

SEARCH ENGINE TUNING WITH GENETIC ALGORITHMS

by

Jeffrey Kyle Elser

A project submitted in partial fulfillment

of the requirements for the degree

of

Master of Science

in

Computer Science

MONTANA STATE UNIVERSITY

Bozeman, Montana

May 2012

©COPYRIGHT

by

Jeffrey Kyle Elser

2012

All Rights Reserved

ii

APPROVAL

of a project submitted by

Jeffrey Kyle Elser

This project has been read by each member of the project committee and has been

found to be satisfactory regarding content, English usage, format, citation, bibliographic

style, and consistency and is ready for submission to The Graduate School.

John Paxton

Approved for the Department of Computer Science

John Paxton

Approved for The Graduate School

Dr. Carl A. Fox

iii

STATEMENT OF PERMISSION TO USE

In presenting this project in partial fulfillment of the requirements for a master’s

degree at Montana State University, I agree that the Library shall make it available to

borrowers under rules of the Library.

If I have indicated my intention to copyright this project by including a copyright

notice page, copying is allowable only for scholarly purposes, consistent with “fair use”

as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation

from or reproduction of this project in whole or in parts may be granted only by the

copyright holder.

Jeffrey Kyle Elser

April 2012

iv

ACKNOWLEDGEMENTS

 I would like to thank Oracle RightNow and the Oracle RightNow applied

research team for funding the research grant that made this work possible. I also

appreciate being provided with access to relevant software.

All information contained within this work represents the views and opinions of

the author and do not necessarily represent the views of Oracle RightNow.

v

TABLE OF CONTENTS

1. INTRODUCTION ...1

 Search Tuning Problem..1

Web Indexing ...1

Structured Knowledge ...2

 Hypothesis..3

2. BACKGROUND ...4

 Knowledge Management Overview ..4

Web Content ..4

Structured Knowledge ...5

 Current Solutions ...6

Web Indexing ...6

Answer Indexing ..8

Content Tuning ..9

 Genetic Algorithms Background ...12

3. APPROACH ..14

 Web Indexing Experiment ...14

Dataset..14

Genetic Algorithm Configuration ..15

Fitness Function ...16

 Structured Knowledge Experiment ..17

Dataset..17

Genetic Algorithm Configuration ..19

Fitness Function ...19

The Levenshtein Edit Distance ..19

Normalized Discounted Cumulative Gain ...21

4. RESULTS ..24

 Web Indexing Experiment ...24

 Structured Knowledge Experiment ..28

5. DISCUSSION ..33

 Normalized Discounted Cumulative Gain vs. Expected Reciprocal Rank33

 Search Recency Boost..35

vi

TABLE OF CONTENTS - CONTINUED

6. CONCLUSIONS..38

 Feasibility of Using a GA ..38

 Creating Datasets ...39

7. RECOMMENDATIONS ...42

 Search Tuning Process ...42

Create a Baseline and Monitor ...42

Perform Periodic Search Parameter Tuning ..42

Perform Periodic Content Tuning ..43

Additional Datasets and Testing ..45

REFERENCES ..46

APPENDICES ...50

APPENDIX A: Sample Knowledge Base Answer ..50

APPENDIX B: Plots of nDCG vs. Structured Content Search Weights51

vii

LIST OF TABLES

Table Page

1. Web Search Weights ..8

2. Structured Content Search Weights ...9

3. Sample List of Most Frequently Used Search Stems...11

4. GA Parameters for Web Content Experiment ...16

5. GA Parameters for Structured Content Experiment ..19

6. Correlation Matrix of Structured Content Search Weights and nDCG30

7. Comparison of Raw Relevance and nDCG ...34

viii

LIST OF FIGURES

Figure Page

1. Sample Histogram ..11

2. Sorted Sample Histogram ..12

3. Diagram of Web Content Tuning Mechanism ...15

4. Search Count of Search Stems ...18

5. Graph of Distance Measure for Web Content Experiment26

6. Graph of Average Fitness for Web Content Experiment27

7. Graph of Performance of Structured Content GA ...29

8. Plot of nDCG over Usage Boost Weight ...32

9. Plot of nDCG over Keyword Weight...32

10. Distribution of Answers with Respect to Age ...36

11. Ideal Distribution of Answers with Respect to Age ..36

12. Plot of nDCG over Recency Boost Weight ...37

ix

LIST OF EQUATIONS

Equation Page

1. Fitness Function for Web Content Experiment ...17

2. Equation for Rank Distance Metric ...20

3. Fitness Function for Structured Content Experiment ..21

4. Cumulative Gain ..21

5. Discounted Cumulative Gain ...22

6. Normalized Discounted Cumulative Gain ...23

7. Assumption of the Non-Zero-Sum Property in nDCG 33

x

ABSTRACT

Tuning a local website to generate better local search results is a time consuming

and tedious process. In this paper, a technique that can help to automate this process is

described. Specifically, when a genetic algorithm is applied to a local search engine’s

weight parameters, the performance of the local search engine can be improved. Once

good values for the search engine have been learned, it is easy to identify local Web

pages that are candidates for further improvement.

Additionally, the same automated tuning method is applied to tuning a search

engine that indexes structured knowledge base content. It is shown that knowledge base

search weights can be tuned, resulting in improved search accuracy with regard to both

result relevancy and ranking. The normalized discounted cumulative gain (nDCG) of

tuned search results represents a nearly 25% improvement compared to the nDCG

resulting from default search weights.

Finally a method of leveraging tuned search weights to further tune content is

described. This results in the search engine overfitting to the content and providing very

relevant search results for that point in time. The search tuning is repeated periodically

when the weights no longer generalize and provide relevant results.

KEY WORDS

 Genetic Algorithms, Search Engine Enhancement

1

INTRODUCTION

Search Tuning Problem

 The Customer Relationship Management (CRM) software developed by Oracle

RightNow includes many features designed to streamline customer interaction. One

function of RightNow's CRM suite is a knowledge base where customers may ask

questions that are answered by the software product rather than by company employees.

The knowledge base has several main ways to accumulate knowledge: web indexing;

structured, support agent-generated knowledge; customer community forums; etc. The

RightNow product is able to index that content and allow customers to self-serve by

searching for answers to their questions. [23]

The search mechanism includes some weighting parameters that allow a web

master or knowledge manager to tune the search engine. Search engines must be tuned

periodically in order to maximize the relevancy of the returned results. This work will

explore methods of automatically optimizing a search engine’s parameters for web

indexed content and structured, support agent-generated knowledge.

Web Indexing

Web indexing involves spidering and indexing a company's website, allowing pre-

existing information to be utilized. [8], [9], [23] A fairly standard approach for spidering

and indexing the website is used. When a company installs RightNow's software, a

service tech performs the configuration and spiders the company's website. Initially, a list

2

containing the location of words found on the page is built. These words can be found in

the normal text body, HTML tags (e.g. H1), meta-tags and even URLs. Finally, an index

is created from this list using the software's system of weighting.

Unfortunately, a company's Web pages are often not optimized for local

searching. For example, a company might place its name in the description meta-tag of

every page on its website in order to rank its pages higher than its competitors’ pages on

Internet-wide search engine rankings. However, this homogeneous local structure might

reduce a local search engine's ability to differentiate between the content of local pages.

