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ABSTRACT

The task of identifying musical instruments in an audio recording is a difficult
problem. While there exists a body of literature on single instrument identification,
little research has been performed on the more complex, but real-world, situation
of more than one instrument present in the signal. This work proposes a Bayesian
method for multi-label classification of musical instrument timbre.

Preliminary results demonstrate the efficacy of Bayesian networks on the single
instrument classification problem. Peak spectral amplitude in ten frequency windows
were extracted for each of twenty time windows to be used as features. Over a dataset
of 24,000 audio examples covering the full musical range of 24 different common
orchestral instruments, four different Bayesian network structures, including näıve
Bayes, were examined and compared to two support vector machines and a k-nearest
neighbor classifier. Classification accuracy was examined by instrument, instrument
family, and dataset size. Bayesian networks with conditional dependencies in the time
and frequency dimensions achieved 98% accuracy in the instrument classification
task and 97% accuracy in the instrument family identification task. These results
demonstrated a significant improvement over the previous approaches in the literature
on this dataset.

The remainder of this proposal outlines my approach for the identification of
musical instrument timbre when more than one instrument is present in the signal.
First, signature matching Bayesian networks will be trained on single instruments to
recognize the timbral signature of individual instruments. Secondly, those signatures
will be used to extract the features relevant to a single instrument from the spectral
analysis of a multi-instrument signal. Finally, a binary-relevance Bayesian classifier
will determine if each specific instrument is present in the signal.

This system proposes a novel approach to template matching allowing for proba-
bilistic segmentation of musical spectra. Furthermore the proposed approaches outline
a novel approach to multi-label classification of music instrument timbre which sup-
ports both harmonic and inharmonic instruments, scales to a large number of musical
instruments, and allows for efficient classification of new examples given the trained
models.



1

CHAPTER 1

INTRODUCTION

The ability of a computer to learn to an identify the musical instruments present

in audio recording is an important problem within the field of Music Information

Retrieval (MIR). For instance, Digital Media Stores, such as iTunes or Amazon, or

Recommendation Systems, such as Pandora, might wish to automatically categorize

their music catalog, allowing search and retrieval by specific musical instrument. Tim-

bre identification is also an important task in the area of musical genre categorization,

automatic score creation, and audio track separation.

The identification of musical instruments in audio recordings is a frequently ex-

plored, yet unsolved, classification problem. Most approaches in the literature have

focused on the identification of a single musical instrument. Despite a number of

experiments in the literature over the years, no single feature extraction scheme or

learning approach has emerged as a definitive solution to this classification problem.

The most common approaches in the literature are the k-nearest neighbor algorithm

and the support vector machine (SVM).

In recent years, investigation has turned towards the identification of multiple

instruments present in a recording. The goal of musical instrument classification is

to determine the instruments present in audio recordings and automatically assign

the appropriate metadata labels. This process would occur offline. A MIR system

could then, in real-time, retrieve all audio recordings that contain a specific queried

musical instrument from a large dataset of recordings.

This work proposes a Bayesian approach to the classification problem of musical

instrument timbre, using timbre segmentation and focusing on the task of multi-label

classification. Chapter 2 explains musical timbre and reviews the relevant algorithms
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described in this proposal. Chapter 3 reviews the relevant literature of both multi-

class and multilabel classification of musical timbre. Chapter 4 introduces a feature

extraction scheme based on a psychoacoustic definition of timbre and demonstrates

the validity of a Bayesian approach to the single instrument classification problem.

Lastly, Chapter 5 outlines my proposal for a Bayesian approach to the identification

of multiple musical instrument present in the same signal.
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CHAPTER 2

BACKGROUND WORK

2.1 Timbre

When a musical instrument plays a note, we perceive both a musical pitch and the

instrument playing that note. Timbre, or tone color, is the psychoacoustic property

of sound that allows the human brain to distinguish readily between the same note,

even when played on two different instruments.

Overtones are the musical tones that are part of the harmonic series above a

fundamental note we perceive. The primary musical pitch we perceive is the fun-

damental frequency. The fundamental frequency and its overtones are collectively

known as partials. Harmonic instruments are those whose partials are approximate

integer multiples of the fundamental frequency. With the exception of drums and

bells, such as chimes, most orchestral instruments are harmonic. The perception of

timbre depends on the harmonics (spectra) and the fine timing (envelope) of each

harmonic constituent (partial) of the musical signal [1].

2.2 Algorithms

The preliminary results in this work compare three types of algorithms on the

machine learning task of timbre classification. This section briefly explains each of

the algorithms described in this proposal.

2.2.1 Nearest Neighbor

The k-nearest neighbor (k-NN) algorithm is a common instance-based learning

algorithm in which a previously unknown example is classified with the most common
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class amongst its k nearest neighbors, where k is a small positive integer. A neighbor

is determined by the application of some distance metric D(·, ·), such as Euclidean

distance, in d multidimensional feature space. Formally, let X be a space of points

where each feature vector f ∈ X is defined as f = 〈{f 1, . . . , fd}; c〉, c is the true class

label, and Xtr ⊂ X is the set of training examples. For a query example fq ∈ X −Xtr,

1-NN finds an example fr ∈ Xtr such that ∀fx ∈ Xtr, fx 6= fr, D(fq, fr) < D(fq, fx)

and returns the associated class label cr [2]. When k > 1, the majority class among

the set of k closest neighbors will be returned.

2.2.2 Support Vector Machine

The support vector machine (SVM) is a discriminant-based method for classifica-

tion or regression. The SVM algorithm constructs a hyperplane in high dimensional

space that represents the largest margin separating two classes of data. To support

multiclass problems, the SVM is often implemented as a series of ’one-versus-all’

binary classifiers. The SVM is defined as:

min
1

2
‖w‖2 + C ·

∑
i

ξi (2.1)

subject to:

y(wT · Φ(f) + b) ≤ 1− ξi, ξi ≥ 0 (2.2)

where f is a vector of features, wT is the discriminant vector, C is a regularizing

coefficient, ξi is a slack variable, b is the bias offset, label y ∈ {−1,+1}, and the

kernel function K(fi, fj) = Φ(fi)
T · Φ(fj) is the dot product of the basis function.

