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ABSTRACT

Wireless networking is a critical component of today’s internet infrastructure.
Two examples of important wireless internet infrastructure are long distance network
backbone links and last-mile solutions to remote areas. Wireless technology already
supplies a wide variety of consumer solutions including analog television channels
(TVWS), cellular infrastructure for massive scale real-time communication, and com-
puter networking for seamless global connectivity. Worldwide, there are an estimated
2.5B internet users and 6B cellular phone subscribers- and those numbers are steadily
growing. Sufficient capacity for divergent wireless applications, along with their grow-
ing users, calls for a more efficient use of bandwidth.

We present multiple resource allocation algorithms to address this challenge in
various aspects of wireless networking. Each algorithm focuses on a single resource of
wireless networking: antenna beam sector activation, directional antenna beam bear-
ings and duration, joint routing and channel selection, and link-channel allocation.
In terms of computation and memory, our topology control algorithms provide near
optimal performance with significantly lower cost. For each algorithm, a rich set of
simulation scenarios is presented that compare our novel algorithms performance to
the optimal solution.

Ultimately, we present a topology control algorithm that provides an efficient
solution to the channel rental problem: finding the most cost-effective set of commu-
nication channels (for a wireless mesh network) at a minimum performance guarantee.
This problem occurs in high-density traditional wireless networking, cellular network-
ing, and rural sparse networking with last mile internet connectivity; topology control
algorithms are well suited for all applications of wireless technology. These algo-
rithms are shown to be robust against various network challenges including topology,
frequency availability, and interference.



CHAPTER 1

INTRODUCTION

Broadband internet connectivity has become an assumed resource in First World
(highly developed) countries. In second world nations, populations access broadband
through modern cellular networks. Population density is the largest factor affecting
the quality and coverage of robust broadband infrastructure. Population density, prof-
itability, drives private and commercial investment interests in expensive terrestrial
broadband infrastructure. Environment further exacerbates the deployment of ro-
bust broadband infrastructure to underpopulated areas. Difficult terrain and certain
weather factors require a more costly model of infrastructure and maintenance.

Regions of highly varying terrain and low population densities can be found all
over the world. Typically, residents within these areas do not have access to broad-
band Internet. When they do, it is a cost prohibitive service characterized by low
performance. Examples include WildBlue [1] and HughesNet [2] satellite internet
which cost approximately $80 per month or $960 per year, and provide bandwidths of
approximately 1-2Mbps down, and 200-400kbps up- bandwidths that are not classified
as broadband according to the Federal Communications Commission [3]. Historically,
when no commercial opportunity for technology deployment and maintenance exists,
one of two solutions - or a combination of both - have been used to solve the problem:
a rural cooperative model, or commercial interest stimulated through federal funding.

Wireless networking provides a strong basic solution for providing broadband to
areas without sufficient cost justification for wired infrastructure. Commercial wire-
less broadband involves high cost infrastructure. Wireless towers may cost in excess

of $1M, requiring deployment within areas that have enough subscribers to justify



installation and maintenance costs. Because expensive infrastructures, either terres-
trial (Fiber, Co-location spaces) or wireless, requires a significant investment, they
also require a minimum population density to make them commercially viable. As a
result, areas without sufficient population to justify broadband access lack ability to
access digital resources worldwide.

20% of the worlds population has no broadband access. How can these valuable
citizens gain access to digital resources? Two solutions emerge: 1. rely on commercial
providers, who through tax-based incentives and subsidies may invest in infrastructure
to reach remote and underpopulated areas with broadband, or 2. Enable citizens to
cost-effectively provide broadband infrastructure for themselves. The latter solution
engages a cooperative model that has been used in rural areas for hundreds of years.
Cooperatives have been used in rural areas for hundreds of years. Historically, coop-
eratives have been goods-based organizations, sharing agricultural products, crafts,
and other product resources. Increasingly, cooperatives have become organizations
of scale: engaging in the buying and selling of goods as well as procuring services for
its members. Electrification of Rural America brought electricity to rural America
through federally funded electrical cooperatives. The same legislation is now being

used to justify fiber based broadband infrastructure deployments.

1.1. Motivation

In order to provide equal access to digital resources worldwide, work must be done
to create cost effective wireless technology that is: robust in its delivery, simple to
setup, and easy to maintain. Multiple vendors already provide low cost wireless de-
vices with high-bandwidth, a variety of frequencies, and ruggedized hardware. Some

of these vendors also provide open platforms for research and development. Vendor



supplied tools include setup and maintenance support to enable non-technical end-
user setup, deployment and maintenance.

Still lacking are robust planning tools, better architectures, and algorithms to
provide the best possible robust infrastructure. My ultimate goal, is to enable remote
populations to participate in global digital communication through the internet. My
goal is to build a toolkit of hardware, software, and documentation that provides
everything necessary for the smallest and least technologically savvy population to
implement remote affordable broadband infrastructure.

In order to build this toolkit, a set of fundamental technologies must be developed.
In particular, solutions are needed for hardware, software, and social challenges. Fun-
damental research must engage robust wireless solutions, open hardware platforms,
and claim locations where test networks can be deployed and studied over long periods
of time. As more and more resources are identified, such as unlicensed access to TV

white space, research can incorporate them into proposed solutions.

1.2. Contents

My research places an emphasis on developing resource allocation algorithms that
can provide effective solutions to deliver broadband efficiently to sparsely populated
areas with highly varying terrain. My dissertation presents the results of developming
multiple algorithms focused on a variety of algorithmic techniques, addressing a set
of resource allocation issues relevant to existing and emerging cognitive radio wireless
networks.

The background section includes an overview of relevant wireless networking fun-

damentals, a review of relevant literature, and a summary of my previous work.



In each of four chapters, work is presented on resource allocation algorithms for
antenna beam scheduling, multi-beam smart antennas, joint routing and channel
selection, and ultimately the channel rental problem. FEach of these chapters pro-
vides novel, efficient solutions to an individual resource allocation problem in wireless
networks today.

Following these chapters are a chapter on the applications of my research on
wireless networking and a chapter on the simulation toolkit constructed to perform

this research.



CHAPTER 2

BACKGROUND

Cognitive radio wireless networks (CRNs) have nodes that scan for available wire-
less frequencies and then use those empty frequencies for communication. Originally,
CRNs were modeled to have primary users (PU)- those with the expectation that
their network demands will be met- and secondary users (SU)- those who leverage
unused portions of the CRN to satisfy their demands, but whose demand does not
interfere with primary users. This model has been relaxed in recent years.

In general, CRN research falls into three categories: routing; channel (or spec-
trum) selection; joint routing and channel/spectrum selection. Routing in CRNs
is difficult to research without considering the channel selection problem. Current
research organizes CRN routing into groups based on either strategy or technique.
Channel selection research is limited, focusing on decision techniques that are primar-
ily concerned with cost models. CRNs joint routing and channel selection research is

the most robust area, and represents the largest subset of CRN literature.

2.1. Wireless Networking Fundamentals

Unlike wired technology that utilizes electrical signals conducted through wires,
wireless networking uses radios to convert bits into radio frequencies. From an applica-
tion point of view, any differences in networking protocols are hidden in the operating
system and driver software, presenting a uniform network interface. The radios used
in wireless networking come in a variety of different configurations, supporting a grow-
ing number of different wireless networking standards. The configuration variations

include radio frequency, antenna types, radio capabilities, and radio power output.



A typical wireless network consists of one or more gateways and provides the user
with access to resources outside of the wireless network. These gateways act similarly
to consumer Internet routers like cable, DSL, or satellite modems. The most common
consumer network has modems connected directly to computers, however, more and
more, consumers are inserting wireless routers into the modem so that more than
one computer can share the Internet connection. Similarly, in a wireless network,
Internet gateways are connected to a set of relay nodes that provide the core routing
functionality of the network. These relay nodes track each other and reconfigure the
network as needed to provide users with the highest possible performance. Users in a
wireless network are traditionally called Subscriber Nodes, since they are subscribing
to wireless services where there may be multiple choices for services.

The most common wireless network architectures are: a tree, where the root
is the Internet gateway, the internal nodes are the relay nodes, and the leaves are
the subscribers; a mesh, consisting of one or more Internet gateways, a set of relay
nodes, and a set of subscribers; and a ladder, consisting of two Internet gateways,
relay nodes configured in two parallel lines, and where subscribers follow the lines.
These architectures correspond to the most common functions of wireless networking;:
enterprise networking, cellular/sensor/environmental networking, and transportation
networking.

Traditionally, consumer wireless networking has been done in 2.4GHz and 5GHz
frequencies. Recently, devices using the 900MHz range have become available and
offer more choices for consumers. Power output (and thus consumption) is not a typ-
ical factor for most wireless network implementations, but when installed in remote
locations, where power is not available, it becomes a significant influence on design.
Similarly, most radios have an integrated antenna, providing basic coverage for a

typical usage scenario. More and more, radios provide external antenna connectors



to enable augmenting the radio with higher-powered antennas to improve range and
performance. Most consumer wireless products do not have advanced capabilities -
like the ability to sense signals and adapt their configuration to adjust for perfor-
mance. However, products are emerging with an open software platform to allow

aftermarket modification that enable advanced functions.

2.2. Frequency Selection

Frequencies that are available for unlicensed use represent a fairly small part of the
overall radio spectrum- typically in the 700-900MHz, 2.4GHz, and 5.8GHz regions.
These frequencies provide very different transmission characteristics; 5.8GHz provides
higher bandwidth, but at a significantly shorter distance than the 700-900MHz range.
Lower frequencies typically provide lower bandwidth, although recent developments
with multiple frequency, multiple antenna, and MIMO-type radios ensure that solu-
tions at almost any frequency provide robust, high bandwidth, for end users.

Two more aspects to consider about frequencies are their propagation character-
istics, and performance ability in the presence of interference (from weather, foliage,
or other intermittent obstruction). The higher the frequency (e.g. 5.8GHz), the more
sensitive it becomes to obstructions; it is less able to penetrate solid objects. The
lower the frequency, the better it is able to penetrate solid objects; it goes farther

and is less vulnerable to signal obstruction.

2.2.1. Whitespace Frequency Allocation

For the same reason that 700-900MHz perform differently than 2.4 and 5.8GHz
frequencies, TV White space - which is approximately between 50MHz and 700MHz

- is even more robust in terms of propagation distances and interference. As users
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Figure 2.1: Frequency allocation chart for frequencies in use in the United States of
America.

switch to digital TV, and thereby free up TV White space, proposals emerge [4-6]
to use TV White space to accommodate better rural broadband. Current discussions
center on how such use might impact wireless microphone technologies that cooperate
at very specific frequencies. It is fairly obvious, however, that TV White space has

more than enough frequency space to accommodate all user requirements.

2.3. Radios

Radios are electronic components that convert analog radio waves into meaningful
data. The data is then transmitted or received through the radios antenna. The radio
is the interface in both directions between the antenna and the device producing or
consuming the signal ((e.g. analog sounds (as in radio stations), or digital commu-

nications protocols (as in WiMAX)). A variety of radios exist to segment unlicensed



operation of equipment, and most are locked to a specific frequency or range. A
number of multi-frequency scanning devices allow the user to receive signals on any
frequency they can tune in, but typically radio and antenna pairs are only able to
receive (and/or transmit) on a narrow range of frequencies.

Historically, radios only parameters have been transmission power, receive gain,
and transmission gain. Transmitter power is a regulated control that defines an
optimal maximum transmission distance. Receive and transmission gain were factors

of design, including internal antennas, wire paths, routing, and electrical design.

2.3.1. Cognitive Radios

Cognitive radios are a relatively recent development. They augment traditional
radios with the ability to scan and sense other traffic, and they modify their own
settings to avoid congestion and interference. Because frequency space is limited,
and radio transmission power is regulated, cognitive radios intelligently cooperate to
provide shared frequency space between as many users as possible. This technique
shows significant promise in terms of frequency resource allocation and resource man-
agement where dynamically responsive radios may be deployed in areas with cyclic or
constantly changing conditions. Cognitive radios may be purposed to optimize both
connectivity and performance as: a service monitor that provides different qualities of
services within fixed bandwidth; as a smart power manager enabling radios to switch
into low-performance mode during periods of low use; or as a management resource

that learns when users are active or inactive to allocate resources respectively.
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2.4. Antennas

Antennas transfer signals that are being emitted through the air into electrical
signals that are then interpreted. Antennas come in a variety of designs, with wildly
different performance characteristics. In recent years, an active ”build-your-own-
antenna’” community has been primarily building custom antennas for 2.4GHz wire-
less networking. Additionally, antenna research has pursued various smart antennas
to break down monolithic antennas into component system that can be indepen-
dently controlled, configured, and used. Beam forming antennas were one of the
first solutions that allowed multiple components to work in concert to produce a
higher quality signal than any single component could produce by itself. Since then,

numerous improvements and inventions have been made to beam forming antennas.

2.5. Power

Electrical power management is often overlooked when considering terrestrial wire-
less network solutions because electricity is so pervasive and available. Many wireless
systems, however, are primarily power management platforms — cellular phones, ra-
dios, and sensor network (both terrestrial and satellite) and therefore require careful
management. The challenge of power management is to maintain a balance between
using as little electrical power as possible while maximizing transmission power to
ensure that communications are robust and consistent. This trade-off is exacerbated
for satellite, ocean, and wireless systems that are not able to connect to the electrical
grid. In these cases, the systems are very carefully designed with the power use
carefully accounted for to ensure that the power supplying subsystem can last as long

as necessary before regeneration or replacement. Solar and wind power generation
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systems are available to provide a low-cost, robust power generation system that can
be buffered with off the shelf battery components to provide continuous power when

there is no sunlight or wind.

2.6. Challenges

Sparse networks have many challenges that emerge from the low-density of nodes
and large distances between them. The basic challenges for sparse networks are the
same as dense networks: connectivity, throughput, and reliability. The overlap and
redundancy of nodes in a dense network provide alternative solutions to problems of
throughput and reliability. In a very dense network, connectivity is dependent upon
the ration of relay nodes to subscriber stations because it’s assumed that 100% of
the space is covered by the network. As network density decreases, the challenge
of connectivity becomes more important. For instance, when the network covers
less than 100% of the subscriber station area, the subscriber station moves to the
uncovered area, and connectivity fails for that subscriber.

Sparse networks are designed differently. Instead of being designed to pervasively
saturate an entire area with wireless signals, sparse networks seek to saturate only
relevant areas with signal. This choice is determined by the complexity and cost
of pervasive coverage versus selective coverage. Commercial providers favor sparse
networks, carefully selecting coverage because their commercial resource allocation
priorities demand profitability. Saturating areas with enough equipment to provide
pervasive coverage diminishes profitability. It creates: areas of high profit (where
the costs are far less than the number of customers paying for service); areas where

costs break even (where the costs are roughly equivalent to the customers paying for
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service); and areas where they lose money (where the costs are far greater than the

customers paying for service).

2.6.1. Population Density

Rural broadband connectivity continues to be a challenge even as technology con-
tinues to improve networking-related products and services. The driving factor is
population density, which relates directly to the recovery of infrastructure costs. In
areas of low population density, there are not enough customers to cover the necessary
infrastructure that can enable cost-effective infrastructure investment. The challenges
of developing rural broadband are similar to the challenges this nation faced when
rural electrification was an issue. As recently as the 1930s, 90% of rural homes and
farms were without electricity. After the federal government enabled rural electric
cooperatives in 1935, the installation of electrical systems spread quickly. By 1953,
more than 90% of rural homes and farms had electricity.

Delivering broadband networking to sparsely populated areas of America is an
ongoing challenge. Terrestrial broadband, using fiber or copper networking, requires
the same investment in rural areas as it does in suburban or urban areas. Rural areas,
however, have fewer customers to share the cost of infrastructure and makes the cost
per customer unattractive to commercial providers. As a result, rural residents have
few options for Internet access; often only two alternatives exist — satellite Internet
or cellular broadband.

The federal government and several non-government research and public policy
organizations conducted in-depth examinations of the extent of broadband infrastruc-
ture in the US. Independent results point to the same conclusion: a significant gap
remains between the availability of high-speed Internet services in rural areas relative

to metropolitan and suburban areas [7-9]. These reports further identify major dif-
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ferences between network speeds in rural areas relative to metro areas, and that rural
users are paying higher prices for lower quality services. While some argue that rural
demographics do not generate demand for broadband network investment, evidence
shows that the availability of broadband infrastructure leads to economic growth,
higher quality of education and healthcare services, and more citizen engagement in
community, state, and federal services.

Internet access has three tiers: 1) Locations with broadband (cable-modem and/or
digital subscriber line) Internet; 2) Locations with satellite and/or cellular broad-
band; and 3) Areas where no services of any kind are available. Cable-modem and
DSL customers are privileged to have significantly higher bandwidths than satellite
and cellular customers, and they also benefit from significantly lower costs. Satel-
lite and cellular broadband are differentiable from cable-modem or digital subscriber
lines (DSL) because of bandwidth limits. The bandwidth limits throttle the network
connection, or charge additional fees, after a certain amount of bandwidth is used.

While satellite and cellular solutions can provide relatively high throughput, they
do not provide low latency, and cost significantly more than cable-modem and DSL.
Satellite and cellular solutions often have bandwidth usage policies that are enforced
by limiting or disabling the Internet connection, and that charge significant fees for
overages. While these bandwidth usage/pricing models allow providers to maintain
competitiveness while still providing sufficient Internet access to rural areas, there
are better and more cost-effective models that dont suffer from the same constraints.

For instance, rural broadband can be enabled using wireless technology. It is
possible to build necessary infrastructure with significantly reduced costs; there are
no long-haul networking connections to put in place. Wireless networking simply
requires wireless nodes deployed in proximity of other wireless nodes with electricity

supplied to each wireless node [10,11]. Wireless Internet service providers (WISPS)
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are already providing access to many communities, but their reach is limited by what
is economically viable for their business. Technology cooperatives can fill the gap.
Technology cooperatives, like rural electrical cooperatives, can operate without the
same profit constraints as other providers and deploy a wireless network solution by
sharing the cost among its members.

With the recent conversion of television from analog to digital transmission, an
additional portion of radio spectrum has been made available to unlicensed wireless
use. The availability of more radio spectrum, and the potential to use lower fre-
quencies via TV white space, currently used by WiFi networks (e.g., 2.4 GHz), offers
enormous potential for rural area networks. Radio signal range D is governed by a
frequency-dependent power law relationship. In areas where there is a clear, line of
sight path, where f is the frequency, and in areas where he antenna height is low, or
where there are significant obstructions, the range is considerably less. Furthermore,
lower frequency radio signals propagate around obstructions where higher frequency
signals are blocked. Hence the use of TV white space spectrum at 500 MHz could
lead to an extension in range by a factor of 25, or more relative to one that operates
in the current 2.4 GHz band used by most WiFi systems.

For example, Montana’s Gallatin County has an average population density of 25
people per square mile. According to the 2000 U.S. Census Bureau, Montana Depart-
ment of Commerce, and the Gallatin County Planning Department, Gallatin Countys
population is expected to reach approximately 45 people per square mile in 2030. If
a single radio, antenna, and power system can be constructed for $250 to cover one
square mile, the entire county could provide a bare minimum of wireless broadband
to everyone for $10 per person per square mile startup costs, plus approximately $5
per person per month for ongoing maintenance and service fees of. Quadrupling the

cost to $40 per person for startup expenses, plus $20 per month for operations, would
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enable construction of a moderately robust system with significant capabilities. These
costs are less than typical $250 startups that often charge $75 per month or more for
alternative solutions [12]. A recent examination of life cycle costs, for deploying and
operating wireless fixed Internet access in Gallatin County, in areas not covered by
current wire line systems, yielded similar results [10].

Technical know-how inhibits the average citizen from building a wireless cloud;
choices related to hardware, antennas, electricity, ongoing maintenance, and opera-
tion of the wireless network. In fact, it takes expert network operators and techni-
cians to design, install, deploy, and support WISP installations. Fortunately, many
complicated technical points can be simplified through robust software and testing
infrastructure, enabling end users to deploy wireless with minimal effort and at a high
success rate.

Efforts like MIT’s RoofNet [13] — which was commercialized as Meraki, Inc. [14],
FreiFunk [15], OpenWRT [16], and Open-Mesh are providing hardware and software
that solve many of the associated issues for high-density urban and suburban pop-
ulations. Much of the existing work is focused on communities where population
density is high and electricity is relatively easy to access. Ubiquiti Networks, Inc. has
been incorporating knowledge discovered from RoofNet and other wireless research
projects into the software they develop to drive comprehensive hardware solutions
and present a commercially viable product line that is robust, flexible, and that can
be extended and enhanced by our proposed work.

