
IMPROVING CONTENT DELIVERY IN CELLULAR NETWORKS

by

Utkarsh Goel

A Proposal submitted in partial fulfillment
of the requirements for the degree

of

Doctor of Philosophy

in

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

March, 2016

c©COPYRIGHT

by

Utkarsh Goel

2016

All Rights Reserved

ii

ACKNOWLEDGEMENTS

First and foremost, I thank Professor Mike P. Wittie at Montana State Univer-

sity (MSU) for giving me the once-in-a-lifetime opportunity to pursue graduate

studies in the United States of America. I have been fortunate to work under his

direct supervision and to receive constant support from him in refining my research

directions and to work on challenging problems.

I extend my acknowledgement to thank Dr. Moritz Steiner, Erik Nygren, Martin

Flack, Stephen Ludin, and Dr. Ruomei Gao at Akamai Technologies for their

gracious support in data collection on Akamai’s global infrastructure, during my two

internships in the Summers of 2015 and 2016.

I would also like to thank my collaborators from various academic institutions and

industry without whose support much of my research may not have completed in

time. The list of my collaborators include Ajay Kumar Miyyapuram at Cerner Corp.,

Kanika Shah at Yahoo!, Eben Howard at SEGA Games, Anish Babu Bharata at

P2 Energy Solutions, Srinivas Prasad Gumdelli at IBM, Dr. KC Claffy at CAIDA,

Dr. Andrew Lee at MintyBit, Dr. Lara Deek at Netflix, Professor Clemente Izureita,

Professor Brendan Mumey, Professor Qing Yang, Professor Upulee Kanewala, and

Professor Brittany T. Fasy at MSU.

Last, but not the least, I thank my friends Clint Cooper, Samuel Micka, Ahmad

Yazdan Javaid, Syed Shabih Hasan, and Mohammed Abdul Qadeer for their

continuous motivation and encouragement throughout my graduate school years.

iii

Funding Acknowledgment

I thank National Science Foundation (NSF) to offer their generous financial support

for working on several research problems through the grants NSF CNS-1527097 and

NSF CNS-1555591. I also thank Western Transportation Institute (WTI) at MSU

for partially supporting my graduate studies through NWP-OTIIS project funds.

Last, but not least, I thank several networking conferences, such as USENIX NSDI

2013, ACM SIGCOMM IMC 2013, ACM SIGCOMM IMC 2014, ACM CoNEXT

2014, IEEE ICCCN 2015, and academic institutions, such as University of Utah and

Montana State University (MSU), for student travel grants on several occasions to

attend conferences and meet some of the most influential researchers in the field of

Computer Networking.

iv

TABLE OF CONTENTS

1. INTRODUCTION ..1

Motivation and Overview ..1
Thesis Statement ..5
Proposal Organization...6
Contributions ...9

2. MITATE - TESTBED FOR APPLICATION PROTOTYPING IN
MOBILE NETWORKS... 14

Abstract ... 14
Introduction ... 14
Related Work ... 16
MITATE .. 17

Architecture and Traffic Experiments ... 18
Programmable Network Traffic Experiment Configuration.......................... 18

Application Traffic Trace Experiments .. 19
Programmable Application Traffic Experiments 21

Deployment Incentives ... 22
Security and Privacy ... 24

Protecting User Privacy ... 24
Protecting User Devices ... 25
Protecting non-MITATE Resources... 25

MITATE Application Traffic Prototyping Capability 26
Effect of Packet Size on Message Delay ... 29
Effect of Traffic Shaping .. 29
Measurement Based CDN Selection .. 30

Discussion and Future Work .. 31

3. SURVEY ON MOBILE NETWORK MEASUREMENT TOOLS 33

Abstract ... 33
Introduction ... 33
Goals of end-to-end mobile

network measurement... 35
Developers’ View of Network Performance .. 35
Researchers’ View of Network Performance ... 37
Network Operators’ View of Network Performance 38

v

TABLE OF CONTENTS - CONTINUED

Regulators’ View of Network Performance... 39

Shared Challenges ... 39
Network Testbeds ... 40

Uncurated Network Testbeds ... 41
MITATE... 41
Seattle .. 44
Emerging Systems ... 46

Curated Network Testbeds... 46
PhoneLab ... 46
SciWiNet .. 48
LiveLabs ... 50

Measurement Tools ... 51
Standalone Measurement Tools .. 52

FCC Speed Test .. 52
WindRider .. 54
MySpeedTest... 56
Akamai Mobitest ... 58
RILAnalyzer.. 60

Libraries for Mobile Network Measurement ... 61
MobiPerf... 61
ALICE.. 64

Measurement Services ... 66
Network Monitoring .. 66

Ookla SpeedTest Mobile... 66
RadioOpt Traffic Monitor... 69
OpenSignal ... 71
Vodafone NetPerform... 74
Emerging Applications ... 77

Network Discovery and Diagnosis ... 78
NDT (Mobile Client) ... 78
Netalyzr.. 79
PortoLan... 82

Conclusions .. 83

4. ROLE OF DNS IN CONTENT SERVER SELECTION 88

Abstract ... 88
Introduction ... 88
DNS-based Load Balancing.. 91

vi

TABLE OF CONTENTS - CONTINUED

Experimental Setup ... 91

Impact of CDN Choice on Static Content Delivery 93
Impact of DNS Choice on Static Content Delivery..................................... 95
Overall Performance Variation of CDN servers .. 97
Causes of CDN Performance Variation.. 98
Unreachable CDN Servers .. 100

DNS-Proxy (dp).. 102
Client-assisted Server Selection... 103
Probing Metric.. 106

Results ... 107
Identifying DNSs with Fastest CDN Servers .. 108
Faster Web through DNS-Proxy ... 108

Discussion .. 111
Related Work ... 113

Reducing DNS Lookup Time.. 113
DNS Server Selection from End-devices .. 114
CDN Load-balancing Techniques for Server Selection............................... 116
Relative Network Positioning for Server Selection 116

Conclusions .. 117

5. DETECTING CELLULAR MIDDLEBOXES USING PASSIVE
MEASUREMENT TECHNIQUES... 118

Abstract ... 118
Introduction ... 118
Related Work ... 121
Data Collection Methodology... 121
Detecting CTPs from Client and Server-side Latency 122
Detecting CTPs from Packet Loss on the Server-side................................... 129
Detecting CTPs from TCP SYN Characteristics ... 132
Discussion .. 133
Conclusions .. 134

6. A CASE FOR FASTER MOBILE WEB IN CELLULAR IPV6
NETWORKS.. 136

Abstract ... 136
Introduction ... 136
Overview of IPv6 Deployment in Cellular Networks..................................... 142

vii

TABLE OF CONTENTS - CONTINUED

Data Collection Methodology... 145

Round Trip Latency over IPv6 and IPv4 Cellular Networks 150
DNS Lookup Time for IPv6 and IPv4 Clients ... 153
Page Load Time over IPv6 and

IPv4 Networks ... 156
DNS Lookups in T-Mobile’s

IPv6-only Network ... 160
ONETRIP’s Approach... 162
Speeding DNS Lookups with ONETRIP ... 165
Discussion on ONETRIP’s Approach .. 167

Related Work ... 169
Conclusions .. 170

7. THE PROPOSAL... 171

1. HTTP/2 Performance in Cellular Networks... 171
2. Impact of Web Proxies on Video Streaming Quality in Cellular Networks173
3. IP-to-Location Services for Cellular Networks 174

8. CONCLUSIONS ... 180

9. RESEARCH TIMELINE... 181

REFERENCES CITED.. 182

viii

TABLE OF CONTENTS - CONTINUED

ix

LIST OF TABLES

Table Page

3.1 Experimentation flexibility matrix of end-to-end measurement
testbeds, tools, and services. .. 86

3.2 Experimentation flexibility matrix of emerging end-to-end
measurement services... 87

4.1 Geographic distribution of Dasu nodes.. 92

4.2 Faulty resolutions for Akamai and Google CDN servers. 101

4.3 Details of webpages loaded for comparison. ... 109

5.1 Comparison of results from our passive techniques with pre-
vious work [322] that uses active experiments, for cellular
networks in the US. .. 119

5.2 Distribution of TCP latency estimated by clients (Client RTT)
and servers (Server RTT) for IPv4-based cellular networks in
North America. .. 123

5.3 Distribution of TCP latency estimated by clients (Client RTT)
and servers (Server RTT) for cellular networks in Asia. 125

5.4 Distribution of TCP latency estimated by clients (Client RTT)
and servers (Server RTT) for cellular networks in the Europe. 126

5.5 Distribution of TCP latency estimated by clients (Client RTT)
and servers (Server RTT) for cellular networks in Oceania and
South America. .. 127

5.6 Distribution of HTTP latency estimated by clients (Client
RTT) and servers (Server RTT) for T-Mobile across different
domains & locations. .. 128

5.7 Distribution of TCP latency estimated by clients (Client RTT)
and servers (Server RTT) for IPv6 cellular networks in North
America. ... 129

6.1 Selected mobile device models with highest number of webpage
load requests in different cellular networks. ... 157

6.2 Details of IPv4-only webpages loaded over IPv4 networks of
different cellular carriers. ... 158

x

9.1 Research Timeline. .. 181

xi

LIST OF FIGURES

Figure Page

1.1 Proposal overview with individual projects categorized with re-
spect to Internet measurement techniques, Protocol behavior,
Protocol modifications, improving application performance,
and by proposal chapter...6

2.1 MITATE architecture and steps of a network traffic experiment. 17

2.2 MITATE XML configuration file. ... 20

2.3 DNS query in MITATE.. 21

2.4 Message delay vs. message size at 10 AM on CSP 1 to a CA datacenter. . 27

2.5 Message delay vs. message size at 2 PM on CSP 1 to a CA datacenter.... 27

2.6 Message delay vs. message size at 10 AM on CSP 2 to a CA datacenter. . 27

2.7 Message delay vs. message size at 10 AM on CSP 2 to a VA datacenter. . 27

2.8 Per packet throughput of BitTorrent and random payloads on CSP 1...... 28

2.9 Packet loss of SIP and random payloads vs. flow data rate on CSP 1. 28

2.10 Delay of different data rate flows vs. on CSP 1 and CSP 2. 28

2.11 Round trip time and transfer time of 3 MB image from three CDNs. 28

4.1 Latency to Akamai servers resolved by LDNS.. 94

4.2 Latency to Akamai servers resolved by GDNS. 94

4.3 Latency to Akamai servers resolved by ODNS. 94

4.4 Latency to Akamai servers resolved by L3DNS. 94

4.5 Latency to Google servers resolved by LDNS... 94

4.6 Latency to Google servers resolved by GDNS. 94

4.7 Latency to Google servers resolved by ODNS. 94

4.8 Latency to Google servers resolved by L3DNS. 94

4.9 Download time for Akamai servers resolved by LDNS. 94

4.10 Download time for Akamai servers resolved by GDNS............................ 94

xii

LIST OF FIGURES - CONTINUED

Figure Page

4.11 Download time for Akamai servers resolved by ODNS............................ 94

4.12 Download time for Akamai servers resolved by L3DNS........................... 94

4.13 Download time for Google servers resolved by LDNS. 94

4.14 Download time for Google servers resolved by GDNS............................. 94

4.15 Download time for Google servers resolved by ODNS............................. 94

4.16 Download time for Google servers resolved by L3DNS............................ 94

4.17 Min. end-to-end latency from Akamai CDNs... 96

4.18 Avg. end-to-end latency from Akamai CDNs... 96

4.19 Min. Image download time from Akamai CDNs 96

4.20 Avg. Image download time from Akamai CDNs 96

4.21 Min. end-to-end latency for Google CDNs. ... 96

4.22 Avg. end-to-end latency for Google CDNs .. 96

4.23 Min. Image download time for Google CDNs .. 96

4.24 Avg. Image download time for Google CDNs .. 96

4.25 Latency variation with Akamai CDNs... 98

4.26 Download time variation with Akamai CDNs. 98

4.27 Latency variation for Akamai CDNs (%)... 98

4.28 Download time variation for Akamai CDNs (%). 98

4.29 Latency variation with Google CDNs.. 99

4.30 Download time variation with Google CDNs. .. 99

4.31 Latency variation for Google CDNs (%).. 99

4.32 Download time variation for Google CDNs (%). 99

4.33 Extra latency to Akamai CDNs. ... 99

xiii

LIST OF FIGURES - CONTINUED

Figure Page

4.34 Extra latency to Google CDNs. .. 99

4.35 Extra download time to Akamai CDNs. .. 99

4.36 Extra download time to Google CDNs. ... 99

4.37 dp’s resolution mechanism resolution for non-cached domains. 102

4.38 dp’s resolution mechanism for cached domains..................................... 102

4.39 TCP OPEN vs HTTP HEAD for Akamai CDNs at different
probing intervals.. 105

4.40 TCP OPEN vs HTTP HEAD for Google CDNs at different
probing intervals.. 105

4.41 Frequency of different DNS servers resolving to fastest CDN
servers, as identified by dp. .. 105

4.42 Comparion of Webpage load times using LDNS and DNS-Proxywith
warm-cache. .. 109

4.43 Comparison of Web object load times using LDNS and
DNS-Proxy with warm-cache.. 112

4.44 Comparison of Web object load times using LDNS and
DNS-Proxy with cold-cache. ... 112

4.45 Comparison of object load times using CDN servers resolved
by dp and Namehelp.. 112

5.1 Distribution of packet loss over HTTP and HTTPS sessions
for cellular networks in different countries. For visibility, I
reduced the number of symbols on each line. 130

6.1 T-Mobile’s IPv6 network.. 139

6.2 Verizon’s IPv6 network. ... 139

6.3 AT&T and Sprint’s IPv6 net. ... 139

6.4 Sequence of Akamai’s RUM interactions with client’s browser. 143

xiv

LIST OF FIGURES - CONTINUED

Figure Page

6.5 Round trip latency between Akamai CDN servers and cellular
TCP Split proxies.. 143

6.6 RTT distribution for T-Mobile clients. .. 148

6.7 RTT distribution for Verizon clients. .. 148

6.8 RTT distribution for AT&T clients... 148

6.9 RTT distribution for Sprint clients. .. 148

6.10 24-hour RTT distribution for T-Mobile. .. 148

6.11 24-hour RTT distribution for Verizon.. 148

6.12 24-hour RTT distribution for AT&T... 148

6.13 24-hour RTT distribution for Sprint. .. 148

6.14 DNS Lookup time for T-Mobile clients.. 152

6.15 DNS Lookup time for Verizon clients. ... 152

6.16 DNS Lookup time for AT&T clients. .. 152

6.17 DNS Lookup time for Sprint clients. ... 152

6.18 Dual-Stack webpage PLT for T-Mobile. .. 154

6.19 Dual-Stack webpage PLT for Verizon. ... 154

6.20 Dual-Stack webpage PLT for AT&T. .. 154

6.21 Dual-Stack webpage PLT for Sprint.. 154

6.22 IPv4 webpage PLT for T-Mobile. ... 157

6.23 IPv4 webpage PLT for Verizon. .. 157

6.24 IPv4 webpage PLT for AT&T. ... 157

6.25 IPv4 webpage PLT for Sprint. .. 157

6.26 Sequence of how IPv4-only domains are resolved for IPv6-
clients in IPv6-only networks.. 161

xv

6.27 Reduction in DNS Lookup time when using OneTrip on DNS
Authority. ... 163

xvi

LIST OF FIGURES - CONTINUED

Figure Page

xvii

ABSTRACT

The mobile ecosystem is growing faster than we have ever witnessed before. New
technologies such as Internet of Things and Robots, collaborative gaming, interactive
Artificial Intelligence systems, distributed computing, and remote equipment opera-
tions are changing the Internet originally envisioned several decades ago. The need
to reliably exchange time critical information between automated machine or user
devices has pushed our research community to expand the capabilities of the Internet.
However, in spite of several years of research, the quest for (even) better performance
remains. In this proposal, I argue for a shift in our current research directions from
improving network layer technologies to improving application layer technologies.
My conjecture in my PhD is that improvements to mobile Web performance can
be realized if we move the network layer intelligence into the application layer, but
without duplicating the core network functionality. To support this conjecture, I
present several techniques that bring intelligence into application layer protocols,
with the goal of (even) faster mobile Web. More specifically, my prior work in
Internet measurement, customization of application layer protocols, and network
infrastructure upgrades, motivates me to explore the further techniques to improve the
capabilities of the Internet. I believe well-thought research directions for improving
mobile Web performance will set another milestone in the growth and sustainability
of the Internet to support new communication patterns for years to come.

1

INTRODUCTION

Motivation and Overview

The current mobile ecosystem is in the midst of an rapid growth. Internet

Service Providers (ISPs) in developed countries inspire people to join the growing

mobile population by introducing innovative technologies that offer higher quality of

experience to their users than ever before. While in developing and under-developed

countries, organizations such as Internet.org, Google, and others, encourage the still-

unconnected population of the world to establish their online presence by offering free

mobile data services [46,48,89]. But, as the Internet scales with more and more users

joining the Internet, ISPs strive to accommodate all the users, and at the same time

face challenges to ensure high quality of user experience. The networking research

community has developed solutions to address challenging problems that ISPs face.

For example, network infrastructure upgrades from IPv4 to IPv6 enable ISPs to

accommodate far more connected devices than IPv4 could ever allow. However,

despite several years of research to improve the user experience, user dissatisfaction

with Internet speeds still remains a major challenge to be addressed.

Interactive applications that offer rich experience with Web browsing, video

streaming, collaborative gaming, require low latency, high bandwidth, or both to

provide high quality of user satisfaction. Such applications currently suffer from high

Internet delays and fluctuations in the network connectivity. As a result, such appli-

cations experience constantly dropping adoption rates among users [75,141,165,261].

Internet was not originally designed to support such low-latency and high-bandwidth

demanding applications and therefore such applications often fail to perform reliably

in networks with poor Internet connectivity. For example, ultra high definition 4K

2

and 3D on-demand videos, live video chat, cannot provide high quality of experience

to their users in high latency and lossy environments, such as Wi-Fi and cellular radio.

As a result, industry leaders and researchers at academic institutions have together

developed numerous techniques to reduce the end-to-end latency and increase network

bandwidth between users and servers.

Techniques to bring application content closer to users has shown promising

results for reducing end-to-end latency [47,215,223], as such techniques allow

Content Providers (CPs) to host their application data onto datacenters close to

users, and in some cases, inside the user’s home ISP. Such techniques are effective

in reducing the latency as the content requested by the user is never fetched from

outside the network, thus eliminating potential time spent on ISP-to-ISP peering and

congested links. Other techniques such as selecting a closest server to a given user has

further reduced end-to-end latency over the years [97,151,161,272]. This is because

such techniques allow Content Delivery Networks (CDNs) to load balance the load on

their geographically distributed servers and redirect the user from already over loaded

servers [143, 224]. Numerous other techniques allow ISPs, Web browsers, CDNs to

efficiently cache the most popular content requested by their users [87,117,148,322].

Such techniques are effective in reducing end-to-end latency as the content could be

fetched from client’s browser, from an in-network cache deployed by user’s ISP, or

from a CDN server hosted inside globally distributed datacenters.

Research community has also shown great interest in reducing the number of

round trips required during a data transfer, as reducing round trips refers to reducing

the overall latency to download an image, webpage, or a large movie file. TCP

Fast Open is one of such techniques developed by Google that allows clients to send

application data during the time of TCP connection establishement. [255]. Another

technique from Google that also reduces round trip is called Quick UDP Internet

3

Communications (QUIC) [171]. QUIC reduces round trips by eliminating the need

for TCP connection establishment if the two client and server has already connected

in the past. Being inspired by these techniques, I developed OneTrip that reduces

the number of round trips required in DNS resolutions [149]. My approach to reduce

round trips is based on understanding how DNS servers deployed by ISPs behave when

performing a lookup and thus adapt functionality of DNS Authorities accordingly, for

faster DNS lookups (more details in Chapter 7).

Previous studies have shown that modifications to application layer are also

effective in achieving in reducing end-to-end latency and improving the user experi-

ence. Techniques to compress application data, either by using popular compression

encoding (such as WebP, GZIP, VP9, etc.), or by using compression proxies deployed

worldwide by Google and Opera Software [51, 241]. Other techniques developed to

reduce end-to-end latency from the application layer includes sending redundant DNS

request and optimizing webpage structures, with the goal of faster webpage load

time [306,309].

As the above mentioned techniques improve quality of experience of experience

for users and motivate them join the Internet userbase, ISPs often struggle to

accommodate all of their users at the same time. As the Internet scales, the current

Internet Protocol (IPv4) does not provide enough IP addresses that can be uniquely

assigned to each user [113]. Therefore, new IP protocols (IPv6) have emerged and

provided about 340 trillion trillion trillion IP addresses, a large enough IP address

space to accommodate the current rate of growing users for hundreds of years to

come [9, 160]. However, ISPs or organizations that still hold a significant number

of unused IPv4 addresses show reluctance to transition to IPv6 because they do not

anticipate a newar-future depletion of their IPv4 address space. My recent study on

measuring the performance of IPv6 in cellular networks shows that IPv6 outperforms

4

legacy IPv4 in mobile Web [149,273]. Thus, in my study I offer CPs and CDNs

another reason to switch to IPv6 for improving the delivery of their application data.

Finally, large scale measurement of above mentioned techniques remains a major

concern for reliable application performance. With this goal, the research and

developer community has developed several measurement tools and services that allow

measurement of application performance in production cellular networks [150]. Such

tools, testbeds, and services allow for careful analysis of application traffic in different

network environments.

Even with such a diverse collection of techniques to reduce end-to-end latency,

the quest for even better performance still remains among researchers and application

developers, as some of these techniques do not yet effectively utilize the capabilities

of application layer protocols. Therefore, I argue for a shift in our current research

directions from improving network layer technologies to improving application layer

technologies. My conjecture in my PhD is that improvements to mobile Web

performance can be realized simply by moving the network layer intelligence into

the application layer, but without duplicating the core network functionality. For

example, while routing is not a function of the application layer, but route choice

by end hosts could improve application performance, akin to server selection open to

users in many Web and online gaming applications [151,165,199,271,326].