When the kernel function K(f) = f , the SVM is a linear classifier. When the

kernel is a non-linear function, such as a polynomial (Equation 2.3), the features are
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projected into a higher order space, which allows the algorithm to fit the maximum

margin hyperplane in the transformed feature space, which is no longer linear in the

original space [3].

K(fi, fj) = (fi · fj)δ (2.3)

2.2.3 Bayesian Networks

Bayesian networks are probabilistic graphical models that are comprised of random

variables, represented as nodes, and their conditional dependencies, represented as

directed edges. The joint probability of the variables represented in the directed,

acyclic graph can be calculated as the product of the individual probabilities of each

variable, conditioned on each the node’s parent variables. The Bayesian classifier

without latent variables – hidden variables that are inferred rather than observed –

is defined as:

classify(f) = argmax
c∈C

P (c)
∏
f∈f

P (f |parent(f)) (2.4)

where P (c) is the prior probability of class c and P (f |parent(f)) is the conditional

probability of feature f given the values of that feature’s parents. The classifier finds

the class that has the highest probability of explaining the values of the feature vector

[4].
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CHAPTER 3

RELATED WORK

3.1 Single Instrument Classification

Beginning with initial investigations of music perceptionist John Grey [5], the

task of musical instrument identification has relied on clustering techniques. Fujinaga

created a k-NN system that achieved 68% instrument classification on a large database

of 23 different recorded instruments [6].

In the 2000’s, investigators began to explore other techniques. A seminal study

using an SVM classified 200 milliseconds of recorded audio for eight musical instru-

ments, using 16 Mel-frequency cepstral coefficients (MFCC) as features [7]. MFCC

are coefficients of the power spectrum of a sound transformed along the mel scale

of frequency. The authors achieved 70% accuracy using a ’one versus all’ multi-class

SVM with a polynomial kernel, which outperformed the 63% accuracy using Gaussian

mixture models (GMM).

In 2003, a study demonstrated the ability of SVMs to outperform k-NN on the

task of musical instrument identification. Agostini et al. used a set of nine spectral

features and compared the results of an SVM, k-NN, and quadratic discriminant

analysis (QDA). Their results on three different sets of instruments are shown in

Table 3.1. For the 27 instrument set, the authors also tested instrument family

discrimination (e.g., strings, woodwinds) and achieved 80.8% accuracy using an SVM

compared to 76.2% using k-NN [8]. A more recent study used k-NN to achieve

93% instrument classification and 97% instrument family recognition on a set of 19

instruments [9].
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Table 3.1: Results of [8]

Instruments SVM k-NN QDA
17 80.2 73.5 77.2
20 78.5 74.5 75.0
27 69.7 65.7 68.5

Family 77.6 76.2 80.8

While k-NN and SVM remain the most commonly employed system for timbre

classification, a few other approaches have been attempted. Kostek used a multilayer

feedforward neural network to identify 12 musical instruments playing a wide variety

of articulations using a combination of MPEG-7 and wavelet-based features. She

achieved 71% accuracy, ranging from 55% correct identification of the English horn

to 99% correct identification of the piano [10]. Like many other studies, Kostek

noted the most common misclassification occurred between instruments within the

same family and that performance deteriorated as the number of musical instruments

increased. Another study employed a binary decision tree, a variation of the C4.5

algorithm, to classify 18 instruments using 62 features yielding 68% classification

accuracy [11].

Despite a few attempts using other learning strategies, the focus in the literature

remains dominated by SVM and k-NN for this task. While Bayesian networks, most

commonly the hidden Markov model (HMM), have been widely used in the field

of natural language processing for speech recognition, phoneme identification, and

other tasks [12], Bayesian networks have not been widely used for the problem of

musical instrument identification. One study presented preliminary results using a

continuous-density HMM to classify seven different instrument groupings, but not

individual instruments, achieving accuracies between 45% and 64% [13].
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3.2 Multi-label Classification

In classification tasks, an instance x ∈ X is represented as an M -vector x =

[x1, . . . , xM ], where X denotes the attribute space. Single-label classification describes

the assignment of instance x to a label l from a set of disjoint labels L. In binary

classification problems, |L| = 2. In multi-class classification |L| > 2, although each

example is only assigned a single label.

In multi-label classification, on the other hand, each each example x ∈ X is

assigned a set of labels Y , where Y ⊆ L. Multi-label classification is increasingly

popular in many areas, such as genre of films [14], text categorization [15], medical

diagnosis [16], and classifying emotions in music [17].

There are three common approaches to multi-label classification. The first ap-

proach, known as algorithm extension, consists of adapting existing algorithms to

return a set of labels instead of a single label. The second approach, transformation

methods, describes the transformation of a multi-label classification problem into

a single label multi-class problem. This is most often achieved by enumerating all

possible sets of labels as if they were individual labels, which results in a combina-

torial explosion in the number of labels [18]. For this reason, this approach is highly

undesirable if |L| is a large number.

The third method is known as the Binary Relevance (BR) approach. The BR

method learns |L| different binary classifiers, one for each possible label. Each binary

classifier is trained to distinguish the examples in a single class from the examples in

all remaining class. When classifying a new example, all |L| classifiers are run and the

labels associated with the classifiers which output the label true are added to Y . This

is known as the one-vs-all (OVA) scheme. More specifically, each binary classifier Cl

is responsible for predicting the true/false association for each single label l ∈ L. The
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final label set Y is the union of all labels from all classifiers that returned true [19].

This work will use the BR approach to multi-label classification.

3.3 Multi-label Instrument Classification

Only recently have investigators turned their attention to the problem of multi-

label classification of instruments in polyphonic musical instrument signals. These

studies often suffer from several limitations [20]:

Low accuracy: Accuracy is below 60% even for experiments using small datasets

[18, 20, 21, 22].