Some projects address distances typical of rural area networks. WILDNet, for
example, was built by a group at the University of California, Berkeley, using con-
ventional WiFi technology operating at 2.4GHz [17]. Their demonstration network
yielded high throughput over distances of up to 50-100km, obtained by making mi-

nor adjustments to the radio system protocols. Other work, using WiMAX (IEEE
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802.16d) shows comparable results [18], and this technology is now in place for fixed
wireless access in several networks in developing countries where conventional wireline
infrastructure is poor or nonexistent. These projects provide excellent solutions for
point-to-point, line-of-sight long distance links.

Projects in high population density areas make commercial sense because their
impact, the ratio of affected users to cost, is high. Defining impact with this ratio,
however, immediately prejudices areas of low population density. It is not until
digital division produces significant disparity between high impact and low impact
opportunities that viability will be equal between areas of varying population. Our
aim is to find an efficient, cost effective, solution for areas of low population density to
avoid the widening of the digital divide and enable rural communities to participate
in the opportunities afforded by broadband Internet access.

For example, Buffalo Jump Technology Cooperative, Three Forks, Montana, the
area of the network coverage is proposed to be 20 x 5 = 100? miles. In this area
there are approximately 2, 500 residents, 1,500 of whom are located within 12 mile in
Three Forks. The other 1,000 residents are distributed non-uniformly over 992 miles.
Assuming a simplified uniform distribution that’s 10 people per square mile.

With large distances between non-uniformly distributed residents, the challenge of
designing a reliable, well-connected network significantly drives costs up. Other issues
emerge as long term challenges: maintenance of the equipment and the skills necessary
to deploy and maintain the network. Unless these challenges can be mitigated, by
reducing the costs and skills required, and by increasing the value of the network to

residents, there is not much utility in deploying a network that can’t be maintained.
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2.6.2. Topography

Topography can also be a major challenge in designing a sparse network. People
tend to cluster around natural resources that in turn make wireless communications
difficult, such as rivers, confluences of rivers, valleys, and areas with enough water
to support agriculture, large trees, and other vegetation. The challenge is reliability
of wireless signal delivery. In the case of Buffalo Jump Technology Cooperative, the
main challenges are leaf and terrain interference. Trees surrounding homes, and other
buildings, tend to scatter point-to-point wireless signals, and sharp elevation changes
create shadow areas for wireless signals.

As a result, sparse networks in these areas are naturally segmented by terrain-
based boundaries such as cliffs, rivers, and valleys. These terrain-based boundaries
create natural dividers between high-density and sub-networks, or wireless clouds,
and challenge ongoing maintenance of network equipment that is commonly located
in places that are difficult to reach. Buffalo Jump Technology Cooperative has one
location that is only accessible for part of the year. Design of equipment at that

location must take into account that it can’t be repaired or replaced in winter months.

2.6.3. Environment

Environmental factors can significantly impact wireless signal propagation. Rugged
terrain, that doesn’t gracefully propagate signals, and weather patterns, that cause
temperature differentials and inversions, are two primary challenges affecting sparse
wireless networks. Networks are particularly vulnerable when deployed in highly vari-
able terrain, have network locations near the tops of ridges and mountains. Natural
weather systems occur in the valley floors below these high places. Cold air settles into

the valleys and warmer air rises, causing temperature differentials. When tempera-
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ture changes occur, such as morning sun warming the air in the valley, inversions can
occur. Inversions change signal propagation through the air, causing less predictable
behavior and intermittent outages. Beyond the challenges of maintaining connectivity
and throughput, in the presence of varying environmental conditions, environmental
conditions increase wear and tear on networking components causing them to have a

shorter lifespan.

2.6.4. Power

Electrical power is not pervasive in remote areas. Homes in remote areas may
have electricity, but in most cases service sites, where wireless network equipment
is needed and deployed, do not have electric service available. The cost to bring
electricity to remote locations is prohibitive, nearly $10,000 per pole from an existing
location to the desired location. Designing network to co-locate relays and subscribers
near existing electrical installations, is a cost-reducing choice that also increases the
likelihood of year-round accessibility.

In some cases, equipment must be deployed in locations without power using solar,
wind, or generator supplied power systems. Buffalo Jump Technology Cooperatives
most efficient solution is solar followed by wind. Many solar powered homes and
devices exist within its service area and do not require substantial solar cell size to
efficiently charge a large capacity battery. With relatively low power requirements
for networking equipment, a large capacity battery is able to power equipment for 5-7

days, a usually sufficient time for recharging.

2.6.5. Economics

Because cost is directly tied to population density, there are no economies of scale

for sparse networks; each participant must pay their full share of the systems cost.
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Some costs are exclusive to individual users. Other costs are shared between multiple
users. Exclusive and shared costs raise issues of fairness and resource management.
Generally, rural American’s have a rich history of using cooperatives to solve shared
cost problems. Rural cooperatives form community groups that seek mutual eco-
nomic, housing, agricultural, electrical, and other benefits for its members. Rural
America, and western states in particular, have a history of developing cooperatives
that solve problems that are too large for individuals, but not economically viable for
commercial interests.

For wireless clouds, rural cooperatives can address both initial and ongoing costs
with a tiered cost model: an initial cost to participate plus an ongoing cost. The initial
cost is: the cost to extend the sparse network to the user; cover the users required
space; and stock enough hardware to replace or repair equipment in a reasonable
timeframe. Ongoing costs relate to: Internet connectivity; hardware replacement;
upgrades. Ongoing costs are much lower than initial costs. A portion of initial costs
may be pro-rated and combined into the ongoing costs, as long as enough resources
exist to cover Internet connectivity at the gateways, and replace or repair existing

hardware.

2.7. Literature Review

A significant amount of literature exists on subtopics that are combined within
this work. This section presents a review of relevant literature: the overall topic of
rural wireless networking under which all of the other topics fall; whitespace literature,
including historic analysis of TV bandwidth and propagation data; smart antennas;
topology control; cognitive radios; routing and channel selection; game theory in

wireless networking.
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2.7.1. Rural Wireless Networking

Rural wireless networking has only been studied [19-21] in detail over the last
five years. The focus of research has been limited to three primary areas: long
distance WIFI links, network protocol level analysis, and end-user access systems
coupled with network equipment. Long distance WIFI-based links have been studied
extensively starting with [22] and [23] and more recently WiLDnet by [17], a South
African deployment by [24], two deployments, one in Venezuela and one in Italy
[25], and a deployment in the village of Wray [21]. Much of the work involving
long distance wifi, to enable Internet connectivity for rural regions, and mostly in
underdeveloped parts of the world, has been based on analysis of the various layers
of the network protocol stack including the MAC layer [17,26-31], various multi-path

routing challenges [32-35], and also radio based interference [36-40].

2.7.2. Whitespace Frequency Usage

Now that the FCC has allowed the use of specific TV whitespace [41], research
is being conducted to determine how to use TV whitespace for wireless networking.
Whitespace research is not new, and many of the relevant sources of information are
not necessarily in digital form. However, recent literature studies the possibility of
using TV whitespace for wireless networking and some of that literature both reviews
and re-examines historical research to produce better estimates of the bandwidths
capable using modern hardware [42,43]. Work is already being pursued in algorithms
to efficiently share TV whitespace [44], although devices have not yet come out com-

mercially. This is an area of intense research and activity.
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2.7.3. Beam Scheduling

Resource allocation in wireless relay networks has received much research atten-
tion. In [45], Sundaresan et al. showed that the scheduling problem to exploit diver-
sity gains alone in 2-hop WiMAX relay networks is NP-hard, and provided polynomial
time approximation algorithms to solve it. They also proposed a heuristic algorithm
to exploit both spatial reuse and diversity gains. In [46], a similar scheduling problem
was studied for OFDMA-based WiMAX relay networks. The authors provided an
easy-to-compute upper bound. They presented three heuristic algorithms that were
shown to provide close-to-optimal solutions and outperform other existing algorithms
in simulations. Other recent works on this topic include [47,48].

Smart antennas are being studied and improved. MAC protocols were proposed
in [28,29] for 802.11-based ad-hoc networks with switched beam antennas. The
authors of these papers modified the original 802.11 MAC protocol to explore the
benefits of directional antennas. In [49], Sundaresan et al. presented a constant
factor approximation algorithm for Degree-Of-Freedom (DOF') assignment and a dis-
tributed algorithm for joint DOF assignment and scheduling in ad-hoc networks with
Digital Adaptive Array (DAA) antennas. A unified representation of the physical
layer capabilities of different types of smart antennas, and unified medium access
algorithms are presented in [30]. Another important type of smart antennas are
Multiple Input Multiple Output (MIMO) antennas that are able to support multiple
concurrent streams over a single link. Resource allocation with MIMO links has been
studied in [50-52].

Another approach to exploit the benefits of smart antennas for mesh networking
is topology control that pre-computes an antenna pattern for each node such that

a certain network topology can be formed for future communications. Using this
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approach, antenna beam switching is conducted in a slower time scale (in the order
of seconds or more) at the potential expense of performance.

In one of the first works on this topic [53], Kumar et al. presents a topology
control approach to effectively use directional antennas with legacy MAC protocols,
that uses multiple directional antennas on each node and orients them appropriately
to create low-interference topologies while maintaining network connectivity.

In [54], the authors consider the problem of power-efficient topology control with
switched beam directional antennas, taking into account their non-uniform radiation
pattern within the beam width. In [55], Huang and Shen present several heuristic
algorithms for topology control with multi-beam directional antennas, and show that
compared to Omni directional topology control approach, proposed algorithms can
reduce hop count, save power and provide symmetric links.

In a recent paper [56], the authors present a distributed measurement protocol
to measure the RSS of antenna patterns and a greedy distributed topology control
protocol that uses this information to achieve topologies with minimal interference.

We summarize the differences between our work and this related work as follows:
(1) Most related work on wireless relay networks [45-48] deal with resource allocation
problems with Omni directional antennas, which are mathematically different from
the optimization problems studied here; (2) Relay assignment is a special problem
for wireless relay networks, and was not a concern for previous work on directional
antennas; (3) Some related work on directional antennas focused on switched beam
sectorized antennas [28,29,53,54,56], that can only form main beams towards a few
pre-defined directions. We consider a smart adaptive antenna with an adjustable
beam orientation and beam-width that make corresponding optimization problems
much harder; (4) We present fast and effective algorithms to determine antenna pat-

terns and relay assignments in a real-time manner, which can be applied to networks
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with mobile nodes. Topology control algorithms [53-56] may only be used in rela-
tively static networks; (5) Generally, directional antenna related resource allocation
problems are NP-hard. Most related work, including [28-30,50,52], presents heuristic
algorithms that cannot provide any performance guarantees. Our work, however,
presents a constant factor approximation algorithm for the joint beam scheduling
and relay assignment problem and a polynomial-time optimal algorithm for the relay

beam-scheduling problem.

2.7.4. Smart Antennas

The cross-layer approach has been studied for multihop wireless networks with
directional antennas. MAC protocols were in [28,29] for 802.11-based ad-hoc networks
with switched beam antennas. The authors of these papers modified the original
802.11 MAC protocol to explore the benefits of directional antennas.

In [49], Sundaresan et al. presented a constant factor approximation algorithm
for Degree-Of-Freedom (DOF) assignment and a distributed algorithm for joint DOF
assignment and scheduling in ad-hoc networks with Digital Adaptive Array (DAA)
antennas. A unified representation of the physical layer capabilities of different types
of smart antennas, and unified medium access algorithms are presented in [30]. An-
other important type of smart antennas is Multiple Input Multiple Output (MIMO)
antenna that is able to support multiple concurrent streams over a single link. The
authors of [52] present a centralized algorithm as well as a distributed protocol for
stream control and medium access in ad-hoc networks with MIMO links. A constant
factor approximation algorithm is proposed for a similar problem in [51]. In [57],
Hu and Zhang devise a MIMO-based MAC protocol. They also study its impact on
routing and characterize the optimal hop distance that minimizes end-to-end delay.

In [58], Bhatia and Li present a centralized algorithm to solve the joint routing,
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scheduling, and stream control problem subject to fairness constraints for multiple

wireless networks with MIMO links.

2.7.5. Topology Control

Smart antennas have received tremendous attention by researchers. Topology
control with directional antennas are studied in [53-56,59]. In one of the first works
on this topic [53], Kumar et al. presents a topology control approach to effectively
using directional antennas with legacy MAC protocols, which uses multiple direc-
tional antennas on each node and orients them appropriately to create low interfer-
ence topologies while maintaining network connectivity. They show, via empirical
studies, that this approach can reduce interference significantly and improve network
throughput without increasing stretch factors to any appreciable extent. In [54], the
authors consider the problem of power-efficient topology control with switched beam
directional antennas, taking into account their non-uniform radiation pattern within
the beam-width. Two cases were considered: one where the antenna orientation is
assumed given, and another where the antenna orientation needs to be derived. For
the first case, they present optimal and approximation algorithms for constructing
power-efficient topologies. For the second case, they prove the problem to be NP-
complete and present heuristic algorithms. In [55], Huang and Shen present several
heuristic algorithms for topology control with multibeam directional antennas, and
show that compared to the Omni directional topology control approach, the proposed
algorithms provide equivalent performance in terms of the probability distribution of
the number of symmetric neighbors in their resulting topologies, but can reduce hop
count, save power and provide symmetric links.

The authors of [59] present a bandwidth-guaranteed topology control algorithm

for TDMA-based ad hoc networks with sectorized antennas. In a recent paper [56],
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the authors introduce a measurement-based optimization framework for topology con-
trol in dense 802.11 networks using sectorized antennas. They present a distributed
measurement, protocol to measure the RSS of these antenna patterns and a greedy
distributed topology control protocol that uses this information to achieve topologies
of minimal interference. Extensive measurements show that the protocols operate
very close to optimal and yield significant increase in network throughput compared
to Omni directional antennas. Topology control with Omni directional antennas have

been extensively studied in the literature [60,61].

2.7.6. Cognitive Radios

Cognitive radio networks receive extensive attention. Spectrum allocation and
access are the most important problems in such networks. In [62], the authors de-
rive optimal and suboptimal distributed strategies for the secondary users to decide
which channels to sense and access with the objective of throughput maximization
under a Partially Observable Markov Decision Process (POMDP-JRCS) framework.
In [63], Zheng et al. develope a graph-theoretic model to characterize the spectrum
access problem and devised multiple heuristic algorithms to find high throughput
and fair solutions. In [44], the concept of a time-spectrum block is introduced to
model spectrum reservation, and a centralized and a distributed protocol is presented
to allocate such blocks for cognitive radio users. Tang et al. introduces a graph
model to characterize the impact of interference and proposed joint scheduling and
spectrum allocation algorithms for fair spectrum sharing based on it in [64]. In [65],

a distributed spectrum allocation scheme based on local bargaining is presented.
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2.7.7. Cognitive Radio Channel Selection

Cognitive radios enabled with multi-frequency, multi-channel capabilities provide
the opportunity to support a wider set of channels for the radio to choose from. While
more expensive, these cognitive radios provide more powerful capabilities because the
overall capacity of the CRN is directly proportional to the number of available chan-
nels. Other benefits of multi-frequency cognitive radios are the different transmission
characteristics of the different frequencies. TVWS frequencies can transmit at up
to 19 Mbps over a range of 30 km, while 2.4GHz and 5.8Ghz wireless signals can
transmit at much higher bandwidths over a shorter range. Cognitive radios that can
combine these features are very versatile nodes in a CRN.

In [66], a game theoretical approach provides a distributed channel allocation
algorithm that balances selfish and cooperative needs of the users. Most channel allo-
cation algorithms attempt to maximize certain utility characteristics of the network.
The most common are fairness and throughput. Fair channel allocation algorithms
are presented in [67] and [68]. In [67], both admission and power control are con-
sidered in the channel selection algorithm to ensure minimal interference to primary
users while still guaranteeing reasonable performance to secondary users. In [68]
an algorithm which maximizes system throughput while minimizing interference is
presented. Both [67] and [68] only consider single hop cognitive radio networks.

[69] studies the channel selection problem constrained by quality and fairness.
They show that by taking only quality into account, the problem can be solved in
polynomial time, but when fairness is considered the problem is NP complete. The
authors present a tree pruning based algorithm to solve the distance constrained

channel selection problem, but they do not take into account relay stations.



27

Channel selection techniques that maximize system throughput are presented in
[70] and [71]. In [70] algorithms that consider total transmit power of secondary users
and maximum interference to primary users are presented. The algorithms attempt
to meet some fairness criteria by allocating transmission opportunities to users that
receive less service. A Markhov chain formulation is used to estimate the number
of packets that can be transmitted by each secondary users over each channel is
presented in [71]. Based on this estimation a scheduler is proposed that maximizes
the aggregated system throughput.

More recent work in channel selection appears in [72-74]. In [74], the authors
present the channel selection problem with the goal of proportional fair scheduling.
They show that this problem is NP-hard when interference, channel quality and the
usable spectrum are changing, but they present two heuristic algorithms that can meet
real-time scheduling demands and perform close to optimal. [73] presents a resource
minimized channel assignment algorithm that supports baseline network connectivity
that provides a constant control channel and adapts to changing conditions in the
network while maximizing end-to-end flow rate. A more novel approach to channel
selection is presented in [72], where the authors use historical data from the network to
construct a predictive model of channel use. This model is compared against random
channel selection, which seems naive, but the idea of using historical data for future
predictions does not appear to have been applied elsewhere in CRN channel selection

literature.

2.7.8. Cognitive Radio Routing

Solving the routing problem in CRNs is difficult because of the entwined nature of
routing and channel selection. In some cases, however, tackling the routing problem

is achievable under the correct set of constraints. In [75, 76] opportunistic rout-
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ing algorithms are presented. In [75] the authors present an opportunistic routing
algorithm that uses bandwidth approximation and branch and bound searching to
minimize the global knowledge required to find the optimal route. In [76] the authors
leverage network coding, a technique that allows a single transmission of data for
multiple nodes where the nodes can extract the information intended for them from
the bundle of data. This allows co-transmission of data, reducing contention in the
network. [77] combines network coding and opportunistic routing as well, however
the authors provide an improved link availability prediction algorithm that helps
predict both availability and duration of links, further improving the performance.
Combining this with the network code significantly enhances this cross-layer routing
protocol.

Gymkhana is a connectivity based routing scheme that takes node connectivity
into consideration leveraging alternate routes to avoid congestion and low performance
[78]. In this algorithm, global information about candidate paths is collected, then a
Laplacian graph spectra is leveraged to find routes that avoid congestion caused by
primary users in the network. In [79] the notion of a weighted cumulative estimation
of transmission time is used to enhance a fairly typical Ad-Hoc On-demand Distance
Vector (AODV) routing protocol. The authors show that this metric significantly

improves the performance of the standard AODV method.

2.7.9. Joint Routing and Channel Selection

Routing and channel selection have been studied for cognitive radio networks.
In [80], a novel layered graph was proposed to model spectrum access opportunities,
and was used to develop joint spectrum allocation and routing algorithms. In [81],
the authors present distributed algorithms for joint spectrum allocation, power con-

trol, routing and congestion control. A mixed integer non-linear programming based
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algorithm is presented to solve a joint spectrum allocation, scheduling and routing
problem in [82]. A distributed algorithm is presented in [83] to solve a joint power
control, scheduling and routing problem with the objective of maximizing data rates
for a set of communication sessions.

The Spectrum Aware Mesh Routing (SAMER) [84] is a routing protocol that
accounts for long term and short term spectral availability, which seeks to utilize avail-
able time-spectrum blocks by routing data traffic over paths with higher spectrum
availability, without ignoring instantaneous spectral conditions. SPEctrum-Aware
Routing (SPEAR) presented in [85] aimed at maximizing throughput by combin-
ing end-to-end optimization with the flexibility of link based approaches to address
spectrum heterogeneity.

In [86], Hincapie et al. proposes a novel distributed routing protocol which can
select a route and allocate channels and timeslots for a connection request to satisfy
its end-to-end bandwidth requirement. The proposed protocol is based on Dynamic
Source Routing (DSR) and selects time-spectrum blocks for links using a novel metric
to obtain high capacity and low interference blocks for links during the route discovery
procedure. In [87], Mumey et al. considers the problem of finding a transmission
schedule and a channel selection solution for a given path, and presents a constant
factor approximation algorithm based on graph coloring.