5

Thesis Statement

The mobile ecosystem will continue to expand as the quest for innovative and

interactive applications grows in the coming years. In order for these applications to

sustain for a long time, current content delivery protocols need to be thoroughly

evaluated under different networking environments. However, such protocols are

currently tested in only in-lab or on a limited scale, which often results in poor

user experience in untested scenarios. Mobile Web performance can be improved by

careful measurement of different applications and network layer technologies, followed

by suitable customizations in the content delivery protocols.

6

Proposal Organization

This proposal is organized into eight chapters that expose different aspects of

Internet infrastructure and protocols to improve Web performance in cellular and

wired networks. Figure 1.1 summarizes my previous and planned contributions in the

areas of developing Internet measurement techniques, understanding Internet protocol

behavior in different networks, customizing protocol, and improving application

performance.

Survey	
 on	
 Testbeds
[IEEE	
 COMSOC	
 2015]

Application	

Improvements

Protocol
Modifications

Measurement
Techniques

Detecting	
 Cellular	
 Middleboxes
[PAM	
 2016]

Faster	
 Web	
 with	
 Cellular	
 IPv6	
 Networks	
 and	
 Reducing	
 Round	
 Trips	
 in	
 IPv6	
 Networks
[in	
 Submission	
 to	
 Mobicom	
 2016]

“DNS-­‐Proxy”	
 for	
 Client-­‐assisted	
 CDN	
 Server	
 Selection
[ICCCN	
 2015]

Develop	
 IP-­‐to-­‐Network	
 Location	
 for	
 Cellular	
 Networks
[Proposed]

Measure	
 HTTP/2	
 Performance	

[Proposed]

Chapter	
 2

Chapter	
 3

Chapter	
 4

Chapter	
 5

Chapter	
 6

Measure	
 Impact	
 of	
 Split	
 TCP	
 on	
 Video	
 Delivery
[Proposed]Chapter	
 7

Protocol	

Behavior

MITATE:	
 End-­‐to-­‐end	
 Mobile	
 Network	
 Measurement	
 Testbed
[MOBIQUITOUS	
 2013]

Figure 1.1: Proposal overview with individual projects categorized with respect
to Internet measurement techniques, Protocol behavior, Protocol modifications,
improving application performance, and by proposal chapter.

7

Chapter 2 presents my work on developing a mobile network measurement

platform (known as MITATE) that allows application developers, researchers, and

network operators to prototype their application traffic in production cellular

networks. In my experience with MITATE, I identified that cellular ISPs in the US

employ traffic shaping techniques to throttle the throughput of bandwidth-oriented

network applications, such as Skype and BitTorrent.

Chapter 3 presents my work on surveying different mobile network measurement

developed over years by developers and researchers from industries, academic

institutions, and network operators. I also provide a comparative analysis of different

measurement tools suggesting what tool might be more useful in measuring the

performance of a given application.

Chapter 4 presents my work on improving CDN server selection techniques by

developing intelligence into the DNS protocol. I developed a tool called DNS-proxy

that allows clients to select fastest available servers based on the latency estimated

by clients. I show that DNS-Proxy is effective in reducing the webpage load time,

compared to using other techniques for server selection.

Chapter 5 presents my work on detecting cellular Web proxies using passive

measurement techniques. I used Akamai’s global infrastructure for content delivery

to detect connection terminating proxies deployed by major cellular ISPs worldwide. I

discovered that when Web proxies are present in a network, the CDN servers estimate

low latency, whereas cellular clients estimate tens of milliseconds of latency. This

work allows server operators to detect Web proxies using server logs and optimize

TCP stack on their servers.

Chapter 6 presents my work on measuring the performance of IPv6 networks

deployed by cellular networks in the US. My study shows that IPv6 networks

outperforms the performance of legacy IPv4 networks. I recommend Content

8

Providers and CDNs to safely transition to IPv6 and host mobile content on IPv6-

enabled servers for faster content delivery. During this study, I also developed

OneTrip, a technique to reduce the number of round trips required during DNS

lookup.

In Chapter 7, I propose three challenges related to improving mobile Web

performance in cellular networks. First project aims to measure the performance

of HTTP/2 protocol in cellular networks. The second project aims to measure the

impact of connection splitting proxies on video streaming in cellular networks. And

the third project aims to develop more accurate IP-to-network location services for

CDNs and CPs to use. I then discuss potential technique that I seek to employ in

order to address these challenges.

In Chapter 9, I draw conclusions from my prior research findings and expected

impact of my proposed research towards improving mobile Web performance. And

finally, in Chapter 10, I provide my anticipated timeline to complete the proposed

work.

9

Contributions

The projects presented as part of this proposal make significant contribution

towards improving Web performance in general by measuring the performance of

content-delivery protocols and bringing intelligence into the application layer. Below

I list individual contributions of my work categorized within my larger vision

of developing end-to-end network measurement techniques, understanding Internet

protocol behavior in different cellular and wired networks, customizing application

layer protocol, and improving the application performance.

• Application Improvements In this category, I classify my work based on

improvements in user experience related to Web performance on mobile and

wired networks.

– My work for developing DNS-Proxy shows significant improvements in

webpage load time for five major content delivery networks, from different

locations in the US [151].

– My work towards developing PCP technique allows CDNs and application

developers to more carefully measure the latency between Internet end-

points [199].

– My work towards developing OneTrip allows content providers and CDNs

to eliminate round trips in DNS lookup and thereby save hundreds of

milliseconds on page load time [149].

– For the project related to developing IP-to-network location tool, I

propose to show that network locations of cellular IP addresses could be

more reliably identified by using cellular middleboxes as an approximate

locations, when measured from widely distributed CDN servers.

10

• End-to-end Network Measurement techniques In this category, I classify

my work based on new measurement techniques I developed.

– I developed an end-to-end mobile network measurement testbed called

MITATE (Mobile Internet Testbed for Application Traffic Experimenta-

tion) that allows prototyping of application traffic in cellular networks – a

feature not currently available in any other existing cellular testbed [147].

– I also conducted a survey on various mobile network measurement testbeds,

tools, and services developed by researchers at industry and academia [150].

I brought awareness among different developer and research communities

about different tools that they could use to accurately measure the

performance of their application.

– I developed a technique to measure the performance of different CDN

servers returned in DNS responses from public, Open, and local DNS

servers [151].

– I developed a technique to estimate the end-to-end latency between any

two arbitrary hosts on the Internet, by traversing latency to different CDN

servers deployed by Akamai, Google, and Level 3 [199].

– I developed three measurement techniques that server operators could use

to passively detect the presence of TCP connection splitting proxies in

the ISP networks [148]. These techniques are based on estimating client

and server side latencies, measuring packet loss on servers, and identifying

characteristics of TCP SYN packets received by servers.

– I extended Akamai’s Real user Monitoring System [41] to accurately

extract Web performance metrics for mobile content hosted on IPv6-

enabled content servers in US cellular networks [149].

11

– For the project related to HTTP/2 performance, I propose to develop

techniques to measure the performance of HTTP/2 protocol for cellular

networks. My goal here would be to ensure that the measurement

technique carefully isolates the possible interference between IP protocols

and HTTP protocols.

– For the project related to video streaming in cellular networks, I propose

to develop techniques to first detect the presence of TCP terminating

proxies for video content and then develop techniques to carefully measure

the impact of such proxies on the quality of video streaming.

– Finally, for the project related to developing IP-to-network location tool,

I propose to develop techniques to estimate network locations of cellular

clients (both IPv4 and IPv6), by using network distance between CDN

servers and cellular middleboxes as an approximate of the cellular clients’

locations.

.

• Understanding Protocol Behavior In this category, I classify my work based

on using measurement techniques to detect the behavior of Application layer

protocols and network middleboxes.

– Using MITATE, I identified that cellular carriers in the US employ traffic

differentiation techniques to throttle the throughput of bandwidth-hungry

applications, such as Skype and BitTorrent [147].

– I identified that DNS servers deployed by Google, Open DNS, and ISPs

do not return same CDN server addresses for any given client

12

– I identified that middleboxes deployed by several cellular ISPs worldwide

split TCP connections of HTTP traffic, likely with the goal of faster end-to-

end connectivity [148]. I also identified that cellular carriers in France split

both HTTP and HTTPS connections. I then identified that connection

that are split by cellular middleboxes experience lower packet loss than

connections not split by middleboxes. Finally, I identified that the TCP

SYN characteristics of splitted connections are very similar, in terms of

TCP timestamp, Maximum Segment Size, and Initial congestion window

sizes.

– In a measurement study to evaluate the performance of IPv6 networks

deployed by cellular carriers in the US, I identified that IPv6 is faster than

the legacy IPv4 protocol being used for the last several decades in mobile

Web [149].

– For the project related to HTTP/2 performance, I propose to identify

performance of HTTP/2 protocol and investigate whether a transition to

HTTP/2 improves Web performance for all types of websites.

– For the project related to video streaming in cellular networks, I propose

to measure the impact of Web proxies on the quality of video streaming, in

terms of video start up delay, number of buffering events, encoded bitrate,

etc. across different cellular networks worldwide.

– Finally, for the project related to developing IP-to-network location tool,

I propose to investigate on the stability of the results of my proposed

technique.

• Protocol Modifications In this category, I classify my work based on

modifications I introduced in different application protocols.

13

– My contribution towards developing MITATE allows developers and

researchers to prototype their application traffic on production cellular

networks [147]. Further, using MITATE, legacy application protocols can

be modified and evaluated under different networking scenarios.

– I developed DNS-proxy to modify the legacy behavior of the DNS protocol

to allow client-assisted CDN server selection, with the goal of improved

Web performance [151].

– I developed OneTrip that reduces the number of round trips required

during DNS lookup in IPv6-only cellular networks [149].

– For the project related to developing IP-to-network location tool, I

propose to argue for a shift in current techniques to estimate geographic

or network locations of cellular IP addresses.

14

MITATE - TESTBED FOR APPLICATION PROTOTYPING IN MOBILE

NETWORKS

Abstract

This chapter introduces a Mobile Internet Testbed for Application Traffic Ex-

perimentation (MITATE). MITATE is the first programmable testbed to support the

prototyping of application communications between mobiles and cloud datacenters.

I describe novel solutions to device security and resource sharing behind MITATE.

Finally, I show how MITATE can answer network performance questions crucial to

mobile application design.

Introduction

Innovative mobile applications, such as multiplayer games and augmented

reality, will require low message delay to provide a high quality of user expe-

rience (QoE) [99, 145]. Low message delay, in turn, depends on low network

latency and high available bandwidth between mobile devices and cloud datacenters,

on which application back-end logic is deployed. Unfortunately, mobile network

performance can change rapidly [318]. Worse, traffic shaping mechanisms in cellular

networks, such as as cap-and-throttle, traffic redundancy elimination, and deep packet

inspection (DPI), can delay application messages without being reflected in standard

metrics of network performance [177,191,333].

If innovation in the mobile space is to achieve broad adoption, new applications

must deliver a high QoE across a range of network conditions. In other words,

application communication protocols must be smart enough to adapt to changing

network performance to keep message delay low. Such adaptations might include

15

changing packet size, or moving between server endpoints to deliver best traffic

performance for a given client [318,319].

To design and validate adaptive communication protocols developers need to

prototype their implementations in production networks. The research community

has produced several testbeds capable of application prototyping in the wired

Internet [8, 10–12, 58, 74, 100, 102, 122, 194, 275, 284, 290]. To date, however, cellular

network measurement platforms are not programmable in that they do not provide an

foreign code execution environment [13,66,146,167,204,320]. Instead applications are

evaluated in network simulators configured to reflect measurements of network per-

formance [318]. While measurement-based simulation allows repeatable experiments,

it misses the dynamic effects of competing traffic in cellular schedulers and of traffic

shaping mechanisms.

The technical problem I address in this chapter is a lack of a programmable

testbed for mobile application prototyping in production cellular networks. I have

identified two challenges to building such a testbed. First, the personal nature

of mobile devices creates user concerns over privacy, accountability for actions of

foreign code being prototyped, and abuse of limited data plan and battery resources.

Striking a balance between a flexible application prototyping environment and the safe

execution of foreign code has been a difficult problem even in the more permissive

wired environment [275,290]. Second, because mobile battery and data plan resources

are limited, testbed participants need adequate incentives to share them. Difficulty

in enlisting mobile users has limited measurement studies to small samples [146], high

cost of testbeds based on dedicated hardware [71], and collection of only high level

network performance metrics [204].

In this chapter I describe MITATE – a Mobile Internet Testbed for Application

Traffic Experimentation made possible by novel solutions to the problems of security

16

and mobile resource sharing. MITATE is unique in that it allows programmable

application traffic experiments between mobile hosts and back-end server infras-

tructure. MITATE provides strong client security by separating application code

execution from traffic generation. MITATE also provides incentives and protections

for mobile resource sharing through tit-for-tat mechanisms. MITATE’s specialized

traffic experiments can help developers answer questions crucial to mobile application

design such as: “What is the largest game state update message that can be

reliably delivered under 100 ms?,” “Does my application traffic need to contend with

traffic shaping mechanisms?,” or “Which CDN provides fastest downloads through a

particular mobile service provider’s network peering points?”

The remainder of this chapter is organized as follows. 6 covers related research.

In 2 I describe MITATE’s architecture. 6 shows MITATE application prototyping

capabilities. Finally, I conclude and present directions for future work in 5.

Related Work

The research community has produced several testbeds capable of application

prototyping in the wired Internet [8, 10–12,58,74,100,102,122,194,275,284,290]. To

date, however, cellular network measurement platforms are not programmable in that

they do not provide a foreign code execution environment [13, 66, 146, 167, 204, 320].

The result is a functionality gap: new applications are either evaluated on a small

number of mobile devices, or in network simulators [144, 318]. While small scale

studies capture real application performance, they miss variation across geographic

areas, carriers, and devices. On the other hand, simulation studies configured to

reflect aggregate measures of network performance miss the dynamic effects of traffic

shaping and cellular schedulers [177,191,318,333].

17

Measurement
Servers

DB Server

Cell Tower

WiFi AP

Public Internet

A

B

2. Query for new experiments

3. Experiment traffic
4. Traffic
metrics

Web Server

5. Exp. result data

1. Exp. configuration

Public Cloud
Instances

M-Lab Servers

Figure 2.1: MITATE architecture and steps of a network traffic experiment.

Existing testbeds share some features with MITATE, such as criteria-based

filtering of testbed devices [146], (limited) evaluation of application layer mechanisms

such as HTTP and DNS [167], and an M-Lab1 back-end [204]. Closest to our approach

is Dasu, which provides a custom execution environment within an extension to a PC

BitTorrent client [275]. SatelliteLab is also similar to MITATE in that prototyped

application logic is not executed on edge devices [122].

One mobile testbed with programmable features is PhoneLab, which provides

200 participants with mobile phones and discounted data plans [71]. In exchange,

participants agree to network experiments executed on their phones. However,

PhoneLab relies on a custom OS, which limits its deployment to dedicated hardware,

since installing an OS is a significant barrier to entry for most users [122].

MITATE

MITATE goes beyond current work and allows application prototyping on mobile

devices in production cellular networks. MITATE offers the flexibility of Dasu and

SatelliteLab, but without the security vulnerabilities of mobile code [122, 275]. To

1http://measurementlab.org

http://measurementlab.org

18

achieve wider adoption and easier access than the dedicated hardware model of

PhoneLab, I adapt proven resource sharing incentives [71, 108]. In this section, I

describe MITATE’s architecture, application prototyping capabilities, and address

the challenges of security and resource sharing on mobile devices.

Architecture and Traffic Experiments

To register a device with MITATE, a user downloads our mobile application and

starts it as a background service with her login credentials, obtained by creating

a MITATE account. Once her device is registered, a user can conduct traffic

experiments, referring to 2.1, as follows: In Step 1, a user creates an experiment

by uploading a configuration file, described in 2, via the Web interface. In Step 2,

MITATE devices query the database for new experiments, whose criteria they meet.

To reduce resource contention, as in SatelliteLab, I allow only one experiment at

a time on a device [122]. If device A, for example, meets the geographic location

and network type criteria of an experiment, A will begin, in Step 3, to transfer data

defined by the experiment to the measurement servers. Experiment transfer traffic is

timed at each endpoint (mobiles and measurement servers) and network performance

metrics, together with metadata, are reported back to the database in Step 4. Finally

in Step 5, a user may access the Web interface again to visualize, or download the

experiment data collected by multiple devices. Based on the collected data, the user

may refine her experiment and restart the process from Step 1.

Programmable Network Traffic Experiment Configuration

MITATE offers a flexible programming environment that supports evaluation

and optimization of existing application traffic traces, as well as prototyping of

adaptive application communication protocols. Existing network testbeds support

19

such flexibility through mobile code, whose potential security vulnerabilities result

in designs based on dedicated testbed hardware [71, 102], or execution environments

constrained by custom APIs [275, 290]. Neither solution is satisfactory. While the

dedicated hardware limits adoption, custom APIs require application reimplementa-

tion in restricted, or non-standard programming environments.

I propose a secure and flexible network testbed design that eliminates the

drawbacks of mobile code. MITATE experiments use multiple rounds of statically

defined traffic transmissions. Processing between the rounds, i.e. mobile application

logic, is implemented offline. Offline processing allows for the execution of unmodified

application code inside an emulator2 with message transmissions delegated to

MITATE. Offline processing can also optimize communication protocol parameters,

such as packet size, through binary parameter search, or a more powerful approach,

such as CPLEX.3 Finally, static experiment definitions allow static verification, which

simplifies resource management (2) and testbed security design (2) and leads to a more

accessible testbed.

Application Traffic Trace Experiments can help answer questions such as “What

is the largest game state update message that can be reliably delivered under 100 ms?”

An abbreviated MITATE experiment configuration XML file in 2.2 specifies two

transfers, t1 and t2. The transfers transmit the specified number of bytes between

a MITATE mobile client and a datacenter server IP with MITATE backend logic.

The configuration file also specifies criteria definitions that client endpoints

must meet before executing an experiment. In the 2.2 example, criteria c1,

requires that a mobile be within 5000 m of geographic coordinates 45.666 -111.046

2http://developer.android.com/tools/help/emulator.html
3www.ibm.com/software/commerce/optimization/cplex-optimizer/

http://developer.android.com/tools/help/emulator.html
www.ibm.com/software/commerce/optimization/cplex-optimizer/

20

<experiment>

<transfer>

<id>t1</id>

<src>client</src>

<dst>54.243.176.74</dst>

<prot>UDP</prot>

<dstport>5060</dstport>

<bytes>32</bytes>

</transfer>

<transfer>

<id>t2</id>

<src>54.243.176.74</src>

<dst>client</dst>

<prot>UDP</prot>

<srcport>5060</srcport>

<bytes>512</bytes>

</transfer>

<criteria>

<id>c1</id>

<latlong>"45.666 -111.046"<\latlong>

<radius>5000<radius>

<networktype>cellular</networktype>

<starttime>12:00</starttime>

<endtime>13:30</endtime>

</criteria>

<transaction count="10">

<criteria>

<criteriaid>c1</criteriaid>

</criteria>

<transfers>

<transferid>t1</transferid>

<transferid delay="40">t2</transferid>

<transferid>t1</transferid>

</transfers>

</transaction>

</experiment>

Figure 2.2: MITATE XML configuration file.

(Bozeman, MT), be connected to a cellular network, and that device time be between

noon and 1:30PM. MITATE will allow experimenters to specify a wide set of criteria,

for example radio signal strength, location (eg. radius, bounding box, or set of ZIP

codes), availability of GPS (indoor/outdoor), or device travel speed (for example over

55mph).

Finally, configuration files specify one, or more transactions that group criteria

and transfers. In the 2.2 example, there is one transaction, which conceptually reflects

a user request (transfer t1), game state update (transfer t2) after 40 ms of server

processing delay, and an acknowledgement (transfer t1). This transaction will be

executed by a mobile device if the device satisfies transaction criteria when polling

MITATE servers, fewer than count devices have completed the transaction, and the

user issuing the experiment has sufficient test data credit (see 2) to execute the entire

transaction.

To find the largest game state update that can be delivered under 100 ms,

multiple experiment rounds can perform binary parameter search, with MITATE

reporting individual transfer and overall transaction delays. MITATE can also be

21

<transfer>

<id>dns_req</id>

<src>client</src>

<dst>DNS</dst>

<dstport>53</dstport>

<prot>UDP</prot>

<bytes><![CDATA[0x0100be07de55...]]></bytes>

<response>1</response>

</transfer>

Figure 2.3: DNS query in MITATE.

used with sophisticated optimization tools, such as CPLEX, where performance of

intermediate solutions are the reported metrics in each experiment round. Because

MITATE traffic experiments use production networks they are not necessarily

repeatable, and so decision metrics should be averaged over multiple trials. Finally,

a repeat attribute can indicate that a transfer, or a transaction, should be executed

multiple times. These repeat and delay attributes can be combined to configure

periodic traffic, for example polling every 10 minutes for 24 hours.

Programmable Application Traffic Experiments can help answer questions such

as “Which CDN provides fastest downloads through a particular mobile service

provider’s peering points?” To measure download times an experiment needs to issue

a DNS lookup, followed by a download from the resolved server addresses. MITATE

supports such experiments with two mechanism: explicit packet content and device-

specific scheduling.

2.3 shows a configuration of transfer dns req that represents a DNS lookup for

a CDN server. The bytes tag contains the explicitly specified bytes of a well-formed

DNS lookup request. When the response tag is set to 1, the DNS reply packet will

be included in the result data set, from which a user can parse out the resolved IP

addresses.

22

To measure the download time of an image hosted on a particular CDN network,

the user would configure a second experiment with a well-formed HTTP GET request

to each resolved server IP. To make sure that each mobile device contacts only the

IP addresses it resolved, each MITATE measurement contains the unique ID of the

device that collected the result. That ID can be subsequently used as an endpoint

address instead of the “client” keyword.