Limited dataset: Small or limited datasets, often consisting of five or less instru-

ments are used [22, 23, 24, 25] or datasets derived from synthetic MIDI instru-

ments [26].

Predefined mixtures: Instrument sets are defined a priori and therefore the exper-

iments cannot generalize to other sets of instruments [21].

Harmonic instruments: Approaches will work only for harmonic instruments and

cannot be extended to inharmonic instruments such as drums and bells [20, 27].

Using a Gaussian Mixture Model (GMM), Eggink and Brown achieved 49% on

pairs of instruments from a limited set of five instruments [24]. More recently, another

study used GMM on a small dataset of five instruments to achieve 77% for two in-

strument mixtures, 43% for three instrument mixutres, and 40% for four instruments

mixtures [22]. Using the transformation method, Essid and Richard achieved 53%

accuracy using a GMM on a set of 20 instruments combinations ranging from single

instruments up to combinations of four instruments [21].
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Another study used k-NN to achieve 80% identification accuracy on the very lim-

ited set of eight instrumental mixtures [23]. More recently, another study compared

an SVM and the Perceptron neural network to achieve 55% and 64% respectively on

the identification of pairs of instruments from a large set of 25 harmonic instruments

[20].

One study applied Linear Discriminant Analysis (LDA) on polyphonic training

data to achieve 84% identification accuracy for two instrument mixtures, 77% for

three instruments, and 72% for four instruments. However, the authors considered

only the small dataset of five instruments and this approach would not scale well given

a larger set of instruments in which it would not be feasible to generate training data

for all permutations of many instruments [27].
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CHAPTER 4

PRELIMINARY RESULTS

4.1 Overview

To demonstrate the validity of a Bayesian approach to musical instrument classifi-

cation, preliminary experiments have been performed on the single instrument timbre

classification problem. Using a feature extraction scheme based on a psychoacoustic

definition of timbre, several different Bayesian network structures were compared to

the baseline algorithms of support vector machines (SVM) and a k-nearest neighbor

(k-NN) classifier. These results have been submitted for publication [28].

4.2 Data Generation

Our system uses 1000 audio examples for each musical instrument, covering 24

different orchestral instruments (Table 4.1). Each audio file is two seconds in duration,

consisting of the instrument sustaining a single note for one second, and time before

and after to capture the attack and the resonant decay, respectively. The audio

samples were created using the EastWest Symphonic Orchestra sample library at

the MONtana STudio for Electronics and Rhythm (MONSTER) at Montana State

University.

For each musical instrument, a MIDI control sequence was sent to a Kontakt

Virtual Studio Technology (VST) player for rendering to audio. The resulting audio

stream was recorded using the javax.sound package at a 44.1k sampling rate, 16-bits

per sample, and stored as a single channel waveform audio file (WAV).

The pitch was randomly sampled uniformly with replacement covering the entire

musical range of the instrument. The dynamic level was also sampled uniformly with
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Table 4.1: Set of 24 instruments sorted by instrument family

Strings Woodwinds Brass Percussion
Piccolo
Flute

Violin Alto Flute Chimes
Viola Clarinet French Horn Glockenspiel
Cello Bass Clarinet Trumpet Vibraphone

Contrabass Oboe Trombone Xylophone
Harp English Horn Tuba Timpani

Bassoon
Contrabassoon

Organ

5 10 4 5

replacement of the MIDI velocity parameter, covering the dynamic range pianissimo

to fortissimo. In total, there are 1000 audio samples for each of the 24 instruments,

yielding 24,000 total examples.

4.3 Feature Extraction

Each audio sample was processed using Octave to generate the feature set. The

signal was first divided into equal width time windows. The number of time win-

dows was selected to be twenty to yield 100-millisecond windows. Each of these

100-millisecond time windows was analyzed using a fast Fourier transform (FFT)

to transform the data from the time domain into the frequency domain. This FFT

transformation yielded an amplitude value, ranging [0, 1000] for each frequency point

present in the analysis.

Frequency perception is a logarithmic concept but FFT analysis provides a res-

olution across a linear Hertz scale. Therefore, for example, the analysis provides a

much lower resolution for the lowest note of the piano compared to the resolution
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of the highest note. In order to group nearby frequencies into a single window, the

vector was divided into ten exponentially increasing windows, where each frequency

window is twice the size of the previous window, covering the range [0, 22050] Hertz.

This generalization scheme allows the system to generalize over musical pitch.

Ten frequency windows were selected as a reasonable choice and will be empirically

tuned in future work. For each of the ten frequency windows, the peak amplitude

is extracted as the feature. The feature set for a single musical instrument example

consists of ten frequency windows j for each of twenty time windows i, yielding 200

features per audio example. The feature extraction scheme is outlined in Figure 4.1.

These 200 continuous features, ranging [0, 1000], are discretized into a variable num-

ber of bins using a supervised entropy-based binning scheme [29].

This feature set attempts to capture the unique and dynamic timbre of the each

musical instrument by generalizing the changes in amplitude of groups of nearby

partials over time for each instrument. Examples of the feature set for four musical

instruments are visualized in Figures 4.2(a) - 4.2(d).

4.4 Models & Experimental Design

On this dataset, this project compared the performance of several Bayesian model

structures in the task of musical instrument classification. The first model described is

the näıve Bayes classifier. The remaining three Bayesian networks consist of variations

of a grid-augmented näıve Bayes model, each adding different conditional dependen-

cies in the time and frequency domains. For these descriptions, let f ij be the peak

amplitude feature f at frequency window j for time window i, where 0 < i ≤ 20 and

0 < j ≤ 10.
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Figure 4.1: Each two second example is partitioned into twenty equal length windows.
FFT analysis is performed on each 100 millisecond time window. The FFT analysis
for i=10 is depicted. The FFT output is partitioned into ten exponentially increasing
windows. For readability, only the first seven frequency windows are depicted above.
The peak frequency from each window is extracted and used as a feature.
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(a) Violin (b) Trumpet

(c) Clarinet (d) Xylophone

Figure 4.2: Visualization of the feature set for four different musical instruments each
playing middle C at a mezzoforte dynamic level.