In addition, routing and channel selection have also been studied in the context
of traditional WMNs with homogeneous channels [36,88,89]. A constant-bound ap-
proximation algorithm is proposed in [88] to jointly compute channel assignment,
routing and scheduling solutions for fair rate allocation. The authors of [89] study a
similar problem and derive upper bounds on the achievable throughput using a fast

primal-dual algorithm. In [36], Tang et al. proposes an interference-aware channel
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assignment algorithm along with an optimal routing scheme for end-to-end bandwidth
guarantees.

More recently, [90] proposes ROSA, a cross-layer joint routing and spectrum allo-
cation algorithm that also does scheduling and transmit power control. The algorithm
minimizes interference and guarantees a bounded bit error rate for receivers. [91] takes
a different approach, using a Markao Decision Process to learn from the network the
best spectrum utilization, then based on that information constructs routes that con-
form to the learned model. This approach appears robust in the case of CRNs with
regular traffic patterns, but might be of limited use in a CRN with less regular traffic.
In [92], channel selection is done after a collision-minimized route is selected, trading
off channel costs for less interference. The proposed heuristic algorithm is tested in

different scenarios, but never compared with an optimal solution.
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CHAPTER 3
BEAM SCHEDULING

A wireless relay network consists of a Base Station (BS), multiple Relay Stations
(RSs) and a large number of Subscriber Stations (SSs), which is illustrated in Fig. 3.1.
The BS serves as a gateway connecting the network to external networks such as the
Internet. If an SS is out of the transmission range of the BS, it can communicate with
the BS via one or multiple RSs in a multihop manner. Such a network architecture
has been adopted by emerging wireless networking standards such as IEEE 802.16;.
The IEEE 802.16] [93] was proposed to extend the scope of IEEE 802.16e [94] to
support multihop relay. Compared to a single-hop wireless network in which each
SS directly communicates with the BS, a relay network can significantly extend the
coverage range, improve network capacity and reduce dead spots [93]. Therefore, such
relay networks are considered as a promising solution to provide low-cost, high-speed
and long-range wireless communications for various applications such as broadband
Internet access and emergency communications.

Compared to a conventional omni-directional antenna, a smart (directional) an-
tenna offers a longer transmission range and lower power consumption by forming one
or multiple beams only toward intended receivers without wasting energy in other di-

rections. Therefore, smart antennas can enhance the functionalities of RSs and help a
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Figure 3.1: A wireless relay network
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wireless relay network better achieve its goal. We focus on a smart adaptive antenna
with an adjustable beamwidth and beam orientation.

Wireless relay networks have attracted extensive attention from the research com-
munity recently and various resource allocation problems have been studied in re-
cent works [45-48]. However, most of them focused on relay networks with omni-
directional antennas. We exploit the benefits of using smart antennas in wireless relay
networks by jointly considering two fundamental problems: Beam Scheduling (select-
ing a beamwidth and direction for the smart antenna at each RS in each scheduling
period) and Relay Assignment (determining how the RSs should be assigned to serve
SSs in each scheduling period). Our objective is to maximize a utility function that
can lead to a stable and high-throughput system. To the best of our knowledge, we
are the first to study such a joint beam scheduling and relay assignment problem
in the context of wireless relay networks, and present theoretically well founded and
practically useful algorithms to solve it. Specifically, we summarize our contributions

in the following:

e We define the Beam Scheduling and Relay Assignment Problem (BS-RAP),
show it is NP-hard and present a Mixed Integer Linear Programming (MILP)
formulation to provide optimal solutions, which can serve as a benchmark for

performance evaluation.

e We present two polynomial-time greedy algorithms for the BS-RAP and show
that one of them has a constant approximation ratio (i.e., if the problem is
a maximization problem, then the objective value of a solution given by the
algorithm is guaranteed to be no smaller than the optimal value multiplied by

a constant less than 1).
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e We also consider a related problem in which a RS assignment schedule has been
provided for some time interval and the problem is to select the best beam
pattern for each RS to use in each scheduling period within the interval. Some
low-cost antenna hardware may require some minimum time period between
two consecutive beam pattern reconfigurations; this imposes an additional con-
straint on beam scheduling which we include in the problem. We term this the
Beam Scheduling Problem (BSP) and provide a polynomial-time algorithm to

find an optimal solution.

The rest of this chapter is organized as follows. We describe the system model and
present the problem formulation in Sections 3.1 and 3.2, respectively. The proposed
algorithms are presented in Section 3.3. The simulation results are presented in

Section 3.4 and with a summary presented in Section 3.5.

3.1. System Model

We consider a 2-hop wireless relay network with a BS, m RSs{Ry, ..., R;,..., Ry}
and n SSs {My,..., M;,...,M,}. Each SS can communicate with the BS through
an RS. The BS has an omni-directional antenna and transmits at a fixed high power
level such that it can reach every RSs with a high data rate. Each RS R; is equipped
with an adaptive directional antenna that can form a main beam in any direction
with a beamwidth chosen from a set of angles © = {0, < ... < 0y }. We do not make
any assumption on antennas at SSs, i.e., an SS can have either an omni-directional
antenna or a directional antenna. Both RSs and SSs transmit at fixed power levels.
For uplink communications (i.e, from an SS to an RS or from an RS to the BS), the

transmitting node can simply point its main beam towards the receiving node. Hence,
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we focus on determining antenna orientations of RSs for downlink communications
from RSs to SSs.

Let 751 > 0 be the maximum data rate that can be supported by assigning M;
to R; and adjusting the directional antenna at R; to cover M; with a beam of width
Ok, i.e. the capacity of the wireless link from R; to M; with beamwidth 6. Typically,
;1 depends on the transmit power at R;, the beamwidth, the distance between M;
and R;, the operating frequency, and maybe other factors. If the free space path

loss model [95] is considered, then the Signal to Noise Ratio (SNR) at node M; for

P,GYG, N\
(4m)2d3 No>

a transmission over link (R;, M;) is SNR;; = where GY is the transmitter
gain assuming that R; forms a beam of width 6, d;; is the distance between R; and
M;, X\ is the wavelength and Ny is the background noise power. « is the path loss
exponent and is usually between 2 and 4. Note that since we assume a fixed transmit
power, operating frequency and given beamwidth 6, G? and G, are considered as
constants within the main beam. Note that the optimization schemes proposed in
this work is independent of the propagation model. Practically, if a radio is capable of
Adaptive Modulation and Coding (AMC), the maximum link data rate r;;; is given by
a discrete step increasing function of SNR at the receiver (instead of the continuous
Shannon’s function). A set of SNR thresholds, and the corresponding modulation
indices and maximum data rates (link capacities) specified by IEEE 802.16e [94]
is given in Table 3.3, which was used for our simulations. We can easily compute
the transmission range R! for RS R; by R! = (ﬁ—ﬁj&)i where SNR,;, is
the minimum SNR threshold. The main beam of a directional antenna at RS R; is

modeled as a sector with an angle of 6, € © and a radius of R. We summarize the

major notations in Table 3.1.
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Table 3.1: Major Notations

Bixi | The Ith beam set of R; using beamwidth 6,
R;/M; | The ith RS / jth SS

q; The queue length of M;

rije | The data rate of link (R;, M;) with beamwidth 6y
R The transmission range of R;
Sijr | The collection of beam sets of R; of width 0,
that contain M;
K; The maximum number of SSs that can be assigned to R;

3.2. Problem Formulations

In this section we formulate the Beam Scheduling and Relay Assignment Problem
(BS-RAP) and the Beam Scheduling Problem (BSP). We provide an MILP formula-
tion for the BS-RAP and prove that this problem is NP-hard.

3.2.1. The Beam Scheduling and Relay Assignment Problem

For each RS R;, we imagine rotating the main beam direction through 360 degrees
(recall that the width of the beam is some angle 6, € © degrees). As the direction
changes, SSs will enter and leave the beam sector. For any fixed direction a and
beamwidth 6, there will be a set of SSs that are currently covered by the beam.
We refer to this set of SSs as a beam set for o and 0,. We note that there will be
finite collection of distinct beams sets for all o € [0,360] degrees and 6, € ©. We
further assume that any beam set that is a proper subset of another is removed from
the collection. Let these beam sets be Bix = {Bi1, Bika, - - -, Bikn,, - For each SS
M;, let S;;i, be the collection of beam sets for R; with angle 8, that contain M;, i.e.

Sijk = {Bir € Bi, : j € Bi}. Even thought the main beam of a directional antenna
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[

Figure 3.2: An illustration of a BS-RAP instance.

can be pointed in any direction, as explained above, we only need to consider a finite
number of directions in terms of coverage for SSs.

We are interested in the problem of choosing the beam direction of the smart
antenna at each RS as well as which RS should serve each SS in each scheduling period.
Note that if a scheduling-based MAC protocol (such as WiMAX) is used, then a
scheduling period consists of several consecutive frames. The beam direction problem
is equivalent to the problem of selecting a beam set for each RS since once a beam set
is chosen, the RS can point its main beam towards any direction whose corresponding
sector can cover all the SSs belonging to that beam set. Once a beamwidth 6, and
beam set By, , is selected for each RS R;, all SSs will know which RSs (if any) can
cover it. Because each RS R; has a limited number of channels to use simultaneously,
we assume it can serve some maximum number K; of SSs during the scheduling
period. Deciding which RS (if any) should serve each SS is thus a joint problem to be
solved along with selecting the relay beams. Let r(j) be the RS that is assigned to
SS M;. We will use the convention that r(j) = —1 indicates that no RS is assigned
to M;. To summarize, in order for the RS assignment to be valid, we require that
ljir(j) =i < K;foralli=1,...,mand r(j) =1>0=j € B, -

The beam scheduling problem becomes the problem of creating a beam set sched-
ule for each relay in order to best serve the SSs. We assume that at each scheduling

period, a RS is able to select one of its beam sets to be active. Following [96], we
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assume that each SS M; has a capacity demand represented as a queue length ¢;. We

formally define the optimization problem as follows.

Definition 1. For a given scheduling period where each SS M; has a queue length q;,
the Beam Scheduling and Relay Assignment Problem (BS-RAP) is to select
for each RS R;, a beamwidth 0y, and beam set By, and jointly determine a valid
RS assignment, (r(j)), such that the utility function 3 .. . 1y ¢ min(gs, reg) jk;) 8

maximaized.

Figure 3.2 provides an illustration of a simple instance of the BS-RAP problem in
the case where each RS can serve at most two SSs (K; = Ky = 2). It is known that
if a scheduling algorithm can maximize the above utility function in each scheduling
period, then it can keep the system stable, i.e., keep the length of each queue finite [96].

Such a stable scheduling algorithm is also considered to achieve 100% throughput [97].

3.2.2. MILP Formulation for BS-RAP

In this section, we present an MILP formulation for the BS-RAP, which can be
used to provide optimal solutions and is also the basis for our LP rounding algorithm.
We define the following decision variables:
xijr € {0,1} : indicates M; is assigned to R; and R; uses beamwidth 6.
sitr € {0,1} : indicates R; uses beam set Bj.

y; > 0: the useful capacity supplied to M;.
MILP: BS-RAP

maxz q;Y; (3.1)
J
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Subject to:

y; <q5, jelln] (3.2)
y; < Zh‘jk%‘jk, j € [1,n] (3.3)
ik
injk <1, jelln] (3.4)

ik

D siw=1, i€[l,m] (3.5)
k,l

> s > i, i€ [Lml,j € [Ln] k€11 (3.6)

leSijk

Y wgpp <K, i€(lm] (3.7)
4.k

In this formulation, constraint (3.4) ensures that each SS M; is assigned at most
one relay station R; and beamwidth ;. Constraint (3.5) ensures that each relay
station R; selects exactly one beamwidth ; and beam set B;y. Constraint (3.6)
ensures that if M is assigned R; with beamwidth 6, then R; must select a beam set
from S;j;. Constraint (3.7) ensures that each RS R; is assigned to at most K; SSs

(using its available independent channels).

3.2.3. The Beam Scheduling Problem

We also consider the case where a relay assignment schedule has already been pre-
computed for each relay over some time interval consisting of 7' scheduling periods.
The problem becomes how best to choose the beams used by each RS in order to
improve the efficiency of the transmissions. A key consideration is that for some
low-cost antennas, it may not be possible to reconfigure the beam pattern used by

a given RS in each scheduling period. We assume that some minimum number of
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scheduling periods 0 < A < T must elapse between two consecutive beam pattern
reconfigurations. One feature of BSP which makes it easier to solve is that since
the relay assignment is given; this means that set of SSs that each RS will serve
during each scheduling period is known. With this in mind, we will define the beam
scheduling problem with respect to a single relay R = R; and let S; be the set of SSs
scheduled to use R during the scheduling period at time ¢ . The beams available to
this RS for a given beam angle 6, are given by the beam set B;;. For any time ¢, only

some of these beams will provide coverage to all of the SSs in .S;. Let

By = {(k,1) : S; C B}, (3.8)

be the set of specific angles and beams that can cover all the SSs within S; during time
t. We are interested in choosing a beam angle k; and beam [; such that (k;, ;) € By
for all 0 <t < T. We consider ((k¢, 1;)) to be a beam schedule for the given scheduling
duration. We define the reconfiguration times of the schedule as C' = {t > 0 :
(ke1,0-1) # (ki 1)} U{0,T}. A beam schedule is A-valid if t,t € C and t # t
implies that |t — | > A. We measure the quality of a beam schedule ((k,1;)) by the

worst case data rate R provides to any SS from any set S;, for ¢ € [0, 7],

w({(ke, 1)) = min 7k, (3.9)

t€[0,T),5€5:

The computational problem is thus to find a valid beam schedule ((k;,[;)) that max-

imizes (3.9):

Definition 2. Given a set of SSs S; for each scheduling period time t € [0, T] that have

been assigned RS R and a minimum same-beam period of A, the Beam Schedul-
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ing Problem (BSP) is to find a A-valid beam schedule {(ky,1;)) that mazimizes
w(((ke, 1))

In section 3.3.5 we show that an optimal beam schedule can be computed quickly

using dynamic programming.

3.2.4. Computational Complexity

In this section, we show that the BS-RAP is NP-hard. The proof is a reduction
from the PARTITION problem and follows a similar approach to [98]. An instance
of the PARTITION is a set of integers ay, as, . ..a, and the problem is to decide if

there exists an index set A C N = {1,2,...,n} such that > .., a; = >, y_4 .
Theorem 1. BS-RAP is NP-hard.

Proof: Let Ip : ay,as,...a, be the given instance of PARTITION. We show
how to create an instance Ig of BS-RAP (in polynomial time) such that Ip can be
partitioned if and only if /5 can achieve a given utility. Let b = ). a; (note b must be
even, otherwise the answer to Ip is trivially no). We will create n RSs Ry, Ry, ... R,
with beamwidths 6; = (a;/b)w. For the purposes of the reduction, we let r;;;, = 0 if
k # i; this means that it only useful for R; to use beamwidth 6;. All RSs will be
located at the origin (0,0) and it will suffice to let K; = a; + 1 be the number of SSs
that R; can be assigned to. Next, we create b + 2 SSs at points on the unit circle.
Specifically, we place b/2+1 SSs on the arc of the unit circle (7/4, —r/4) and b/2+1
SSs on the arc (—3m/4,37/4). Let # = /b and € = 7/b*. On the right hand side, we
place SS M; at location 7/4 — (j — 1)(x + €) (in radians) for j = 1,2,...,b/2. This
places M; at w/4 and M; at x + € radians clockwise from M, ; for j = 2,...,b/2.
Place My/o11 at —m/4 radians. For the left hand side, we can simply add 7 to the
right hand side locations, i.e. M; = M;_y; for j =b/2+2,b/2+3,...,b+2. Fig. 3.3
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Figure 3.3: An NP-hard instance of the BS-RAP.

illustrates the scenario. Let all data rates and queue lengths be identically one: 7;; = 1
forall1<i<nand1<j<b+2andg =1foralll <j<0b+2 We claim that
Ip can be partitioned if and only if I can achieve a total utility value of b+ 2 (each
SS is served by some RS). We argue each direction of this statement as follows:
=: Let A C N besuch that >, ,a; = > ;. y_4 ai- We will use the relays {R;|i € A}
to serve the right hand side SSs and the relays {R;|i € N \ A} to serve the left
hand side. The sum of the beam angles available on each side is >, ,(a;/b)T =
Y ic N 4(ai/b)m = /2. Thus, using an non-overlapping adjacent beam pattern on
each side will just cover all of the SSs and achieve the desired utility value.

<: Suppose that Iz can achieve a total utility value of b+ 2. This implies that
each SS M; is in the beam B, of at least one RS R;. Let A be the index set of RSs
that serve SSs on the right hand side. Let B4 = {B;|li € A} be the set of beams
serving the right hand side. For each beam B; € By, let M;, be the uppermost (most
counter-clockwise) SS covered by B; and let M;; be the lowermost (most clockwise).
Rotate each B; clockwise until the top edge of beam just touches M;,. Note that all
SSs remain covered after these rotations. There may be some gaps in beam coverage
along the arc (w/4, —m/4). Assume there are k such gaps. We will argue that the
total size of these gaps must be small. Because all SSs are covered, these gaps must

occur between consecutive SSs. Furthermore, the lower edge of gap ¢ must intersect
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an SS, M,,, since the beams were rotated. The upper edge of gap ¢ is formed by the
lower edge of a beam B whose uppermost RS M, must fall in between M, , and
M,,, so u; € (gi—1,9;) (let go = 1); see Fig. 3.3. The upper edge of B must intersect
M,, (because of the previous rotation). The beamwidth of B is (g; — u;)z radians,
while the angle between M,, and My, is (¢; — u;)(x + €) radians, so the size of gap i

is (g; — u;)e radians. The total size of all the gaps (in radians) is

k

Z(gi —u;)e < Z(gz — gi-1)€

=1

= (9k — g0)e < (b/2)e.

It follows that the sum of the beam angles on the right hand side is

> (ai/b)r > /2~ (b/2)e

€A

=7/2(1 —1/b).
Multiplying both sides by b/7 yields

> a;>b/2-1/2.

icA
Since ) ;.4 a; is an integer and b is even, >, , a; > b/2. A symmetric argument

for the left hand side shows that >, \_,a; > b/2. It follows that > ._,a; =

D ien—a @i = b/2. "
We remark that while pseudo-polynomial and Polynomial Time Approximation
Schemes (PTASs) exist for the PARTITION problem [99], they cannot be directly

applied to solve the BS-RAP in its general form.



43

3.3. Proposed Algorithms

We present two algorithms to solve the BS-RAP. Both are based on greedy strate-
gies. The first algorithm has a constant factor approximation guarantee and the
second is shown to be somewhat more effective in practice. Finally, we present an

polynomial-time optimal algorithm for the BSP.

3.3.1. BS-RAP: A Basic Greedy Algorithm

The idea of the BS-RAP-Greedyl algorithm is to first get a tentative assignment
of RSs to SSs and then use that assignment to guide selecting a beam set of reach RS
to use. Steps 1 and 2 of the algorithm assigns RSs to SSs optimistically assuming that
any SS M, can communicate with any RS R; using the best narrow-beam transmis-
sion rate available r;;;. Thus, beam directions are ignored for the time being. This
simplifies the problem to a form of the generalized assignment problem (GAP); this
problem considers that there are some number of activities (subscriber stations) and
agents (relay stations) with various capabilities. Assigning an agent to an activity
provides some value (vj;;) and requires some cost (always 1). The objective is to
assign agents to activities in order to maximize total value, with agents constrained
to given budgets (in this case Kj;, the maximum number of SSs that RS R; can be
assigned to). Once this tentative RS assignment is found, each RS choses a beam
set that maximizes its reward given this assignment (Step 3). Any remaining SSs
that have not yet been assigned a RS are then assigned RSs if possible (Step 4).
Pseudocode for BS-RAP-Greedy1 is given in Algorithm 3.1.
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Step 1 Let v, = ¢; min(g;, %) for all 4, j.
Let r(j) = —1 for all j.
We define (and keep updated)

" Vijk if r(j) = -1
V: .y =
ik Vijk — Up(j)jk  Otherwise.
Step 2 for i =1 to m :
Let " sort {vf;;}7_, into decreasing order.
for p=1to K; :
if U;ri(p)l > 0
Set r(7*(p)) = 1.
endif
endfor
endfor

Step 3 for i =1 to m :
Calculate the reward w;;; of each
beam set B, defined as follows:

Wikl = E Vijk

JEBik1,r(J)=1

Compute (k;, [;) = argmax; ; Wi

Set Sik;l; = 1 and Sikl = 0 for k?,l 7& kz’; l,

For j & By, s.t. r(j) =1, set r(j) = —1.
endfor

Step 4 for j=1ton:
Set z;;, = 0 for all ¢, k.
if r(j)=-1
Let R; ={i:j € B,
if R; #2
Set r(j) = argmax;cr. Tiji,
Set (ﬂr(j) =1.
endif
else
Set r(j)jk
endif
endfor

{7:7() =} < Ki}

Tk (5)

1.

rG)

Algorithm 3.1: BS-RAP-Greedy1
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3.3.2. Time Complexity of BS-RAP-Greedyl

Next we examine the running time of the BS-RAP-Greedyl algorithm. Steps 1
and 2 implement a standard GAP algorithm that can be seen to run in O(mnlogn)
time. We note that an upper bound on the number of beam sets for each RS is 2n
since a new beam set is formed only when an SS enters or leaves the beam set (as the
RS’s antenna sweeps its beam in a circle). This implies that Step 3 can be computed
in O(mn) time (we assume that W, the number of possible beamwidth angles is a
constant). Finally, Step 4 can be done in O(mn) time so the overall running time is

O(mnlogn).

