metrics for coupling and

cohesion such as [17], especially those created as a result of research on object oriented

systems. Thirdly, distribution paradigms have changed. Research conducted during the

infancy of software evolution focused on commercial systems [52], [10]. During the last 15

years, new distribution paradigms like GNU [31] have given researchers access to large, high

quality software code bases. The introduction of open source software creates more research

questions. Does open source software evolve differently from commercial software? Are the

laws of evolution apt at describing open source software? These questions can only be

answered with additional research. Lastly, meta-evolution research, defined as the study of

the metrics and methods used in evolution research, is the result of researchers taking a

critical look at their own techniques. Meta-evolution analyzes the techniques used in

evolution research with the goal of improving the usefulness and validity of results.

2.1.2.1 Object Oriented Languages. The use of Object Oriented programming languages

has increased significantly in the last 15 years. Empirical software research has followed suit

by developing metrics specific to object oriented software [17]. The use of inheritance and

polymorphism in object oriented languages lessens the value of traditional software metrics

like McCabe‘s Cyclomatic Complexity [58], and traditional size metrics (module count,

source lines of code). The seminal work in software evolution focused wholly on size metrics

like module count and source lines of code (SLOC). The original work by Lehman studied

7

the size of the OS/360 system using simple size metrics. A study designed to validate the

laws of software evolution [18] used the same metric; size was the independent variable. As

the field of research matured, researchers [37], [1] started to view the changes in software

over time in different ways (modules changed, added, and deleted). The popularity of object

oriented languages gave researchers greater motivation to focus on changes to software

structure in addition to size.

A common set of metrics for object oriented software were introduced by Chidamber

and Kemerer [17]. They measure structural characteristics specific to object oriented

software; the metrics are depth of inheritance tree (DIT), weighted methods per class

(WMC), number of children (NOC), coupling between object classes (CBO), response for a

class (RFC), and lack of cohesion in methods (LCOM). These metrics are applied to many

areas in empirical software research, including software evolution. Li, et al. studied object

oriented systems using system and class metrics [50]. Systems metrics are object oriented

metrics that are similar to the size metrics originally used in software evolution studies.

These metrics give a general idea of changes in the system by measuring classes added,

classes deleted, classes names changed, etc. Class metrics measure structural characteristics

of the object oriented design. They used metrics created by Chidamber and Kemerer as well

as similar metrics from earlier research [49]. In the study, Li‘s results show three distinct

phases of evolution as characterized by changes in the results for system and class metrics.

The phases are initial, smooth growth, and final. System metrics increase quickly during the

initial phase; which occurs during design when classes are created and extreme design

changes are most likely. The lack of implemented classes during design causes little change

in the class metrics. The smooth growth phase is marked by a steady increase in the systems

8

metrics as classes are consistently added to the implementation. In the final phase the system

metrics become stable, but the class metrics are more likely to change as implementation

details are perfected. This result could be the effect of modifications to design as problems

are solved through refactoring in mid development. The use of a variety of metrics in this

study allowed researchers to discern different phases of evolution from design to

implementation. The discrepancy between system and class metrics over time allowed the

authors to predict the processes that occur during the phases of evolution.

Another characteristic of object oriented systems are design patterns [30]; which are

common solutions to well known problems in design. The increased use of object oriented

languages has indirectly given researchers another angle to view software evolution in the

form of design patterns. Gustaffson, et al. [35] combined traditional metrics like cyclomatic

complexity with object oriented metrics. They also mined design patterns and gathered

metrics specific to design patterns like relative number of classes (a ratio of the number of

classes that play a role in a design pattern to the total number of classes). They use these

metrics as quality indicators and store results over a series of releases to analyze trends of

design patterns over the evolution of software. The authors use the history of the data to

predict design quality.

The object oriented paradigm has forced empirical researchers to investigate

evolution in a new way. The unique characteristics of object oriented systems create new

research questions and allow researchers to develop new metrics to study those questions.

Simple metrics like module size and SLOC may not capture increases in complexity and

other signs of decay when used alone. Higher abstractions of design used in object oriented

9

languages, such as design patterns, have also had consequences on software evolution

research.

2.1.2.2 New Metrics. Since Lehman‘s seminal work, researchers have developed new

metrics to measure complexity and size in order to predict maintainability and developer

effort [49] [65] [23].

Ramil and Lehman created evolution metrics to predict future developer effort. Their

metrics were useful as a predictor of future effort. Li, et. al. analyzed changes in common

object oriented metrics, like depth of inheritance tree (DIT), over the evolution of a system;

no significant changes were found. Dagpinar and Jahnke used the same object oriented

metrics to predict maintainability. Their results varied.

Ali and Maqbool [1] studied the number of modules added, deleted, and changed to

examine the evolution of software at a finer granularity. Cook and Roesch [20] examined a

phone switch system using complexity metrics. Their results supported Lehman‘s first three

laws of software evolution. Cook et al. [19] created static metrics that were used to predict

the future evolvability of a system. Specifically they created metrics to measure

analyzability, changeability, testability, and compliance. All of their metrics were created or

modified with the intention of measuring static characteristics of systems that are used to

predict future evolution.

2.1.2.3 Open Source Software. The popularity of open source software distribution has

changed the way that software is developed. From a research perspective, open source

software is easier to study. Source code and revision histories are usually available in the

public domain and can be accessed by interested researchers. Unlike open source software,

10

commercial software source code is closely guarded. Early researchers of evolution had to

make arrangements with commercial companies to study their software and published results

required discretion about software details.

Researchers must also consider how empirical results from experiments on open

source software will translate to commercial software and vice versa. This question has been

the subject of much research. Izurieta and Bieman studied the evolution of FreeBSD and

Linux [40]. They gathered the following metrics: SLOC, number of directories, total size,

and SLOC of header files. Their results showed that the rate of change of open source

software did not seem to differ from studies of growth in commercial software.

2.1.2.4 Meta-evolution. In recent years researchers have began studying the

methodology used to study evolution. This is referred to as meta-evolution. The field of

meta-evolution studies software evolution research and determines what processes and

metrics work best to answer the questions about how software evolves and decays. Results in

meta-evolution can be used to focus future work using proven, valid, and standardized

methodologies. This section summarizes some results from research on meta-evolution.

Kemerer and Slaughter [48] published results from a case study they conducted on

software used by a large retailer. Instead of reporting results alone, they used the opportunity

to give details about the methods they used in the creation of their case study. The motivation

of their research was to use their study of software evolution as an example and look back on

the methods used by them during the study. Kemerer and Slaughter give in-depth analysis of

the three main processes they undertook during the case study: subject (i.e. software)

selection, data gathering, and data analysis.

11

Finding relevant software to study is important. Choosing software that does not

provide necessary information, depending on the motivation of the study, will not provide

results of any value, regardless of the data gathering and analysis techniques used. Kemerer

and Slaughter [48] wanted to analyze the maintenance tasks undertaken during the evolution

of the software. They were able to find a commercial company that had employed mostly the

same developers for many years. The company also put a high value on keeping detailed

change records for a long period of development history. Most importantly, the company was

cooperative in providing all information necessary for data collection. Not all of these

qualities (tenured developers, detailed development records, and cooperative management)

can be found in every module of software, but research candidates should be analyzed with

regard to these characteristics to determine if useful data can be found.

With regards to data gathering, Kemerer and Slaughter recognize that many

longitudinal studies of software evolution focus on software releases [10] [20]. There are

generally very few distinct releases available for study, as compared to development days or

code changes; this results in a small sample size. They recommend using a finer unit as the

independent variable; in their case they used each change in the change history. This

provided them with a sample size of 25,000 (i.e. one copy of source code after each change

was logged).

There are many options for data analysis. While time series analysis is commonly

used, some data may not meet the statistical assumptions necessary for its use. For example,

the data must be continuous. Kemerer and Slaughter also note that a time series analysis ―did

not exploit the richness of our coding categories for the data‖. They decided to use a

sequence analysis most often used in the social sciences. Their conclusion is that time series

12

analysis, although very common, may not always be the best choice for data analysis. It

should be used when time as an independent variable is strictly related to the variable of

study (e.g. when the rate of change over time of some value is important to the research

question). There may be alternative methods from other areas of empirical research, such as

sequence analysis, that work best to analyze data gathered in evolution studies.

2.2 Software Decay

Software decay is a specialized type of software evolution. While evolution follows

all changes to software over its lifespan, decay occurs specifically when software becomes

less maintainable over its evolution. Eick [28] defines code as being decayed if it is ―harder

to change than it should be‖. Difficulty of change can be determined by increases in the

number of developers as a result of a decrease in maintainability and adaptability of the code.

Decay is measured by studying how code becomes less maintainable and adaptable as it

evolves.

Whereas research on evolution of software has continued over the span of many

decades, studies on software decay have been infrequent. However, although decay itself has

not been studied often, some research on software evolution has focused on analogous

concepts such as maintainability and adaptability in order to predict future developer effort

[49], [65]. In some sense these are studies of decay even though they do not explicitly use the

term. The rest of this section describes some details of the research conducted on software

decay.

13

Eick [28] presents detailed research on software decay using a medical analogy.

Decay is like a medical disease; with a cause, symptoms, and risk factors. Causes are

characteristics of the software and development environment that create changes that evoke

code decay. Symptoms are measurable traits of the code that indicate decay has occurred.

Risk factors increase the probability that code decay will occur. He uses decay indices that

quantify these definitions and data is gathered from change management data. The decay

indices create a model that is used to predict future faults. The most relevant result suggests

that a large amount of recent changes to a module is a significant predictor of future faults in

said module. The data also shows that the number of developers that touched a module was

not a predictor of future faults. The ability of the code indices to model developer effort was

lacking. This research is one of the most in-depth studies of code decay but, as Izurieta [39]

notes, the decay indices are a quantitative measure of all change and not necessarily negative

change.

Ohlsson et. al. [62] studied the decay of legacy software. They attempt to model the

fault proneness of C modules using a variety of size, structure, and relationship (coupling)

metrics. Their research reveals that coupling measurements of modules were indicative of

fault proneness. The use of the C programming language in this study makes it less relevant

to current day object oriented research on software decay.

 Several studies of software evolution have implicitly studied decay, even though

decay was not a stated objective of the study. For example, Cook et. al. [19] studied the

evolution of software systems from two different points of view: static and dynamic. The

dynamic viewpoint focuses on trends over the evolution of software. This is similar to most

studies in software evolution. The static viewpoint focuses on static characteristics of

14

software that make it more evolvable; where evolvability is defined as ―the capability of a

software product to be evolved to continue to serve its customer in a cost effective way.‖ By

defining evolvability using cost effectiveness, the authors imply that static characteristics of

software predict future developer effort. In this sense, evolvability is the inverse of decay.

When evolvability increases, decay is less likely. The evolvability of software is primarily

determined by the use of good design practices, such as design patterns and modularization,

that make changing the software less likely to introduce new bugs or complexities.

Gustaffson et. al. [35] study software evolution from the design phase to the coding

phase using software architecture as the unit of study. Their goal is to gather quality metrics,

store them in a repository, and use them to predict the future quality of the system. They do

not define quality, but the assumption is that decay has an inverse relationship with design

quality. They research the prevention of decay in order to increase future design quality.

Software decay is a form of software evolution. Specifically, decay occurs when

changes to software over its lifetime cause increases in developer effort. This happens

because the code becomes more complex and less maintainable. Research on software decay

aims to understand how software decays, and to predict how software will decay throughout

the product lifecycle. All past research has been done at the system or module level. This

thesis is motivated by studies that view decay from the design pattern level. The next section

gives a background of design pattern evolution and decay.

2.3 Design Pattern Evolution

15

This section discusses the introduction of design patterns to object oriented software

as well as the limited research on design pattern evolution.

2.3.1 Design Patterns

Design patterns are defined by Gamma et. al. as ―simple and elegant solutions to

specific problems in object-oriented software design‖. Design patterns are also reusable,

meaning they are used for a variety of situations in many different architectures. They realize

a generic solution for a set of functional requirements. More importantly, they are simple and

elegant, which allows developers to easily understand them and extend them without

modifying existing classes and increasing code complexity.

The common use of design patterns gives empirical researchers a new subject of

study during the evolution of software. While much research on software evolution has been

done on architectures, systems, or modules, design patterns provide researchers a micro-

architecture as the subject of study [42]. The universal definitions used to define design

patterns create a common understanding of what constitutes a design pattern. This allows

researchers to study the evolution of design patterns across software in general. The original

definitions of design patterns from Gamma et. al. are intuitive but not formal. Different

formalizations have been introduced [29], [34]. This research uses Role Based Metamodeling

Language (RBML) [29] to formally define design patterns; section 3.1 discusses how RBML

is used to formally define design patterns.

The rest of this section gives a background on past studies of the evolution of design

patterns. Section 2.4 introduces research on design pattern decay that forms a basis for this

thesis.

16

2.3.2 Pattern Evolution

A common research question related to design patterns is: are classes involved in

design patterns more change prone than other classes? Several studies [11], [28] have

investigated this question. The general intuition is that design patterns are efficient, adaptable

solutions that can be extended using abstraction and delegation. This implies that changes to

design patterns come in the form of specializations, not in the form of modifications of

existing concrete classes.

