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ABSTRACT

The growth of data volumes in nearly all domains of our lives is reaching historic
proportions [5], [6]. The current rate of data acquisition in almost all branches of
science is leading to an uncontrollable growth of data. Spatiotemporal data mining
has emerged in recent decades with one of the main goals focused on developing
the understanding of the spatiotemporal characteristics and patterns. This work
focuses on discovering spatiotemporal co-occurrence patterns from large data sets
with evolving regions. Spatiotemporal co-occurrence patterns (STCOPs) represent
the subset of event types that occur together in both space and time.

Major limitations of existing spatiotemporal data mining models and techniques
include the following. First, they do not take into account continuously evolving
spatiotemporal events that have polygon-like representations. Second, they do not
investigate and provide sufficient interest measures for these purposes. Third, com-
putationally and storage efficient algorithms to discover STCOPs are missing. These
limitations of existing approaches represent important hurdles to analyze massive spa-
tiotemporal data sets in several application domains, including solar physics, which
is an application focus of our interdisciplinary research.

In this proposal, we address these limitations by i) introducing the problem of
mining STCOPs from data sets with extended (region-based) spatial representations
that evolve over time, ii) developing a set of novel interest measures, and iii) providing
a novel framework to model STCOPs. In this proposal, we will provide background
information relevant to this work, followed by the overview of our completed research
that is already published, and outline the direction of expected future research for
the completion of doctoral research.
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CHAPTER 1

INTRODUCTION

1.1 Context and Motivation

With the launch of NASA’s Solar Dynamics Observatory (SDO) mission, solar

physics researchers started dealing with “big data”. SDO instruments generate ap-

proximately 70, 000 high resolution (4096 × 4096 pixels) images daily, obtaining one

image every ten seconds [7]. SDO sends 0.55 petabytes of raster data each year [7].

This trend in solar data is anticipated to be pushed even further by ground-based

Advanced Technology Solar Telescope, which is expected to capture one million im-

ages per day and generate three to five PB of data per year [8] starting from year

2015. In Fig. 1.1, we show the volume growth of solar data in recent years [2].

Figure 1.1: The growth of solar data volume (adapted from [2]).
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To facilitate the important needs of solar activity monitoring (which can have

vital impacts on space and air travel, power grids, GPS systems and communication

devices [9]), many software modules are working continously on massive SDO raster

data and generating object data with spatiotemporal characteristics. One motivation

for our research is quantitative evaluation of solar activity, since spatiotemporal co-

occurrence patterns (STCOPs) frequently occur among various solar events.

Figure 1.2: The spatiotemporal evolution of four types of solar events (NASA instru-

ment and time stamp are printed on the top of each image).

Fig. 1.2 shows four types of solar events, Active Regions (AR), Filaments (FL),

Sigmoids (SG), and Sunspots (SS) in spatial and temporal contexts with their cor-
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responding shapes and bounding boxes. As seen in Fig. 1.2, the shapes of the solar

events are represented as extended spatial representations (polygons). Moreover, the

shape, size, and location of the solar events continuously evolve over time as shown

in the time-series of images in Fig. 1.2. All of these factors influence relationships be-

tween various solar events, which lead to complex spatial and temporal interactions.

Identifying STCOPs on the Sun could help us measure and better understand the

relationships between solar events which may lead to better modeling and forecasting

of important events such as coronal mass ejections and solar flares.

Goal: Given a spatiotemporal database in which data objects are represented as

polygons and they continuously change their movement, shape, and size, our goal is

to identify and quantitatively evaluate STCOPs representing the subset of different

event types that occur together in space and time.

1.2 List of Papers Published

Here is the list of thesis related papers Karthik Ganesan Pillai published/await-

ing publication while being a Ph.D. student at Montana State University: (1) Spa-

tiotemporal Co-occurrence Pattern Mining in Data Sets with Evolving Regions, 2012

IEEE 12th International Conference on Data Mining Workshops (ICDMW 2012), De-

cember 2012 [4], (2) Spatiotemporal Co-occurrence Rules, New Trends in Databases

and Information Systems (ADBIS 2013), September 2013 [1], and (3) A Filter-and-

Refine Approach to Mine Spatiotemporal Co-occurrences, to appear in 2013 Pro-

ceedings of the 21th ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems, ACMGIS 2013 [10].
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1.3 Outline

The rest of this prospectus is organized as follows. Chapter 2 gives brief back-

ground relevant to the research work and gives a literature review of the related works.

Chapter 3 introduces the research work that we completed and published already or

awaiting publication. Chapter 4 presents the goals for our remaining research that

needs to be completed and detailed plans to meet the goals.
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CHAPTER 2

BACKGROUND

In this chapter, we briefly overview background material relevant to our work.

We present important spatial data types, spatial operations, important concepts of

temporal relations and spatiotemporal predicates that are neccessary to understand

our work on spatiotemporal co-occurrence patterns.

2.1 Spatial Data Types

Spatial data types are data types needed to model geometry and to suitably

represent geometric data in database systems and Geographical Information Systems

[11]. Spatial data types provide an essential abstraction for modeling the geometric

structure of objects in space, their relationships, properties, and operations [3]. Some

fundamental/most popular examples of spatial data types are point, line, region; and

more complex types like partitions (maps), and graphs (networks). Please see Fig.

2.1 for some examples of spatial data types [3]. Spatial data types such as regions are

often referred as extended spatial data types, because they provide spatial extent of

the data [3], while points and lines have only zero and one dimensional spatial extents

[12].

2.2 Spatial Operations

Manipulation of spatial objects are done using spatial operations. Spatial opera-

tions take spatial objects as operands and return either scalar values (e.g. numerical
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Figure 2.1: Some examples of spatial data types (adapted from [3])

or Boolean values) or spatial objects. Spatial operations can be classified into the fol-

lowing three categories: (1) Spatial predicates returning Boolean values; (2) Spatial

operations returning numerical values; and (3) Spatial operations that return spatial

objects.

Spatial predicates returning Boolean values : A spatial relationship is a relationship

between two or more spatial objects. A spatial predicate compares two spatial objects

with respect to some spatial relationship and thus conforms to a binary relationship

returning a Boolean value [3]. Spatial Topological predicates describe the relative

position of spatial objects towards each other and are preserved under topological

transformations such as translation, rotation, and scaling. Some examples of topo-

logical predicates are equal, disjoint, intersect, meet between two simple regions [13].

Spatial operations returning numerical values : One such example operation is area

computing the corresponding value of a region object [3].

Spatial operations returning spatial objects : Some example operations include

union, intersection, difference computing the corresponding value of spatial objects

[3].
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2.3 Temporal and Spatiotemporal Operations

Allen introduced interval based temporal logic in [14]. The paper also introduces

six asymmetric temporal relations ( before, meets, overlaps, during, starts, and fin-

ishes), and one symmetric temporal relation (equal). These temporal relations (all

13 of them, i.e., 6 asymmetric pairs and 1 symmetric) can be used to capture the

relations between two time intervals.

However, for this work we are interested in finding spatiotemporal co-occurring

patterns satisfying only a specific subset of Allen’s temporal relations: equal, meets,

overlaps, during, starts, and finishes. We only use one general spatial predicate:

spatial intersects (see Fig. 2.2). Spatial intersects return true if two geometries

“spatially intersect”.

Figure 2.2: Two evolving polygons satisfying spatial intersects and temporal relations

that are important for our investigation [4]

Erwig and Schneider [15] presented a convenient way of thinking about spatiotem-

poral predicates by applying the idea of temporal lifting and aggregation to spatial

predicates. To distinguish spatiotemporal predicates from spatial predicates, follow-

ing Erwig and Schneider notation, we refer to spatiotemporal predicates by using a

capital letter (to begin the word) and spatial predicates by using small letters. For
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instance, an evolving spatial region can be represented as a three-dimensional object

in three-dimensional space, where two dimensions represent spatial characteristics of

the object, and the third dimension represents time. Fig. 2.2 represents some exam-

ples fulfilling the spatiotemporal relation “Overlap”. In three-dimensional space, a

moving point can be represented by a curve [15], [16] and two co-occurring polygon-

like objects can be represented as types with Overlapping trajectories, where these

trajectories can be represented as 3D spatiotemporal objects themselves.

2.4 Co-location Patterns

In classical market basket data mining, association rule mining problem is an

important. Here we recall a typical notation from the literature [17]. Let I =

{i1, i2, . . . , im} be a set of literals, called items. Let D be a set of transactions (i.e.,

D : P(T )), where each transaction T is a set of items such that T ⊆ I. An association

rule is of the form A⇒ B, where A ⊆ I, B ⊆ I, and A∩B = ∅. Pr(A) is the fraction

of transactions containing A. Pr(A∪B)/Pr(A) is called the confidence of the rule and

Pr(A ∪B) is called support of the rule [17], [18]. An association is a subset of items

whose support is above the user specified minimum support [17], [18]. Algorithms like

Apriori [17] can find the frequent itemsets from all the transactions and association

rules can be found from these frequent itemsets. The Apriori algorithm is a level-wise

approach that follows a generate-and-test strategy to reduce the number of candidate

itemsets [19].

The spatial co-location problem looks analogous to the classic association rule

mining problem from market basket data mining. However, it is significantly harder

than the association rule mining problem because of the lack of transactions. In
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market basket data sets, transactions represent sets of item types bought together by

customers [18]. In the spatial co-location rule mining problem, transactions are not

often explicit. The transactions in market basket analysis are independent of each

other [18]. Transactions are disjoint in the sense of not sharing instances of item type.