4.4.1 Näıve Bayes

For a baseline Bayesian model, we chose the common näıve Bayes classifier (NB).

In the NB model, all evidence nodes are conditionally independent of each other,

given the class. The formula for NB is shown as Equation 4.1 in which P (c) is the

class prior and P (f | c) is the probability of a single feature within the feature set,

given a particular class c. The NB network is shown graphically in Figure 4.3(a).
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P (c | f) = P (c)×
∏
f∈f

P (f | c) (4.1)

4.4.2 Frequency Dependencies

The second model is a Bayesian network with frequency dependencies (BN-F), in

which each feature f ij is conditionally dependent on the previous frequency feature

f ij−1 within a single time window as shown in Figure 4.3(b), denoted as f ij−1 → f ij .

Equation line 4.2a shows the class prior and the probability of the first row of the grid

of features while line 4.2b defines the probability of the remaining features. There

are no dependencies between the different time windows.

P (c | f) = P (c)×
20∏
i=1

P (f i1 | c) (4.2a)

×

(
20∏
i=1

10∏
j=2

P (f ij | f ij−1, c)

)
(4.2b)

4.4.3 Time Dependencies

The third model, a Bayesian network with time dependencies (BN-T), contains

conditional dependencies of the form f i−1j → f ij in the time domain, but contains no

dependencies in the frequency domain (Figure 4.3(c)). Equation line 4.3a shows the

class prior and the probability of the first column of the grid of features while line

4.3b defines the probability of the remaining features.

P (c | f) = P (c)×
10∏
j=1

P (f 1
j | c) (4.3a)

×

(
20∏
i=2

10∏
j=1

P (f ij | f i−1j , c)

)
(4.3b)
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4.4.4 Frequency and Time Dependencies

The final model, a Bayesian network with both time and frequency dependencies

(BN-FT), is shown in Figure 4.3(d). The BN-FT model is a combination of BN-F

and BN-T and contains dependencies of the form f i−1j → f ij and f ij−1 → f ij . Equation

line 4.4a shows the class prior and the probability of the upper-leftmost node (f 1
1 ) of

the feature grid. Line 4.4b shows the probability of first column of the grid, line 4.4c,

that of the first row of the grid, and line 4.4d, that of the remaining features.

P (c | f) = P (c)× P (f 1
1 | c) (4.4a)

×

(
20∏
i=2

P (f i1 | f i−11 , c)

)
(4.4b)

×

(
10∏
j=2

P (f 1
j | f 1

j−1, c)

)
(4.4c)

×

(
20∏
i=2

10∏
j=2

P (f ij | f i−1j , f ij−1, c)

)
(4.4d)

4.4.5 Baseline Algorithms

To explore the advantages of time and frequency dependencies between features,

the accuracies of the grid-augmented Bayesian models were compared with two sup-

port vector machines, a k-nearest neighbor classifier, and näıve Bayes. SVM and k-NN

were chosen as the baseline algorithms for comparison to the Bayesian networks given

the prevalence of these algorithms in the literature.

For the SVM, we selected both a linear (SVM-L) and polynomial kernel (see

Equation 2.3) where δ = 2 (SVM-Q). We also examined a radial basis function kernel

and sigmoidal kernel; both scored at chance and were subsequently not included in
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(a) Näıve Bayesian network (NB) (b) Bayesian network with frequency dependen-
cies (BN-F)

(c) Bayesian network with time dependencies
(BN-T)

(d) Bayesian network with frequency and time de-
pendencies (BN-FT)

Figure 4.3: Structure of the different Bayesian networks.
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the experiments. For k-NN, we empirically examined values of k from 1 to 10. k-NN

with k = 1 achieved the highest accuracy and was selected for use in all experiments.

4.4.6 Experimental Design

All experiments were run using ten-fold stratified cross-validation for training

and testing. For the Bayesian networks, the parameter learning stage consisted of

constructing the conditional probability tables (CPT) using counts from the training

data. For all the Bayesian networks, the worst case size complexity of any variable’s

CPT is O(n · ap) where n = 200 is the number of features, 9 ≤ a ≤ 42 is the number

of discretized states for any variable, and p is the maximum number of parents. For

the most complex model, the BN-FT model, p ≤ 3 for all variables.

In the testing phase, any event unseen in the training data results in a zero prob-

ability of the entire feature vector. To prevent this, we used the common technique

of additive smoothing:

P (f ij) =
xi + α

N + α · d
(4.5)

where xi
N

is the probability of feature xi, as indicated in the training data, and d is

the total number of features [30]. The parameter α adds a small number of pseudo-

examples to each possible feature value eliminating a possible count of zero that might

result in a zero probability. A value of α = 0.5 was used in all experiments.

4.5 Experiments & Results

4.5.1 Experiment 1: Instrument and Family Identification

The first experiment examined classification accuracy for both instrument identifi-

cation (n = 24) and family identification (n = 4). The results are shown in Table 4.2.
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The statistical significances using a paired student t-test with p ≤ 0.01 are shown in

Table 4.3.

All of the Bayesian networks, with the exception of näıve Bayes, outperformed

both SVMs and k-NN. The model with frequency dependencies (BN-F) outperformed

the model with time dependencies (BN-T). The combination of both frequency and

time dependencies outperformed BN-F and BN-T in both tasks, more significantly so

in the family identification task.

Table 4.2: Experiment 1 - Classification Accuracy (%) by instrument (n = 24) and
by instrument family (n = 4)

Algorithm Instrument Family
NB 81.570 80.94

BN-F 97.525 92.87
BN-T 96.358 94.39

BN-FT 98.252 97.09

SVM-L 81.456 85.57
SVM-Q 93.55 95.65
k-NN 92.992 97.31

Table 4.3: Statistical significance of Experiment 1 using paired t-test with p < 0.01.
Each cell indicates if the algorithm listed in the column performed significantly better
(+), significantly worse (−), or not significantly different (0) when compared to the
algorithm listed in the row. The first value is the significance of the instrument
(n = 24) experiment and the second shows the family (n = 4) experiment.

