
THE DISCRETE FRÉCHET DISTANCE AND APPLICATIONS

by

Timothy Randall Wylie

A dissertation proposal submitted in partial fulfillment
of the requirements for the degree

of

Doctor of Philosophy

in

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

January 28, 2013



i

TABLE OF CONTENTS

1. INTRODUCTION ........................................................................................1

1.1 Motivation...............................................................................................1
1.2 Overview .................................................................................................2

2. BACKGROUND WORK...............................................................................6

2.1 Polygonal Curves .....................................................................................6
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ABSTRACT

Modern computational geometry plays a critical role across a vast number of
diverse research fields where theoretical results for provably efficient algorithms are
necessary. Many of these problems are based on matching geometric objects or finding
paths through given points with polygonal curves. This work focuses on the study
and application of polygonal curves with respect to the discrete Fréchet distance.
We overview the finished work and outline the direction of future research for the
completion of the doctoral research.

For protein structure alignment and comparison, a lot of work has been done using
RMSD (Root Mean Square Deviation) as the distance measure, which has drawbacks
under certain circumstances. Thus, the discrete Fréchet distance was recently ap-
plied to the problem of protein (backbone) structure alignment and comparison with
promising results. Here, we present the first alignment algorithm based on the discrete
Fréchet distance and compare with previous work.

For this problem, visualization is also important since protein backbone chains
can have as many as 500∼600 α-carbon atoms, which constitute the vertices in the
comparison. Even with an excellent alignment, the similarity of two polygonal chains
can be difficult to visualize unless the chains are nearly identical. Thus, the chain pair
simplification problem (CPS-3F) was proposed in 2008 to simultaneously simplify
both chains with respect to each other under the discrete Fréchet distance. The
complexity of CPS-3F is unknown, so we originally created a greedy backtracking
heuristic (SIMPLIFY). Then we define a variation of CPS-3F, called the constrained
CPS-3F problem (CPS-3F+), and prove that it is polynomially solvable by presenting
a dynamic programming solution, which we then prove is a factor-2 approximation
for CPS-3F. We then compare CPS-3F+ empirically with SIMPLIFY. Chain pair
simplification based on the Hausdorff distance (CPS-2H) is known to be NP-complete,
and we define the constrained version (CPS-2H+) as another problem of interest.

Another area of our investigation of the discrete Fréchet distance is the map
matching and set-chain matching problems. The map matching problem is to find
a path in a graph with a minimal Fréchet distance to a given polygonal line. The
set matching problem is similar, but rather than a graph, the goal is to find another
polygonal curve with nodes from a given point set. We study the discrete map
matching and discrete set-chain matching problems, and look at the complexity when
given a maximal number of vertices or points allowed, and when the paths are unique.

Finally, most of the algorithms that we developed have also been implemented as
a software library, named FPACT (The Fréchet-based Protein Alignment & Compari-
son Toolkit), providing the ability for others to align, compare, and simplify polygonal
curves with the discrete Fréchet distance.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Modern computational geometry plays a critical role across a vast number of

diverse research fields. Theoretical results with efficient algorithms, whether heuris-

tic, approximate, fixed-parameter tractable, etc., are necessary and applied in such

disparate areas as protein structure alignment, Wi-Fi hotspot placement, pattern

matching, computer vision, map routing and other GIS services, speech and hand-

writing processing, and a countless number of other applications.

Many of these problems are based on matching geometric objects and finding paths

through designated points. The problems largely deal with, or can be abstracted to,

polygonal curves, which we will focus on. The study of polygonal curves is not only

imperative to many geometric applications, but some of these path problems are

also fundamental, such as ordering, and are used to define complexity classes and

completeness.

There are many measures that are commonly used with parametric curves. The

Fréchet distance is often used when comparing two curves and can be described as

a dissimilarity measure because the distance is a measure of how different the two

curves are from each other [2]. When we examine polygonal curves, this calculation

is much easier and can be done efficiently in O(mn logmn) time [3]. However, for

many problems we are often only concerned with the nodes along the path and not

the edges. For instance, our data may be sampled from a time series and thus we

have ordering, but we may not be able to accurately infer information between the
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sampled data. This led to the discrete Fréchet distance, which was first defined in

the early 1990s [4].

Despite being well-known, the discrete Fréchet distance has not been studied or

applied in many areas where other measures – such as the standard Fréchet dis-

tance, root mean square deviation, and the Hausdorff distance – are considered the

standard benchmarks. Motivated by some biological, visualization, and map routing

applications, we utilize the discrete Fréchet distance and show many positive results.

Further, we analyze many unique aspects of the discrete Fréchet distance.

1.2 Overview

In this section, we overview the problems and research that are covered in the

proposal while highlighting many of our results.

The optimal alignment problem, as defined in [5], between two 3D chains under the

discrete Fréchet distance takes O(m7n7 log(m+n)) time to solve [5]. Due to the high

time complexity they proposed a heuristic method not dependent on the discrete

Fréchet distance. In our first publication [1], we revisited the optimal alignment

problem by proposing a possible PTAS heuristic algorithm in which all translations

and rotations were based on the current discrete Fréchet distance of the two chains.

We also showed that this was at worst a 2-approximation algorithm for the optimal

alignment problem. The new algorithm provided better alignment results than the

previous method for all empirical evaluations.

We also focused on another problem related to pairs of polygonal chains: sim-

plification. Assuming two chains are optimally aligned, in what meaningful way can

we simplify them with respect to each other? Can the chains be simplified such that
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their relationship maintains certain qualities of their similarity after simplification?

Further, what are these qualities and how are they useful? To shed light on these

questions, we utilized the Chain Pair Simplification (CPS) problem (Section 2.5) [6].

Specifically, CPS-3F – where the two chains and their comparison to each other are

all simplified via the discrete Fréchet distance (we address other variations later).

The initial motivation for this problem was visualization of aligned protein back-

bones. Given that protein backbones can have as many as 500∼600 vertices (α-carbon

atoms) in each chain, even with an optimal alignment, visualizing the similarity of

two chains is difficult unless those chains are nearly identical. Our initial approach

for CPS-3F was an efficient O(n) greedy back-tracking algorithm [1]. This heuristic

method was useful for efficiently handling pairs of extremely long chains. Using

this heuristic with our alignment algorithm yielded positive results when empirically

evaluated on protein backbone chains. However, the greedy nature of the method

makes evaluating and controlling the simplification between the two chains difficult,

even though the intra-chain simplifications are well-behaved.

Our next approach was a dynamic programming algorithm which we showed was

at worst a 2-approximation to an optimal CPS-3F simplification [7]. We achieved this

by defining the moving cost of the discrete Fréchet distance between two chains, which

is a property controlled by weakly increasing integer sequences [8], but had never been

defined or used as a measure on the discrete Fréchet distance. This measure is also

unique to the discrete Fréchet distance, and thus is not a special case of the continuous

Fréchet distance because it is infinite between continuous curves. By minimizing

the moving cost, we could exploit the inter and intra chain relationships and we

greatly improved on all of our previous empirical results. The dynamic programming

algorithm is not as efficient though, with a complexity between O(mn) and O(m2n2)

depending on the input simplification parameters. Further, chain pair simplification
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under the Hausdorff distance (CPS-2H) is NP-complete, and we are looking at the

complexity of minimizing the moving cost of using the Hausdorff distance which we

also believe will be NP-complete.

To facilitate research using the discrete Fréchet distance we created a set of open-

source libraries to run any of our algorithms based on the discrete Fréchet distance.

The FPACT (The Fréchet-based Protein Alignment & Comparison Toolkit) libraries

were designed for easy access to the algorithms by being modular and format inde-

pendent. The libraries are written and available in both C# and Python [9].

