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ABSTRACT

Due to the complexity of performing inference in probabilistic graphical models, both
diagnostics and prognostics are computationally expensive tasks which are vital to a number
of industries. To combat this issue, approximate methods have been proposed for estimating
posterior distributions during the inference procedure. The majority of these approaches
directly approximate the calculation of the distribution. For large networks this is still a
daunting task, even if only due to the storage requirements necessary in working on a large
distribution. Instead, a method for approximating and simplifying the representation of the
network is proposed.

A framework for performing efficient inference through model approximation in Bayesian
and dynamic Bayesian networks is proposed with applications for diagnosis and prognosis in
real systems. Model approximation is performed by the removal of arcs within the proba-
bilistic graphical models. Due to the changes in the independence relationships and possible
diffusion of context, the model must be updated with the introduction of hidden variables,
dynamic parameter adjustment, and reinsertion of arcs. These controlled modifications will
ensure both a simplification of the network and a bound on the classification error and
divergence of the resulting network with the original while performing inference.
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PROBLEM STATEMENT

Beyond standard classification tasks, probabilistic graphical models are frequently used

in performing diagnostics and prognostics for complex systems. Especially in the fields of

aviation and many others, proper diagnosis and prognosis of equipment is vital for both safety

and financial concerns. Effective diagnosis is also a considerable concern in medical fields.

Unfortunately, probabilistic graphical models used to perform these tasks are frequently

extremely large and complex. Given the difficulty of performing exact inference in such a

model, it is often necessary to use approximate techniques to perform queries. Additionally,

depending on resources, it may not be feasible to store an exceptionally large network with

large conditional probability tables representing distributions.

Further problems are encountered specifically in relation to performing prognostics.

Compared to diagnostics, the field of prognostics is quite young, in part due to the diffi-

culty of accurately predicting future failures and the remaining useful life of parts, especially

in the presence of uncertainty [1, 2]. Recent publications in this area are still establishing ap-

propriate metrics and tools to compare the performance of differing algorithms [3, 4, 5]. The

usual alternative to data-based approaches to prognostics are mathematical models which

attempt to accurately describe the physics of the system. While accurate, these systems can

be exceptionally complex [6].

The primary motivation for this proposal is based on work performed by Cooper [7]. By

using a reduction from 3SAT, it was shown that performing inference in a Bayesian network

is an NP-hard problem. Especially important in the realm of diagnostics and prognostics,
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it was also shown that in a constrained network structure (specifically a bipartite network)

inference is still an NP-hard problem. Furthermore, the inference task is NP-hard even with

a bipartite network where the conditional probability distributions are represented by a noisy

OR-gate. Therefore, performing diagnostics and prognostics in a large system requires the

use of specialized or approximation algorithms.
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BACKGROUND WORK

Bayesian Networks

Bayesian networks are an implementation of a probabilistic graphical model which takes

the form of a directed, acyclic graph [8, 9, 10, 11, 12]. This graph is used to represent a joint

probability distribution over a set of variables. To represent this distribution compactly, first

consider a set of variables X = {X1, . . . , Xn} and a joint probability distribution given by

P (X) = P (X1 . . . , Xn).

Definition 1 Given a joint probability distribution over a set of variables {X1, . . . , Xn},

the product rule provides a factoring of the joint probability distribution by the following

P (X1, . . . , Xn) = P(X1)
n∏

i=2

P (Xi | X1, . . . , Xi−1) .

While this adequately describes the joint probability distribution, there is an issue in that

each “factor” of the network is represented by a conditional probability table whose size

is exponential in the number of variables. However, exploiting conditional independence

properties allows the Bayesian network formulation to reduce the complexity of the repre-

sentation.

Definition 2 A variable Xi is conditionally independent of variable Xj given Xk if

P (Xi, Xj | Xk) = P (Xi | Xk) P (Xj | Xk) .

Using these definitions, the joint probability can be represented more compactly by

calculating the distribution by the set of conditional independence relations. In particular,
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the Bayesian network is able to encapsulate this representation by creating a node in the

graph for every variable in X. For any two nodes, or variables, in the network given by

Xi and Xj, Xj is referred to as a parent of Xi if there is an arc from Xj to Xi. Based on

this, the function Parent (Xi) is defined to be equal to the set of nodes with arcs leading

into Xi. Associated with every variable Xi is a conditional probability distribution which

can be denoted by P (Xi | Parents (Xi)). From this, the parameters of the network Θ

define P (Xi | Parents (Xi)). Based upon this representation, a simplification of the joint

probability distribution can be performed as

P (X1, . . . , Xn) =
∏
Xi∈X

P (Xi | Parents (Xi)) .