Because a company is in control of both its website and its local search engine, it

should be possible to have its local search engine perform more accurately. As it may be

very labor intensive for the company to manually update and optimize each Web page, a

more reasonable request is to ask the local webmaster to alter a small subset of the

website based on explicit instructions.

Structured Knowledge

Customer Care support agents have the ability to capture their troubleshooting

steps and/or results in structured documents called Answers, which are stored in a

knowledge base. The structure of these documents presents some additional features that

can be leveraged for search engine tuning. For example, it is possible to create a

hierarchical taxonomy of products or services, and specify a product or service in the

Answer. That information can then be matched to a search stem to boost or filter search

results. Unfortunately, this structure also creates some additional challenges – standard

3

web indexing does not work well on this type of content and additional search parameters

are required.

Hypothesis

We hypothesize that search engine parameter tuning can be approached in two

ways. First, the local search engine can be tuned using an automated process. Second,

changes to the website that cannot be made through automation can then be suggested.

The focus of this paper is on the first of these two approaches.

We hypothesize that by applying a genetic algorithm to tune the search weights

that are applied to both web indexed content and structured content, search results can be

improved in terms of both relevance and ranking compared to results presented using

default search parameters.

4

BACKGROUND

Knowledge Management Overview

Knowledge management is the process of identifying, capturing, and reusing the

information that results from day-to-day business in most industries. Although the idea of

knowledge management has been a standard part of medium and large businesses for

more than two decades [21], its processes and best practices are still being explored and

improved upon today. This evolution of process is largely due to changing technologies

involved in both the production and consumption of knowledge.

Webpage Content

One important type of knowledge is found in most companies’ web pages. These

pages are often created by the marketing department, but can be leveraged throughout the

organization. This content often includes formal product documentation, how-to articles,

and best practice guides. Frequently questions submitted to the customer care department

can be answered by the documents created by the marketing department, and it is costly

to ignore or duplicate that content.

The challenge with web content involves finding the content, organizing it, and

presenting it in a timely and meaningful way. Finding and organizing the content is easily

achieved with a standard local search engine. The challenging task is presenting the right

content at the right time. There are two main use cases to consider: customer self-service

and support agent reference.

5

First, most organizations will want to allow their customer base to self-serve as

frequently as possible. Allowing the customer to find their own answers creates a better

experience for the customer by providing the solution quicker and easier than if they had

to contact and work with a live support agent. Allowing self-service also saves the

organization money because they will not have support agents devoted to answering

those questions.

Second, customer care support agents will leverage existing web content to

supplement their own knowledge and solve service requests faster. Again, this creates a

better customer experience and saves the company money.

Structured Knowledge

The second type of knowledge common throughout most industries is generated

by customer care agents and stored in structured documents called Answers. Please see

Appendix A for an example Answer.

Like web content, the primary way Answers are utilized is through customer self-

service. Customers can search or browse existing Answers before submitting a service

request. Again, this practice leads to increased customer satisfaction and reduced support

costs.

If a customer cannot find the answer to their question and submits a service

request, the customer care agent that handles the service request will start by searching

existing Answers to make sure one does not already exist. If they cannot find a

preexisting Answer, they immediately create a new one and start populating it with

information as they troubleshoot the service request. Eventually, when they resolve the

6

service request, they will publish their new Answer, allowing other customers and

support agents to benefit from that knowledge.

As with web content, it should be obvious that the success of the Answer

publishing and reuse process hinges on being able to find relevant content. In other

words, the searching mechanism must work very well.

Current Solutions

At present, all local search engines rely on manual tuning, either by adjusting

weighting factors in the search engine itself, or by altering the content that is being

indexed and searched. In the next three sections we discuss the relevant weights that can

be tuned for webpage and Answer searching, as well as a recommended strategy for

tuning the content.

Because it amounts to a combinatorial optimization problem, tuning the search

weights manually is not typically very successful. Additionally, because the indexed

content changes over time, this type of tuning has to take place periodically in order to

adapt to the new content.

Webpage Indexing

The search engine used in RightNow’s CRM product spiders and indexes a

website through common spidering methods. The important feature of this search engine

is the system of weights used to create the index. These weights act as multiplying factors

when the score of a search term's occurrence in a document is calculated. For example, if

7

the search term is found in the title section of a Web page, and the title weight is 100,

then the score of that term is multiplied by 100 and added to the document's score. The

score for each document is thus the sum of the search term occurrences multiplied by

their weights. The result of a search lists the pages based on their final scores in

decreasing order. The first column in Table 1 contains a list of some of the standard

weights and the second column contains their default values. The third column of Table 1

will be discussed later.

A majority of the weight identifiers in Table 1 refer to simple HTML or Meta tags

such as <title> or <h1>. However, the meaning of a few of the tags may not be obvious

and their functions are described below.

The meta-description identifier refers to a search engine specific Meta tag. This

tag is only understandable to RightNow Technologies’ search engine. It is not considered

by most Internet-wide search engines and does not affect the page’s appearance in a

browser.

The multi-match weight is applied when more than one keyword occurs in a

search. For example, if the search terms are “rocking” and “chair” and both are found in a

document, the multi-match weight is applied to the document. This weight has no effect

when the Boolean operator joining the two words is AND instead of OR.

The backlink weight is applied as a multiplier to the ratio of the number of links

coming into a page versus the number of links going out. A page that has many outgoing

links (such as a table of contents) will have its score reduced. A page that has many

incoming links (such as one that contains important information) will have its score

8

enhanced. When a website has a common tree-like structure, a high backlink weight

causes leaf node pages to be boosted in the returned results.

Weight Identifier Default Value Tuned Weights

backlink 1000.0 510.0

description 150.0 980.0

keywords 100.0 66.0

title 100.0 180.0

meta-description 50.0 920.0

heading 1 5.0 130.0

heading 2 4.0 340.0

heading 3 3.0 640.0

heading 4 1.0 720.0

heading 5 1.0 430.0

author 1.0 440.0

multi-match 1.0 170.0

text 1.0 0.0

url text 1.0 540.0

date 0.35 140.0

heading 6 0.0 0.0

Table 1: Search engine weights that are applied to web content. The

first column is the weight identifier in the search engine, the second

column is the default, pre-optimized value, and the third column is an

example of the tuned weights generated by the genetic algorithm.

Answer Indexing

Although there is no need to spider Answers (they are generated within the system

and effectively indexed when they are created), the Oracle RightNow products still

maintain an index of Answers that is searchable. [23] Like web content searching,

Answer searching utilizes a series of weights that act as multipliers against the term

score. Table 2 contains a list of the search weights (weights 1-7) used in structured

knowledge searching. Weight 8, usage boost, is a multiplier that is applied to the entire

document score based on the how frequently the Answer is used.

9

 Weight Identifier Default Value Range Allowed
1
 Best Test Case Results

1 attachment 4 0-100 0

2 body 4 0-100 5

3 category 50 0-100 59

4 question 30 0-100 34

5 keywords 50 0-100 68

6 product 50 0-100 52

7 subject 45 0-100 40

8 usage boost 0 0-99 0

Table 2: Search engine weights that are applied to structured

knowledge base content. The first column is the weight identifier in the

search engine, the second column is the default, pre-optimized value,

the third column is the allowed range the values can take on, and the

fourth column is an example of the optimized weights generated by the

genetic algorithm.