Another area of our investigation of the discrete Fréchet distance deals with the

map matching and set-chain matching problems (Chapter 5). These problems are

defined and analyzed based on the continuous Fréchet distance [10, 11]. We not only

examine them based on the discrete Fréchet distance, but also generalize the problem

definitions with new variations, and examine the complexities for the new variations

of the continuous versions as well.

One application of the map matching problem is recreating the most likely path

of a vehicle on a road network given noisy GPS tracking data. Our work extends this

analogy to assume the GPS data may also be intermittent. Suppose that in certain

areas we have no connection with the GPS until some other point in time– we still

have a polygonal curve, but we can not depend on all edges of the line to be accurate

location data. Or similarly, situations exist where a person may check in periodically,

but keeping a constant connection is too costly due to coverage or power constraints.

The set-chain problem could be viewed as finding cellular towers to ensure cover-

age, given the route to travel and the maximum range of a tower. In the set-chain

matching problem, there is a polygonal curve P , a set of points S, and an ε > 0

given. The problem is to find another polygonal curve Q such that the nodes of Q

are points in S and the discrete Fréchet distance is dF (P,Q) ≤ ε. The map matching
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problem is similar, except instead of a set of points, we have a planar graph G and

we must find a path through the graph that preserves the distance constraint. These

are formally defined with our generalizations in Chapter 5.

We extend the problems in a few ways. The original works allow points/vertices

to be used multiple times in Q, and they are only concerned whether such a path

exists. We state the problems as minimization problems where we look at minimizing

either the nodes of Q or the set of points/vertices from S/G used as nodes of Q.

These still assume non-unique nodes in Q, so we also examine the problems given

unique nodes, i.e., any point or vertex can only be used as a node in Q once. Note

that when looking at unique nodes, minimizing |Q| is equivalent to minimizing the

set of points/vertices since they can only be used once.

The rest of the proposal is as follows. In Chapter 2 we first review some necessary

background information. Then in Chapter 3 we discus the current related work. We

then survey all of the research that has been done in Chapter 4, which is followed by

the work that still needs to be finished in Chapter 5. Finally, Chapter 6 concludes

and contains the dissertation plan and timeline.
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CHAPTER 2

BACKGROUND WORK

Here, we briefly overview the background material necessary for the work pre-

sented. References are also given for a more complete and thorough treatment of the

concepts being used.

2.1 Polygonal Curves

We first overview the parametric definition of polygonal curves since our research

is based on an investigation of this fundamental geometric structure. We look at the

natural parameterization of polygonal curves [3, 12, 8, 11].

Let α : [0, p] → Rd be a polygonal curve in Rd, which consists of p line segments

ᾱi := α|[i,i+1] for i ∈ {0, 1, . . . , p−1}. Each line segment ᾱi is affine and parameterized

by its natural parameterization, i.e., α(i+λ) = (1−λ)α(i)+λα(i+1) for all λ ∈ [0, 1].

2.2 The Fréchet Distance

The Fréchet distance was first defined by Maurice Fréchet in 1906 as a measure of

similarity between two parametric curves [2]. Subsequently, it has become a standard

measure between parametric curves used in many areas. The Fréchet distance is

typically explained as the relationship between a person and a dog connected by a

leash walking along the two curves and trying to keep the leash as short as possible.

The maximum length the leash reaches is the value of the Fréchet distance. This

common analogy has led to the term “dog-walking distance” sometimes being used.
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We first define parameterized continuous curves and then formally give the standard

definition for the Fréchet distance [3, 12].

Definition 1. A continuous parameterized curve A ∈ Rd can be represented by a

continuous mapping f : [a, b]→ Rd such that a, b ∈ R and a < b.

Definition 2. A monotone reparameterization α is a continuous non-decreasing func-

tion α : [0, 1]→ [0, 1] such that α(0) = 0 and α(1) = 1.

Definition 3. Given two curves, A,B in a metric space, the Fréchet distance,

dF(A,B) is defined as

dF(A,B) = inf
α,β

max
t∈[0,1]

{d(A(α(t)), B(β(t)))}

where α, β range over all monotone reparameterizations and d(·, ·) represents the

Euclidean distance, and inf is the infimum.

In the early 1990s, the Fréchet distance was applied to polygonal curves by Alt

and Godau [13, 3]. With the restriction of polygonal lines, they proved the Fréchet

distance can be found between two curves A,B efficiently with a time complexity of

O(mn logmn) where m = |A|, n = |B|.

2.3 The Discrete Fréchet Distance

In 1994 Eiter and Mannila defined the discrete Fréchet distance as an approxima-

tion of the Fréchet distance to be used between two polygonal chains using only the

nodes along the chains for the measurements [4]. They also referred to this discrete

form as the coupling distance which is used synonymously. Furthermore, they proved

the discrete version can be computed in O(mn) time where m,n are the number of
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vertices in each polygonal chain. A rigorous look at the definition of the discrete

Fréchet distance was also done by Mosig et al. in 2005 [8].

Given two paths, we define their discrete Fréchet distance as follows. (We use

the graph-theoretic term “paths” instead of the geometric term “polygonal chains”

here because our definition makes no assumption that the underlying space of points

is geometric.) We use d(a, b) to represent the Euclidean distance between two 3D

points a and b, but it can be replaced with some other distance measure, depending

on applications.

Definition 4. Given a path P = 〈p1, . . . , pn〉 of n vertices, a t-walk along P is a

partitioning of P along the path into t disjoint non-empty subpaths {Pi}i=1..t such that

Pi = 〈pni−1+1, . . . , pni
〉 and 0 = n0 < n1 < · · · < nt = n.

Definition 5. Given two paths A = 〈a1, . . . , am〉 and B = 〈b1, . . . , bn〉, a paired

walk along A and B is a t-walk {Ai}i=1..t along A and a t-walk {Bi}i=1..t along B for

some t, such that, for 1 ≤ i ≤ t, either |Ai| = 1 or |Bi| = 1 (that is, either Ai or Bi

contains exactly one vertex).

Definition 6. The cost of a paired walk W = {(Ai, Bi)} along two paths A and B is

dWF (A,B) = max
i

max
(a,b)∈Ai×Bi

d(a, b).

Definition 7. The discrete Fréchet distance between two paths A and B is

dF (A,B) = min
W

dWF (A,B).

A paired walk that achieves the discrete Fréchet distance between two paths A and B

is called a Fréchet alignment of A and B.

If we revisit the dog-walking analogy, we consider the scenario in which a person

walks along A and a dog along B. Intuitively, the definition of the paired walk is

based on three cases:
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1. |Bi| > |Ai| = 1: the person stays and the dog hops forward;

2. |Ai| > |Bi| = 1: the person hops forward and the dog stays;

3. |Ai| = |Bi| = 1: both the person and the dog hop forward.

The following figure shows the relationship between the discrete and continuous

Fréchet distances. In Figure 2.1(a), we have the two chains 〈a1, a2, a3〉 and 〈b1, b2〉,

the continuous Fréchet distance between the two is the distance from a2 to segment

b1b2, i.e., d(a2, o). The discrete Fréchet distance is d(a2, b2). The discrete Fréchet

distance could be quite larger than the continuous distance. On the other hand, with

enough sample points on the two chains, the resulting discrete Fréchet distance, i.e.,

d(a2, b) in Figure 2.1(b), closely approximates d(a2, o).

(a) (b)

Figure 2.1: The relationship between the discrete and continuous Fréchet distance where

o is the continuous and the dotted line between nodes is the discrete. (a) shows a case where

the chains have fewer nodes and a larger discrete Fréchet distance, while (b) is the same

path with more nodes, and thus provides a better approximation of the Fréchet distance.