As a small example, consider a joint distribution given by P (X1, X2, X3, X4, X5, X6)

with conditional independence relations which allow it to be factored as

P (X) = P (X1) P (X2) P (X3) P (X4 | X1) P (X5 | X1, X2) P (X6 | X1, X2, X3) .

Figure 1 shows the directed graph which represents this distribution. Assuming binary

variables in the distribution above, the full joint probability in table form would require

26 = 64 entries. However, the Bayesian network representation from the given factorization

only requires 20 + 20 + 20 + 21 + 22 + 23 = 17, a rather substantial reduction.

A variety of different approaches have been made for learning Bayesian networks from

data or for using Bayesian techniques in learning models from data [13, 14, 15]. One of

the classical approaches is based upon a structural expectation-maximization algorithm [16]

which attempts to balance the likelihood of the resulting network with the complexity. This

basic idea is prevalent in most structure learning methods with the use of scoring metrics,



5

Figure 1. Example Bayesian Network.

of which there are many and most described in the structure learning papers. However,

there are more recent results which use spectral decomposition approximate the model score

[17]. Various methods of implementing the search have been attempted, such as genetic

algorithms [18, 19], exact and approximate search over ordered variables [20, 21, 22], online

search [23], and local structure search instead of global search [24, 25]. Additional work has

been performed in analyzing the sample complexity of learning networks [26].

Diagnostic Bayesian Networks

One specialized form of Bayesian networks used as a classifier for performing fault diag-

nosis is the diagnostic network [27, 28, 29, 30, 31, 32]. The diagnostic network consists of two

different types of nodes: class (i.e., diagnosis) and attribute (i.e., test) nodes. During the

diagnosis procedure, every test performed is an indicator for a possible set of faults which

are indicated as parents of the test. For a small example, consider a test of the state of a

light bulb with the results of on or off. With no other information, this potentially indicates

a variety of potential problems such as a broken filament or damaged wiring. Based on

this, every test node in the network will have a set of diagnosis nodes as parents. Like the
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(a) Bipartite Diagnostic Network

t1 t2 t3 t4
d1 1 1 0 0
d2 0 1 1 0
d3 0 0 1 0
d4 0 0 1 1

(b) D-Matrix

Figure 2. Example diagnostic Bayesian network.

Bayesian network it is based upon, every node in the network has an associated conditional

probability distribution. More specifically, the distribution of a diagnosis node is represen-

tative of some probability of failure. The distribution of a test node is representative of the

outcomes of the test given the parent failures.

Based on the previous formulation, creating a network from diagnosis and test nodes

results in a bipartite Bayesian network. Due to this structure, it is possible to represent

the structure of a network with a specialized adjacency matrix referred to as a D-Matrix.

Consider a diagnostic network with the set of diagnoses D = {d1, . . . , dn} and the set of

tests T = {t1, . . . , tm}. Using the simplest interpretation, every row of the D-Matrix corre-

sponds to a diagnosis from D whereas each column corresponds to a test from T. From this

construction, the following definition is derived.

Definition 3 A D-Matrix M is an n×m matrix where every entry mi,j contains a binary

value 0 or 1. Each entry of 1 indicates that di is a parent of tj while each entry of 0 indicates

that di is not a parent of tj.
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Figure 2 provides an example diagnostic Bayesian network with four classes and four

attributes labeled d1, d2, d3, d4 and t1, t2, t3, t4 respectively. The figure also contains the

corresponding D-Matrix for this network.

Variable Representation

Beyond the standard representation of discrete states and conditional probability tables,

many other formulations of both variables and distributions have been used in Bayesian

networks.

Continuous Variables

One classical approach to handling continuous variables within a Bayesian network relies

on transforming the variables into discrete variables [33]. The methods used for this vary

dramatically in complexity. A very simple method creates bins where the values are sorted

into k bins where the number of values in each bin is equal, or as close to equal as possible.