One downside of our approach is a potential for delay between each round

of transmissions as experiments wait to be scheduled on mobile devices. I are

working on integrating MITATE with the Android emulator to make the process

of experiment configuration as easy as writing to a socket. Our integration will

carefully modify emulator clocks, so that they advance only by measured transmission

delay, excluding experiment scheduling delay. This mechanism will allow studies of

adaptive communication mechanisms, such as server-host switching in online games,

implemented in native application code running inside the emulation with only traffic

transmissions being delegated to MITATE.

Deployment Incentives

One of the challenges faced by mobile network measurement platforms is how to

assure sufficient resource capacity for scheduled experiments. The limiting resource

is mobile data, subject to monthly caps.4 To assure a supply of mobile bandwidth

that matches the demand, a mobile testbed must, first, entice users to contribute

resources and, second, protect contributed resources from abuse. MITATE jointly

addresses both problems using a data credit exchange system inspired by BitTorrent

tit-for-tat mechanisms [108].

4While battery power is also limited, it can be more easily replenished by charging.

23

The insight behind BitTorrent’s tit-for-tat mechanisms is that they reward users

for contributing bandwidth, as well as for merely being willing to do so. While in

BitTorrent users make this assessment vis-a-vis each other, MITATE accounts for

contribution and willingness to contribute with respect to the system as a whole.

A MITATE user earns bandwidth credit for her experiments by allowing others’

experiments to run on her device. A user is considered willing to contribute when her

devices reliably ping MITATE servers for new experiments. The credit earned by the

user, xearned, is computed daily as:

xearned = α× xmax × min

(
xcontributed
xmax

+
pactual
pexpected

, 1

)
,

where xmax is the remaining amount of mobile data a user is willing to contribute

during a monthly billing cycle divided by remaining number of days, xcontributed is

the volume of mobile data used by MITATE experiments on the user’s data plan,

pactual is the number of pings reaching MITATE servers within 24 hours, and pexpected

is the expected number of pings based on a system wide ping frequency setting. The

parameter α < 1 creates a mismatch between contributed resources and earned credit

intended to ensure high experiment completion rates in areas with fewer participating

devices, such as rural states. I recalculate user credit every 24 hours to prevent users

from accumulating credit that, if used all at once, could deplete system resources on

any given day. I expect that some participants will use MITATE sporadically and

others on ongoing basis. Similar user participation takes place in BitTorrent, yet the

system as a whole is able to maintain a sustained capacity [108].

Thus, MITATE credits users for contributed bandwidth, which allows them to

use the bandwidth of others, keeping the two in a state of equilibrium. A final element

of the mechanism to prevent resource abuse is that daily experiment bandwidth

24

requirements are computed at submission time, a process facilitated by the static

XML experiment definition, and checked against submitting user’s credit before being

admitted to the system. I believe this approach is more predictable than resource

caps enforced at run time that can lead to low experiment completion rates [290]. I

also believe MITATE’s credit based approach is simpler and more democratic than

the delegated trust approach proposed in NIMI [245].

Security and Privacy

MITATE’s goal of open-access necessitates a well thought out security design.

With the contributed data plan resources protected by the incentive mechanisms,

the security goals focus on protection of user privacy, the volunteered devices, and

non-MITATE Internet resources.

Protecting User Privacy MITATE runs on personal mobile devices, which has

the potential for violations of privacy if a device owner’s activity and personally

identifiable information were to become public. For example, user network and

calling activity is not only private, but may itself contain personally identifiable

information. Similarly GPS data becoming public can lead to legal challenges if

traffic laws (speeding), or property laws (trespassing) were violated.

I have designed multiple levels of protection to preclude violations of user privacy.

First, MITATE can only be used for active traffic experiments and cannot monitor

non-MITATE traffic on a device. Second, while MITATE does collect GPS and

accelerometer readings as metadata to accompany network performance metrics, users

are asked to opt-in before starting the MITATE mobile app. Finally, third, I separate

all data collected on devices from personally identifiable user account information.

Each device registered with MITATE receives two random IDs: one to label traffic

25

metrics collected on the device, the other to keep track of credit data earned by the

device for its owner. The dual ID system means that collected experiment data are

never linked to a device owner’s identifiable information.

Protecting User Devices Users who volunteer their devices for MITATE agree to

cede some control over them. It is imperative that MITATE limit other user’s actions

on volunteered devices to within the bounds of that agreement. MITATE protects

user devices with three mechanisms.

First, a user can set usage limits for mobile data, WiFi data, and battery

level on their devices. These limits are consulted during experiment scheduling to

disallow experiments that exceed remaining device resource allowance. Second, users

never directly interact with others’ devices. To submit an experiment, or download

data, users authenticate and communicate with MITATE servers over encrypted

connections. Mobile devices download experiments and upload collected metrics

to MITATE servers also using encryption. Finally, third, our XML experiment

configuration is static in that it does not allow conditional, nor jump statements.

Such static definitions enforce the separation between the on-device functionality of

data transmission and off-device processing. This separation allows for static checking

of XML configurations using mature schema verification tools, which is simpler than

dynamic code analysis and more lightweight than mobile code sandboxing. Static

experiment definition also allows for the volume of each transfer in the XML file to

be added up and compared against user credit and device resource limits.

Protecting non-MITATE Resources Our final goal is to protect non-MITATE

resources, for example from DDoS attacks configured as MITATE experiments.

ScriptRoute, designed from the ground up as a secure Internet measurement

26

system, considers two types of malicious experiments: magic packets and traffic

amplification [290]. Magic packets can disrupt legitimate traffic, for example, when a

spoofed FIN packet closes a TCP connection. Because MITATE allows experiments

with explicitly defined packet content, I will make sure that these packets do not pose

threats to other systems by matching them against signatures of known exploits using

intrusion detection mechanisms.

Traffic amplification takes place when a malicious user leverages testbed nodes to

monopolize the resources of a legitimate service, for example through a Smurf attack.

Existing testbeds limit traffic amplification by placing a rate limit on the volume of

data that can be generated by an experiment, which also constrains legitimate load

testing. Instead, MITATE limits the total volume of experiment data to a user’s

earned credit. Although a MITATE user may request that multiple devices send

data simultaneously, the user’s credit will be rapidly depleted, and so even if the

transmissions are malicious, they will be short-lived.

MITATE Application Traffic Prototyping Capability

To demonstrate MITATE’s traffic emulation capabilities I present a set of

network experiments and collected data. I show that MITATE can elicit various

network performance phenomena useful to developers in answering a wide range

questions about application traffic performance. The collected data includes traffic

performance metrics and associated metadata. Prior to sending experiment traffic,

MITATE calculates the clock offset between the mobile and measurement servers,

which allows us to time unidirectional (unacknowledged) UDP transfers [200].

Experiments were performed on several Android phones and two different cellular

27

Figure 2.4: Message delay vs. message
size at 10 AM on CSP 1 to a CA data-
center.

Figure 2.5: Message delay vs. message
size at 2 PM on CSP 1 to a CA datacen-
ter.

Figure 2.6: Message delay vs. message
size at 10 AM on CSP 2 to a CA data-
center.

Figure 2.7: Message delay vs. message
size at 10 AM on CSP 2 to a VA data-
center.

28

Figure 2.8: Per packet throughput of Bit-
Torrent and random payloads on CSP 1.

Figure 2.9: Packet loss of SIP and ran-
dom payloads vs. flow data rate on
CSP 1.

Figure 2.10: Delay of different data rate
flows vs. on CSP 1 and CSP 2.

Figure 2.11: Round trip time and trans-
fer time of 3 MB image from three CDNs.

29

service providers (CSP) networks in Bozeman, MT, and over connections to two

different cloud datacenters. I anonymize the identities of CSPs and CDNs.

Effect of Packet Size on Message Delay

In gaming applications game state updates need to be delivered while their

content is relevant. And so, game developers may want to know: “What is the

largest game state update message that can be reliably delivered under 100 ms?” To

answer that question I configure a MITATE experiment with transfers of increasing

size (bytes). I plot the results in Figures 2.4–2.7, which show message delay as a

function of message size during different times of day.

Our results show that message delay increases with message size and does so

more rapidly on the uplink, likely due to asymmetric network provisioning. I also

observe in 2.5 a high delay for larger messages on the downlink, likely due to mid-

day network congestion. 2.6 shows a higher sensitivity of message delay to size on

CSP 2. That effect is especially pronounced on connections to a datacenter located

in Virginia, shown in 2.7.

From these experiments a developer might conclude that a message of 320 B

can be delivered under 100 ms with high confidence to customers in Bozeman, MT

on CSP 1, but a smaller message might be needed on CSP 2. Also, to keep message

delay low, requests from Bozeman should not be directed to the Virginia datacenter.

Effect of Traffic Shaping

The degree to which FCC net neutrality rules apply to CSPs continues to

be debated [57]. And so, application developers may want to ask: “Does my

application traffic need to contend with CSP traffic shaping mechanisms?” To answer

that question I configure a series of MITATE experiments, in which transfers of

30

specific content, on specific ports, and at different rates are used to detect traffic

shaping [123,177].

2.8 shows downlink throughput on CSP 1 of consecutive BitTorrent and random

payloads transmitted over UDP on tracker port 6969. Our results show a drop in

throughput for well-formed BitTorrent packets relative to random content, which

likely indicates the presence of DPI mechanisms. I did not detect similar throughput

drops on CSP 2. These results show that embedding of explicit packet payloads allows

MITATE to detect content based traffic shaping.

2.9 shows downlink percent packet loss on CSP 1 of 1000 SIP packets transmitted

on port 5060 over UDP and TCP versus transmission rate. Our results show that

while SIP packets over TCP are undisturbed, same packets over UDP experience close

to 60% loss rate. Because loss remains nearly constant across transmission rates, I

believe that SIP packet loss over UDP is due to traffic policing, rather than traffic

shaping.

2.10 shows per packet delay of uplink UDP flows transmitted at 4 Mbps and

6.6 Kbps on CSP 1 and CSP 2 versus packet number. The 4 Mbps flows experience an

increase in delay, likely from queueing that results from the mismatch between sending

and token bucket service rate limits [177]. The 6.6 Kbps flows, on the other hand,

are sent below the service rate and avoid self-induced congestion. Testing different

transmission rates allows developers to determine the maximum sending rate that

will fall below token generation rate and avoid queuing delays. The experiments are

useful for configuration of adaptive video stream encoding.

Measurement Based CDN Selection

Finally, dynamic content applications customize content for each user and have

the opportunity to adapt to user’s network conditions, for example, by embedding

31

links to static content in different CDNs. And so, application developers may want

to ask: “Which CDN provides fastest downloads through a particular mobile service

provider’s network peering points?” To answer that question I configure a MITATE

experiment that sends a well-formed HTTP GET requests, configured in the bytes

tag, for an image hosted in three different CDNs.

2.11 shows the CDN response time for the first bit, or round trip time (RTT), and

last bit, or transfer duration, of a 3 MB image delivered over the two CSP networks.

Our results show a lower last bit delay for requests in CSP 1, but a higher RTT

variation between CDNs, likely due to different CSP peering points that lead to

CDN servers. From these experiments a developer might conclude that for users in

Bozeman, MT CDN 2 provides the best combination of performance across the two

CSP networks.

Discussion and Future Work

In this chapter I described MITATE, the first public testbed that supports

prototyping of application communications between mobiles and cloud datacenters.

MITATE separates application logic from traffic generation, which simplifies security

and resource sharing mechanisms. I have presented data collected with MITATE

experiments that demonstrates the system’s capability in eliciting effects of cellular

network performance on mobile application message delay.

Future work on the project involves deploying the current implementation onto

M-Lab servers. In the meantime, I invite the community to use publicly available

MITATE code5 in private deployments. I also welcome community participation

in evolving MITATE functionality in the areas of resource sharing models, GPS

5http://github.com/msu-netlab/MITATE

http://github.com/msu-netlab/MITATE

32

and accelerometer data anonymization, data visualization, and tools based on the

MITATE platform.

33

SURVEY ON MOBILE NETWORK MEASUREMENT TOOLS

Abstract

Mobile (cellular) networks enable innovation, but can also stifle it and lead

to user frustration when network performance falls below expectations. As mobile

networks become the predominant method of Internet access, developer, research,

network operator, and regulatory communities have taken an increased interest in

measuring end-to-end mobile network performance to, among other goals, minimize

negative impact on application responsiveness. In this survey I examine current

approaches to end-to-end mobile network performance measurement, diagnosis, and

application prototyping. I compare available tools and their shortcomings with

respect to the needs of developers, researchers, network operators, and regulators.

I intend for this survey to provide a comprehensive view of currently active efforts

and some auspicious directions for future work in mobile network measurement and

mobile application performance evaluation.

Introduction

Mobile (cellular) network applications deliver interactive services, generally sup-

ported by back-end logic deployed on cloud infrastructure. These applications support

a wide breadth of functionality, such as live video, social gaming, communication

services, and augmented reality [26, 107, 195, 265]. Future services will increasingly

leverage cloud-based datasets and processing power for innovative applications of

live speech translation, real-time video analysis, or other computationally intensive

tasks [264, 281]. As the frequency of interactions between mobile devices and back-

34

end servers increases, application responsiveness will be increasingly tightly coupled

with end-to-end network performance.

To innovate in the interactive mobile application space and provide a richer

user experience, applications employ communication protocols with sophisticated

data delivery optimizations that support responsive communications under a range of

network conditions [52,88,128,158,329]. However, the deployment and configurations

of these optimizations require detailed network performance data that is not readily

available, which results in challenges across the cellular ecosystem. For example,

developers evaluate performance of their mobile applications in device farms that

lack geographic diversity and device mobility [20,53,56].

Researchers lack network performance data, or tools to acquire such data, in

order to rapidly test hypotheses and focus on realistic network performance problems.

Network operators need to monitor and troubleshoot end-to-end network perfor-

mance without degrading base station throughput. Finally, regulators have a limited

view of network performance, especially with respect to traffic shaping by network

providers, impeding their ability to tackle performance challenges and roadblocks for

sustained innovation in the mobile space [175,259].

This chapter provides a comparative analysis of currently available network

measurement platforms for end-to-end mobile network measurement, monitoring, and

experimentation. (For a survey of wireline Internet measurement platforms see recent

work by Bajpai and Schonwalder [68].) I further categorize measurement platforms as

research testbeds for network experimentation, extensible distributed measurement

tools, and services for widespread monitoring of networks performance. In the

following sections describe the most salient features of each platform, and how some

features differ across them. Table 3.1 compares the testbeds, tools, and services in

35

terms of their experimentation flexibility, device selection criteria, resource protection,

and other features.

Based on our review of current measurement efforts, I observe that although

existing approaches comprise only a patchwork of needed functionality, they already

generate powerful insights to guide development, research, and regulatory actions.

However, in spite of the relative maturity of several measurement platforms,

daunting problems remain including support for wide-scale application prototyping

and deployment, detection of traffic shaping, and long-term network performance

monitoring. Most existing mobile measurement platforms have been developed

in isolation, and one motivation for this survey is to foster more concerted and

cooperative efforts at standardization of measurement libraries, privacy policies, and

technology exchange [27,105,166,328].

The rest of this chapter is organized as follows. Section 3 reviews goals of end-to-

end mobile network measurement. Sections 3, 3, and 3 respectively discuss testbeds,

tools, and services for end-to-end mobile network measurement. Section 5 presents

directions for future work and concluding thoughts.

Goals of end-to-end mobile

network measurement

Developers, researchers, network operators, and regulators share the broad

goal improving the performance of mobile network communications. However, their

perspectives and goals differ, and so the tools developed by these communities focus

on different aspects of network performance.

Developers’ View of Network Performance

36

Developers try to provide a responsive application experience users enjoy.

Although much of the delay experienced by user requests is due to back-end processing

and front-end rendering [128], as hardware and software processing speed improves,

network performance becomes a dominant concern [158]. However, mobile network

performance varies across providers, devices, geography, and time of day, and is

generally hard to predict [111,318]. To minimize the effects of network performance

variation on application responsiveness, developers optimize content delivery by data

batching [327], adaptive encoding [158], lowering communication frequency [196,241],

or strategically deploying application infrastructure near users [95, 174]. To under-

stand which optimizations to apply and how to configure them, developers monitor

application communication performance and evaluate what-if scenarios.

Application monitoring assesses the impact of edge network performance on

application responsiveness through server-side monitoring [187], or with measurement

and reporting code embedded within the application [96,111,153]. To evaluate what-

if scenarios, developers use A/B testing of two versions of an application. Such

studies generally target certain users, networks, or time intervals, and thus require

expressive test device selection criteria. Although A/B testing may be implemented

in the application itself, third party application libraries offer easier integration and

a safer starting point [32,40,42]. Developers may also test changes without affecting

users by deploying their application on test device farms [20, 53, 56]. However,

these services currently provide access only to stationary cellular devices, which

limits measurement realism in terms of geographic and network diversity. Academic

testbeds and measurement libraries have the potential for greater reach and realism,

but have only seen limited industry interest and involvement. Though perhaps the

proliferation of network testbeds and tools presented in this chapter suggests their

growing popularity.

37

Researchers’ View of Network Performance

The research community has produced several testbeds that offer significant

flexibility to execute a variety of network experiments [23, 70, 104, 132, 147, 183, 198,

203,206,212,291,293,324,332]. Yet, the availability of these testbeds and knowledge

of how to use them often remains limited by practical barriers to collaboration across

research groups. Researchers may need to set up their own infrastructure for data

collection [275], obtain Institutional Review Board (IRB) approvals [212], or revive

code that is no longer maintained [161,202]. Even when maintainers of a given testbed

help to set up experiments, communication rounds take time, especially when software

modifications are needed. As a result, researchers often decide it is more expedient to

develop new tools, even when it duplicates others’ efforts and achieves only a small

scale evaluation [70,212].

Several organizations are working to lower the barrier to entry and promote

concerted development of network measurement tools. For example, M-Lab maintains

a repository of measurement tools, including MobiPerf, WindRider, and NDT (Mobile

client), discussed in sections 3, 3, 3 respectively [19]. One of M-Lab’s goals is for new

tools to leverage existing code base, for example the Mobilizer library [324]. M-Lab

also supports the development of common ethical guidelines for network measurement

data collection [328]. However, the continued flow of proposals for new, independently

deployed cellular tools (five in 2014 [23, 70, 198, 269, 324], eight in 2013 [132, 135,

147, 203, 212, 239, 291, 332], three in 2012 [53, 104, 258], one in 2011 [206], one in

2010 [183], and two in 2009 [225,315]) suggests that more needs to be done to improve

collaboration among different research groups.

The research community has also worked to decrease the need for and the cost

of redundant experimentation and created several repositories of wireless network

38

measurement data [3, 33, 35]. While data repositories facilitate reproducibility

of research results, they have their limitations. For example, to study current

phenomena, such as changes in network traffic management policies expected after

new FCC Net Neutrality regulations [83], researchers need new measurement data

quickly, rather than waiting for a new dataset to be released after another group’s

publication. Additionally, data in repositories may be obfuscated, suitable for one

experiment, but lacking in sufficient detail for another, or may be difficult to correlate

when multiple datasets are collected at different times or under different conditions.

For these reasons, live testbeds and measurement tools form a critical foundation of

innovative research and education environments.

Network Operators’ View of Network Performance

In addition to their operational monitoring of cellular network performance from

base stations and other network elements, network operators are also interested in

end-to-end network measurement from the device’s perspective to provide responsive

and reliable service at reasonable operating cost, including the cost of fielding

customer support calls. Network operators also want to simplify and speed up the

deployment of new access technologies and over-the-top services. A key element in

these processes is the ability to troubleshoot network performance issues without

affecting base station throughput.

However, industry insiders describe troubleshooting cellular networks as “an

art with few scientific principles.” To increase their insight into end-to-end network

performance and network factors that may affect it, e.g, received signal strength,

many network operators have deployed Carrier IQ on handsets in their networks [94,

301], and then faced customer backlash [6, 246] due to this application’s approach

(or lack thereof) to user privacy protection. Although network operators continue

39

to use Carrier IQ, users continue to uninstall it on rooted phones [190, 287]. As a

result network operators, like ATT, are looking for new methods to monitor and

troubleshoot user network performance that can match the scale and efficiency of

embedded end-host monitoring provided by Carrier IQ [155].

Regulators’ View of Network Performance

Finally, regulators need monitoring tools to inform their understanding of

availability, reliability, and performance of mobile networks over time. Constrained

network performance and delayed upgrades to next generation technologies, e.g.,

4G, have long been seen as stifling innovation in the US [173, 242]. Further,

traffic shaping mechanisms and anti-competitive behavior by some network providers

impede deployment of new services [50, 59, 84, 85, 133, 178, 192, 259, 285]. Even

developers of popular measurement tools struggle to create incentives for longitudinal

and widespread measurement [135]. A few tools that have gained traction with

users rely on user-initiated network tests, which limits measurement frequency and

representativeness [183,206].

Shared Challenges

Developers, researchers, network operators, and regulators face the same chal-

lenges in deploying end-to-end mobile measurement tools: incentivizing a statistically

significant sample of users to install and run the tool; protecting those users’ resources

from abuse; and preserving user privacy.

To motivate user participation, measurement platform designers have used

schemes such as bundling measurement code with other functionality [275], offering

free devices [212], press coverage [135,183], or simply appealing to user altruism and

40

curiosity [135]. These approaches result in either a narrowly focused user base or

short-lived deployments, both of which limit platform utility.

The second challenge is how to protect contributed platform resources from

abuse. Some peer-to-peer systems have used tit-for-tat mechanisms to ensure fair

resource sharing [108], but mobile network measurement platforms thus far rely on

user altruism on the one hand and conscientiousness on the other [104,135,206,293].

Scaling and sustaining measurement platforms over the long term will require more

rigorous resource protection methods in existing tools.

Finally, a measurement platform should isolate personally identifiable informa-

tion from experimental data collected on a mobile device. Measurement platforms

discussed in this chapter offer a range of solutions to maintain this separation. Google

has supported the development of a proposed set of ethical guidelines for the design

of mobile-based network measurement tools [328]. These guidelines have informed

the design of some tools, specifically MITATE and Mobiperf, but the disparate legal

frameworks for user privacy around the world make it difficult to create conformant

tools for the global mobile Internet [105].