With enough nodes the discrete Fréchet distance can closely approximate the

continuous version, and with a standard dynamic programming approach, it is not

hard to obtain the following theorem.



10

Theorem 1. [4] The discrete Fréchet distance between two paths with m and n ver-

tices respectively can be computed in O(mn) time.

In two dimensions, it was recently shown that subquadratic time is possible, but

the difference is marginal [14]. The new algorithm still requires O(mn log logn
logn

) time.

2.4 The Hausdorff Distance

The Hausdorff distance was first defined by Felix Hausdorff in 1914 [15]. Since

its introduction, the Hausdorff distance has become one of the most widely used

similarity measures across many disciplines. Definition 8 is taken from [16].

Definition 8. Let X and Y be two non-empty subsets of a metric space (M,d) where

M is the space and d the distance measure. We define their Hausdorff distance

dH(X, Y ) by

dH(X, Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)},

where sup represents the supremum and inf the infimum.

2.5 Chain Pair Simplification

In 2008, the chain pair simplification problem in three dimensions under the dis-

crete Fréchet distance was defined in order to allow better visualization of two polygo-

nal chains [6]. The problem not only allows better visualization of the two chains in a

simplified form, but it also keeps and exploits the characteristic similarities that exist

between the chains. Although the problem does not necessarily need to be limited

to only 3D space, we state the original decision problem as it was defined relating to

protein backbone chains.
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Definition 9 (The Chain Pair Simplification (CPS) Problem).

Instance: Given a pair of 3D chains A and B, with lengths O(m), O(n) respectively,

an integer K > 0, and three real numbers δ1, δ2, δ3 > 0.

Problem: Does there exist a pair of chains A′, B′, each of at most K vertices, such

that the vertices of A′, B′ are from A,B respectively, and d1(A,A
′) ≤ δ1, d2(B,B

′) ≤

δ2, dF (A′, B′) ≤ δ3?

When d1 = d2 = dF , the problem is called CPS-3F since all three distance mea-

sures are the discrete Fréchet distance. When d1 = d2 = dH (the Hausdorff distance),

the problem is called CPS-2H since two of the distances are Hausdorff. CPS-2H was

proven to be NP-complete [6], but the complexity of CPS-3F is unknown.
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CHAPTER 3

RELATED WORK

We now survey the research relavant to our work. Given the distinct application

fields, we cover the related work in the categories: protein alignment and comparison,

chain pair simplification, and map and set-chain matching.

3.1 Protein Alignment and Comparison

The comparison and simplification of polygonal chains have been well studied in

several fields including computer vision, bioinformatics, computational geometry, and

parametric curve approximations [17, 18, 19]. Within structural biology, polygonal

chain similarity is one of the central problems of protein research. In general, it

is believed that a protein’s structure implies its function, and thus to compare the

functionality of proteins their structures must be compared [20]. This is known to

be true for certain situations, especially with homologous traits between proteins,

and in general the empirical evidence between proteins is in agreement [20, 21]. The

structure is defined by the α-carbon atoms of the residues (amino acids) along the

backbone of each chain. These atoms represent the vertices that constitute our 3D

polygonal chains.

Since the structure of the protein is intrinsically related to its function, there have

been many software systems designed for protein structure alignment and comparison

in the last couple of decades. A few of the more well-known systems are SSAP [22],

DALI [23, 24], CATH [25], CE [26], SCOP [27], MAMMOTH [28], ProteinDBS [29]

and 3D-BLAST [30]. None of these systems use the discrete Fréchet distance, and
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the majority of the work previously done on protein global structure alignment and

protein local structure alignment uses the RMSD distance measure. Given two m-

vectors V1 = 〈u1, u2, ..., um〉 and V2 = 〈v1, v2, ..., vm〉, RMSD is defined as:

RMSD(V1, V2) =

√∑
i(ui − vi)2
m

.

This gives an average pair-wise distance along the two vectors which provides some

insight into the similarity of the two chains, but the reliance on m shows one of the

major drawbacks of using RMSD. The comparison hinges on the necessity that the

two vectors be the same length and that the vertices at a given index in each chain be

pairwise similar. If we modified the chains at all we could receive very different RMSD

values. Suppose we are given two chains C1, C2 with m vertices, and we then add some

vertices on C1 and C2 by alternatively duplicating/repeating some different vertices

in C1 and C2 to obtain C ′1, C
′
2, then RMSD(C ′1, C

′
2) could be dramatically different

from RMSD(C1, C2), even though geometrically C ′1 and C ′2 are just as close as C1

and C2 are. This suggests that a measure independent of the number of vertices or a

pair-wise alignment would be a better indication on the similarity of the two chains.

To achieve a more accurate measure of similarity between two protein structures,

Jiang et al. proposed using the discrete Fréchet distance for the protein backbone

comparison [5]. The two main problems they addressed were the alignment of the

two chains, and then the comparison itself. They showed that the optimal alignment

problem, as defined in [5], between two 3D chains under the discrete Fréchet distance

takes O(n7m7 log(n + m)) time to solve [5]. Due to the high time complexity they

proposed a heuristic method not dependent on the discrete Fréchet distance. We

compare the results with our algorithm and show an improvement in alignment.
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3.2 Chain Pair Simplification

While a lot of work has been done on single chain simplification [6], there is little

comparable work with dual simplification, even outside of research with the Fréchet

distance. Most research related to simplification focuses on the continuous Fréchet

distance. This work includes partial alignment [31] or the Fréchet distance between

curves with shortcuts [32] that ignore a set number of sections of the curve that are

not well aligned.

3.3 Map and Set-Chain Matching

With respect to map matching, the problem of finding a path in a graph given a

polygonal line was first posed by Alt et. al. [11] as follows: Let G = (V,E) be an

undirected connected planar graph with a given straight-line embedding in R2 and a

polygonal line P , find a path π in G which minimizes the Fréchet distance between

P and π. They give an efficient algorithm which runs in O(pq log q) time and O(pq)

space where p is the number of line segments of P and q is the complexity of G, but

it also allowed vertices and edges to be visited multiple times.

The recent work by Maheshwari et al. improved the running time for the case of

a complete graph [10]. The original algorithm would decide it in O(pk2 log k) where

k is the number of vertices in the graph, and their new algorithm solves it in O(pk2).

The work by Maheshwari et al. changed the problem to trying to find a polygonal

curve through a subset of points to minimize the Fréchet distance to some curve P .

They define the set-chain matching problem as: Given a point set S and a polygonal
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curve P in Rd (d ≥ 2), find a polygonal curve Q with its vertices chosen from S,

which has a minimum Fréchet distance to P .

Another well-known problem that we reduce from is planar 3-SAT [33]. Planar

3-SAT is a version of the standard 3-SAT problem where the variables and clauses can

be represented by nodes in a graph, and that graph has a planar embedding. Planar

3-SAT is also NP-complete and more convenient for proving properties of geometric

problems [33, 34, 35].
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CHAPTER 4

CURRENT WORK

In this chapter we outline most of the research that we have already done. This

begins with an investigation into the alignment and simplification of protein backbone

chains. We also provide some of our empirical results. These highlight the algorithm

contributions with some heuristics and approximation algorithms based on greedy

and dynamic programming methods.

4.1 Alignment

The optimal (global structure-structure) alignment problem is formally defined as

follows.

Definition 10. Given two 3D polygonal chains A and B, a transformation class T ,

and a distance measure d(−), find a transformation τ ∈ T such that dist(A, τ(B)) is

minimized.

Of course, in our case T contains both rotation and translation, and d = dF .