More complex techniques use top-down and bottom-up decision tree techniques based on

information gain and merging based upon the χ2 test. Another technique was created to

work in concert with structure learning to minimize a description length which includes

the discretization bins [34]. Working with continuous variables directly frequently involves

using a Gaussian distribution, or a mixture of Gaussians, in order to represent the variable

[35, 36, 37].
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Noisy OR-gate

Briefly mentioned previously, the noisy OR-gate is a common representation for the

conditional probability distribution within diagnostic networks [8, 38, 39, 40, 41]. One reason

for its popularity is that it is simple and effective in those settings due to the disjunctive

interaction. Consider multiple potential faults in a system, each of which are likely to

be indicated by some test. Assume one of those faults is currently active and the test is

indicating there is a problem. If another fault occurs during this time, the test should not

be then less likely to indicate a problem is occurring. With a well-built system, this should

be a valid assumption for most cases. Two assumptions can be used to approximate this

interaction which forms the basis of the noisy OR-gate. The first, accountability, states that

any test will be false if none of its parent faults are active. This is a desirable trait in a

diagnostic setting since that would indicate a false alarm. The second is that anything which

prevents a test from detecting a specific fault does not also prevent that test from detecting

a separate fault. Again, this is desirable, but it is easy to see that events such as power

failures violate this constraint.

Dynamic Bayesian Networks

Dynamic Bayesian networks (DBNs) are an extension of Bayesian networks used for

temporal analysis [42, 43, 44, 45]. Like Bayesian networks, DBNs represent a joint distri-

bution over a set of variables. The set of variables X defined above for Bayesian networks

are now extended to template variables X [t] representing the set of variables X as captured

through time. Due to differing dependency relationships, two separate types of arcs need to
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be defined. Inter-temporal dependency arcs are those which define conditional dependences

among variables at different time intervals which can be defined by the arcs between variables

X [i] and X [j] where i 6= j. In general, it is assumed that arcs are unidirectional in moving

forward through time indicating that for any arc from a variable in X [i] to a variable in

X [i] implies that i ≤ j. In addition to the inter-temporal arcs, there are intra-dependency

arcs which define conditional dependencies among variables X [i] and X [j] where i = j. For

DBNs, the function Parents (Xi [t]) incorporates both inter- and intra- temporal arcs.

Due to these temporal dependencies, the parameters Θ must be expanded such that

Θ [t] = P (X [t] | X [t− 1] , . . . ,X [0]). Generally, the first-order Markov assumption is ap-

plied resulting in Θ [t] = P (X [t] | X [t− 1]). Another assumption generally applied is that

the distribution is stationary. In other words, the variables in the set Parents (Xi [t]) are

independent of the specific value t. Also, the parameters Θ [t] = P (Xi [t] | Parents (Xi [t]))

are also independent of the specific value t. With the assumption that the time series begins

with t = 0, there is a caveat to the previous rule since marginal and conditional probabilities

for the variables are necessary to define the initial distribution at t = 0 where no temporal

arcs to a previous time-step exist.

Using these assumptions, a DBN can be defined by providing the node, arc, and param-

eter definitions defining the distributions at t = 0 and t 6= 0. Using a DBN then requires

“unrolling” the network to the highest time slice required. This “unrolling” creates indi-

vidual nodes for each variable at every time slice and adds in the appropriate arcs defined

previously. In effect, this creates a flat Bayesian network over which standard querying and

inference techniques can be applied.
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Inference and Simplification

The general problem of inference concerns a given query P (Y | Z) wherein a posterior

distribution must be calculated over the variables in Y with respect to evidence given for

the variables in Z. Approaches to solving this problem can attempt to use either exact

[46, 47, 48, 49] or approximate inference [8, 50, 51, 52, 53, 54]. As mentioned before, however,

performing exact inference is an NP-hard problem. Thus, especially for large diagnostic

networks such as the QMR database, exact inference is intractable.

While attempting to perform model simplification, a primary goal is to reduce the ef-

fective computation requirement of performing exact inference so that an exact method can

be run over an approximate model. Consider the two exact inference algorithms Lauritzen-

Spiegelhalter and Hugin [46, 48]. Both of these methods perform exact inference by creating

a junction tree where each node contains a subset of the variables within the original network.