Early research on design patterns by Bieman et. al. [11] sought to test the intuitions of

design pattern advocates by analyzing change histories of a software system. They designed a

case study around two questions. Are larger classes more change prone? If so, are design

pattern classes less change prone than other classes after accounting for class size? The

author‘s hypothesize that the answer to both questions is yes. Larger classes should be more

change prone simply because there is more code that may change. Design pattern classes

should be less change prone because design patterns emphasize extension by specialization.

Therefore existing pattern classes should not change.

Results from the Bieman study show that larger classes were more change prone, but

design pattern classes were actually more change prone than average classes. This contradicts

the intuition that design patterns allow for extensibility. A secondary study [12] on four

additional software systems confirmed these results. One interesting result was that the one

system that did not demonstrate these results was the only open source system in the case

study.

17

More recently Di Penta, et. al. [25] conducted another study on the change proneness

of design pattern classes. In addition to studying the relationship between design pattern

membership and change proneness, they also analyzed the relationship between design

pattern role and change proneness. By breaking design pattern classes into groups based on

roles, the authors extended earlier studies by increasing granularity; the roles in each design

pattern were studied as opposed to design pattern as a whole. As a secondary motivation,

they also studied what types of changes occurred to the design pattern classes. Their results

were unsurprising. Pattern classes that were concrete (i.e. playing concrete as opposed to

abstract roles) were more change prone. This result provides evidence that the system under

study evolved in a manner in which it was intended, through extension of abstract and

interface classes. The authors note that interfaces should be carefully designed to prevent

extensive change because changes to interfaces make other parts of the program less fit for

change.

Vokac [72] also tests intuitions about the positive effects of design pattern usage. The

author notes, ―By designing an application with the proper use of design patterns, we should

reduce the number of defects‖. To test this hypothesis, the defect frequencies of design

pattern classes of a commercial software product are analyzed. A linear regression is used to

model defect frequency using pattern membership along with class size and time (to test for

sequential trends). The regression coefficients act as a probability ratio for defects. The

results show that class size does significantly correlate with defect rate. Adding 1000 lines of

code to a class doubles the amount of defects, as measured by the number of bug fixes. After

class size is considered, the results show that Template and Factory pattern classes have

lower defect rates (72 and 63 percent of the average number of bug fixes respectively).

18

Singleton classes have a significant interaction with size, meaning that Singleton classes that

increase in size see an increase in defect frequency. An interaction between Singleton and

Observer shows a very low defect frequency, 32 percent of the average. The authors note that

there are a set of classes in the system that are both Singletons and Observers. These classes

are important and well designed, leading to the low defect frequency of the interaction.

Some studies compare the evolution of design patterns with non-pattern based

solutions. Prechelt, et. al. [64] studied the evolution of design patterns using maintenance

history. The authors compared maintenance histories of design patterns to alternative

solutions, which are defined as those that accomplish the required functionality without the

added functionality and extensibility provided by design patterns. This study tested the

hypothesis that design patterns are more maintainable than other solutions. The simplicity of

the design pattern solutions should intuitively lead to less complexity and less maintenance

time. The results varied for different design patterns. Notably the Observer and Decorator

patterns had less time spent on maintenance than other non-pattern solutions. This supports

the hypothesis. Patterns such as Visitor were inconclusive.

Vocak, et. al. [73] extended the work by Prechelt by using an actual development

environment with an increased data set. The results also showed differences between

patterns. An interesting result indicated that the Visitor and Composite patterns actually had a

negative effect on maintenance time. This supports the rejection of the hypothesis that design

patterns take less time to maintain.

Research on evolution of design patterns has been sparse. A common goal of

empirical research is to test hypotheses about the positive effects of design pattern usage. A

common intuition is that design pattern classes should be less change prone because they

19

provide developers with an interface which is extended through specialization. Therefore

classes are added, and existing classes are unchanged. Empirical research does not support

this intuition. Studies have shown that design pattern classes are actually more change prone

than their counterparts [11], [12]. The hypothesis that design pattern classes will have a lower

defect rate because they are used ―properly‖ within the design has also been tested by Vokac

[72]. Some design patterns had lower defect rates than non-pattern classes, but some patterns

did not; these results tend to be inconclusive.

2.4 Design Pattern Decay

The study of design pattern decay is still in its infancy. Seminal research by Izurieta

and Bieman [41] analyzed how design patterns can evolve in a way that has negative effects

on testability and adaptability. In further studies they gather empirical data to characterize

and formally define design pattern decay [42], [39]. This section provides a summary of

design pattern decay and its components as well as a review of empirical results from the

literature.

2.4.1 Definitions

Izurieta [39] defines two types of design pattern decay, rot and grime, but leaves open

the possibility that other types exist. Rot describes violations to the structural characteristics

of the design pattern while grime describes artifacts that are irrelevant to the design pattern.

Rot occurs when the structure of the design pattern ceases to exist as a result of changes. The

design pattern will cease to be conformant after rot has occurred. Near-instances of patterns

20

occur when rot affects the pattern in such a way that it nearly conforms to its role-based

metamodeling language (RBML) characterization, which is described further in section 3.1.

Design pattern rot causes the design pattern to lose key structural characteristics and the

pattern becomes either a near-instance or does not resemble a pattern at all.

Grime occurs when extraneous features are added to the design pattern while still

leaving the structure of the pattern intact. These features are not specified in the formal

definition of the design pattern. Additions are classified as grime because they are not

necessary for the function of the design pattern. It is important to note that some additions

may be necessary to fulfill requirements of the overall design, but they are defined as grime

from the point of view of the design pattern realization because they are not part of the

formal definition that describes the pattern. Grime is defined by three sub-categories: class

grime, modular grime, and organizational grime.

Class grime refers to changes within the classes that are components of a design

pattern realization. Classes are defined by their internal attributes and methods. Some

attributes and methods are necessary for a class to play a role in a design pattern. Any

method or attribute that is added over the lifespan of the pattern that is not required by the

design pattern contributes to class grime.

Modular grime occurs when coupling increases for classes involved in design pattern

realizations. Specifically, new relationships that occur over the lifetime of the pattern

realization that do not play a role in the design pattern contribute to modular grime. Izurieta

notes that modular grime reduces modularity by increasing coupling between the design

pattern realization and its environment. The design pattern encompasses a module of

functionality that should be loosely coupled to other modules. In general, increases in

21

coupling also increase complexity which makes the code more difficult to understand and

maintain.

Organizational grime refers to the logical and physical organization of design pattern

members. Design pattern classes can be members of different logical groupings such as

namespaces and packages. As new classes play roles in the pattern the number of packages

involved in the pattern realization may increase. This makes maintenance more complex

because the classes are spread over a large range of packages. Pattern classes are also

organized physically in files in the file system. The addition of physical files is a

consequence of pattern extension by the addition of concrete classes. An increase in the size

of pattern classes without increases in physical file counts is a sign of organizational grime.

2.4.2 Empirical Research

Empirical research on design pattern decay is recent. A pilot study by Izurieta and

Bieman [41] in 2008 examined the Visitor, State, and Singleton patterns for evidence of

structural changes (rot) as well as the addition of artifacts not related to patterns (grime).

Preliminary results indicated that patterns kept their structure throughout the evolution of the

software. There were no signs of rot. Increases in coupling of pattern classes indicated the

presence of modular grime.

In another study [42] Izurieta and Bieman test the effects of grime buidup on system

testability. They hypothesize that increases in grime cause increases in complexity and

therefore increases in test requirements. The results confirm the hypothesis that as modular

grime builds, the number of test requirements increase. The authors also found examples of

22

anti-patterns that decrease testability. The authors note that the extensibility of the Visitor

pattern (through inheritance) opens the door to the formation of anti-patterns.

Izurieta published empirical results from an all-encompassing study on design pattern

decay [39]. The study investigates three open source systems for the appearance of rot as

well as all types of grime. It also examines correlations between design pattern decay and

testability and adaptability. Results support earlier research. Modular grime does buildup

through the evolution of the design patterns. This supports the notion that modular grime is

the most significant form of design pattern decay.

Research on design pattern decay is new, however current research suggests that

modular grime requires further investigation. The research in this thesis accomplishes two

goals. It investigates modular grime in new systems at a finer granularity and it provides

validation of previous results.

23

3. MODULAR GRIME TAXONOMY

We use role-based metamodeling language (RBML) to formally define and

characterize design patterns. Candidate patterns are compared to RBML diagrams in order to

determine conformance.

Modular grime is defined as the non-conforming coupling of objects that play a role

in a design pattern realization. Relationships that involve pattern classes but do not conform

to the RBML pattern definition are classified as grime. Section 3.1 gives a brief description

of how RBML is used to determine conformity of design pattern realizations with RBML

relationships and classifiers. Section 3.2 describes the taxonomy criteria.

3.1 RBML and Pattern Conformity

Not all relationships that develop over the lifetime of a pattern realization contribute

to grime. Patterns can be used or extended in ways intended by the original designer. Use

dependencies are one compatible explanation for usage of design pattern classes. Use

dependencies occur when the system uses a design pattern realization in a way that is

consistent with the pattern‘s intent. An example is increased usage of the Singleton pattern. A

class that uses a singleton pattern will generally create some level of coupling between itself

and the Singleton. This increases the Ca count of the Singleton realization, but the usage is

not classified as grime because the Singleton class is meant to be used in this way. A

counterexample can occur in the Factory pattern where abstract classes are meant to be used

24

as the interface. A use dependency involving concrete pattern classes is not correct usage as

defined by the pattern. In this case the use dependency is considered grime and not usage.

Patterns may also be extended through specialization. Patterns are abstractions that

allow the functionality of the pattern to be extended with the addition of new concrete

classes. This allows abstract classes and interfaces to remain unchanged. The addition of new

classes through pattern extension increases coupling (in the form of inheritance) and does not

contribute to modular grime.

The role-based metamodeling language is a specialization of the UML metamodel

that provides a practical mechanism to differentiate between usage, extension, and grime.

Roles are the primary object in RBML diagrams; they are defined using constraints. The

objects in a UML class diagram can be mapped to the roles in an RBML model when they

fall within the constraints of the role. RBML Structural Pattern Specifications (SPSs) are

used to define design patterns by defining all of the roles necessary to the pattern. A

complete mapping of UML elements to SPS roles in a design pattern definition reveals a

conforming pattern realization. RBML also uses multiplicities of classifiers to allow for

optional classes.

When a design pattern realization is already identified by its conformance to an SPS,

the SPS is used to determine if new relationships (relationships added in subsequent releases)

are conformant with the RBML pattern definition. In essence, the SPS is used to determine if

a new coupling is due to usage or extension. Otherwise, the coupling increases the modular

grime of the realization.

3.2 Taxonomy Criteria

25

Evidence suggests that design pattern decay in the form of modular grime does occur

[39]. In a pilot study [66] of a single system, Schanz and Izurieta explore modular grime by

classifying it into 6 distinct categories. The study provides an extension to previous research

on design pattern decay. It expands the definition of modular grime by proposing an initial

taxonomy.

The taxonomy classifies the couplings that define modular grime using three

characteristics. The characteristics are strength, scope, and direction. The strength of a

relationship describes the level difficulty in removing a relationship and it is measured using

an ordinal scale [59]. Relationships with greater strength are more difficult to remove. Scope

refers to the boundary that exists between coupling relationships as defined by the set of

design pattern classes compared to the set of all other classes. Direction is determined by the

originating class that establishes the relationship.

3.2.1 Coupling Strength

The strength of a coupling relationship has been defined differently by several authors

[15], [38], [57]. Under our current taxonomy, the strength of a coupling relationship can fall

into two distinct categories. Persistent relationships occur when two objects are coupled

throughout their lifetime. This happens when class A has an attribute of type B. The coupling

between A and B is deemed strong because class A has a reference to class B throughout its

lifetime in memory. Temporary relationships exist when a method of class A requires access

to class B. This occurs when said method has a parameter, return value, or local variable of

type B. Temporary relationships are not considered as strong because they are transient.

26

Recent research by Briand, et. al. [14] uses a similar classification system. They

define a Class-Attribute (CA) interaction as the equivalent of a persistent coupling

relationship. Class A and B are CA coupled if class A has an attribute of type B. A Class-

Method (CM) interaction is equivalent to temporary coupling as defined above. Class A has a

CM interaction with class B if a part of the method signature of class A (parameters and

return type) is of type B. Temporary couplings also include local variables.

Formally, the sets Persistent and Temporary are ordinal because although

relationships with differing strengths can be ordered, the difference in strength cannot

currently be quantified. Each set is defined as follows.

Persistent = {class_attribute}

Temporary = {method_local_variable, method_return_value, method_parameter_value}.

The sets are disjoint and each displays its members in increasing order of strength.

Though not part of this research, each set is open to the addition of other less frequent

coupling types such as globally shared data. All relationships studied in this thesis are

considered persistent or temporary. Briand, el. al. [14] provide a summary of other coupling

types.

3.2.2 Coupling Scope

Each grime relationship affects at least one design pattern. We define the scope of a

coupling as internal or external. A grime relationship is internal if it involves two design

pattern classes. A grime relationship is external if it involves a design pattern class and an

external class that is not involved in the design pattern.

27

Formally, let P be a specialization of RBML that describes a design pattern. The set

of classes that describes P is denoted by C(P) and the set of relationships is denoted by R(P).