Network Testbeds

Mobile application developers need to know how well a network can deliver

their application content. Custom network experiments that emulate communication

protocols of their applications create performance profiles in different network settings

to inform application design. End-to-end systems that support such functionality

need to balance the flexibility of their feature set against potential abuse of

contributed user resources and threats to user privacy. I divide systems according

41

to how they resolve this conflict for new experiments from external researchers into

uncurated and curated approaches.

Uncurated Network Testbeds

Uncurated network testbeds allow users immediate access upon registration.

Users experiments and changes to these experiments do not need to go through an

approval process. Although their open nature allows these platforms to scale, they

are limited in the type of personal information they collect without going through an

Institutional Review Board (IRB) approval process.

MITATE Mobile Internet Testbed for Application Traffic Experimentation (MI-

TATE), developed at Montana State University (MSU) in April 2013, enables exper-

imentation with mobile application traffic in live mobile networks [147]. Experiments

execute on user-volunteered devices that meet specified criteria, such as signal

strength, geographic location, or network provider. Developers can use MITATE to

evaluate the performance of mobile application communications under a wide range of

conditions before their applications are deployed, or even fully developed. MITATE

supports configurable active network measurements to detect network traffic shaping

by ISPs, and integration with other tools, for example CPLEX to explore protocol

configuration tradeoffs through parameter search and optimization [168].

Functionality: MITATE supports active network measurements on mobile devices.

MITATE experiments are configured through XML files that describe the content of

experiment data transfers, transport layer protocols, network endpoints, and timing.

An XML configuration also describes criteria that volunteered devices must meet to

execute an experiment, such as network type (cellular or Wi-Fi), signal strength,

42

geographic location, network carrier, minimum battery power, and device model. To

ensure that experiments are defined correctly, MITATE servers validate new XML

configuration files against an XML schema definition (XSD). Users interact with

MITATE through an API that allows upload of XML configuration files and download

of collected data.

Each mobile device polls a central MITATE server at MSU for new experiments

whose criteria matches that device’s capabilities. Devices download static traffic

definitions that specify what traffic to exchange between the mobile device and

back-end servers. MITATE mobile devices can interact with third party systems,

for example DNS and CDN servers, through explicitly configured, well-formed

request packets, and by recording reply content and delay. Although each MITATE

experiment is a series of static transmissions, complex logic can be implemented across

processing rounds, e.g., DNS lookups and ping transactions require two rounds. Such

an experiment specifies a device ID as a criteria, which allows for the same device to

issue DNS lookups in round one and subsequent pings in round two.

Data Collection: MITATE records the delay of each data transfer as well as metadata

such as signal strength, accelerometer readings, and device location. This delay

measurement allows calculation of 42 metrics, including uplink and downlink latency,

throughput, jitter, and loss, as well as mobile sensor readings [201]. For example, an

experiment estimates available bandwidth by dividing the size of a large transfer by

its duration. MITATE experiments may also use a series of small transfers to estimate

packet round trip time (RTT), loss, and jitter. At the start of an experiment, MITATE

estimates the clock offsets between a device and each server endpoint, which allows

separate measurement of uplink and downlink latency.

43

Collected data is available for download in the form of SQL insert statements

to populate a local instance of a MySQL database for each user. MITATE allows

users to download data only for their own experiments and those whose data is made

public. Aggregate metrics, for example mean latency, are computed through queries

to the local database instance. This design reduces the load on the MITATE database

servers and allows users to run arbitrary queries over their experiment data.

Resource Incentives and Protection: MITATE is a collaborative framework built around

incentives for user participation, inspired by BitTorrent’s tit-for-tat mechanism [108].

MITATE users earn data credit by contributing their mobile resources. Users can

then spend credit to run experiments on others’ devices. Earned credit expires

after 24 hours to prevent its accumulation and use for large experiments that might

overwhelm available system-wide resources at any point in time.

MITATE’s credit system encourages ongoing participation and protects con-

tributed resources from abuse. Users can leverage MITATE resources in direct

proportion to how much data they contribute to the system. MITATE does not rate-

limit device transmissions (although users can set monthly data caps and battery

limits on their devices), which permits realistic load-testing experiments. Although

distributed denial of service (DDoS) attacks launched from multiple devices are

technically possible in MITATE, they are destined to be short lived, because rapid

transmissions from multiple devices will quickly deplete the malicious user’s earned

credit.

Privacy Protection: A significant challenge to expanding measurement systems on

volunteered personal devices is the threat to user privacy. To limit the exposure of

personally identifiable information, MITATE captures data only from active traffic

44

experiments and does not monitor non-MITATE device traffic. Collected data is

also indexed by virtual device IDs, rather than personally identifiable phone and

International Mobile Equipment Identity (IMEI) numbers.

Remaining Challenges: MITATE is still in active development; project goals for

the next couple of years include: deployment on M-Lab, support for peer-to-peer

transmission between mobiles (important for IoT and gaming experimentation), and

iOS device support.

Seattle The Seattle testbed, originally developed in March 2009 at the University

of Washington to support wired host experimentation, now also supports mobile

application prototyping [93]. The design goal was to increase the diversity of testbed

hardware to provide a more realistic prototyping environment than testbeds relying

on dedicated hardware (e.g., PlanetLab, Emulab, or GENI [8,102,282]). Seattle runs

on volunteered devices in last mile networks, and on institutional servers. As of 2015,

Seattle includes about 800 mobile devices and over 10,000 nodes in total.

Functionality: Seattle experiments run on sandboxed virtual machines in a pared down

implementation of Python called Repy. Seattle libraries support Repy functions such

as data serialization, cryptography, and processing URLs, HTTP messages, and other

protocols. Repy code is pushed to Seattle-registered through an API. Users can select

devices by location and network type (Wi-Fi or cellular) to which device is connected,

but Seattle does not support selection by device travel speed, provider, or model.

Seattle also supports P2P communication among devices.

Data Collection: Seattle does not collect network performance data by default. Instead

45

users define their own metrics through experiments implemented in Repy. Seattle does

not provide access to device sensors [323]. although sensor applications can make

sensor data available to Repy programs through an API. The Sensibility testbed is

an extension of Seattle, which allows Repy experiments to interact with mobile sensor

data, but not to transmit or capture network traffic [24].

Resource Incentives and Protection: The Seattle incentive model is based on a tit-for-

tat approach, where a user has access to ten volunteered devices for every device

she registers with the system. While this policy makes sense in the wired setting,

where devices are not generally restricted by monthly data caps, users who register

wired hosts but experiment with others’ mobile devices can deplete the mobile data

cap. As a mitigating step, by default Seattle limits data transmissions to 10 Kbps, so

even if the experiment fully uses that transmission rate, the owner can likely continue

using their device. This limit prevents Seattle experiments from measuring available

bandwidth and generating load-testing traffic – limitations not present in MITATE’s

credit-based model.

Privacy Protection: Seattle protects user privacy by allowing experiment code

execution only in sandboxed virtual machines, which isolates experiment processes

from each other and from non-Seattle processes.

Limitations: The authors of Seattle list several limitation of the current system,

including inability for Seattle nodes to host services on ports below 1024, increase the

transmission limit on donated resources, send ICMP traffic due to Repy restrictions,

and put a limit on battery drain [332].

46

Emerging Systems PhantomNet, being developed at University of Utah, is an

emerging testbed based on a network of small-cell base stations connected through

a software-defined network (SDN) backbone [198]. Users will be able to not only

experiment with end-to-end services, but also modify backbone traffic forwarding

for their experiments. PhantomNet devices will have dual-radio interfaces, which

will allow integration with a reseller network, for example through SciWiNet.

PhantomNet also leverages management tools from other systems, notably Emulab

and Seattle. Currently, PhantomNet remains under development.

Curated Network Testbeds

Curated network testbeds vet network experiments prior to deployment. In

particular, vetting involves passive monitoring experiments that collect privacy

sensitive data, such as users’ traffic, or location history and may need to go through

an IRB review. Other experiments may require changes to the testbed itself and need

to be approved by the testbed’s developer team [251].

PhoneLab PhoneLab is a programmable smartphone testbed, developed at the

University at Buffalo in November 2013, to support flexible experimentation intended

to emulate application deployment scenarios [212, 250]. PhoneLab experiments are

implemented as mobile applications pushed to rooted Android smartphones given to

student volunteers at the University at Buffalo. PhoneLab’s model supports long-

term, passive experiments that can record network transitions, battery drain, and

use of other applications on the device.

Functionality: PhoneLab experiments are pushed to participants either via the

Google Play Store, or separate as over-the-air updates. PhoneLab can benchmark

47

third-party mobile applications without modifications to their code, which may be

required in other testbeds. PhoneLab mobile applications can run experiments in

the background or interactively. PhoneLab also supports experiments at the OS

level, with modifications to the Android runtime system. Platform experiments are

vetted by the PhoneLab development team and go through pre-deployment testing.

Researchers submit experiments as XML configuration files that specify background

experiments to start or stop, log tags to collect, and where to upload collected

data. The PhoneLab Conductor fetches configuration files from PhoneLab servers

and pushes them to testbed devices.

Data Collection: PhoneLab data collection relies on the Android logging interface,

which gives experiments access to device operational data (such as phone status,

battery level, etc.), as well as custom application log data. All log data is uploaded

to the central server when a device is charging. When their experiment completes,

users receive an archive of data that matches experiment tags from all devices that

participated in their experiment.

Resource Incentives and Protection: Unlike MITATE and Seattle, which rely on

volunteered devices, PhoneLab provides phones with discounted data plans to its

participants. In spite of this incentive scheme, the PhoneLab team has faced

significant participant attrition, with only 43 of 191 volunteers continuing after the

first year [212]. PhoneLab limits the number of simultaneously active of experiments

on each device to balance device utilization against interference between experiments.

Privacy Protection: To protect user privacy, experiments submitted to PhoneLab

need IRB approval or exemption. PhoneLab participants choose to participate in a

48

particular experiment after reviewing what information will be collected. Participants

can opt-out of an experiment at any time.

Limitations: PhoneLab’s use of data plan subsidy potentially limits the scalability

of the testbed. Also if phones are not replaced frequently, testbed hardware

will eventually lag behind phone models used by the general public. Finally,

PhoneLab code is not publicly available, which precludes the possibility of private

deployments [249].

SciWiNet Science Wireless Network (SciWiNet), being developed at Clemson

University, is a NSF-funded re-seller of network infrastructure, based on Mobile Vir-

tual Network Operator (MVNO) model, which provides the research community with

a service on Sprint’s cellular network infrastructure (and T-Mobile’s infrastructure

by late 2014) [23]. SciWiNet supports experimentation over 3G and 4G cellular

networks, but without support for SMS, MMS, or voice services. SciWiNet provides

additional infrastructure to the research community in the form of a shared pool

of wireless devices (smartphones and USB LTE dongles), a common set of Android

applications (WiFi hotspot, VPN tunnels, performance monitoring programs), and a

set of wireless network services (VPN tunnel termination, secure database backend,

performance monitor servers and backend).

Deployment: The SciWiNet project has two proposed project phases and is in phase-I

as of September 2014. In phase-I, the project aims to determine the potential user

community for SciWiNet infrastructure and investigate capabilities that it should

support. In phase-II, the project will develop, deploy and operate the functional

SciWiNet network infrastructure based on what was learned in phase-I.

49

Device support: Since SciWiNet uses Sprint’s cellular network as its back-end cellular

infrastructure, Sprint maintains a whitelist of mobile devices that are authorized to

access SciWiNet’s network and therefore eliminates the need to install a SIM card in

every mobile device. Although SciWiNet records device MAC address, it does not

make the device MAC publicly available. SciWiNet maintains a list of popular devices

and blacklisted devices. iOS devices are excluded because they do not support re-

seller networks [14]. SciWiNet helps researchers access testbed resources by providing

them with 1-2 mobile devices and a prepaid data plan for a limited time, typically six

months. Alternatively researchers can access SciWiNet from their own devices and

SciWiNet covers part of the data usage costs.

Data Collection: SciWiNet Android app collects the following network measurements

over cellular and Wi-Fi networks: throughput for TCP and UDP traffic flows, packet

loss, and ping latency. It can also detect location-based services such as base station

identity, location, and wireless signal strength.

Resource Incentives and Protection: Users can login to their account to check their

data usage, or data contributed by others to their experiments. Data usage is limited

by a leaky bucket rate limiter, where a user receives a number of tokens, which he

can share among multiple devices. Once the data rate is exceeded, the device is

temporarily restricted from accessing the SciWiNet network.

Remaining Challenges: As of September 2014, it is unclear how SciWiNet will provide

access to its devices and network resources to the research and developer community.

50

One possibility is to offer incentives for user participation by providing free or

discounted device access.

LiveLabs LiveLabs, designed at Singapore Management University in February

2014, is a mobile testbed intended to evaluate location-based services, such as

commercial promotions to shopping mall customers [70]. LiveLabs has been tested on

the campus of the Singapore Management University (SMU) and is currently being

deployed at a large shopping mall near SMU campus, Singapore Changi International

Airport terminal, and on the Sentosa resort island. The testbed is available to the

three partnering venue operators, but not the general public.

Functionality: To facilitate evaluation of location-based services, LiveLabs supports

device location discovery in indoor settings as well as characterization of user behavior.

LiveLabs is designed for continual operation, thus the design has focused on low

energy usage, for example by allowing multiple experiments to concurrently use

sensor readings such as GPS, or WiFi signal strength. Researchers and participating

companies use LiveLabs to evaluate location-based applications, for example real-time

promotions to users at a shopping mall. LiveLabs is available for Android and iOS

systems.

Data Collection: Unlike other testbeds discussed in this section, LiveLabs does not

collect network performance metrics, but instead focuses on discovering user behavior,

by recording device ID and a variety of sensor readings. The LiveLabs backend then

supports higher level functions to detect and record user behavior, such as history

of movement, group size, user physical queue length, and activities such as standing,

51

walking, or sitting. LiveLabs also records information about participating users, such

as their nationality.

Resource Incentives and Protection: LiveLabs has three mechanisms for garnering user

participation: rebates on users’ monthly data bills; context-based apps that offer

rebates on specific commercial services in deployment locations [189]; and a “lucky

draws” lottery, though details of frequency and prizes are not specified [70].

Privacy Protection: Data collected by LiveLabs has the potential to disclose private

user information, such as location, shopping patterns, and nationality. As such,

experiments launched on LiveLabs go through SMU’s IRB approval process [18].

Users are also asked to opt-in to data collection on their devices.

Limitations: LiveLabs is not designed for mobile network measurement (does not

collect network metrics) and so it offers functionality distinct from MITATE,

Seattle, and PhoneLab. At the same time, LiveLabs supports experimentation with

new services in the mobile environment similarly to PhoneLab and has attracted

participation of 30,000 users through its incentive model and business partnerships.

Measurement Tools

Mobile network performance characterization requires wide scale and ongoing

measurement from a variety of devices across different networks and locations. Tools

in this space, developed by industry, research, and regulatory communities, differ

in how they obtain network metrics and how they select devices for measurement.

Although network measurement tools presented in this section are not testbeds, in

52

that they only support a fixed set of experiments, these tools do support long-term

and wide-scale network monitoring, which offers important insights to developers,

researchers, and regulators.

Standalone Measurement Tools

Standalone measurement tools are ready-to-deploy solutions with pre-defined

network measurement functionality. The open-source nature of these tools allows

other to modify them, although many of the tools offer measurement customization

options. Data collected by these tools is generally, though not always, publicly

available.

FCC Speed Test The FCC Speed Test app, released in November 2013, was

designed to provide insight to regulators and the public on the performance of mobile

networks across the United States [135]. Developed in collaboration with SamKnows

and major wireless service providers, the free application is available on Google Play

Store for Android smartphones [138]. An iOS version of the application is also slated

for release, though limitations of the iOS API prevent collection of some metadata

that is collected by the Android version [106,175].

Functionality: At the start of a measurement, the FCC Speed Test app pings available

measurement servers to identify the one with lowest round trip time (RTT) to the

mobile device. The selected server then sends a list of measurement instructions

to the mobile device. If the mobile device is currently using less than 64 Kbps of

bandwidth for other tasks, it starts the measurements, otherwise the device postpones

measurement until its bandwidth usage drops.

53

The FCC Speed Test app supports active traffic measurements over four

types of connections: single connection HTTP GET and POST, as well as multi-

connection GET and POST. Multi-connection transfers test multithreaded download

performance over three parallel downloads of 256KB data chunks. To measure packet

loss and RTT, the FCC Speed Test app exchanges a series of UDP packets with the

nearby server. Following a measurement, the mobile device uploads measurement

data and associated metadata to an FCC server.

Data Collection: The FCC Speed Test app reports upload and download rates, packet

loss, and RTTs based on HTTP and UDP transfers. Packet loss on a path is inferred

based on failure to receive a UDP packet on that path within three seconds. The app

records the number of packets sent each hour, the average RTT, total packet loss for

performed tests, and throughput in 5-second intervals [136]. The app also collects

device-related as well as network metadata, including signal strength reported by the

device, connection type (3G/4G/Wi-Fi), location and ID of cell towers, GPS location,

device model, OS version, network country code, SIM’s operator ID, SIM’s country

code, network carrier, phone type (GSM/CDMA), and the device’s roaming status.

Resource Incentives and Protection: To build nationwide measurement capacity the

FCC Speed Test app relies on user curiosity about their network performance. Instru-

mental to the app’s popularity and success was a press campaign [76,106,163,179,283],

which was followed by application installation and measurements from more than

50,000 devices in about 1.5 years. These numbers have declined over the life of

the system, so the effectiveness of a publicity-driven approach to support long-term

network monitoring remains to be seen.

54

Privacy Protection: The FCC app collects measurement data on the mobile device

in the application sandbox, as opposed to through the standard Android logging

interface, so data is not visible to other applications. The collected data are uploaded

to FCC servers over encrypted connections. Once the data are uploaded, or become

stale, they are automatically deleted from the application’s sandbox storage. The

FCC Speed Test app does not collect personally identifiable information, such as

phone number or IMEI [137].

Limitations: The FCC Speed Test app executes only experiments configured by the

FCC, i.e., it does not support custom network measurement. As of October 2014, the

configured tests do not detect traffic shaping in mobile networks, which is of increasing

interest to regulators and the general public [50,59,84,85,133,178,192,259,285]. With

respect to resources used on the device, the FCC application runs at startup and

prevents the phone from sleeping, which can drain the phone battery.

WindRider Content-based traffic discrimination has recently been considered

a threat to mobile application performance [50, 59, 84, 85, 133, 178, 192, 259, 285].

WindRider, a measurement tool developed in 2009 at Northwestern University,

detects application and service-based traffic discrimination by mobile ISPs [293].

Functionality: WindRider supports active and passive measurement of traffic shap-

ing [315]. Active measurements exchange traffic between a user’s mobile devices and

a randomly chosen M-Lab server. The mobile device initiates a series of uploads

and downloads and records their observed performance. To detect port-based traffic

shaping, WindRider compares delay of identical transfers to different ports on M-Lab

55

servers. Passive measurements record packet latency to well-known web servers during

normal user browsing activity. To detect content-based traffic shaping, WindRider

compares the observed packet delay to that reported by other devices in different

carrier networks and locations to the same destinations. Active measurement results

are stored on M-Lab servers, while passive measurement data, collected with user

permission, are stored on WindRider servers.

Data Collection: The WindRider mobile application collects experiment-related data

such as connection start time, connection establishment time, connection finish time,

and number of inbound and outbound bytes [293]. WindRider also records metadata

such as device IMEI, device location (as ZIP code), network carrier, and browsing

history. WindRider also collects device hardware performance metrics that can help

interpret observed traffic delays, such as CPU execution time, virtual memory size,

page faults per minute, and other metrics as permitted by the OS API.

Resource Incentives and Protection: WindRider relies on user curiosity for its network

measurements.

Privacy Protection: WindRider optionally collects device IMEI, which can be linked

with a user’s browsing history. To protect user privacy, users can choose whether to

make this information available to the application.

Limitations: Although WindRider supports detection of traffic shaping in mobile

networks, it has two significant limitations. First, the measurement traffic is sent

only to M-Lab servers, but developers may want to investigate traffic shaping

on other paths. Second, WindRider only detects content-based traffic shaping as

56

discrimination based on traffic sources, i.e., well-known Web servers, rather than

type of traffic, for example BitTorrent.

MySpeedTest The MySpeedTest mobile application, launched in June 2012 by

Georgia Tech, measures network performance of mobile devices with the goal of

observing and explaining patterns of user behavior in mobile ISPs to application

developers [139, 210]. Such analysis may allow developers and service providers to

tune application performance [209]. The MySpeedTest mobile application is available

on Google Play and has more than 900 active users from 115 different countries, as

of February 2013 [209]. As of April 2013, MySpeedTest is in the process of sharing

a subset of their data with Google’s M-Lab to help researchers benefit from data

collected by each others’ experiments [210].

Functionality: MySpeedTest performs passive and active measurements. Passively,

MySpeedTest records the total number of bytes sent and received by each active

application since the device booted. Information such as package name, bytes

transmitted and received, application status (active vs. background) helps users

know which applications consume the most data and power, and which applications

may affect performance of other applications on the device.

Active measurements include a recurring test to measure TCP uplink and

downlink throughput, inter-packet delay, and packet loss. MySpeedTest also measures

network latency with 40 parallel ICMP pings to five servers in the U.S. and Europe.

These tests store the minimum, average, and maximum latency to each of the

five servers. The collected data help researchers and developers understand the

performance of paths to potential application servers [209].

57

TCP-based experiments can reduce the bandwidth available to other applica-

tions on the device, so MySpeedTest performs TCP-based experiments only on user

request, in a single thread for about 20 seconds, and using the maximum-sized packets

that will not be fragmented. MySpeedTest also gauges streaming data quality by

measuring packet loss and jitter of UDP traffic flows. MySpeedTest servers generates

a stream of 64-byte UDP packets, transmission at Poisson-sampled intervals, with

timestamps and sequence numbers in the payload. The server sends 500 packets with

a data rate less than 1 Kbps to avoid congestion. The client calculates packet loss

and jitter from every 10 packets received. The client compiles all data collected on

mobile device into the JSON format and sends it to the server for storage.