In the spatial co-location problem, the instances of spatial features are embedded in a

space and share a variety of spatial relationships (e.g. neighbor) with each other [18],

[20]. In this prospectus we are introducing the problem of finding spatiotemporal co-

occurrence patterns, and in our problem setup, instances of spatiotemporal features

(or events) are embedded in both space and time and share a variety of spatiotemporal

relationships with each other.

2.5 Spatiotemporal Data Mining

Since spatiotemporal data mining is an important area, many algorithms have

been proposed in the literature for co-location mining in spatiotemporal databases:

Topological Pattern Mining [21], Co-location Episodes [22], Mixed Drove Co-

occurrence Mining [23], Spatial Co-location Pattern Mining from extended spatial

representations [24], Spatiotemporal Pattern Mining in scientific data [25], and In-

terval Orientation Patterns [26]. None of them; however, provide solutions for our

problem of discovery of spatiotemporal co-occurrence patterns from spatiotemporal

data with evolving regions. In this section we review the work for co-location pattern

mining in spatial and spatiotemporal databases.

Mining topological patterns, also called co-location patterns, from spatiotemporal

databases was introduced by Wang et al. in [21]. In this paper, the authors introduced

a summary-structure to record the number of instances of a feature in a region for
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a given time window. The authors used the summary-structure to approximate the

instance counts of a co-location pattern. The authors also introduced the Topol-

ogyMiner algorithm to discover the co-location patterns. The algorithm discovers

frequent co-location patterns in a depth-first manner. The TopologyMiner algorithm

divides the search space into a set of partitions, and then in each partition, it uses a

set of locally frequent features to grow patterns.

There are two phases in the TopologyMiner algorithm. In the first phase, it

divides the space-time dimensions into a set of disjoint cubes and builds a summary-

structure that records the instance counts information of features in each cube. In the

second phase, the count information stored in the summary-structure is used to find

frequent co-location patterns in a depth-first manner. To measure how interesting

a spatiotemporal pattern is, the authors used the participation index, first intro-

duced in [27]. The Participation index characterizes the strength of a co-location

pattern, denoted S, in implying the co-location of features. The Participation in-

dex is defined as the minimum probability among all the features of S, that is

pi(S) = min
|S|
i=1pr(fi, S) s.t fi ∈ S, and pr(fi, S) is the participation ratio. The

participation ratio pr(fi, S), measures the implication strength of a spatial feature in

a co-location pattern and is defined as the fraction of the total number of instances

of a feature fi forming co-location instances in S.

Cao et al. introduced the problem of mining co-location episodes in spatiotemporal

data [22]. In this paper, the authors define a co-location episode as a sequence of co-

location patterns with some common feature type across consecutive time slots. The

authors also introduced a two-step framework for mining co-location episodes. In the

first step of the framework, the authors transform the original trajectories of moving

objects to a sequence of close features to the corresponding object. Thus, object

pairs of different feature types (fi, fj) that have close concurrent subsequences, are
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identified. In the next step of the framework, the authors use an Apriori-based [17]

technique to discover the frequent episodes, using the transformed sequence of feature

sets. To measure how interesting a co-location episode is, they use common feature

types as a key factor to avoid overcounting the same instance of the common feature

with different instances of other object types in the pattern.

Celik et al. introduced the problem of mining mixed-drove spatiotemporal co-

occurrence patterns (MDCOPs) in spatiotemporal data [23]. In this paper, the

authors define MDCOP as a subset of spatiotemporal mixed feature types whose

instances are neighbors in space and time. They introduced the MDCOP-Miner

algorithm, which extends a standard spatial co-location mining algorithm [27] to

include time information. The algorithm first discovers all size-(k) spatial prevalent

MDCOPs, and then applies a time-prevalence based filtering to discover MDCOPs.

Finally, the MDCOP-Miner algorithm generates size-(k+1) candidate MDCOPs using

size-(k) MDCOPs. The prevalence measure used by the MDCOP-Miner algorithm

is a composition of spatial and time prevalence measures. The spatial prevalence

measure is defined as the minimum participation ratio. The time prevalence measure

is defined as the fraction of time slots where the pattern occurs over the total number

of time slots [23].

Xiong et al. introduced the problem of mining spatial co-location patterns from

extended spatial representations in [24]. In this paper, the authors introduced a

buffer based model to find co-location patterns in data sets with extended spatial

representations. In the buffer based model the neighborhood of an extended spatial

representation is defined by the spatial buffer operation. The Euclidean neighborhood

N(f) of some feature f is defined as the union of neighborhoods for every instance

i of the feature f . The Euclidean neighborhood N(f1, . . . , fk) for a feature set E =

{f1, . . . , fk} is defined as ∩|E|i=1N(fi) s.t fi ∈ E. The authors introduced the coverage
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ratio to measure how interesting a co-location pattern is. The coverage ratio measure

is defined as the ratio of the Euclidean neighborhood of feature set E, to the total

area of the plane. They introduced the EXCOM algorithm to find spatial co-location

patterns in data sets with extended spatial representations. The EXCOM algorithm

first uses a geometric filter step to eliminate a lot of feature sets which can not form

co-location patterns. In the the next step, an Apriori-based approach is used to

generate spatial co-location patterns.

Mining spatiotemporal patterns in scientific data was first introduced by Yang et

al. in [25]. In this paper, the authors introduced a general framework to discover

spatial associations and spatiotemporal episodes for scientific data sets. The authors

modeled features as geometric objects rather than points. They also extended their

approach to accomodate temporal information and proposed an algorithm to derive

spatiotemporal episodes. The authors introduced distance metrics that take into

account an object’s extent.

The problem of mining interval orientation patterns in spatiotemporal databases

was introduced by Patel in [26]. In this work, the author modeled features by taking

feature duration into account. Thus, the approach introduced was able to capture the

temporal influence of a feature on other features within a spatial neighborhood. An

Interval Orientation (IO) pattern is a frequent sequence of features with annotations

of temporal and directional relationships between every pair of features. They intro-

duced an algorithm called IOMiner to mine frequent IO patterns. The algorithm uses

a two-stage procedure to find IO patterns. In the first stage, disjoint cubes hashing

[21] is used to find IO patterns of size two. In the second stage, a hash-based join is

used to find IO patterns of size three and more.

The most relevant methods to our task, which are available in the current liter-

ature, consider features as spatial point representations with temporal information



13

[21], [22], [23], [26] or consider features as extended spatial representations [24] with

temporal information but do not take feature duration into account [25]. Thus, these

methods are not adequate for mining spatiotemporal co-occurrence patterns on data

sets with extended spatial representations that evolve over time.



14

CHAPTER 3

CURRENT CONTRIBUTIONS

In this chapter we provide details on the research we have already completed

[4], [1], [10]. We first formulate the problem of mining spatiotemporal co-occurring

patterns on regions that evolve over time using spatiotemporal predicates to define the

evolving regions neighborhoods. Next we introduce our algorithm to mine spatiotem-

poral co-occurrence patterns on data sets that have evolving regions. We provide

empirical results of our work. These results highlight our algorithm’s contributions

in terms of number of patterns generated, memory usage, execution time, and the

number of rules discovered.

3.1 Spatiotemporal Co-occurrence Patterns

Given a set of spatiotemporal event types E = {e1, . . . , eM}, and a set of instances

of these event types, which evolve over time, I = {i1, . . . , iN} such that M � N . A

spatiotemporal co-occurring pattern is a subset of spatiotemporal event types that

co-occur in both space and time.

In Fig. 3.1, we show an example data set that we will use to explain the definitions

in detail. In Table 3.1, we show the Instance ID, Event Type Start Time, and End

Time of instances of different event types from our example data set in Fig. 3.1. This

data set contains four event types. The event type e1 has a total of five spatiotemporal

instances (i1 . . . i5), e2 has three instances (i6 . . . i8), e3 has four instances (i9 . . . i12),

and e4 has two instances (i13 . . . i14). For simplicity, in this example we do not show

the sequence of 2D shapes that reflect the spatiotemporal evolution of our data. In
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Figure 3.1: An example of spatiotemporal data

our example, E = {e1, e2, e3, e4}, M = 4, and N = 14 (all instance IDs are listed in

the first column of Table 3.1).

Definition 1. A size-(k) spatiotemporal co-occurrence is denoted as SE =

{e1, . . . , ek}, where SE ⊆ E, SE 6= ∅ and 1 < k ≤M .

We can have multiple size-(k) spatiotemporal co-occurrences derived from the

set E, so to separate them we will subscript future definitions, (e.g., SEi) with an

arbitrarily chosen subscript to denote uniqueness, i.e., SEi 6= SEj. Note that indices

(i or j) do not indicate the size of the co-occurrence - for the size we reserve the

symbol k.

Definition 2. pat instance is a pattern instance of a spatiotemporal co-

occurrence SEi if pat instance contains an instance of all events in SEi and no

proper subset of pat instance is also a pattern instance.

For example, {i1, i6, i9} is a size-3 (k = 3) pattern instance of co-occurrence SEi =

{e1, e2, e3} in the example spatiotemporal data set presented in Fig. 3.1 and Table

3.1.
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Table 3.1: Temporal information about event instances of

data shown in Fig. 3.1

.

Instance ID Event Type Start Time

(HH:MM)

End Time

(HH:MM)

i1 e1 10:00 10:30

i2 e1 10:10 10:40

i3 e1 11:00 11:20

i4 e1 11:00 11:30

i5 e1 11:20 11:50

i6 e2 10:20 10:50

i7 e2 10:20 10:40

i8 e2 11:20 11:40

i9 e3 10:20 10:50

i10 e3 10:30 10:40

i11 e3 11:20 11:40

i12 e3 11:10 11:30

i13 e4 11:10 11:30

i14 e4 11:30 12:00

Definition 3. A collection of pattern instances of SEi is a table instance of SEi,

and is denoted as tab ins(SEi).