Let A = 〈a1, a2, ..., am〉 and B = 〈b1, b2, ..., bn〉. It was shown that the op-

timal alignment problem under the discrete Fréchet distance can be solved in

O(n7m7 log(n + m)) time [5]. This is impractical in use, so Jiang et al. presented a

heuristic method which focuses on first aligning the center a of A and the center b of

B. (Given a 3D chain C of n vertices, the coordinates of each vertex ci of C is really

a vector ~ci, the center c corresponds to ~c =
∑

i ~ci
n

.) Then a rotation is performed such

that4a1aam and4b1bbn are on the same plane. Finally, some local improvements are

performed until the discrete Fréchet distance cannot be further improved. While this
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algorithm is still slower compared to some of the known software (like ProteinDBS

[29]), it can improve the accuracy in many situations [5].

4.1.1 Algorithm

We use a slightly different idea here. We can prove that if we first move B such

that b1 is located exactly at a1 and subsequently obtain an optimal solution, then

this solution is a factor-2 approximation for the optimal alignment problem (when a1

does not necessarily collide with b1). Of course, a factor-2 approximation may not

be accurate enough for many biological applications. Therefore, while colliding b1 at

a1 is our starting point, our algorithm goes beyond that. Our complete (heuristic)

algorithm is as follows.

Algorithm ALIGN(A,B):
Input: Two polygonal chains A = 〈a1, ..., am〉 and B = 〈b1, ..., bn〉.

1. Translate B so that d(b1, a1) = 0.

2. Let β be the midpoint of 〈am, bn〉. Rotate B around the axis line (a1, β) so that
d(am, bn) is minimized. Let ai ∈ A and bj ∈ B be the two vertices such that
d(ai, bj) = dF (A,B).

3. Initialize O∗(A,B)←− dF (A,B).

4. Loop until no improvement of O∗(A,B) is made.

(a) Rotate until no improvement of O∗(A,B) is made.

i. Let γ be the midpoint between a1, b1. Let µ be the midpoint between
ai, bj.

ii. Rotate B around the axis line (γ, µ) by θ such that −180 ≤ θ ≤ 180
and |θ| is the largest angle which results in dF (A,B) < O∗(A,B).

iii. Update O∗(A,B)←− dF (A,B) and update ai, bj accordingly.

(b) Translate until no improvement of O∗(A,B) is made.

i. Translate B along the vector
−−→
bjai by δ such that δ is the largest value

which results in dF (A,B) < O∗(A,B).
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ii. Update O∗(A,B)←− dF (A,B) and update ai, bj accordingly.

5. Return A,B,O∗(A,B).

While we are unable to prove that this algorithm is a PTAS for the optimal

alignment problem, we believe that for practical data it is almost a PTAS. Now,

we give some evidence that, when translating B such that b1 collides with a1 and

obtaining subsequently an optimal solution (with b1 sticking at a1), in fact gives us a

factor-2 approximation for the optimal alignment problem.

Lemma 1. Given two 3D polygonal chains A,B of length m,n respectively such that

the optimal dF (A,B) = ε, an optimal transformation τ aligning A and τ(B) such that

d(a1, τ(b1)) = 0 gives a 2-approximation for the optimal alignment problem.

4.1.2 Empirical Results

In [5], rigorous studies are performed regarding comparing protein backbone 107j.a

with the other seven chains from the Protein Database (PDB): 1hfj.c, 1qd1.b, 1toh,

4eca.c, 1d9q.d, 4eca.b, 4eca.d. These seven chains were reported to be similar to 107.j

by the ProteinDBS software (which takes a few seconds searching the whole PDB,

which contained over 30,000 protein backbones at that time). Using the discrete

Fréchet distance as distance measure, while taking much longer (close to one minute

for each pair), the heuristic algorithm in [5] reported that 3 of the 7 chains are in

fact not really similar to 107.j. ProteinDBS subsequently updated their webpage for

this. Here, in Table 4.1, we simply compare our ALIGN algorithm with that of [5].

We mostly focus on accuracy. All distances are measured in angstroms.
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Protein Chain (B) RMSD [5] dF (A,B) [5] dF (A,B) [1]

1hfj.c 0.27 1.01 0.95

1qd1.b 2.81 22.90 22.65

1toh 2.91 35.09 22.06

4eca.c 1.10 6.01 5.55

1d9q.d 2.88 22.18 20.87

4eca.b 1.09 5.76 5.64

4eca.d 1.45 5.92 5.71

Table 4.1: Alignment with 107j.a (Chain A) where all eight chains have 325 vertices, and

the original work is [5] and our new algorithm, ALIGN, is [1].

4.2 CPS-3F Heuristic

Here we try to solve the CPS-3F problem with a practical solution. It is known

that the greedy method does not always work even for simplifying a single chain under

the discrete Fréchet distance, with some counterexample presented in [6]. Here, we

use a greedy backtracking method. Our ideas are as follows: (1) While greedy does

not always work, for protein backbones we have the implicit condition that for all

possible i d(ai, ai+1) ≈ 3.7 to 3.8 (angstroms), i.e., the neighboring α-carbon atoms

in a protein backbone have an almost uniform length. With this condition a lot of

counterexamples do not hold anymore. (2) To mend possible holes of the algorithm,

when we are stuck at a certain point (using the greedy method), we backtrack some

(constant number of) steps and re-try the greedy method again. While it is not

known whether this algorithm leads to an optimal solution, it works well for practical

protein data, some of which are to be presented in Section 5.

We first show a simple lemma which helps us to determine whether the input

could lead to an infeasible solution. Certainly, this lemma also implies that having
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an almost optimal alignment of A and B, resulting in minimizing dF (A,B), is crucial

for the success of the simplification algorithm.

Lemma 2. Given two 3D polygonal chains A and B, if a solution (A′, B′) for CPS-3F

is found with dF (A,A′) ≤ δ1, dF (B,B′) ≤ δ2 and dF (A′, B′) ≤ δ3, then dF (A,B) ≤

δ1 + δ2 + δ3.

4.2.1 Algorithm

Let B(b, δ) be a ball centered at point b with radius δ. Our heuristic algorithm

for CPS-3F, which assumes that A and B are almost optimally aligned, is as follows.

Algorithm SIMPLIFY(A,B,K, δ1, δ2, δ3):
Input: Two polygonal chains A = 〈a1, ..., am〉 and B = 〈b1, ..., bn〉, a positive integer
K, and three positive constants δ1, δ2, δ3.
Output: Two simplified chains A′ = 〈a′1, ..., a′K〉 and B′ = 〈b′1, ..., b′K〉.

1. Run the algorithm ALIGN(A,B).

2. If dF (A,B) > δ1 + δ2 + δ3, report ‘no valid solution’ and exit.

3. Initialize a′1 ←− a1, b
′
1 ←− b1, i← 1, j ← 1.

4. Loop until i = j = K.

(a) Let 〈ai,1, ai,2, ..., ai,p(= aI)〉 be the maximal subsequence of A which is
inside B(a′i, δ1) and let 〈bj,1, bj,2, ..., bj,q(= bJ)〉 be the maximal subsequence
of B which is inside B(b′j, δ2). (Note that a′i = ai,p′ for some p′ ≤ p and
b′j = bj,q′ for some q′ ≤ q.)

(b) Let 〈aI+1, aI+2, ..., aI+s〉 be the maximal subsequence of A which is inside
B(aI+s′ , δ1) and let 〈bJ+1, bJ+2, ..., bJ+t〉 be the maximal subsequence of B
which is inside B(bJ+t′ , δ2), with s′ ≤ s, t′ ≤ t.