Data Collection: The MySpeedTest mobile application collects experiment-related

data such as TCP upload and download throughput, ping latency, UDP jitter, UDP

packet loss, and time to acquire a dedicated channel for data transmission [210].

MySpeedTest also collects device level data, such as cellular service provider, Android

version, device manufacturer, connection type, radio firmware, hashed phone number,

hashed IMEI, software version, SIM card state and serial number, latitude and

longitude of base station, network operator ID, CDMA system ID, CDMA network

ID, Wi-Fi signal strength, battery technology, status of battery charging, battery

health, battery voltage, battery temperature, and device location.

Resource Incentives and Protection: Similar to the FCC Speed Test app, MySpeedTest

relies on user curiosity about their network performance. MySpeedTest allows users

to limit contribution of resources through a monthly data cap. To protect battery

resources, MySpeedTest postpones experiments until the battery is above 5% and the

device is attached to a network.

58

Privacy Protection: MySpeedTest collects personally identifiable information (phone

number, IMEI, device location), which may expose private information, such as a

user’s location when a measurement occurred.

Limitations: Similar to MobiPerf and WindRider, MySpeedTest provides its users

a limited network measurement capability between mobile devices and servers,

as opposed to testbeds discussed in Section 3. MySpeedTest does not support

transmission of custom traffic, such as tools to detect traffic-shaping based on content

or port.

Akamai Mobitest Akamai’s Mobitest application and Web service, released in

March 2012 by Akamai Technologies, measures the performance of mobile Web

sites [53]. The application uses the WebPageTest framework and is available for

Android, iOS, Blackberry based smartphones, tablets and simulators [314].

Functionality: Mobitest platform relies on user participation to install Mobitest

software on their mobile devices. Each Mobitest installation on a device acts as

an agent to the WebPageTest framework, where such device executes experiments

requested by other users through the Mobitest Web service [162]. To measure the page

load time on a mobile device, a user enters a URL through the Akamai Mobitest Web

interface and selects the mobile device hardware that will perform the download [53].

Mobile devices running Mobitest periodically poll WebPageTest servers to obtain

pending URL download requests entered by Mobitest users. Each requested URL

is then accessed from the default browser on each device over the Wi-Fi, or cellular

network, depending on how the device is connected at the time.

59

Data Collection: Akamai Mobitest collects the total time to load a Web page,

individual request headers, average Web page size, as well as screen shots of the loaded

page and optionally video of the loading page [162]. The tool produces waterfall charts

of requests and delays, and an HTTP archive (HAR) file [54,126]. The collected data

helps researchers and developers gain insight into the responsiveness of Web servers

and browser rendering of different site implementations [252]. Mobitest allows users to

reuse previously collected measurements by linking them to user accounts on Akamai

Mobitest’s site.

Resource Incentives and Protection and Privacy: The Akamai Mobitest app allows

application developers to set the frequency at which pending experiments are

downloaded from WebPageTest servers to be executed on their mobile devices.

Additionally, Akamai Mobitest allows users to control device resource utilization

through a number of configuration options. Specifically, users can set whether the

app should poll for new experiments after restart, whether to restart the app after

every experiment, whether to capture network traffic, and the frequency at which

screenshots for loading pages are taken [7].

Limitations: Akamai Mobitest evaluates the webpage load time on mobile devices, but

does not allow more general experiments with non-browser-based application traffic,

including how to characterize traffic shaping of non-Web traffic. The WebPageTest

framework requires rooted phones, which limits the tool’s applicability outside of

dedicated test farms.

60

RILAnalyzer RILAnalyzer, developed by the University of Cambridge and

Telefonica in October 2013, is a client-side tool for monitoring of the mobile network

control plane as well as the data plane [65, 296]. The application is available for

rooted Android devices with Intel/Infineon XGold chipsets, which include the popular

Samsung Galaxy S2/S3, Note 2, and Nexus devices.

Functionality: RILAnalyzer’s focus is on discovering the promotions and demo-

tions between the Radio Resource Control (RRC) states IDLE (no connection),

CELL DCH (dedicated communication channel), CELL FACH (shared communication

channel), and CELL PCH (shared paging channel). Transitions between these states are

triggered by control messages from the Radio Network Controller (RNC), which may

themselves become a communication bottleneck [296]. As mobile devices consume

different levels of energy in each of the RRC states, the devices themselves may use

Fast Dormancy to reduce tail-energy and demote to lower energy states faster than

through vendor and operator dependent timeouts [184].

RILAnalyzer implements a background tool that polls the device Radio Interface

Layer (RIL) Daemon every second for the current RRC state. RILAnalyzer then

obtains data plane network and transport headers using NetworkLog [4] to identify

applications active during each RRC state.

Data Collection: RILAnalyzer collects RRC states at one second intervals, headers

and timestamps of outgoing TCP and UDP packets from NetworkLog as reported by

the Linux kernel.

Resource and Privacy Protection: RILAnalyzer is intended for small scale studies on

dedicated devices, or devices operated by expert users [296]. As such the tool’s design

61

has not made provisions to attract users with incentives, or to allow them to set limits

on resource usage.

Limitations: RILAnalyzer is restricted to rooted phones on the Intel/Infineon XGold

chipset. Although the authors of RILAnalyzer intend the tool for small scale

studies, the specificity of hardware and overhead of reverse engineering RIL Daemon

OemCommands commands does preclude large scale studies on diverse mobile hardware.

RILAnalizer also puts a noticeable load on the CPU (∼10%), memory (<42%), and

storage (with packet logs), which may limit the willingness of volunteers to run the

tool on their phones.

Libraries for Mobile Network Measurement

Libraries for mobile network measurement may be embedded in other applica-

tions to add network measurement functionality. This approach is potentially easier

to adopt by Developers than extending open-source code of a standalone measurement

tool. As in the case of Mobilizer, a library may also form a basis of a measurement

tool, i.e. the current version of MobiPerf.

MobiPerf The MobiPerf mobile application was developed as a collaboration

of University of Michigan, Northeastern University, University of Washington, and

Google’s M-Lab to measure network performance and diagnose problems with

application content delivery on mobile devices [206]. To allow the community to

understand the impact of collected data across geographic locations, network carriers,

and devices, MobiPerf allows a comparative study of past network measurements

made by different users, but prevents users from running similar measurements to

limit contention for testbed resources. New measurements are executed only if a

62

query for previously collected data comes back empty. The latest version of MobiPerf,

released in August 2014, is based on Mobilizer – an open-source Android library for

network measurement announced at AIMS 2014 [324].

Functionality: MobiPerf supports several types of network performance measurement,

which can execute serially or in parallel [166]. Mobilyzer provides measurement

isolation (only one experiment is active at a time), which avoids bandwidth contention

and radio power state transitions across experiments. To measure throughput,

Mobiperf transmits random data to and from a nearby M-Lab server for 16 seconds

and computes uplink and downlink throughput from packet traces.

MobiPerf supports latency measurements on both IPv4 and IPv6 network paths,

using ICMP ping when available, with fallback to a Java ping implementation and

latency estimates from three-way TCP handshakes in HTTP transfers. Mobiperf

measures the delay of DNS lookups using the default DNS server configured for the

device, which limits the ability to measure performance of third-party open DNS

infrastructure.

MobiPerf also supports measurement of uplink and downlink UDP packet loss,

out-of-order delivery, and variation of one-way latency. To obtain these metrics on

the uplink, a client device sends a group of UDP packets to a nearby M-Lab server,

where the server calculates network metrics from packet arrival time and order. The

same transmission repeats from server to client to calculate downlink metrics.

MobiPerf performs more complex measurements to discover fine-grained network

policies and their effect on data plane performance. For example, MobiPerf measures

radio resource control (RRC) state information of cellular networks to estimate the

impact on packet latency [267]. Finally, MobiPerf measurements can execute in the

background to support long-term monitoring of network performance.

63

Data Collection: Similar to other measurement tools, the MobiPerf application

collects performance data such as TCP uplink and download throughput, HTTP

download latency and throughput, traceroutes, path latency, and DNS lookup delay.

Researchers and vendors may want to know how variation in mobile hardware

affects application performance, so MobiPerf collects device-related data such as

manufacturer, model, operating system version, Android API level, carrier, salted

hash of device IMEI, coarse-grained cell ID location information, cell tower ID and

signal strength, Location Area Code (LAC), local IP address, IP address seen by

the remote server, GPS coordinates, ports blocked by cellular provider and network

connection type (HSPA/LTE) [205,331].

Resource Incentives and Protection: MobiPerf relies on user curiosity to support

measurement, and users can limit the resources they contribute. Specifically,

measurements do not execute when the device battery consumption, or MobiPerf

application monthly data usage, exceed user-set thresholds.

Privacy Protection: MobiPerf currently records the users’ e-mail address, if they choose

to provide one, to access their historical measurement results. This information is

secured by Google’s account authentication mechanisms and is not made publicly

available. To minimize any risk of exposing this potentially personally identifiable

information, future versions of MobiPerf will store a salted hash of users’ e-mail

addresses instead.

Limitations: MobiPerf allows users to choose from only predefined measurements,

64

which limits the tool flexibility. For example, MobiPerf does not support transfers of

custom content on arbitrary ports to detect network traffic shaping.

ALICE A Lightweight Interface for Controlled Experiments (ALICE) is a

programmable network measurement library for Android devices developed by John

Rula et al. at Northwestern University [269]. ALICE extends Dasu, a rule-based

network testbed built as an add-on to the Vuze BitTorrent client [275], by enabling

experiment definition in Javascript [270].

Functionality: The ALICE measurement library supports active and passive ex-

periments on mobile devices. ALICE provides a programmable interface for the

configuration of active network measurements, such as DNS resolution, ping, and

iPerf. Tests can execute sequentially or in parallel. Although the sequence of

tests and value passing between them is organized through a Javascript experiment

definition, ALICE does not support custom traffic generation, and so is primarily

a network measurement library. For serially scheduled experiments, ALICE allows

one experiment on a device at a time; for parallel execution, ALICE allows a limited

number of experiments to run at the same time – new experiments scheduled for

a given device enter a queue until the device becomes available. ALICE chooses

its test devices based on user-specified time of day, network provider, and network

type (Wi-Fi/Cellular).

Data Collection: ALICE collects device location, radio signal strength (WiFi and

cellular), WiFi access point name, device hardware address, IP address on each

network interface, and number of bytes sent and received by other applications on

the device. ALICE also collects performance metrics, including HTTP GET request

65

time, DNS lookup time, ping times, available bandwidth. ALICE records network

diagnostic information provided by traceroute and NDT (Section 3.3.1).

Resource Incentives and Protection: As of September 2014, ALICE has been included

in three different applications developed at Northwestern University and available

through the Google Play store: Namehelp Mobile1, Application Time (AppT)2, and

NU Signals v23. The Northwestern team’s deployment model of growing the tool

through application deployments allows ALICE to benefit from popularity spikes

of new applications. To protect device resources, developers can set quotas for

bandwidth usage of individual measurements.

Privacy Protection: ALICE records hardware addresses of available network interfaces,

which are unique to each device. In combination with the ability to record sent and

received traffic payload of other applications, for example location reporting, ALICE

creates a potential for privacy exposure, if user location, or other private data, is

correlated to unique device ID.

Remaining Challenges: Currently ALICE does not support repeatable experiments on

the same device, or set of devices, through device selection criteria. ALICE also does

not support peer-to-peer experiments, or custom traffic transmissions, which limits

the tool’s support for application prototyping.

1Namehelp Mobile measures the DNS performance of Cellular ISPs and public DNS resolvers,
including of CDN replicas [62]

2Application Time allows users to track their application usage on their mobile device [61].
3NU Signlas allows users to diagnose Wi-Fi problems [220].

66

Measurement Services

In addition to testbeds and tools there are many closed-source, proprietary

measurement services for mobile networks. I divide these services into network

monitoring and network discovery and diagnosis. The main goal of these is to collect

data and provide insight to users based on their own device, but not necessarily

make the data broadly available. Still, these services offer valuable insight to

developers, researchers, regulators, and network operators able to access the data.

Because the details of how these services are implemented and how they perform

measurements is not widely available, I restrict our discussion, with few exceptions,

to the commonalities and differences of what data these services collect.

Network Monitoring

Google Play Store and Apple App Store offer tens of applications for monitoring

of network performance. Because of their relative similarity, I restrict our discussion

to several popular and representative services.

Ookla SpeedTest Mobile Ookla’s SpeedTest application for mobile devices,

released in January 2009, measures the device’s network performance over Wi-Fi and

cellular links [225]. As of March 2015, the application support measurements against

3479 geographically distributed Ookla servers in about 80% of world’s ISP networks,

has over 10 million installations, and has successfully completed over 7 billion user

initiated measurements on the Ookla infrastructure [39,227]. Ookla also allows users

to host an Ookla server To expand the capacity of their measurement infrastructure,

Ookla also allows users to host an Ookla server [226]. The application is available for

Android, iOS, Windows phone, and Amazon FireOS based smartphones [225].

67

Functionality: The application captures the device geographic location and uses it to

identify a set of five nearby servers. If the device location is not available from the

GPS, the application uses device’s IP address and estimates the device’s location using

MaxMind’s (approximate) IP-to-location database [197,228,231]. After identifying a

pool of five nearby servers, the application sends a hello message to all five servers

and selects the measurement server from the first received reply [229]. Users may also

select a specific server based on criteria such as hosting ISP, distance from user, and

city name.

This SpeedTest uses HTTP fetches of small files to measure round-trip time

and compute uplink and downlink throughput [230]. To measure the ping latency,

the application sends several HTTP requests and records the time when app receives

responses from the server [230]. Ookla SpeedTest uses the computed connection

throughput to estimate how much data it can download from the server within 10

seconds, and then uses up to four HTTP threads on a single persistent connection

to download the estimated amount of data. To eliminate any influence on the

throughput results from protocol overhead, buffering time on the device, CPU usage,

the application first discards the fastest and slowest 10% of throughput values as

outliers before computing the average throughput. The application then discards

the slowest 20% of throughput values to prevent results from being influenced by

TCP slow-start. Finally, the application calculates the downlink throughput for the

experiment based on the average of the remaining throughput values. The uplink

throughput test is similar to downlink throughput test.

Data Collection: Ookla’s SpeedTest mobile application collects device location (GPS

and network-based), radio signal strength, device ID, device phone number, call

68

status and remote phone number of an active call, names of devices on connected

Wi-Fi network, local and public IP addresses, time at which the experiment was

conducted, round-trip time, upload and download throughput, and connected network

type (Wi-Fi or cellular). Ookla supports another application, PingTest, that collects

network jitter and packet loss, to understand the suitability of the user’s network for

services such as VoIP audio, video streaming, and online gaming [253].

Resource Incentives and Protection: The application limits the number of HTTP

threads to two when the observed throughput is less than 4 Mbps, otherwise the

it uses four threads for throughput experiments.

Privacy Protection: The SpeedTest mobile application collects personally identifiable

information (phone number, device ID, and device location), which may expose

private information, such as a user’s location when a measurement occurred. Users

may delete previously collected data, or leave it on Ookla servers to compare with

new data collected at a later time to discover changes in network performance over

time.

Limitations: As of March 2015, the SpeedTest mobile application lacks a programming

interface to allow users to automate and schedule experiments. Although, Ookla

allows users to host SpeedTest experiments on their Web servers for in-house testing,

via SpeedTest Mini, however, as of March 2015, the ability to run measurement

against such servers is not supported on Speedtest’s mobile application and is only

supported with the Web version of Ookla SpeedTest [232]. The algorithm used by

the application to measure the round-trip time relies on the time it takes to receive

an HTTP response, which may include the time request spent in transport queue

69

and application processing at the server. Finally, the application does not support

detection of traffic shaping.

RadioOpt Traffic Monitor The RadioOpt Traffic Monitor mobile application, re-

leased in April 2012 by RadioOpt GmbH, allows users to understand the performance,

reliability, and utilization of their wireless and cellular networks [258]. Based on the

information collected about the network, the application allows users to compare

the performance of their wireless networks with other users in the same geographic

region. The application is available for Android, iOS (iOS 7.0 or later), Blackberry,

and Windows-based smartphones [256, 257]. As of March 2015, the application was

installed over a million times.

Functionality: The RadioOpt Traffic Monitor mobile application uses CacheFly’s CDN

infrastructure. To identify a nearby server, the application sends a DNS query to the

device’s default DNS server for a CacheFly CDN domain name (cdn2.speedtestsdk.

com). CacheFly uses TCP-anycast to direct users to the nearest CDN replicas [91].

Next, the application sequentially initiates downlink and uplink throughput tests to

the selected server. To measure throughput, the application estimates the appropriate

size of the data to exchange between the device and the server, similar to Ookla

SpeedTest.

To measure latency, the application sends 15 ICMP ping requests to the server

and records the time of each request/response pair. To measure the time to load

a webpage on user’s network, the application sends three HTTP GET requests and

records the time to download the complete webpage, and other web objects such as

CSS, image, JavaScript files embedded into the page.

cdn2.speedtestsdk.com
cdn2.speedtestsdk.com

70

Data Collection: The application computes parameters from measurement data such

as the minimum, average, maximum ping latency to a nearby CacheFly server along

with the standard deviation in latency and throughput, the amount of data uploaded

and downloaded for the throughput tests, download time of a hosted web page and

the web page size. The application also collects device-related information such

as its location (including accuracy and device travel speed), web bookmarks and

browsing history, names of devices connected to the same Wi-Fi network, signal

strengths at different locations, number of SMSes sent and received, and incoming

and outgoing voice minutes, device model and manufacturer, OS or firmware version,

current time on the device, the time when the device was last rebooted, cellular access

technology (2G/3G/4G), and network country code.

The application also collects information specific to applications on the device

such as their names, duration of usage, cellular and Wi-Fi data consumption (only

on Android based smartphones), memory consumption, traffic (per application) sent

and received on the device over cellular and Wi-Fi networks, application type (OS

service or background), and software packages used by the application.

RadioOpt collects device battery-specific information such as the battery state

and charge remaining, voltage, temperature, technology, and charging state. Finally,

the application collects Wi-Fi network related information such as the signal

strength (latest, minimum, and maximum), network SSID and BSSIDs, the MAC

address of the client, IP address of the client, and client-to-router link bandwidth.

Resource Incentives and Protection: RadioOpt relies on user curiosity to understand

the performance of their own wireless and cellular networks. The app allows users

to configure a monthly/weekly/daily cellular data cap, monitor their monthly data

71

traffic, SMSes received and sent, and voice minutes, and configure alerts when data,

SMS, or voice minutes reach a threshold.

Privacy Protection: The application may discover user behavior since it collects

information such as the user’s Web browsing history, bookmarks, applications

installed and their duration of usage, among others. However, any personally

identifiable data collected by RadioOpt mobile application is not shared with

RadioOpt servers without the user’s consent.

Limitations: RadioOpt does not allow its users to understand whether their cellular

ISPs are discriminating one traffic over the other. Further, the application does not

support measurement experiments to be run against an arbitrary server.

OpenSignal The OpenSignal mobile application, released in March 2013 by

OpenSignal, Inc., allows users to compare the quality and coverage of their cellular

networks (on a Google Map’s developer widget [154]) in different geographic areas

and with other cellular networks available in the area [239]. The application rates

for how well Web, Video, and VoIP based applications are likely to perform on the

current cellular network. The application assist users to also find publicly available

free and paid Wi-Fi hot-spots, and the walking directions for higher signal strength.

The application has over 10 million installations and is available for Android and iOS

based smartphones [237, 240]. As of March 2015, the application has garnered over

900,000 users and has performed several network measurements to collect information

for over 800,000 cellular towers, 825 cellular networks, over 5B cellular signal readings,

and over 1B Wi-Fi access points available in different countries [239].

72

Functionality: The OpenSignal mobile application supports several active and passive

measurements to measure ping latency, download and upload throughput. The

application performs periodic passive measurements, and publishes them to an

OpenSignal server [92]. Before starting any measurement test, the application sends

the device ID, OS, Android API version, and BSSIDs of nearby wireless networks

to an OpenSignal server. Next, to measure latency, the application sends 3 HTTP

HEAD requests to www.google.com [140,238]. The application then records the time

to receive the time to get the response for each request, followed by calculating the

average of the three latency values.

To measure the download throughput, the application sends eight concurrent

HTTP GET requests to download files of size 108 Mb each, from a CloudFront’s

CDN replica [92]. The download throughput test is performed for a fixed amount of

time after which the application computes the average throughput. To measure the

upload throughput, the application sends several concurrent HTTPS POST requests

to upload several small image files of size 15 Mb in total, to an Amazon AWS server.

As a part of making the collected data available publicly and to encour-

age developers, researchers, regulators, and network operators to investigate and

address network problems, OpenSignal provides two APIs [49]. The first API,

known as NetworkStatus, allows developers to get signal strength, upload and

download throughput, round trip latency, and network name, network ID, network

type (2G/3G/4G), and network reliability for every measurement within certain

distance of a specified geographic coordinate [233]. The second API, known

as Tower Info, allows developers to get the cell ID, location area code, phone

type (GSM/CDMA), and estimated latitude and longitude of a cellular tower [234].

73

To prevent misuse of their publicly available API, OpenSignal allows a maximum of

five API calls every minute and 2000 API calls every month.

Data Collection: The OpenSignal mobile application collects device-related infor-

mation such as SMS transmission and receipt timestamps, device location, ID,

model name, OS, Android API level, IP address, behavior at different battery

temperatures (hot, crashed, slow, fast), duration of OpenSignal sessions on the device,

and whether the phone is engaged in a phone call during the measurement.

The application collects network-related information such as the active Wi-Fi

SSID, names of devices connected to the Wi-Fi, SSIDs of other avaiable Wi-Fi,

connection type (collected every 15 minutes), signal strength, upload and download

throughput, and round trip latency to a Google server. For devices connected to GSM

networks, the application associates cell towers by their cell id and location area code;

for CDMA networks, by their Network ID, Base sub-station ID and system ID [240].

To understand the relationship between signal quality and battery consumption, the

OpenSignal application collects the battery level, voltage and temperature [236].

Resource Incentives and Protection: OpenSignal does not provide any incentives for

user participation to run measurement experiments on mobile devices.