The order of a pattern is defined as the total number of classes in P, and is denoted by |C(P)|,

and the size of a pattern is defined as the total number of relationships in P, and is denoted by

|R(P)|. A valid classifier is defined as a class c or relationship r allowed by the RBML of the

pattern. Valid classifiers in a design are seminal or evolve as permitted by the extensibility

rules of the pattern‘s RBML. Thus, a relationship rci, cj

is internal iff ∀ i, j : ci, cj ∈ C(P)

is external iff ∃ i, j : ci ∈ C(P) ∧ cj ∉ C(P) ∧ i ≠ j

3.2.3 Coupling Direction

The direction of coupling is determined by the originating class. Import and export

coupling are commonly used to differentiate direction [14], [15]. Import coupling occurs

when a class uses another class, i.e., it establishes the initial relationship. Export coupling

defines the alternative case. Coupling direction is defined using the terms afferent (Ca) and

efferent (Ce) [14]. The afferent coupling of a class c increases when a relationship appears

which originates in another class c’, where c’≠ c. Efferent coupling for class c increases

when a new relationship appears which originates in c. These terms are defined for a single

class while a pattern realization normally contains a set of classes.

Afferent and Efferent coupling for design pattern realizations differ because all

pattern classes function as the classes of interest. Efferent relationships originate in any class

that is part of the pattern of interest and afferent relationships originate in any non-pattern

class. The afferent coupling count of a design pattern realization increases when an external

28

class develops a dependency with one of the classes in the set of classes that belongs to a

design pattern realization. The class becomes coupled to an external class, and the coupling

originates in the external class. The efferent coupling count of a design pattern realization

increases when a class in a design pattern realization develops a dependency on an external

class. The relationship originates from within the pattern. Coupling direction applies to all

relationships regardless of coupling strength.

3.3 Taxonomy Classes

The three coupling criteria defined in section 3.2 are used to create a taxonomy of

modular grime. We use a simple method to create the taxonomical classes. Each class is

determined by a unique combination of coupling strength, scope, and direction.

Relationships that have internal scope, by definition, only couple design pattern

classes. Therefore, external classes are not involved. Coupling direction is defined as afferent

if the relationship originates in a class external to the pattern or efferent if the relationship

originates within the pattern. Coupling direction is trivial when scope is internal because

there is no possibility that the coupling originates anywhere but within the pattern. This

eliminates two possible classifications from the grime taxonomy, Persistent Internal Afferent

Grime and Temporary Internal Afferent Grime. Figure 1 shows how we use strength,

direction, and scope to classify modular grime. The leaf node depict all six modular grime

classifications.

29

Figure 1. Grime Taxonomy [66].

3.3.1 Persistent External Afferent Grime (PEAG)

This is the set of all invalid relationships between a pattern and a non-pattern class

where grime originates in a class ∉ C(P). These relationships are similar to those in the

PEEG category except that the external coupling is afferent, thus increasing the responsibility

of the pattern realization and making the refactoring significantly more difficult. Given an

instance of a relationship r, PEAG is observed when r ∈ Persistent and Ca increases when r

is invalid.

3.3.2 Temporary External Afferent Grime (TEAG)

This is the set of invalid temporary relationships between pattern classes and external

pattern classes where grime originates in a class ∉ C(P). TEAG is observed when r ∈

Temporary and Ca increases when r is invalid.

3.3.3 Persistent External Efferent Grime (PEEG)

30

This is the set of invalid persistent relationships between pattern classes and external

pattern classes. The persistence of the relationships makes refactoring difficult, yet direction

of coupling simplifies refactoring because dependencies on external classes can be easily

removed from the originating internal classes. PEEG is observed when r ∈ Persistent and Ce

increases when r is invalid.

3.3.4 Temporary External Efferent Grime (TEEG)

This is the set of invalid temporary relationships between pattern classes and external

pattern classes. Refactoring is simplified by the weaker coupling strength and, similar to

PEEG, the external relationships are comparatively easier to refactor. TEEG is observed

when r ∈ Temporary and Ce increases when r is invalid.

3.3.5 Persistent Internal Grime (PIG)

This is the set of all invalid relationships that strongly couple two pattern classes ∈

C(P). The persistence of these relationships makes grime removal (refactoring) more difficult

when compared to temporary relationships. PIG is observed when r ∈ Persistent and the size

of the pattern |R(P)| increases when r is invalid.

3.3.6 Temporary Internal Grime (TIG)

This set contains invalid temporary relationships involving two pattern classes ∈

C(P). Relationships are similar to those described by the PIG set except they are easier to

refactor due to weaker coupling strength. TIG is observed when r ∈ Temporary and |R(P)|

increases when r is invalid.

31

4. STUDY METHODOLOGY

This section describes the study methodology in detail. Section 4.1 describes the

software and its selection criteria. Section 4.2 describes tools used to mine for realizations of

design patterns and gather grime data. Section 4.3 describes in detail how queries were built

in order to identify specific patterns and count grime relationships from said patterns. Section

4.4 describes six hypotheses we test in the study.

4.1 Software Studied

Three criteria were used to select software. First, we only explored open source

software. Commercial software can be difficult to find because organizational cooperation

can be difficult to obtain due to proprietary intellectual property. Second, all software chosen

was written in Java [43]. This was a necessary condition because the tools we use to gather

patterns and mine data are specific to Java. Third, we required that all studied software span

at least 8 versions. Whilst this number was arbitrarily chosen, it provided us with an

acceptable sample size for each software product under study.

4.1.1 Apache Tomcat

Apache Tomcat [5] is an open source web server implemented in Java. It was created

and is currently maintained by the Apache Software Foundation [4]. Apache Tomcat is

different than the traditional Apache web server [6] in that it provides a unique web server

implementation in Java that can be incorporated with other Java projects.

32

The initial version was released in 1999 and it has been in active development for

more than 10 years. The longevity of the Tomcat project along with the popularity of Apache

(especially the traditional Apache web server) makes Tomcat a viable subject for study. We

studied stable releases from 2006 to 2010. Table 1 contains release information about the

versions studied and table 2 displays information about the design patterns mined.

4.1.2 Dr. Java

Dr. Java [26] is an integrated development environment (IDE) for Java developers. It

is simple and lightweight and primarily used for basic Java development. Dr. Java is written

in Java and is available on several platforms. It is an open source system and it has been

developed and maintained at Rice University for more than 8 years. We gathered data from 9

releases between 2004 and 2009. Detailed release information is given in tables 3 and 4.

Table 2. Apache Tomcat number of design patterns studied in every release.

Pattern Singleton Adapter Façade Factory Observer

of Realizations 3 2 2 7 4

Table 1. Apache Tomcat release information by month/year.

 12/06 03/07 05/07 08/07 02/08 06/08 06/09 01/10 03/10

Version 6.0.0 6.0.10 6.0.13 6.0.14 6.0.16 6.0.18 6.0.20 6.0.24 6.0.26

of

Classes

1,520 1,549 1,600 1,608 1,622 1,620 1,628 1,648 1,649

KLOC 315 318 322 323 325 326 329 334 335

33

4.1.3 Apache Derby

Apache Derby [3] is a Java implementation of a relational database. Its

implementation uses industry standards such as SQL [69] and JDBC [44]. Apache Derby is

an open source system and it can be easily used in conjunction with other Java projects. It has

a 2 MB disk-space footprint [3], has been developed by the Apache Software Foundation

since 2004, and is still in active development. We studied 9 releases from 2005 to 2009.

Tables 5 and 6 provides detailed information.

Table 4. Dr. Java number of design patterns studied in every release.

Pattern Singleton Strategy Iterator Visitor Factory State Observer

of Realizations 13 1 1 2 3 2 3

Table 3. Dr. Java release information by month/year.

 03/04 07/04 02/06 04/06 01/08 04/08 07/08 01/09 10/09

Version 0037 2332 1750 1814 1942 4436 4592 4756 5122

of

Classes

921 1,039 1,266 1,385 1,613 1,730 1,847 1,862 1,962

KLOC 109 119 122 123 127 137 145 143 152

34

4.2 Tools Used

We used a wide variety of tools to gather and analyze data. Two separate and distinct

processes were used: 1) finding design patterns and 2) gathering data from them. Tools for

finding patterns include [21], [22], [34], [67]. Pattern finding software generally produces

high counts of false positives unless each pattern realization is very specific [7] thus

eliminating other pattern variations from contention. Other pattern mining algorithms find

pattern realizations based on common characteristics of observed realizations [2] (e.g. by

convention most Singletons have a static local variable named singleton), which could lead to

false positives. For these reasons we use tools to provide an initial hint to the location of a

pattern. The pattern is then manually verified against its RBML. Once a pattern is identified,

our grime definitions require that we gather specific grime coupling data from each

Table 6. Apache Derby number of design patterns studied in every release.

Pattern Adapter Builder Factory Strategy Visitor

of Realizations 1 1 12 1 1

Table 5 Apache Derby release information by month/year. Version is 10.x.

 08/05 11/05 06/06 10/06 12/06 04/08 05/08 09/08 04/09

Version 1.1.0 1.2.1 1.3.1 2.1.6 2.2.0 3.3.0 4.1.3 4.2.0 5.1.1

of

Classes

1,803 1,810 1,831 2,141 2,139 2,491 2,756 2,787 3,114

KLOC 676 679 689 785 785 887 944 949 1,034

35

realization. This requires a finer granularity than most common metric gathering tools

provide. We used tools that allowed us to specify exactly how to mine grime data. The

following tools were used:

4.2.1 Eclipse

Eclipse [27] is a well known IDE that provides support for several different

languages. It is most commonly used for Java development. It is open source and uses a plug-

in driven architecture to provide a wide variety of extra functionality. We use Eclipse to

initially analyze source code from the software studied. In addition, many eclipse plug-ins

[46], [47], [61] are used to find design pattern realizations and gather data.

4.2.2 Design Pattern Finder

Design Pattern Finder [24] is a simple and fast Windows based tool used to find

design pattern realizations in Java projects. It searches Java files for common signs of design

pattern realizations. This is mostly done by semantically matching class names with pattern

names. This is acceptable for our use because we focus on intentional pattern realizations.

We use Design Pattern Finder as an initial scouting tool for finding pattern realizations. It

provides a starting point in the search for design patterns. Manual validation is required to

remove false positives.

4.2.3 ObjectAid UML

ObjectAid [61] is an Eclipse plug-in that provides UML class diagrams within the

Eclipse IDE. It allows users to generate class diagrams from existing source code files and

packages. We primarily use this tool to generate quick diagrams for groups of files that are

36

suspected to be involved in a design pattern realization. Visualizations of pattern realizations

allow us to manually verify pattern conformance to an SPS quickly.

4.2.4 Browse By Query

Browse By Query (BBQ) [16] is an Eclipse plug-in that provides a query language for

browsing source code. Specifically, BBQ stores source code information in an Object

Oriented Database and allows the user to query the database using English-like queries. We

used BBQ to gather pilot data during the initial stages of our study. The flexibility of the

query language was essential because it allowed us to explicitly define coupling as it

contributes to grime buildup. While other metric gathering utilities [45], [46] reveal coupling

or dependency information, BBQ allowed us to be more precise in our measurements.

4.2.5 JQuery

JQuery [47] is a source code query tool. It is an Eclipse plugin that allows users to

query properties of source code using a Prolog-like language called TyRuba [71]. JQuery

creates a database of facts from the Abstract Syntax Tree of a Java project. Users can query

the database using predicates and retrieve a wide variety of information. JQuery was

necessary for this research because it is more robust and stable than BBQ. It also allowed us

to eliminate some construct validity problems that we encountered in our pilot research.

JQuery increases construct validity because it allows us to differentiate between internal and

external grime. BBQ did not provide such operators, causing inaccuracies in the aggregation

of grime counts for internal and external measures. The identification of measures that

correctly represent the subject of study improves construct validity.

37

4.2.6 Dynamic Chart

Dynamic Chart (see appendix C), written in Java, is a tool we developed to assist with

the graphing of modular grime data. The taxonomy of modular grime motivated us to create a

graphing tool that would allow us to visualize individual categories as well as combinations

of modular grime categories. Dynamic chart allows a user to view data dynamically without

having to reload and modify the input data. The following sections describe and demonstrate

the functions of Dynamic Chart.

4.2.6.1 File Input. Data is entered (currently only in .csv format) as a time series

containing one or many variables. The time series consists of a series of release dates. There

may also be different groups of time series if the user wishes to import several groups of data

at a time. Figure 2 shows an example input file with column ‗A‘ containing dates in a time

series.

38

Each time series is repeated with different groupings for each design pattern. In this

example, there are four variables for each point in time. The variables are PEAG, PEEG,

TEAG, and TEEG. In this example each pattern category has an equivalent set of dates

associated with it. This is not a requirement. Note that PIG and TIG are not included in this

example data set. They could easily be added in additional columns.

4.2.6.1 Features. A detailed description of features is included in the Dynamic Chart

documentation in Appendix A. Current features supported by Dynamic Chart include:

Figure 2. Example input file for Dynamic Chart

39

Dynamic data charting – Dynamic Chart creates a linear combination of all input

variables at each point in time. Each point is described mathematically by the following

linear equation.