Algorithm NB BN-F BN-T BN-FT SVM-L SVM-Q k-NN
NB — +/+ +/+ +/+ 0/+ +/+ +/+

BN-F −/− — −/+ +/+ −/− −/+ −/+
BN-T −/− +/− — +/+ −/− −/+ −/+

BN-FT −/− −/− −/− — −/− −/− −/0
SVM-L 0/− +/+ +/+ +/+ — +/+ +/+
SVM-Q −/− +/− +/− +/+ −/− — 0/+
k-NN −/− +/− +/− +/0 −/− 0/− —
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Table 4.4: Confusion matrices for the family identification, showing classification
counts. Bold values indicate a correct classification.

Algorithm S B W P ← classified as

NB

4470 21 327 162 String
24 3021 944 11 Brass
277 1923 7799 1 Woodwind
220 320 324 4134 Percussion

BN-F

4865 15 107 13 String
3 3756 239 2 Brass
97 883 9009 111 Woodwind
123 86 133 4658 Percussion

BN-T

4921 0 34 45 String
13 3612 364 11 Brass
173 600 9223 4 Woodwind
27 55 21 4897 Percussion

BN-FT

4923 3 67 7 String
1 3627 372 0 Brass
19 198 9783 0 Woodwind
4 15 13 4968 Percussion

SVN-L

4692 11 254 43 String
47 1265 2685 3 Brass
140 226 9626 8 Woodwind
25 3 19 4953 Percussion

SVN-Q

4670 69 188 73 String
84 3667 245 4 Brass
119 190 9680 11 Woodwind
42 5 14 4939 Percussion

k-NN

4792 56 107 45 String
40 3795 162 3 Brass
43 145 9802 10 Woodwind
22 6 6 4966 Percussion

In many previous experiments, the family identification problem was found to be

an easier problem than the instrument identification problem. Conversely, in this

experiment, the Bayesian networks all performed less well on the family identification

problem compared to the instrument identification problem. Both SVMs and k-NN,
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however, both yielded improved classification accuracy on the family identification

problem, consistent with the literature.

Confusion matrices for the family identification task are shown in Table 4.4. The

Bayesian models showed increased confusion between brass and woodwind instru-

ments compared to string or percussion instruments. The SVMs, k-NN and näıve

Bayes, on the other hand, more often confused strings with either brass or woodwind

compared to the Bayesian networks.

4.5.2 Experiment 2: Instrument Identification within Family

This experiment examines instrument classification by instrument family. Unlike

Experiment 1, this experiment trains and tests only on instruments within the same

family (Table 4.5). The dataset was divided into four separate datasets, one for

each family, eliminating the possibility of confusion with instruments outside its own

family. Ten-fold cross-validation is used on each of the family datasets.

Table 4.5: Experiment 2 - Classification accuracy (%) by instrument family

Algorithm Strings Woodwinds Brass Percussion
NB 89.76 84.58 92.43 99.64

BN-F 99.86 95.89 99.70 99.94
BN-T 99.12 95.56 99.36 99.92

BN-FT 99.60 97.86 99.58 99.96
SVM-L 98.66 92.01 98.65 98.18
SVM-Q 96.82 94.62 97.35 98.48
k-NN 98.72 92.67 98.63 99.72

Interestingly, the classification accuracy of strings, brass, and percussion exceeds

99% for all the Bayesian networks except näıve Bayes, whereas woodwinds, the largest

set of instruments (n = 10), achieves 97.9% accuracy. For the strings, brass, and

percussion, the BN-F and BN-FT achieves comparable accuracy, however, BN-FT
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outperforms BN-F on the more difficult woodwind set. The percussion set achieve

the highest accuracy for all algorithms, including the SVMs and k-NN.

4.5.3 Experiment 3: Accuracy by Dataset Size

This experiment examines the classification accuracy by instrument (n = 24),

similar to Experiment 1, but as the dataset size varied from 100 to 1000 in increments

of 100 for each instrument (Figure 4.4). The Bayesian network models converge to

their respective optimal accuracy between 500 and 800 data samples per instrument.

However, both the SVMs and k-NN continue to improve as the number of examples

increase. It is possible that both would continue to improve accuracy if given more

examples beyond 1000 examples per instrument. However, all the Bayesian models

achieved much higher accuracy with far less examples than either SVMs or k-NN. This

important result will be useful when extending this system to real-world examples

extracted from commercial audio recordings.

4.6 Discussion

Many previous approaches, such as [8], reported the greatest difficulty with clas-

sifying string instruments over any other type of instrument. In our experiments,

the Bayesian network models, however, had the greatest difficulty with woodwind

instruments, although the Bayesian model still outperformed both SVMs and k-NN

on the woodwind dataset. All algorithms tested performed extremely well on the

percussion set, given the pronounced attack and immediate decay of these types of

instruments, consistent with results from the literature.

The BN-FT model achieved comparable accuracy on both the instrument clas-

sification problem (n=24) and the family identification problem (n=4). However,
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Figure 4.4: Experiment 3 - Accuracy (%) by number of examples per instrument for
each model.
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the BN-F and BN-T models each achieved better accuracy on individual instrument

classification than they achieved on family identification. This result suggests that

neither the frequency nor time dependencies themselves are sufficient to generalize

across musical instrument families, but the combination of both sets of dependencies

are needed. k-NN achieved much higher accuracy on the family identification prob-

lem compared to the instrument identification problem, unsurprisingly since k-NN is

known not to scale well as the number of classes increases [31].

As shown in Table 4.4, the Bayesian models more often confused brass and wood-

wind instruments with each other compared to either string or percussion. This is

perhaps unsurprising as our feature extraction scheme sought to capture the con-

ditional relationships of changes in amplitude of frequencies over time. Woodwind

and brass instruments are both classified as aerophones, instruments that generate

sound by vibrating air, under the Hornbostel–Sachs system of scientific classification

of musical instruments [32], suggesting that our feature extraction scheme may better

model the physical acoustics of the instruments.