(c) If d(aI+s′ , bJ+t′) ≤ δ3, then

i. I ←− I + s, J ←− J + t,

ii. a′i+1 ←− aI+s′ , b
′
j+1 ←− bJ+t′ ,

iii. i← i+ 1, j ← j + 1.
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(d) Else if d(a′i, bJ+t′) ≤ δ3, then

i. J ←− J + t, b′j+1 ←− bJ+t′ ,

ii. j ← j + 1.

(e) Else if d(a′I+s′ , bj) ≤ δ3, then

i. I ←− I + s, a′i+1 ←− aI+s′ ,

ii. i← i+ 1.

(f) Else backtrack by successively letting a′i be ai,p′−1, ai,p′−2, ..., ai,1 and letting
b′j be bj,q′−1, bj,q′−2, ..., bj,1, and loop over Steps (a) through (e). If neither i
nor j can be incremented over these pairs of a′i and b′j, exit with a report
‘no valid solution’.

The algorithm returns two simplified chains where |A′| = |B′| = K whether they

could be simplified more or not. Thus, it is possible for consecutive nodes of A′, B′

to be equal, e.g. ai = aj = ar where ai, aj ∈ A′, ar ∈ A. This duplication can easily

be taken out if the desire is that the chains be less than or equal to K rather than

only equal.

4.2.2 Empirical Results

The results for the heuristic algorithm are in Tables 4.2 and 4.3. The setup and

values are discussed in detail in Section 4.3.3, so they can be easily compared with

the results from our approximation algorithm.

4.3 CPS-3F+

The greedy nature of our heuristic method makes evaluating and controlling the

simplification between the two chains difficult, and far from optimal. To improve

these results, we define a new metric on the discrete Fréchet distance called the

moving cost. Using the moving cost, we define a dynammic programming algorithm
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that minimizes the new measure, and we prove is a 2-approximation algorithm of the

optimal CPS-3F solution.

4.3.1 The Moving Cost

Here, we use the theory of weakly increasing integers [8] with simultaneous simpli-

fication to define what we call the moving cost of the alignment between two chains.

Definition 11. The moving cost of a paired walk W = {(Ai, Bi)} is

mW
c (Ai, Bi) = max{|Ai|, |Bi|} (4.1)

The moving cost of a paired walk W between A and B is

mW
c (A,B) =

t∑
i=1

mW
c (Ai, Bi). (4.2)

The moving cost for A and B is the sum of the number of “hops” the man or dog

make along the two chains. However, when they both move at once, this only counts

as a single move. In other words, it is the number of pairs of points, or matched

points, between the chains used in calculating the discrete Fréchet distance.

In Figure 4.1 we show a very simple example of two chains that can be simplified

in two possible ways. In Figure 4.1(a) the moving cost is six and the number of nodes

for each chain is four, and in Figure 4.1(b) the moving cost is still six, yet the number

of nodes is now five in each chain.

We can prove some nice properties of the moving cost, such as the complexity

being polynomial and its ability to approximate the number of vertices. As we make

use of later, max(|A|, |B|) ≤ mW
c (A,B) ≤ |A| + |B| − t for a paired t-walk W along

A and B. This is the motivation for our variant of CPS-3F and CPS-2H.

Definition 12 (The Constrained Chain Pair Simplification (CPS+) Problem).
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(a) (b)

Figure 4.1: The difference between the number of nodes and the moving cost. Suppose

that both (a) and (b) are valid simplifications of two chains. They have the same moving

cost, yet (a) only has four nodes in each of the simplified chains, but in (b) both chains

have five nodes.

Instance: Given a pair of 3D chains A and B, with lengths O(m), O(n) respectively,

an integer K ′ > 0, and δ1, δ2, δ3 ∈ R+.

Problem: Does there exist a pair of chains A′, B′ where the vertices are from A,B,

respectively, such that for some paired walk W between A′, B′, mW
c (A′, B′) ≤ K ′, and

d1(A,A
′) ≤ δ1, d2(B,B

′) ≤ δ2, dF (A′, B′) ≤ δ3?

When d1 = d2 = dF , we call the problem CPS-3F+, and when d1 = d2 = dH , the

problem is denoted CPS-2H+.

4.3.2 CPS-3F+ ∈ P

In this section we present a polynomial time solution for CPS-3F+. Several ver-

sions of the single chain simplification problem were addressed and shown to be poly-

nomially solvable by Bereg et al. [6]. However, CPS-2H (where the Hausdorff distance

is used for d(A,A′) and d(B,B′)) was shown to be NP-complete and thus it is believed

that the Fréchet version might be as well. The solution presented here proves that

under the discrete Fréchet distance, the constrained chain pair simplification problem

(CPS-3F+) is polynomially solvable when the dimension is fixed. The algorithm
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Figure 4.2: The rectangle ri,j constructed from subchains of A,B where d(ai, bj) ≤ δ3.

Here SA(ai, δ1) contains the vertices ai−1 to ai+2, and SB(bj , δ2) contains the vertices bj−1

to bj+1. Thus, ri,j is defined by the min and max node indices in each subchain.

returns the optimal K ′, specified in the definition of the decision problem, which is

equal to

mc(A
′, B′) = min

W
mW
c (A′, B′), (4.3)

among all feasible W . We now define several necessary terms and data structures.

Given two polygonal chainsA = 〈a1, a2, ..., am〉, B = 〈b1, b2, ..., bn〉, and constraints

δ1, δ2, δ3 ∈ R+, we can design a dynamic programming algorithm to find the optimal

moving cost K ′. First we let D = {(ai, bj)| ai ∈ A, bj ∈ B and d(ai, bj) ≤ δ3}. This

is the set of all pairs of nodes between the two chains which are at a distance of at

most δ3 from each other. Then we can define a matrix C of size m× n, which in any

cell Ci,j, contains the minimum number, K ′, of pairs (ak, bl) ∈ D, which given δ1, δ2,

and δ3 simplify A and B via CPS-3F+ from (a1, b1) up to (ai, bj).

In order to maintain C, we need another data structure R and some other helpful

definitions. We define SX(xi, δ) as the maximal continuous subchain containing xi

on the polygonal chain X such that all the vertices on this subchain are contained in
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the sphere centered at xi and with radius δ. Now let ri,j be the rectangle on C de-

fined as 〈min(SA(ai, δ1)), max(SA(ai, δ1)), min(SB(bj, δ2)), max(SB(bj, δ2))〉 such that

(ai, bj) ∈ D. Here, min and max refer to the minimum or maximum indexed element

within SX(xi, δ). For every pair in D, we envision the corresponding rectangles as

being overlayed on C. A rectangle ri,j covers all the cells of C that are analogous to

the vertices in SA(ai, δ1) ∪ SB(bj, δ2) as shown in Figure 4.2.

For convenience we also define the set of all rectangles that a cell in C belongs

to: Qk,l = {ri,j|ak ∈ A, bl ∈ B and min(SA(ai, δ1)) ≤ ak ≤ max(SA(ai, δ1)) and

min(SB(bj, δ2)) ≤ bl ≤ max(SB(bj, δ2))}.

Now we define R as a matrix of sets where the matrix is of size m by n, and R

provides information needed to fill out C by storing a list of rectangles for each cell.

Ri,j contains a set of rectangles (dynamic array) which pertain to the number of cov-

erings (rectangles) still viable at any (i, j) relating to the number already calculated

for Ci,j. These are computed by the recurrences in Equations 4.4 and 4.5, which are

shown along with the initial conditions for the relations.

Initial Conditions: Q1,1 6= ∅, R1,1 = Q1,1, and C1,1 = 1.