A requirement is imposed such that if a variable is located within two different nodes, then

it must be in every other node on the path between the nodes. This tree is created by first

moralizing graph by adding edges connecting the parents of any node ti ∈ T. Afterwards,

the resulting graph is triangulated by adding edges between a pair of variables where those

variables define a chord, or minimal loop, of four or more variables, which is a computa-

tionally difficult problem to perform optimally. With a triangulated graph, it then becomes

possible to easily determine the cliques and decompose the result into a tree where the nodes

represent cliques within the graph where computational complexity is based upon the size

of the largest cliques (or tree-width). Therefore, in order to reduce the complexity of the
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simplified system, it must be shown that the resulting network will have a small tree-width

than the original network.
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RELATED WORK

Model Approximation

In contrast to performing approximate inference over a Bayesian network, varying meth-

ods for approximating the network while allowing for exact inference have been attempted.

One of the earlier attempts at performing model approximation by edge, or arc, deletion was

proposed by van Engelen [55]. In this work, arcs were selected for deletion by balancing the

divergence of the networks caused by the arcs with the number of loops the arc is involved

in within the graph generated for inference. Additionally, a requirement was imposed that

limited the set of arcs chosen for deletion such that no two arcs deleted had the same par-

ent. Specifically, this is a requirement in providing a bound on the difference in posterior

distributions. However, the method is not sensitive to the current set of evidence. More

importantly, it is noted by the author that in cases where the probability of the evidence is

low and the arcs in the network represent strong dependencies, the resulting method can fail

to approximate the network adequately. For the purposes of prognostics and diagnostics,

this is a sizable problem since diagnostic networks frequently have just such cases. Similarly,

Kjærulff proposed a method of removing weak dependencies [56, 57]. Unlike the previous

method, the weak dependencies selected were those contained in the moralized graph.

A more recent approach attempts to remove arcs based upon the junction tree created

by moralizing and triangulating a Bayesian network prior to performing exact inference

[58]. In doing so, the algorithm is given as input a user-specified upper bound on the
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clique size desired in the triangulated graph. Based on this requirement, induced edges from

moralization as well as the original edges are selected for deletion based upon moral edges

which are unique to a single variable’s parents and which original edge removals allow for the

most removals of moral edges. Since the treewidth of the network is then bounded, inference

can be performed in effectively polynomial time. However, although there is reference to

determining the root mean squared error of the posterior distributions, no mention is made

to setting evidence in the network.

A considerable amount of research in this area has been performed by Choi and Darwiche

[59, 60, 61, 62, 63, 64]. The basis of their work relies on the intuition that, in the presence of

evidence, near-deterministic distributions on nodes provide likely candidates for the removal

of arcs. To do so, however, requires updating the parameters of the nodes such that the near-

deterministic distribution is preserved. Various experiments have been performed in differing

ways to update the parameters, such as with variational methods, as well as splitting nodes

in addition to edge deletions to break loops within the network.

Hidden Variable Discovery

Another method of performing simplification which has not been explored in the previ-

ously mentioned edge deletion literature is that of determining hidden variables within the

network. As an introductory example, a sample was given by Russell, Binder, Koller, and

Kanazawa [65] showing that a network with hidden variables can be more compact than one

without the hidden variables. Unfortunately, in most cases, determining the likelihood of
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network structures in the presence of hidden variables is difficult, resulting in approximations

being developed to improve the rate of learning [66, 67].

Early approaches to learning these hidden variables used a gradient descent approach over

the conditional probability tables [65] or incorporating hidden variables into the structural

EM procedure [68]. A more sophisticated technique is available when performing structure

learning in a Bayesian network with continuous variables [69]. By calculating an ideal parent

for a variable based upon the linear Gaussians, if no suitable potential parent already exists,

a new variable is created which will match that ideal value and be inserted as the parent of

that node.

However, the most relevant method for finding hidden variables, with regards to the

logical closure and transitive reduction process, was developed by Elidan as a structure

guided search [70, 71, 72]. The structurally guided search locates subsets of variables within

the graph which nearly makeup a clique, using the intuition that those areas are likely

candidates for the insertion of a hidden variable, as seen in Figure 3. Once inserted, the

cardinality of the hidden variable is separately calculated by successive combining of states

based upon a likelihood statistic.

Diffusion of Context

One difficulty in performing prognostics is related to the problem of Markovian mod-

els suffering from diffusion of context [73]. This problem is especially relevant to dynamic



15

(a) Network with Hidden Variable
H

(b) Simplest Network Represent-
ing the Same Dependencies

Figure 3. Model Simplification by Hidden Variables.

Bayesian networks since they are a specialized form of a Markov model. Attempts at mit-

igating this problem have been applied to both Markovian models [74, 75] and recurrent

neural networks [76, 77].