As the authors of [33] note, the choice of feature extraction scheme is crucial

to the success of any music instrument classification system. Previous attempts to

classify musical instruments have relied upon feature extraction schemes common in

speech processing, most commonly the Mel-frequency cepstral coefficients (MFCC).

Agostini et al. used a sparse set of nine spectral features to achieve 78.5% and 69.7%

accuracy classifying 20 and 27 instruments, respectively, using an SVM [8]. Our

feature extraction scheme, using 200 time and frequency varying features, achieved

93.6% accuracy classifying 24 instruments also using an SVM.

Although not directly comparable, these results imply that our feature extraction

scheme better handles more instrument classes. While our system employs a consid-

erably larger feature set, both feature extraction schemes are bounded by the
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O(n log n) time complexity of the fast Fourier transform, where n is the number of

samples in the audio file. Therefore we find no disadvantages in using a larger feature

set. These results, when compared to the literature, also indicate that the feature

extraction schemes that are optimized for speech recognition tasks may not be optimal

in the musical instrument recognition task. Furthermore, these results also indicate

that statistical dependencies modeling the changes in amplitude of partials over time,

inspired by the human perception of timbre, are also useful in computational models.

4.7 Conclusion

In these preliminary results, we have presented a novel method for feature extrac-

tion, inspired by the psychoacoustic definition of timbre, that attempts to generalize

the timbre of musical instruments probabilistically rather than rely on feature extrac-

tion schemes standard in speech recognition tasks. Furthermore, modeling conditional

dependencies between both time and frequency (BN-FT) improves classification ac-

curacy over either dependency individually (BN-F, BN-T) or none at all (NB).

The experiments presented here demonstrate that Bayesian networks are a valid

approach to the classification of musical instruments. Overall, the BN-F, BN-T, and

BN-FT models outperformed näıve Bayes, both SVMs, and k-NN. In addition to

outperforming the SVMs and k-NN, the Bayesian models achieved desirable accuracy

with far fewer examples and with less execution time, albeit with a larger feature space

than other approaches in the literature. Given the success of our Bayesian approach

in the single instrument classification problem, we will now modify our approach to

attempt the more difficult multi-label classification problem.
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CHAPTER 5

EXPERIMENTAL DESIGN

5.1 Overview

When multiple audio signals are mixed together, it is not possible to fully segregate

them into the original discrete streams. This is known as the Cocktail Party Problem

in the field of Cognitive Science and as the task of Auditory Scene Analysis in the

field of Signal Processing.

This work proposes a Bayesian approach to multi-label classification of musical

instruments. This approach attempts to determine the instruments present in a audio

signal containing multiple instruments from a large set of instruments. The processes

described in this section are fully extensible to the combination of an arbitrary number

of instruments. In the experiments, however, I will begin with the task of determining

pairs of instruments present in a recording and increase to three and eventually four

instruments.

5.2 Dataset

A dataset similar to that discussed in Chapter 4 will be used in the dissertation

experiments. The set of orchestral instruments described in 4.2 will be expanded to

encompass the instruments available East-West Symphonic Orchestra library1 and

the Vienna Symphonic Library,2 tentatively yielding 30 distinct instruments. 1000

examples of each instrument will again be used. Given the observation in Chapter

1http://www.soundsonline.com/Symphonic-Orchestra/
2http://www.vsl.co.at/en/211/1343/1344/950.vsl
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4 that the presence of frequency dependencies improved accuracy over time depen-

dencies alone, the length of each sample will be reduced down to one second from

two. As in the previous experiments, the samples will be recorded at the MONtana

STudio for Electronics and Rhythm (MONSTER) at Montana State University at

a 44.1k sampling rate, 16-bits per sample, and stored as a single channel waveform

audio file (WAV).

These recordings of single instruments will be used to train the networks for the

multi-label classification experiments. For the testing stage, examples of sound files

containing two or more instruments are necessary. To generate files of two instruments

sounding simultaneously, pairs of single instrument files will be mixed together. For

instance, to cover all possible pairwise combinations, I will use 100 files for each

possible pair of instruments. This results
(

30!
28!·2!

)
∗ 100 = 43, 500 files. A similar

process will be used to generate sets of three and four instruments.

Later experiments will include testing mixtures of more than two instruments,

other datasets, such as the Musical Instrument portion of the commercial Real World

Computing (RWV) Music Database3 [34], the free University of Iowa Musical Instru-

ment Samples collection,4 and collections of real-world recordings.

5.3 Design

The proposed approach consists of three stages. The first stage is the Signature

Matcher Bayesian network in which individual networks are created for each instru-

ment that capture the probabilities of the ratios of the musical partials for a given

fundamental at a given amplitude (Section 5.3.1). The second stage is the Feature

3http://staff.aist.go.jp/m.goto/RWC-MDB/
4http://theremin.music.uiowa.edu/MIS.html
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Extractor (Section 5.3.2) in which the Signature Matcher Bayesian network will be

queried, and features will be extracted from the FFT analysis of the example to be

classified. In the third stage, the Instrument Classifier (Section 5.3.3), the system

will determine if a particular instrument is present in the audio recording given the

features extracted in the previous stage. Each of the stages are described below.

5.3.1 Signature Matcher

The Signature Matcher Bayesian network attempts to capture information about

each harmonic partial relative to a known fundamental frequency. An individual

Bayesian Network will be trained for each instrument. There will be a separate

Bayesian model for each instrument and these networks will each be trained with

examples containing only a single instrument, like the training data used in the pre-

liminary experiments. These networks, once trained, will be used to attempt to

extract features relevant to a single instrument from the spectral analysis of a signal

containing multiple instruments.

To train these networks, an FFT will be run on an audio file containing a single

recorded instrument. The peak harmonic amplitude within a single window that

exceeds a minimum threshold will be extracted and its corresponding frequency saved.

A windowing scheme will consist of overlapping windows each the size of a musical

semitone. The lowest peak will be assumed to be the fundamental frequency f0. Each

significant peak above f0 will be assumed to be a harmonic of the musical instrument

and assigned to a partial number. The ratio of the frequency of this partial to the

fundamental frequency will be extracted and used as evidence to train the Bayesian

network.