Privacy Protection: Although the application collects information about phone calls

and SMS messages, the application never reads them [235]. This is because the

application only counts the total number of text messages received and sent from the

device. Further, any personally identifiable information collected by the OpenSignal

mobile application is never shared by any third party services [235]. However,

OpenSignal does not take any responisbility of any data shared by the user on

74

online social networking websites through the OpenSignal application. Finally, the

application does not put any obligation on the user to share the data collected with

OpenSignal.

Limitations: The application does not detect the presence of traffic shaping in

ISP networks. Further, to perform throughput measurement tests, the application

requires an exchange of several hundred of megabytes between the mobile device and

the server, which may not be suitable for users with low data plans [92].

Vodafone NetPerform The Vodafone NetPerform mobile application, released

in June 2014 by Vodafone Sales and Services Limited, allows users to understand

the performance of their cellular network in their region and compare with it

with the performance that other users in the same region are experiencing [304].

The application also allows Vodafone to understand the amount of data that their

customers use and as well as the trend in data usage by tracking the data usage from

different applications installed on their customers’ smartphones. Such knowledge

of data usage allows Vodafone to resolve connectivity issues in their network, as

well as, install higher capacity links to accommodate any customer demands to

support interactive applications that require higher bandwidth. The data used by

the Vodafone NetPerform mobile application is free for only Vodafone customers

in Ghana, Ireland, and United Kingdom. However, users in other countries or

non Vodafone customers may be charged for any data used by the Vodafone

NetPerform application. The application is available for Android and iOS based

smartphones [302,303].

Functionality: Every hour, the application establishes a TCP connection with a

75

Vodafone server to verify whether the device has Internet connectivity. Conducting

such a test every hour allows Vodafone to understand the network stability and

any variation in end-to-end latency on their network over time. The application

performs another hourly network measurement test to determine the uplink and

downlink throughput against a nearby Vodafone server. The throughput tests execute

for only 10 seconds, within which the application exchanges data with a Vodafone

server [302]. The throughput is then calculated as the average of different throughput

values sampled in 10 seconds.

Data Collection: The data collected by the Vodafone NetPerform mobile application is

stored on Vodafone servers for only 14 months, which allows Vodafone to understand

the changes in the seasonal use of the network usage by their customers. To

understand and diagnose the network problems related to phone call connectivity, the

application collects cellular tower ID to which the device is connected, signal strength,

device location when the network is either limited or not available, the quality of

2G/3G coverage, device speed (if available through GPS), and time duration when

the device uses cellular network, how the phone call ends (dropped or disconnected

by the user) [305].

To understand and diagnose issues related to data services the application

additionally captures whether the device can establish a connection with a Vodafone

server, time taken to establish a connection with a Vodafone server, the MAC

addresses of all available Wi-Fi access points along with their link bandwidth, hourly

data usage of the device, data usage when the device is in standby mode, and the

upload and download throughput [305].

To understand the types of Internet services that users are interested in and

to allocate high capacity bandwidth for services that require high bandwidth, the

76

application captures the names of all applications installed on the device, the names of

applications that the user uses everyday, the duration of application use, the amount

of data is received and sent from each installed application.

Finally, to diagnose and resolve device related network issues, the application

collects the device model and company, device IMEI (encrypted to maintain

anonymity), the OS running on the device, firmware version, the OS language, battery

status, memory in use, the time when the phone last rebooted [305].

Resource Incentives and Protection: Users do not get any incentives for running

measurement tests on their devices. Instead, Vodafone relies on users’ curiosity to

understand the network performance and gathers data collected on users’ devices to

improve the quality of their voice and data services. With respect to protecting device

resources, the application does not allow users to configure a monthly cap on the

amount of cellular and Wi-Fi data that the application can use to run measurement

tests. Further, since the application run throughput and latency tests every hour, the

application prevents the device to turn off its radio, which drains the device’s battery

quickly [302].

Privacy Protection: The application does not collect any personally identifiable

information such as the device phone number, the phone numbers of incoming

and outgoing phone calls, incoming and outgoing SMS messages, and the names of

available Wi-Fi hotspots. However, by collecting the names of application installed

and when different applications are used, the Vodafone NetPerform application has

a potential to discover user behavior, which might be unsuitable for some users.

Limitations: The Vodafone NetPerform mobile application does not allow users to

77

discover whether their cellular ISPs are performaing traffic discrimination. Further,

the availability of the application only for users in a few countries in Europe restricts

the network operators in other countries to gain insight of their network issues and

performance.

Emerging Applications Many other network measurement services have been

developed by independent developers to assist users to measure performance of wire-

less and cellular networks. Such applications include SpeedSpot [289], Sensorly [278],

RootMetrics [266], NetworkCoverage [131], Internet Speed Test [295], Netradar [216],

Cisco Data Meter [103], 4Gmark [300], and nPerf [219]. Because the details of how

these services are implemented and how they perform measurements is not widely

available, I restrict our discussion to the commonalities and differences of what data

these tools collect and how. I also illustrate the similarities and differences between

these emerging measurement services in Table 3.2.

Specifically, SpeedSpot, Sensorly, RootMetrics, and NetworkCoverage are similar

to the OpenSignal mobile application in their capability for users to compare the

performance of their wireless and cellular networks on a map and find nearby Wi-Fi

networks. Internet Speed Test is similar to Ookla SpeedTest; it allows users to

measure the latency and throughput to application’s servers on user’s network.

Similar to RadioOpt, NetRadar and Cisco Data Meter applications run latency and

throughput experiments against servers deployed on the cloud/CDN servers and

allows users to monitor traffic sent and received by applications installed on their

devices. 4Gmark and nPerf are similar to each other, in that, these applications not

only allow users to measure the performance of network in terms of throughput and

latency, but also measures the suitability and reliability of the network for streaming

and Web applications.

78

Network Discovery and Diagnosis

While most of the previous projects focus on measuring end-to-end performance

of mobile application communications, the following tools allow developers and

researchers to learn more about the state of network infrastructure and configurations

that affect transmission of application traffic. Pertinent features include the presence

of proxy servers and other middleboxes, or complex multi-level DNS resolutions.

NDT (Mobile Client) The Network Diagnostic Test (NDT) system, developed

by Internet2, evaluates the performance of mobile connections to diagnose problems

that limit network bandwidth [169,203]. NDT also detects problems associated with

device misconfiguration and network infrastructure. NDT (Mobile) is currently hosted

on Google’s M-Lab and allows access to its backend through an Android mobile

application.

Functionality: NDT measurements are performed from a mobile Web browser that

issues requests to NDT servers, hosted by M-Lab. The server-specific tests diagnose

observed network problems. After the measurement experiment completes, the server

analyzes the results and returns them to the client device.

Data Collection: The NDT mobile application collects traffic performance information

such as upload and download speed, round trip network latency (minimum, average,

and maximum), jitter, TCP receive window size (current and maximum), packet loss,

TCP retransmission timer, and number of selective acknowledgements received. The

application also detects router cable faults, incorrectly set TCP buffers in the device,

duplex mismatch conditions on Ethernet links, presence of NAT, and capacity limits.

79

Resource Incentives and Protection: The incentive model for the NDT mobile client

is based on providing network diagnostic information in exchange for users running

tests on their mobile devices. One issue for users who volunteer their device resources

is that NDT requires permission to prevent the phone from going into power save

mode, which may drain the battery quickly.

Privacy Protection: By default NDT records experimental data separately for each

user, which allows users to privately diagnose their network problems. Data isolation

also prevents malicious users from learning of open ports and interfaces in others’

networks.

Limitations: The NDT mobile client executes experiments that evaluate network traffic

only between a mobile device and its closest M-Lab server and not any arbitrary

server.

Netalyzr The Netalyzr mobile application, developed as a collaboration of ICSI

Berkeley, UC Berkeley, HIIT, and Aalto University, is a diagnostic tool that char-

acterizes connectivity, performance anomalies, and network security issues [183,298].

The tools measures network latency and bandwidth to reveal insight into not only

performance to cloud servers, but also how middleboxes in the path affect the

performance of traffic. As of March 2014, Netalyzr has run over 15000 times to

diagnose 290 operators in 90 countries. Netalyzr is accessible via an Android mobile

application available on the Google Play Store.

Functionality: Netalyzr identifies the presence of Network Address Translations (NATs),

80

proxy servers along a route, IP fragmentation, size of bottleneck buffers, reachability

of services, and presence of HTTP proxies. When the Netalyzr application starts, it

contacts the Netalyzr’s Web server, which issues a DNS lookup request to redirect the

user’s request randomly to one of the twenty Netalyzr’s back-end servers hosted on

the Amazon cloud. Each back-end server supports twelve concurrent measurement

sessions.

Netalyzr detects the presence of a NAT based on a difference between a user’s

local and public IP addresses. For clients behind a NAT, Netalyzr identifies how the

network renumbers addresses and ports, i.e., whether the NAT uses fixed associations

of local IP addresses to different public IP addresses, or if the NAT uses load-

balancing.

To detect support for IP fragmentation, Netalyzr sends a 2 KB UDP packet

(larger than 1500 B Ethernet maximum transmission unit (MTU)) to the server – a

response from the server indicates the network supports fragmentation. If there is no

response Netalyzr uses binary search to find the maximum packet size it can deliver

without the packet being fragmented at the IP layer. The same test repeats from

server to client to detect network support for fragmentation on the reverse path.

The sizing of bottleneck buffers affects user-perceived latency, and is measured

based on the difference in latency during inactivity and during path throughput

tests. Finally, queue drain time indicates the size of the buffer. To perform service

reachability related experiments, the application attempts to connect to 25 different

well known ports on a back-end server.

Netalyzr infers the presence of HTTP proxies if the public IP address in the

request received by the back-end server is not the same as the client’s public IP

address. To detect the presence of in-path HTTP proxy, the client first sends an

HTTP request to the server, the server then returns the request headers it received

81

in the request back to the client. The client then compares the headers it sent and

the headers the server sent to the client for any added, deleted or modified fields. To

detect the presence of caching policies, the application relies on the HTTP 304 Not

Modified response from the server.

To detect the presence of a DNS-proxy server or firewall, the application sends

a DNS request to Netalyzr’s back-end server. If the client detects any change in the

response (different transaction ID, or public IP address), then Netalyzr assumes an

in-path DNS proxy exists. Netalyzr then makes invalid DNS requests to the back-end

server. If the client receives an invalid response from the server, nothing is detected,

but if the request is blocked, Netalyzer assumes a DNS-aware middlebox is blocking

invalid DNS requests from leaving the network.

Data Collection: The Netalyzr mobile app records the presence of network interfaces,

gateways, NAT detection, port renumbering, path MTU, packet fragmentation, DNS

resolver, extension mechanisms for DNS (EDNS) support, port randomization, IPv6

support, hidden proxies, in-path caches, header manipulation, image transcoding,

compression, HTTP type filtering, port filtering, traffic differentiation, IP fragmen-

tation, signal-to-noise ratio, Wi-Fi/cellular configuration, network topology through

traceroute, TLS handshake, UPnP vulnerabilities on Wi-Fi APs, clock drift, and TLS

default certificates [298].

Resource Incentives and Protection: Netalyzr provides network diagnostic and trou-

bleshooting information to users. Netalyzr requests user permission to modify system

settings and to terminate other running applications in order to increase measurement

accuracy. The Netalyzr mobile application asks users for permission to execute IP

82

traceroutes, since ICMP packet transmission on a mobile device requires access to

raw sockets.

Privacy Protection: Netalyzr asks users to opt in to the data collection process before

installing the application. Therefore, if users are uncomfortable with sharing the

measurement results with Netalyzr, they may not install the application. However,

when the user grants permissions to the application, Netalyzr could use GPS to get

device location, read phone status and identity, and modify or delete the contents of

USB storage to store or delete measurement related data on the device.

Limitations: Although Netalyzr provides a robust diagnostic set of end-to-end network

measurements and helps users troubleshoot networks, unlike MITATE, or WindRider,

Netalyzr does not detect traffic shaping in mobile ISPs.

PortoLan PortoLan is a network experiment testbed based on volunteered

mobile devices that executes experiments submitted to back-end servers [156].

PortoLan is designed by Enrico Gregori et al. at Istituto di Informatica e Telematica,

to discover Internet topology and build wide scale mobile network signal quality

maps. The Android application for PortoLan is available on Google Play and allows

users to run measurement tests like ping, traceroutes, maximum throughput, and

detection of traffic shaping of BitTorrent traffic [22]. The PortoLan team intends to

add capability to support active network experiments and access to mobile sensor data

such as network signal strength, device location, network name, cell type, and roaming

status. PortoLan relies on user altruism to build testbed capacity and support

measurement. The PortoLan mobile application limits the device cellular bandwidth

usage to 2 MB/day and postpones experimentation when battery drops below 40%.

83

Finally, the application does not collect personally identifiable information from the

device and anonymously stores measurement data on backend servers.

Conclusions

This survey provides a comprehensive overview of the existing and emerging

end-to-end mobile network measurement testbeds, tools, and services. In spite of

the relative maturity of existing platforms, several functionality gaps remain with

respect to the needs of developers, researchers, network operators, and regulators in

assessing mobile network performance. First, existing tools do not adequately support

detection of traffic shaping. As depicted in Table 3.1, testbeds such as MITATE,

Seattle, PhoneLab, PortoLan, and WindRider can detect the presence of traffic

shaping mechanisms in mobile ISPs, whereas, other testbeds do not. Second, device

churn inherent in platforms based on ad-hoc user participation means that existing

tools are not well-suited for long-term network performance monitoring. In fact, the

popularity of tools such as PhoneLab and FCC has declined over time. Third, several

testbeds enable developers to prototype the performance of their applications ahead

of deployment. However there is significant disparity in how testbeds provide that

functionality in terms of execution models and APIs. Finally, exchange of P2P traffic,

network diagnostics, ICMP traceroutes, device selection criteria, and NAT traversal

are also supported by different platforms. One significant axis of comparison between

network measurement platforms not discussed in this survey is their accuracy. The

variety of measurement methods used to obtain even the relatively standard network

metrics, such as throughput, makes it difficult to compare the relative accuracy of

the different platforms.

84

Based on the surveyed work, I believe the mobile network measurement

community needs a more concerted effort among developers, researchers, network

operators, and regulators to produce network measurement tools that meet the

needs of all four communities. A more concerted effort would lead to greater

adoption of (perhaps fewer) tools, as well as large-scale and long-term network

monitoring. At the same time, funding agencies should support development of new

measurement approaches and capabilities, especially when such improvements are

aimed at enhancement of existing testbeds.

85

86

Table 3.1: Experimentation flexibility matrix of end-to-end
measurement testbeds, tools, and services.

87

Table 3.2: Experimentation flexibility matrix of emerging end-to-end measurement
services.

88

ROLE OF DNS IN CONTENT SERVER SELECTION

Abstract

Modern websites use Content Delivery Networks (CDNs) to speed up the delivery

of static content. However, I show that DNS-based selection of CDN servers can be

refined to fully deliver on the speedup of CDNs. I propose DNS-Proxy (dp), a client-

side process that shares load-balancing functionality with CDNs by choosing from

among resolved CDN servers based on last mile network performance. Our measure-

ment study of CDN infrastructure deployed by five major CDN providers shows that

dp reduces webpage load time by 29% on average. If dp has already resolved the

domain, the reduction in webpage load time is as much as 40%. Finally, dp reduces

the load time of individual static Web objects by as much as 43%. I argue that dp

enables a more effective use of existing content delivery infrastructure and represents

a complementary strategy to a continual increase of geographic content availability.

Introduction

The growing competition among Internet services such as online social networks,

e-commerce, or streaming video, drives developers to improve the responsiveness of

their applications. Content Delivery Networks (CDNs) play a vital role in reducing the

request delay to improve the user experience [164]. To increase application responsive-

ness and attract content providers, CDNs invest significant resources to geographically

distribute their content servers [141]. However, users’ opinions on Web content deliv-

ery indicates that CDN performance could be improved to meet user expectations [86].

The speed at which static content is delivered is dominated by the network

latency between clients and CDN servers from which the content is downloaded [77]

89

[157] [308]. Content-rich websites contain images large enough to require multiple

round trips to download [319]. Further, website rendering on browsers includes

dependencies, which means that static content such as image, advertisement,

JavaScript, and CSS files are fetched over multiple request rounds [308] [193].

CDNs reduce the impact of network round-trip times (RTTs) on overall page

load time by serving content from widely distributed servers in last-mile networks.

CDNs balance the load on their servers through DNS-based server selection, where

geographically distributed DNS servers resolve CDN URLs to IP addresses of nearby

content servers [16] [25]. However, I discover that content distribution may not reduce

the network latency as expected, because DNS-based server selection does not always

direct clients to the closest available content server, for various reasons such as content

availability, load-balancing, cost of bandwidth, etc.

I performed an extensive measurement effort to evaluate the performance of CDN

infrastructure deployed by Akamai Technologies and Google Inc. and discovered the

following four limitations of the current DNS-based server selection mechanisms.

• The end-to-end latencies between a client and the CDN servers returned in a

DNS resolution may have a high variation.

• The end-to-end latency between a client and a CDN server resolved by one DNS

server could be remarkably lower than the end-to-end latency between the same

client and a different CDN server resolved by another DNS server. Although

such differences in end-to-end latency are to be expected in general, I show that

they are domain dependent, in that the same DNS does not always provide the

fastest CDN server for a given client for every resolved Web domain.

90

• A DNS server may direct a client to unnecessarily distant CDN servers when

closer CDN servers are available. Again, although such direction may result

from intended load-balancing, I show how their negative impact may be avoided.

• DNS-based server selection may occasionally direct clients to CDN servers

inaccessible from clients’ network, which results in the failure to access static

Web content.

I conclude that current implementation of DNS-based server selection should be

improved, in that it should take full advantage of geographic server availability to

reduce the impact of network RTT on overall webpage load time.

Based on our measurement study I argue that clients are best-positioned in the

network to measure CDN performance and participate in the selection of the best

CDN replica. It is therefore timely to explore solutions, where server selection is

shared by clients and CDNs to both minimize the network delay and balance server

load. I propose DNS-Proxy (dp), that complements DNS-based server selection with

client measurement from the last-mile networks. dp implements a lightweight parallel

probing mechanism to probe resolved CDN servers, to direct clients to the fastest

available CDN server.

Our results show that, dp reduces the webpage load time by 29% on average. If a

request for a domain is already resolved by dp, the webpage load time is reduced by as

much as 40%. Finally, dp reduces the load time of individual static Web objects by as

much as 43%. To the best of our knowledge, dp is the first step in this direction that

extends the CDN replica selection functionality to client devices in last-mile networks

on a per-domain granularity. Our experience with dp shows that load balancing can

be shared effectively between CDNs and client devices in end-networks. I make dp

available as an open source tool at http://github.com/msu-netlab/dp.

http://github.com/msu-netlab/dp

91

Although some CDNs may use anycast for global load-balancing [73], the goal

of this study is to understand the impact of DNS-based server selection used by most

major CDNs.

The rest of the chapter is organized as follows. In Section 4, I describe our exper-

imental setup and discuss the impact of current DNS-based server selection techniques

on Web performance. In Section 4, I discuss the implementation of dp as a tool for

client-assisted server selection. Section 6 describes our evaluation results. In Section 5

I offer a discussion of dp’s path to deployment. In Section 4 I outline the related work

on reducing network latency for Web applications. Finally, I conclude in Section 4.

DNS-based Load Balancing

To discover the limitations of current DNS-based server selection techniques and

to understand their impact on Web performance, I configured several experiments on

123 devices, made available by the Dasu testbed, in different last-mile networks across

different geographic areas [276]. Our measurement data contains 887 DNS resolutions

from 386 DNS servers and 9,040 TCP and HTTP GET probes from clients on different

continents to 1684 distinct CDN servers. I show the geographic distribution of our

test devices in Table 4.1.

Experimental Setup

I measured the difference in end-to-end latency and download time of static

content between clients and CDN servers returned by different DNS servers. I

configured experiments on each device to download images from each of the resolved

CDN servers, and record the time to establish TCP connection, time to receive the

first bit of the HTTP response, and the time to download the image. Each device

92

CONTINENT # CLIENT DEVICES
North America 54

Europe 35
Asia 14

Australia 10
Africa 6

South America 4

Table 4.1: Geographic distribution of Dasu nodes.

was configured to download a 77 KB image hosted on Akamai’s CDN and a 118 KB

image hosted on Google’s CDN.

I configured each device to send a DNS query to its default (local) DNS

server (LDNS), the Google’s public DNS server 8.8.8.8 (GDNS), an open DNS server

208.67.222.222 (ODNS), and Level3’s public DNS server 209.244.0.3 (L3DNS)

to resolve domain names hosted by Akamai Technologies (fbcdn-profile-a.akamaihd.net)

and Google Inc. (lh3.googleusercontent.com).1 Next, each device recorded the

resolutions from DNS servers, initiated a TCP connection with each CDN server in

the DNS resolution, and recorded the time for TCP connection establishment. After a

successful TCP connection, the device sent an HTTP HEAD request to warm up the

CDN’s cache and issued another HTTP HEAD request to record the time to receive

first bit of HTTP HEAD response. Finally, each device sent an HTTP GET request to

download the cached image and recorded the time to completely download the image.2

1I ensured that the LDNS configured on the device was not one of the open DNS servers used in
our study.

2I ensured that the devices issued all the DNS queries and content fetches from CDN servers
within a very small time window.

93

Impact of CDN Choice on Static Content Delivery

The DNS resolutions contain a list of IP addresses of CDN servers within a

single subnet. The client operating systems selects the first IP address from the list.

A DNS resolution contains a list of IP addresses of CDN servers, which might suggest

that latency to these servers should be similar and that selecting any of the CDN

IP addresses would not impact the download time. However, I show that there is

a significant difference in the end-to-end latency between the client and each of the

CDN servers/clusters returned by DNS.