Consider a general first-order Markovian model which is defined by a set of states

{s1, . . . , sm}, a transition function, and a probability output function. Additionally, consider

a matrix A defining the transition probabilities where Ai,j is the probability of transitioning

from state i to state j over a single time-step. In terms of the prior variables, let X [t] be

defined as before as the set of all variables X at time t. Then, let X [t]s define the specific

setting of values to all variables. From this, the transition probability of state i to state j is

listed in the matrix as Ai,j = P
(
X [t]j | X [t− 1]i

)
.

By using this matrix, Bengio and Frasconi were able to use a form of the Perron-Frobenius

theorem to prove the susceptibility of Markov models to diffusion of context. If A is a

primitive stochastic matrix, then as t approaches ∞, At approaches the unique stationary
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distribution of the Markov model. In addition, the rate of approach is geometric. To show

that this holds for the Markov model, matrix A must be a primitive stochastic matrix. For

the matrix to be primitive, the matrix must be non-negative and there must exist a positive

integer k such that Ak ≥ 0, or Ak
i,j ≥ 0 for all i and j. First, since all entries in A represent

transition probabilities, by definition the values are required to be in the range [0, 1]. The

proof of the second portion is more complex, but it relies on the fact that the matrix A

will be irreducible, and therefore, for every pair of indexes, there exists some k such that

Ak
i,j ≥ 0. Finally, a matrix is considered to be row stochastic if

m∑
j=1

Ai,j = 1 ∀i ∈ [1,m]

Again, by the definition of probabilities, this is required to be true as the sum of probabilities

from one state to all other states must be equal to one.

Now consider a current state vector and the transition matrix. The resulting state

distribution is dependent on successive multiplications of the transition matrix, given by Ak.

Given the prior theorem, the state distribution moves toward the stationary distribution at

a geometric rate, losing the information of the current state vector. This is a significant

problem when attempting to perform prognostics in the presence of evidence and prior

history. As can be seen in the preliminary results, it is also possible that this phenomenon

can occur with a specialized form of diagnostic networks. It remains to be determined if the

same result will apply to generalized networks simplified by the proposed method.
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EXPERIMENTAL DESIGN

Model Simplification

For diagnostic networks, one preliminary method explored for performing model sim-

plification involves the procedure of logical closure and transitive reduction. As is shown,

however, this method by itself is insufficient for providing bounded error when performing

simplification on general diagnostic Bayesian networks. Due to this issue, after performing

the simplification by logical closure and transitive reduction, additional steps must be taken

to correct the model, especially in the presence of evidence.

Logical Closure

Consider a deterministic diagnostic network with a set of tests T and a set of diagnoses

D. With a deterministic network wherein a fault has occurred, the probability distribution

on the test nodes which are children of that fault, or diagnosis, require that the test must be

active. Let ti be a test with parent diagnoses di and let aj be a test with parent diagnoses

dj. Furthermore, assume di ⊆ dj and a current fault dx ∈ di. From the previous definition,

dx is a parent of ai, and therefore, ai must be active. Additionally, since dx ∈ di and di ⊆ dj,

dx is also a parent of aj. Thus, it must also be true that aj must be active. Alternatively,

consider the process of diagnosis with the test ai having been performed, resulting in an

positive indication of a fault. This indicates a diagnosis dx in its parent set which is a subset

of the parents of aj. Therefore, aj must also indicate a fault. Based on this insight, an arc

can be added from ai to aj as a potential fault result on ai informs aj.
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Transitive Reduction

Following the logical closure procedure, transitive reduction simplifies the network by

removing the transitive links from the network [78]. Specifically, consider any three nodes

in the network Xi, Xj, Xk drawn from X which includes both the diagnosis and test nodes.

Transitive reduction proceeds by deleting any directed arc Xi → Xk where there exists arcs

Xi → Xj → Xk. In a deterministic network, the resulting simplified network will provide

the same classifications as the original network in any valid setting of evidence. This directly

follows from the logical closure formulation from above.

However, for non-deterministic networks, without some correction factor, the simplified

network will not have the same posterior distribution as the original network under evidence.

This is due to the change in the independence relationships within the graph. Correcting for

this problem will come in three separate methods: hidden variable introduction, dynamic

parameter adjustment, and arc reinsertion.