A potential network structure is shown in Figure 5.1. f0 indicates the fundamental

frequency of the signal, and a0, the amplitude of f0. ri indicates the ratio of partial i
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Figure 5.1: Potential network structure for the Signature Matcher Bayesian network.

relative to f0. ri is represented in a plate model that will repeat for partials 1 ≤ i ≤ 15

with a dependency ri → ri+1 .

To give an example, consider a signal with peaks at 440, 885, and 1330 Hz. The

lowest peak, 440 Hz, would be assumed to be the fundamental frequency and assigned

to the variable f0. The peaks of 885 and 1330 Hz would assumed to be the second

and third partials, respectively. The ratios of these partials respective to the assumed

fundamental would be 2.01 and 3.02 and assigned to variable r2 and r3 respectively.

For explicit clarity, this simple example described integer and real-valued domains of

the variables. In the experiments the values will be discretized into a variable number

of bins using a supervised entropy-based binning scheme [29] as in the preliminary

experiments.

5.3.2 Feature Extractor

The second stage of the system will be the Feature Extractor process. Any signal,

once combined with another signal, cannot be segmented perfectly into the original

signals. From the mixed signal, the original signals can be only estimated. The

goal of this stage is to extract features from an audio stream containing multiple
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instruments, separating them into discrete sets of features in which each represents a

single instrument. This stage attempts to segment a complex spectral analysis into

separate timbres using the template signatures learned in the previous section.

Given the FFT analysis of a file containing two instruments, this stage will consider

each peak to be a fundamental frequency and extract partial information using the

trained Signature Matcher network. More specifically, for each instrument, this stage

will enumerate over all the peaks present in the analysis within the musical range of

that instrument. Each peak will be considered to be a fundamental frequency and

for this fundamental frequency the corresponding Signature Matcher network will be

queried and a set of ratios returned. Within a window of a musical semitone, peaks

at each of these ratios will be extracted and the amplitude of the peak extracted as a

feature. These features will be used by the Instrument Classifier stage to determine

if that instrument is present in the signal.

5.3.3 Instrument Classifier

Given the feature set extracted in the Feature Extraction stage, this stage will

classify if each instrument is present in the musical signal for each potential funda-

mental. In accordance with the binary relevance approach to multi-label classification,

a separate classifier will be trained for each instrument. Training will use the dataset

of individual instruments. The testing stage, however, will use features from a multi-

instrument mixture, extracted as described in the previous section.

A potential network structure is shown in Figure 5.2. f0 indicates the fundamental

frequency of the signal, a0 designates the amplitude of f0, ri signifies the ratio of

partial i relative to f0, and ai denotes the amplitude of partial i. ri and ai are

represented in a plate model that will repeat for partials 1 ≤ i ≤ 15 with dependencies

ri → ri+1 and ai → ai+1. All nodes are connected to the class node Instr.
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Figure 5.2: Potential network structure for the Instrument Classifier network.

This network structure assumes that all partials are dependent on the fundamental

frequency. The amplitude ai of any partial i is conditionally dependent on the ratio

ri as well as the amplitude of the fundamental a0. The ratio ri and the amplitude

ai of each partial i is dependent on the previous partial, inspired by the empirical

success of the frequency dependencies described in the preliminary results.

5.4 Example Walkthrough

Figure 5.3(a) shows the FFT analysis of a violin playing middle C, Figure 5.3(b),

an oboe playing the G seven semitones (a perfect fifth) above the violin, and Figure

5.3(c) the mix of both both instruments playing together.

In the first stage, a Signature Matcher network will be trained for each instrument.

This Signature Matcher network will learn for a particular network the probabilities

of the ratios of the succeeding partials. In the second stage, the Feature Extractor

will use the ratios learned in the Signature Matcher stage to extract partials from the

FFT analysis.
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(a) Violin playing C4, 261.6 Hz

(b) Oboe playing G4, 392.0 Hz

(c) Violin and Oboe mixed together

Figure 5.3: FFT of a Violin (a), Oboe (b), and Violin and Oboe playing a perfect
fifth apart (c)
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Consider Figure 5.3(c). If the system is attempting to classify if an oboe is present

in the signal, the Feature Extractor must consider each peak in the analysis as a

potential fundamental for that instrument. It would first begin with the first peak at

261 Hz. In this example, this is the fundamental frequency of the violin. The Feature

Extractor would then extract partials according to the ratios learned by the Signature

Matcher. These ratios as well as the amplitude of the partial found at that ratio will

then be sent to the Instrument Classifier network. The Oboe Classifier network would

ideally return false, as the amplitudes of the partials for that particular fundamental

will be inconsistent with the training data for the oboe dataset.

The system would then return to the Feature Extractor stage and attempt the

next possible fundamental, a peak at 392 Hz, which, in this example, is indeed the

fundamental of the oboe. The process would repeat and if the Oboe Classifier network

returns true, the system can terminate having determined that an Oboe is indeed

present in the signal. The entire process would repeat for the Violin as well as all

other instruments. The final classification will be the set of all instruments in which

their respective Instrument Classifiers returned true.

5.5 Evaluation

As in the preliminary results described in Chapter 5, 10-fold cross-validation will

be used in the experiments. To evaluate the accuracy of the system, the evaluation

metric used in [35] will be employed. For example, for any prediction of a signal with

two instruments present, there are three possible outcomes:

• If no instruments are matched correctly, assign a score of 0

• If only one of the two instruments is recognized correctly, assign a score of 0.5
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• If both instruments are identified correctly, assign a score of 1.0.

The final score of the system will be the average of these score across all test

instances, across all folds of the cross-validation. This evaluation scheme will be

extended to accommodate groups or three and four instruments.