For example, {{i1, i6, i9}, {i2, i7, i10}} is a size-3 (k = 3) tab ins(SEi = {e1, e2, e3})

in the example spatiotemporal data set presented in Fig. 3.1 and Table 3.1.

Definition 4. A spatio-temporal co-occurring rule is of the form SEi ⇒

SEj(cce, p, cp), where SEi and SEj are spatio-temporal co-occurrences, such that

SEi 6= SEj, and parameters cce, p, and cp characterize the rule in the following

manner.

1. cce is an indicator of the strength of spatio-temporal relation’s occurrence that

is investigated (for our application we used spatio-temporal Overlap. Some
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examples of spatio-temporal Overlap are {i1, i6}, {i2, i7}, and {i7, i10} as shown

in Fig. 3.1. We will discuss this more in detail in the next subsection),

2. p is the prevalence measure. The Prevalence measure emphasizes how interest-

ing the spatio-temporal co-occurrences are. In our investigation we used the

participation index (pi) [27] as the prevalence measure. The participation in-

dex monotonically decreases when the size of the spatio-temporal co-occurrence

pattern increases, which can be exploited for computational efficiency [27],

3. cp is the conditional probability [27] of our spatio-temporal co-occurrence rule.

The conditional probability gives the confidence of the spatio-temporal co-

occurring rule SEi ⇒ SEj. In other words, the conditional probaibility indi-

cates that whenever we observe a spatio-temporal co-occurrence of the instances

of SEi, the probability to find the instances of co-occurrences of SEj is cp.

3.1.1 Measures

To calculate cce (in our case the strength of spatiotemporal Overlap) of a size-

(k) spatiotemporal co-occurrence SEi, we introduce a spatiotemporal co-occurrence

co-efficient. Our spatiotemporal co-occurrence co-efficient is closely related to the Co-

efficient of Areal Correspondence (CAC) proposed in [28] for spatial data analysis.

CAC is computed for any two (or more, for longer patterns) overlapping polygons as

the area of intersection, divided by the area of union. We extend CAC to three dimen-

sions (two dimensions correspond to space and the third dimension corresponds to

time), and calculate the spatiotemporal co-occurrence co-efficient based on volumes.

Definition 5. Spatiotemporal Intersection volume (Iv) of a pat instance: The Iv

for a pattern instance is the volume resulting from Intersection of trajectories of all

instances of spatiotemporal event types in a pattern instance.
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Definition 6. Spatiotemporal Union volume (Uv) of a pat instance: The Uv for

a pattern instance is the volume resulting from Union of trajectories of all instances

of spatiotemporal event types in a pattern instance.

3.1.2 Co-occurrence coefficient cce

We use the spatiotemporal co-occurrence coefficient (cce) as our measure to assess

the strength of the spatiotemporal relation Overlap. cce is calculated for a size-k pat-

tern instance as the ratio J = V (i1∩i2,...,ik−1∩ik)
V (i1∪i2,...,ik−1∪ik)

. The symbol J represents the Jaccard

measure [29] (see Fig. 3.2). We use Jaccard measure to capture the spatiotemporal

co-occurrence as it is commonly accepted by data mining practitioners [29, 19]. Com-

puting the cce for extended spatiotemporal representations such as evolving polygons

is not a trivial task. In Fig. 3.2, we show the movement of a pair of instances of two

event types (i.e., pat instance of size-2 ) that change sizes and directions across differ-

ent time instances. We also show the region of Intersection and the region of Union at

different time slots. Moreover, the volumes resulting from the Intersection and Union

trajectories of objects are shown in Fig. 3.2. If we assume that instances {i1, i6},

in our example data set (Fig. 3.1 and Table 3.1), have spatiotemporal Intersection

volume V (i1 ∩ i6) = 241 and a spatiotemporal Union volume V (i1 ∪ i6) = 1005, then,

the spatiotemporal co-occurrence coefficient is equal to V (i1∩i6)
V (i1∪i6) = 0.23. Please see the

notes under Table 3.2 for detailed calculation of cce. In Table 3.2, the third column

shows time instances (with ∆t=10 min. used as our sampling interval), the fourth

column Area(i1∩i6) shows intersection areas, and the fifth column Area(i1∪i6) shows

union areas at each time instant.

Although, we have shown calculation of our cce using the Jaccard measure, in

this work we would like to investigate alternative measures in detail. We analyze six
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Figure 3.2: Example of size-2 co-occurrence of spatiotemporal objects.

different measures (i.e. denoted J, OMAX, N, D, C, and OMIN in the first column

of Table 3.3) to assess the strength of the spatiotemporal relation Overlap. Also, the

second column in Table 3.3 gives the formula for each measure for a size-k pattern

instance where i1, . . . , ik denote instances of k spatiotemporal events. Moreover, each

ij ∈ i1, . . . , ik is a three dimensional geometrical object, represented by a sequence of

two dimensional spatial polygons, whose shape, size, and location evolve over time.

In the third column of Table 3.3 we specify whether a measure has the anti-monotone

property. Each of the measures given in Table 3.3 can be used to assess the strength of

spatiotemporal relation Overlap by comparing volumes of the objects in Overlapping

trajectories of i1, . . . , ik. In all the formulas, volumes are represented by the notation

V . Note, the measure J shown in Table 3.3 matches the example calculation of cce

shown earlier in this section.

3.1.3 Prevalence of STCOPs

Definition 7. The participation index pi(SEi) of a spatiotemporal co-occurrence

SEi is,

mink
j=1pr(SEi, ej) (3.1)
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Table 3.2: Example of tab instance of SEi = {e1, e2} with calculation of cce from

data shown in Fig. 3.2.

Instance of e1 Instance of e2 TimeInstant(ts = 10 minutes) Area(i1 ∩ i6) Area(i1 ∪ i6)
i1 i6 t1 =10:00 0 60

i1 i6 t2 =10:10 25 120

i1 i6 t3 =10:20 95 115

i1 i6 t4 =10:30 15 140

i1 i6 t5 =10:40 0 150

i1 i6 t6 =10:50 0 140

i1 i6 t7 =11:00 16 130

i1 i6 t8 =11:10 90 90

i1 i6 t9 =11:20 0 60

ccei1i6 = V (i1∩i6)
V (i1∪i6) =

∑t9
j=t1

ts×Areaj(i1∩i6)∑t9
j=t1

ts×Areaj(i1∪i6)
= 10×(0+25+...+90+0)

10×(60+120+...+90+60)
= 241

1005
= 0.23

where k is the length of the pattern (i.e., cardinality of SEi, |SEi|), and the partici-

pation ratio pr(SEi, ej) for a spatiotemporal event type ej is the fraction of the total

number of instances of ej forming spatiotemporal co-occurring instances in SEi.

For example, from Fig. 3.1 and Table 3.1 we can see that, the pattern instances

of spatiotemporal co-occurrence SEi = {e1, e2, e3} are {{i1, i6, i9}, {i2, i7, i10}}. Only

two (i1, i2) out of five instances of spatiotemporal event type e1 participate in co-

occurrence SEi = {e1, e2, e3}. So, pr({e1, e2, e3}, e1) = 2/5 = 0.4. Similarly

pr({e1, e2, e3}, e2) = 2/3 = 0.67, and pr({e1, e2, e3}, e3) = 2/2 = 1. There-

fore the participation index of spatiotemporal co-occurrence SEi = {e1, e2, e3} is

pi({e1, e2, e3}) = min(0.4, 0.67, 1) = 0.4.

Definition 8. The spatiotemporal co-occurrence SEi is a prevalent pattern if it

satisfies a user-specified minimum participation index threshold.

In our example above, if the minimum threshold is set to 0.3, then the spatiotem-

poral co-occurrence pattern SEi = {e1, e2, e3} is a prevalent pattern.
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Table 3.3: Measures evaluating spatiotemporal relation Overlap

(cce) for pattern instances of size k ≥ 2 [1]

Name Formula Anti-monotone Property

Jaccard coefficient (J) V (i1∩i2,...,ik−1∩ik)
V (i1∪i2,...,ik−1∪ik)

Yes

Overlap coefficient (OMAX) V (i1∩i2,...,ik−1∩ik)
max(V (i1),...,V (ik))

Yes

Cosine coefficient (N)
k√
k×V (i1∩i2,...,ik−1∩ik)

k

√∑k

j=1
V (ij)k

No

Dice coefficient (D) k×V (i1∩i2,...,ik−1∩ik)∑k

j=1
V (ij)

No

Cosine coefficient (C) V (i1∩i2,...,ik−1∩ik)
k
√

V (i1)×V (i2),...,V (ik−1)×V (ik)
No

Overlap coefficient (OMIN) V (i1∩i2,...,ik−1∩ik)
min(V (i1),...,V (ik))

No

Definition 9. The conditional probability cp(SEi ⇒ SEj) of a spatiotemporal

co-occurrence rule SEi ⇒ SEj is the fraction of pattern instances of SEi that satisfies

the spatiotemporal relation strength indicator cce to some pattern instances of SEj.

It is computed as,

|πSEi
(tab ins({SEi ∪ SEj}))|
|tab ins({SEi})|

(3.2)

where π is the relational projection operation with duplicate elimination [27].

For example, for co-occurrence rule e1 ⇒ e2, from our data set in Fig. 3.1 and

Table 3.1, the conditional probability is equal to

|πe1(tab ins(e1e2))|
|tab ins(e1)|

= 3/5 = 60%.

In other words, only three out of five instances (i1, i2, i4) of event type e1 co-occur

with instances (i7, i6, and i8) of event type e2.