Theorem 2. The BS-RAP-Greedyl algorithm runs in O(mnlogn) time and provides

a solution that is within a factor m of the optimal value.

Proof. We establish the approximation ratio; the running time analysis was given
above. Let {7}, si;} be an optimal solution to the original MILP with utility value
V*. Let {jk, sirs} be the solution produced by the greedy algorithm, with utility

value V. Let Vi be the optimal solution value to the simplified GAP instance

considered and let V¢ be the value of the greedy solution found by Steps 1 and 2.

gap

A relatively recent result [100] shows that the greedy solution found in this case is

2-optimal, V9, > iV

o = 3Voap- It 1s also clear that V* < Vi

Japs Since in the GAP problem

the RSs are not forced to chose a beam set. Hence,

Ve <2V

bs—gap

(3.10)

After Step 3, each RS has chosen the beam set By, and assuming each M still

uses RS R,(; the value of the utility function (3.1) is Y, wik,,. In Step 4, SSs that
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have not yet been assigned an RS are free to be assigned an RS if it is has available
channels; hence the utility value can only increase and so V' > 3. wi,.

For a RS R;, we define a beam set cover to be any subset C' C B;; such that
Vj3dB;; € C such that j € B;y;. Note that the narrowest beam angle 6; is chosen to
define beam set covers. Let C; be a minimum-sized beam set cover for R;. Observe

that |C;| < (Z—H We have,

gap ZUT(J
_Z Z Ur(j)j1

i gir(g)=i

<> > v

i 11lECL]€Bz1l7 ( ) i

:Z Z Wi

i B;11€C;
<§ E Wik, 1, E |Ci| i1,
i 11l€C

27T Zwm (— (3.11)

Combining (3.10) and (3.11), yields V' > 5———=V"* as claimed. O

2/“

3.3.3. BS-RAP: A Joint Greedy Algorithm

The second greedy algorithm is a variation on the first. The main difference is
that beam set selection and relay assignment are done jointly. This is done in Step 2
of the algorithm, which loops through all the RSs and for each, chooses the best beam
set to use given the previously made SS assignments to that RS. Once a beam set is
chosen for a RS R; then up to K; SSs are assigned that RS and the loop continues. We

refer to the algorithm as the BS-RAP-Greedy2, pseudocode is given in Algorithm 3.2.
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3.3.4. Time Complexity of BS-RAP-Greedy?2

It is easy to see that Step 2 of the BS-RAP-Greedy?2 is also O(mnlogn) time, and
so this algorithm has the same asymptotic time complexity as the BS-RAP-Greedy1

algorithm.

Step 1 Follow Step 1 of BS-RAP-Greedyl.

Step 2 for i =1 to m :

Calculate the reward w;y; of each

beam set B, defined as follows:
(a) Let 7% sort By, by decreasing Vg
(b) Let Wi, = {p < K;: v;rikl(p)k > 0}
(C) Let Wikl = ZPEWikl U;r““l(p)k‘

Compute k;l; = argmax;,; w;y;.

Set s, = 1 and s = 0 for kl # k;l;.

for p € ‘/I/Zkzlz :
Set (7% (p)) = i.

endfor

endfor

Step 3 Follow Step 4 of BS-RAP-Greedyl.

Algorithm 3.2: BS-RAP-Greedy?2

3.3.5. BSP: A Polynomial-Time Optimal Algorithm

In this section we present a polynomial-time optimal algorithm for computing an
optimal beam schedule w({(k,;))) based on dynamic programming. As is the hall-
mark of dynamic programming, we show that an optimal solution can be constructed
using optimal solutions of smaller subproblems. In this case, the subproblems are: for
each ¢, determine the best A-valid beam schedule {(k;,;))*" for the subinterval [0, ¢]

for which ¢ + 1 could be a reconfiguration time. This means that ((k¢,;))* cannot
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have a beam pattern reconfiguration in the interval [t + 1 — A t]. To simplify the
presentation, we assume that R; may use a trivial omni-direction beam to serve the
scheduled SSs (perhaps with data rate 0). Note that ((ki,[;))* must use some beam
angle k; and beam set [ at time ¢ and the reconfiguration to this beam must have
been made at some earlier time  such that f = 0 or A < { < t+1— A. Observe that
((ky,1;))** can be assumed to agree with an optimal solution ((k;,1;))* for t € [0,£—1],
since this cannot decrease the worst-case quality of the beam schedule. This means
that we can construct ((ky,[;))* by simply trying all viable beams for its final beam,
with last switching time ¢ = 0 or A < t < t+1—A, checking what the minimum rate to
any scheduled SS by that beam in interval [£, ] and extending it to full schedule using
the previously computed solution ((k¢,1,))* 1. The optimal solution of the original
problem will be given by ((k;,1;))*T. The full dynamic programming algorithm is

given in Algorithm 3.3.

3.3.6. Time Complexity of BSP

We next analyze the computational complexity of Algorithm 3.3. We note that
there are at most O(K;W) possible beams to consider for any scheduling period time ¢
and a given RS R; (K is the maximum number of SSs that can use R; simultaneously
and W is the number of beam angles available). Thus Step 1 can be performed
in O(K;WT) time. Step 2 can be performed in O(K;WT?) time using a similar
argument. If the partial solutions ((k;,l;))* are represented efficiently using lists of
beam intervals, they can be extended in O(1) time and Step 3 can be implemented

in O(T?) time. Thus the time complexity of the entire algorithm is O(K;WT?).
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Step 1 Compute B; for 0 <t < T using (3.8).

Step 2 Compute B;, = B;N...N By for 0 <t<t<T.
Compute )
(k*,1*)"" = argmax  min 7y,

Bf,t ie [f,t] JES{

for0<it<t<T.

Step 3 fort=Ato T :

Initialize ((k,[;))*" by setting all

(kg 1y) = (k*, 1)

fort=Atot+1—A":
Let ((kz,1;))"*" be defined by:
(K¢, 1))~ for £ < ¢ and
(k1) = (k*, 1) for t < T < t.
if w(((kp 1)) > w({(ke, 1))

Let {(ke, ) = (kg 1))

endif

endfor

endfor

Step 4 return ((kg,l;))*"

Algorithm 3.3: BSP-DP
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3.4. Numerical Results

In this section, we present simulation results to show the performance of the
proposed algorithms. The ILOG CPLEX [101] optimization software was used to
solve all the MILP and LP problems. In the simulation, n SSs were randomly deployed
within a square [ x [ km region, with a single BS placed at the center of the square.
Then, m RSs were deployed radially from the center of the region with uniform
angular spacing and random radii between zero and the maximum distance. In the
simulation, we calculated SNRs using the free space path loss model [95] as described
in Section 3.1. The transmitter antenna gain of each node was set to 3’:+0G0, where
(G, is the gain of an antenna working in the omni-directional mode. In addition, each
node was assumed to be able to receive signals from all directions, i.e., the receiver
antenna gain of each node was set to (G,. The values of those parameters relevant to
the propagation model and other related parameters were set according to Table 3.2.

As described previously, the link capacity is given by a discrete step increasing
function. A set of SNR thresholds, and the corresponding modulation indices and

link capacities specified by IEEE 802.16e [94] are given in Table 3.3.

Table 3.2: Common Simulation Settings

Omni-directional antenna gain G, 2dB;
Operating frequency 5.8GHz;
Path loss exponent 2;
Transmit power of each RS (FP;) 1W;
Noise power —174dBm/Hz;
Channel bandwidth 10MHz;
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Table 3.3: SNR VS. Link Capacity

SNR Threshold (dB) | Modulation Index | Link Capacity (Mbps)
10 QPSK 1/2 10
14.5 16QAM1/2 20
17.25 16QAM 3/4 30
21.75 64QAM 2/3 40
23 64QAM 3/4 15

To simplify the scenarios, we just considered that each RS could use either the
beamwidth 6 or the beamwidth 26. In each simulation scenario, we changed the
value of one parameter and fixed the values of the others. We first evaluated the
performance of the proposed BS-RAP algorithms, i.e., the two greedy algorithms
(labeled as “Greedy #1” and “Greedy #2”), in terms of the utility function (3.1). In
all scenarios, we also computed optimal solutions by solving the MILP for the BS-
RAP (labeled as “Optimal”). We summarize our BS-RAP simulation scenarios below
and present the corresponding simulation results in Figs. 3.4-3.9. Each plotted value
in these figures is an average over 10 runs per parameter combination, each with a
different randomly generated network. We assume that each RS has angles # and 26
available and that each SS queue length is drawn from the uniform distribution on
[0, 2p], where p is the mean queue length.

Since our BSP-DP algorithm is optimal, we do not provide simulation results for
the BSP problem.

We make the following observations from the simulation results, noting that the
BS-RAP-Greedy2 algorithm is close to optimal in almost all cases, while the BS-
RAP-Greedyl algorithm performs less well in all cases:

1) From Fig. 3.4-3.9, we see the BS-RAP-Greedy2 algorithm closely tracks the

optimal solution; it is always within 15% of the optimal solution. The BS-RAP-
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Greedyl algorithm degrades to less than 75% of optimal as the number of SSs increases
in Scenario 1.

2) Fig. 3.5 illustrates that a near linear increase in performance results as the
number of RSs is increased in Scenario 2. Even as the number of RSs increases to the
maximum value, both greedy algorithms do a relatively good job at allocating these
additional resources. Eventually, there must be diminishing returns as more RSs are
added but this did not occur in the range considered (m € [2,6]).

3) Fig. 3.6 suggests that 0 in the range 40-50 degrees is optimal for the simulation
parameters examined. Recall that each RS could form beams of width 6 or 26.
Across the simulations performed, there were somewhat more beams of width 260
chosen versus #. Using a narrower beam can increase the potential throughput from
an RS to an SS assigned to it, but a wider beam potentially allows the RS to serve
more SSs during the scheduling period.

4) From Fig. 3.7 we see that the BS-RAP utility increases close to linearly with
the average queue length of each SS. BS-RAP-Greedy2 tracks the optimal solution
closely, whereas the relative performance of BS-RAP-Greedyl1 falls off as the queue
lengths are increased.

5) Fig. 3.8 indicates that the utility function decreases approximately linearly with
the side length of the simulation region. As distances increase a RS must either use
a narrower beam to reach more distant SSs it is assigned to (and so potentially serve
a smaller number of SSs), or accept a lower transmission rate to those SSs. In either
case, the utility function will decrease.

6) In Fig. 3.9 we see that there are decreasing gains as the number of independent
channels available to each RS is increased. This number determines how many SSs
that can be assigned to each RS. In this case (n = 40 SSs, m = 4 RSs), it appears

that around 5 channels per RS is sufficient to obtain the maximum utility value.
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3.5. Conclusions

We have explored how to leverage smart antennas for efficient communications in
wireless relay networks. A corresponding optimization problem was formally defined
as the BS-RAP and was proven to be NP-hard. We first presented an MILP formula-
tion to provide optimal solutions and then presented two two greedy approaches for
the BS-RAP, one of which, BS-RAP-Greedy1, was shown to have an approximation
ratio of m. These algorithms are simple, easy to implement and scale well to
larger network instances. We also considered the related problem BSP and presented
the BS-DP algorithm to solve it optimally in polynomial time. It has been shown
by extensive simulation results that both proposed BS-RAP algorithms provide good
performance, with the BS-RAP-Greedy?2 algorithm better than 85% of optimal in all

cases.
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CHAPTER 4

MULTI-BEAM SMART ANTENNAS

Compared to a conventional omni-directional antenna, which wastes most of its
energy in directions where there is no intended receiver, a smart (directional) antenna
offers a longer transmission range and lower power consumption by forming one or
multiple beams only toward intended receivers. This paper was co-authored with Drs.
Mumey and Tang and Yun Xing, it was submitted to IEEE GlobeCom 2011, but was
rejected. It has been revised and resubmitted to the IEEE International Conference
on Computing, Networking and Communications 2012.

There are primarily two approaches to exploit the benefits of smart antennas
for mesh networking: the cross-layer approach [52] and the topology control ap-
proach [53]. With the cross-layer approach, a joint antenna pattern assignment and
scheduling solution is provided to switch beams to communicate to different neighbors
at a fast time scale (e.g., on a per-time slot basis). However, the topology control
approach pre-computes an antenna pattern for each node such that a certain network
topology can be formed for future communications. Using this approach, antenna
beam switching is conducted in a slower time scale (in the order of seconds or more)
at the potential expense of performance. Compared to the cross-layer approach, the
major advantage to using the topology control approach is that it is purely a link
layer solution that does not require any modifications to a standard MAC protocol.
Hence, it can be easily implemented in a system using Commercial-Off-The-Shelf
(COTS) and standard protocols. The topology control approach is the focus of this
paper, which may lead to performance comparable to the cross-layer approach with

a carefully designed algorithm and full consideration for link capacity.
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Figure 4.1: A multi-beam antenna.

Our contributions are summarized as follows:

1) We formally define the corresponding optimization problem as the Sector Se-
lection Problem (SSP). 2) We present a Mixed Integer Linear Programming (MILP)
formulation to provide optimal solutions. 3) We present an effective Linear Program-
ming (LP) rounding based algorithm for the SSP. 4) We present extensive simulation
results to show that the proposed algorithm provides close-to-optimal performance
and yields good solutions in terms of both capacity and fairness compared to alter-
native approaches including a Minimum Spanning Tree (MST) based algorithm and

the k nearest neighbors algorithm.

4.1. System Model

We consider a multihop wireless network composed of n nodes. Each node v; is
equipped with an adaptive directional antenna that can form beams in any of M
different sectors (see Figure 4.1). Each sector that is activated (turned on) creates a
beam of width % degrees.

We assume that the data rates available to a node depends on the number of

sectors it has activated. Let ¢f; > 0 be the maximum data rate that can be supported
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SNRj = ———
J (47T>2d%N0

(4.1)

by the link (v;,v;) assuming v; has activated a sectors in total, including the sector
in which v; falls in. Typically, ¢f; depends on the transmit power at v;, the distance
between v; and v;, the operating frequency, and maybe other factors. If the free space
path loss model [95] is considered, then the Signal to Noise Ratio (SNR) at node v,
for a transmission over link (v;, v;) is

where G is the transmitter gain assuming that v; has activated exactly a sectors, G
is the receiver antenna gain (omni-directional reception), d;; is the distance between
v; and vj, A is the wavelength and Ny is the background noise power. « is the path
loss exponent and is usually between 2 and 4. We assume a fixed transmit power P,
operating frequency and receiver gain G,, so SNR;; varies only with the number of
sectors activated by v; and the transmission distance.

Practically, if a radio is capable of Adaptive Modulation and Coding (AMC),
the maximum link data rate ¢f; is given by a discrete step increasing function of
SNR at the receiver (instead of the continuous Shannon’s function). A set of SNR
thresholds, and the corresponding modulation indices and maximum data rates (link
capacities) specified by TEEE 802.16e [94] is given in Table 3.3, which was used for
our simulations. For each 1 < a < M, we compute the transmission range for a node

using a sectors as
( P,GYG,\? )
(47T)2SNRminN0 ’

Q=

where SNR,,i, is the minimum SNR threshold. Each active sector beam of node v;
is as a sector with an angle of % and a radius of RT*. We summarize the major

notations in Table 4.1.
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Table 4.1: Major Notations.

n The number of nodes in the network.
V; The ith node in the network.
M The number of antenna sectors.
s(u,v) The sector of u that node v falls in.
SNR;; | The SNR at node v; for transmission over link (v;, v;)
R} The transmission range of v;
oy The transmission rate of link (u,v) assuming u
has activated exactly 1 < a < M sectors.

4.2. Problem Formulation

We are interested in the problem of choosing which antenna sectors each node
should activate. We will assume that the power available to each activated sector for
transmission depends on the number of sectors activated. Thus, there is a trade-off
between activating additional sectors to increase the number of directions that a node
can use to reach other nodes and the transmission rates achievable to those nodes.
We formally define the optimization problem as follows.

In this problem, our objective is to maximize the summation of link capacities
since this summation gives the maximum (possible) capacity (note that the actual
network capacity may depend on many other factors such as the MAC protocol).
It may be argued that maximizing the total link capacity may lead to unfairness,
however we will show that our SSP algorithm offers good performance in terms of

both maximum capacity and fairness via simulation results.

4.2.1. MILP Formulation

In this section, we present the following MILP formulation of the SSP, that can

be used to provide optimal solutions.
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Variables:

Suk € {0,1}: indicates whether u activates sector k

ry,, € {0,1}: indicates whether link (u,v) is active and u uses a sectors
zg > 0: used for constraining the x{ , variables (real)

fuwp = 0: the amount of flow on the edge (u,v) (real)

Objective:

a a
max Tiprar = E CoroTorw (4.2)

u,v,a
subject to the following constraints (indices vary over their entire domains, unless
otherwise noted). We also choose one node arbitrarily to be the source vertex s. The

purpose of s is explained below.
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>, <1 (4.3)

Ty, =0, ifc;, =0 (4.4)
DT =D T (4.5)
xz,v < Su,s(u,w) (46)
ATV <A =Y sk AC[1,M] Al > 1 (4.7)
keA
5, < 28 (48)
Juw <1 (u,v) €E (4.9)
fuw < anzw, (u,v) € B (4.10)
K n b
{(u,8)€E} {v:(s,v)EE}
1
Do = D fuw vEV\{s) (4.12)
{u:(u,v)EE} {w:(v,w)EE}

In this formulation, constraint (4.3) ensures that for each link (u, v), the transmit-
ting node u must fix the number of sectors, a, it is using. Constraint (4.4) ensures that
links (u,v) cannot be used if u, when using a sectors, cannot provide any capacity
to v. Constraint (4.5) guarantees that each link will be bidirectional in the solution
(if (u,v) is operational then (v,u) must also be operational). The constraint (4.6)
requires that if the link (u,v) is used, then w must activate the sector containing the
node v. Constraints (4.7) and (4.8) work together to ensure that if ] , = 1 then the
node u must not have more than a sectors activated. This is done by enumerating
all subsets of u’s sectors of size two or greater, e.g. if any two sectors are activated

then u cannot use a link of the form x! . etc. We note that there are 2 — M — 1

u,?
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such constraints. The flow constraints are used to ensure network connectivity. In
particular, one node is designated as the source node s and there must be connectivity
from s to all other nodes. We view each node v € V' as able to implicitly absorb %
units of low. We assume that there is 1 unit of flow originating at the source node and
that the source node is able to absorb % of this flow and must ship the remainder to
the other n— 1 nodes to be absorbed. In particular, (4.11) stipulates that the net flow
out of the source node is 1 —% and (4.12) says that the flow into any other node equals
the flow absorbed at the node plus the outgoing flow from the node. Constraint (4.9)
ensures that the flow on each link is at most 1. Constraint (4.10) requires that if
a link (u,v) has positive flow, then it must be active since Y a4, > = f,.,. The
% factor is used to reduce the influence of which node was chosen to be the source
vertex s. Together, the transmission and flow constraints guarantee that the MILP

solution meets both the network connectivity and bidirectional links requirements of

the SSP and the objective function ensures the solution has maximum total capacity.

4.2.2. Computational Complexity

The problem is clearly NP-hard since it is related to the bounded degree spanning
tree problem. In particular, we can easily reduce the problem of testing whether an
undirected planar graph contains a Hamiltonian path to SSP by setting the sectors
and capacities such that there is only positive capacity through a node if it enables

at most two edges. This problem is known to be NP-complete [102].

4.3. Proposed Algorithms

We present two effective heuristic algorithms to solve the SSP. The first algorithm

is based on LP rounding while the second is based on finding minimum spanning tree
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(MST) and then greedily augmenting the solution until no further improvement is

found.