5.6 Contributions

This proposal outlines a new approach for the multi-label classification of musical

instrument timbre. As discussed in Section 3.3, multi-label classification of musical

instrument timbre is a difficult problem and most systems cannot adequately handle

realistic datasets (e.g., live processing or commercial recordings) with an acceptable

level of accuracy. The system proposed here trains on single music instruments,

segments the timbre of a multi-instrument timbre using signature matching, and

classifies using a series of binary relevance classifiers.

In addition to the contributions to Music Information Retrieval and multi-label

classification, this system proposes a novel feature extraction scheme. Although other

systems have attempted variations of template matching within spectra [20, 22, 27],

my approach is the first to propose training graphical models to allow for probabilistic

template matching of musical spectra. This approach, I hypothesize, will generalize

much better and achieve better performance on noisy or real-world data compared to

other systems in literature. Furthermore, because my Template Matching Bayesian

network captures the ratio of partials to the fundamental, my system, unlike most

others, is designed to handle both harmonic and inharmonic instruments.

My approach has numerous benefits and advantages. First and foremost, I pre-

dict my system will scale well to many instruments and additional instruments can

be added later merely by training a Signature Matching Bayesian network for that
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instrument. Secondly, while training the networks may take significant time and

computational resources, the trained Bayesian networks can be stored and retrieved

for use later. This is a distinct advantage over multi-label k-NN approaches.

In the testing stage, the complexity of the feature extraction is bounded by the O(n

log n) time complexity of the fast Fourier transform, where n is the number of samples

in the audio file. This allows for quick classification, given trained networks. While

these features must be classified by a separate binary classifier for each instrument,

the system of binary relevance classifiers readily lends itself to parallelization. Such

a system would, for example, allow for an efficient offline labeling of a large scale

dataset of musical recordings, or perhaps a plugin for a program such as VLC that

analyzes the instruments present in a signal in real-time.

5.7 Work Plan

The following section outlines a work schedule for progress on the dissertation.

1. Dataset Generation

As described in Section 5.2, I will create a new dataset and use several existing

datasets.

(a) Single Instrument: This dataset will consist 1000 one-second examples

of 30 different, individual musical instruments. This dataset will be used

to train the Signature Matcher Bayesian networks.

(b) Multi-Instrument Mixtures: This dataset will consists of mixtures of

two, three, and four instruments derived from random mixes of instruments

in the Single Instrument dataset described above, including examples of

more than one instance of the same instrument playing simultaneously.
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(c) Existing Datasets: For the testing phase, examples from the Real World

Computing (RWV) Music Database and the University of Iowa Musical

Instrument Samples will be used. Like my Single Instrument dataset,

these are collections of recordings of single instruments. I will randomly

derive mixtures of instruments in a manner similar to my Multi-Instrument

Mixtures described above. Use of these datasets will make my approach

more comparable to other studies that have used these datasets.

(d) Real-world Recordings: Also for the testing phase, I will find sources

of real-world recordings. One potential source is Norton’s multi-volume CD

anthology of examples from Chamber and Orchestral Music,5 commonly

used as reference in music history courses.

2. Algorithm Design

These Bayesian networks will be designed from scratch using the network struc-

tures described in Section 5.3 and shown in Figures 5.1 and 5.2. The Feature

Extractor algorithm will also be designed by hand but will use an existing imple-

mentation of a Fast Fourier Transform (FFT) implementation from a numerical

analysis toolkit.

3. Evaluation

My approach to multi-label classification of musical instrument timbre will be

empirically evaluated through a number of experiments. This system will be

trained on single instrument examples but tested on multi-instrument mixtures

of two, three, and four examples.

5http://www.wwnorton.com/college/music/grout7/home.htm
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(a) Training: Training of these networks will derive from the example of

single musical instruments. The features will be extracted as described in

Section 5.3.1 and the values discretized. The values of the variables will

derive from the counts of these discretized bins in the training data.

(b) Testing: Testing of these networks will use features extracted from the

multi-instrument signals as described in Section 5.3.2. Experiments will

be performed testing on two, three, and four instrument mixtures.

(c) Comparison: The results of my approach will be empirically compared

to several existing approaches for multi-label classification. In addition to

common algorithms such as SVM, I will consider the following common

multi-label classification algorithms:

• the Binary Relevance k-NN (BRkNN) algorithm and the Multi-label

k-NN (MLkNN) [36],

• Random k-labelsets (Rakel) [37], and

• Back-Propagation Multi-Label Learning (BPMLL) from the MuLaN

toolkit [38].

4. Extensions

The above steps outline the primary goals of this research. Given the comple-

tion of these goals, I will explore and incorporate into the dissertation these

extensions:

(a) Structure Learning: Figures 5.1 and 5.2 show two potential network

structures for the Signature Matcher and Instrument Classifier networks,

respectively. These network structures have been determined by hand

given reasonable assumptions using domain knowledge about the harmonic
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series and musical instrument timbre. I will begin with these networks for

the initial experiments. In later experiments, I will use structure learn-

ing to determine an ideal network structure for this problem given our

dataset. It is quite possible that different structures may be learned for

each different instrument.

(b) Latent Variables: A latent variable is a hidden variable whose values

are not directly observable but rather inferred. Upon completion of the

above goals, I will explore incorporating latent variables into the network

structures of Figures 5.1 and 5.2. Training a network with latent variables

requires the use of inference and I will use a common inference engine, such

as Smile.6

(c) Spectral Clustering: Spectral clustering is a technique for dimen-

sionality reduction and feature extraction which uses the spectrum of the

similarity matrix of a graph representation of the data to cluster in fewer

dimensions [39]. As an alternative approach to my above-mentioned fea-

ture extraction, I will explore spectral clustering as a mean to reduce the

dimensionality of my feature set.

(d) Domains: In this proposal, the feature extraction scheme is described for

the segmentation of musical timbre. With modification to the structures

of the Bayesian networks, this scheme could be extended to a number of

other spectral domains, such as radar, sonar, anomaly detection, speaker

identification, or elimination of noise in signals. Given adequate time, I

will run experiments testing my approach on one or more other domains

outside of the musical instrument classification problem.

6http://genie.sis.pitt.edu/download/software.html
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