3.1.4 Problem Statement

Given:
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1. A set of M spatiotemporal event types E = {e1, e2, . . . , eM} over a common

spatiotemporal framework.

2. A set of N event instances I = {i1, i2, . . . , iN}, which evolve over time such

that M � N , and each ij ∈ I is a tuple <instance-id, spatiotemporal event

type, sequence of <2D shape, matching time instant> pairs>, where the se-

quence of 2D shape and matching time instant pairs reflects the evolution of

the spatiaotemporal event.

3. A user-specified spatiotemporal co-occurrence coefficient threshold (cceth).

4. A user-specified participation index threshold (pith), which we use as our preva-

lence measure.

5. A user-specified conditional probability threshold (cpth).

6. A time interval of data sampling (∆t). All events are sampled with the same

interval making the shapes of individual events exactly aligned in time.

Objective: Find the complete and correct result set of spatiotemporal co-

occurrence patterns satisfying cce > cceth, pi > pith, and cp > cpth.

3.1.5 STCOPs-Miner Algorithm

In this section we introduce our STCOPs-Miner algorithm to mine spatiotemporal

co-occurrence patterns and rules from data sets with extended spatial representations

that evolve over time. Fig. 3.3 gives the pseudocode of our STCOPs-Miner algorithm.

In the algorithm, steps 1 and 2 initialize the parameters and data structures, steps 3

through 11 give an iterative process to mine spatiotemporal co-occurrence rules and

step 12 returns a union of the results of the spatiotemporal co-occurrence patterns
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(patterns of all sizes) and rules (rules of all size). Steps 3 through 11 continue until

there is no candidate STCOPs to be mined. Next we explain the functions in the

algorithm.

Step 2, i.e., T1 = gen loc(C1, I, ts): In this function, argument ∆t represents the

increment in the number of time steps. The evolution of instances of our spatiotem-

poral events from their start time slot is projected using ∆t (to increment the number

of time steps between time slots). The combination of the event instance ID and time

step will allow us to identify an event at a particular moment. For example, Fig. 3.4

(a) shows the key columns of table instances of size-1 for our sample spatiotemporal

data set (Fig. 3.1 and Table 3.1). Here, the ∆t value was set to 10 minutes. The

column denoted te1 represents the table instance of size-1 for event type e1. Similarly,

the columns denoted by te2 , te3 , and te4 represent the table instances of size-1 for event

types e2, e3, and e4. The geometric shapes of instances are not shown in Fig. 3.4 (a)

for simplicity.

Step 4, i.e., C(k+1) = gen candidate coocc(Pk): We generate candidate STCOPs

in this step. We use an Apriori-based [17] approach to generate the candidates of

size-(k+ 1) using spatiotemporal co-occurring prevalent patterns of size-(k) for anti-

monotonic measures. Hence, prevalent patterns of size-(k), which satisfy the user-

specified threshold value of a minimum participation index pith, are used to generate

candidate patterns of size-(k + 1). Fig. 3.4 (b) shows the candidate co-occurrence

patterns of size-2 for our example spatiotemporal data set (Fig. 3.1 and Table 3.1).

However, we generate candidate patterns of size-(k+1) from all size-k patterns for

non anti-monotonic measures (see Table 3.3).
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Input :

(1) E= A set of spatiotemporal event types, which can be represented as 2D shapes at each time step.

(2) I= <instance-id, spatiotemporal event type, sequence of <2D shape, matching time instant> pairs>.

(3) A user-specified spatiotemporal co-occurrence coefficient threshold (cceth).

(4) A user-specified participation index threshold (pith), which we use as our prevalence measure.

(5) A user-specified conditional probability threshold (cpth).

(6) A user-specified time sampling interval (∆t), measured as duration between snapshots of evolving

objects.

Output :

A set of spatiotemporal co-occurrence rules with cce, pi, and cp greater than the user-specified minimum

threshold values given on input.

Variables :

(1) k the co-occurrence size

(2) Ck: a set of candidates for size-(k) STCOPs derived from size-(k − 1) prevalent STCOPs

(3) Tk: set of instances of size-(k) spatiotemporal co-occurrences

(4) Pk: a set of size-(k) prevalent STCOPs derived from size-(k) candidate STCOPs

(5) Pfinal: union of all prevalent spatio-temporal co-occurring patterns (patterns of all sizes)

(6) Rk: a set of spatiotemporal co-occurrence rules derived from size-(k) prevalent STCOPs

(7) Rfinal: union of all spatiotemporal co-occurrence rules (rules of all sizes)

Algorithm :

1 k=1, C1=E, P1 = E, Pfinal = ∅, Rfinal = ∅;

2 T1 = gen loc(C1, I, ts);

3 while (Pk 6= ∅) {

4 C(k+1) = gen candidate coocc(Pk);

5 T(k+1) = gen tab ins coocc(C(k+1), cceth);

6 P(k+1) = pre prune coocc(C(k+1), pith);

7 Pfinal = Pfinal ∪ P(k+1);

8 R(k+1) = gen rules coocc(P(k+1), cpth);

9 Rfinal = Rfinal ∪R(k+1);

10 k = k + 1;

11 }

12 return Pfinal, Rfinal;

Figure 3.3: STCOPs-Miner Algorithm



25

Figure 3.4: Table instances of size-1 (a) and candidate patterns of size-2 (b).

Step 5, T(k+1) = gen tab ins coocc(C(k+1), cceth): This function generates table

instances for candidate patterns of size-(k + 1). Pattern instances for each table

instance can be generated by a spatiotemporal query. The geometric shapes of the

instances at each time step are saved, as these geometric shapes will be used for finding

the cce of STCOPs of size three or more. Pattern instances that have a cce below

the user-specified cceth value are deleted from the table instance, if the measure used

to calculate cce has the anti-monotonic property (i.e., J and OMAX). However, for

non anti-monotonic measures (see Table 3.3), pattern instances that do not have any
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volume resulting from intersection of trajectories of the event instances, are deleted

from the table instances.

For example, Fig. 3.5 (c) shows the important columns of size-2 table instances

for our sample spatiotemporal data set from Fig. 3.1 and Table 3.1. The column

denoted te1e2 represent the table instance of size-2 co-occurrence of event types e1

and e2. Similarly, the other columns represents table instance of different event types.

We also show the pattern instances that satisfy the threshold cceth = 0.01. For

simplicity, we just show the running example with cce value calculated using anti-

monotonic measures. Moreover, we only show the key columns of table instances

for simplicity. For example, in the table instance te1e2 shown in Fig. 3.5 (c), the

rows i1, i6, 10:00 through i1, i6, 10:50 represent a pattern instance that satisfies the

threshold cceth = 0.01.

Step 6, i.e., P(k+1) = pre prune coocc(C(k+1), pith): This function discovers filtered

size-(k + 1) STCOPs by pruning C(k+1) that have pi < pith. For example, we show

the pi value (see Def. 7 ) at the end of each table instance in Fig. 3.5 (c). As

seen from the Fig. 3.5 (c), the patterns SEi = {e1, e4}, and SEj = {e2, e4} will be

pruned if a value of 0.39 is set to pith. Thus, the patterns that satisfy the pith = 0.39

are {{e1, e2}, {e1, e3}, {e2, e3}, {e3, e4}}. These four patterns will be used in the next

iteration of the algorithm in Step 4 (see Fig. 3.5 (d)). However, please note, if the

measure used to calculate cce is non anti-monotonic, we will not prune the candidates

based on pith value. Instead, all the patterns will be used to generate size-(k + 1)

patterns. In Step 7, the algorithm calculates the union of patterns Pfinal and Pk+1.

Step 8, i.e., R(k+1) = gen rules coocc(P(k+1), cpth): In this step we generate spa-

tiotemporal co-occurrence rules. A set of spatiotemporal co-occurrence rules R that

have cp greater than cpth of size-(k+1) is generated from P(k+1) [27] for anti-monotonic

measures. However, for non anti-monotonic measures we generate rules that have cp
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Figure 3.5: Table instances of size-2 (c) and candidate patterns of size-3 (d).

greater than cpth from patterns of P(k+1) that have pi value greater than pith (note,

this check is neccessary for non anti-monotonic measures because we do not prune

away patterns, see Step 6).

The conditional probability (Def. 9) cp(SEi ⇒ SEj) of a spatiotemporal co-

occurrence rule SEi ⇒ SEj is calculated using Eq. 3.2, where π is the relational

projection operation with duplicate elimination.

Step 9 i.e., Rfinal = Rfinal ∪ R(k+1) of the algorithm calculates the union of rules

Rfinal and Rk+1. The algorithm runs iteratively until no more STCOPs can be gener-

ated for anti-monotonic measures. However, for non anti-monotonic measures all the

patterns are generated and in a post processing step only the patterns that satisfy pith
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are reported. Finally the algorithm returns the union of all the found spatiotemporal

co-occurrence patterns and rules in Step 12.

3.1.6 Experimental Evaluation

In our experiments, we use a real-life data set from the solar physics domain.

Specifically, we evaluate our algorithm using the measures shown in Table 3.3 using

six types of evolving solar phenomena. Our data set contains evolving instances of

six different solar event types, which were observed on 01/01/2012. We obtained

our data set from the well-known solar data repository called Heliophysics Event

Knowledgebase (HEK) [30, 31]. The solar event types are Active Region, Filament,

Sigmoid, Sunspot, Flare, and Emerging Flux [32]. Each of these solar event types has

different spatial and temporal characteristics (i.e., area, duration).