In Figures 4.1-4.4 I show the minimum, average, and maximum difference in

the end-to-end latency (measured as time to establish a TCP connection) among

Akamai CDN servers resolved by LDNS, GDNS, ODNS, and L3DNS. Similarly, in

Figures 4.5-4.8, I show latency difference among Google CDN servers. These graphs

show that the end-to-end latency between the client and the CDN servers returned

in the list has a high variation. For example, in Figure 4.1 I see that if clients always

pick the server with the least end-to-end latency, 80 percent of the clients will have an

end-to-end latency within 50 ms. However, since clients’ operating systems pick the

first CDN IP address from the list of resolved CDN servers, which results in a random

CDN selection over time, I see that 80 percent of the clients will have an end-to-end

latency within 100 ms. Therefore, if clients choose the first CDN IP present in the

list they may not connect with the fastest server available, since the server with the

lowest end-to-end latency with the client might not be the first server in the list.

Content providers are interested in understanding the impact of server selection

on static content download times from CDNs. Therefore, next I show the impact of

CDN choice on the image download time. In Figures 4.9-4.12, I show the minimum,

average, and maximum image download time from Akamai CDNs returned by LDNS,

94

Figure 4.1: Latency
to Akamai servers
resolved by LDNS.

Figure 4.2: Latency
to Akamai servers
resolved by GDNS.

Figure 4.3: Latency
to Akamai servers
resolved by ODNS.

Figure 4.4: Latency
to Akamai servers
resolved by L3DNS.

Figure 4.5: Latency
to Google servers re-
solved by LDNS.

Figure 4.6: Latency
to Google servers re-
solved by GDNS.

Figure 4.7: Latency
to Google servers re-
solved by ODNS.

Figure 4.8: Latency
to Google servers re-
solved by L3DNS.

Figure 4.9: Down-
load time for Aka-
mai servers resolved
by LDNS.

Figure 4.10: Down-
load time for Aka-
mai servers resolved
by GDNS.

Figure 4.11: Down-
load time for Aka-
mai servers resolved
by ODNS.

Figure 4.12: Down-
load time for Aka-
mai servers resolved
by L3DNS.

Figure 4.13: Down-
load time for Google
servers resolved by
LDNS.

Figure 4.14: Down-
load time for Google
servers resolved by
GDNS.

Figure 4.15: Down-
load time for Google
servers resolved by
ODNS.

Figure 4.16: Down-
load time for Google
servers resolved by
L3DNS.

95

GDNS, ODNS, and L3DNS. Similarly, in Figures 4.13-4.16, I show the minimum,

average, and maximum image download time from Google CDNs returned by LDNS,

GDNS, ODNS, and L3DNS. Similarly to previous graphs representing the variation

in end-to-end latency, I show a variation in the download time of individual static

Web objects. For example, in Figure 4.9, the minimum image download time for 80%

of the clients is within 250 ms, however, the average image download time is within

750 ms. The difference in minimum and average image download time is within 500 ms

for 80% of clients, which is due to the multiple round trips between clients and CDN

servers involved.

Impact of DNS Choice on Static Content Delivery

Analogous to the choice among CDN servers, clients also have a choice between

DNS servers. Clients have a number of options from which to chose their default DNS

servers. Further, some DNS providers may process EDNS-based DNS requests [288],

while others may strip out any information available in the EDNS payload [271]. Thus,

the variation in the adoption of EDNS mechanisms may also introduce additional

variation in the performance of the CDN servers returned in a DNS resolution, since

DNS servers that process EDNS-based requests could use the client’s IP address

available in the EDNS payload to direct the user to a CDN server nearest to the

client’s subnet. Finally, using a client’s IP address from the EDNS payload may

direct the client to the closest CDN server, however, the client may not have the least

end-to-end latency with that CDN server due to congestion in the network, large

queues on the server, or circuitous routing. Therefore, it is important to understand

the performance of CDN servers returned by different DNS providers.

In Figures 4.17-4.20, I compare the end-to-end latency and the time to download

images from Akamai CDN servers returned by LDNS, GDNS, ODNS, and L3DNS.

96

Figure 4.17: Min.
end-to-end latency
from Akamai CDNs.

Figure 4.18: Avg.
end-to-end latency
from Akamai CDNs

Figure 4.19: Min.
Image download
time from Akamai
CDNs

Figure 4.20: Avg.
Image download
time from Akamai
CDNs

Figure 4.21: Min.
end-to-end latency
for Google CDNs.

Figure 4.22: Avg.
end-to-end latency
for Google CDNs

Figure 4.23: Min.
Image download
time for Google
CDNs

Figure 4.24: Avg.
Image download
time for Google
CDNs

Similarly, in Figures 4.21-4.24, I compare the end-to-end latency and the time to

download images from Google CDN servers returned by LDNS, GDNS, ODNS, and

L3DNS. These figures show that the end-to-end latency between clients and CDN

servers returned by one DNS server is lower than CDN servers returned by another

DNS server. For example, in Figure 4.18 I see that for 80% of the clients that resolve

Akamai CDN domains from LDNS, GDNS, ODNS, L3DNS have an average end-

to-end latency within 100 ms, 125 ms, 150 ms, and 300 ms respectively. Similarly, in

Figure 4.22 I see that for 80% of the clients that resolve Google CDN domains from

LDNS, GDNS, ODNS, L3DNS have an average end-to-end latency within 100 ms,

150 ms, 175 ms, and 200 ms respectively. Such variation in the end-to-end latency

to CDN servers is also reflected in the time to download images from Akamai and

Google CDNs. For example, in Figure 4.24 I see that for 80% of the clients the time to

97

download image from LDNS, GDNS, ODNS, and L3DNS is 600 ms, 700 ms, 750 ms,

and 800 ms respectively.

In Figure 4.18 I also see that for 35% of clients ODNS returns CDN servers with

average end-to-end latency lower than CDN servers returned by GDNS. Similarly,

for about 40% of the clients in Figure 4.22 I see that the average end-to-end latency

to the CDN servers returned by all DNS servers are almost similar. As a result of

such variation in DNS resolutions, it remains unclear which DNS server will direct

the client to the fastest server at all times. I argue that clients could remain unaware

of opportunities to reduce the Web latency when they rely on one DNS server.

Overall Performance Variation of CDN servers

Given that the Web performance is affected by the choice of a CDN server within

a DNS resolution and by the choice of a DNS server, I now explore how these choices

could impact the Web performance in combination. I argue this is important because

many users opt for open and public DNS servers that offer faster resolutions and also

because LDNS does not always resolve to best CDN servers, which I show later in

Figure 4.41. In Figures 4.25 and 4.29 I compare the minimum, average, and maximum

end-to-end latency between clients and the CDN servers resolved by any of the DNS

servers used in our study. In these graphs I show that the minimum end-to-end

latency to CDN servers, when resolutions from LDNS, GDNS, ODNS, and L3DNS

are combined, is significantly lower than the average end-to-end latency. For example,

in Figure 4.25, I show that for 90% of the clients the minimum end-to-end latency

to Akamai CDN servers, resolved by any of the DNS servers, is less than 50 ms and

the average end-to-end latency is more than 200 ms. I also show similar trend in

end-to-end latency for Google CDNs and the image download time for Google and

Akamai CDNs in Figures 4.29, 4.26, and 4.30. Therefore, client applications that rely

98

Figure 4.25: La-
tency variation with
Akamai CDNs.

Figure 4.26: Down-
load time variation
with Akamai CDNs.

Figure 4.27: La-
tency variation for
Akamai CDNs (%).

Figure 4.28:
Download time
variation for Akamai
CDNs (%).

on resolutions from multiple DNS providers, as proposed by Vulimiri et al., may not

connect with CDN servers that have the least end-to-end latency to the client [306].

Next, in Figures 4.27 and 4.31 I show the ratio of minimum end-to-end latency to

maximum end-to-end latency for Akamai and Google CDN servers returned by DNS

servers in our study. For example, in Figure 4.27, I show that for the 85% of users

connecting to Akamai CDN servers, the end-to-end latency for the fastest available

server is 40% lower than the slowest server. Similarly, in Figure 4.31, the end-to-end

latency to the fastest available Google CDN server is only about 30% lower than the

slowest server.

I also show similar ratios for image download time from Akamai and Google

CDN servers in Figures 4.28 and 4.32. For example, in Figure 4.28, I show that for

90% of the users the image download time from the fastest available Akamai CDN

server is only 50% faster than the slowest server. Similarly, in Figure 4.32, the image

download time from the fastest available Google CDN server is 30% faster than the

slowest server.

Causes of CDN Performance Variation

In previous sections, I discovered the variation in the performance of CDN servers

resolved by different DNS providers. While investigating the cause of this variation,

99

Figure 4.29: La-
tency variation with
Google CDNs.

Figure 4.30: Down-
load time variation
with Google CDNs.

Figure 4.31: La-
tency variation for
Google CDNs (%).

Figure 4.32:
Download time
variation for Google
CDNs (%).

Figure 4.33: Extra
latency to Akamai
CDNs.

Figure 4.34: Extra
latency to Google
CDNs.

Figure 4.35: Ex-
tra download time
to Akamai CDNs.

Figure 4.36: Ex-
tra download time
to Google CDNs.

I also found that DNS resolutions often direct clients to CDN servers in different

IP subnets and different network locations. For example, as much as about 45 and

40 percent of the clients were directed to CDN servers in different IP subnets when

resolving Akamai and Google Web domains, respectively.

Next, I investigate the impact of inconsistency in DNS resolutions on client

redirection. Due to inconsistency in DNS resolutions, some clients are often directed

to servers in different geographic locations. For example, a client in Virginia was

directed to servers in Cambridge, California, and Texas in three different DNS

resolutions from the same DNS server. Therefore, I argue that when DNS resolutions

are inconsistent, clients’ Web requests may have to be served by CDN servers in

locations farther than the closest available CDN server. Although this behavior is

maybe due to routine load balancing, let us look at its impact on extra latency

perceived by clients in connecting with CDN servers.

100

Our method to calculate extra end-to-end latency for each client is based on

the difference in minimum and mean latency to servers in different IP subnets. In

Figures 4.33 and 4.34, I show the extra end-to-end latency as perceived by clients

to connect with Akamai and Google CDN servers, respectively. For example, In

Figure 4.33 I show that for 15% of the clients that receive DNS resolutions to different

IP subnets from LDNS and L3DNS for Akamai CDN domains, the extra end-to-end

latency perceived by clients in every round trip is more than 100 ms and 150 ms

respectively. Similarly, in Figure 4.34, I show that for 15% of the clients, that receive

DNS resolutions to different IP subnets from LDNS and L3DNS for Google CDN

domains, the extra end-to-end latency perceived by clients in every round trip is

more than 15 ms and 20 ms respectively.

In Figures 4.35 and 4.36, I show the extra latency in downloading images as

perceived by clients in connecting with Akamai and Google CDN servers, respectively.

For example, in Figure 4.35 I show that for 80% of the clients, that receive inconsistent

DNS resolutions from LDNS, GDNS, ODNS, and L3DNS, the extra latency in down-

load image from Akamai CDN servers is within 100 ms, 200 ms, 300 ms, and 400 ms re-

spectively. Similarly, in Figure 4.36, I show that for the same clients the extra latency

in downloading an image from Google CDN servers is within 300 ms for LDNS, GDNS,

and ODNS, and 500 ms for L3DNS. Therefore, if clients rely on resolutions from the

regular DNS-based server selection, the penalty in terms of latency is very high. In

Section 4, I show how dp eliminates the penalty while preserving load-balancing.

Unreachable CDN Servers

Client devices and end-networks are often configured with firewalls to block

access to some IP addresses. Automated Intrusion Detection System (IDS) software

scans for any activity that might abuse the network resources. Such IDS may

101

CLIENT
COUNTRY

DNS
#faulty RESOLUTIONS
Akamai Google

North America LDNS 2 6
North America GDNS 3
North America ODNS 5 3
North America L3DNS 11

Europe LDNS 2
Europe GDNS 1 1

Asia LDNS 5
Asia GDNS 3 6
Asia ODNS 4
Asia L3DNS 1

Australia LDNS 2
Africa GDNS 3

Table 4.2: Faulty resolutions for Akamai and Google CDN servers.

occasionally block access to some CDN servers, a behavior I verified in MSU’s

campus network. DNS providers remain unaware of such network configurations

and therefore when clients request DNS resolutions, they occasionally get directed

to inaccessible servers, which results in failure to start the downloads of static Web

content [86] [243]. Although server inaccessibility prevents the content from being

downloaded all together, I believe that this could be avoided by vetting CDN servers.

Throughout our study of over a period of three months, I recorded the number

of faulty DNS resolutions, that is, whether a DNS resolution contained at least one

server address to which client could not connect. I show the number of faulty DNS

resolutions for Akamai and Google CDNs by LDNS, GDNS, ODNS, and L3DNS for

clients in different countries in Table 4.2.

Out of the 123 DASU devices used in our study, I found that only about 15

devices in different continents received at least one DNS resolution that had at least

one inaccessible CDN server. Specifically, for such clients in North America I found

102

Figure 4.37: dp’s resolution mechanism resolution for
non-cached domains.

Figure 4.38:
dp’s resolution
mechanism for
cached domains.

that these clients were connected through Comcast Cable, Florida Cable, Bright

House Networks, Cox Communications, VTX Broadband, and Time Warner Cable.

I show that the problem of faulty DNS resolutions exists for both Akamai and

Google CDN infrastructure. Further, to mitigate client direction from faulty DNS

resolutions, the use of multiple DNS providers may not be useful since I discovered

that popular DNS providers such as GDNS, ODNS, and L3DNS and as well as clients’

LDNS sometimes direct clients to the same inaccessible CDN servers. In Section 4,

I show that dp eliminates this problem by making DNS resolutions aware of the

performance and routing restrictions in the last-mile networks.

DNS-Proxy (dp)

Our measurement study has discovered that DNS-based load-balancing used by

CDN infrastructures deployed by Akamai and Google often do not direct users to the

closest CDN servers available. Therefore, I propose DNS-Proxy (dp), a client-side tool

that selects best CDN servers with respect to performance of users’ last mile networks.

dp can also be used as a DNS server on network gateways to serve incoming DNS

requests from multiple devices in the same subnet. dp runs as a virtual DNS server on

103

client devices and generates DNS resolutions that are most suitable for the variable

performance of the user’s network. dp receives DNS requests from client applications

and fans them out to different DNS servers. dp then probes all resolved IP addresses in

parallel and returns the CDN server with the lowest end-to-end latency to the client.

I make dp available as an open source tool at http://github.com/msu-netlab/dp.

Client-assisted Server Selection

I depict sequence diagrams of dp’s approach to client-assisted server selection

in Figures 4.37 and 4.38. dp runs on client devices and listens for incoming DNS

requests on port 53, the standard port for DNS-based services. When dp receives a

DNS request from a client, it forwards the request to a number of different DNS servers

and waits for the DNS resolution replies. The DNS servers that the dp forwards the

request to can be easily configured based on the user’s preference. In our experiments,

I configured dp to resolve DNS requests from LDNS, GDNS, ODNS, and L3DNS. As

shown in Figure 4.37, after dp receives a DNS resolution, it sends TCP SYN packets, in

parallel over raw sockets, to port 80 (standard port for hosting HTTP based services)

and port 443 (standard port for hosting HTTPS based services) to each resolved CDN

server. To prevent dp from inadvertently launching a SYN attack, dp sends a FIN

packet after receiving a SYN/ACK for each SYN packet, or after a timeout.

The end-to-end latency to each CDN server is measured based on the time to

receive the TCP SYN/ACK packet from the probed server. dp collects the end-to-end

latency to each server and maps the domain name being resolved to the CDN server

with the lowest end-to-end latency. dp then returns the server with the lowest end-

to-end latency identified, as a resolution for the client’s DNS request. Apart from

directing clients to the fastest available CDN servers, dp prevents directing clients

to the servers for which it never receives a TCP SYN/ACK packet. However, if a

http://github.com/msu-netlab/dp

104

DNS resolution contains only one IP address, dp directs the client to that IP address,

regardless of it being inaccessible.

dp sends DNS responses to clients using one of two methods. dp resolves

domain names either from its own cache of DNS entries (I refer it as warm-cache),

or delays the DNS response for a domain not in its cache to probe for the fastest

server on the fly (I refer it as cold-cache). As shown in Figure 4.38, when dp has

a DNS entry for the domain being resolved in its cache, dp instantly replies to the

clients with a DNS resolution, which also allows to reduce the overhead for name

resolution [279]. However, when a DNS entry is not available in the cache, dp relies

on a user configurable deadline (set to 30 ms by default) within which dp must reply

the client’s DNS request with the fastest identified CDN server. The user configurable

deadline ensures that users’ DNS requests do not have to wait if the domain being

resolved is not available in dp’s cache, or if probing different CDN servers take a long

time. While the use of a deadline in dp predictable response times, dp also continues

to probe additional CDN servers after the deadline to refine its accuracy of server

selection for future requests.

dp sets the time to live (TTL) value in the DNS response for each DNS resolution

generated from the cold-cache to two seconds. A low TTL value in the DNS response

allows clients to use a resolved server (from dp’s cold-cache) for only a short period

of time before reissuing the DNS query. I expect dp to have probed all resolved CDN

servers and identified the fastest available CDN server within two seconds. At this

point dp will respond to the second DNS query from its warm-cache. However, the

TTLs for DNS responses generated from the warm-cache are larger than two seconds,

but lower than the actual TTL values present in responses from different DNS servers.

Further, dp deletes DNS entries from its cache for any domain that has been cached

for more than DNS TTL, which enables dp to proactively identify the best CDN

105

Figure 4.39: TCP OPEN vs HTTP HEAD for Akamai
CDNs at different probing intervals.

Figure 4.40: TCP OPEN vs HTTP HEAD for Google
CDNs at different probing intervals.

Figure 4.41: Frequency of different DNS servers resolv-
ing to fastest CDN servers, as identified by dp.

106

server, if the performance of the previously identified best server had changed since

it was last probed [247].

Probing Metric

Our decision to use TCP connection setup time in dp as indicative of object

download time from CDN server is based on the data collected from Dasu devices.

Predicting the fastest available CDN server based on the actual least download time

of static Web objects would reflect the true performance for a given CDN server,

however, downloading Web objects from each resolved CDN server would introduce a

high probing traffic and long probing delay. Therefore, I argue that the prediction of

fastest available server should be based on a server selection mechanism that is faster

and requires less probing traffic. I evaluate both the time to receive the first bit of

HTTP response (I refer it as the HTTP HEAD method) from CDN servers and the

time to establish a successful TCP connection with a CDN server (I refer it to as the

TCP OPEN method).

To find an appropriate method for server selection, I compare the download time

of fastest server identified by TCP OPEN and HTTP HEAD at different dp response

deadlines. I refer to dp’s deadlines as probing interval before step 7 in Figure 4.37.

In Figures 4.39 and 4.40, I compare the image download time from fastest CDN

servers for Akamai and Google CDN domains, as identified using the TCP OPEN

and HTTP HEAD methods. The x-axis shows dp’s probing interval following a client

DNS request. The y-axis shows the average of image download times from the fastest

CDN servers identified at different probing intervals of dp. The dashed horizontal

line shows the download time from the fastest CDN server averaged over all clients,

regardless of the server selection method and dp’s probing interval.

107

I show that as the probing interval increases dp continues to listen for additional

resolved CDN servers to refine accuracy of client-assisted server selection for future

requests. I also note that 1) At any given probing interval, the TCP OPEN method

is more accurate on average than the HTTP HEAD method, because TCP OPEN re-

ceives higher percentage of probes back in a given interval, and 2) the line representing

TCP OPEN method tends towards the dashed line, which indicates that the download

time of the server chosen by the TCP OPEN method is approximately that of the

server with the least image download time. For example, in Figure 4.39, the image

download time of the fastest CDN server identified by the TCP OPEN method at the

probing interval of 180 ms is 90 ms, whereas, the image download time of the fastest

server identified by the HTTP HEAD method is 120 ms at the same probing interval.

Although probing may introduce an extra load on the client’s network, it is

important to note that dp caches probe results to avoid probing same servers in

subsequent requests. Further, since dp reduces the number of DNS requests leaving

the network or the client device by resolving them from it’s cache, the overall network

load is reduced. Finally, our evaluation of dp on a 24-hour DNS trace collected from

the MSU’s network shows that the network traffic sent and received by dp is less

than 700 KB for every 500 resolved Web domains. I argue that in comparison to the

benefits dp brings for clients, the dp probing traffic is reasonably negligible.

Results

Next I demonstrate, based on extensive measurement of dp, that client-assisted

server selection is more effective at identifying fastest available CDN servers and

reducing webpage load times across CDNs, last mile networks, and geographic

locations, than the current DNS-based server selection techniques.

108

Identifying DNSs with Fastest CDN Servers

In Figure 4.41, I show whether the fastest CDN server chosen by dp was resolved

from LDNS, GDNS, ODNS, or L3DNS. I show that for resolving Akamai CDN

domains, only 48% of resolutions from LDNS contained the fastest CDN server,

whereas, while resolving Google CDN domains, 51% of resolutions from LDNS

contained the fastest CDN server. I also discovered that resolutions from different

DNS providers may both contain one or more common IP addresses, which were

identified as the fastest server by dp in some resolutions. For such resolutions, I

increment the height of bar for each DNS provider that contained the fastest CDN

server, which is indicative of the fact that the sum of heights of the bar plots do

not aggregate to 100%. Since none of the DNS servers used in our study are reliable

in directing clients to the closest available CDN replicas at all times, I argue that

dp provides a complementary approach to DNS-based server selection by relying on

multiple DNS providers and directing the clients to the fastest available CDN replicas

from resolved CDN addresses at all times.

Faster Web through DNS-Proxy

I compare the webpage load time of websites hosted on Akamai, Google, Level 3,

CloudFront, and Reflected Networks CDN servers, when clients use their ISP-provided

LDNS and dp. I list the website addresses, number of Web objects, the hosting CDN,

and the total page size in Table 4.3. I configured experiments on devices in Califor-

nia (CA), Montana (MT), Illinois (IL), and New York (NY) to load these websites

20 times each from CDNs resolved by LDNS and dp. To prevent object loading from

browser cache, I loaded websites in Google Chrome browser’s incognito window.