Content Tuning

Because manually optimizing the search weights is a combinatorial optimization

problem and usually not very successful, most knowledge managers tend to opt for

optimizing content. Even after tuning the search weights automatically, some additional

content optimization will be required. In this section, we describe Oracle RightNow’s

best practice strategy for tuning content. [23] The purpose of describing this process here

is to illustrate how time consuming and tedious optimizing the content can be, and how

important it is to minimize the necessity for this effort. Additionally, it is worth noting

again that because the underlying content changes over time, content tuning has to be

performed regularly, typically every three months.

Oracle RightNow’s content tuning process is based on the premise that for a given

search term, the average rank viewed will be as close to 1 as possible. [23] Average rank

1
 These are the minimum and maximum values allowed by the Oracle RightNow products. They were not

empirically proven to represent the optimal range.

10

viewed is defined as the average rank of the search results that are clicked. This means

that the most relevant answer must be the first search result. Using a measure like

discounted cumulative gain [26] would be more robust than average rank, but average

rank is more intuitive for the knowledge managers that are using the process.

Oracle RightNow’s Content Tuning Process:

1. Generate search stem list and sort by the number of visits, in descending

order (Table 3)

2. For the top N search stems

a. If (Average Rank Viewed <= 2), do nothing.

b. If (2 < Average Rank Viewed <= 5), gray area; come back to these

after handling all cases of type c and d.

c. If (Average Rank Viewed == 0), no content exists; create new

Answers for that search stem.

d. If (Average Rank Viewed > 5)

i. Generate histogram showing which search results get

clicked most often (Figure 1).

ii. For each result that gets clicked frequently, but is ranked

lower than less popular results, adjust content to include

more instances of the search stem.

iii. Repeat steps i and ii until the histogram is sorted (Figure 2).

 Search Stem

1 UNINSTAL

2 FACEBOOK

3 31

4 UPGRAD

5 GUID ASSIST

6 SURVEY

7 ANALYT INCID ID

8 SMART ASSIST

9 INSTAL

10 CHAT

11 CLOUD MONITOR

12 PTA

13 WEBDAV

14 SLA

15 CUSTOM OBJECT

16 SERVIC PACK

17 CUSTOM PORTAL

18 API

19 SSL

20 RNTINFO

Table 3: Sample list of most frequently used search stems.

is the search stem.

been used in the last month.

that was clicked.

Figure 1: Sample

the percent of searches that click the result at that rank.

11

Search Stem Visits Average Rank Viewed

UNINSTAL 131

FACEBOOK 65

54

UPGRAD 54

GUID ASSIST 52

SURVEY 51

ANALYT INCID ID 46

SMART ASSIST 46

INSTAL 41 11.31

CHAT 37 16.36

CLOUD MONITOR 37

37

WEBDAV 36

30

CUSTOM OBJECT 29

SERVIC PACK 29

CUSTOM PORTAL 28

27

27

RNTINFO 25

Sample list of most frequently used search stems. Column 2

search stem. Column 3 is the number of times the search stem has

been used in the last month. Column 4 is the average rank of the result

that was clicked.

Sample histogram for a given search stem. Each row shows

percent of searches that click the result at that rank.

Average Rank Viewed

1.35

2.92

1.09

5.75

1.72

3.49

0.00

3.05

11.31

16.36

2.60

3.56

1.53

4.03

2.93

2.40

4.48

3.03

2.85

1.00

Column 2

Column 3 is the number of times the search stem has

Column 4 is the average rank of the result

Each row shows

Figure 2: Sample

the percent of searches that click the result at that rank.

shows the optimal search results

content.

A genetic algorithm (GA) is used to optimize the search engine parameters to

achieve better rankings within the local

experiment, GAlib’s prewritten functions were utilized

genetic algorithm functions written in C++.

For the structured content experiment, it was

genetic algorithm package on the server running the Oracle RightNow software.

necessary to construct a GA from scratch using the python programming language.

A variant of Goldberg’s Simple GA

The GA used in the structured content experiment is based on the

12

Sample histogram for a given search stem. Each row shows

the percent of searches that click the result at that rank. This figure

shows the optimal search results that are achieved after optimizing

Genetic Algorithm Background

A genetic algorithm (GA) is used to optimize the search engine parameters to

achieve better rankings within the local website automatically. For the web content

GAlib’s prewritten functions were utilized [11]. GAlib is a collection of

rithm functions written in C++.

the structured content experiment, it was not possible to install a preexisting

genetic algorithm package on the server running the Oracle RightNow software.

necessary to construct a GA from scratch using the python programming language.

Goldberg’s Simple GA [12] is used in the web content experiment

The GA used in the structured content experiment is based on the

Each row shows

This figure

that are achieved after optimizing

A genetic algorithm (GA) is used to optimize the search engine parameters to

For the web content

GAlib is a collection of

not possible to install a preexisting

genetic algorithm package on the server running the Oracle RightNow software. It was

necessary to construct a GA from scratch using the python programming language.

web content experiment.

The GA used in the structured content experiment is based on the canonical GA

13

described by M. Mitchell in the first chapter of An Introduction to Genetic Algorithms

[20]. The main elements of the simple GA are standard mutation, standard crossover, and

non-overlapping populations. The fitness function will be explained in Section 3.

 Below is an overview of the genetic algorithm used in all experiments:

1. Randomly generate a population of n individuals; each individual consists

of a list of either 16 real numbers (web content experiment) or 8 integers

(structured content experiment)

2. Loop number_of_generations times

a. Calculate fitness for each individual

b. Loop �/2 times

i. Perform fitness proportional selection to select two

individuals. We use the roulette wheel selection method in

all experiments.

ii. Perform single point crossover based on the crossover

probability

iii. Perform gene-wise mutation on each individual based on

the mutation probability

iv. Add the two individuals to the new population

14

APPROACH

Web Indexing Experiment

To produce better search engine rankings, the feature weights in the search

engine’s configuration file need to be improved. Figure 3 shows the proposed design for

the program that will optimize web content search weights as well as suggest content

changes. The Search Query, Set of Web Pages, and Desired Ranking in Search Results

are all discussed in the Dataset section below. The Search Engine Update / Machine

Learning component is then described in the Genetic Algorithm Configuration and

Fitness Function sections.

Dataset

Initially the Webmaster must supply training data. He or she must identify the

ranked pages that should result from a particular search query. This information is stored

in a batch file. It is possible that user input can be used to create this batch file

automatically [1], [22]. This is discussed further in the conclusions section.

The websites used for this experiment were created from 11 newsgroup articles.

These articles were selected from a 20,000 article data set hosted on the UCI Knowledge

Discovery in Databases Archive [13].

The articles were chosen for their structure and word count. Larger documents

tend to work better in a search engine simply because they are more likely to contain

15

multiple instances of the search term. The 11 selected articles were formatted by hand to

include HTML formatting tags and relevant Meta tags.

Figure 3: Diagram of the proposed web content tuning mechanism. A

search query, set of web pages, and search engine parameters are

provided to the search engine. The genetic algorithm is then applied to

the search results and the desired rankings, resulting in new search

engine parameters. When the GA finishes, new search engine

parameters and content changes are suggested.

Genetic Algorithm Configuration

The GA begins by creating a random population of genomes. Two different

population sizes, 1000 and 10000 were tested but the results were almost identical. All

the data in this paper was collected from tests using populations of size 1000. For the

problem at hand, the genome contains 16 real numbers ranging from 0.0 to 1000.0. Each

number corresponds to one of the weights shown in Table 1. Using random initial values

is a common technique for reducing the number of generations required for a genetic

16

algorithm to converge upon an acceptable result. There is evidence that the quality of the

random number generator affects performance as well, but for these experiments, only

GAlib’s built in random number generator was used [6], [7], [19].