We investigate STCOPs-Miner with the measures to accurately capture the

STCOPs of the six different solar event types represented as evolving polygons. More-

over, an interesting ordering relation on the selectivity of the boolean versions of J ,

OMAX, N , D, C, and OMIN measures is shown in [33]. We show the ordering

relation of the measures on real numbers in our experiments. Specifically, we empir-

ically show that the value of J , OMAX, N , D, C, and OMIN for a size-k pattern

instance follows the ordering J ≤ OMAX ≤ N ≤ D ≤ C ≤ OMIN for all real

positive numbers. We compare and report the number of candidate pattern instances

needed to discover actual pattern instances, the storage space requirements of the

measures, and the number of rules discovered. For all experiments, the cceth values

were set to 0.01, pith values were set to 0.1, cpth values were set to 0.6, and the

sampling time interval ∆t is set at 30 minutes. All experiments were performed using

PostgreSQL 9.1.4 and PostGIS 1.5.4.
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3.1.7 Pattern Instances

We first investigated the number of candidate pattern instances that are used

to generate the pattern instances that satisfy the threshold cceth for anti-monotonic

and non anti-monotonic measures. In Fig. 3.15 (a), we show the number of pattern

instances used by STCOPs-Miner with anti-monotonic measures for different pattern

sizes. In Fig. 3.15 (a), J-BCCE (OMAX-BCCE) represent the number of candidate

Figure 3.6: Comparison of candidate and actual pattern instances generated by anti-

monotonic and non anti-monotonic measures in the STCOPs-Miner algorithm.

pattern instances generated with measure J (OMAX), and J-ACCE (OMAX-ACCE)

represent the number of pattern instances after filtering out the candidates that do

not satisfy the threshold cceth in the STCOPs-Miner algorithm. In other words, J-

BCCE (OMAX-BCCE) compared to J-ACCE (OMAX-ACCE) can be interpreted as

the ratio of candidates to actual patterns in classical Apriori. From Fig. 3.15 (a), we

can observe that the number of candidate pattern instances and actual patterns for

the measures J and OMAX follows the ordering J ≤ OMAX. In other words, the

measure J is more restrictive in the number of pattern instances that satisfy cceth in

comparison to OMAX.
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In Fig. 3.15 (b), we show the number of pattern instances used by the STCOPs-

Miner algorithm with non anti-monotonic measures for different pattern sizes. In

Fig. 3.15 (b), M represents the number of candidate pattern instances generated

(i.e., pattern instances that have V (i1 ∩ i2, . . . , ik−1 ∩ ik) > 0), and N-ACCE, D-

CCE, C-ACCE, and OMIN-ACCE represent the number of pattern instances that

satisfy the threshold cceth in the STCOPs-Miner algorithm (i.e., the actual patterns

that are reported on the output). In comparison to the anti-monotonic measures, we

keep the candidate pattern instances that do not satisfy the threshold cceth for the

N,D,C, and OMIN measures. This shows the effectiveness of our anti-monotonic

measures for pruning the pattern instances that do not satisfy the threshold cceth.

Moreover, from Fig. 3.15 (b) we can observe that the number of pattern instances

that satisfy the threshold cceth for the measures N,D,C, and OMIN follows the

order N ≤ D ≤ C ≤ OMIN .

3.1.8 Memory Usage

We now investigate the memory usage of the STCOPs-Miner algorithm for the

candidate table instances generated. We report the hard-drive memory usage of can-

didate table instances with all the pattern instances generated, and memory usage of

candidate table instances after filtering the pattern instances that do not satisfy cceth.

In Fig. 3.7 (a), we show the memory usage of table instances used by the STCOPs-

Miner algorithm with anti-monotonic measures for different pattern sizes. In Fig. 3.7

(a), J-BCCE represents the memory usage of table instances for all pattern instances

generated, and J-ACCE represents the memory usage of table instances after filtering

out the pattern instances that do not satisfy the threshold cceth in the STCOPs-Miner

algorithm. As expected, from Fig. 3.7 (a) we can observe that there is a drop in the
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memory usage after the pattern instances are filtered by applying the threshold cceth

(compare J-BCCE (OMAX-BCCE) with J-ACCE (OMAX-ACCE)). This shows the

effectiveness of the anti-monotonic property of the measures J and OMAX. However,

generation of all J-BCCE’s (OMAX-BCCE’s) is necessary to discover actual STCOPs.

Furthermore, from Fig. 3.7 (a), we can observe that the memory usage J is more

expensive than OMAX due to cost of union geometries needed for the calculation of J

(see Table 3.3). However, when the number of candidate pattern instances increases,

the measure OMAX uses more memory (see patterns of size-5 in Fig. 3.7 (a)).

Figure 3.7: Memory usage used by candidate table instances for the STCOPs-Miner

algorithm using anti-monotonic and non anti-monotonic measures.

In Fig. 3.7 (b), we show the memory usage of table instances used by the STCOPs-

Miner algorithm with non anti-monotonic measures for different pattern sizes. In Fig.

3.7 (b), M represents the memory usage of table instances for all the pattern instances

generated (i.e., pattern instances that have V (i1∩i2, . . . , ik−1∩ik) > 0), and N-ACCE,

D-CCE, C-ACCE, and OMIN-ACCE represent the memory usage of table instances

with pattern instances that satisfy the threshold cceth in the STCOPs-Miner algorithm
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with the measures N,D,C, and OMIN , respectively. In other words, M compared

to N-ACCE, D-CCE, C-ACCE, and OMIN-ACCE can be interpreted as candidates

to actual patterns ratio in classical Apriori. However, in comparison to the J and

OMAX (i.e., anti-monotonic measures) we do not filter candidate pattern instances

for the not anti-monotonic measures (i.e., N,D,C, and OMIN). Thus, for N,D,C,

and OMIN , the number of candidate pattern instances used to generate patterns

of higher sizes is greater than J and OMAX. However, note that the memory used

by the pattern instances satisfying cceth is similar to the memory used by J and

OMAX (compare J-ACCE, OMAX-ACCE with N-ACCE, D-CCE, C-ACCE, and

OMIN-ACCE in 3.7 (a) and (b)).

3.1.9 Rules Discovered

Finally, we investigate the number of rules generated using the anti-monotonic

and non anti-monotonic measures with the STCOPs-Miner algorithm and report it

in Fig. 3.8. We can observe from Fig. 3.8 that the number of rules discovered

varies for different measures. The number of rules generated directly depends on

the number of unique patterns discovered (patterns satisfying the threshold pith) and

on the selectivity of the measures. Note, the confidence of co-occurrence rules are

calculated using the conditional probability (Def. 9). The selectivity of the measures

directly influences the confidence of a co-occurrence rule.

The importance of analyzing different measures is shown here in order to accu-

rately capture the spatiotemporal characteristics of different solar events. For in-

stance, J acts similar to measure D [29]; however, it penalizes objects with smaller

Intersection volumes, i.e., it gives much lower values than D to objects which have

a small Intersection volume - giving a penalty to some of our events that are small
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Figure 3.8: Number of rules discovered from the STCOPs-Miner algorithm using

anti-monotonic and non anti-monotonic measures.

in the area and short-lasting. Similarly, the measures OMAX and N also penalize

objects with smaller Intersection (common) volume. The measure OMIN [29] gives

a value of one if an object is totally contained within another object. We could say

that it reflects inclusion, which benefits the objects that are almost equal in space

and time. The measure C [29] is more resistant to the size of the objects, making it

more appropriate to data sets that contain event types with different life spans and

areas (sizes).

3.2 FastSTCOPs-Miner

Following our initial investigation on finding spatiotemporal co-occurrence pat-

terns from data sets with continuously evolving spatiotemporal events that have ex-

tended spatial representations with anti-monotonic and non anti-monotonic measures,

we next focused on developing a computationally efficient STCOPs mining algorithm
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(FastSTCOPs-Miner), using a filter-and-refine strategy to prune irrelavent STCOPs

based on the usage of the all-confidence (OMAX) measure as a filtering mechanism

for Jaccard -based analysis which is the standard measure in data mining [4, 28, 19].

We provide a theoretical analysis to show the correctness and completeness of our

FastSTCOPs-Miner algorithm. We experimentally verify the correctness of proposed

algorithm with our näıve STCOPs algorithm [4], [1] on three real-life data sets and

one artificial data set, and provide extended experimental results demonstrating the

computational and memory efficiency of the FastSTCOPs-Miner algorithm.

3.2.1 Problem Statement

Input:

1. A set of spatiotemporal event types E = {e1, e2, . . . , eM} over a common spa-

tiotemporal framework.

2. A set of N spatiotemporal event instances I = {i1, i2, . . . , iN}, where each

ij ∈ I is a tuple <instance-id, spatiotemporal event type, sequence of <2D

shape, matching time instant> pairs>, where the sequence of 2D shape and

matching time instant pairs reflects the evolution of the given spatiotemporal

event.

3. A user-specified spatiotemporal co-occurrence coefficient threshold (cceth).

4. A user-specified participation index threshold (pith).

5. A time interval of data sampling (∆t). All events are sampled with the same

interval making the shapes of individual events exactly aligned in time.

Objective/Output: Find the complete and correct result set of spatiotemporal

co-occurrence patterns (STCOPs) satisfying cce > cceth and pi > pith.
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3.2.2 Analysis of relations between J and OMAX measures

As discussed in Sec. 3.1.2 we use the spatiotemporal co-occurrence coefficient

(cce) to assess the strength of the spatiotemporal relation Overlap. cce is typically

calculated for a size-k pattern instance as the ratio J = V (i1∩i2,...,ik−1∩ik)
V (i1∪i2,...,ik−1∪ik)

. The symbol

J stands for the Jaccard measure, which is commonly accepted by data mining prac-

titioners to measure the co-occurence of items in shopping baskets [29, 19], among

spatial objects [28], and in spatiotemporal data [4], [1].