Ci,j = min
(k,l)∈{(i-1,j),(i,j-1),(i-1,j-1)}


Ck,l, if Qi,j ∩Rk,l 6= ∅

Ck,l + 1, if Qi,j ∩Rk,l = ∅, Qi,j 6= ∅, Rk,l 6= ∅

NULL, if Qi,j = ∅

(4.4)

Ri,j =
⋃

(k,l)∈{(i-1,j),(i,j-1),(i-1,j-1)}


Rk,l ∩Qi,j, if Ci,j = Ck,l, Rk,l ∩Qi,j 6= ∅

Qi,j, if Ci,j = Ck,l + 1, Rk,l 6= ∅,

Rk,l ∩Qi,j = ∅

(4.5)
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The idea is to find the minimum covered xy-monotone increasing path from (a1, b1)

to (am, bn) which corresponds to C1,1 to Cm,n. This is the minimum path by basic

dynamic programming with all feasible options explored. If we visited a cell that was

not covered, that would mean one of the nodes is not covered by a pair in D. By

finding this covered walk, one guarantees that every column and every row is covered

by at least one rectangle which means all of the nodes of A and B are covered.

The increasing xy-monotone path is necessary in the recurrence due to the defi-

nition of the discrete Fréchet distance. Without the requirement of a monotonically

increasing path this would be using the weak discrete Fréchet distance.

We first characterize the optimal substructure of CPS-3F+ as an optimization

problem given our definitions, and then show this yields the optimal solution for K ′

and thus decides CPS-3F+. All theorems have been proven, though this work has

been omitted for brevity.

Theorem 2. Optimal substructure of CPS-3F+:

Let A = 〈a1, . . . , am〉 and B = 〈b1, . . . , bn〉 be two polygonal chains, δ1, δ2, δ3 ∈ R+,

and let Zi = 〈z1, . . . , zi〉 such that every zj is a rectangle, be any CPS-3F+ solution.

1. If (ak, bl) is covered by zi where (k, l) ∈ {(m-1, n), (m,n-1), (m-1, n-1)}, then Zi

is a CPS-3F+ solution for Ak, Bl.

2. If (ak, bl) is covered by zi−1 where (k, l) ∈ {(m-1, n), (m,n-1), (m-1, n-1)}, then

Zi−1 is a CPS-3F+ solution for Ak, Bl.

3. If (ak, bl) is not covered by zi or zi−1 where (k, l) ∈ {(m-1, n), (m,n-1), (m-1, n-

1)}, then @ a CPS-3F+ solution for Ak, Bl.

Theorem 3. Constrained chain pair simplification, under the discrete Fréchet dis-

tance, is polynomially solvable, i.e. CPS-3F+ ∈ P.
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Corollary 1. Constrained chain pair simplification gives a factor 2-approximation to

the chain pair simplification problem under the discrete Fréchet distance, i.e., CPS-

3F+ provides a 2-approximation of CPS-3F.

The time complexity is largely dependent on δ1, δ2, and δ3 because they define

the size and number of rectangles. We allow δ1, δ2, and δ3 to be absorbed in the

complexity because their values do not guarantee a specific number of rectangles to

be considered, nor how large a given rectangle is. We can easily bound the complexity

between O(mn) and O(m2n2). If the values of δ1, δ2, and δ3 are small then any cell

will only have a small constant number of rectangles to consider and the algorithm

runs in O(mn) time, which is the case for most protein related data.

The space complexity also has similar bounds, requiring a minimum of O(mn)

space and a maximum of O(m2n2) space if Q is used näıvely and built beforehand.

The recurrences themselves only require two rows of data for either |A| or |B|, so the

space complexity is linear to the size of the smaller chain (WLOG O(n)). However,

this would require calculating Qi,j at every step for the cell, which as discussed, could

be expensive if the delta values are large.

4.3.3 Empirical Results

We now present some results comparing our previous heuristic method SIMPLIFY

[1] and the 2-approximation solution of CPS-3F+. We present the results for chains

with a similar length and then look at dissimilar chains of various lengths in order to

vary the amount of simplification per chain.

We note that in the result sections, the RMSD values were taken from ProteinDBS,

and thus the alignment length, or coverage, is not the full length of each chain [29].

This is especially true when discussing chains of different lengths in 4.4. This makes
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a straightforward comparison between the chains using both RMSD and the discrete

Fréchet distance difficult. However, the results are mainly to compare CPS-3F+ to

our previous algorithm SIMPLIFY [1], and thus the coverage is not listed.

Using the same format as our previous results, we set δ1 = δ2 for simplicity and

to ensure chains A′, B′ will have a similar reduced length since nearly all are the

same length initially. δ3 is set to the minimum integer value that will reduce the

chains via CPS-3F+ given δ1, δ2. The comparison tables in both cases are using the

protein backbone 107j.a (protein A) and comparing it with seven other chains from the

Protein DataBank: 1hfj.c, 1qd1.b, 1toh, 4eca.c, 1d9q.d, 4eca.b, 4eca.d. These seven

chains were reported to be similar to 107j.a by the ProteinDBS software [29] (this

took a few seconds searching the whole PDB, which contained over 30,000 protein

backbones at that time). Previously, [5] used a heuristic algorithm based on the

discrete Fréchet distance and showed that three of the seven chains were not actually

similar to 107j.a, and ProteinDBS has subsequently updated their page to reflect this.

The protein chain 107j.a and all but one of the seven chains have 325 nodes along

the backbone.

For the CPS-3F+ algorithm, all chains are assumed to be aligned, and we use the

alignments from our previous algorithm ALIGN [1]. In Table 4.2 we fixed δ1 = δ2 = 4

since the distance between two α-carbon atoms in the backbone is approximately ≈

3.7 to 3.8 (angstroms). This value ensures that we will be simplifying the chains a

minimal amount. We can see that we get an approximate reduced length of 1/3 which

is what we would expect (since this distance will only use the neighboring nodes).

The optimal algorithm allows for δ3 to be much smaller than the heuristic because it

can simplify the chains with a value often less than dF (A,B), and hence dF (A′, B′)

is a lower value.
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In Table 4.3 we vary δ1 and δ2 for different amounts of simplification and again

set δ3 to the minimum integer value that allows for simplification via CPS-3F+. We

keep δ1 = δ2 for simplicity and to ensure a similar reduced size for both chains. Here

we have a more dramatic difference in δ3 and in dF (A′, B′) because of the greater

simplification possibilities between A,A′ and B,B′ since δ1, δ2 are much larger. This

demonstrates how CPS-3F+ is able to simplify the two chains simultaneously while

highlighting the similarities between the two chains. This is especially noticeable

in that the discrete Fréchet distance between the simplified chains, dF (A′, B′), is

drastically less than that of the original chains, dF (A,B).

We can see that the optimal results far exceed the heuristic approximation. If

we look at 4eca.c in Table 4.3, the difference between the heuristic (11.73) and the

optimal (2.90) is dramatic. The optimal δ3 for CPS-3F+ is 3 to 4 times smaller than

the heuristic in general, and the discrete Fréchet distance between A′ and B′ is smaller

than the original distance between A,B.

The heuristic algorithm only allowed for a constant number of backtracking steps

which resulted in both chains being simplified to a similar number of vertices. With

CPS-3F+, we can see that the chains can vary greatly in the amount they simplify in

order to have a minimum moving cost.