The GA executes for a predetermined number of generations. Elitism is turned on

to ensure that the fittest individual is retained from one generation to the next. The

probability of mutation is set to 0.01 and the probability of crossover is set to 0.6,

commonly used values. [20]

GA Parameter Value

Population Size 1000

Mutation Probability 1%

Crossover Probability 60%

Number of Generations 100

Table 4: GA Parameters used for the genetic algorithm in the web

content experiment.

Fitness Function

A fitness function is required for all GAs. The fitness function for this problem is

a distance measure between the top ten actual rankings of the Web pages and the top ten

desired rankings from the batch file (if there are that many). Equation 1 defines the

fitness function where D is the absolute value of the difference between a page’s actual

ranking and its desired ranking. For example if a page’s actual ranking is 5 and its desired

ranking is 2, then the distance is 3. In the batch file, if there are fewer than 10 desired

rankings, then the unspecified positions are considered to match perfectly.

17

� � 1
∑� 	 101

Equation 1: Fitness function used in the web content experiment. D

denotes the absolute value of the difference between a given page’s

actual ranking and its desired ranking.

There are two special cases for the fitness function. First, if the page is not

included in the top ten results in the actual rankings, but it should be according to the

desired rankings, then D is set to 100 for that page. Second, if the actual ranking matches

the desired ranking, then D is set to -10 for that page. This defines the largest possible

distance to be 1000 and the smallest distance as -100. Substituting those values into the

fitness function, the largest distance gives a fitness value of 1/1101 or 0.0009, and the

smallest distance gives a perfect fitness value of 1. The addition of a penalty (+100) and

reward (-10) based on placement within the ranted results accommodates a positional

user model [3] where results on the first page are much more likely to be clicked.

Structured Knowledge Experiment

Dataset

The dataset for the structured knowledge experiment consisted of more than 1400

Answers from Oracle RightNow’s product site. Instead of specifying the optimal search

results by hand, we mine millions of rows of clickstream data to find search stem and

clickthrough data. In order to reduce noise and computation time, we select the top 82

search stems. We then use the clickstream’s c

histogram for each search stem, similar to the one

In Figure 4 we see that the search volume for most search stems is relatively low.

There is also a certain amount of noise in the clickstream.

perform a search and then get distracted or change interests.

might then be completely unrelated to the search.

search stems that have had c

reason, search stems past 82 were discarded.

Figure 4: Search count for each search stem found in the clickstream.

Although it was much more difficult

data has a few important benefits.

of using a GA to tune the search has been proven to work in a real world situation.

18

We then use the clickstream’s clickthrough data to create a

for each search stem, similar to the one shown in Figure 2.

In Figure 4 we see that the search volume for most search stems is relatively low.

a certain amount of noise in the clickstream. Users will occasionally

perform a search and then get distracted or change interests. The next answer they view

might then be completely unrelated to the search. To avoid this type of noise, we use only

stems that have had clickthrough to the same Answer several

reason, search stems past 82 were discarded.

Search count for each search stem found in the clickstream.

Although it was much more difficult to gain access to this data, using real world

data has a few important benefits. The most obvious is that the previously theoretical idea

of using a GA to tune the search has been proven to work in a real world situation.

through data to create a sorted

In Figure 4 we see that the search volume for most search stems is relatively low.

Users will occasionally

The next answer they view

To avoid this type of noise, we use only

several times. For this

Search count for each search stem found in the clickstream.

to gain access to this data, using real world

the previously theoretical idea

of using a GA to tune the search has been proven to work in a real world situation.

19

Additionally, by using a much larger set of optimal histograms in the fitness functions, a

single change in rank in the results for any given search stem will have a lower impact on

the fitness score. This smoothes the fitness function, making the search space easier to

traverse. Finally, because there is no longer a need to pick the optimal search rankings by

hand, this solution is much easier to implement.

Genetic Algorithm Configuration

As in the web content experiment, we used the simple GA described in the

Genetic Algorithms Background section. The parameters used are listed in Table 5

below. The genome consists of 8 integers, representing the 8 weights listed in Table 2.

GA Parameter Value

Population Size 100

Mutation Probability 1%

Crossover Probability 60%

Number of Generations 1000

Table 5: GA Parameters used for the genetic algorithm in the

structured content experiment.

Fitness Function

The Levenshtein Edit Distance. The Levenshtein Distance compares two strings

to determine their similarity [18]. It counts the number of insertions, deletions, and swaps

that need to be made to make two strings identical. For example, the strings “FROM” and

“FARM” have a Levenshtein Distance of two. They can be made identical by deleting the

‘O’ and inserting an ‘A’ in “FROM” or swapping the ‘R’ for an ‘A’ and the ‘O’ for an

‘R’.

20

We reduced our problem of finding the distance between two lists of URLs to

finding the distance between two strings by treating each URL in the list as a character in

a string. Then matching two URLs is synonymous with matching two characters in a

string.

The problem with this new fitness function is that it only changes value when a

URL moves into or out of the exactly correct position. For example, having 10 desired

results all included in the top ten actual results but scrambled so that they are not in the

correct position scores exactly the same as having the 10 desired results all fall to the

very bottom of the list. Obviously having the 10 results in the top ten can be considered a

very good solution because they will all be seen on the first page of the search results.

Therefore it is important for the fitness function to distinguish between these two cases.

To augment the Levenshtein Distance, we use the un-weighted distance from the

desired ranking to the actual ranking in the returned results list. We only call this part of

the fitness function when a desired result does not match the actual. That avoids double

scoring results that the Levenshtein Distance function already considered. Equation 2

shows this portion of the fitness function where Max refers to the largest possible

distance and ∆ refers to the distance between the actual result and the desired result. For

lack of a better term, we will call this part of the function the rank distance.

∆

��

Equation 2: The “rank distance” is the raw distance between a given

set of results and their desired ranks. This is similar to D in Equation 1.

21

The Levenshtein Distance is added to the average of the rank distance for all the

terms that did not match perfectly. Equation 3 shows the new fitness function in its

entirety.

� � �� 	 ��� � ∆
���

Equation 3: Fitness function used in the structured content

experiment. LD denotes the Levenshtein Edit Distance for actual

rankings and desired rankings. The second half of the equation is the

“rank distance” that factors in the raw distance between a given set of

results and their desired ranks.

Normalized Discounted Cumulative Gain. Normalized discounted cumulative

gain (nDCG) is a common measure of result quality in many areas of information

retrieval [26]. As seen in Equation 4, cumulative gain is the sum of the relevance

measures for each result r through rank n. The problem with cumulative gain is that it

ignores the rank of each result. So the cumulative gain for the optimal results would be

the same as the cumulative gain for the optimal results in reverse order.

�� � ���
�

���

Equation 4: Cumulative Gain where n is the number of results to

examine, i denotes the rank, and r� is the relevance measure of the

result at rank i.

22

Because the order of results is critical [3], especially when considering how

results are paged (it is quite uncommon for a user to examine results past the first page),

we used the discounted cumulative gain. In Equation 5, we see that DCG discounts the

relevance of each rank based on the log of that rank [14].