Gt = α1PEAGt + α2PEEGt + α3TEAGt + α4TEEGt

Where Gt represents a singular grime count at time t. PEAGt, PEEGt, TEAGt, and

TEEGt are the actual grime counts for each type of modular grime at point t and α1 through α4

are the linear coefficients that are independent of time. Each point in time has one

corresponding value per group and there exists a Gt for each group at each time t. The user

has control over the coefficients for each variable in the form of sliders. As the sliders are

changed, the chart is dynamically updated to show the resulting change in G at all points in

time.

Coefficients α1 through α4 allow users to adjust how much each type of grime

contributes to the overall measure of grime. For example, setting all coefficients to 1 would

result in the total grime count. Alternatively, setting α1 to 1 and setting α2, α3, α4 to 0 would

display grime counts for PEAG only.

Data grouping – Data can be input in groups. Groups are displayed initially in

separate tabs, one for each group. The user has the ability modify groupings as needed. This

allows users to view and compare different series of data. For example, the user may group

the Singleton and Factory data into a new group called the ―creational pattern‖ group. The

data for both Singleton and Factory will now be displayed on the same chart and the user can

40

examine differences between the two patterns. Users can add other patterns to the creational

data group or split Singleton and Factory back into separate groups.

Data modification – While data groupings allow users to view different data on the

same chart, there is also an option to aggregate different data sets into a singular set.

Extending the example above, the user could aggregate the Singleton (S) and Factory (F)

results into one set of results. This can be shown mathematically as follows.

G(S)t = α1PEAG(S)t + α2PEEG(S)t + α3TEAG(S)t + α4TEEG(S)t ; G(S)t represents the

Singleton data

G(F)t = α1PEAG(F)t + α2PEEG(F)t + α3TEAG(F)t + α4TEEG(F)t ; G(F)t represents the

Factory data

G(F, S)t = α1[PEAG(F)t+PEAG(F)t] + α2[PEEG(F)t+PEEG(F)t] + α3[TEAG(F)t+TEAG(F)t] +

α4[TEEG(F)t+TEEG(F)t]

G(F, S)t represents the resulting data set after the Singleton and Factory data are

aggregated. To aggregate the data for multiple groups, the individual data points for each

variable at each point in time are summed for all of the groups. Dynamic Chart allows the

user to aggregate the data for any number of initial data groups. Data can also be removed

from the aggregated sets as necessary.

Data extension – Dynamic chart provides a simple prediction mechanism to facilitate

extrapolation of data. Users can create data extensions which determine future points in time

41

to be predicted. When a data extension is set a curve fitting algorithm is used to predict the

points in the extension. The curve fitting algorithm generates several regression models

(linear, quadratic, polynomial) from the initial data and chooses the one with the least

squared error. This feature can be performed individually for each time series. Extensions

can be set and changed at any point during the operation of Dynamic Chart.

4.2.6.2 Demonstration. An example data set is displayed in Dynamic Chart in figure 3.

The tabs in the lower left allow users to switch between each group of data. The sliders in the

right hand side of the window allow users to modify the linear combinations of the modular

grime variables. In the current display tab the user has combined the Singleton, Factory, and

Observer groups into one display group called ―Important Data‖. Predictions have been

added for both the Observer and Factory Timer series.

Figure 3. A Dynamic Chart display

42

4.3 Data Gathering

This section describes the process and tools used to mine for modular grime in

selected design patterns. 4.3.1 describes our initial pilot study. Sections 4.3.2 and 4.3.3

describe how we used JQuery to mine for grime and remove threats to construct validity

identified during the pilot study.

4.3.1 Pilot study

After defining the modular grime taxonomy, we manually searched open software

repositories for software to mine for grime data. The main source of open software used was

SourceForge [68]. We selected Vuze [74] because the number of downloads was high (more

than 100,000 downloads for a recent version from one of many download mirrors) and it was

written in Java. Additional systems, as described in section 4.1, were added after the pilot

study helped validate the proposed taxonomy.

The criteria for selecting Vuze in the pilot study included evidence of modular grime

buildup as defined by the taxonomy definitions described in section 3.3. Several metrics tools

were initially used to gather coupling information; however they proved unacceptable for a

variety of reasons. JHawk [46] only gathered information at higher organizational levels (i.e.

packages or namespaces) lacking the necessary granularity needed to study grime buildup.

We specifically needed to record coupling counts of design pattern classes. JDepend [45]

gathered dependency information, but did not specify how a dependency was defined. Our

43

taxonomy definitions use a specific definition of coupling that requires finer detection

granularity.

The limitation of BBQ was that it did not allow us to differentiate between internal

and external grime. Although BBQ allowed us to gather coupling data for the classes that

compose the design pattern realizations, it did not allow us to specify where the coupling

originated from. For example, we gather data about persistent grime for all pattern class

realizations when we gather PEAG data. We could not determine the source of the grime and

therefore differentiate between PEAG and PIG. BBQ aggregated the counts for PEAG and

PIG. Similarly, we could not differentiate between internal and external grime for temporary

couplings. Therefore, TEAG and TIG were also aggregated.

Another issue emerged from our definition of temporary grime. Temporary grime is

composed of three types of coupling: method return types, parameter types, and local

variables. BBQ gives us no access to the local variables of methods. This left us with the

possibility that measurements of temporary grime were understated.

4.3.2 Gathering data using JQuery

JQuery solved all the threats to validity we encountered with BBQ. Like BBQ, it is

also a query tool, but it is more flexible. It stores all of the properties of, and relationships

between, Java objects in a factbase. We simply queried the factbase for each specific

relationship that the taxonomy defines as grime. JQuery uses a Prolog like language called

Tyruba [71] to query the factbase generated from source code. The queries we used allowed

us to determine the source of grime, solving the problem of differentiating between internal

and external grime. JQuery also generates facts about local variables within methods which

44

allowed us to consider all types of temporary grime. We used JQuery to gather data from all

versions in every system we studied. The next section details the queries we used to gather

data for each category of grime in the taxonomy.

4.3.3 JQuery Queries

In the Tyruba [71] language used by JQuery, variables are preceded by a question

mark and denote a set of objects. Predicates can initially determine a set of objects for a

variable or narrow the scope of the variable. For example, the basic query

package(?P),name(?P,Base)

Creates a variable ‗?P‘ that contains all packages in the factbase. The second predicate

eliminates packages that are not named ‗Base‘. Commas are used to represent conjunction

while semicolons are used to represent disjunction.

We use a top down approach to gather grime data. Starting with all of the classifiers

in the source, we gather all coupling relationships as defined by coupling strength. We then

eliminate relationships that don‘t belong depending on where the coupling originates and

ends. For example, when calculating afferent coupling, eliminate all relationships that

originate in pattern classes. After the query is executed, any relationship that occurs because

of correct usage must be manually removed from the results. Data is gathered for each

taxonomical category as follows:

PEAG: The full query is

allClassifiers(?P,?C),

attributeTypesOfClassifier(?C,?T),

(name(?T,PatternClass1);...;name(?T,PatternClassn)),

45

(NOT(name(?C,PatternClass1);...;name(?C,PatternClassn)))

There are four main parts in the query connected by conjunctions. Each can be

described in more detail.

allClassifiers(?P,?C): This predicate gathers all package objects in ?P and all

classifiers in ?C. It is a custom predicate defined for our objective. The full code can be

found in the appendix.

attributeTypesOfClassifier(?C,?T): This predicate gathers the attributes for each

classifier in the set ?C obtained by allClassifiers(?P,?C). It is another custom predicate. We

now have a set of classifiers (?C) and a set of types (?T) for all of the types of attributes in

the classifiers. These are persistent relationships that originate in a classifier in the set ?C and

end at a type ?T.

(name(?T,PatternClass1);...;name(?T,PatternClassn)): This set of predicates

eliminates all relationships that do not end at a pattern class. There is a name() predicate for

each class in the design pattern realization from Class1 to Classn. The ellipsis denotes the

name predicates included for all classes between Class1 and Classn.

(NOT(name(?C,PatternClass1);...;name(?C,PatternClassn))): This set of

predicates eliminates all relationships that originate in a pattern class. Any relationships that

originate in a pattern class would be internal in this case. There is a name() predicate for each

pattern class.

All of the queries take this general form. ?C contains the originating classifiers and

?T contains the types that denote where the relationship ends. The remaining queries follow.

TEAG:

46

allClassifiers(?P,?C),

temporaryTypesofClassifier(?C,?T),

(name(?T,Class1);...;name(?T,Classn)),

(NOT(name(?C,ClassA1);...;name(?C,ClassA2)))

This query is the same as the query for PEAG with one difference. The predicate

temporaryTypesofClassifier(?C,?T) gathers ?T using all of the temporary relationships

defined in section 3.2.1 instead of persistent attributes. This custom query can be found in the

appendix.

PEEG:

allClassifiers(?P,?C),

attributeTypesOfClassifier(?C,?T),

(name(?C,Class1);...;name(?C,Classn)),

(NOT(name(?T,ClassA1);...;name(?T,ClassA2)))

This query looks similar to the preceding queries with one important difference. The

NOT logic is reversed because the direction of coupling has changed. This query eliminates

all relationships that end in a pattern class, and it accepts all relationships that originate in a

pattern class.

TEEG:

allClassifiers(?P,?C),

47

temporaryTypesofClassifier(?C,?T),

(name(?C,Class1);...;name(?C,Classn)),

(NOT(name(?T,ClassA1);...;name(?T,ClassA2)))

TEEG is similar to PEEG with an alternative predicate used to find temporary

relationships.

PIG:

allClassifiers(?P,?C),

attributeTypesOfClassifier(?C,?T),

((name(?C,Class1);...;name(?C,Classn)),

(name(?T,Class1);...;name(?T,Classn)))

The pig query uses two sets of name() predicates to confirm that both ends of the

relationship are contained within the set of design pattern classes. This is the same as the

PEEG query with the removal of a NOT clause.

TIG:

allClassifiers(?P,?C),

temporaryTypesofClassifier(?C,?T),

((name(?C,Class1);...;name(?CL,Classn)),

(name(?T,Class1);...;name(?T,Classn)))

48

TIG is equivalent to PIG with a change of predicates to differentiate for coupling

strength.

4.4 Hypotheses

We gather data to investigate hypotheses for each category of the proposed grime

taxonomy. The hypotheses are tested with data gathered for each modular grime category

using the methods described in section 4. We test the following 6 hypotheses for each system

studied:

H1,0: There is no evidence to suggest linear growth of PEAG counts over time.

H2,0: There is no evidence to suggest linear growth of TEAG counts over time.

H3,0: There is no evidence to suggest linear growth of PEEG counts over time.

H4,0: There is no evidence to suggest linear growth of TEEG counts over time.

H5,0: There is no evidence to suggest linear growth of PIG counts over time.

H6,0: There is no evidence to suggest linear growth of TIG counts over time.

The hypotheses are tested using statistical analysis. Each hypothesis is tested once per

system using aggregated data for all design pattern realizations.

49

5. RESULTS

Data gathered to test all hypotheses are presented in this section. Data was collected

for all six categories in the modular grime taxonomy. Grime types that show no discernable

evidence of change as a pattern evolves are excluded in all figures for clarity. Table 7 shows

the number of pattern realizations mined in each system and tables 8 through 10 display

realization information about each pattern. In sections 5.1 through 5.3 we display raw data

for Apache Tomcat, Dr. Java, and Apache Derby respectively. Section 6 contains discussion

and analysis of the data.

Table 9. Dr. Java number of design patterns studied in every release.

Pattern Singleton Strategy Iterator Visitor Factory State Observer

Realizations 13 1 1 2 3 2 3

Table 8. Apache Tomcat number of design patterns studied in every release.

Pattern Singleton Adapter Façade Factory Observer

Realizations 3 2 2 7 4

Table 7. Aggregate number of design pattern realizations studied in each system

System Pattern realizations

Apache Tomcat 18

Dr. Java 25

Apache Derby 16

50

5.1 Apache Tomcat

We mined 18 design pattern realizations of five distinct design patterns. Figure 4

displays the grime counts for all 3 Singleton pattern realizations. Overall, grime counts

change very little and there is no internal grime. PEEG is the only type of grime that changes

between releases.

Table 10. Apache Derby number of design patterns studied in every release.

Pattern Adapter Builder Factory Strategy Visitor

Realizations 1 1 12 1 1

51

Figures for the Adapter and Façade pattern realizations are excluded as the data does

not change at any point over the six releases that comprise the period of study. The grime

counts for the Adapter pattern realizations are 0, 13, 5, 14, 0, and 0 for PEEG, PEAG, TEEG,

TEAG, PIG, and TIG respectively. Grime counts for the Façade pattern realizations are 2, 1,

13, 1, 0, and 0 for PEEG, PEAG, TEEG, TEAG, PIG, and TIG respectively.

Data for the Factory and Observer patterns show more variation over time than the

Singleton, Adapter and Façade patterns. Figure 5 shows results for the Factory pattern.

Figure 4. Aggregate PEEG grime count for 3 Singleton pattern

realizations (Tomcat)

52

PEEG, PEAG, and TEAG counts show minimal changes; each varying by at most 2

grime counts during period of study. PIG and TIG counts are consistent throughout with

values of 2 and 11 respectively. TEEG counts increase steadily and never decrease, rising

from a count of 128 in December 2006 to 134 in March 2010.