We would like to point out here that computing J for spatiotemporal pattern in-

stances is quite expensive (due to the necessary calculations of intersection and union

geometries for each time stamp, and storage space required to save these geometries).

In this work, we introduce an alternate measure OMAX, defined as V (i1∩i2,...,ik−1∩ik)
max(V (i1),...,V (ik))

, that can be effectively used to assess the spatiotemporal co-occurrence strength of

a pattern instance, and it will provide significant speed-up for discovery of STCOPs

based on the commonly used Jaccard measure. OMAX is the foundation of our

filter-and-refine approach. We filter out the pattern instances that do not satisfy

the user-specified threshold, cceth, with OMAX (we will prove that such patterns

can not satisfy J with the same cceth as well), and then calculate J for the reduced

set of pattern instances. OMAX represents the all-confidence measure [34] in clas-

sical association rules mining literature and it is time and storage-wise significantly

cheaper to calculate than Jaccard on spatiotemporal data. We will show the proofs

for the completeness of STCOPs generated with our filter-and-refine approach as well

as experimental results confirming our theoretical investigations and space and time

scalability of our approach through the rest of this chapter.

For the filter step with OMAX for the J-based Apriori algorithm to be correct

the following properties between J and OMAX are necessary: (1) We show that
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the cce values computed using the J and OMAX are monotonically non-increasing

as the size of the pattern instance increases for a fixed cceth value (see Lemmas

3.1 and 3.2 below). (2) We show the ordering relation on the selectivity of J and

OMAX (shown in Lemma 3.3 below). (3) We show that the STCOPs found using

J is a subset of the STCOPs found with OMAX for a fixed cceth and pith values

(see Lemma 3.4 below). All three properties are useful and necessary to reduce the

number of candidate STCOPs in an accurate filter-and-refine strategy. This will

greatly improve the performance of our näıve STCOPs algorithm [4], [1].

Lemma 3.1 : The measure J is anti-monotone (monotonically non-increasing) as

the size of a pattern instance increases.

Proof : The measure J for a size-k pattern instance is defined as:

V (i1 ∩ i2, . . . , ik−1 ∩ ik)

V (i1 ∪ i2, . . . , ik−1 ∪ ik)
(3.3)

For any size-(k+1) pattern instance denoted as pat instance′ is equal to pat instance

∪ (ik+1), where pat instance is a size-k pattern instance and ik+1 /∈ pat instance. We

claim the measure J follows the relation:

V (i1 ∩ i2, . . . ,∩ik)

V (i1 ∪ i2, . . . ,∪ik)
≥ V (i1 ∩ i2, . . . ,∩ik ∩ ik+1)

V (i1 ∪ i2, . . . ,∪ik ∪ ik+1)
(3.4)

Therefore, we need to prove:

V (i1 ∩ i2, . . . ,∩ik) ≥ V (i1 ∩ i2, . . . ,∩ik ∩ ik+1), (3.5)

and

V (i1 ∪ i2, . . . ,∪ik) ≤ V (i1 ∪ i2, . . . ,∪ik ∪ ik+1) (3.6)

Since, adding one more instance of a different event type to a pattern instance can

either reduce or not affect the volume of Intersection of instance trajectories, we
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obtain the relation V (i1 ∩ i2, . . . ,∩ik) ≥ V (i1 ∩ i2, . . . , ik−1 ∩ ik ∩ ik+1) from Eq. 3.5.

Similarly, adding one more instance of different event type to a pattern instance can

either increase or not affect the volume of Union of instance trajectories, we obtain

the relation V (i1 ∪ i2, . . . , ik−1 ∪ ik) ≤ V (i1 ∪ i2, . . . , ik−1 ∪ ik ∪ ik+1) in Eq. 3.6. Thus,

our relation in Eq. 3.4 holds for all positive real numbers that represent volumes of

spatiotemporal objects with evolving polygons .

Lemma 3.2 : The measure OMAX is anti-monotone (monotonically non-

increasing) as the size of the pattern instance increases.

Proof : The measure OMAX for a size-k pattern instance is defined as:

V (i1 ∩ i2, . . . , ik−1 ∩ ik)

max(V (i1), . . . , V (ik))
(3.7)

For any size-(k+1) pattern instance denoted pat instance′ is equal to pat instance ∪

(ik+1), where pat instance is a size-k pattern instance and ik+1 /∈ pat instance. We

claim the measure OMAX follows the relation:

V (i1 ∩ i2, . . . ,∩ik)

max(V (i1), . . . , V (ik))
≥ V (i1 ∩ i2, . . . ,∩ik+1)

max(V (i1), . . . , V (ik+1))
(3.8)

Therefore, we need to prove:

V (i1 ∩ i2, . . . ,∩ik) ≥ V (i1 ∩ i2, . . . ,∩ik ∩ ik+1) (3.9)

and

max(V (i1), . . . , V (ik)) ≤ max(V (i1), . . . , V (ik+1)) (3.10)

Since, once again, adding one more instance of different event type to a pattern

instance can either reduce or not affect the volume of the Intersection of the instance
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trajectories, we obtain the relation shown in Eq. 3.9. Similarly, adding another

instance of a different event type to a pattern instance can not reduce the maximum

volume of instance trajectories, so we obtain the relation max(V (i1), . . . , V (ik)) ≤

max(V (i1), . . . , V (ik), V (ik+1)). Thus, Eq. 3.8 holds for all positive real numbers

that represent volumes of spatiotemporal objects with evolving polygons .

Lemma 3.3 : The selectivity of the measures J and OMAX for a size-k pattern

instance follows the order V (i1∩i2,...,ik−1∩ik)
V (i1∪i2,...,ik−1∪ik)

≤ V (i1∩i2,...,ik−1∩ik)
max(V (i1),...,V (ik))

, ∀V ∈ R+ for k ≥ 2.

Proof : Since the numerators are same, for the ordering relation J ≤ OMAX,

we can derive relations between both denominators:

max(V (i1), . . . , V (ik)) ≤ V (i1 ∪ i2, . . . , ik−1 ∪ ik) (3.11)

Maximum volume of all trajectories is always less than or equal to the volume

of union of all of them, thus the relation J ≤ OMAX always holds for positive real

numbers .

Lemma 3.4 : For a given user-specified participation index threshold pith and

spatiotemporal co-occurrence strength threshold cceth, the set of STCOPs generated

using J , is a subset of STCOPs generated using OMAX measure, for the same cceth

and pith.

Proof : From Lemma 3.1 and 3.2, we know that the measures J and OMAX are

anti-monotonic as the size of the pattern increases. Also, from Lemma 3.3, we know

that ordering J ≤ OMAX holds.

For given user-specified thresholds cceth and pith, we represent the set of all

STCOPs generated for J as STCOPJ , and the set of all STCOPs generated for

OMAX as STCOPOMAX . Furthermore, we denote participation index pi(SEi) of

a spatiotemporal co-occurrence SEi (see Def. 7), derived by using J as piJ(SEi),

and utilizing measure OMAX as piOMAX(SEi). From Lemma 3.3, we know that the
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number of pattern instances found for a spatiotemporal co-occurrence SEi follows the

order J ≤ OMAX, thus we get,

mink
j=1prJ(SEi, ej) ≤ mink

j=1prOMAX(SEi, ej) (3.12)

piJ(SEi) ≤ piOMAX(SEi) (3.13)

Since participation index is anti-monotonic as the size of the pattern increases

[27], and from Lemmas 3.1 and 3.2, and from Eq. 3.13, we get STCOPJ ⊆

STCOPOMAX .

3.2.3 FastSTCOPs-Miner Algorithm

In this section, we introduce the FastSTCOPs-Miner algorithm, which is more

efficient than our näıve STCOPs algorithm [4], [1] in the context of needed memory as

well as the execution time while leading to exactly the same results. This is because we

apply a filter-and-refine strategy in each iteration of the algorithm. The FastSTCOPs-

Miner algorithm exploits the containment relation between the STCOPs generated

using Jaccard (J) and OMAX measures (see Sec. 3.2), to filter out candidate patterns

that can not form STCOPs with the J .

The FastSTCOPs-Miner algorithm first filters STCOPs with OMAX, and then

uses these filtered STCOPs to find the refined prevalent STCOPs with our standard

measure, that is Jaccard (J). These refined prevalent STCOPs, like in all Apriori

algorithms [17], are used to generate candidate STCOPs in the next iteration of the

algorithm. Thus, the FastSTCOPs-Miner algorithm continously uses a filter-and-

refine strategy at each iteration of the algorithm to generate prevalent STCOPs.
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Even though such duplication of efforts may seem unnecessary, in Sec. 3.2.4. we will

experimentally show on a multitude of real-life and artificial data sets, the impressive

effectiveness of our filter-and-refine strategy on spatiotemporal data with evolving

regions. We will also provide a detailed explanation for this effectiveness.

Next, we give the pseudocode of the proposed FastSTCOPs-Miner algorithm (see

Fig. 3.9), and explain the algorithm with a running example using the data set

already shown in Fig. 3.1 and Table 3.1.