Model Correction

The two primary methods intended to be used for correcting the posterior distribution of

the network are hidden variable introduction and dynamic parameter adjustment. Consider

two variables ti and tj where, prior to simplification, the parents of ti were a subset of tj.

In this case, during the normal procedure of moralizing and triangulating the graph for

performing exact inference, the parents of ti as well as the nodes ti and tj form a near-clique.

Based on principles from Elidan’s prior work, this becomes a likely candidate for the insertion

of a hidden variable. However, an additional ordering will be imposed such that variables
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which are likely to suffer from diffusion of context, as seen in the preliminary results, will

have priority for the insertion of a hidden variable in order to mitigate the geometric rate of

loss of information.

Following this procedure, techniques developed in calculating error-bars during inference

will be applied in attempt to isolate queries which have a high probability of large error [79].

Based upon these values, the parameters of the variables within the query will be updated

to improve the final results of the query. In the event that this procedure fails to provide

the desired level of accuracy, arcs deleted from the network previously will be reintroduced

to the network which is followed by additional parameter adjustments.

Data Sets

In testing the complete system, a combination of real world and synthetic data sets

will be used. For the real world data, a selection of problems will be drawn, such as the

standard ALARM and INSURANCE networks, in order to facilitate comparison with other

edge deletion and approximation algorithm techniques. The synthetic datasets will draw on

prior work in the analysis of creating random networks which have controllable complexity

when performing inference [80, 81, 82, 83]. Prior work performed by Elidan also provides

a method for learning Bayesian networks from data with a bounded treewidth [84]. Such a

technique will allow for similar testing on the real world data as that which will be performed

with the synthetic data.
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Schedule

The following is a work schedule for progressing on the thesis. All models and proofs

will be verified over multiple variable and parameter representations: multinomial, discrete,

continuous, and noisy OR-gates as some examples.

1. Computational Complexity Reduction Proof

First, a formal proof must be developed which shows that performing logical closure

and transitive reduction will result in a network that, assuming optimal triangulation,

will have a smaller tree-width. It can easily be shown that the resulting parent set of

the test variables in the simplified network is less than the parent set in the original

network. It remains to be proven that a triangulation of the moralized graph will

guarantee a lower tree-width.

2. Generalized Logical Closure and Generalized Transitive Reduction

After developing the formal proof, a generalized implementation of the base simpli-

fication procedure is necessary which will be able to handle diagnostic and standard

Bayesian networks. Doing so will require a deeper analysis of the network and param-

eters than what was performed in the preliminary experiments. Since not all networks

follow the same rigid formulation which was used in the initial experiments, performing

the simplification must ensure that correct state interpretations are used for determin-

ing test implications. To do so requires an analysis of the conditional probability

distribution to identify the states which most strongly indicate parent states.
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3. Develop Generalized Bayesian Network Inference Engine

Due to the nature of the research, a functional inference engine must be developed

incorporating both exact inference and approximate inference algorithms in order to

test the efficacy of the simplification procedure.

4. Transitive Reduction and Diffusion of Context in Subgraphs Proof

Briefly mentioned earlier, and elaborated upon slightly in the preliminary results, given

specific forms of a diagnostic Bayesian network, it is possible to show that the result-

ing simplified network suffers from the issue of diffusion of context when performing

classification. Based upon the subset relationships of the test nodes, a proof of the

conditions under which subgraphs of the network undergo diffusion must be analyzed.

5. Structure Guided Hidden Variable Discovery

Based upon the prior stages, the next task is to introduce hidden variables into the

simplified network. The placement of the variables will be initially selected based

upon near-clique sets of nodes in the triangulated network as well as identified areas

subject to diffusion of context as determined above. After initial placement, structural

refinement will occur to improve the resulting accuracy.

6. Parameter Modification Formulation

Following hidden variable introduction, tests will be performed by querying the network

and determining the error of the query response based upon the methods used in [79].

7. Grouping Analysis of Test Subsets
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The final modification procedure during the diagnostic phase first requires analyzing

groupings of tests to determine subsets of tests that are necessary to obtain higher

classification accuracy. Initial attempts at determining these subsets were performed

in the preliminary results with extracting decision trees from the network for test

selection.

8. Error-Bounding Proof of Posterior Distribution

Finally, a formal error-bounding proof of the posterior distribution must be shown in

the presence of the above modifications.