4.3.1. The LP Rounding Algorithm

We begin with an observation that the z7 , variables can be relaxed to be real-

valued in the MILP from the previous section, provided the cj , constants are non-

increasing with a:

Lemma 1. If ¢}, > ... > ¢, for all (u,v) € E, then relaxing the {z} ,} to be real-
valued and adding additional constraints of the form 0 < zi , < 1 does not change

the optimal objective value of (4.2).

Proof. The objective value of the original MILP cannot exceed that of the relaxed
version. Suppose {z{, ,} are part of an optimal relaxed solution and suppose (u,v)
is some edge such that ) x% > 0. We observe that constraint (4.3) must be
tight, since the right hand sides of constraints (4.6) and (4.8) are integer values. In
particular, let @’ = argmin, ¢ > 0. If we set IBZ/W = land zi,, = 0 for a # d, this
cannot decrease the objective value and remains feasible. It follows that an optimal
solution to the relaxed LP can be found with integral {z, ,} values and so the original

and relaxed MILPs have the same optimal objective value. O

By Lemma 1, we can solve the relaxed version of the MILP instead of the original.
The idea of our algorithm is to further relax the MILP to a LP formulation in which
the sector usage variables {s,;} are also relaxed to be real-valued, with additional
constraints of the form 0 < s,; < 1. The algorithm proceeds in two phases. In
the first phase, the network connectivity constraints are satisfied by ensuring that a
solution contains a spanning tree of the network. The approach used is similar to

Prim’s algorithm for finding a minimum spanning tree in a graph: an edge (u,v)
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is added to the spanning tree if nodes v and v are currently disconnected and the
addition of the link (u,v) most improves the objective. If link (u,v) is selected, u
and v’s components are merged and we add the explicit constraint s, su.) = 1 to
the LP. In this way, sectors in the network are gradually forced to be fully activated.
After phase one, if the LP remains feasible, the network will be connected. At this
point, all sectors that were not explicitly turned on in phase one, are set to be off. We
consider this as a baseline integer solution. In phase two, we greedily try to improve
the baseline solution by checking to see if any facing sector pairs, with at least one
sector of pair unactivated, can be both activated to realize a gain in the overall
network capacity. If so, we choose the pair with the greatest capacity improvement

and activate these sectors. We repeat this until no further improvements are found.

4.3.2. Time Complexity of SSP-LPR

We note that the time complexity of the SSP-LPR algorithm is polynomial. This
because the LPs that are solved are polynomial in size and can be solved in polynomial
time. Step 2 requires solving n—1 such LPs. A simple upper bound on the length of L
in Step 4 is n(n—1)/2 since each pair of nodes may or may not yield an unused facing
pair of sectors in L. L shrinks by 1 pair each iteration. So, in the worst case Step 4
must evaluate the effect on the objective function of turning up to O(n?) facing pairs.
We note that computing the new objective value can be done in O(n) time since
only links using one of the endpoints of the considered facing pair will potentially be
effected by turning on the facing pair and there are at most O(n) such links. This
implies Step 4 has a worst case complexity of O(n®) but in practice instances up to

n = 30 can be run in a few minutes on a fast workstation.
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Step 1 Let P be the fully relaxed version of the MILP
with the {x]  } and {s,} real-valued;
for i = 1 to n: set cpnt(v;) = i; endfor

Step 2 for i =1 to n-1
Solve P;
Compute

(u,v) = argmax Z .l

{(ww)lcpnt(wAcpnt)} 5

Add {8u75(u7v) = 1, Sms(%u) = 1} to P;
Merge cpnt(u) with cpnt(v);
endfor

Step 3 for s, € P unconstrained by Step 2
Add {s,r =0} to P;
endfor
Let L = {((w, k1), (u,, k))} be all facing
sector pairs such that s,, 5, = 0 or sy, k. = 0;

Step 4 do

improvement = FALSE;

Compute ((u;, k), (uy, k) =

argmax; obj(P + {su, k5, = 1, Su, k, = 1});

if obj(P + {su,k, = 1, Su, 5, = 1}) > obj(P)
Let P=P + {Suhkl = 17Sur,kr = 1},
Update L;
improvement = TRUE;

endif

while (improvement);

Algorithm 4.4: SSP-LPR
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4.3.3. The MST-Greedy Algorithm

The second algorithm that we propose is based on first finding a minimum span-
ning tree for the network, then turning only those node sectors so as to realize the
MST. Similar to the SSP-LRP algorithm, this provides a baseline solution that we
then try to greedily improve by checking to see if any facing sector pairs, with at
least one sector of pair unactivated, can be both activated to realize a gain in the
overall network capacity. The sector pair with the greatest capacity improvement is
chosen and activated. This is repeated until no further improvements are found. The

complete algorithm is shown in Algorithm 4.5.

Step 1 Compute a MST 7', where each edge weight w(u,v) is given by the Euclidean
distance d(u, v).

Step 2 Let P be the corresponding MILP instance.
for (u,v) e T
Add {Su’s(u’v) =1, Su,s(vu) = 1} to P;
endfor

Step 3 Follow Steps 3 and 4 identically from the SSP-LPR algorithm.

Algorithm 4.5: MST-Greedy

4.3.4. Time Complexity of MST-Greedy

We note that the time complexity of the MST-Greedy algorithm is also polyno-
mial. Performing the MST computation can be done in O(n?) time using a standard
method such as Prim’s algorithm [103]. Step 3 has a worst case of O(n®), so this is

the overall time complexity of the algorithm.
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4.4. Simulation Results

In our simulation scenarios we change either the value of n or M while keeping
the other value fixed. We evaluate the performance of the proposed algorithm, i.e.,
the SSP-LP rounding algorithm (labeled as SSP-LPR), a Minimum Spanning Tree
Approach (labeled, SSP-MST), and a K-Nearest Neighbors based algorithm (labeled
as SSP-kNN) in terms of the summation of link capacities (i.e. maximum capacity)
and the well-known Jain’s fairness index,

. (Z?:l ri)Q
Frnrme ) = S
where 7; is the capacity of each edge in the network. Further we compute the fairness
into and out of each node to verify the results. Jain’s fairness index is the most com-
monly used metric for evaluating the performance of resource allocation algorithms
in terms of fairness. In the first scenario, we compared the proposed algorithms
against the optimal solutions given by solving the MILP in small cases. In the other
scenarios, we compared the proposed algorithm in terms of both metrics on large
input cases. We summarize our simulation scenarios in the following and present the
corresponding simulation results in Figs. 4.2—4.4. Each number in these figures is an

average over 10 runs, each with a different randomly generated network.

e Scenario 1: Change n from 8 nodes to 16 nodes with a step size of 2. Fix M = 8.

e Scenario 2: Change n from 10 nodes to 30 nodes with a step size of 5. Fix

M = 8.

e Scenario 3: Change M from 4 sectors to 12 sectors with a step size of 2. Fix

n = 20.
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The following observations can be made from the simulation results:

1) From Fig. 4.2, we can see that the maximum capacity values given by the
proposed algorithm closely track the optimal values. The average difference is only
3.61% for the SSP-LPR algorithm.

2) From Figs. 4.3-4.4, we see that when the number of nodes in the network
varies, the SSP-LPR algorithm outperforms the SSP-MST by approximately a factor
of two and it outperforms the SSP-kNN algorithm by an average of 30%. As the
number of sectors per antenna is increased the SSP-LPR outperforms the SSP-MST
algorithm by an average of 30% and the SSP-kNN by an average of 23%, however
this performance shows increasing gains for the SSP-LPR algorithm as the number
of sectors grows.

3) Although the goal of the proposed algorithm is to maximize the network capac-
ity, maximizing capacity can lead to poor fairness. In Scenario 1, we computed the
fairness of both incoming and outgoing node capacities. The average of these values
for for each algorithm is shown in Fig. 4.5. All algorithms are relatively fair (fairness

> 0.7), with SSP-kNN and SSP-MST providing the best average fairness.

4.5. Conclusions

We have studied the topology control approach for efficient communications in
wireless relay networks with smart antennas. The corresponding optimization prob-
lem was formally defined as the SSP. We first presented an MILP formulation to
provide optimal solutions. Then we presented a new LP rounding algorithm. It
has been shown by extensive simulation results that the proposed algorithm pro-
vides close-to-optimal performance and is superior to several alternative approaches

in terms of both network capacity and fairness.
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CHAPTER 5

JOINT ROUTING AND CHANNEL SELECTION

Wireless Mesh Networks (WMNs) are considered an economical method of pro-
viding robust, high-speed backbone infrastructure and broadband Internet access in
large areas [104]. Mesh topology offers the advantages of alternative route selection
to assure throughput and Quality of Service (QoS) requirements under dynamic load
conditions. As aggregate traffic volume can be substantial on backbone links converg-
ing on gateways and mesh routers, considerations of transmission path routing and
how to select channels along the path are essential to assure that a WMN can meet
the QoS and throughput requirements of end-users’ applications, especially real-time
multimedia applications. Furthermore, range considerations and propagation charac-
teristics demand careful attention to interference. Cognitive radios are desirable for a
WMN in which a large volume of traffic is expected to be delivered since they are able
to utilize available spectrum more efficiently than conventional, static channel assign-
ment methods and therefore improve network capacity significantly [105]. However,
they introduce additional complexities to resource allocation. With cognitive radios,
each node can access a set of available spectrum bands which may span a wide range
of frequencies. Each spectrum band may be divided into channels, and the channel
bandwidths may vary from band to band. Different channels may be able to support
quite different transmission ranges and data rates, both of which have a significant
impact on resource allocation and interference effects. Each network link has some
subset of channels available due to the activities of primary users and other traffic in

the network.
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We study two hard resource allocation problems in cognitive radio mesh networks:
the Channel Selection (CS) problem which is to choose a set of available channels on
each link in a given routing path so as to maximize end-to-end throughput of the path,
and the Joint Routing and Channel Selection (JRCS) problem where the routing path
is not provided as part of the input and must be found along with a channel selection
for each link on the path. We use a general and accurate approach to estimate end-
to-end throughput of a path, in which channel capacities and availabilities are link
specific. Our objective is to design efficient approaches to support emerging wireless
applications demanding long-standing connections and high end-to-end throughput,
such as real-time streaming video or bulk data transfer.

This work is different from some previous works on scheduling and spectrum
allocation [37, 44, 62-65] which usually dealt with the problem of scheduling and
allocating channels to links for link-layer throughput maximization. Here, we focus
on end-to-end performance, and consider the problem of allocating channels along
a multi-hop routing path, which is a much harder problem due to the constraints
related to intra-flow interference [106] (links on a common path interfere with each
other if assigned the same channels) and due to the fact that in general there are an
exponential number of potential paths in a mesh network connecting a pair of nodes
as well as an exponential number of ways to assign channels along a path. In addition,
the algorithms proposed for traditional WMNs with homogeneous channels [36,88,89]
cannot be applied to solve our problems here which target at a large number of
heterogeneous channels that can support different data rates and transmission ranges.
In short, routing and channel selection in cognitive radio mesh networks are very
challenging problems, which is why most existing works [80-86] on this topic presented
heuristic algorithms that cannot provide any performance guarantees. In this work,

we study the CS problem and the JRCS problem from a theoretical perspective and
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aim at developing theoretically well-founded and practically useful algorithms to solve

them. Our major contributions are summarized as follows:

e We present a new characterization of optimal CS solutions, which leads to an
efficient dynamic programming algorithm that can optimally solve the CS prob-
lem, and if the path satisfies a certain natural self-avoiding criteria (defined in
Section 5.1), in time linear in the length (hop-count) of the path. In addition,
the algorithm can be easily implemented in a distributed fashion and an optimal
solution can be computed in a single pass by the nodes along the path with only

local information sharing.

e We also examine the much harder problem of JRCS. We show that obtaining
a (2/3 + €) approximation to the JRCS problem is NP-hard for any € > 0,
which places the JRCS problem in the complexity class of APX-hard. Despite
the theoretical hardness, we present two heuristic algorithms to solve the joint

problem.

e Extensive simulation results show that the proposed joint algorithms outperform
the approach using our optimal CS algorithm on shortest (minimum hop-count)

paths .

The differences between this work and related works are summarized as follows: (1)
In both of our problems, the objective is to maximize end-to-end throughput, which is
different from those works addressing link layer (single-hop) throughput such as [37,
44,62-65]. (2) We obtain an optimal algorithm for the CS problem, that runs in time
linear in the length of the given routing path, provided the path satisfies a natural
condition. Many related works (such as [80-86]) only presented heuristic algorithms

that cannot provide any performance guarantees. (3) Our optimization problems
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are different from those studied in [80-87]. (4) As described above, the algorithms
proposed for traditional WMNs with homogeneous channels [36, 88, 89] cannot be
applied to solve our problems here due to channel heterogeneity. (5) To the best of
our knowledge, we are the first to establish a bound on the complexity of the JRCS
problem. We show that it is NP-hard to approximate to within a factor (2/3+¢) and

provide effective heuristic algorithms to solve it.

5.1. Problem Formulation

We consider a wireless mesh backbone network G = (V| E) with static mesh
routers, where V is the set of nodes and FE is the set of available communications
links between the nodes. Each node is equipped with a cognitive radio. Similar
as in [80, 82,86], a spectrum occupancy map is assumed to be available to network
nodes from a centrally-maintained spectrum database. This scenario has recently
been promoted by the FCC to indicate over time and space the channel availabilities
in the spectrum below 900 MHz and around 3 GHz [41]. In this case, spectrum
(channel) availability between any given node pair is known. We study the problem
of determining the optimal route and channel assignment for a communication session
between two nodes in the network. Spectrum sensing is out of scope of this work.

We define our assumptions about the parameters of the cognitive radio network:
Let m be the number of channels available in the network. In general, each link e
will have only a subset of these channels available at any given time. This can be due
to interference, the link distance being greater than the transmission range, or that
channel being already in use on that link. We will also assume that each available
channel j on link e has an associated bit rate b.; > 0. This bit rate can depend on

the link distance and other factors. We assume that communication in the network is
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done using synchronized transmission frames. Let A, be the set of channels available
to link e during the current frame.

We adopt the following simple interference model: We assume that there is an
interference distance R; for each channel j such that a link e = (u,v) interferes with
another link ¢ = («/,v) on channel j if and only if |u —¢'| < R; or |[u' —v| < R;.
We will also consider that the nodes in question are half-duplex. This means that
nodes cannot simultaneously transmit and receive. The duplexing and interference
constraints impose conditions on which link flows can be active at the same time.
We will summarize these conditions in a well-known conflict graph, G. = (V., E.),
where the vertices V. are the link-channel pairs (e, j) and the edges (undirected)
indicate those link-channel pairs which cannot be simultaneously operational due to
interference or duplexing constraints.

Suppose we have a routing path p from s to ¢ and a set of active channels J, C A,
has been chosen to be used for each link e € p. Let Gg:],‘f) be the conflict graph
restricted to the link-channel pairs of the form (e, j) where e € p and j € J.. Let t.;
be the total amount of time allocated to the link-channel pair (e, 7) in the transmission

frame (assumed to be of length 1). Each clique C' in Géﬁ imposes the constraint
d oty <L (5.1)

Let mé‘? be the size of the largest clique containing (e,j) in Gf;f. We make a
simplifying assumption that the scheduling mechanism creates a uniform schedule
such that

Je
te; =1/m. (5.2)
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Observe that each constraint of the form (5.1) is satisfied by (5.2). We note that a
uniform schedule may not be optimal but we adopt this assumption for algorithmic
convenience and because it may not be possible to alter the scheduling mechanism
used in a real network.

Let G, be the subgraph of G., consisting of the link-channel pairs that use

channel j.

Definition 3. We say that the routing path p is self-avoiding if all of the subgraphs

Gip are interval graphs such that the intervals occur in order of p.

This means that the link-pairs in p involving channel 5 can be placed in order
on the real number line R such that two links-pairs (e, j) and (€’,j) conflict if and
only if their corresponding intervals overlap. Interval graphs have a useful property
that their cliques can be easily enumerated since a cliques will be represented by a
set of consecutive intervals that all mutually overlap. In fact, all maximal cliques on
an interval graph with n vertices can be enumerated in O(n) time. We will focus on
self-avoiding routing paths in this work because it is easy to find the maximal cliques
in their interference graphs.

We define the end-to-end throughput T of the path p and selected active channels
(Je)eep, as the minimum over all the links e € p of the effective throughput on link e.
The effective throughput of an link e is sum of the bit rates on each active channel
times the amount of transmission time allocated to each channel,

r(p, (J) = min Y " be/m (5.3)

ecp
JjeJe
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Figure 5.1: Example channel selection problem.

We can now formalize the two computational problems considered. In addition
to the source node s and destination node t, we assume the available channel sets A,

and bit rates b, ; are provided in the input.
Channel Selection (CS): Given a routing path p from s to ¢, determine active

channels sets .J. C A, for all e € p that maximize the end-to-end throughput 7(p, (J.)).

Joint Routing and Channel Selection (JRCS): Find a routing path p from s
to t and active channels sets J. C A, for all e € p that maximizes the end-to-end

throughput 7(p, (Je))-

5.1.1. Optimal Channel Selection

In this section we present an optimal algorithm for the problem of choosing the
best set of channels to use for a given routing path (CS). Our proposed CS algorithm
is based upon a dynamic programming approach in which the solutions to partial
problems are used to assemble a solution to the full problem. To help motivate the
algorithm, we provide a simple example of channel selection in Figure 5.1.

In the example shown in Figure 5.1 we assume that the channel availability is as

shown and that each channel has a capacity of 1. We further assume that two link
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pairs (e;,7) and (e, j) interfere if and only if |i — k| < 2. The solid circles indicate
an optimal channel selection. Each selected channel participates in a clique of size
3 (due to interference and duplexing constraints). This means each selected channel
provides capacity % and the end-to-end capacity of the path is %

Let p = (vg,v1,...,v,) be the given routing path from the source node s to the
destination node t, where vy = s and v, = t. Let e; = (v;_1,v;) be the i-th link
on the path (1 < i < n) and let A; be the set of available channels on e;. The
objective is to find active channel sets J; C A; for « = 1,...,n that maximize the
end-to-end throughput 7(p, (J;)). For 0 < i < n, we define X; = {(e;,7)|j € A;} as
the available link-pairs involving e;. For 0 < 1 < n, let p; = (vo,v1,...,v;) be the

subpath consisting of the first [ links of p. For 0 < [ < n, we define the bridging set,

By ={(e;,7),(ex,5') | 1 <1,i" > 1,

((€i7j)’ (ei’aj/>) € Gc,p}' (54)

We also let By = X7, the set of available link-channel pairs for the first link e; in the
path. Observe that X;,; C B; for all 0 <[ < n, due to the half-duplex constraint at

each node. For 0 <1 < n, let (J;)!_, be a channel selection for the subpath p; and let

B C B,.

Definition 4. We say that (J;)}_, is B-compatible, written (J;)\_, ~ B, if, for all

1§Z§l, (ez,j)EB:>]€Jz and(ez,j)EBl\B:>3§ZJz

Suppose (J;)!_, ~ B. We are interested in calculating the throughput of this
channel assignment for the partial path p;. As B may contain link-channel pairs from

further along in p, we will include those in the calculation, since these pairs may effect
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clique sizes. We will refer to this throughput as 72(p;, (J;)). Next, let

(JPPV | = argmax 78 (py, (1)),
<J7'>%L:1NB

be a channel selection for the subpath p; that is B-compatible and has the maximum
end-to-end throughput along the subpath p;. The main idea of the algorithm is that
the (Jil’B> can be computed by dynamic programming. In particular, suppose that
the (JZ-Z’B> are known for all B C By, for some 0 <[ < n—1. We will use these channel
selections to compute the (Jf“’B/) for all B' C B;;1. Let B" C B;;; and suppose that
(J,f+1’B/>é§ be an optimal channel selection for the subpath p;;; that is compatible

with B’. We define
Bfﬁ” =B 1 NG (5.5)

and

By = Bii1 \ Bi. (5.6)

Note that B, = By’ U B/{". Let

I+1

B=(JJ"PuB)nB:.
=1

We observe that B C B and that B agrees with B’ on B}[{" (this means BN B/’ =

B' N BYSY). Thus,

75 (py, (VBN Y = 7B (py, (JTREYL )

<78, (T77) i) (5.7)

(]
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since the throughput on all of the links in the subpath p; is unchanged. We use

<Jl+1,Bl> B

the notation, m " to refer to the size of the largest clique containing (e;41, j)

€l+1,J

present among the link-channel pairs from (J'*%5") and B’ together. Let

< Jopt <Jl B> Jllill B’7

the channel assignments given by (J"8) for the subpath p; and by Jllill B for link €141

<Jl+1’B/>,B, - <J0pt>

I+1,B" _.
e11,J =M1 fOT any (€l+1, ) € J smce both

A key observation is that m 141

B; and B;y; will contain any link-channel pairs from p;y; that conflict with it. We

have,

7_B’ (lerla <Jl+1,B’>)

= min(7” (pr, (J*P) ),

Jl+1 B
Z bel+17]/ €j+1,] )

1+1,B’
ISy

< min(78(py, (J"P)._)),

Jopt
Z b€l+17]/ el+1,3 )

1+1,B’
Jz+1

=77 (a1, (J)). (5.8)
Since (J'*15") was assumed optimal, we must have equality in (5.8), so we can take
<JH~1,B’> _ <Jopt>‘ (59)

Equation (5.8) shows that the optimal channel selection for p;,; and B’ can be ex-
pressed in terms of an optimal channel selection for p, and B, a smaller problem.