��� � ��� ��
log"i$

�

��%

Equation 5: Discounted Cumulative Gain where n is the number of

results to examine, i denotes the rank, and r� is the relevance measure

of the result at rank i.

It is important to account for the variance in the number of results and the amount

of traffic they receive. For example from Table 3, the search stem “UNINSTAL”

received 131 visits, so the cumulative gain for those results would be 131. However, the

stem “API” had only 27 visits, so its cumulative gain would be 27. Although it would be

interesting to see how biasing the search engine tuning towards more popular search

stems would affect user satisfaction, that effort is beyond the scope of this work. For our

purposes, it is necessary to normalize the DCG so that all search stems get the same

priority in the fitness function.

In Equation 6, the normalized discounted cumulative gain is the actual discounted

cumulative gain divided by the ideal discounted cumulative gain. The ideal discounted

cumulative gain is the discounted cumulative gain of the optimal results.

23

���� � ���
&���

Equation 6: Normalized Discounted Cumulative Gain where DCG is

the discounted cumulative gain of the current results and IDCG is the

discounted cumulative gain of the optimal results.

Please review the section “Normalized Discounted Cumulative Gain vs. Expected

Reciprocal Rank” in the discussion chapter for a deeper discussion on the pros and cons

of using nDCG over other methods.

Because we are using 82 search stems, and summing their nDCG, we know that

the best possible fitness for this data set is 82.

24

RESULTS

Web Indexing Experiment

Twelve tests of 1000 trials were performed on the eleven Web pages. The search

query “introduction” was used throughout the tests. Several of the test pages were large

introductory texts and FAQs. Each of these articles contained several occurrences of the

query term “introduction” in a variety of HTML and Meta tags. The other pages were

argument style posts that contained few if any occurrences of the query term.

The twelve tests were designed so that each one had a different desired ranking.

The first test’s desired ranking was realistic in the sense that a real Webmaster chose it.

The desired results for the other eleven tests were picked at random.

The tests performed show that some improvement in ranking is possible, although

not guaranteed. In four of the twelve tests, including the realistic one, perfect rankings

were achieved. In four other tests, the rankings were improved as the search engine

weights were modified by the genetic algorithm. In the remaining four tests no

improvement was attained beyond the initial random weighting. The average distance

between the actual and the desired ranking for those last four tests was 5, which as shown

in Figure 5, is a common initial distance. This eliminates lucky initial ordering as a factor

for lack of improvement.

While 100% accuracy was achieved in some test cases, this level of accuracy was

not always possible. The main reason for the GA to fail to achieve perfect rankings lies in

25

not allowing negative weighting
2
. For example, maintaining other factors constant, if one

page has three occurrences of a keyword in its body text, while another page has only one

occurrence of the keyword in its body text, then no value for the body text weight will

cause the second page to be ranked ahead of the first page. The more pages that appear in

the training file, the higher the chances are that there will be no perfect set of search

engine weights.

In Figure 6, the average fitness values from the 12 tests are plotted against the

number of generations. It is helpful to review Equation 1 before proceeding. The possible

range of values from the fitness function is from 1 to 1/1101. However, it is necessary to

realize that after excluding the perfect value of 1, the next best fitness value possible is

1/23 or 0.0435. The score 1/23 comes from 8 perfect matches (d is -10 for each) and the

two remaining pages being out of order by just one position (d is 1 for each). For

example, if the desired ranking was {5, 2, 1, 3, 4, 6, 7, 8, 9, 0}, and the actual ranking

was {5, 2, 3, 1, 4, 6, 7, 8, 9, 0}, then the score would be 1/23. The steps in the graph show

where individual tests jump from1/23 to the optimal solution of 1. By the 200th

generation, four out of 12 of the tests achieved the desired ranking. These results might

be a feature of the small search space. In the future, larger data sets should be studied.

2
 Negative weights were not allowed due to software limitations.

26

Figure 5: The actual distance between real and desired results plotted

over the number of generations. The dashed line represents distance

between the rankings of the default weights and the desired results.

The dashed line in Figure 6 represents the performance using the default weights.

As mentioned briefly above, the default weights were chosen based on a combination of

intuition and trial and error. Interestingly, using the default weights was not an optimal

solution for any of the 12 tests, and the distance from the desired ranking in the one

realistic test was 8. While these default weights may make sense when considering which

HTML and Meta tags are important, it is apparent that better configurations are often

possible.

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

0 25 50 75 100

Generation Number

D
is

ta
n

c
e

27

Figure 6: The average fitness values from 12 test cases plotted over

the number of generations. The dashed line represents the fitness of the

default weights.

One possible argument to support these lower results of the default weights is to

hypothesize that the web pages being tested are not properly tagged. If this is assumed

true, using standard search engine optimization techniques could help the pages rank

better [17], [25]. Unfortunately that position meets with a lot of resistance from real life

Webmasters. As discussed in the introduction, improving local search results

automatically is one main goal of this research. Therefore, since these test Web pages are

representative ones, they are relevant and valid for this research despite apparent

shortcomings in design and content.

The fitness function is not a smooth one (consider the -10 bonus for a perfect

match and the +100 penalty for a desired page not being listed in the top ten). While

0

0.1

0.2

0.3

0.4

0 25 50 75 100 125 150 175

Generation Number

F
it

n
e

s
s

 V
a

lu
e

28

Figure 5 shows the average solution improving over time, it is difficult to see

optimization occurring because the fitness values change non-linearly.

In Figure 5, the average actual distance is plotted against the number of

generations using a simplified fitness function. The new fitness function does not reward

perfect matches, nor does it add a penalty for desired results that do not appear in the top

ten actual results.

Using the simplified fitness function, improvement still occurs. However, only

one test now achieved the optimal solution. To allow for a better comparison between the

original fitness function and the simplified one, consider that the final average distance in

Figure 6 (approximated from the final average fitness value) is approximately 2.

Comparing that to the final average distance of approximately 3 in Figure 5, it is evident

that the simpler function is not able to match the performance of the original equation.

However, even the simpler fitness function outperforms the default weights, as depicted

by the dashed line in Figure 5.

Structured Knowledge Experiment

For both the LD fitness function and the nDCG fitness function we performed 10

trials. For all trials, the GA using the nDCG fitness function outperformed the GA using

the LD fitness function. In fact the LD GA was unable to find a result better than the

default weights. As we mentioned earlier, the LD is binary in penalizing improperly

ranked results which necessitated the addition of the rank distance from Equation 2.

Examination of the raw output from the GA shows that

not large enough in magnitude relative to the LD.

smooth the fitness landscape, it did not affect the outcome of roulette wheel selection in

most cases.

Figure 7:

generation number.

(nDCG = 1 for all search stems).

default search weights.

each generation.

fitness at the given generation.

line are the standard deviation of the best individual from each

generation.

29

Examination of the raw output from the GA shows that the rank distance component

magnitude relative to the LD. Although the rank distance serves to

smooth the fitness landscape, it did not affect the outcome of roulette wheel selection in

: Normalized Discounted Cumulative Gain plotted over

generation number. The solid black line is the best solution possible

(nDCG = 1 for all search stems). The solid gray line is the nDCG of the

default search weights. The dotted line is the average best individual at

each generation. The dashed line represents the single best individual

fitness at the given generation. The bars above and below the dotted

line are the standard deviation of the best individual from each

distance component is

Although the rank distance serves to

smooth the fitness landscape, it did not affect the outcome of roulette wheel selection in

Normalized Discounted Cumulative Gain plotted over

The solid black line is the best solution possible

The solid gray line is the nDCG of the

ividual at

The dashed line represents the single best individual

The bars above and below the dotted

line are the standard deviation of the best individual from each

30

Figure 7 shows the performance of the nDCG GA. The dotted line represents the

average best individual from all 10 trials at a given generation. The dashed line is the best

individual from all trials at a given generation. The default weight’s nDCG was 58.799

(represented by the solid gray line in Figure 7). Recall that the best possible nDCG is 82

because we are summing the nDCG from 82 search queries.