9. Empirical Analysis of Simplification Procedure

The empirical analysis of the diagnostic system will require testing over a variety of

networks with varying tree-width, both based on real world networks and synthetic

networks. A comparison will be performed with approximate inference methods as

well as other arc deletion model approximations.

The primary goal of the research is covered by the above items. However, future efforts

will expand the results to incorporate prognostics with dynamic Bayesian networks. If the

work is complete within the appropriate time constraints, the following work will be pursued

and incorporated into the dissertation.

10. Dynamic Bayesian Network Structural Simplification

After completion of the analysis for diagnostics, a similar simplification procedure

must be developed for dynamic Bayesian networks. Given the potential size of a fully
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“unrolled” network, the goal of simplification will be to create a smaller flat network

by simplifying the DBN specification instead of attempting to simplify the full network

and learning hidden variables within a network with potentially thousands of nodes

and arcs.

11. Hidden Variable Discovery in Dynamic Bayesian Networks for Long-Term Memory

Given the especially difficult task of performing prognostics, structure and data based

hidden variable discovery will be performed to reduce the impact of diffusion of context.

12. Parameter Modification for Dynamic Bayesian Networks

Similar to the procedure for modifying parameters in the Bayesian network, dynamic

updating of the resulting network will be performed to improve the accuracy of prog-

nostics. In addition to improving accuracy, parameter modification for DBNs can also

work to mitigate diffusion.

13. Error-Bounding Proof and Empirical Analysis of Prognostics Simplification

The final stage of the thesis will be to provide error bounds in the dynamic Bayesian

network and empirically verify the results with a range of test networks.
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PRELIMINARY RESULTS

In preparation for this proposal, some preliminary experiments have been performed

in diagnostic network simplification. For the both of these experiments, random bipartite

networks were made which represented diagnostic Bayesian networks. In their creation,

parents of the test nodes were selected randomly. Additionally, parameters were also selected

randomly where the parameter value given is representative of the false positive and false

negative rate of the given test.

Transitive Reduction Accuracy

In examining the results of performing diagnostic network simplification by logical clo-

sure and transitive reduction, multiple different tests were performed based on connectivity

and parameter range. Another test was performed over networks which give the largest

simplification: serial networks. These serial networks are defined where the parents of some

test ti are the set of diagnoses {dj : ∀j ≤ i}.

In the tables which follow, the columns for the mean, variance, and standard deviation

are calculated by the average number of parents for each test node. It is provided as an

indication of the general complexity of the network. The accuracy columns provide the

network’s accuracy in correctly classifying a single fault provided evidence of its indicator

tests.

As can be seen empirically from the results of these experiments, the degradation in

approximation ability increases with the removal of additional arcs, which is to be expected.
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Original Network Simplified Network
Connectivity Mean Variance St. Dev. Acc. Mean Variance St. Dev. Acc.

0.10 1.740 0.786 0.879 0.911 1.700 0.705 0.825 0.900
0.30 3.450 4.129 2.010 0.969 3.250 3.464 1.839 0.922
0.500 5.650 8.257 2.861 1.000 5.280 6.685 2.578 0.871
0.700 7.860 17.021 4.120 1.000 6.710 9.566 3.088 0.915
0.900 10.470 25.016 4.994 1.000 7.820 11.934 3.443 0.846

Table 1. Results of performing simplification with varying connectivity.

Original Network Simplified Network
Parameters Mean Variance St. Dev. Acc. Mean Variance St. Dev. Acc.

0.00 3.840 4.283 2.058 1.000 3.600 3.235 1.788 0.960
0.20 3.680 4.740 2.162 0.988 3.530 4.197 2.021 0.960
0.40 3.430 3.527 1.865 0.958 3.300 3.063 1.730 0.876
0.60 3.500 3.833 1.930 0.841 3.370 3.222 1.760 0.761
0.80 3.350 4.007 1.989 0.362 3.090 2.737 1.649 0.253

Table 2. Results of performing simplification with varying parameter range.

Original Network Simplified Network
Size Mean Variance St. Dev. Acc. Mean Variance St. Dev. Acc.
5× 5 3.000 2.000 1.414 0.890 1.800 0.160 0.400 0.598

10× 10 5.500 8.250 2.872 0.938 1.900 0.090 0.300 0.202
15× 15 8.000 18.667 4.320 0.909 1.933 0.062 0.249 0.159
20× 20 10.500 33.250 5.766 0.917 1.950 0.048 0.218 0.114

Table 3. Results of performing simplification with serial networks.