Data for the Observer pattern mirrors that of the Factory pattern data. TEEG counts

rise from 315 in December, 2006 to 373 in March 2010. PEEG counts increase steadily from

146 to 154 over that same time period. There is an abrupt increase in TEAG counts in March

2007 followed by an abrupt decrease in May 2007. Excluding these two release dates, the

Figure 5. Aggregate grime counts for 7 Factory pattern realizations (Tomcat)

53

data for TEAG remains constant. The Data for PEAG shows little variation while PIG and

TIG counts do not change at all remaining at 11 and 19 respectively.

The aggregate data for all design pattern realizations is shown in figure 7. TEEG

counts increase consistently while PEAG, TEAG, and PEEG counts vary slightly throughout

the study. PIG and TIG counts show no change with values of 11 and 19 respectively.

Figure 6. Aggregate grime counts for 4 Observer pattern realizations (Tomcat)

54

5.2 Dr. Java

We gathered data from 25 realizations representing 7 design patterns. This section

displays the data for each pattern as well as the aggregate data for all design pattern

realizations.

Figure 7. Aggregate grime counts for 18 design pattern realizations (Tomcat) (3

Singleton, 2 Adapter, 2 Façade, 7 Factory, and 4 Observer)

55

Figure 8 shows the results for 13 Singleton pattern realizations. TIG, PIG, and TEAG

have a count of 0 throughout. PEAG shows very little change throughout the time span of the

study. Grime counts for PEEG and TEEG consistently increase from March 2004 to January

2009, increasing from 9 to 35 and 53 to 109 respectively. There is a noticeable decrease in

grime count for both PEEG and TEEG between the last two releases studied.

The data for the strategy pattern is relatively invariable. PEAG, PIG, and TIG counts

show no change with values of 1, 0, and 0 respectively. PEEG, TEEG, and TEAG counts

vary noticeably.

Figure 8. Aggregate grime counts for 13 Singleton pattern realizations (Dr. Java)

56

Data for the Iterator pattern show similar trends as those from the Singleton pattern.

PEEG and TEEG counts show consistent growth throughout the lifecycle of the study. PEEG

counts increase from 18 in March 2004 to 28 in October 2009. During the same time span

TEEG counts increases from 35 to 83. PEAG counts show some variability, increasing from

4 to 8 throughout all releases. TEAG counts increase by 1 over the study period. PIG stays

constant with a count of 1 while TIG has a count of 0 throughout.

Figure 9. Aggregate grime counts for 1 Strategy pattern realization (Dr. Java)

57

In the Visitor data TEEG count increases from 38 to 134 over all releases. PEAG,

TEAG, and PEEG show some small variations. PIG and TIG have constant counts of 4 and 6

respectively.

Figure 10. Aggregate grime counts for 1 pattern realization (Dr. Java)

58

Factory pattern data is displayed in figure 12. TEEG counts show marked increases

over the period of the study. The counts of all other grime categories remain unchanged.

Figure 11. Aggregate grime counts for 2 visitor pattern realizations (Dr. Java)

59

Grime counts from the State pattern behave in a similar manner to those of the

Factory pattern. TEEG counts increase several times between releases and increase from 3 to

12 over the span of the study. PEAG counts increase by 1 after the first releases while PIG

and TIG counts show no variance. In contrast to the data from the other pattern realizations,

TEAG counts show significant variation. There is a sharp increase between the first two

releases, followed by a consistent decline.

Figure 12. Aggregate grime counts for 3 Factory pattern realizations (Dr. Java)

60

The Observer data shows the most variation. Similar to the Visitor and Iterator data,

PEAG counts slowly grows while PEEG, TEEG, and TEAG counts all display abrupt

changes between several releases. PIG counts increases by 1 after the first release and TIG

counts decrease by 1 over the same period.

Figure 13. Aggregate grime counts for 2 State pattern realizations (Dr. Java)

61

The grime data for all design pattern realizations shown in figure 15 reflects the

trends from data for individual patterns. TEEG counts show consistent increases throughout

the study period. PEAG counts show some slow growth due to the Visitor, Iterator, and State

patterns. TEAG and PEEG counts show the most variance. PIG and TIG counts show an

insignificant amount of change varying by at most 1 during the period of study.

Figure 14. Aggregate grime counts for 3 Observer pattern realizations (Dr. Java)

62

5.3 Apache Derby

Data mined from Apache Derby consists of a total of 16 design pattern realizations

from 6 design patterns. Grime counts for the Observer pattern are not shown because there

were no changes in the initial data over the 6 releases of the study period; all categories

Figure 15. Aggregate grime counts for 25 pattern realizations (Dr. Java) (13

Singleton, 1 Strategy, 1 Iterator, 2 Visitor, 3 Factory, 2 State, and 3 Observer)

63

remained stable at 11, 6, 17, 10, 0, and 2 for PEEG, PEAG, TEEG, TEAG, PIG, and TIG

respectively.

Figure 16 displays results for the Adapter pattern. There are no changes in PEEG,

PIG, or TIG counts throughout. TEAG counts increase several times over the period of study.

There are three categories (PEAG, TEAG, and TEEG) that show a simultaneous increase

from September 2008 through March 2009. Overall, from August 2005 through September

2008, there is very little change in grime counts.

Figure 16. Grime counts for 1 Adapter pattern realization (Derby)

64

In the Builder pattern, most categories show at most a variation of one grime count

over the entire study period. TEAG counts are the exception displaying a rise of 5 from

August 2005 to April 2009.

The Factory pattern data shown in figure 18 shows more variance than the previous

data. PIG counts show no changes throughout while TIG counts varie by a magnitude of 2.

PEAG and TEAG counts display many abrupt changes between releases, but they have a

similar grime count in April 2009 as compared to August 2005. PEEG and TEEG counts

increase and decrease throughout the studied interval eventually settling with greater grime

counts over time.

Figure 17. Grime counts for 1 Builder pattern realization (Derby)

65

Data for the Strategy pattern shows stability in all categories with the exception of

TEEG counts, where there is an increase between June 2005 and October 2006.

Visitor pattern data shows little variation as well. TEEG and TEAG counts are the

only grime counts that change over the study interval. TEAG counts display up and down

trends with an overall increase in grime. TEEG counts decrease from beginning to end except

for an increase of 1 count in May 2008.

Figure 18. Aggregate grime counts for 12 Factory pattern realizations (Derby)

66

Figure 19. Grime counts for 1 Strategy pattern realization (Derby)

67

The total grime counts for all design patterns are shown in figure 21. PIG data shows

no changes throughout while TIG counts vary by at most 3. PEAG counts are the only data

that show a consistent decrease, falling from 91 to 86 over the 4 year study period. PEEG,

TEEG, and TEAG counts all increase by a total of 11, 27, 14 respectively over the period of

study.

Figure 20. Grime counts for 1 Visitor pattern realization (Derby)

68

Figure 21. Aggregate total grime counts for 16 pattern realizations (Derby) (1

Adapter, 1 Builder, 12 Factory, 1 Strategy, 1 Visitor)

69

6. ANALYSIS AND DISCUSSION

We have gathered data from three large open source software systems. The data was

used to test the hypotheses proposed in section 4.4. We use statistical methods to determine

whether the results support or contradict each hypothesis. The significance tests are also

accompanied by a brief discussion.

Section 6.1 gives a description of the statistical methods used for hypothesis testing.

Sections 6.1.1 through 6.1.3 contain test results and discussions for each system studied. A

summary is given in section 6.1.4.

6.1 Trend Analysis

The time series nature of the data lends itself to trend analysis. Preliminary inspection

of the data led to the choice of simple linear regression (SLR) as the method of analysis

because raw data show evidence of linear trends. Previous research has revealed that non-

linear models are appropriate for software growth [70]. However, we use a linear model for

analysis for two reasons. First, the raw grime count data almost unanimously displays linear

growth. Second, grime counts do not necessarily follow the same trends as software growth;

there is no evidence to make this assumption.

Grime counts represent the dependent variable, and time, the independent variable

measured in days, is the unit of association. These data fit neatly in the general SLR model

because the hypotheses require a test for a linear relationship between time and grime counts.

70

The model shown below represents the grime count (denoted by y); x represents time, β0 is

the parameter representing the y-intercept, β1 is the parameter for slope (also called the

regression coefficient), and ε is the error.

y = β0 + β1x + ε

Using SLR to model the data allows us to determine if a possible linear relationship

between the independent variable (time in the form of release dates) and the dependent

variable (grime count) exists. A significant relationship between the two variables for any

modular grime category will cause a rejection of the hypothesis for said category because

each hypothesis states that there is not a linear relationship between grime counts and time. A

significant statistical result reveals a linear relationship between grime and time and therefore

causes us to reject the null hypothesis.

In order to find statistically significant relationships between the variables, we tested

whether the regression coefficient β1 is equal to 0. Given the SLR model, a regression

coefficient that is significantly non-zero indicates a non-trivial relationship between the

independent and dependent variables. Changes in time cause changes in the grime estimate

because the regression coefficient (when it is not equal to zero) is multiplied by time in the

linear equation shown above. This in turn contradicts the hypothesis that grime counts do not

grow linearly over time. Note that a slope of 0 may indicate a linear relationship between

grime counts and time, but the relationship is non-growing and it confirms the null

hypothesis because grime counts are unchanging over time.

A t-test was used to determine the significance of the regression coefficient. The t-

value is the ratio of the regression coefficient and the standard error because we are testing

against a regression coefficient of 0. The t-value is then compared to a t-distribution to obtain

71

a p-value, which determines the likelihood that a t-value that large would occur in a sample

in which the dependent and independent variables are not related. The p-value is the

probability that the regression could occur due to random chance; a very small p-value

indicates that the changes in grime count are correlated with increases in time and not simply

random. For this analysis, a p-value less than .05 deems the regression coefficient statistically

significant. A p-value of .05 is a common threshold used in empirical research.

There are some details of the resulting SLRs to note. The independent variable in the

analysis is the number of days since the date 01/01/1900. This means the y-intercept

represents the estimated grime count at that date. This makes the y-intercept value

meaningless as we are only interested in the slope of the regression (change in grime over

time) and not the estimated grime count at some point in the past. As a result of using days as

the measure of time, the regression coefficients represent changes in grime count per day. A

positive coefficient represents increases in grime count by day and a negative coefficient

represents decreases in grime count by day.

In the following sections an SLR is run for each hypothesis using a least squares

method. The regression equation, as well as the regression coefficient t-test is shown for each

SLR, along with an interpretation about the validity of the hypothesis.

6.1.1 Apache Tomcat

There is one hypothesis to test for each grime category. Sections 6.1.1.1 through

6.1.1.5 include the analysis of statistical results. The results are summarized in section

6.1.1.6.

72

Table 11 shows the SLR information for Apache Tomcat. The regression coefficient

and the standard error are shown. The t-value is calculated using the regression coefficient

and the standard error. A small p-value (p < .05) indicates it is very unlikely that the

regression coefficient could be equal to zero without a relationship between grime count and

time.

6.1.1.1 PEAG. The p-value for PEAG is not significant. Therefore, we cannot make

any claims about the true value of the regression coefficient. In turn, this supports the null

hypothesis that PEAG buildup and time are not linearly related in Apache Tomcat.

6.1.1.2 TEAG. The calculations for TEAG are similar to those for PEAG. The small

regression coefficient leads to a small t-value, which in turn leads to a large p-value. The p-

value indicates the value of the regression coefficient may be due to chance. These results

support the null hypothesis that TEAG buildup and time are not linearly related for the

releases of Tomcat studied.

Table 11. Regression data for Apache Tomcat.

 Regression

coefficient

Standard

error

t-value p-value

PEAG -0.00019 .000433 -0.44527 0.669569

TEAG -0.00247 .003668 -0.67398 0.521950

PEEG 0.006589 .000758 8.690865 0.000054

TEEG 0.034949 .01303 2.682286 0.031435

73

6.1.1.3 PEEG. The SLR for PEEG reveals the first indication of a significant

relationship between time and grime buildup. The extremely low p-value indicates that the

regression coefficient is very unlikely to occur if there truly was no linear relationship

between PEEG count and time. This information allows us to reject the null hypothesis that

PEEG does not show linear growth over time.

6.1.1.4 TEEG. The regression model for TEEG reveals a significant relationship. The

t-test on the regression coefficient results in a p-value which is less than the threshold of .05.

We reject the null hypothesis for TEEG. The positive regression coefficient reveals a positive

relationship between time and grime count.

6.1.1.5 PIG and TIG. A regression is not necessary for the PIG and TIG data from

Tomcat because the results show no changes throughout the study. A straight line indicates a

regression coefficient of zero and statistically unchanging grime counts. These results are

supportive of the null hypothesis for PIG and TIG; the data justify the notion that PIG and

TIG do not display linear growth over time in this software.

6.1.1.6 Tomcat Analysis Summary. There is one hypothesis for each taxonomy category

in Apache Tomcat. Each hypothesis predicts that grime buildup grows linearly over the

releases studied. We used a simple linear regression to estimate a regression coefficient

(slope) for the data. By testing whether the slope is equal to zero, we determine if there is a

positive relationship between time and grime count (i.e. whether grime counts increase over

time). In the case where the slope is not equal to zero, there is evidence to contradict the null

hypothesis.