One aspect of chain pair simplification we have not exploited is simplifying the

chains differently. Here, we look at chains that vary in length, are not aligned as well

with the base chain, and subsequently have a large discrete Fréchet distance. Table

4.4 shows these results. The values for δ1 and δ2 were chosen in an attempt to simplify

both chains to a similar size via CPS-3F+. This allows us to pull out the similarities

of two chains that may be vastly different without simplification, yet still have some

subset of nodes that align and compare well. For visualization purposes, it lets us see

the overall subset similarity structure of the two chains. This method could prove
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Protein |B| RMSDdF (A,B) δ1 δ2 δ3 |A′| |B′| K ′ dF (A′, B′) δ3 |A′| |B′| K ′ dF (A′, B′)

Chain (B) [5] [1] [1] [1] [1] [1] [7] [7] [7] [7] [7]

1hfj.c 325 0.27 0.95 4 4 1 109 109 109 0.95 1 109 109 109 0.95

1qd1.b 325 2.81 22.65 4 4 47 110 109 110 24.96 21 117 126 150 20.70

1toh 325 2.91 22.06 4 4 60 109 110 110 23.39 21 149 130 178 20.54

4eca.c 325 1.10 5.55 4 4 20 109 109 109 7.96 6 110 111 111 5.97

1d9q.d 297 2.88 20.87 4 4 43 109 108 109 23.68 20 130 127 166 19.86

4eca.b 325 1.09 5.64 4 4 17 109 109 109 7.51 5 110 111 111 4.89

4eca.d 325 1.45 5.71 4 4 18 109 109 109 7.82 5 111 113 113 4.94

Table 4.2: Comparison of Algorithm SIMPLIFY [1] and FIND-CPS-3F+ with

107j.a (Chain A) of length 325. δ1 = δ2 = 4, and δ3 set to the minimal value. The

heuristic method is in [1] and the CPS-3F+ results are in [7].

Protein |B| RMSD dF (A,B) δ1 δ2 δ3 |A′| |B′| K ′ dF (A′, B′) δ3 |A′| |B′| K ′ dF (A′, B′)

Chain (B) [5] [1] [1] [1] [1] [1] [7] [7] [7] [7] [7]

1hfj.c 325 0.27 0.95 12 12 4 28 28 28 3.77 1 26 26 26 0.95

1qd1.b 325 2.81 22.65 15 15 33 16 17 17 22.64 12 21 23 24 11.94

1toh 325 2.91 22.06 16 16 34 18 16 18 28.51 13 22 19 22 12.80

4eca.c 325 1.10 5.55 12 12 12 28 28 28 11.73 3 27 27 27 2.90

1d9q.d 297 2.88 20.87 15 15 27 19 21 21 23.73 13 22 24 26 12.99

4eca.b 325 1.09 5.64 12 12 8 28 28 28 7.81 3 26 26 26 2.94

4eca.d 325 1.45 5.71 12 12 11 28 28 28 10.01 3 32 32 32 2.99

Table 4.3: Comparison of Algorithm SIMPLIFY [1] and FIND-CPS-3F+ with

107j.a (Chain A) of length 325. δ1 = δ2, and δ3 set to the minimal value. The heuristic

method is in [1] and the CPS-3F+ results are in [7].
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Protein |B| RMSD dF (A,B) δ1 δ2 δ3 |A′| |B′| K ′ dF (A′, B′) δ3 |A′| |B′| K ′ dF (A′, B′)

Chain (B) [1] [1] [1] [1] [1] [7] [7] [7] [7] [7]

3ntx.a 322 2.14 10.04 10 10 22 35 40 40 16.21 5 39 39 39 4.91

1wls.a 316 2.18 11.97 15 13 32 16 25 25 20.50 6 22 22 22 5.99

2eq5.a 215 2.72 22.35 8 6 39 53 43 53 23.47 19 58 53 66 18.91

2zsk.a 219 2.85 21.92 12 8 30 27 31 31 24.60 17 38 34 43 16.90

1zq1.a 363 3.01 23.38 10 12 40 36 37 37 28.30 19 51 53 56 18.47

3jq0.a 457 11.52 27.36 6 9 52 71 54 71 30.75 26 65 70 80 25.67

2fep.a 273 3.33 24.55 20 17 27 13 13 13 25.00 10 10 11 11 9.94

Table 4.4: Comparison of Algorithm SIMPLIFY [1] and FIND-CPS-3F+with 107j.a (Chain

A) of length 325, and various δ1, δ2, and δ3 set to simplify both chains to a similar length.

The heuristic method is in [1] and the CPS-3F+ results are in [7].

useful when finding nodes in each chain that match well together, i.e. they have a

low moving cost and small discrete Fréchet distance.

The heuristic method SIMPLIFY [1] does not find similar optimal simplifications,

and also ends up with a much higher moving cost and δ3. The discrete Fréchet

distance, consequently, is also much higher. As in our previous results, for both

SIMPLIFY and CPS-3F+, we picked δ1 and δ2, and then report the smallest integer

value of δ3 that worked for the respective algorithm.

The disparity between the number of vertices and the moving cost (K ′) is lessened

if the chains simplify in a similar fashion. When δ1 and δ2 are large, but δ3 is small, it

allows for these larger “hops” to be made, and thus the simplified chains are similar

in length, and the moving cost is a closer approximation to K. Using larger than

minimum values for δ3, we allow for greater flexibility in the simplification and it will

yield a lower moving cost.
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4.4 The Fréchet-based Protein Alignment & Comparison Toolkit

To facilitate research using the discrete Fréchet distance we have also created a

set of libraries to run any of our algorithms based on the discrete Fréchet distance.

The FPACT (The Fréchet-based Protein Alignment & Comparison Toolkit) libraries

were designed for easy access to the algorithms by being modular and protein file

format independent. The toolkit includes methods and classes such as the discrete

Fréchet distance, ALIGN [1], SIMPLIFY [1], versions of CPS-3F+ optimized for space

or time efficiency [7], the CPS-3F+ backtracking algorithm [7], and some other utility

functions. The libraries will be updated with any future algorithms or results as well.

All libraries are written and available in both C# and Python with Numpy.

We have also implemented a simple web-based application which uses these li-

braries. The web-based application runs within the Silverlight framework, and can

be used in any browser supporting the Silverlight or Moonlight runtime. The software

is available to the public for general use, thus providing the ability to align, compare,

and simplify protein backbones with the discrete Fréchet distance without directly

using the libraries [9].

FPACT, the web application, and relevant documentation about the research, can

be found at the website http://www.cs.montana.edu/∼timothy.wylie/frechet/.
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CHAPTER 5

FUTURE WORK

We now cover our ongoing and future research to conclude the scope of the dis-

sertation. There are some open problems related to chain pair simplification that

need to be answered, and then we move into a related area of path finding algorithms

based on the discrete Fréchet distance.

Our recent work on the discrete versions of the map matching and set-chain match-

ing problems are more theoretical and seek to prove the complexity of the problems.

For the problems that are polynomially solvable, we also prove the optimal substruc-

ture and give a dynamic programming solution.

5.1 Chain Pair Simplification

In [7] we introduced the idea of the moving cost of two polygonal curves compared

under the discrete Fréchet distance (Section 4.3.1). We then defined the constrained

chain pair simplification problem (Definition 12), and then proved that under the

discrete Fréchet distance, CPS-3F+ is polynomially solvable. We plan to address two

open problems posed by this work.

The complexity of CPS-3F is unknown, and it is easy to see that every solution

with a minimum moving cost is not a CPS-3F solution, but does every solution of

CPS-3F have a minimum moving cost? This is most likely not true, but needs to be

proven or shown with a counter-example.

CPS-2H was proven to be NP-complete [6], and we need to look at the complexity

of CPS-2H+. We believe this problem will also be NP-complete. If proving this be-
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comes infeasible, evaluating CPS-1H+ may prove fruitful. If no positive results come

from this investigation, then finding a decent approximation algorithm or heuristic

method will be a priority.