This means that we can use dynamic programming to compute (J'*%5). The idea
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is to take each (JP) found for p; and extend to channel assignment for p;,; for all
B' C By such that B and B’ agree on B}[{". Since B fixes which link-pairs from

B[{" are included in B’, we can simply enumerate all subsets B” C By}’ and for

each, form B’ = (BN B[{")UB". Also, since X;;1 C B;, we let B also determine all

channel assignments for link e;1:
(Jiesty = (J4B) (BN Xipq). (5.10)

We then evaluate 75" (py; 1, (J'*)) to see if J**! provides a better channel assignment
for p,.1 compatible with B’; if yes, we keep it. This evaluation is done in the same

fashion as (5.8):

78 Py, (J*1)) = min(78(py, (JVP)L1))),

Jtest ,B/
ST beg/mi) (5.11)

je€EBNX 41

In order to evaluate (5.11), we need to calculate the second min term since the
first is already known. This is done by determining the largest clique that (e;41, )
participates in among link-channel pairs from (J*), B’. If we make the assumption
that the routing path p is self-avoiding, then any clique in involving (e, 1, j) is either
a consecutive list of link-channel pairs in G{;m (that all mutually overlap in the interval
graph representation), or a clique involving (e;41, j) and a link-channel pair from X;
or X9 or both, using a channel other than j. Let A be the maximum degree of any
node in any of the Ggp and suppose there are at most m, channels available on any
link in p. All of the clique possibilities can be checked in O(Am,) time, so this is
the time required to evaluate (5.11). We can now state the entire DP-ChannelSelect

algorithm (Algorithm 5.6).
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5.2. Proposed Algorithms

5.2.1. The DP-ChannelSelect Algorithm

INPUT: a self-avoiding path p = (vg, vy, ...v,) from s to t

Step1l for [=0ton—1
Compute B;, B/"" and B}**" using (5.4), (5.5) and (5.6).
endfor

Step2 for/=1ton—1

forall B C B,
forall B" C By
Construct B’ = (B N B[{") U B” and (J**') using (5.10).

Calculate 7' = 75" (p 41, (J'*)) using (5.11).
if rtest > 7_B’ (le’ <Jl+1,B’>)
set <Jl+1,B’> — <Jtest>
endif
endforall
endforall
endfor

Step 3 Compute

B* = argmax 72 (p,_1, (J"P), BN X,,)
BCBp—1

Step 4 return (J"V5") B*N X,

Algorithm 5.6: DP-ChannelSelect

5.2.2. Time Complexity of DP-ChannelSelect

Next, we analyze the time complexity of the DP-ChannelSelect algorithm. The

running time is dominated by Step 2 which must examine every subset of B

every subset of B; for [ =1,...,n— 1. The number of subset combinations examined

. new
for each [ is 2/B!1B

1l If pis self-avoiding, then for any [, B; will be comprised of
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consecutive lists of link-channel pairs in Gip for each channel j. For each j, the list
will be at most A + 1 in length; since every other link-channel pair in the list will
conflict with the (e, 7) in the list with maximum I’ <. Let m, be the total number
of channels available along p. There can be at most m,(A + 1) link-channel pairs in
B;. Since BjYY" C By the same bound applies to it. Thus the number of subset

A+’ The time required for evaluating each

combinations examined is at most 27
subset combination is O(Am,) time, as explained earlier. This implies the overall
running time of the algorithm is O(2m§(A+1)2Ampn) time, provided the input routing
path is self-avoiding. In practice, the running time can be much faster, as typically
each B; will be smaller than m,(A + 1) in size and B}’ will be smaller still. We
remark that this bound places CS in the class of fixed-parameter tractable problems

(FPT) [107], where the parameters are A and m,. The above discussion leads to the

following result:

Theorem 3. The DP-ChannelSelect computes an optimal end-to-end channel assign-
ment in O(ng(A“)QAmpn) time, where p is a self-avoiding routing path of length n,
my, is maximum number of available channels in any link in p and A is the mazimum

degree of any node in the path conflict graph G.,,.

We observe that the effectiveness of Algorithm 5.6 depends heavily the parame-
ters m, and A; providing these values are not too large, the algorithm runs quickly
in practice; most of the optimal channel selections found in our experiments were
computed in a few seconds on a laptop computer. However, the performance of the
algorithm will degrade and perhaps become impractical if these parameters are too
large. We observe that the DP-ChannelSelect algorithm can be implemented in a
distributed fashion and carried out by the nodes themselves along the routing path

p, since the algorithm makes a single pass over the length of p and the sets of in-
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termediate path/channel assignments computed at each node along the path depend
only on those from the previous node and relatively local interference information

(determined by the B; sets).

5.2.3. Channel Aware Routing

In this section we present two heuristic algorithms for the joint problem of routing

and channel selection.

5.2.3.1. The RCS-PathExtend Algorithm. The first proposed algorithm is based

on the idea of simultaneously finding good path/channel assignments from the source
node s to all other nodes in the network, including the destination node ¢. The ap-
proach is similar to the Bellman-Ford shortest-path algorithm in that new path/chan-
nel assignments are generated by “relaxing” all the links in the network in a series
of phases that continues until no better paths are discovered. Each node u # s will
store a list P, of path/channel assignments of the form (py, (Je)eep, ), Where p, is a
path from s to u. When the link (u,v) is relaxed, the current path/channel assign-
ments stored at w will be augmented by the link (u,v); for each subset J' C Ay,
we will create a new path/channel assignment (p!, (J., J')), where p is the path p,
followed by the link (u,v). To limit the search, each node keeps a maximum of d best
path/channel assignments (we chose d = 100). We also note that it is only necessary
to augment those path/channel assignments that were created in the previous phase;
we will refer to these as new in the algorithm. Clearly, a loop in a path can never
improve the end-to-end throughput of the path, so we restrict attention to simple
paths that never repeat a vertex. We also require that the path be self-avoiding. The
complete algorithm is given in Algorithm 5.7. (Algorithm 5.8 is a subroutine used by
Algorithm 5.7.)
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INPUT: a connection request from s to t, G = (V, E)

Step 1 repeat
forall e € £
Link-relax(e)
endforall
until no list P, changes

Step 2 return argmax, ep, 7(P; (J))

Algorithm 5.7: RCS-PathExtend

INPUT: a link e = (u,v)

forall new (py, (Je)eep,) € P
Let p, = pu + (uv U)
if p, is a simple, self-avoiding path
forall Ji,.) C Aguw
Construct (J') = (Je, Juw))
Compute 7" = 7(py, (J'))
if (|P,| < d or 7/ > ming, yep, 7(p, (J)))
Insert (py,, (J')) into P,
if |P,| > d
remove argming, .y ep, 7(p, (J)) from P,
endif
endif
endforall
endif
endforall

Algorithm 5.8: Link-relax
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5.2.3.2. Time Complexity of RCS-PathExtend. We next analyze the computa-

tional requirements of RCS-PathExtend.

Lemma 2. All path/channel assignments created during i-th phase, have paths of

length at least 1.

Proof. The proof is by induction on the number of phases completed. The statement
is trivially true for ¢ = 1. By the inductive hypothesis, the path/channel assign-
ments created during phase ¢ — 1, have path length at least ¢ — 1. These will be the
only path/channel assignments considered new in phase ¢ and so it follows that all

path/channel assignments created during phase i, have path length at least i. O]

Theorem 4. RCS-PathExtend runs in O(d2™ Am,,|E||V'|?) time, where d is the maz-
imum number of path/channel assignments kept at each node, m,, is mazimum number
of available channels in any link in G and A is the maximum degree of any node in

the conflict graph G..

Proof. The maximum length of a simple path is |[V| — 1, so the maximum number
of phases (iterations of the outer loop in Algorithm 5.7) is |V| — 1 by Lemma 2.
Each phase calls Link-relax |F| times, and each call to Link-relax creates at most
d2™» new path/channel assignments. The end-to-end throughput of each of these can
be evaluated using (5.3) in O(|V|Am,) time, since we restrict focus to self-avoiding

paths. The total running time is thus O(d2™ Am,|E||V|?) time. O

5.2.3.3. The Bottleneck-Route Algorithm. The second approach attempts to find

a single path whose links all have a high useful capacity. We make this precise as

follows. We define the link capacity c(e) of a link e as, c(e) = > be ;. The link

JjEAe 76

capacity provides an upper bound on the bit flow rate achievable by link e ignoring
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intra-path interference. In addition to link capacity, we also take into account how
close the link e = (u,v) to the source s and destination t.

For each link e = (u,v), we define the source-destination distance as d(e) =
||u—s||+||u—t||+||v—s||+||v—t||. Let dpar = maxeer d(e) and d,;, = mingeg d(e),
be the maximum and minimum source-destination distances, respectively. A heuristic
additional weighting factor on the link capacity to better estimate the usefulness of

a link e for an s-t path. We define

L ee), (5.12)

Note that 1 < wu(e) < 2, with u(e) = 1 when d(e) = dy4, and u(e) = 2 when
d(€e) = dpmin. Let the useful bottleneck capacity of a path p be defined as

c(p) = minu(e).

Our goal is to find a path p that maximizes ¢(p). This is a well-known problem that
can be efficiently solved by computing a minimum spanning tree 7" on the network
graph using an link weight function w(e) = —u(e). The unique path in 7" from s to
t will have maximum useful bottleneck capacity. We term this the Bottleneck route.
It can easily computed using Algorithm 5.9. Once the bottleneck route has been
been found then an optimal channel section for the route can be computed using

Algorithm 5.6.

5.3. Computational Complexity of JRCS

In this section, we show that the JRCS problem is NP-hard to approximate to

within a factor of 2/3+¢, for any € > 0. This is done via a reduction from the EXACT
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INPUT: a connection request from s to t, G = (V, E)

Step 1 Assign edge weights —u(e) to each link e = (u,v) using (5.12).
Step 2 Compute a minimum weight spanning tree 7.

Step 3 Compute the route p from s to ¢ in 7.

Step 4 return p.

Algorithm 5.9: Bottleneck-Route

COVER problem [108]. An instance of this problem consists of a set U = {u1, ... uy}
and a collection of subsets of U, F' = {S4,...S,}. The problem is to determine if
there exists a sub-collection F’ C F, such that for each u; € U, there is a unique
S; € F' such that u; € S;. Figure 5.2 provides a sketch of the network for which we
show that it is computational difficult (NP-hard) to find the best routing and channel
selection. In each of the shaded sub-blocks in the figure, there a several options for
the path to go (as shown in Figure 5.3). Because of interference, the choice of paths
(and channels) in one sub-block the choices for the neighboring sub-blocks directly

above and below. This leads to the following theorem:

Theorem 5. The JRCS problem is NP-hard to approximate to within a factor of

2/3+ ¢, for any e > 0.

Proof. We can reduce an instance of the EXACT COVER problem to an instance of
the JRCS problem as follows: The JRCS instance will consist of a layout of n rows
by m columns of blocks B;; as shown in Figure 5.2 (the layout for odd n is shown;
for even n the final path to ¢ will go from right-to-left instead). There are two basic
types of blocks, depending on whether u; € S; and they can be oriented left-to-right
or right-to-left (Figure 5.3).  The blocks in the first (last) row are modified by

removing the upper (lower) path in the construction diagram. We also use a specific
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sequence of four links called a C-chain that is also shown in the figure. We assume
the following interference structure: two links both using channels 1 or 2 will interfere
with each other if there is at most one link separating them on the selected path; the
links (on channel 2) of the bottom path of block B ; interfere with the links on the
top path of block B;;; ; for i = 1,...n — 1; links using channel 0 don’t interfere with
each other; there is separate channel ¢; available for each j = 1,...m and all links
using channel ¢; interfere with each other. Furthermore, we will assume that b, ; = 1
for all e and j. We claim that a solution to the EXACT COVER instance exists if
and only if there exists a routing path p from s to t in the JRCS instance with an
end-to-end throughput of 1/2. For the links e with a single channel available j, this
implies that the size of the largest cliques that the link-channel pair (e, j) can belong
to is 2. We observe that this forces the links with two channels available in each
C-chain to only select one channel, otherwise the third link will belong to a clique of
size 3. This also requires that if the selected path traverses the bottom path of block
B; j, then the path cannot go through the top path of block B, ; (otherwise a clique
of size 4 is formed). In order to prevent this from happening, observe that in each
column j at least on path must use the center path in the block corresponding to

u; € S;. Furthermore, no more than one center path can be used in column j, since

B B B
s — 11 o 1,2 s -— 1m Tzl
B. B B.
014’:— 2,1 -~ 2,2 -~ - 2,m -~
B B B
- 3,1 - 3,2 - -— 3,m TEI
. —
|
Bp- Bp- Bp-
T» n: 1,1T> n 1,2T> T» n: 1,mc—>l

B, B B,
‘\C_ n1 ‘C_ n2 ‘C_ ‘C_ nm ‘C_
0
— — — — vy — —

< 0 «Q 0 0 m

Figure 5.2: Layout of the JRCS instance corresponding to an instance of EXACT
COVER.
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C-chain:
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1,2 2
1 1,2
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1 1,2
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C-chain l G 1 2 2 C-chain
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Figure 5.3: C-chain construction and block types depending on whether u; € ;.
Left-to-right versions shown.

c; is used along each such path as well as the final portion of the path to ¢. These
links all mutually interfere and the maximal clique size cannot exceed 2. Finally,
we observe that the channel that is chosen for the second link of the first C-chain
traversed in given row determines that this channel must be chosen for all C-chains in
the row. We also note that if channel 2 is chosen for the second link, then the fourth
link most choose channel 1; this means that the center path in any block in the row
cannot be entered since this will create a clique of size 3 with the ¢; link in the block.
Conversely, if channel 1 is chosen for the second link in the first C-chain, then the
fourth link must use channel 2 and the center path must always be chosen if a u; € S;
block is encountered (since taking the top or bottom path creates a clique of size 3).
It follows that choosing channel 1 for the second link in the first C-chain encountered
in row 4 corresponds to adding S; to the cover F” and choosing channel 2 corresponds
to omitting S; from F’. Observe that each u; € U must be covered (there are n rows
and only n — 1 top/bottom block paths so some row must use center paths) exactly

once (if two center paths are used for some column j this creates a clique of size 3 on
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links using channel j). Hence, an end-to-end throughput of 1/2 is achievable if and
only if an exact cover F’ exists. The next lowest potential end-to-end throughput
for this JRCS instance is 1/3 (at least one single-channel link is involved in a clique
of size 3). If an approximation algorithm for JRCS was able to find a solution at
least 2/3 + € of optimal, it would find a solution with end-to-end throughput at least
(% + 6)% > %, so it would necessarily find the optimal solution and so could be used to
solve EXACT COVER. It follows that joint routing and channel selection is NP-hard
to approximate to within a factor of 2/3 + . We remark this also places JRCS in the

complexity class APX-hard. n

5.4. Simulation Results

To test our routing and channel selection algorithms we compared it against simple
shortest path routing using Dijkstra’s algorithm (the edge weights in this case were the
physical link distances) followed by the DP-ChannelSelect algorithm to find the opti-
mal channel selection for the shortest path. In all cases tried, the DP-ChannelSelect

algorithm itself runs in under a second on a laptop computer.

Table 5.1: Maximum transmission distances by frequency and data rate

Transmission rate | 700 Mhz | 2400 Mhz | 5800 Mhz
45 Mbps 154 km | 4.5 km 1.8 km
40 Mbps 18.4 km 5.3 km 2.2 km
30 Mbps 30 km 8.6 km 3.6 km
20 Mbps 41 km 11.8 km 4.9 km
10 Mbps 68 km 20 km 8.2 km

For our experiments, we assumed there were three widely spaced frequency bands
available for licensed and unlicensed operation and that the link throughput for each

channel was the maximum available given the link distance and frequency used. The
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bands exhibit widely ranging propagation, transmission range and usage characteris-
tics, highlighting the potential value of cognition in transmission scheduling. Tables 1
and 2 summarize our assumptions about the transmission rates and interference
ranges of each frequency. These values are based on a scenario where each node
transmits at 1W with a 2dBi antenna and the receiving antenna has a gain of 2dBi.
The channel bandwidth is 10 MHz and the receiver noise figure is 5dB, and imple-
mentation losses of 3dB are assumed for each link. Path loss is calculated using line
of sight and free space characteristics. Typical IEEE 802.16 adaptive modulation and
coding parameters performance parameters were used to estimate the throughput
achievable as a function of CNR (carrier to noise ratio), and were then translated
into the allowable path loss threshold. The maximum channel transmission rate is a
function of distance and frequency (at lower frequency, the maximum distance for a
given transmission rate will be greater). We assumed that each channel was available
on each link with independent probability 0.5. Primary users were placed at random
locations and assigned a random channel. This channel was then made unavailable

to any links of cognitive radios within the interference range of the primary user.

Table 5.2: Interference ranges by frequency

Frequency | Interference range
700 Mhz 30.8 km
2400 Mhz 9 km

5800 Mhz 3.6 km

In this scenario, the number of channels available to secondary users was varied
from 3 to 15 with a step size of 3 (chosen equally from each frequency band). Ten
random source-destination pairs were generated on a 50 x 50km? network with 25

nodes and 5 primary users. These pairs and the node locations were held constant
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Figure 5.4: Joint Routing and Channel Selection: Average path end-to-end through-
put versus the number of available channels.

for all of the experiments in this scenario. The average end-to-end transmission rate
(throughput) for all routing path and channel selections is reported. The results,
shown in Figure 5.4, indicate an almost linear improvement is gained by adding
additional channels to the network in terms of additional throughput. The path
and channel assignments found by the RCS-PathExtend were, on average, 13.23%
better than those found by CS-ShortestPath, and 8.67% better than those found by
RCS-Bottleneck.

In the second scenario, the physical region size was increased, but node density
was held constant. Ten random source-destination pairs were generated on a network
with 3 channels per frequency band, 5 primary users, and a constant density of
0.01nodes/km?. The average end-to-end transmission rate for all routing path and
channel selections is reported. As the region size grows, paths tend to get longer. The

results, shown in Figure 5.5, indicate that the RCS-PathExtend algorithm continues
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Figure 5.5: Joint Routing and Channel Selection: Average path end-to-end through-
put versus network size. Node density was held constant at 0.01nodes/km?,

to outperform the two other routing and channel assignment methods and that gap
increases slightly as the region size increases. The path and channels assignments
found by the RCS-PathExtend algorithm were, on average, 9.97% better than those
found by CS-ShortestPath, and 20.46% better than those found by RCS-Bottleneck.

In our final scenario, the physical region size was held constant at 50 x 50km?
and the number of nodes was increased. Ten random source-destination pairs were
generated on a network with 3 channels per frequency band, 5 primary users. The
average end-to-end transmission rate for all routing path and channel assignments is
reported. As the network size grows, node density increases and the average number
of links that a given link interferes with on a given channel increases. The effect is
to increase the average vertex degree in the conflict graph G.. The results, shown in
Figure 5.6, indicate that again, the RCS-PathExtend algorithm outperforms the two

other approaches across the range of node densities considered. That path and channel
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assignments found by the RCS-PathExtend algorithm were, on average, 8.26% better
than those found by CS-ShortestPath, and 11.52% better than those found by RCS-

Bottleneck.