74

The data for PEEG and TEEG suggests we have evidence to contradict the null

hypotheses. The data support the notion that PEEG and TEEG do buildup over the time

period studied. The results for all other modular grime categories support the null

hypotheses. There is no indication to suggest a linear relationship between time and grime

count.

6.1.2 Dr. Java

The regression information for each category is presented and interpreted in this

section. A summary of the analysis results is included in section 6.1.2.6. Table 12 contains all

of the regression information.

6.1.2.1 PEAG. The extremely small p-value for PEAG supports the conclusion that the

regression coefficient is significant. The positive regression coefficient represents a

statistically significant linear increase in grime count over time. This is evidence to reject the

Figure 12. Regression data for Dr. Java.

 Regression

coefficient

Standard

error

t-value p-value

PEAG 0.00456 0.000226 20.1431 0.00000097

TEAG -0.01006 0.00447 -2.248 0.065614

PEEG -0.0007 0.004788 -0.14597 0.888728

TEEG 0.049522 0.006388 7.813994 0.000232

PIG -0.00012 0.000217 -0.5514913 0.601216

TIG -0.00012 0.000218 -0.55149 0.601216

75

null hypothesis that PEAG counts do not grow linearly over time in the Dr. Java versions

studied.

6.1.2.1 TEAG. The p-value in table 12 has a value just above the threshold. The

regression coefficient is negative, indicating grime decreases over time. The insignificant p-

value supports the null hypothesis that TEAG buildup is not linearly related to time in the

releases of Dr. Java studied. The negative coefficient indicates that grime does not grow over

time in either case.

6.1.2.3 PEEG. The linear regression for PEEG shows no connection between time and

grime count. The regression coefficient from table 12 is extremely small and the p-value

indicates a lack of significance. This analysis supports the null hypothesis for PEEG.

6.1.2.4 TEEG. The linear model for TEEG in Dr. Java provides some interesting

results. A regression coefficient of .0495 is quite large for this data. At first glance this seems

like a significant increase. The t-test backs up this assertion with a t-value of 7.8 which

reveals an extremely small p-value well below the threshold. This information contradicts the

null hypothesis and supports the conclusion that TEEG counts are significantly increasing in

a linear fashion over the releases studied.

6.1.2.5 PIG and TIG. The regression data for PIG and TIG are also shown in table 12.

The analysis results are expected as the data for both PIG and TIG show very little variation

throughout the study. Without any variation over time, linear growth of grime counts over

time cannot be inferred. The large p-values support this notion as well as the null hypothesis;

grime buildup (PIG and TIG) is not linearly related to time.

76

6.1.2.6 Dr. Java Analysis Summary. The analysis results for all six modular grime

categories can be broken down as follows. Four categories (PEEG, TEAG, PIG, and TIG)

show no evidence of linear grime buildup over time. The statistical analysis provides no

evidence to reject the null hypothesis that grime buildup for these four categories is

insignificant.

Two grime categories (PEAG and TEEG) show significant results after analysis. The

low p-values for the regression coefficients indicate that grime builds up linearly over time

for both types. A regression coefficient of .00456 for PEAG indicates a slow but steady rise

in grime count. The regression coefficient for TEAG (0.01006) indicates an increase of 1

grime count every 10 days on average.

6.1.3 Apache Derby

Table 13 shows the analysis results for Apache Derby. Sections 6.1.3.1 through

6.1.3.5 elaborate on the results and section 6.1.3.6 summarizes all results for this system.

77

6.1.3.1 PEAG. An analysis for PEAG reveals a linear model that is of little

significance. The small value for the regression coefficient (slope) indicates that there is little

growth in PEAG. The large p-value further confirms this conclusion. The null hypothesis for

PEAG is supported; PEAG counts do not display linear growth over time.

6.1.3.2 TEAG. The linear model for TEAG provides an interesting result. The slope

indicates a rise of .025 for TEAG count per day. The p-value for a t-test on the regression

coefficient attests to the fact that the slope is statistically significant. This analysis contradicts

the null hypothesis, and supports the alternative hypothesis that TEAG builds up linearly

over time.

6.1.3.3 PEEG. The analysis for PEEG produces similar results to those for PEAG. The

regression coefficient is small and the p-value for the t-test analysis produces an insignificant

Table 13. Regression data for Apache Derby.

 Regression

coefficient

Standard

error

t-value p-value

PEAG -0.00029 0.00196 -0.14911 0.885671

TEAG 0.025331 0.008521 2.972756 0.020727

PEEG -0.00234 0.009286 -0.25205 0.808242

TEEG 0.022215 0.003453 6.433066 0.000356

TIG -0.00077 0.000806 -0.95379 0.371955

78

result. The model shows no relationship between time and PEEG count. This is supportive of

the null hypothesis.

6.1.3.4 TEEG. The analysis of the TEEG data provides some interesting results on par

with those for TEAG. The slope shows that TEEG increases at a rate of .022 counts per day.

The extremely small p-value eliminates any concern that the results are a statistical oddity.

The significance of these results contradicts the null hypothesis while supporting the notion

that TEEG does buildup linearly over time in the releases studied.

6.1.3.5 PIG and TIG. The data for PIG is unchanging. Therefore no regression is

necessary for analysis because grime count does not grow over time . The regression

coefficient for TIG is extremely small, indicating a slight decrease in TIG counts over time.

The p-value supports the assumption that the small regression coefficient is insignificant. The

data and analysis support the hypotheses that PIG and TIG in Apache Derby have no linear

relationship with time.

6.1.3.6 Derby Analysis Summary. There are two modular grime sub types that show

linear growth in the data gathered. TEEG and TEAG both have small p-values that show

significance of their respective regression coefficients. Both regression coefficient values are

positive which means that TEEG and TEAG are significantly increasing in a linear fashion.

The analysis of the other modular grime categories shows insignificant changes throughout.

The null hypotheses (that grime buildup does not grow linearly over time) cannot be rejected

for PEEG, PEAG, PIG, and TIG.

6.1.4 Summary of statistical analysis

79

The statistical results are summarized in table 14. Each cell contains the p-value from

a t-test on the regression coefficient for the linear model of each grime sub category. The

meaning of the p-values is explained in further detail in section 6.1. Significant p-values are

shown in bold.

There are four significant p-values within all three systems studied. Most notably, the

p-values support the notion that TEEG shows linear growth over time in every system. PIG

and TIG show no significant p-values in any of the systems studied. There is significant

linear PEEG buildup in Tomcat, linear PEAG buildup in Dr. Java, and linear TEAG buildup

in Apache Derby. The raw data along with this corresponding analysis is discussed more

thoroughly in section 6.2.

6.2 Discussion

This section contains an informal discussion of the data and analysis results found in

the previous two sections. First we contemplate general implications of the results in section

Table 14. Slope significance (p-value) for all systems and modular grime categories.

 PEAG TEAG PEEG TEEG PIG TIG

Apache Tomcat 0.669569 0.521950 .0000535 0.031435 n/a n/a

Dr. Java .0000010 0.065614 0.888728 0.000232 0.601216 0.601216

Apache Derby 0.885671 0.020727 0.808242 0.000356 n/a 0.371955

80

6.2.1. Finally we discuss the results for each software system individually in sections 6.2.2

through 6.2.4.

6.2.1 General Discussion

The results for the Singleton pattern throughout all of the software studied have one

thing in common: PIG and TIG do not change. Internal grime is likely nonexistent in the

Singleton pattern realizations because the realizations are defined using only one class.

Internal grime can only occur when new illegal relationships appear between pattern classes.

In the case of the Singleton, a self-referential relationship is already defined by the pattern. It

is unlikely that any new internal relationships will appear over the evolution of the pattern

and internal grime will remain unchanged.

Results support rejection of six null hypotheses; PEEG and TEEG in Apache Tomcat,

PEAG and TEEG in Dr. Java, and TEAG and TEEG in Apache Derby. We do not have

evidence to reject other null hypotheses, including PIG and TIG in Apache Tomcat and PIG

in Apache Derby where a statistical test was not needed to confirm that grime does not grow

linearly over time.

The rejection of the TEEG hypothesis in all 3 systems provides the most evidence for

generalization. In other words, of all taxonomy categories, TEEG most consistently shows

linear growth over time in the open source software we studied. TEEG is caused by

temporary relationships that originate within the design pattern classes.

Temporary coupling is likely to increase over time as functionality (methods) is

added to classes. This could happen to all classes in the system, causing increases in counts

for grime originating internally and externally. This is reflected in the data for TEEG and

81

TEAG in Apache Derby where temporary grime counts increase regardless of coupling

direction. TEAG does not show a significant linear relationship with time in the other two

systems studied. The differences between TEEG and TEAG indicate that temporary grime

may be more likely to appear in design pattern classes. The addition of new and expanded

functionality to pattern classes, not originally intended by the pattern, is likely the cause of

significant count increases for TEEG. In other words, developers add to pattern classes to

increase functionality instead of modularizing new features by creating new classes for

functionality unrelated to the pattern. The result is an increase in TEEG counts for the pattern

classes.

Overall, Persistent grime shows less significant growth in all of the software studied

(only PEEG in Apache Tomcat and PEAG in Dr. Java show linear growth over time). One

possible explanation is that developers tend to avoid modifications that cause classes to be

strongly coupled. The motivation is to avoid highly coupled groups of classes because the

relationships can become complex and difficult to comprehend, making maintenance more

time consuming. In this case, developers augment classes by expanding or adding methods,

which in turn increases temporary and not persistent coupling.

One notable result is that PIG and TIG show no linear relationship with time in any of

the systems studied. This is an indication that internal grime is not an issue. One explanation

is that the number of candidate internal grime relationships is limited. Candidate refers to a

currently non-existing relationship that would contribute to modular grime if created. As an

example, a pattern that consists of three classes already coupled in a specific way (as defined

by the pattern definition) can only become more highly coupled in a limited number of ways.

There are very few possible candidate internal grime relationships, making the odds of

82

encountering one less likely than some other external grime relationships. The result is an

insignificant buildup of internal grime.

6.2.2 Apache Tomcat

Some of the pattern realizations studied showed no changes during the entire study

period. The Singleton, Adapter, and Façade patterns were stable in the sense that grime

counts were invariant. This does not mean the classes went unmodified; their coupling with

their environment and each other, as defined in section 3.2, was not altered. Intuitively this

limits the types of changes that may occur because changes to attributes and method

signatures would have an effect on grime counts if they are not compliant with the RBML.

We can speculate that any changes made to the Singleton, Adapter, and Façade classes were

minimal or their grime buildup was not harmful (i.e. the queries did not count it). In other

terms, the change proneness of the pattern classes was low. This conclusion confirms

previous research [25] and agrees with the intuition that design pattern classes should be less

change prone that other classes because they have a clearly defined function that is

unchanging [12].

Analysis of the Singleton, Adapter, and Façade patterns reveals a common

characteristic; all of the pattern realizations studied were generally one class patterns,

meaning they are usually realized with only one class. A pattern realization that contains

fewer classes is statistically less likely to be changed because there are fewer classes to

change.

The Factory and Observer pattern results account for the majority of the variance.

Each shows an increase in TEEG counts over the first four releases. Beyond the fourth

83

release, TEEG counts rise slowly but steadily. PEEG increases slowly over the studied time

period for both patterns leading to the significance found in the analysis results. As opposed

to the single class design pattern realizations discussed previously, the Factory and Observer

pattern realizations contain multiple classes and also hold the most influence on the final

results.

In regards to the main focus of this research, the grime counts for each category

behave differently. Two categories (TEEG and PEEG) show significant linear growth over

time in the Apache Tomcat system. The other four categories do not show linear trends in

grime buildup. This result shows that while the aggregated modular grime count

demonstrates significant buildup, it is mostly due to increases in the grime count of specific

modular grime categories in the Apache Tomcat software.

While speculating as to why only TEEG and PEEG show significant increases, it may

be pertinent to ask, what do they have in common? They both share an efferent coupling

direction while they differ due to coupling strength. Specifically, TEEG and PEEG buildup

originates in the pattern classes and not in the surrounding environment. This is

counterintuitive to the idea that design pattern classes should be less change prone.

Furthermore, this result implies that grime buildup occurs due to changes in pattern classes

and the changes occur throughout the class in the form of changes to the state (attributes) and

behavior (methods) of the class. Changes to the state and behavior of design pattern classes

are likely the result of added functionality in addition to the known functions of the pattern.

 6.2.3 Dr. Java

84

The grime data varies greatly by design pattern for the versions of Dr. Java in this

study. Although the graphs for Apache Tomcat show general trends in the raw data easily

identified without complex analysis, Dr. Java is much different. At different points in time,

some patterns show increases in grime, while other patterns show decreases (e.g. the

Observer and Factory patterns between May and October 2008). These inconsistencies have

a cancelling effect on each other for the data of most interest, aggregate grime counts for all

design patterns. This observation once again raises questions about grime buildup in different

design patterns.

There are some common trends that should be noted in the data for different design

patterns. The Iterator, Visitor, Factory, and State pattern data all show consistent increases in

TEEG counts. These patterns are likely responsible for the analysis results which show the

linear relationship between TEEG counts and time. The data for the Observer and Singleton

pattern realizations is less consistent. Each shows decreases in TEEG counts during some

releases, but a net increase in TEEG counts overall.