For our FastSTCOPs-Miner algorithm shown in Fig. 3.9, the inputs and outputs

are defined as in Sec. 3.2. Steps 1 and 2 of proposed algorithm intialize the data pa-

rameters and data structures, steps 3 through 11 give an iterative process to discover

the STCOPs of size greater than two. Steps 3 through 11 continue until there are no

candidate STCOPs to be discovered as shown by loop condition in step 3. Step 12

returns the union of all prevalent STCOPs (patterns of all sizes). The explanations

of functions in the algorithm are:

Generation of table instances of size-1 (step 2). In this function, argu-

ment ∆t represents the size of increment in time. The evolution of instances of our

spatiotemporal events from their birth (start) time is registered using ∆t as our time

sampling frequency. The combination of the event instance ID and time step allows

us to identify the appropriate spatial representation of an event at the particular

moment. For example, Fig. 3.10 (a) shows the key columns of table instances of

size-1 for our sample spatiotemporal data set (Fig. 3.1 and Table 3.1). Here, the ∆t

value was set to 10 minutes. The column denoted tab ins(e1) represents the table

instance of size-1 for event type e1. Similarly, the columns denoted by tab ins(e2),

tab ins(e3), and tab ins(e4) represent the table instances of size-1 for event types e2,

e3, and e4. The geometric shapes of instances in each of the presented time instances

are not shown in Fig. 3.10 (a) for simplicity.
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Inputs :

See Sec. 3.2.

Variables :

(1) k the co-occurrence size

(2) CRJk: the set of candidates for size-(k) STCOPs derived from size-(k − 1) refined prevalent STCOPs

(3) TOMAXk: a set of filtered instances of size-(k) spatiotemporal co-occurrences

(4) TRJk: a set of refined instances of size-(k) spatiotemporal co-occurrences

(5) POMAXk: the set of size-k filtered STCOPs derived from size-k candidate STCOPs

(6) PRJk: the set of size-k refined prevalent STCOPs derived from size-k filtered STCOPs

(7) PRfinal: the union of all refined prevalent STCOPs (patterns of all sizes). // This is the final

Jaccard-based prevalent patterns

Algorithm :

1 k=1, Ck=E, PRJk = E; PRfinal = ∅;

2 TRJk = gen loc(Ck, I,∆t);

3 while (PRJk 6= ∅) {

4 CRJ(k+1) = gen candidate coocc(PRJk);

5 TOMAX(k+1) = gen tab ins coocc filtered(CRJ(k+1), TRJk, cceth);

6 POMAX(k+1) = pre prune coocc filtered(CRJ(k+1), TOMAX(k+1), pith);

7 TRJ(k+1) = gen tab ins coocc refined(POMAX(k+1), TOMAX(k+1), cceth);

8 PRJ(k+1) = pre prune coocc refined(POMAX(k+1), TRJ(k+1), pith);

9 PRfinal = PRfinal ∪ PRJ(k+1);

10 k = k + 1;

11 }

12 return PRfinal;

Figure 3.9: FastSTCOPs-Miner Algorithm
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Figure 3.10: (a) Table Instances of size-1 and (b) Candidate Patterns for size-2

STCOPs.

Generation of candidate co-occurrence patterns (step 4). This function

uses an Apriori-based approach to generate candidates of size-(k+1) using size-k

refined prevalent STCOPs (i.e. our PRJk in Fig. 3.9). However, for k = 1 this

function uses spatiotemporal event types to generate candidates of size-2 (i.e. PRJ1 =

E from step 1 in Fig. 3.9).

Generation of filtered table instances of size-(k+1) (step 5). This func-

tion generates table instances for candidate patterns of size-(k+1). Pattern instances

for each table instance can be generated by a spatiotemporal join query. The geo-
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metric shapes of the instances at each time step are saved, as these geometric shapes

will be used for finding the cce of STCOPs of size three or more. In this function, we

calculate the cce for each pattern instance by using OMAX. Pattern instances that

have a cce below the user-specified cceth value are deleted from the table instance,

since we know from proofs in Sec. 3.2. that they also cannot satisfy cceth requirement

for J measure.

For example, Fig. 3.11 (c) shows the important columns of size-2 filtered table

instances for our sample spatiotemporal data set from Fig. 3.1 and Table 3.1. The

column denoted by tab ins(e1e2) represents the table instance of size-2 co-occurrence

of event types e1 and e2. Similarly, the other columns represent the table instance of

different event types. We also show the pattern instances that satisfy the threshold

cceth = 0.01 calculated using OMAX. Moreover, we only show the key columns of

table instances for simplicity. For example, in the table instance tab ins(e1e2) shown

in Fig. 3.11 (c), the rows i1, i6, 10:00 through i1, i6, 10:50 represent a pattern instance

that satisfies the threshold cceth = 0.01. As another example, in Fig. 3.12 (f) we

show the filtered table instances generated from candidate patterns of size k = 3.

Generation of filtered prevalent patterns size-(k+1) (step 6). This func-

tion discovers filtered size-(k+1) STCOPs by pruning candidate patterns in CRJ(k+1)

that have pi < pith.

For example, we show the pi value (See Def. 7 ) at the end of each table instance

in Fig. 3.11 (c). As seen from the Fig. 3.11 (c), the patterns SEi = {e1, e4}, and

SEj = {e2, e4} will be pruned if a value of 0.39 is set to pith. Thus, the patterns that

satisfy the pith = 0.39 are {{e1, e2}, {e1, e3}, {e2, e3}, {e3, e4}}.

As another example, we show the pi value (See Def. 7) at end of table instance

tab ins(e1e2e3) in Fig. 3.12 (f). As seen from the Fig. 3.12 (f), the pattern SEi =

{e1e2e3} is a prevalent pattern if a value of 0.39 is set to pith.
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Figure 3.11: (c) Filtered (TOMAX2) and (d) Refined (TRJ2) Table Instances of size-2.

Generation of refined table instances of size-(k+1) (step 7). This func-

tion generates table instances for filtered prevalent STCOPs of size-(k+1). Pattern

instances for each table instance can be generated by using the table instances of step

5; however, additionally this function also generates and saves the Union geometries at

each time step of the pattern instance. We calculate the cce for each pattern instance

by using J measure. Pattern instances that have cce less than the user-specified cceth

value are deleted from the table instance.

For example, in Fig. 3.11 (d) we show the refined table instances generated from

the refined prevalent patterns obtained in step 6 for a pith value of 0.39. In each of the
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Figure 3.12: (e) Candidate Patterns of size-3 and (f) Filtered (TOMAX3) and (g)

Refined (TRJ3) Table Instances of size-3.

table instances shown in Fig. 3.11 (d), we show the key columns of pattern instances

that satisfy the threshold cceth = 0.01 value calculated using the J measure. For

example, for the table instance tab ins(e1e2), the pattern instances that satisfy the

cceth = 0.01 for J are {{i1, i6}, {i2, i7}}. Note the pattern instance {i4, i8} is dropped

from the table instance tab ins(e1e2) as it does not satisfy cceth = 0.01 (see Fig. 3.11

(c) and (d) to compare).

As another example, in Fig. 3.12 (g) we show the refined table instances generated

from refined prevalent patterns obtained in step 6 for a pith = 0.39. In the table

instance tab ins(e1e2e3) shown in Fig. 3.12 (g), we show the key columns of pattern

instances that satisfy the threshold cceth value calculated using J . Please note the

pattern instance {i1, i6, i9} is dropped from the table instance tab ins(e1e2e3) as its

cce is smaller than our cceth = 0.01 (see Fig. 3.12 (f) and (g) to compare).

Generation of refined prevalent patterns size-(k+1) (step 8). This func-

tion discovers refined size-(k+1) prevalent STCOPs by pruning POMAX(k+1) that have
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pi < pith. As seen from the Fig. 3.12 (g), the pattern SEi = {e1, e2, e3} will be pruned

if pith is set to 0.39.

In step 9, we calculate the union of refined prevalent patterns. The algorithm

runs iteratively until no more STCOPs can be generated (our PRJ(k+1) is empty),

and returns all prevalent STCOPs, in step 12. Since we do not have any patterns left

that satisfies the threshold pith = 0.39 in our example data set shown in Fig. 3.1 and

Table 3.1, the algorithm would terminate at k = 3 for our running example.

3.2.4 Experimental Evaluation

In this section, we compare our FastSTCOPs-Miner algorithm against the classic

Apriori-based approach [4], [1] which we call Näıve STCOPs algorithm. In our ex-

periments, we are using three real-life data sets from the solar physics domain and

one artificial data set.

In the real-life data sets, we evaluate our algorithms using six types of evolving

solar phenomena. Our real-life data sets contain evolving instances of six differ-

ent solar event types, which were observed on 01/01/2012 (denoted Data Set A),

01/01/2012 through 01/03/2012 (denoted Data Set B), and 01/01/2012 through

01/05/2012 (denoted Data Set C). We obtained our data sets from the well-known

solar data repository called Heliophysics Event Knowledgebase (HEK) [31],[35]. The

six different solar event types in our data sets are: Active Region, Filament, Sigmoid,

Sunspot, Flare, and Emerging Flux [32].

The artificial data set (denoted Data Set D) is generated based on the works of

Huang et al. in [27]. The artificial data set generator creates a data set of event

instances with spatiotemporal features for spatial framework of size D × D. Event

types are generated with random size, speed, duration and area change parameters.
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Number of events to be generated is an input parameter to dataset generator, M . We

used artificial data set to investigate the behaviour of algorithms for a larger number

of event types. All of our data sets are available on-line to let researchers interested

in this topic reproduce our experiments, and maybe even improve on our solution.

The website for this research can be found at [36].

We investigated the FastSTCOPs-Miner algorithm and Näıve STCOPs algorithm

to accurately capture the STCOPs of the six different solar event types in the real-

life data sets, and nine different artificial event types in the artificial data set. In all

four data sets instances of different event types are represented as evolving polygons,

where each instance of these events has significantly different spatial size, duration

of life time and dynamics of its evolution. We compare and report the number of

pattern instances found, the execution time of the algorithms, and the storage space

requirements of the algorithms. For the three real-life data sets, for both algorithms,

the cceth values were set to 0.01, pith values were set to 0.1, and the sampling time

interval ∆t were set at 30 minutes leading to exactly the same set of final STCOPs.