5.5. Conclusions

We have examined two important problems for maximizing the end-to-end
throughput for communication flows in cognitive radio mesh networks. For the chan-
nel selection problem on a known routing path, we developed an optimal algorithm
and showed that for self-avoiding paths it runs in time linear in the length of the path.
Furthermore, the algorithms only needs to propagate local information from source
to destination and can be implemented in a distributed fashion. We also considered

the joint problem of routing and channel selection and showed that it was NP-hard
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to approximate within a factor of (2/3 + €). In addition we presented two novel
heuristic algorithms for this problem and demonstrated the universal superiority of
one of them, RCS-PathExtend, to simply using shortest path routing followed by

optimal channel selection.
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CHAPTER 6

THE CHANNEL RENTAL PROBLEM

Wireless Mesh Networks (WMNs) are considered an economical method of pro-
viding robust, high-speed backbone infrastructure and broadband Internet access in
large areas [104]. Mesh topologies offer the advantages of alternative route selection
to assure throughput and Quality of Service (QoS) requirements under dynamic load
conditions. As aggregate traffic volume can be substantial on backbone links converg-
ing on gateways and mesh routers, considerations of transmission path routing and
how to select channels along the path are essential to assure that a WMN can meet
the throughput requirements of end-users’ applications, especially real-time multime-
dia applications. Furthermore, range considerations and propagation characteristics
demand careful attention to interference. Cognitive radios are desirable for a WMN
in which a large volume of traffic is expected to be delivered since they are able to
utilize available spectrum more efficiently than conventional, static channel assign-
ment methods and therefore improve network capacity significantly [105]. However,
they introduce additional complexities for resource allocation.

With cognitive radios, each node can access a set of available spectrum bands
that may span a wide range of frequencies. Each spectrum band may be divided
into channels, and the channel bandwidths may vary from band to band. Different
channels may be able to support quite different transmission ranges and data rates,
both of which have a significant impact on resource allocation and interference effects.
Each network link has some subset of channels available due to the activities of
primary users and other traffic in the network. Additionally, network operators may

need to lease the channels from other spectrum owners. For a specific network, each
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channel used may have some rental cost. For this reason it is useful to determine
network topologies that minimize the number of channels used.

This closely models real-world situations in both dense wireless mesh networks,
such as cellular networks [109], where increasing demands for capacity are being
handled by increasing the density of the network and utilizing multi-spectrum archi-
tectures, but it also models conditions in sparse rural networks, where environmental
conditions can affect the availability of channels over the period of hours or days until
repairs are made. Currently Ubiquiti Networks [110] provides wireless hardware in
900MHz, 2.4GHz and 5.8GHz. The cost of 900MHz and 5.8GHz hardware are 2 and
3 times the cost of 5.8GHz hardware, respectively. These costs (2x and 3x) show why
channel costs should influence a topology control solution to not only find an efficient
topology but also a cost-effective one.

We study the problem of how to minimize channel rental costs for topology control.
We formulate the problem in general terms, provide a Mixed Integer Linear Program
in order to find the optimal solutions, and propose effective algorithms that are close

to optimal in practice.

6.1. System Model

We consider a multihop wireless network G = (V| E) with static mesh routers,
where V' is the set of nodes and F is the set of available communications links between
the nodes. Each node is is equipped with a cognitive radio that can transmit on
multiple channels in different frequencies of the spectrum.

We assume that there is an interference distance R; for each channel j such that
a link e = (u,v) interferes with another link ¢’ = (u/,v’) on channel j if and only if

lu—'| < Rjor |u —v| <R
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We assume each link e € E has a set of available channels A.. Suppose that a
subset of channels J, C A, has been chosen to be active for each link e € E. Let
G be the conflict graph restricted to the link-channel pairs of the form (e, j) where
e€ Fand j € J.. Let t.; be the total amount of time allocated to the link-channel
pair (e, j) in the transmission frame (assumed to be of length 1). Each clique C in

Gé‘jﬁ) imposes the constraint

>ty <1 (6.1)

Je . . .. N . Je
Let m;j> be the size of the largest clique containing (e, j) in Gé,p>.

We make a simplifying assumption that the scheduling mechanism creates a uni-
form schedule such that

Je
te; =1/m. (6.2)

Observe that each constraint of the form (6.1) is satisfied by (6.2). We note that
a uniform schedule may not be optimal but we adopt this assumption for algorithmic
convenience and because it may not be possible to alter the scheduling mechanism
used in a real network.

Given the selected active channels (J.), the effective capacity of a link e is the
sum of the bit rates on each active channel times the amount of transmission time

allocated to each channel,

cle, (o)) =3 bej/ml%s. (6.3)

J€Je

We note that this link-channel model assumes that a uniform transmission schedule

will be created so that equation (6.2) is satisfied and interfering link-channel pairs are
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not scheduled at the same time. This allows us to accurately calculate the effective

capacity of each link-channel used.

6.2. Problem Formulation

The generic system model described above lets us formulate a general topology
control problem: we assume that there are a set of L source and destination node pairs,
each with some requested capacity demand. We formulate each of these connection
requests as a tuple (s, ¢, d;), where s; is the source, t; is the destination and d; is the
capacity demand. We further assume that for each connection request (s, t;,d;) is
given some path set P, of available routing paths from s; and ¢; that the connection
may use (in any combination) to meet its capacity demand. The objective is to
minimize the total number of distinct channels used in the network (or minimize the
total cost of the channels used). As discussed in the introduction, it is natural to
consider this objective; a network operator may need to rent channels where there is
a fixed rental cost 'y that must be paid to use channel k regardless of the number of
links that use the channel.

Thus, the Channel Rental for Topology Control (CRTC) problem is to determine:
1. the path sets P, for each connection [,
2. the set of active channels J., for each edge e € E and

3. the capacities d;,, > 0, that should be provided by the mth routing path in P,

between s; and {;,

so as to minimize the total number of distinct active channels used in the network

such that > d;., = d;.
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We note that once the P, sets and (J.) and (d;,,) values are chosen, it is easy
to check whether the solution is feasible: for each edge e compute the total demand
requested by all paths using that edge and check that it is less than or equal to
cle, (Je)).

We note that this problem formulation is quite general; for example in an access
point network, we may have a single gateway node s that must connect to multiple
access points (APs) {t;} and each AP t¢; must be provisioned with some capacity d;.

In order to simplify the problem and more effectively find solutions, we will solve
CRTC in a two-step process: First, we will compute paths sets P, and second, we will
determine the active channels (J.) and path capacities (d;,,). We refer to the second
problem as CRTC-P, indicating the paths sets are given as part of the input. We
will use a heuristic approach to determine the path sets (Algorithm 6.10) and state
a MILP and a second heuristic method for CRTC-P (Algorithm 6.11).

6.2.1. MILP Formulation for CRTC-P

In this section, we present the following MILP formulation for the CRTC-P prob-

lem that can be used to provide optimal solutions.

Constants:

C: Cost to rent channel k in the network.

Dy The capacity provided on edge e;, using channel k, with clique size c.
d;: capacity required by connection request (s;,t;,d;).

P;: the set of s;t;-paths available for connection request (s, ¢, d;).

Pim: the mth path in F.
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Variables:

cr € {0,1}: 1, if any edge uses channel k, 0, otherwise.

ya € {0,1}: 1, if edge e; uses channel k, 0, otherwise.

Tike € {0,1}: 1, if edge e; uses channel k and the largest clique involving (e;, k) has
size ¢, 0, otherwise.

d;m, > 0: the capacity provisioned for py .

Objective:

min T;fotal = Z C’kck (64)
k

subject to the following constraints:

Yix = inkc < ¢y, Vi k (6.5)
D wie <1, Vik (6.7)
Like S |Q’ - Zyﬂw VZ, ]{T,Q,C < |Q’ (68)

JjEQ

> i =dy, VI (6.9)

Dikcxikc > dlm7Vi (610)
IS

lym:e; €Epim

Constraint (6.5) requires that the y; variables are set in accordance with the
Ti k. variables, while (6.6) ensures that the ¢y variables reflect which channels are in

use. Constraint (6.7) states that the maximum clique size that each edge, channel pair
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(1, k) participates in is unique. Constraint (6.8) enumerates all cliques ) that the pair
(i, k) participates and if all pairs within @) are turned on, then z; ;. = 0 for all ¢ < |Q)|.
This ensures the size of the maximum clique that (i, k) participates in is correctly
set. (In practice, we assume that there is an upper bound K on the maximum clique
size, so we only enumerate cliques @ up to size K.) Constraint (6.9) requires that
the full capacity demand d; for connection request (s;,t;,d;) is met (using paths in
P)). Finally, (6.10) ensures that each edge is provisioned with sufficient capacity to

support all of the connection paths using that edge.

6.2.2. Computational Complexity

The channel rental problem can be broken down into a sequence of two-node
problems, one for each source-destination pair. The number of times the two node
problem is solved is a minor component in the complexity of the overall problem when
compared with the complexity of solving each instance of the two-node problem. Since
the two-node problem reduces to the JRCS problem, the channel rental problem is

exactly as hard to approximate.

6.3. Proposed Algorithms

We first present a simple heuristic algorithm, Algorithm 6.10, for determining the
path sets P, available to each connection request (s;,1;,d;). This algorithm works by
simply finding M > 1 edge-disjoint minimum spanning trees (MSTs) and adding the
path from s; to t; in each tree to P,.

The second algorithm we present is also a heuristic approach to solving the CRTC-
P problem; pseudocode is shown in Algorithm 6.11. The idea of the algorithm is

to provide each edge to have a parallel virtual overflow edge that can be used to
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supplement the edge’s capacity. We also modify the the MILP formulation given in
section 6.2.1 so that the objective is just to minimize the maximum overflow amount
in the network. Initially we set all link/channel pairs (i, k) to be inactive. This
corresponds to setting all of the y; variables in the MILP to 0. We observe that if
the {y;x} variables are fixed, then the MILP reduces to real-valued linear program
(LP), since the {y;x} variables determine the values of the {x; .} and {c,} variables.
Then the algorithm looks for inactive link/channel pairs (i, k) that can be turned on
in order to reduce the usage of the overflow links. We only consider channels that
belong to an activated channel set, S (initially empty). We accept a pair (i, k) if either
(1), it reduces the maximum overflow amount, or (2) the maximum overflow amount
remains the same but the number of edges with the maximum overflow is reduced.
This is easily determined by solving the above LP. If no pair (7, k) is found, then S is
augmented with a new channel; we will choose the least cost unused channel that is
available on one of the links with maximum overflow. The search for new (i, k) pairs
to activate is repeated until all overflow is reduced to 0, or there are no remaining

useful channels available (the algorithm reports “No solution” in this case).

6.3.1. Time Complexity of JRCS Algorithms

We note that the time complexity of Algorithm 6.10 is dominated by the time
required to find M minimum spanning trees, which is O(M|E| + M|V |log|V|) using
a standard MST algorithm such as Prim’s algorithm.

The time complexity of Algorithm 6.11 is also polynomial, since the modified LPs
it solve are now just linear programs (as noted above in the algorithm description). We
note that in each iteration of the while loop, either the maximum overflow amount is
reduced (by some discrete amount since there only a fixed number of edge capacities),

or it will be in at most |E| more iterations (in the next iteration, either a new channel
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Input: the network G = (V, E) with a list of connection requests ((s;,t;,d;)), and
M, the desired path set size.

Step 1 Find M non-overlapping MSTs.

Step 2 forall connection requests (s;,t;,d;):
P =0.
for k =1 to M:
Add the path from s; to #; in

the kth MST to P,.
endfor
endforall

Step 3 return (P).

Algorithm 6.10: FindPathSets
is added or one less edge is at maximum overflow). Thus the number of iterations will
be O(|E|)_,d;) and each iteration just solves a real-valued LP, so the total running

time is polynomial. In practice, the algorithm runs in a few minutes for instances up

to 60 nodes.

6.4. Simulation Results

We tested our proposed algorithms on a variety of experimental scenarios. We
assumed there were three widely spaced frequency bands available and that the link
throughput for each channel was the maximum available given the link distance and
frequency used. The bands exhibit widely ranging propagation, transmission range
and usage characteristics, highlighting the potential value of cognition in transmission
scheduling. Each node v; is equipped with a cognitive radio that can activate k

channels across each of three frequency bands: 700Mhz, 2.4GHz, and 5.8GHz.
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Input: the network G = (V,E) with a list of connection requests ((s;,;,d;)),
associate path sets (F)), and a set of available channels A.

Step 1 Modify LP formulation: For each link e; € E, create a new variable o;; the
overflow needed for link e;. Also, introduce a new variable O > 0 (max
overflow), and add constraints of the form o; < O for all i. New LP objective:
min O. Also, we define: tight(LP) = {i : 0, = O}.

Step 2 Set all y;, =0
Set S = @& (selected channels)

Step 3 while O = solve(LP) > 0:
foundImprovement = FALSE.
forall (i, k) s.t. y;.. = 0,0, = O:
Let testLP = LP + {y;, = 1}.
if (solve(testLP) < O or
(solve(testLP) = O) and
|tight(testLP)| < [tight(LP)]))

Set y; = 1.
foundImprovement = TRUE.
endif
endforall

if (not foundImprovement and
(i, k) : ¢ € tight(testLP), k € A\ S)
k= argmin, gioh testLP)kes COSHK) §=SU{k}.
else
return “No solution.”
endif
endwhile

Step 4 return (S,y; ).

Algorithm 6.11: CRTC-P-OverflowReduce
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Table 6.1: Maximum transmission distances by frequency and data rate

Transmission rate | 700 Mhz | 2400 Mhz | 5800 Mhz
45 Mbps 15.4 km 4.5 km 1.8 km
40 Mbps 18.4 km 5.3 km 2.2 km
30 Mbps 30 km 8.6 km 3.6 km
20 Mbps 41 km 11.8 km 4.9 km
10 Mbps 68 km 20 km 8.2 km

Table 6.2: Interference ranges by frequency

Frequency | Interference range
700 Mhz 30.8 km
2400 Mhz 9 km

5800 Mhz 3.6 km

Tables 1 and 2 summarize our assumptions about the transmission rates and
interference ranges of each frequency. The table values reflect a combination of man-
ufacturer data sheets and our own experience in using these radios in the field. The
values in Table 1 are based on a scenario where each node transmits at 1W with a
2dBi antenna and the receiving antenna has a gain of 2dBi. The channel bandwidth
is 10MHz and the receiver noise figure is 5dB, and implementation losses of 3dB are
assumed for each link. The values in Table 2 are based on a widely used rule of thumb
that the interference range is about a factor of two greater than the transmission
range. Path loss is calculated using line of sight and free space characteristics. Typi-
cal IEEE 802.16 adaptive modulation and coding parameters performance parameters
were used to estimate the throughput achievable as a function of CNR (carrier to noise
ratio), and were then translated into the allowable path loss threshold. The maximum
channel transmission rate is a function of distance and frequency (at lower frequency,
the maximum distance for a given transmission rate will be greater).

The experimental scenarios considered are as follows:
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Figure 6.1: Channel Rental Scenario 1: Numbers of Channels Used vs Region Size.

Scenario 1: Vary s from 20 to 60 km with a step size of 10 km.
Scenario 2: Vary n from 10 to 60 nodes with a step size of 10.
Scenario 3: Vary a from 5 to 9 access points with a step size of 1.
In all cases, non-varying parameters were held at their median values. We also con-
sidered two cases for path sets; in the first case, a single Primary path from each s;
to t; was found using Algorithm 6.10 by setting M = 1 and in the second case, an
alternate Backup path was also found (by setting M = 2).

The results of the experiments are plotted in Figs. 6.1-6.3. Each point represents
the average of 10 independent simulation runs.

The following observations can be made from the simulation results:

1) In all figures, we can see that the OverflowReduce algorithm closely tracks the
optimal solution when only primary routing paths are available. In fact on average
the OverflowReduce algorithm differs from the optimal solution by at most 1 channel

on average.
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Figure 6.2: Channel Rental Scenario 2: Number of Channels Used vs Number of
Nodes.
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Figure 6.3: Channel Rental Scenario 3: Number of Channels Used vs Number of
Access Points.
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2) When backup paths are available, from Figs. 6.1 and 6.2 we see that as the
density of nodes decreases, the OverflowReduce solution performs better: In Fig.
6.1, where the number of nodes is held constant, as the region size increases (thus
the density decreases), the performance of OverflowReduce approaches the optimal
solution. Similarly, in Fig. 6.2, where the region size is held constant, as the number
of nodes increases (thus the density increases), the performance of OverflowReduce
diverges from optimal.

3) From Fig. 6.3 we see that when the gateway-access point architecture is
implemented the OverflowReduce algorithm performs consistently across the varying
number of access points. In the primary path only case, the OverflowReduce algo-
rithm uses only a single channel more than the optimal case and when backup paths

are available, that reduces to only 0.5 channels more than the optimal.

6.5. Conclusions

We have studied the channel rental problem — a topology control approach for
cost-effective spectrum management in wireless relay networks using multi-channel
cognitive radios. The simulation results indicate that the proposed algorithms pro-
vides close to optimal solutions in multiple scenarios. The algorithms presented are

robust to different channel cost models.
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CHAPTER 7

APPLICATIONS OF RESOURCE ALLOCATION RESEARCH

Resource allocation in wireless networks is a broad research area. We focused
on the algorithmic aspects of resource allocation in cognitive radio enabled wireless
networks to narrow the scope. Over the course of this research, we applied scheduling
and topology control techniques to develop algorithms to improve beam scheduling,
multi-beam directional antennas, routing and channel selection, and ultimately the
most economical end-to-end throughput for a set of demands on a wireless mesh
network. In most cases, the algorithms developed address a specific aspect of the
wireless network: antenna sector activation, antenna directionality, and routing and
channel selection. Similarly the application of these algorithms can be applied to
various problems facing wireless mesh networks today including rural broadband,

high-density cellular networks, and network economics.

7.1. Real World Networks

Multiple aspects of a wireless network affect overall performance. Real world wire-
less networks are affected by network density, uniformity, shape, demand patterns,
environmental conditions, and economics. Network density, uniformity, shape, and
economics are aspects that generally change over longer periods of time (e.g. months
and years). Demand patterns and environmental condition, however, can change
instantly or in a matter of a few minutes. Each of these aspects can be studied in
isolation, but they inevitably work together to create a complex problem that needs

a solution that addresses end-to-end performance guarantees.
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7.1.1. Network Density

Networks contain internet gateways, wireless relays and subscribers. Sometimes
nodes in a wireless network perform more than one of these basic functions. Network
density specifies how far apart wireless network nodes are located. Unlike modern
switch-based wired networks, wireless networks use communication channels that can
cause interference with other communication signals that are using the same frequency
and channel. Interference is directly related to the signal strength that is being
transmitting; signal strength is proportional to node distance. Therefore, network
density has a direct effect on interference for wireless network.

In the case of network density, the right choice of frequency, channel, and power
is critical to ensure that overall network demand can be satisfied. If infinite indepen-
dent wireless frequency/channel sets were available it would be possible to allocate a
separate frequency/channel pair to each communication link, and there would be no
interference. However, since each frequency/channel has an associated cost, and the
number of frequencies (and channels) is limited, infinite channels are not a solution
that can satisfy the demand in a wireless network. Our work in joint routing and
channel selection, and the channel rental problem, is directly applicable to network
density challenges. Our work is different from previous works on scheduling and
spectrum allocation [37,44,62-65] that deals with the problem of scheduling and
allocating channels to links for link-layer throughput maximization. We focus on end-
to-end performance and consider the problem of allocating channels along a multihop
routing path — a much harder problem due to intra-flow interference constraints [106]
(links on a common path interfere with each other if assigned the same channels) and
due to the fact that there are an exponential number of potential paths in a mesh

network that connect node pairs, and an exponential number of ways to assign chan-
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nels along a path. Additionally, the algorithms proposed for traditional WMNs with
homogeneous channels [36,88,89] cannot be applied to wireless networks with a large
number of heterogeneous channels that have different data rates and transmission

ranges.

7.1.1.1. High Density Networks. High density networks are becoming common.

Wireless routers are inexpensive enough that consumers can buy and deploy multiple
routers in 2.4GHz and 5.8GHz frequency space. These frequencies have a fixed num-
ber of communication channels available. As the power of these products increase,
device coverage also expands. Increased power and expanded coverage, combined
with increased population density and demand, means the amount of interference is
also growing. This is evident from the emergence of features like ”channel hopping”
and ”find the best channel” which are designed to allow consumer wireless to sense
interference and reconfigure to avoid lost throughput.

In cellular networks, growing capacity requirements have been addressed by the
introduction of smaller and smaller ”cell” hardware, that can be deployed to supple-
ment existing installations. All of these smaller cells need to integrate into existing
infrastructure by offloading traffic from the existing infrastructure. In order to do
that, these cells need to operate on different frequencies than the original infras-
tructure to avoid interference that would result in lower overall performance. The
introduction of these multi-frequency cellular networks are what makes it possible
to have both 3G, 4G and LTE operate simultaneously, and it is what allows cellular
infrastructure to provide reliable throughput to a growing number of users.