The data for PEEG best shows the unpredictable differences between design patterns.

All patterns besides the Factory and State patterns show erratic increases and decreases over

the development cycle. The only conclusion to draw from this is that there is no discernable

growth pattern for PEEG buildup in Dr. Java. This is backed up by the aggregate data and

analysis results. Similar conclusions can be made about the data for TEAG.

6.2.4 Apache Derby

The data for many of the grime types (PEEG, PEAG, PIG, and TIG) is mostly

unchanging. The only noticeable change occurs for PEEG counts in the Factory pattern from

85

August 2005 to November 2005 where there is a large increase in counts which then subsides

in the next release. One explanation is that a large modification was made to factory classes

(possibly to add functionality unrelated to the pattern‘s purpose) during this span; developers

may have refactored the factory classes in subsequent releases to cause the decreases in

counts. In general, the data for PEEG, PEAG, PIG, and TIG are uninteresting.

The data and analysis show significant increases in both TEEG and TEAG. Both

types of grime share one common characteristic: temporary coupling strength. Increases in

temporary coupling for pattern classes, as well as the external classes coupled to the patterns,

will cause this result. This may reflect a development trend where developers modify and

add methods when adding functionality. The result is less persistent and more temporary

coupling between classes. This effect was also observed in Apache Tomcat.

86

7. THREATS TO VALIDITY

Construct validity refers to the use of metrics and measures that meaningfully

measure and capture the intended phenomenon. The code queries used to gather data were

generated specifically to measure grime according to the formal definitions in the taxonomy,

minimizing the threats to construct validity. One possible threat occurs during the checking

of conformance of the grime candidate relationships to their corresponding RBML diagrams.

The conformance check was done manually, due to the lack of automated tools, and human

error is always a possibility.

To have content validity, the measures must completely represent the notions of

modular grime coupling counts. The grime definitions proposed in this study could be

subdivided further into specific coupling counts that could capture grime definitions at finer

granularity levels; however these definitions would also fall under our higher level

definitions and not threaten the content of our representation.

Internal validity refers to the causal connection between dependent and independent

variables. In this case study there are 6 dependent variables —TEEG, PEEG, TEAG, PEAG,

PIG, and TIG and one dependent variable, time. Our analysis provides evidence for a linear

relationship between some of the modular grime types (mainly TEEG) and time, but no

causal relationship can be inferred because of the experimental methodology.

External validity indicates that the study results can generalize to other systems. The

criteria for software selection in this study represent a threat to external validity. Only open

source systems with readily available source code for several releases and evidence for the

87

existence of design patterns were chosen. Because this is a case study on 3 open source

systems, generalization of the results to commercial or other open source software systems

cannot be done. Repeated experimentation and increased sample size is necessary to

eliminate the threats to external validity.

88

8. CONCLUSION AND FUTURE RESEARCH

Software decay is the study of changes in software over time that cause decreases in

maintainability. Research on decay has progressed slowly over the last thirty years. More

recently, the appearance of object oriented design patterns has lead to research questions

about the decay of these micro-architectures within the software. Seminal research by

Izurieta [39] uncovered the existence of modular grime, a type of design pattern decay. These

results motivated this research to further explore the phenomenon of modular grime.

In this thesis we presented a taxonomy of modular grime based on three common

characteristics of relationships: strength, scope, and direction. We also conducted empirical

research to determine whether each grime type increased linearly over time in 3 open source

software systems.

The results show that one type of modular grime, TEEG, has a statistically significant

linear relationship with time in all systems studied. This confirms earlier results that found

modular grime build up, but it also shows that one specific type of modular grime build up

may be more prevalent.

The effects of TEEG buildup over time on other factors like system maintainability

and developer effort are unknown. Future empirical research should study this in order to

determine the tangible effects of TEEG buildup. Additional empirical research is also

necessary to confirm the results of this study.

 Some results revealed significant buildup of other modular grime categories such as

PEAG, TEAG, and PEEG. These results were inconsistent between systems and warrant

89

further investigation in other software systems, including commercial systems. The

insignificance of results for internal grime (TIG and PIG) should be confirmed in future

research as well.

Although we aggregated grime counts during our hypothesis testing, the results were

presented by individual design pattern. Although individual differences between design

patterns were found, no generalizations can be made about differences in similar patterns

across systems. It is possible that modular grime affects each design pattern differently. This

research question remains open.

90

REFERENCES CITED

91

[1] S. Ali, and O. Maqbool, “Monitoring software evolution using multiple types of changes,” Int.

Conf. Emerg. Technol., pp. 410-415, October 2009.

[2] G. Antoniol, R. Fiutem, and L. Christoforetti, “Design pattern recovery in object-oriented
software,” Proc. Program Comprehension Workshop, pp. 153-160, June 1998.

[3] Apache Derby. http://db.apache.org/derby/

[4] Apache Software Foundation. http://www.apache.org/

[5] Apache Tomcat. http://tomcat.apache.org/

[6] Apache Web Server. http://httpd.apache.org/

[7] F. Arcelli, S. Masiero, C. Raibulet, and F. Tisato, “A comparison of reverse engineering tools
based on design pattern decomposition,” Proc. Australian Softw. Eng. Conf., pp. 262-269, Mar.
2005.

[8] V.R. Basili, L.C. Briand, and W.L. Melo, “A validation of object-oriented design metrics as

quality indicators,” IEEE Trans. Softw. Eng., Vol. 22, pp. 751, Oct. 1996.

[9] V. Basili, et al, “Understanding and predicting the process of software maintenance releases,”
Proceedings of the 18th International Conference on Software Engineering, pp. 464-474, March
1996.

[10] L.A. Belady, and M.M. Lehman, “Characteristics of Large Systems,” Proc. Conf. Research
Directions in Software Technology, pp 106-142, 1978.

[11] J. Bieman, D. Jain, and H. Yang, “OO design patterns, design structure, and program changes:
an industrial case study,” IEEE Int. Conf. Softw. Maint., pp. 580-591, Nov. 2001.

[12] J. Bieman, et al, “Design patterns and change proneness: an examination of five evolving
systems,” Proceedings. Ninth International Software Metrics Symposium, pp. 40-49, Sept.
2003.

[13] B. Boehm, “The changing nature of software evolution,” IEEE Software, Vol. 27, pp. 26-28, Aug.
2010.

[14] L.C. Briand, J.W. Daly, and J.K. Wust, “A unified framework for coupling measurement in
object-oriented systems,” IEEE. Trans. Software. Eng., Vol. 25, pp. 91-121, Jan. 1999.

[15] L. Briand, P. Devanbu, and W. Melo, “An investigation into coupling measures for c++,”, Proc.
Intl. Conf. Softw. Eng., pp. 412-421, May 1997.

[16] Browse-by-Query. http://browsebyquery.sourceforge.net/

[17] S.R. Chidamber, and C.F. Kemerer, “A metric suite for object-oriented design,” IEEE Trans.
Softw. Eng., Vol. 20, pp. 476-493, June 1994.

http://db.apache.org/derby/
http://www.apache.org/
http://tomcat.apache.org/
http://httpd.apache.org/
http://browsebyquery.sourceforge.net/

92

[18] C.K.S. Chong Hok Yuen, “On analytic maintenance process data at the global and the detailed

levels: A case study,” Conf. on Software Maint. Proc., pp 248-255, 1988.

[19] S. Cook, J. He, and R. Harrison, “Dynamic and static views of software evolution,” IEEE Int.
Conf. Softw. Maint. ICSM, pp 592-601, Nov. 2001.

[20] C. Cook, and A. Roesch, “Real-time software metrics,” Journal of Systems and Software, Vol.
24, pp. 223-237, March 1994.

[21] K. Dae-kyoo, and L. Lu, “Inference of design pattern instances in UML models via logic
programming,” Proc. IEEE Int. Conf. Eng. Complex Comput. Syst., pp. 47-56, Aug. 2006.

[22] K. Dae-kyoo, and W. Shen, “An approach to evaluating structural pattern conformance of UML
models,” Proc. ACM Symp. Appl. Computing, pp. 1404-1408, March 2007.

[23] M. Dagpinar and J. Jahnke, “Predicting maintainability with object-oriented metrics – an
empirical comparison,” Rev. Eng. Working Conf. Proc., pp. 155-164, Nov. 2003.

[24] Design Pattern Finder. http://designpatternfinder.codeplex.com/

[25] M. Di Penta, L. Cerulo, Y. Gueheneuc, and G. Antoniol, “An empirical study of the relationships
between design pattern roles and class change proneness,” IEEE Int. Conf. Softw. Maint., pp.
217-226, Sept. 2008.

[26] Dr. Java. http://drjava.org/

[27] Eclipse. http://www.eclipse.org/

[28] S. Eick, et al, “Does code decay? Assessing the evidence from change management data,” IEEE
Trans. Software Eng., Vol. 27, pp. 1-12, Jan. 2001.

[29] R.B. France, D.K. Kim, E. Song, and S. Ghosh, “A UML-Based Pattern Specification Technique,”
IEEE. Trans. Software. Eng., Vol. 30, pp. 193-206, March 2004.

[30] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reuseable
Object-Oriented Software, Addison Wesley, 1994.

[31] GNU GPL. http://www.gnu.org/licenses/gpl.html

[32] M. Godfrey, and D. German, “The past, present, and future of software evolution,” IEEE
International Conference on Software Maintenance, pp. 129-138, Sept. 2008.

[33] M. Godfrey, and Q. Tu, “Growth, evolution, and structural change in open source software,”
Int. Workshop Princ. Softw. Evol., pp. 103-106, Sept. 2001.

[34] Y.G. Gueheneuc and G. Antoniol, “DeMIMA: a multi-layered framework for design pattern
identification,” IEEE. Trans. Software. Eng., Vol. 34, pp. 667-684, Sept. 2008.

[35] J. Gustafsson, J. Paakki, L. Nenonen, and A. Verkamo, “Architecture-centric software evolution
by software metrics and design patterns,” Proceedings of the Sixth European Conference on
Software Maintenance and Reengineering, pp. 108-115, March 2002.

http://designpatternfinder.codeplex.com/
http://drjava.org/
http://www.eclipse.org/
http://www.gnu.org/licenses/gpl.html

93

[36] Halstead’s Complexity Measures. http://en.wikipedia.org/wiki/Halstead_complexity_measures

[37] I. Herraiz, et al, “Comparison between SLOCs and number of files as size metrics for software
evolution analysis,” Proc. Eur. Conf. Software Maint. Reeng., pp. 206-213, March 2006.

[38] M. Hitz and B. Montazeri, “Measuring product attributes of object-oriented systems,” Proc.
European Software Eng. Conf., pp. 124-136, Sept. 1995.

[39] C. Izurieta, “Decay and Grime Buildup in Evolving Object Oriented Design Patterns,” Ph. D.
Dissertation, Dept. Comp. Sci., Fort Collins, CO, Colorado State University, 2009.

[40] C. Izurieta, and J. Bieman, “The evolution of FreeBSD and Linux,” Proc. ACM-IEEE Int. Symp.
Empir. Softw. Eng., pp. 204-211, Sept. 2006.

[41] C. Izurieta, and J. Bieman, “Testing Consequences of Grime Buildup in Object Oriented Design
Patterns,” Proc. Int. Conf. Softw. Test., Verif. Validation, pp. 171-179, April 2008.

[42] C. Izurieta, and J. Bieman, “How Software Designs Decay: A Pilot Study of Pattern Evolution,”
Proc. Int. Symp. Empir. Softw. Eng. Meas., pp. 449-451, Sept. 2008.

[43] Java. http://www.java.com/en/

[44] JDBC. http://www.oracle.com/technetwork/java/javase/jdbc/index.html#corespec40

[45] JDepend. http://www.clarkware.com/software/JDepend.html

[46] JHawk. http://www.virtualmachinery.com/jhawkprod.htm

[47] JQuery. http://eclipse-plugins.info/eclipse/plugin_details.jsp?id=368

[48] C. Kemerer, and S. Slaughter, “Empirical approach to studying software evolution,” IEEE Trans.
Software Eng., Vol. 25, pp 493-509, Aug. 1999.

[49] W. Li and S. Henry, “Object-oriented metrics that predict maintainability,” Journal of Systems
and Software, Vol. 23, pp. 111-122, Nov. 1993.

[50] W. Li, J. Talburt, and Y. Chen, “Quantitatively evaluate object oriented software evaluation,”
Proceedings. Technology of Object-Oriented Languages, pp. 362-367, Sept. 1997.

[51] L. Liu, “EVOLVE: adaptive specification techniques of object-oriented software evolution,”
Proceedings of the Thirty-First Hawaii International Conference on System Sciences, Vol. 5, pp.
396-405, Jan. 1998.

[52] M.M. Lehman, “Laws of program evolution – rules and tools for program management,” Proc.
Infotech State of the Art Conf., pp. 11/1-11/25, April 1978.

[53] M.M. Lehman, “On understanding laws, evolution, and conservation in the large program life
cycle,” Journal of Systems and Software, vol. 1, pp. 213-231, 1980.

http://en.wikipedia.org/wiki/Halstead_complexity_measures
http://www.java.com/en/
http://www.oracle.com/technetwork/java/javase/jdbc/index.html#corespec40
http://www.clarkware.com/software/JDepend.html
http://www.virtualmachinery.com/jhawkprod.htm
http://eclipse-plugins.info/eclipse/plugin_details.jsp?id=368

94

[54] M.M. Lehman, “Programs, lifecycles, and laws of software evolution,” Proc. IEEE Spec. Iss. on

Softw. Eng., vol. 68, pp. 1060-1076, Sept. 1980.