For the artificial data set, for both algorithms, the cceth values were set to 0.01, pith

values were set to 0.05, and the sampling time interval ∆t were set at 3 minutes. All

experiments were performed using PostgreSQL 9.1.4 and PostGIS 1.5.4. We report

results highlighting memory usage efficiency and execution time of our FastSTCOPs-

Miner algorithm in comparison to the Näıve STCOPs algorithm.

3.2.5 Memory Usage Comparison

We first investigated the memory usage of the FastSTCOPs-Miner and Näıve

STCOPs algorithms for the candidate table instances generated. We report the hard-

drive memory usage of candidate table instances with all the pattern instances gen-
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Figure 3.13: Memory usage used by candidate table instances for the FastSTCOPs-

Miner and Näıve STCOPs algorithms.

erated (see bars in solid colors - black and white in Fig. 3.13), and memory usage

of candidate table instances after filtering the pattern instances that do not satisfy

threshold cceth (see bars with pattern markings in Fig. 3.13). In Fig. 3.13 bar

labelled Näıve J-BCCE (black bars) represents the memory usage of table instances

for all the pattern instances generated (i.e. the candidates), and Näıve J-ACCE (bars

with diagonal upward stripes) represents the memory usage of table instances after

pruning out the pattern instances that do not satisfy the threshold cceth set up for

our experiments (i.e. our actual patterns that are reported on the output). In other

words, J-BCCE compared to J-ACCE can be interpretted as candidates to actual

patterns ratio in classical Apriori and are indicators of measure selectivity. As we
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can see from the first two bars in the first chart shown in Fig. 3.13 Jaccard measure

was heavily used to prune the 187 MB of candidates for pattern instances to 50 MB

of actual size-2 pattern instances. This is what has happened in the Näıve STCOPs

algorithm. The next four bars in each chart shown in Fig. 3.13 show effectiveness

of our FastSTCOPs-Miner algorithm. The first of these four bars (labelled OMAX-

BCCE, in white solid color) represents candidate pattern instances that we are about

to filter using OMAX measure. As we can see this amount of memory is already

smaller than storage needed for candidates (compare Näıve J-BCCE≈ 187 MB vs.

OMAX-BCCE≈ 99.46 MB in Fig. 3.13 Data Set A). This is because of the fact that

to accomplish pruning using Jaccard measure we have to precompute and store both

Union and Intersection volumes for the co-occurring patterns, while when we use

OMAX only Intersection volumes are needed. This is what causes the reduction in

storage in the FastSTCOPs-Miner algorithm (from 187 MB in the first black/Näıve

J-BCCE bar to 99.46 MB in the first white/OMAX-BCCE bar). This benefit con-

tinues through remaining steps of our algorithm. As expected, from Fig. 3.13 we

can observe, that there is a drop in the memory usage after the pattern instances

are pruned out by applying the threshold cceth (see and compare Näıve J-BCCE in

black color with Näıve J-ACCE marked with diagonal upward stripes in Fig. 3.13).

However, generation of all J-BCCE’s is neccessary to discover actual STCOPs (i.e

our J-ACCE’s).

Also, in Fig. 3.13 OMAX-BCCE represents the memory usage of table instances

for all the pattern instances generated. OMAX-ACCE represents the memory usage

of table instances after filtering the pattern instances that do not satisfy the threshold

cceth in FastSTCOPs-Miner algorithm. This time OMAX-BCCE to OMAX-ACCE

ratio represents selectivity (i.e. pruning power) of our filter step in the FastSTCOPs-

Miner algorithm. Please note, here the cce value is calculated using OMAX, so



50

the J-based refine step is fed by the filtered out data (i.e. satisfying cceth and pith

(piOMAX)) but without missing any relevant patterns. Moreover, J-BCCE represents

the memory usage of table instances for all the pattern instances generated from

the filtered pattern instances (that is from our OMAX-ACCE bars that satisfy pith

(piOMAX)) and J-ACCE represents the memory usage of table instances after filtering

the pattern instances that do not satisfy the threshold cceth in FastSTCOPs-Miner

algorithm. Please note, here the cce value is calculated using J , to find patterns that

are relevant. Also, the total number of pattern instances for OMAX-ACCE (bars

with checkered pattern) is greater than or equal to J-BCCE (because of filtering

effect of threshold pith (piOMAX)); however, the memory usage increases for J-BCCE

because of the union geometries generated for all of the pattern instances in order

to calculate cce’s using J measure. Furthermore, from Fig. 3.13 we can observe

a decrease in the memory usage after the pattern instances are filtered by applying

threshold cceth (please compare OMAX-BCCE with OMAX-ACCE and J-BCCE with

J-ACCE, respectively). This shows the effectiveness of the anti-monotone property

of the measures J and OMAX (see Lemma 3.1 and 3.2) and the benefit of our

OMAX-based pruning strategy (see Lemma 3.4).

3.2.6 Execution Time Comparison

Next, we show the execution times of our FastSTCOPs-Miner and Näıve STCOPs

algorithms. Fig. 3.14 shows the execution time for patterns of different sizes. As

expected, our FastSTCOPs-Miner algorithm outperforms the original Näıve STCOPs

algorithm, since it uses a filter-and-refine strategy to find pattern instances that satisfy

the threshold cceth for J . The Näıve STCOPs algorithm generates computationally

expensive Union geometries for all the pattern instances (see the bars labelled as Näıve
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Figure 3.14: Camparison of execution time for the FastSTCOPs-Miner and Näıve

STCOPs.

J-BCCE in Fig. 3.13 to realize how much memory overhead this process generates for

data sets A, B, C, and D), while our FastSTCOPs-Miner algorithm generates Union

geometries for smaller data set (see the bars labelled as J-BCCE in Fig. 3.13). This

memory overhead causes the execution time of the Näıve STCOPs algorithm to be

slower in comparison to our FastSTCOPs-Miner algorithm.

3.2.7 Pattern Instances Comparison

Fig. 3.15 shows the counts of pattern instances that satisfy the threshold value

cceth. We compare the counts of pattern instances satisfying the threshold cceth

with OMAX (FastSTCOPs-Miner (OMAX)) and J (FastSTCOPs-Miner (J)) for our
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Figure 3.15: Pattern instances found (filtered with OMAX and refined with J) using

the FastSTCOPs-Miner and Näıve STCOPs.

FastSTCOPs-Miner algorithm. We also compared the counts of pattern instances of

the FastSTCOPs-Miner and Näıve STCOPs algorithms. As shown in Lemma 3.3, we

can observe in Fig. 3.15 that the selectivity of the measures OMAX and J follows the

order OMAX ≥ J . Moreover, the count of pattern instances found for the threshold

value cceth is the same for our FastSTCOPs-Miner (J) and the Näıve STCOPs (J)

algorithm in Fig. 3.15. The identical results between FastSTCOPs-Miner (J) and

Näıve STCOPs (J) provides evidence for the correctness of our implementation of

the FastSTCOPs-Miner algorithm.
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CHAPTER 4

REMAINING WORK

This chapter covers our ongoing and future work. Since we based our algorithms

on an Apriori approach we would like to develop algorithms to mine STCOPs using a

frequent pattern (FP) growth approach [37] and compare it with our existing Apriori-

based algorithms. We next plan to use the most effective of our four algorithms to

perform large-scale discovery of STCOPs from the massive SDO data and submit a

paper in the solar physics domain.

4.1 Frequent Pattern Growth

We would like to conclude our research focus with developing algorithms based on

a frequent pattern growth approach and comparing it with our current algorithms [4],

[1], [10] that uses an Apriori-based method. The frequent pattern growth approach

does not use the generate-and-test strategy of Apriori. Instead, it converts the data

set using a compact data structure called an FP-tree and it discovers frequent item-

sets directly from this structure. The frequent pattern growth approach is shown

to outperform Apriori-based approaches [37]; however, the results were presented

on shopping basket data, and no versions of the FP algorithm for spatiotemporal

data with evolving regions exist. In this research we plan to develop an algorithm

that will incorporate both filter-and-refine (introduced in chapter 3) and frequent

pattern growth approaches. We also plan to do a comparative evaluation of four al-

gorithms (i.e., STCOPs-Miner, FastSTCOPs-Miner, Näıve Frequent pattern growth,

and Filter-and-Refine Frequent pattern growth).
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4.2 Solar Physics

The expected consequence of this research is to apply our algorithms on so-

lar physics data sets to do a large-scale verification of some known theories in so-

lar physics. Furthermore, since humans are not good at identifying long patterns,

from using our algorithms we expect to discover interesting new spatiotemporal co-

occurrence patterns.

4.3 Research Plan

In this proposal we have covered our research work that had already been pub-

lished [4], [1] as well as the research that is awaiting publication [10] or still in progress.

We now conclude the proposal by presenting our plans about the remaining work to

be done, and outline the plan and timeline to accomplish these goals. This is an ap-

proximate outline for the work that needs to be done in order to finish the dissertation

and meet the research and time requirements.

1. September through November 2013: Work on developing a frequent pattern

growth approach algorithm to discover STCOPs. Implement the developed

algorithm, run experiments, generate results.

2. December 2013 and January 2014: Compare the results with our current

Apriori-based approaches. Write an article from the results generated and sub-

mit to a journal/conference.
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3. February and March 2014: Work closely with Dr. Piet Martens for large-scale

verification of some known theories in solar physics using our algorithms, and

submit an article to a journal in the solar physics domain.

4. April and May 2014: Compile Ph.D. dissertation by merging and unifying works

we already published with the ones we plan to publish by January, and expand-

ing them with the most recent (large-scale) results.

5. June 2014: Complete Ph.D. dissertation.

6. July 2014: Defend Ph.D. dissertation.
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