By allocating and utilizing all available frequencies, cellular infrastructure ad-
dresses the reality of growing consumer demand for bandwidth, and provides a mid-

term solution until new frequencies and protocols can be deployed to augment existing
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infrastructure. The algorithms that we developed for joint routing, channel selection,
and the channel rental problem can significantly reduce the cost of infrastructure
required to meet issues of consumer demand. The multi-frequency cellular network
problem is so new, there is no published research — our work on the channel rental

problem may be considered one of the earliest works that addresses this issue.

7.1.1.2. Low Density Networks. Official and unofficial research, regarding low

density network issues, rural networking, sub-Saharan Africa networking, and wire-
less distance challenges, have directly and indirectly sought to send a single wireless
signal as far as possible to reach a very remote endpoint. These research efforts do
not take into account multi-level wireless architectures, cognitive radios, or directional
multi-sector antennas. In extremely low density cases, antennas are selected to specif-
ically deliver a signal over a certain distance and in a certain direction. Our work
in beam scheduling, and multi-beam directional antennas, directly addresses these
goals by identifying the best direction, size, and timing for beams at the endpoints
to be active. Our work is different from most research in low-density networking
because we attempt to solve a robust problem that improves the overall performance
of the wireless network. Other research is focused on providing long distance, high-
throughput network links, without regard to overall network density.

Most work on wireless relay networks [45-48] deals with resource allocation prob-
lems involving Omni directional antennas, which are mathematically different from
the optimization problems studied in our research. Relay assignment is a special
problem for wireless relay networks and was not a concern in previous work on di-
rectional antennas. Some related work on directional antennas, focused on switched
beam (sectorized) antennas (29,53, 54,56, 111], that can only form main beams to-

ward limited predefined directions. We consider a smart adaptive antenna, with an
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adjustable beam orientation and beamwidth, that makes the corresponding optimiza-
tion problems much harder. We present fast and effective algorithms to determine
antenna patterns and relay assignments in a real-time manner, that can be applied
to networks with mobile nodes. These differences make our work unique in the area

of low-density networks.

7.1.1.3. Variable Density Networks. Variable density networks represent an inter-

esting set of simulation scenarios ranging from vehicular networks to cellular networks,
and even remote sensor networks. In these cases, the density of the network changes
over time, some density changes occur quickly- in cellular networks during emergencies
or large events- some occur more slowly much like traffic congestion during rush hour.
Some of these density changes are random, in the case of traffic accidents, and some
occur on a schedule, such as intentional powering down of nodes in a sensor network
to extend battery life. In all cases, changes in network density cause the network to
reconsider configuration in order to maintain provided throughput provided to end
users over the duration of the change.

Enhancing scheduling algorithms to be efficient enough to respond quickly to
network changes provides a robust and effective way to adapt network configurations
under variable network density. Most of the relevant literature shows that the topol-
ogy control approach [53-56] is most effective in relatively static networks. Generally,
directional antenna related resource allocation problems are NP-hard. Most related
work, including [29,58,111-113], present heuristic algorithms that cannot provide any
performance guarantees. Our work, however, presents a constant factor approxima-
tion algorithm for the joint beam scheduling and relay assignment problem and a

polynomial-time optimal algorithm for the relay beam scheduling problem.
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7.1.2. Uniformity

Network uniformity describes the amount of variation in different aspects of the
network. Variations in link length, channel availability, beamwidth, connectivity, and
whether beams can be directionally controlled are all aspects of the network can
that be regular, semi-regular or irregular. The more realistic the situation the more
non-uniform these characteristics appear to be; ideally, they would be uniform and
provide the simplest problem to solve — not trivial — but simple. Our algorithms and
our toolkit provide for entirely non-uniform network scenarios and we find the best
possible solutions for those scenarios.

The way our toolkit is designed, every node and link can have independent char-
acteristics, providing the ability to create completely uniform and completely non-
uniform networks — and every combination in between. It is these real-world networks
that provide a robust platform to do algorithm development that will prove robust
reliability in the real world. Simplifying the simulations provides a nice platform for
developing algorithms that work in simulations, but we integrate real-world dynamics
to increase success.

Our algorithms were developed in highly dynamic simulation space. We thor-
oughly tested each algorithm multiple times, and took an average for the solutions.
The result is statistically sound evidence that our algorithms solve the problems we set
out to resolve. We interpreted the problems correctly, implemented realistic network
scenarios, and implemented algorithms that are directly applicable to a wide variety

of networks that vary in uniformity.
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7.1.3. Topology

Network topologies are widely variable and our algorithms are robust in the face
of these challenges. In high-density networks, with many interconnections, the main
challenge was selecting link /channel combinations that avoid interference. We realis-
tically simulate both static interference (based on the network topology and frequen-
cy/channel availability), and dynamic interference (caused by subscriber dynamics).
Our toolkit and algorithms are robust in widely varying network topologies, and prove
a wide range of applicability when it comes to topological variation.

One improvement we can make, is to run all of our algorithms against a standard
set of network topologies. Similar to testing pathological cases, there are a set of
standard networks that we could use. This could help us identify edge cases that

hinder the performance of our algorithms.

7.1.4. Demands

Network demand is the amount of throughput required to satisfy all users needs
at any given point in time. Obviously, these demands change rapidly. An average
demand model is used in our simulation. We adopt the same technique by assigning an
average demand per subscriber in our simulations. Since our algorithms are designed
to perform less frequently, and find a global solution for network challenges. it is hard
to determine if the speed of changing network demands is a characteristic that can
be addressed any better than the approach we have adopted.

We might construct our simulations to occur over a longer period of time, where
we change the network demands, but this approach is not significantly different than
running multiple simulation scenarios with different demand characteristics. There-

fore, it is likely that our approach, while not continuous in the demand space, is
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an accurate discretization of the demand characteristics of real-world networks over
time.

Our work is different from previous works on scheduling and spectrum allocation
(e.g. [64]) that mainly deal with the problem of scheduling and allocating channels
to links to maximize link-layer throughput. We focus on end-to-end performance to
satisfy the demand, and consider the problem of allocating channels along a multi-hop
routing path, a much harder problem due to intra-flow interference constraints [106]
(links on a common path interfere with each other if assigned the same channels)
and due to the fact that there are an exponential number of potential paths in a
mesh network connecting node pairs, as well as an exponential number of ways to
assign channels along a path. Additionally, the algorithms proposed for traditional
WDMNSs with homogeneous channels [36,88,114] cannot be applied to solve our prob-
lems that target networks with a large number of heterogeneous channels which that
have different data rates and transmission ranges. In short, routing and channel
selection in cognitive radio mesh networks are very challenging problems. Most ex-
isting works [83-86,115-118] on this topic presented heuristic algorithms that cannot
provide performance guarantees. We study the CS problem and the JRCS problem
from a theoretical perspective and aim at developing theoretically well-founded and

practically useful algorithms to solve them.

7.1.5. Economics

Network economics cover a wide variety of topics that generally represent the
processes of buying and selling network resources, understanding the underlying eco-
nomic models, and understanding demand, security, and anonymity in those models.
Our work is most relevant in that it provides details regarding need and/or use of

the network by a current set of users with specific demands. For a supplier, our work
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can help identify the most efficient use of existing resources; give information about
resource quantities that are available to be sold. For a buyer, our work can help

identify exactly what resources need to be added in order to meet usage demands.
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CHAPTER 8

WIRELESS NETWORKING TOPOLOGY CONTROL TOOLKIT

The goal of this research is to find solutions that are less computationally ex-
pensive than the optimal solution, and provide reliable (deterministic performance
and accurate) results that are comparable with the optimal solution. In order to
investigate the questions presented as part of this research, tools were developed that
allowed the creation of a rich set of network conditions, implementation of optimal
solutions, implementation of proposed solutions, and then comparison of the proposed
solutions against the optimal to find quantitative proof that the proposed solution
was sufficiently close to the optimal solution to be practical. While the original toolkit
was done in Java, with optimal solutions implemented as linear programs using IBM’s
ILOG Cplex software, it was reimplemented as python. This reimplementation im-
proved both the quality of the software and usability for other researchers.

The structure of the software is simple. It has a basic network object, implemented
as an undirected graph, with edges and nodes allowing user extensible rich data.
This allows each project, investigating a specific research question, to decorate the
basic graph with research specific data. Each of the projects completed during the
research and development of each topic, has extended the basic network with data
necessary to support implemented algorithms. Each of the project implementations
are encapsulated in a python module, and named to correspond to the project. Each
project has a script that enables running the algorithms associated with the project to
see the results. Additionally, data collection is done using scripts that run simulations
across a parameterized simulation space and output data, statistics, and graphs for

use in publications.
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8.1. Overview

The Bobcat Wireless Networking Topology Control Toolkit is a freely available
set of tools. The code is available in Java, or more completely in Python. Both
implementations are available from Github. Once the git tools have been installed for

your platform (instructions can be found here: https://help.github.com/articles/set-

up-git),

8.1.1. Prerequisites

In order to use the Bobcat toolkit, two pieces of software must be installed, Net-
workx — a network simulation toolkit from Los Alamos National Laboratory, and
CPLEX a solver for linear programs. Installing Networkx is straightforward for most

platforms, usually consisting of only:

> pip install networkx

CPLEX installation is not trivial, but instructions are provided by IBM.

8.1.2. Installation

Once Networkx and CPLEX are installed and working properly, the installation

of Bobcat is trivial:

> pip install git@github.com:irjudson/bobcat.git

This provides everything necessary to run a couple of interactive tests which show

things are working;:

$ python
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Python 2.7.3 (default, Dec 18 2012, 13:50:09)

[GCC 4.5.3] on cygwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import networkx

>>> Kb=networkx.complete_graph(5)

>>> K5.edges()
£¢0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]

>>> K5.nodes ()

[0, 1, 2, 3, 4]

8.2. Basic Network Implementation

The basic network implementation provided by the Bobcat toolkit is a network
built as an undirected graph. This basic network provides capabilities to generate
random networks, layout networks in a user defined space, calculate interference and

throughput for nodes and edges, and visualize the network.

8.3. Beam Scheduling Tools

In order to support beam scheduling algorithms, Bobcat Wireless Networking Sim-
ulation Toolkit implemented a small number of critical computational elements that
provide the framework for the algorithms. Adding antenna sectors to the basic graph,
computing the bearing between nodes, and determining which nodes are covered by
a specific sector of a node antenna complete what is necessary to implement beam
scheduling simulations. These routines have been implemented as additions to the

basic networking class.

$ python
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Figure 8.1: Example random network generated by the Bobcat Wireless Networking
Simulation Toolkit.
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Python 2.7.3 (default, Dec 18 2012, 13:50:09)

[GCC 4.5.3] on cygwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import networkx

>>> Kb=networkx.complete_graph(5)

>>> K5.edges()
£¢0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]

>>> K5.nodes ()

[0, 1, 2, 3, 4]

8.4. Directional Antenna Tools

The only addition to the basic network object that is necessary to investigate
directional antennas is a method to update the throughput for each node. Computing
the throughput for each edge is provided as a fundamental network method. To
aggregate information and provide a node throughput measure, it is necessary to
extend the node with in, out, and total throughput attributes. At that point is is
possible to implement a simple method that iterates through the edges and aggregate

the throughput for the node.

$ python

Python 2.7.3 (default, Dec 18 2012, 13:50:09)

[GCC 4.5.3] on cygwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import networkx

>>> K5=networkx.complete_graph(5)

>>> K5.edges ()
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(¢0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]
>>> K5.nodes ()

(o, 1, 2, 3, 4]

8.5. Joint Routing and Channel Section Tools

The joint routing and channel selection algorithms required no additional exten-
sions to the basic toolkit. The way these algorithms work is to take a network and find
three paths through the network, a shortest path, a path in the minimum spanning
tree, and the path we calculate using the channel selection model. Then for the the
shortest path, and the minimum spanning tree path, we run the channel selection
process that provides us with all three paths- each with channels selected to provide
maximum throughput. The code for this set of simulations is in the toolkit. Both
the simple and greedy algorithms are available in the Joint Routing and Channel

Selection simulation code, which extends the main toolkit.

$ python

Python 2.7.3 (default, Dec 18 2012, 13:50:09)

[GCC 4.5.3] on cygwin

Type "help", "copyright", '"credits" or "license" for more information.
>>> import networkx

>>> Kb=networkx.complete_graph(5)

>>> K5.edges()
£¢,1,(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]

>>> K5.nodes ()

(0, 1, 2, 3, 4]
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8.6. Channel Rental Problem Tools

The channel rental problem code is encapsulated in a new python module. This
code implements two algorithms: 1. A simple heuristic that finds disjoint minimum
spanning trees and combines paths from source to destination from each tree, and
2. A heuristic algorithm that simulates an overflow problem by allowing each edge
to have a virtual overflow edge and modifying the Mixed Integer Linear Program so
that it becomes a real valued Linear Program. The algorithm finds edge/channels
that reduce overflow. This iterates until there is no overflow in the virtual network,
and all the flow is in the actual network. Finally, we provide a Mixed Integer Linear
Program that finds the optimal solution to the channel rental problem. Each of these
implementations is available in the channel rental simulation code, not the main

toolkit.

$ python

Python 2.7.3 (default, Dec 18 2012, 13:50:09)

[GCC 4.5.3] on cygwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import networkx

>>> K5=networkx.complete_graph(5)

>>> K5.edges()
(¢o0,1,(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]

>>> K5.nodes()

(o, 1, 2, 3, 4]
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8.7. Future Extensions

The Bobcat Network Simulation Toolkit is easily extended to support any number
of research inquiries. Because the data structures are primitive and flexible python
dictionaries, it is extremely easy to add new data to edges and nodes, as well as
add new methods to compute the data stored on the edges and nodes. Extensions
already under consideration include adding additional frequencies, allowing for three
dimensional networks (adding height), and supporting topographical data to support
realistic interference models. Additionally, the ability to model complex economic
scenarios would be a significant improvement.

The current implementation of the toolkit, easily allows for the addition of new
frequencies and channels within those frequencies. The model assumes that there are
a number of channels per frequency that are configurable as simulation parameters.
Pathloss, throughput, and interference take into account the channel frequency to
provide accurate values for the simulation.

Adding node height, and updating the distance calculation to include the height,
is all that is needed to support three dimensional networks. Additional three di-
mensional parameters could include antenna downtilt, which would require addi-
tional modifications to the computations for node antennas including beam direction,
pathloss, throughput, and bearing.

Extending the three dimensional model to know about topography, would allow
more realistic interference models resulting in more accurate network simulations.
This will require a new data structure in the toolkit, a map/topography structure,
related to the network through the existing node location data. This will need to
include new calculations for object interference, which is fairly complex and will

entail significant effort.
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To simulate even more realistic scenarios, building models could be added to
provide a rich urban simulation capability. Weather and foliage models would allow
richer rural simulations. Buildings provide physical interference, and the presence
of other networks (inside the buildings) that can bleed out and cause complex in-
terference situations. The fact that many cellular installations are located on top of
urban buildings, is another reason to include this data in the simulation (both for
accurate physical modelling and for accurate network interference models). Weather
and foliage, while very difficult to model, provide realistic simulation conditions for
rural sparse networks where environmental factors can significantly impact the long

network links used to maintain connectivity.
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CHAPTER 9
CONCLUSION

Wireless networks are pervasive infrastructures in our lives. They provide tele-
vision, radio, computer and cellular phone communication, as well as CB, satellite
and other mission critical communication components in our daily lives. The grow-
ing adoption of wireless networks for computer and communication infrastructure, is
creating demand faster than infrastructure is growing. With 2.5B internet users and
over 6B cellular subscribers, the demand on wireless infrastructure is accelerating, not
slowing down. In order to meet growing demand we can deploy more infrastructure
and find more efficient ways to use existing infrastructure.

My research explores the use of Topology Control Algorithms to find efficient
solutions to problems within wireless networking: Beam Scheduling, Multi-Beam Di-
rectional Antennas, Joint Routing and Channel Selection, and ultimately the Channel
Rental problem. The goal of my research is to develop efficient topology control al-
gorithms that provide cost efficient solutions and guaranteed throughput for wireless
networks.

We studied Beam Scheduling for efficient communications in wireless relay net-
works with smart antennas. The corresponding optimization problem was formally
defined as the BSchP and was shown to be NP-hard. We first present a MILP for-
mulation to provide optimal solutions. We then present two simple and fast localized
greedy approaches for BSchP, one of which is shown to have an approximation ratio

of

m. We show by extensive simulation results, that our proposed algorithms

provide performance better than 80% of optimal.
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For Multi-Beam Directional Antennas, we study the topology control approach
for efficient communications in wireless relay networks with smart antennas. The cor-
responding optimization problem was formally defined as the SSP. We first present a
MILP formulation to provide optimal solutions. We then present a new LP rounding
algorithm. We show by extensive simulation results, that the proposed algorithm pro-
vides close-to-optimal performance and is superior to several alternative approaches
in terms of both network capacity and fairness.

We examine two important problems for maximizing end-to-end throughput for
communication flows in cognitive radio mesh networks in our work on Joint Routing
and Channel Selection. For the channel selection problem on a known routing path,
we develop an optimal algorithm and show that for self-avoiding paths it runs in time
linear in the length of the path. Furthermore, the algorithms only need to propagate
local information from source to destination and can be implemented in a distributed
fashion. We also consider the joint problem of routing and channel selection, and
show that it is NP-hard to approximate within a factor of (2/3 + €). Additionally,
we present two novel heuristic algorithms, and demonstrate the superiority of RCS-
PathExtend to using shortest path routing combined with optimal channel selection.

To solve the the Channel Rental Problem, we again used a topology control ap-
proach for cost-effective spectrum management in wireless relay networks by using
multi-channel cognitive radios. Simulation results indicate that proposed algorithms
provide close to optimal solutions in multiple scenarios. The algorithms presented are
robust to different channel cost models like those found in current Ubiquiti Networks
hardware. We anticipate that the channel rental problem is an important problem
for future network operators.

Bobcat Network Simulation Toolkit is a set of python simulation tools that allow

researchers to develop algorithms and test them against wireless networks that can
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be randomly generated. The toolkit includes tools to create, visualize, and annotate
networks with simulation dependent data, as well as create linear programs using
IBM’s ILOG CPLEX solver. The toolkit includes our algorithms as examples for
teaching others how to use the toolkit in order to develop their own algorithms. The
toolkit is simple, well-documented, and small in scope to so that researchers may
quickly leverage it as a resource to answer their own questions about algorithms and
networks. The toolkit is freely available under Apache 2.0 licensing in source form

from Github, a popular source code publishing site.

9.1. Future Work

Bobcat Network Simulation Toolkit can be enhanced and extended in various
ways, primarily through the addition of more frequencies and channels available for
simulation, but also through the addition of complex interference models. Finally,
implementing more complex simulation scenarios, to reproduce more realistic real-
world examples, would benefit the toolkit significantly.

Two interference models are implemented in the toolkit: a simple two dimensional
range based interference, and a randomized interference that simulates subscriber ac-
tivity in the wireless network. Both of these models are accurate with respect to their
goals, but limited to two dimensions. The first step in extending these interference
models, would be to extend them to three-dimensions. This is moderately difficult
because it involves extending the entire toolkit to three dimensions. The basic addi-
tion of a third dimension is not difficult, but all distance and interference calculations,
beam bearings, and sector shape calculations, will also need to be extended to three
dimensions. This change would, however, significantly move the toolkit toward more

realistic simulations.
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In addition to the logical extension of the toolkit to three dimensions, adding to-
pographically aware interference would allow the toolkit to simulate wireless networks
and the performance of proposed algorithms in more realistic world scenarios. The
ultimate goal is to run network simulations on Google Earth models, including three
dimensional models of buildings and cities. At that point, scenarios would be as close
to real-world as possible without additional details of building construction and ma-
terials. Another direction this extension might take, is to integrate both weather and
foliage data. These effects significantly impact the performance of wireless networks.
They have been studied in isolation, but have not been integrated into a complete
simulation toolkit.

Finally, two more improvements that might be made to the toolkit include the
ability to run integrated simulations, and the ability to apply complex economic
models. In each of these cases, the goal is to more accurately simulate complex
simulations that integrate beam scheduling, joint routing, and channel selection, and
apply a complex economic model to the channel rental problem. Integrating com-
plex simulation scenarios investigates the interactions of simulation solutions to find

interesting outcomes.
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