[55] M.M. Lehman, D.E. Perry, and J.F. Ramil, “On evidence supporting the FEAST hypothesis and
the laws of software evolution,” Int. Software Metrics Symp. Proc., pp 84-88, Nov. 1998.

[56] M.M. Lehman, et al, “Metrics and laws of software evolution – the nineties view,” Int.
Software Metrics Symp. Proc., pp 20-32, Now. 1997.

[57] C.S. Ma, C.K. Chang, and J. Cleland-Huang, “Measuring the intensity of object coupling in c++
programs,” Proc IEEE Comput. Soc. Int. Comput. Software. Appl. Conf., pp. 538-543, October
2001.

[58] T.J. McCabe, “Structured testing: A software testing methodology using the cyclomatic
complexity metric,” Nat. Bur. Stand. Washington, DC, Rep. NBS-SP-500-99, 1982.

[59] G.J. Myers, Composite/Structural Design, New York: Nordstrand Reinhold, 1978.

[60] A.P. Nikora, and J.C. Munson, “Understanding the nature of software evolution,” Proceedings
International Conference on Software Maintenance, pp. 83-93, Sept. 2003.

[61] ObjectAid. http://www.objectaid.com/

[62] M. Ohlsson, A. Mayrhauser, B. McGuire, & C. Wohlin, “Code decay analysis of legacy software
through successive releases,” Proc. IEEE Aerospace Conf., pp. 69-81. March 1999.

[63] D.E. Perry, “Dimensions of software evolution,” Proceedings. International Conference on
Software Maintenance, pp 296-303, Sept. 1994.

[64] L. Prechelt, et al, “A controlled experiment in maintenance comparing design patterns to
simpler solutions,” IEEE Trans. Software Eng., Vol. 27, pp. 1134-1144, Dec. 2001.

[65] J.F. Ramil, and M.M. Lehman, “Metrics of software evolution as effort predictors – a case
study,” Conference on Software Maintenance, pp. 163-172, October 2000.

[66] T. Schanz and C. Izurieta, “Object oriented design pattern decay: a taxonomy,” Proce. ACM-
IEEE Int. Symp. Empir. Softw. Eng. Measur., Sept. 2010.

[67] N. Shi and R.A. Olsson, “Reverse engineering of design patterns from Java source code,” Proc.
IEEE/ACM Int. Conf. Autom. Softw. Eng., pp. 123-132, Sept. 2006.

[68] SourceForge. http://sourceforge.net/

[69] Structured Query Language. http://www.sql.org/

[70] W.M. Turski, “Reference model for smooth growth of software systems,” IEEE Trans. Softw.
Eng., Vol. 22, pp. 599-600, August 1996.

[71] Tyruba. http://tyruba.sourceforge.net/

http://www.objectaid.com/
http://sourceforge.net/
http://www.sql.org/
http://tyruba.sourceforge.net/

95

[72] M. Vokac, “Defect frequency and design patterns: an empirical study of industrial code,” IEEE

Trans. Software Eng., Vol. 30, pp. 904-917, Dec. 2004.

[73] M. Vokac, et al, “A controlled experiment comparing the maintainability of programs designed
with and without design patterns - a replication in a real programming environment,”
Empirical Software Engineering, Vol. 9, pp. 149-195, Sept. 2004.

[74] Vuze. http://www.vuze.com/

[75] H. Zhang, and S. Kim, “Monitoring software quality evolution for defects,” IEEE Software, Vol.
27, pp. 58-64, Aug. 2010.

http://www.vuze.com/

96

APPENDICES

97

APPENDIX A

DYNAMIC CHART DOCUMENTATION

98

This appendix contains the documentation for the current version of the Dynamic

Chart program. It describes the strategy that Dynamic Chart uses to chart data as well as

details on how to use the program.

Introduction

 Dynamic Chart is a program used to display linear combinations of values in real

time. The basic display of a Dynamic Chart is a time series data set. Each point in time

contains the result of some linear combination of values. The user has the ability to change

coefficients in the linear combination using sliders. Each point can be described

mathematically by the following linear equation.

Gt = α1PEAGt + α2PEEGt + α3TEAGt + α4TEEGt

Where Gt represents a singular grime count at time t. PEAGt, PEEGt, TEAGt, and

TEEGt are the actual grime counts for each type of modular grime at time t and α1 through α4

are the linear coefficients that are independent of time. Each point in time has one

corresponding value per group and there exists a Gt for each group at each time t.

File input

99

Data is input using File -> Load. Currently data is loaded only from .csv files. The

format of the input file has a few requirements.

1. The first column contains dates of the form ―MM/DD/YYYY‖

2. The second column contains the name for each time series. This is useful when inputting

several different time series groups.

3. The remaining columns are composed of values for each variable in the linear

combination. The name of the variable is denoted in a header.

Figure 22 shows an example input file. The first column contains dates. The second

column contains the name for each pattern that contains a series of data. In this case there are

several different groups of data taken for the same series of time. The remaining columns are

used for each variable in the linear combination. In this case there is a linear combination of

four variables: PEAG, PEEG, TEAG, and TEEG. When this file is loaded, a data set and

group are created for each name. There is a data set named PEAG in group PEAG and so on.

Other data, such as PIG and TIG, can be added easily in additional columns.

100

The Main Display

Figure 22. A sample input

101

Once a data file is selected, the main display opens. Figure 2 shows the main display.

The parts of the main display, marked by numbers, are each described below.

1. The title for the data collection given by the user during the file input process

2. The X-axis label and legend. The legend is useful in the case when multiple time series‘

are displayed together.

3. The chart tabs. Each tab contains a different chart. The tabs are determined by the

grouping of the data. The title of each tab is a group name and the chart contained within

contains all data sets in the group.

4. The slider panel is where the user can modify the linear combination. There is a slider for

each variable (or column in the input file). Moving the slider modifies the coefficient for that

variable as demonstrated in section 1.

Figure 23. The main display

102

5. The menus give the user more options:

File: The user can save the current chart or load more data.

View: Allows the user to changes tabs

Options: Contains options to modify the data and the data groupings. These are

discussed in section 5 titled additional functionality.

File Output

File -> Save allows charts to be saved as image (PNG) files. When this option is

selected the current visible chart is saved.

Additional Functionality

The options menu contains some extra functions to modify the data as well as to

modify the way data is displayed. There are two options: ―Modify data‖ and ―Modify chart

groupings‖. ―Modify data‖ allows the user to modify the underlying input data while

―Modify chart groupings‖ allows the user to modify how the data sets are grouped and

therefore how charts are composed (i.e. which data sets are displayed together). Each

function is demonstrated next. For examples, the original test data display is shown in figure

24.

103

Modify Data

When the user wishes to modify the data, the following screen is displayed:

Figure 24. A typical chart display

104

All current data sets are displayed in the selection box. The user may select any

number of them and perform the following operations.

1. Aggregate: this aggregates the values for multiple data sets by date. For each date

in the data sets, the values of each variable are added together. As an example, if the user

wants to aggregate the Singleton (S) data and the Factory (F) data into a new data set (F, S),

this can be shown mathematically as follows, where the subscript t represents a single date.

G(S)t = α1PEAG(S)t + α2PEEG(S)t + α3TEAG(S)t + α4TEEG(S)t ; G(S)t represents the

Singleton data

G(F)t = α1PEAG(F)t + α2PEEG(F)t + α3TEAG(F)t + α4TEEG(F)t ; G(F)t represents the

Factory data

Figure 25. The Modify Data display

105

G(F, S)t = α1[PEAG(F)t+PEAG(F)t] + α2[PEEG(F)t+PEEG(F)t] + α3[TEAG(F)t+TEAG(F)t] +

α4[TEEG(F)t+TEEG(F)t]

The sets that were aggregated continue to exist after this operation. NOTE: Each data

set chosen must contain the same series of dates, otherwise an error occurs.

Figure 26 shows the results of the preceding aggregation after application to the test

data shown in figure 24. A new data set titled ―Singleton/Factory‖ is included in the chart.

2. Aggregate w/ Delete: The same as aggregate, but the original data sets are deleted

after aggregation.

3. Delete: Removes a data set from the data collection

4. Set Extension: This sets a predictive extension for the data set(s). An extension is

defined by an extra number or marks (# of extra observations to predict) and a spacing

amount (# of months in between each extra mark). The program fits several different

Figure 26. Test data after aggregating Singleton and Factory

106

regressions to the existing data. The most accurate one is used to predict the extra data points

(also called marks), which are then displayed along with the original data. Figure 27 shows

an extension of the ―Factory/Singleton‖ data from figure 24. Two extra data points were

predicted, each separated by 2 months, resulting in a new data points in April and June 2010.

Modify Chart Groupings

When the user chooses to modify how different data sets are displayed together, the

following menu appears.

Figure 27. Test data after extension.

107

The selection box contains the group names for the charts. Each one corresponds to a

tab in the main display. Since there may be multiple data sets in a group (i.e. displayed

together on one chart), these choices can differ from those in the ―modify data‖ display. In

this example, the Singleton data group actually contains two data sets: Singleton and

Singleton/Factory, which was created earlier through aggregation. There are two types of

operations in this display:

1. Split Charts: Splits a group(s) by allowing the user to extract data sets from

existing groups and put them into a new group. When multiple groups are selected the user

can extract data sets from each and form a new group.

Figure 28. The modify chart groupings display

108

Extending the ongoing example, the user may wish to put the Singleton/Factory data

set in its own chart. After selecting the Singleton data group and choosing ―Split charts‖, the

following display is shown:

After selecting Singleton/Factory and clicking ―Extract charts‖, the user is prompted

for a new group name. The result of this action is shown in figure 29. Singleton/Factory is

now displayed alone in a group named ―New chart‖ while the Singleton group now contains

only the Singleton data.

Figure 29. A window displaying the members of a data group

109

2. Merge Charts: Merges the selected groups by taking each data set in the groups

and combining them into one new group as selected by the user. It provides a convenient way

to compare different data sets.

The user may wish to now group the Singleton/Factory data in the group ―New chart‖

with the Factory data. By selecting ―Modify Chart Grouping‖ from the menu, the user can

now select the groups of interest and click the ―Merge charts‖ button shown in figure 28. The

resulting group, with the name ―Factory and Singleton/Factory‖ is shown in figure 31.

Figure 30. The results of splitting a data group

110

Figure 31. The results of merging two groups.

111

APPENDIX B

RBML CONFORMANCE CHECKER DOCUMENTATION

112

This appendix contains a summary of a new and unfinished tool used to check the

conformance of a candidate design pattern to an RBML diagram. Automatic checking of

design pattern conformance to an RBML diagram is more time efficient and less error prone

than manual checking. The tool is an Eclipse plug-in which implements the RBML

conformance checking algorithm given in [22].

Input

The RBML conformance checker takes as input an RBML diagram along with a

UML class diagram. The RBML diagram provides a formal definition of a design pattern. In

the current version, RBML diagrams are hard coded into the software. The UML class

diagram is encoded under the Eclipse Modeling Framework (EMF) UML2.0 specification.

Figure 32 shows an example input.

Figure 32. Eclipse UML input

113

The example shows a candidate Observer pattern realization created for

demonstration purposes. There are two interfaces, Core and CoreListener, which are

candidates for the Observable and Observer roles respectively. There are also concrete

classes that implement the interfaces.

Demonstration

When the user right clicks on the file ChangeListener.uml shown in figure 32, the

menu reveals an option to ―Map Design Patterns‖. This causes the plug-in to attempt a

conformance check between the UML class diagram and all RBML pattern definitions (an

Observer RBML definition for this demonstration). If a conforming pattern is found within

the UML file, the ―Design Pattern View‖ is shown. Figure 33 shows the results of checking

conformance of ChangeListener.uml to the RBML definition for the Observer Pattern.

Figure 33. The Design Pattern View

114

The results from a conformance check are show in a tree view. The root of the tree

displays the pattern name. Each child of the root is a role in the pattern‘s RBML definition.

In this case there are 7 roles that must be fulfilled from ―|ObservableHierarchy‖ to

―|ObserverObservableDep‖. The children of each role are parts in the UML class diagram

that play the corresponding role in the conformance map. For example, the class

―DefaultCore‖ from the UML diagram plays the role of ―|ConcreteObservable‖ in the RBML

pattern definition. The number in parentheses next to each role displays the number of

mappings for said role.

115

APPENDIX C

RBML DIAGRAMS

116

This appendix includes RBML diagrams for each design pattern studied. The

diagrams formally represent pattern definitions and were used to determine conformance of

candidate realizations found in the software studied.

Figure 34. The Adapter Pattern

117

Figure 36. The Façade Pattern

Figure 35. The Builder Pattern

118

Figure 38. The Iterator Pattern

Figure 37. The Factory Pattern

119

Figure 40. The Singleton Pattern

Figure 39. The Observer Pattern

120

Figure 42. The Strategy Pattern

Figure 41. The State Pattern

121

Figure 43. The Visitor Pattern