Except in the cases of significant reduction in the model complexity, the performance of

the simplified network was comparable, though significantly different than the original net-

work. Another interesting result is in the serial networks. Examining the accuracy values, it

appears the accuracy decreases at a geometric rate. Analyzing the resulting networks, the

cause of this dramatic reduction in accuracy is evident. Consider Figure 4 which shows a

simplified serial network as an example. Reworking the semantics of the network slightly,
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(a) Serial Network (b) Unclosed Serial Network

Figure 4. Result of Logical Closure and Transitive Reduction on a Serial Network.

this simplification can be made to represent a Markovian model as described by Bengio and

Frasconi. Therefore, the issue of diffusion of context will cause a geometric rate of informa-

tion loss, as is shown empirically in the results. This result emphasizes the importance in

mitigating this issue for both the diagnostic and prognostic problems.

Decision Tree Extraction

In an attempt to determine the likelihood of reinserting arcs into the network to mitigate

the issues shown in the previous experiment, a follow-up experiment was performed in an

attempt to isolate subsets of variables which together obtain a high accuracy in performing

diagnostics. Such groups of variables can then be used to test the resulting networks by

allowing for swifter testing by setting evidence in the subset of variables instead of many

combinations of the entire set. The results of the research was published in the Prognostics

and Health Management conference [85]. The basis of the following experiment was to extract

decision trees from the network by using varying methods of calculating information gain for

selecting the partitions and creating the tree. Three different methods were originally selected

based on their prior use in past experiments and analysis: forward sampling, maximum
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expected utility, and KL-divergence. Additionally, three new methods were proposed based

upon the structure of the D-Matrix representation of the diagnostic network.

First, the forward sampling method created a dataset from the network based upon

sampling single faults. Based on the marginal probabilities of the diagnostic nodes in D,

a single fault was selected and set to True while the remainder of the nodes were set to

False. Given the bipartite structure of the network, all of the test nodes in T could be

sampled based strictly on their conditional probability tables without performing additional

inference or belief propagation. With a complete sample created over all individuals, the

result was added to the database. Given the database, the standard multi-class version of

ID3 generates a decision tree by calculating the information gain given by

I (d1, . . . , dn) = −
n∑

i=1

di
d1 + · · ·+ dn

lg
di

d1 + · · ·+ dn

and

E (t) =

arity(t)∑
i=1

di,1 + · · ·+ di,n
d1 + · · ·+ dn

I (di,1, . . . , di,n)

where di represents the count of that diagnosis class in the partition and t is the test node

being evaluated.

The maximum expected utility and KL-Divergence approaches use a different approach

wherein inference is performed on the network in order to determine the utility and divergence

gained by selecting tests, respectively. The D-Matrix based approaches are more similar to

the forward sampling approach wherein a small dataset is created by treating every row

in the D-Matrix as an individual in the data. The simplest of the approaches (DM) uses

solely this information and performs the standard ID3 calculations, as in forward sampling,
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partitioning the D-Matrix at every level. Another method, PWDM, weights the information

gain by determining the probability of the individuals, or diagnoses, in the partition which

must be determined by performing inference. The MWDM approach instead simply weights

the individual based upon their marginal distributions, resulting in a very fast decision tree

creation.

Given the potential size of the trees, especially for the MEU and KL-Divergence ap-

proaches, successively aggressive pruning was applied to the trees to analyze the effect of

the tree on classification accuracy. The results of the experiment are shown in the figures 5

and 6. Both sets of graphs represents the accuracy of performing inference in the Bayesian

network after setting evidence recommended to it by the resulting decision tree. The first

set compares this accuracy to the overall size of the network, while the second set compares

the accuracy to the number of recommended tests. Like in the previous experiment, net-

works with varying parameter ranges were tested to empirically test the effect of the level of

near-determinism in the network.

As can be seen in the first set of graphs, forward sampling in general outperforms the

other methods, although many of the differences in performance are negligible. The second

set of graphs shows a larger gap between the performance of the other algorithms when

compared with the forward sampling approach. Thus, with an appropriate heuristic, it was

shown that reasonable accuracy could be obtained while selecting a small number of tests

for use in performing test selection.
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Figure 5. Accuracy of decision trees created from networks with varying parameters with
respect to tree size.
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Figure 6. Accuracy of decision trees created from networks with varying parameters with
respect to the number of recommended tests.
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