Table 6 below shows the pair-wise correlation between the 8 search weights as

well as the nDCG. Note the strong negative correlation for the 8
th

 search weight, usage

boost, and nDCG. Recall from the Background section that the usage boost is not actually

a weight applied to a section of the structured content like the other 7 weights. Instead the

usage boost is a multiplier applied to the final score based on the popularity of the

Answer. For that reason there is a more direct relationship between the search boost and

nDCG. Figure 8 is the nDCG plotted over the Usage Boost Weight.

1 2 3 4 5 6 7 8 nDCG

1 1.000 0.193 -0.051 -0.065 0.006 0.062 -0.076 0.164 -0.168

2 0.193 1.000 -0.066 0.115 -0.159 -0.173 -0.078 0.215 -0.369

3 -0.051 -0.066 1.000 0.022 -0.015 0.009 -0.136 0.051 0.000

4 -0.065 0.115 0.022 1.000 0.001 0.096 0.141 -0.007 -0.099

5 0.006 -0.159 -0.015 0.001 1.000 0.303 0.082 -0.260 0.320

6 0.062 -0.173 0.009 0.096 0.303 1.000 0.188 -0.397 0.366

7 -0.076 -0.078 -0.136 0.141 0.082 0.188 1.000 -0.119 0.142

8 0.164 0.215 0.051 -0.007 -0.260 -0.397 -0.119 1.000 -0.598

nDCG -0.168 -0.369 0.000 -0.099 0.320 0.366 0.142 -0.598 1.000

Table 6: Pair-wise correlation between the 8 search weights as well as

nDCG.

31

The other seven weights interact in a very complex, nonlinear manner. Figure 9 is

the nDCG plotted over Keyword Weight. The complex interaction evidenced by Figure 9

is quite representative of the remaining six weights as well (see Appendix B). The

complex interaction is a result of a multi-objective fitness function. There are 82 search

stems, each with their own set of relevant documents, which need to be optimized. This

results in direct competition between search stems.

For example, although increasing the keyword search weight increases the nDCG

of the results for one search stem, it may decrease the nDCG of the results of some other

search stem. In other words, if ones search stem’s Answers have lots of meaningful

content in the keywords section, but another search stem’s Answers have irrelevant

content in the keywords section, there will be a fitness tradeoff for those two search

stems.

Consider that those tradeoffs occur across all seven search weights and between

82 search stems, and the cause of the complexity becomes evident. In contrast, the usage

boost weight does not have the complex tradeoff with other search weights, so the

correlation to nDCG is more direct.

Figure 8: Plot of nDCG over Usage Boost Weight

negative correlation.

Figure 9: Plot of nDCG over Keyword Weight (weight 5) showing

slight positive correlation

0

10

20

30

40

50

60

70

80

0

n
D

C
G

32

Plot of nDCG over Usage Boost Weight (weight 8) showing

negative correlation.

Plot of nDCG over Keyword Weight (weight 5) showing

positive correlation.

20 40 60 80

Keyword Weight

showing

Plot of nDCG over Keyword Weight (weight 5) showing

100

33

DISCUSSION

Normalized Discounted Cumulative Gain vs.

Expected Reciprocal Rank

 Chapelle et al. suggest that nDCG assumes that the relevance of a result at a given

rank is independent of the results that appear at higher ranks [3]. In other words, the

relevance of a document appearing at rank three would be the same regardless of the

relevance of the documents appearing at ranks one and two.

They contend that if the documents at ranks one and two are highly relevant, the

document at rank three has a reduced probability of being clicked compared to a ranking

where the first two documents are low relevance. This is commonly referred to as the

Cascade model of presentation bias [4], [5].

 According to Chapelle et al., this creates a problem because, given five relevance

ratings (Perfect, Excellent, Good, Fair, and Bad), nDCG will grade a ranking set of

twenty Good documents higher than a ranking set of one Perfect document and 19 Bad

documents. More concisely, their argument hinges on the assumption of Equation 7.

� '())*
%+

���
, '-./0.12 	�'34*

�5

���

Equation 7: Assumption that total result relevance within a ranked set

is not balanced or zero-sum.

34

Rank 1 Perfect, 9 Bad 10 Good Actual Actual Tuned

1 169 17 20 43

2 0 17 16 33

3 0 17 12 23

4 0 17 33 20

5 0 17 23 16

6 0 17 9 12

7 0 17 12 12

8 0 17 1 9

9 0 17 43 1

10 0 16 0 0

Total Raw

Relevance

169 169 169 169

nDCG 1 .526777 .542196 .707896

Table 7: Comparison of Raw Relevance and nDCG for a variety of

rankings for the search stem “PTA”.

However, the relevance measure used in the Structured Content Experiment was

zero-sum. Specifically, given n instances of a search stem in the clickstreams table, the

total relevance that can be assigned to all ranks is n. See Table 7 for several examples

based on the search stem “PTA”. Column 2 shows hypothetical search results where the

first results has perfect relevancy and no other results are clicked – analogous to

Chapelle’s 1 perfect, 19 bad example. Column 3 shows hypothetical search results where

each result has the same relevance. Column 3 is analogous to Chapelle’s 20 good search

results. The 4
th

 column shows actual search ranks for the search stem “PTA” and the 5
th

shows the same results after tuning the search weights. The bottom row shows the nDCG

for each set of results.

35

Notice that regardless of how the relevance is distributed, as long as it is a zero-

sum system, the ranking independence assumption is not valid and the Cascade model

discussed by Chapelle et al. is assumed automatically.

Therefore, we chose to implement the most common nDCG measure instead of

the more recent Expected Reciprocal Rank measure that was proposed by Chapelle et al.

Search Recency Boost

 Although we chose 8 search weights to tune for the structured content experiment,

other weights exist that require tuning. Among them is the search recency boost weight.

This weight boosts a search result based on how recently the Answer was last updated.

Because this weight’s behavior is dependent on action taken by the knowledge manager,

rather than the structure of the content or user’s search behavior, it was initially excluded

from these experiments. However, for completeness we briefly examine this variable

below.

First, we need to consider how the Oracle RightNow knowledge base is

maintained. Answers are reviewed by a knowledge engineer or the knowledge manager at

least every 90 days. Most Answers get reviewed before 90 days due to reuse. Figure 10

shows the distribution of Answers with respect to their age.

Figure 10:

respect to their age.

Note that the behavior seen in

updated. There is a cyclical nature with a significant number of updates occurring during

the week, and very few over the weekends.

distribution where the Answer

rather than an artificial review or r

Figure 11:

reuse and age of the actual content.

0

54

N
u

m
b

er
 o

f
A

n
sw

er
s

36

: Graph showing the actual distribution of Answers with

to their age.