5.2 Set-chain Matching

Here, we look at the discrete version of a problem originally defined in [10] with

the continuous Fréchet distance, and then look at the variations of this problem that

are also of interest. Figure 5.1 shows a simple instance of the problem.

Figure 5.1: An instance of the set matching problem in 2D with one possible solution of

k ≥ 11.

The set-chain matching problem is equivalent to the map matching problem for

complete graphs. Essentially, there is more freedom because any choice of points

is possible. In a graph, however, you are restricted by the neighbors at any given

vertex. We first formally define the problem and its variations. It is important to

note that, as in the continuous version, we make no requirements that P or Q be

planar. Further, for problem classification we mainly focus on the reachable points

(defined below). For discussion, we will refer to the number of nodes in a polygonal

chain as the “size” of the chain and will be denoted as |A| for a polygonal chain A.
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Definition 13 (The Discrete Set-Chain Matching Problem).

Instance: Given a point set S, a polygonal curve P in Rd (d ≥ 2), an integer

K ∈ Z+, and an ε > 0.

Problem: Does there exist a polygonal curve Q with vertices chosen from S ′ where

S ′ ⊆ S, such that T ≤ K and dF (P,Q) ≤ ε?

T is defined in two ways. When we are minimizing the number of nodes in the

chain, T = |Q|, and if we are minimizing the points used then T = |S ′|.

Figure 5.2: The difference between minimizing |Q| and |S′|. Minimizing |S′| gives Q =

〈s1, s2, s1〉 where |S′| = 2 and |Q| = 3, but minimizing |Q| will yield |Q| = 3 whether it uses

the sequence 〈s1, s2, s1〉 or 〈s1, s2, s3〉.

Now define Sε = {s ∈ S|p ∈ P and d(p, s) ≤ ε} as the reachable points because

these are the points s that can be reached by p within the ε given. Here, we look

at four variations of this problem. They vary whether or not there is a uniqueness

constraint on s ∈ S being used as a node in Q (if points may be used more than

once), and whether our goal is to minimize the size of the chain Q or of the set

S ′. We therefore distinguish the problems as Unique/Non-unique(U/N) Set-Chain(S)

Matching(M) with a k Subset/Chain(S/C). The variants are thus NSMS-k, NSMC-k,

and USM-k. When looking at unique nodes, minimizing |Q| is equivalent to mini-



36

mizing the set of points used, |S ′|, since they can only be used once, so we do not

separate the cases.

Theorems 4 and 5 are fairly straightforward to prove along with the recurrence

relation shown in Equation 5.1, although this work has yet to be published.

M [i, j] = min


M [i, j − 1], if d(si, pj) ≤ ε,M [i, j − 1] 6= ∅

min
|S|
k=1(M [k, j − 1]) + 1, if d(si, pj) ≤ ε,M [i, j − 1] = ∅

∅, if d(si, pj) > ε

(5.1)

Theorem 4 (Optimal Substructure of NSMC-k). Let P = 〈p1, ..., pn〉 be a polygonal

chain, and S = {s1, ..., sm} be a set of points such that there exists a Q = 〈q1, ..., qk〉

through a set S ′ ⊆ S which is a minimal sequence such that dF (P,Q) ≤ ε.

(1) If d(pn−1, qk) ≤ ε and d(pn−1, qk−1) > ε, then Qk is an optimal solution for Pn−1.

(2) If d(pn−1, qk−1) ≤ ε, then Qk−1 is an optimal solution for Pn−1.

(3) If d(pn−1, qk) > ε, then Qk−1 is an optimal solution for Pn−1.

Theorem 5. The Non-unique Set-Chain Matching (NSMC-k) problem minimizing

|Q| is in P.

Theorem 6 is proven by a reduction from planar 3-SAT [33] and was printed in a

short abstract and presented over the summer [36] of 2012, but has not been officially

published. An example of this last reduction is shown in Figure 5.3.

Theorem 6. The Unique Set-Chain Matching (USM-k) problem is NP-complete.

In the original work dealing with the continuous Fréchet distance, the authors

looked at the equivalent of the NSMC problem without a minimization constraint,

i.e., they were only concerned whether a path could be found. Thus, the complexities

of the other variations that we have defined are still unknown.
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Figure 5.3: Example clause with three variables ci = (x̄1 ∪ x2 ∪ x̄3) with assignments

x1 = 0, x2 = 0, x3 = 1.

5.3 Map Matching

We now turn our attention to the related map matching problem [11] where the

goal is to find a path through a graph rather than a set of points. We first define

the problem formally for the discrete Fréchet distance, and then discuss the related

variants of the problem which we will address.

Definition 14 (The Discrete Map Matching Problem).

Instance: Given a simple connected planar graph G = (V,E) with a straight-line

embedding in R2, a polygonal curve P in Rd (d ≥ 2), an integer K ∈ Z+, and an

ε > 0.

Problem: Does there exist a path Q in G with the polygonal curve formed by its edges

using vertices chosen from V ′ where V ′ ⊆ V , such that T ≤ K and dF (P,Q) ≤ ε?

Again, T is defined in two ways. When we are minimizing the size of the chain,

T = |Q|, and if we are minimizing the vertices in the graph used then T = |V ′|. We
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look at the analogous versions of the set-chain matching problems for each of these:

NMMC-k, NMMS-k, and UMM-k. Again we note that when the nodes are unique

the two minimization problems are equivalent.

For the NMMC-k problem, the difference in the recurrence can be seen in Equation

5.2, which shows the added difficulty in the map matching versions by restricting the

movement to only the neighbor set, N(vi), for a vertex vi ∈ V .

M [i, j] = min



M [i, j-1], if d(vi, pj) ≤ ε, vi ∈ N(vi-1),M [i, j-1] 6= ∅

min
k∈N(vi)

(M [k, j-1]) + 1, if d(vi, pj) ≤ ε, vi ∈ N(vi-1),M [i, j-1] = ∅

∅, if d(vi, pj) > ε or vi /∈ N(vi-1)

(5.2)

Theorem 7. The Non-unique Map Matching (NMMC-k) problem minimizing |Q| is

in P.

Similar to the Set-chain matching problem the original work, based on the con-

tinuous Fréchet distance, considered the equivalent of the NMMC problem without

a minimization constraint. Again, the complexities of the other variations that we

defined are unknown for the continuous Fréchet distance.
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CHAPTER 6

CONCLUSION

This proposal has covered our work that has already been published as well as the

research that is awaiting publication or is unfinished.

We now conclude the proposal by highlighting the open questions and future

research to be done, and outline the plan and timeline to accomplish these goals.

This is an approximate outline for the work that needs to be done in order to finish

the dissertation and meet the research and time requirements.

6.1 Dissertation Plan

1. Begin writing the dissertation, taking into consideration the feedback from the

comprehensive presentation and the doctoral committee’s proposal input.

2. Prove whether a CPS-3F solution must have a minimum moving cost or give a

counter-example demonstrating this is not the case.

3. Examine CPS-2H+ and look at proving the complexity of the problem. If

this becomes infeasible, evaluating CPS-1H+ may prove fruitful. If no posi-

tive results come from this investigation, then finding a decent approximation

algorithm or heuristic method will be a priority.

4. Additional research contributions to the submitted journal paper, which has

passed reviews, but is awaiting more material for acceptance. These contribu-

tions should come directly from the previous two items.
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5. Prove the complexities of the variations of the discrete map and set-chain match-

ing problems defined in Sections 5.2 and 5.3.

6. If possible, extend these results to the continuous Fréchet versions of the map

and set-chain matching problems.

7. Submit the work on the matching problems to a conference for publication.

8. Finish writing the dissertation.

9. Present and defend the dissertation in August, 2013 for graduation.
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