Note that the behavior seen in Figure 10 shows how irregularly Answers get

There is a cyclical nature with a significant number of updates occurring during

the week, and very few over the weekends. In contrast, Figure 11 shows a smoother

distribution where the Answers’ ages are more directly related to the age of the content

rather than an artificial review or reuse process.

: Model of Answer age where Answers’ ages are based on

reuse and age of the actual content.

29 1 21 71 56 30 27 33 72 15 83 27 29 69

Age in Days

Graph showing the actual distribution of Answers with

shows how irregularly Answers get

There is a cyclical nature with a significant number of updates occurring during

shows a smoother

more directly related to the age of the content

based on

Figure 12 shows the performance of the search engine over the range of possible

values of the recency boost search weight (holding all other weights constant).

that the complexity and noise of the recency model shown in

recency boost useless. However,

content review procedures in hopes of making bett

Figure 12:

range of possible values of the recency usage boost search weight.

37

shows the performance of the search engine over the range of possible

values of the recency boost search weight (holding all other weights constant).

that the complexity and noise of the recency model shown in Figure

However, in future work, we will experiment with alternate

content review procedures in hopes of making better use of this search weight.

: Normalized discounted cumulative gain plotted over the

range of possible values of the recency usage boost search weight.

shows the performance of the search engine over the range of possible

values of the recency boost search weight (holding all other weights constant). We see

Figure 10 renders the

in future work, we will experiment with alternate

er use of this search weight.

Normalized discounted cumulative gain plotted over the

38

CONCLUSIONS

Feasibility of the GA

A genetic algorithm is not a magic bullet that can configure a search engine to

rank pages perfectly. However, as this work shows, the performance of a local search

engine can be improved. The level of improvement attainable remains a future research

question. Multi-objective genetic algorithms are a possible research path to optimize the

search engine weights for larger, more complex page sets [10].

As mentioned in the Results section, the fitness function for the GA used in the

web content experiment was not very smooth because of the addition of the perfect result

reward of -10 and the missing result penalty of 100. That function performed better than

using just the distance and ignoring the two special cases, but it seems likely that a

smoother function that includes the special cases would perform even better. In the

structured content experiment, the normalized discounted cumulative gain proved to be a

much smoother fitness function and did not display the stair-step pattern we saw in the

web content experiment.

It is clear that using standard IR relevance measures such as normalized

discounted cumulative gain [26] or expected reciprocal rank [3] have several important

benefits. First, they create a smooth fitness function which cleanly accounts for positional

bias [5]. Second, they allow for meaningful comparison between search technologies

throughout the industry, creating a convenient standard for comparing results at

39

conferences like Text REtrieval Conference (TREC) [2]. Finally, standard IR relevance

measures increase consumer and buyer confidence.

It is interesting to note that, although the GA was able to improve on the default

search weights in both web content search and structured content search, the default

weights performed much better in the structured content search setting. This is due to the

additional structure imposed upon Answers. By separating various fields (body, subject,

question, etc.), the knowledge manager consciously adds content in a way that closely

matches the search engine design. In web content search, those fields are not specified

and there is much more variance in the way the content is organized by the web master.

Creating Datasets

Because creating a batch file of desired rankings is tedious and time-consuming

work for the Webmaster, it is worthwhile to explore alternate methods of discovering that

information. As was mentioned in the approach section, it may be possible to

unobtrusively collect information from users about which pages should be ranked higher

or lower [22], [1]. When a user conducts a search, statistics can be kept concerning what

results the user chooses. The user’s final choice could be given special attention since it

may be assumed that the user has found the information they were looking for. However,

caution is required when using implicit user data because the statistics can be easily

misinterpreted. For example, if a search engine returns 10 results per page, it is likely that

40

the first 10 results will be clicked more often largely because they are on the first page,

and not because they are more relevant.

More research is required in the area of implicit user feedback before it can be

relied upon for the initial training data. A more reasonable approach might be to

bootstrap the search engine with the batch file created by the Webmaster, and then later

refine the search engine by cautiously adding the data from implicit user feedback. This

will be an interesting and challenging area to study when this research is put into use by a

real world search engine and actual implicit feedback can be gathered.

In the structured content experiment we took advantage of the additional structure

to assume a more transactional user behavior. On a normal web page, a user leverages the

highly connected link structure to browse to appropriate content. Thus, understanding

user’s intent based on clickstream data is very difficult [15], [16]. Answers are used in a

more linear transactional method: users search and then perform some number of

Answer views. Answers are generally not linked together so the intent of the search can

be more closely coupled with the Answer view.

We found that, although data mined from clickstreams provide a good proxy for

manually generated training data, there is still a need for gap analysis. Because

clickstreams only provide information on what users will click on if the content exists, it

does not provide information on missing content. It might still be possible to automate

this analysis. For example, we could present users random search results to establish a

model for click behavior over low relevance results. We could then compare the click

41

pattern of a set of search results to the random model. The closer they match, the more

likely that there is an information gap that needs to be filled with additional content.

Thus, although some initial progress has been made, much research remains. We

are excited to continue exploring this problem.

42

RECOMMENDATIONS

Search Tuning Process

Create a Baseline and Monitor

We recommend measuring and tracking a standard IR relevance metric such as

nDCG. By recording nDCG for a set of search stems every day, a knowledge manager

can get a sense of how the relevance of the search results is trending. After watching this

trend for a time, the knowledge manager should be able to tell how often search and

content tuning is necessary, allowing him or her to plan periodic maintenance.

In addition, it is important to track the relevance measure before and after making

major changes to search technology, web site structure, or content. This will alert the

knowledge manager to unexpected negative consequences of the change and allow them

to be corrected in a timely manner.

Perform Periodic Search Parameter Tuning

Based on the degradation in performance that is observed by monitoring the

relevance baseline, the knowledge manager should periodically tune the search engine

parameters. The frequency of this tuning will vary based on the dynamics of the content

generation and maintenance, especially if the structure of the content changes.

Although a large scale survey has not been performed, anecdotally it appears that

search tuning should take place about once every one to three months.

43

It is important to remember that each time the search engine is tuned, a new

dataset should be generated from the clickstream data.

Perform Periodic Content Tuning

After tuning the search engine parameters, some pages will still not be ranked

correctly. The knowledge manager will need to generate a click histogram for each search

stem with a low nDCG, similar to Figure 1. The histogram can then be used to visualize

which Answers or web pages need to have content tuned.

For pages that are still ranked incorrectly after the search engine is tuned by a GA,

search weights can be used to make further recommendations for improvement. For

example, if the description weight is large and the misclassified page has no description,

it seems appropriate to recommend writing a description for the page.

Another way to deal with a misclassified page is to automatically generate a value

to use in one of the search engine specific meta-tags. This allows artificial content to be

added to a page without altering its visible contents. In general, altering the search engine

specific meta-tags should not affect the page’s ranking with other Internet-wide search

engines [24]. Therefore, to deal with problem pages, the program could add artificial

content to website meta-tags as a temporary solution, and then make recommendations

for additional content to be added later by the Webmaster as time allows.

The strategy of adding meta-content can also be applied to structured content by

adding search terms to the keywords section. One way to accomplish this would be to

mine the clickstreams and add the search term to the Answer’s keywords section. This is

similar to creating a tag cloud based on the users’ searches. There is the issue of noise in

44

the clickstream. This can be overcome by only adding a keyword after the search stem

and Answer pair appear together several times in the clickstream. In our limited testing,

this strategy of adding keywords based on frequent pairings of the search stem and

Answer has shown to be very successful. If the search engine parameters are tuned again

after adding keywords based on the clickstream content, it will overfit to that content.

This is because the fitness function and training data are derived from the same

clickstream content. Overfitting in this case means that the search engine is optimized for

content at a given point in time, but the settings will not generalize for content in the

future.

In this domain, overfitting is actually a desirable trait to some extent. It allows the

knowledge manager to tune to perfect or nearly perfect search results at a point in time. If

the tuning is not periodically performed, the overfitting will cause the relevancy to decay

over time. However, as long as the knowledge manager repeats the search tuning

whenever the relevance measure drops too low, the overfitting works well. For this

reason, we suggest a second round of search parameter tuning after adding the keywords.

The search engine configuration file weights can also be used to make design

change suggestions. For example, if the GA finds that the title tag’s weight should be

very small, a recommendation could be made to use title tags more accurately. (In

general, the title of a web page is considered to be a very important aspect by many

Internet-wide search engines.) In the results from the web content experiment (Table 1),

the relatively small weight of the keywords tag likely indicates that the keywords are

written poorly.

45

Additional Datasets and Testing

In this work, I have shown that using a genetic algorithm to tune search engines is

feasible and results in much higher search result relevancy. I look forward to applying

this method to additional datasets to further validate the process and results.

The dataset used in this work was created to facilitate business to business (B2B)

interactions. This means that the consumers of the content are regular users and

somewhat familiar with the content. In contrast, a business to consumer (B2C)

organization needs to pay special attention to the organization and presentation of content

to facilitate a high volume of infrequent users. It will be interesting to investigate how the

type of content and behavior of the users affect the tuning processes I have described.

46

REFERENCES

[1] Boyan, J., Freitag, D., Joachims, T., A Machine Learning Architecture for

Optimizing Web Search Engines. Proceedings of the AAAI Workshop on Internet

Based Information Systems, 1996.

[2] Boytsov, L., & Belova, A., Evaluating Learning-to-Rank Methods in the Web

Track Adhoc Task. TREC-20, November 2011, Gaithersburg, Maryland, USA

[3] Chapelle, O., Metzler, D., Zhang, Y., & Grinspan, P., Expected Reciprocal Rank

for Graded Relevance. CIKMACM (2009) , p. 621-630.

[4] Chapelle, O., & Zhang, Y., A Dynamic Bayesian Network Click Model for Web

Search Ranking. Proceedings of the 18th International Conference on World

Wide Web. New York, NY: ACM, 2009.

[5] Craswell, N., Zoeter, O., Taylor, M., & Ramsey, B., An Experimental

Comparison of Click Position-Bias Models. Proceedings of the international

conference on Web search and web data mining New York, NY, USA: ACM

(2008) , p. 87--94.

[6] Daida, J., Ross, S., McClain, J., Ampy, D., & Holczer, M. Challenges with

Verification, Repeatability, and Meaningful Comparisons in Genetic

Programming. Genetic Programming 97. San Francisco, CA: Morgan Kaufmann

Publishers, 64-69, 1997.

[7] Daida, J. M., Ampy, D. S., Ratanasavetavadhana, M., Li, H., & Chaudhri, O. A..

Challenges with Verication, Repeatability, and Meaningful Comparison in

Genetic Programming: Gibson's Magic. Proceedings of the Genetic and

47

Evolutionary Computation Conference. San Francisco, CA: Morgan Kaufmann

Publishers, 1851-1858 (Volume 2), 1999.

[8] Durbin, S., Warner, D., Richter, N. & Gedeon, Z. Management for Web-Based

Customer Service. Organizational Data Mining: Leveraging Enterprise Data

Resources for Optimal Performance. Edited by Nemati and Barko. Idea Group

Inc., 92-108, 2004.

[9] Durbin, S., Warner, D., Richter, N. & Gedeon, Z. Information Self-Service with a

Knowledge Base that Learns. AI Magazine, 23(4), 41-49, Winter 2002.

[10] Fonseca, C.M., Fleming, P.J., Genetic Algorithms For Multi-Objective

Optimization: Formulation, Discussion And Generalization. Genetic algorithms:

Proceedings of the Fifth International Conference, Morgan Kaufmann, San

Mateo, CA, 141-153, 1993.

[11] GALIB, A C++ Library of Genetic Algorithm Components,

http://lancet.mit.edu/ga

[12] Goldberg, D. E., Genetic Algorithms in Search, Optimization & Machine

Learning, Addison-Wesley, 1989.

[13] Hettich, S. and Bay, S. D. The UCI KDD Archive. University of California -

Irvine, Department of Information and Computer Science. http://kdd.ics.uci.edu

[14] Järvelin, K., & Kekäläinen, J. IR Evaluation Methods for Retrieving Highly

Relevant Documents, Proceedings of the 23rd Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval. New York,

NY: ACM, pp. 41–48.

48

[15] Joachims, T., Granka, L., Pan, B., Hembrooke, H., & Gay, G. Accurately

Interpreting Clickthrough Data as Implicit Feedback, Proceedings of the

Conference on Research and Development in Information Retrieval (SIGIR),

2005.

[16] Kelly, D. & Teevan, J., Implicit Feedback For Inferring User Preference: A

Bibliography. SIGIR Forum, Vol. 37, No. 2. (September 2003), pp. 18-28

[17] Kent, P., Search Engine Optimization for Dummies, Wiley, 2004.

[18] Levenshtein. Binary codes capable of correcting deletions, insertions and

reversals. Soviet Physics Doklady, 10(8), pp. 707–710, February 1966.

[19] Meysenburg, M., & Foster, J. Random Generator Quality and GP Performance.

Proceedings of the Genetic and Evolutionary Computation Conference. San

Francisco, CA: Morgan Kaufmann Publishers, 1121-1126 (Volume 2), 1999.

[20] Mitchell, M., An Introduction To Genetic Algorithms. MIT Press Cambridge,

MA, USA 1996

[21] Nonaka, Ikujiro (1991). The knowledge creating company. Harvard Business

Review 69 (6 Nov–Dec): 96–104.

[22] Qi, H., Hartono, P., Suzuki, K., Hashimoto, S., Sound Database Retrieved By

Sound, Acoustical Science and Technology, Vol. 23, No. 6, pp. 293-300, 2002.

[23] RightNow Technologies, On Demand Customer Relationship Management

Software, http://www.rightnow.com

[24] Sullivan, D., How To Use HTML Meta Tags, Search Engine Watch.

http://www.searchenginewatch.com, December 5, 2002.

49

[25] Thurow, S., Search Engine Visibility, New Riders, 2003.

[26] Weimer, M., Karatzoglou, A., Le, Q., & Smola, A., COFI
RANK

 Maximum Margin

Matrix Factorization for Collaborative Ranking. Advances in Neural Information

Processing Systems 20 MIT Press (2007) , p. 1600, 1593.

50

APPENDICES

APPENDIX A:

Sample Knowledge Base Answer

51

APPENDIX B:

Plots of nDCG vs. Structured Content Search Weights

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

Attachment Weight

n
D

C
G

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

Body Weight

n
D

C
G

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

Category Weight

n
D

C
G

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

Question Weight

n
D

C
G

52

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

Keywords Weight

n
D

C
G

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

Product Weight

n
D

C
G

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

Subject Weight

n
D

C
G

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

Usage Boost

n
D

C
G