In Figure 4.42, I show the average webpage load time of different websites using

LDNS and dp with warm-cache from CA, MT, IL, and NY. Above every bar, I

109

Webpage Host CDN # Web objects Page Size
huffingtonpost.com Akamai 374 3.4 MB

developer.android.com/tv/ Google 60 6.8 MB
level3.com Level 3 58 1.4 MB

chictopia.com CloudFront 90 1.8 MB
an adult “tube” site Reflected N/w 70 7.6 MB

Table 4.3: Details of webpages loaded for comparison.

Figure 4.42: Comparion of Webpage load times using LDNS and DNS-Proxywith
warm-cache.

huffingtonpost.com
developer.android.com/tv/
level3.com
chictopia.com

110

show the reduction in webpage load time in percentage achieved when using dp. dp

speeds up page loads across CDN providers and geographic locations. Specifically, for

static content heavy website, such as huffingtonpost.com, dp provides a speedup of as

much as 40%. For other websites with relatively fewer or smaller images, dp provides

speedup close to 30% in the common case.

In Figure 4.43 I compare the average load times of individual Web objects,

hosted on different websites, when loaded from servers resolved by LDNS and dp

with warm-cache. I loaded a total of 35443 Web objects hosted by different CDN

providers. I show the average object load time (which includes the DNS lookup time,

TCP connection setup time, time to receive the first bit of HTTP response, and time

to download the object) using LDNS and dp and label each bar with the average

percentage reduction in individual object load time achieved by dp as compared to

LDNS. I show that even when dp does not have a resolution for a domain in its

cache, dp is effective in reducing the webpage load time by delaying DNS responses

to identify fastest CDN servers. For example, dp reduces the load time of each web

object hosted on CloudFront CDN servers by about 43%. For web objects hosted on

other CDNs, dp reduces the load time for each object by about 20% on average.

Finally, in Figure 4.44, I compare the average of 20 webpage load times each

from CDNs resolved by using LDNS and dp with cold-cache. For this comparison

study, I configured dp’s DNS resolution deadline to 30 ms and cleared dp’s cache after

each page load. I show that even when dp does not have a DNS resolution for a Web

domain available in its cache, delaying DNS resolutions by 30 ms to identify faster

servers helps to reduce the overall webpage load time. I show the average percentage

reduction in webpage load times using dp with cold-cache on top of each dp bar in

the graph. The one exception in our data is for webpages hosted on Google CDNs for

which the average webpage load time with dp’s cold-cache was marginally higher than

111

the average load time with LDNS. I believe that in most cases dp could eliminate the

cold-cache penalty through dynamic adjustment of DNS response deadline or to not

delay DNS responses for domains where dp shows no gains for overall webpage load

time – a subject of our future work.

Discussion

Two possible concerns come to mind with widespread adoption of dp. First,

would dp probing introduce higher loads on CDN servers thereby increasing queuing

delays? Because dp uses the light-weight TCP OPEN process and immediately closes

the connections after they are established, I believe that the increase in network load,

or CDN server resources due to probing is not significant.

Second, does client-based server selection disregards the existing DNS-based load

balancing? Because dp selects CDN servers only from among the set resolved by DNS

infrastructure, CDNs retain control over which replica server a client may connect to.

As a result dp clients in different network locations will probe different sets of CDN

servers. While it is possible that clients in the same location might select the same

fastest CDN server and potentially increase its queuing delays, I plan to extend dp to

avoid this situation by switching to HTTP HEAD-based probing, which takes server

queuing delays into account.

Although I have demonstrated the benefits of dp in accelerating Web services

hosted on CDNs, our method is applicable to other replicated server selection

problems. To facilitate wide dp deployment I plan on integrating our method with

bind DNS software commonly used in many last mile networks. Currently I make a

standalone implementation of dp available at http://github.com/msu-netlab/dp.

http://github.com/msu-netlab/dp

112

Figure 4.43: Comparison of Web object load times using
LDNS and DNS-Proxy with warm-cache.

Figure 4.44: Comparison of Web object load times using
LDNS and DNS-Proxy with cold-cache.

Figure 4.45: Comparison of object load times using CDN
servers resolved by dp and Namehelp.

113

Related Work

In spite of several years of efforts to reduce network latency, CDNs and content

providers strive to deliver a responsive experience to their users. In addition to

evolving DNS-based server selection for Web applications, CDN server selection

techniques for improving the delivery of live video have also been explored as an

alternative to DNS-based load balancing [188] [211]. Although, server selection

for video and Web content delivery are related to each other, I believe that the

techniques to accurately identify the best CDN servers for both of these services need

to consider different metrics (latency vs. available bandwidth), because of difference

in application requirements. Therefore, I only discuss studies that aim to improve

server selection for Web applications.

Reducing DNS Lookup Time

Vulimiri et al. proposed a client-side tool for sending DNS requests to multiple

DNS servers and using the first received DNS resolution on the client [306]. CoDNS

is a similar tool that distributes incoming DNS requests to multiple DNS servers to

mask the delay in DNS lookups [244]. However, in Figure 4.18, I show that different

DNS servers may direct clients to CDN servers with different end-to-end latencies.

Therefore, directing clients to server in the first DNS resolution may not always direct

clients to the closest available CDN server.

Shang et al. proposed a tool to reduce the DNS cache miss rate by exploiting

similarity of requested Web domains to the domains that already have a DNS

resolution cached [280]. DNS Pre-Resolve is another technique to eliminate DNS

lookup delay by resolving domain names proactively during Web page rendering [118].

Although these two techniques reduce the impact of DNS on webpage load time,

114

they do not consider performance variation between CDN servers, nor accuracy of

resolutions from different DNS servers.

DNS Server Selection from End-devices

Namehelp is a client-side tool to identify the DNS server that (on average) directs

clients to the fastest available CDN servers [272]. Namehelp’s mechanism to identify

the best DNS server relies on user’s Web browser history, in that, Namehelp resolves

Web domains (accessed by the user in the past) from multiple DNS providers. Based

on the average performance of CDN servers returned from different DNS servers for

Websites used in the past, Namehelp configures the client’s default DNS server to

the DNS server that directed the client to servers with least latency on average.

Namehelp is similar to dp in that it measures the client’s latencies to multiple CDN

servers resolved by different DNS servers for client-side server selection. However, I

illustrate several differences in server selection techniques used by dp and Namehelp,

and also show that dp direct clients to servers remarkably faster than servers resolved

by Namehelp, on average.

• In our experience with Namehelp I discovered that in order to identify the

best DNS server for a client, Namehelp sends over 27000 DNS requests (of size

80 bytes each) to different DNS servers every 15 minutes, followed by receiving

a DNS response (of size 150 bytes each) for each request, and finally sending an

HTTP HEAD request (of size 120 bytes each) to every resolved server. I argue

that, unlike dp, Namehelp creates an undesired load on the last-mile network,

which could potentially impact the performance of other applications running

on the device.

115

• To improve the accuracy of server selection, Namehelp sends an HTTP HEAD

request to every resolved server. However, based on our experience with dp I

show in Figure 4.39 that using TCP OPEN delay is more accurate indicator

of server performance and generates lesser probing traffic than sending HTTP

HEAD requests.

• Unlike dp, Namehelp does not compare client’s latencies to different CDN

servers within a DNS resolution, which is important for minimizing the end-

to-end latency between clients and servers (as discussed in Section 4).

• As shown in Figure 4.41, none of the DNS servers used in our study directed

clients to servers with least end-to-end latency at all times. Therefore, I argue

that the Namehelp’s technique to resolve Web domains from an identified best

DNS server (instead of identifying the best CDN server for each Web domain

being resolved) might not ensure that clients will always be directed to fastest

available CDN servers for all Web domains.

• Finally, unlike dp, Namehelp’s resolution technique does not have a deadline

within which it must resolve the requested Web domain.

In light of these differences between Namehelp (Nh) and dp, in Figure 4.45 I compare

the average time to establish a TCP connection, time to receive the first bit of HTTP

response, and the image download time from servers resolved by Namehelp and dp.

For this comparison study, I configured clients to use Namehelp and dp one-by-one

as their default DNS servers within a short time period. Next, I opened CDN URLs

hosted on Akamai, Limelight, Level 3, and Reflected Networks CDNs on Google

Chrome browser’s incognito window (to prevent object loading from cache). I first

resolved the Web domains from the configured DNS server, followed by sending an

116

HTTP GET request to download an image of size 82 KB, 53 KB, 207 KB, and 32 KB

from the resolved Akamai, Limelight, Level 3, and Reflected Networks CDN servers

respectively. I show the average percentage reduction in the overall object load time

using dp on top each dp bar. For different CDN providers, I show that from an

average of 25 DNS resolutions from Namehelp and dp each, the time to open TCP

connection (TCP OPEN), time to receive first bit of HTTP response (HTTP HEAD),

and image download time from servers resolved by dp are about 50% faster than the

servers resolved by Namehelp on average.

CDN Load-balancing Techniques for Server Selection

A study by Shaikh et al. has shown benefits of providing client’s IP address

in the DNS request to Authoritative DNS servers, to allow clients to connect with

nearby servers [279]. EDNS protocol has similar motivation in that it also enables

CDN providers to direct users to nearby servers based on the client’s IP subnet [288].

However, EDNS approach is still limited by how many DNS providers and ISPs

support requests with EDNS [271].

A study by Kangasharju et al. compares the performance of different DNS

redirection techniques, such as full redirection and selective redirection, used by CDN

providers to reduce the impact of network latency on Web applications [176]. Their

study shows that full redirection has superior performance over selective redirection,

since selective redirection has an overhead to maintain which CDN server has what

content in its cache, which may not be up-to-date and accurate at all times.

Relative Network Positioning for Server Selection

Previous studies have investigated the benefits of using network coordinate

systems (NCS) to estimate the network latency between arbitrary end hosts [115]

117

[217] [321]. Such NCS techniques also enable CDN providers to estimate the network

latency between clients and CDN servers to increase the accuracy of DNS-based server

selection techniques [101]. However, a study by Choffnes et al. shows that network

coordinate systems are often not accurate when used on edge networks [101].

CDN-based Relative Network Positioning (CRP), a tool by Su et al. shows that

clients could be directed to closest CDN servers by comparing the cosine similarities

between clients and different available CDN servers [172]. However, our other recent

work on server selection shows that CRP technique is often not accurate in predicting

the closest servers for clients [199].

Conclusions

Web application performance is affected by DNS resolutions to distant CDN

servers. Although, DNS-based server selection may often direct clients to nearby

CDN replicas, I show that current techniques could be improved to speed up the

delivery of content. Therefore, I argue that clients are best positioned in the network

to choose closest CDN servers. I propose DNS-Proxy (dp), a client-side tool that

probes each resolved CDN address and directs clients to the fastest available servers.

Effectively, dp shares load balancing functionality with CDNs by selecting from a set

of resolved servers. Our measurement study on CDN infrastructure deployed by five

major CDN providers shows that dp reduces webpage load time by 29% on average.

If dp has already resolved a Web domain, the reduction in webpage load time is as

much as 40%. Finally, dp reduces the download time of individual static Web objects

by as much as 43%. Overall I believe dp enables a more effective use of existing

CDN infrastructure and represents a complementary strategy to a continual increase

of geographic content availability.

118

DETECTING CELLULAR MIDDLEBOXES USING PASSIVE MEASUREMENT

TECHNIQUES

Abstract

The Transmission Control Protocol (TCP) follows the end-to-end principle –

when a client establishes a connection with a server, the connection is only shared

by two physical machines, the client and the server. In current cellular networks, a

myriad of middleboxes disregard the end-to-end principle to enable network operators

to deploy services such as content caching, compression, and protocol optimization to

improve end-to-end network performance. If server operators remain unaware of such

middleboxes, TCP connections may not be optimized specifically for middleboxes

and instead are optimized for mobile devices. I argue that without costly active

measurement, it remains challenging for server operators to reliably detect the

presence of middleboxes that split TCP connections. In this paper, I present three

techniques (based on latency, loss, and characteristics of TCP SYN packets) for server

operators to passively identify Connection Terminating Proxies (CTPs) in

cellular networks, with the goal to optimize TCP connections for faster content

delivery. Using TCP and HTTP logs recorded by Content Delivery Network (CDN)

servers, I demonstrate that our passive techniques are as reliable and accurate as

active techniques in detecting CTPs deployed in cellular networks worldwide.

Introduction

The Transmission Control Protocol (TCP), Hyper Text Transport Protocol

(HTTP) and secure HTTP (HTTPS) were originally designed with the assumption

that clients communicate over end-to-end connections with servers. However, given

119

the different types of networks involved in an end-to-end connection between cellular

clients and servers (such as the radio network, the cellular backbone, and the

public Internet), optimizing communication for each of these networks independently

improves the overall performance of the end-to-end connections between clients and

servers [80] [152] [170]. One of the techniques used by cellular carriers to improve the

communication performance in their networks is to deploy Connection Terminating

Proxies (CTPs) that split TCP connections between clients and servers [134] [214].

CTPs allow cellular carriers to speed up TCP transfers between devices and the

cellular gateways to the Internet through TCP optimization, content caching, and

bandwidth throttling.

Content Distribution Networks (CDNs), cloud providers, or other server providers

on the Internet are mostly unaware of specific CTPs deployed by individual cellular

carriers. As a result, servers may not optimize their connections for CTPs, but

optimize connections for the mobile device instead. I believe that if server providers

are made aware of the presence of CTPs, TCP configurations could be fine-tuned

to improve content delivery to the middlebox and to the end-user [125]. However,

without expensive active network measurements on mobile devices, it remains

challenging for server operators to reliably detect the presence of CTPs and optimize

connections accordingly [322].

Table 5.1: Comparison of results from our passive techniques with previous
work [322] that uses active experiments, for cellular networks in the US.

120

In this study, I propose three techniques to passively detect the presence

of CTPs in cellular networks, using TCP and HTTP logs recorded by Akamai’s

geographically distributed CDN servers. Our first technique compares latency

estimated by clients and servers for TCP connections. The second technique compares

the packet loss experienced by CDN servers for HTTP and HTTPS sessions. Our

third technique analyzes characteristics of TCP SYN packets for connections to

ports 80 (HTTP) and 443 (HTTPS). Although our evaluation is based on Akamai

server logs, I argue that our techniques are not limited to CDN providers and also

apply to other types of servers. The major contributions of this work are as follows:

• I perform the first large scale measurement study to passively detect the

presence of CTPs deployed in cellular networks worldwide. Our study is based

on data collected by Akamai CDN servers during January-July 2015. Our

current dataset contains performance metrics from over a total of 14 million

TCP connections from clients in different cellular networks.

• I propose three techniques for server operators to passively detect the presence

of CTPs from TCP and HTTP server logs. Results from our measurements

indicate that the use of CTPs is very popular among cellular carriers worldwide.

In fact, carriers employ CTPs for splitting HTTPS sessions, in addition to

splitting HTTP sessions.

• Using the collected data, I demonstrate that our techniques are reliable in

detecting CTPs deployed in cellular networks across several countries. In

Table 5.1, I compare the results of our passive techniques with the Delayed

Handshake (DH) active measurement technique of CTP detection for cellular

carriers in the US [322]. The tickmarks in the table indicate the presence of

CTPs. I show that despite the fact that our passive measurement techniques do

121

not generate probing traffic, they correctly detect CTPs as detected by active

experiments in DH [322].

The rest of the chapter is organized as follows. In Section 6, I discuss related

work on detecting cellular middleboxes. In Section 5, I present our methodology.

In Section 6, 5, and 5, I discuss how server operators could detect CTPs by using

latency estimated by clients and servers, packet loss observed on the server-side, and

inspecting TCP SYN packets, respectively. In Section 5, I offer discussion of our results.

Finally, I conclude in Section 5.

Related Work

Several studies have investigated the characteristics, performance benefits and

deployment locations of CTPs in cellular networks. Weaver et al. and Xu et al.

investigated the characteristics of transparent Web proxies in cellular networks using

active experiments on mobile devices [313] [322]. Other studies looked at the

performance benefits of TCP splitting proxies to improve Web communications in

cellular networks [81] [134] [214]. Ehsan et al. measured the performance gains

of CTPs for Web caching and packet loss mitigation in satellite networks [127]. A

study by Wang et al. characterized implications of cellular middleboxes on improving

network security, device power consumption and application performance [311].

Our work, in contrast to these studies, focuses on detecting CTPs using passive

measurement techniques, instead of active experiments.

Data Collection Methodology

To verify that our latency-based technique reliably detects CTPs in cellular

networks worldwide, I used the webpage timing data collected by Akamai’s Real User

122

Monitoring system (RUM) [41], which leverages the Navigation Timing API on the

client browser [36]. The data includes the time to establish TCP connections for both

HTTP and HTTPS sessions. Akamai’s RUM also records TCP latency estimated by

CDN servers for HTTP and HTTPS session. To investigate whether our packet loss-

based technique reliably detects CTPs, I used TCP logs recorded by CDN servers de-

ployed worldwide and extracted the number of packets retransmitted by the server for

both HTTP and HTTPS sessions. Finally, to investigate whether our TCP SYN-based

technique detect CTPs, I collected TCP-dumps on CDN servers for several hours and

captured SYN packets for connection requests to port 80 (HTTP) and 443 (HTTPS).

Detecting CTPs from Client and Server-side Latency

When a CTP splits an end-to-end connection between clients and CDN servers,

the latency estimated by clients should be higher than latency estimated by CDN

servers. This is because the latency observed by the client will include the radio and

cellular backbone latency (∼tens of milliseconds [38]). Whereas the latency estimated

by CDN servers would include the latency on the wired public Internet and is likely

to be low (∼5 ms), as CDNs have wide deployment of servers inside many cellular

networks.

In this section I analyze the TCP latency estimated by clients and servers for

TCP connections (both HTTP and HTTPS sessions) using two different methods.

First, I compare the latency from both client and server endpoints to identify networks

where the latency experienced by clients is significantly higher than latency experi-

enced by servers – which indicates that a CTP is being used for a connection. Second,

I compare the latency for HTTP and HTTPS sessions only from the server-side to

123

Table 5.2: Distribution of TCP latency estimated by clients (Client RTT) and
servers (Server RTT) for IPv4-based cellular networks in North America.

identify networks where servers experience significantly different latencies for HTTP

and HTTPS sessions – which indicates that a CTP is used for one type of connections.

In Table 5.2, I show the distribution (25th, 50th, and 75th percentile) of network

latency measured by the client (Client RTT) and by the server (Server RTT) for

major cellular networks in North America. The column CC represents the country

code of each network. Column Hits represents the number of unique TCP connections

behind latency distributions. The column Proxy? indicates whether our techniques

detect CTPs for a given cellular carrier. For example, for AT&T network in the US,

the Client RTT for HTTP sessions is almost 10 times the Server RTT, which

124

indicates that servers are communicating with a device only 4 ms away. Since 4 ms is

too low for an end-to-end connection over a cellular network [38], I argue that servers

communicate with CTPs deployed in AT&T network (as indicated by X in the Proxy

column). In the case of HTTPS sessions in AT&T, I observe that Client RTT and

Server RTT are similar, which indicates that there is no CTP for HTTPS sessions

in the AT&T network (as indicated by X in Proxy column). Further, when I look at

only the Server RTT for HTTP and HTTPS sessions, I see that servers experience

significantly higher latency for HTTPS sessions, which further confirms that AT&T

does not employ CTPs for splitting HTTPS sessions. Tables 5.3, 5.4, and 5.5 show

the application of the latency technique to detect CTPs in cellular networks in Asia,

Europe, and Oceania and South America, respectively.

While employing our latency-based techniques to detect CTPs in cellular

networks worldwide, I made five observations on the behavior of CTPs. First,

I observe that for p25 of HTTP sessions in T-Mobile USA network, the latency

experienced by clients and servers is significantly different, which indicates a presence

of CTPs HTTP sessions in T-Mobile network. However, for p50 of the HTTP

sessions, the two latencies are similar – indicating no presence of CTPs for HTTP

sessions in T-Mobile network. To investigate this surprising behavior of T-Mobile

network, I classified our data based on server locations and domain names. Table 5.6

shows the distribution Client RTT and Server RTT for HTTP sessions for different

domain names across different locations in the US. I observe that for clients connecting

to servers in CA and VA, CTPs are used on per domain basis. For example, the HTTP

latency estimated by servers in CA to download webpages associated with a clothing

website is significantly lower than latency estimated for a ticketing website. I see

similar trends at other locations in the US and across several domain names. Next,

I observe that T-Mobile employs CTPs for HTTP sessions only at a few locations

125

Table 5.3: Distribution of TCP latency estimated by clients (Client RTT) and
servers (Server RTT) for cellular networks in Asia.

in the US. For example, in Table 5.6 the latency experienced by clients connecting

to servers in TX indicate that T-Mobile does not use a CTP for terminating HTTP

sessions for any domain name. Thus I argue that T-Mobile’s deployment of CTPs

in the US is different across different locations and domain names. Based on these

observations, I label the Proxy? column in Table 5.2 as ‘Limited’.

The second observation I make is that cellular networks in the US use CTPs for

TCP connections over their IPv4 networks, but not over their IPv6 networks. Since

I did not observe statistically significant IPv6 traffic from cellular carriers deployed

outside of the US, I restrict this observation to cellular carriers in the US only. In

126

Table 5.4: Distribution of TCP latency estimated by clients (Client RTT) and
servers (Server RTT) for cellular networks in the Europe.

127

Table 5.5: Distribution of TCP latency estimated by clients (Client RTT) and
servers (Server RTT) for cellular networks in Oceania and South America.

Table 5.7, I show the distribution of TCP latency for IPv6 networks deployed by major

US carriers, estimated by clients and CDN servers. I observe that clients in Verizon

Wireless connecting to CDNs over IPv6 network experience latency similar to that es-

timated at the server for HTTP sessions. However, from Table 5.2, I observe that Ver-

izon clients connecting to CDN servers over its IPv4 network experience much higher

latency than experienced by the CDN servers, for HTTP sessions – indicating the pres-

ence of CTP for HTTP sessions in its IPv4 network. Therefore, I argue that Verizon

employs CTPs for HTTP sessions in its IPv4 network and not in its IPv6 network.

The third observation I make is that some networks use CTPs to split HTTPS

sessions. Using our measurement data, I identified a cellular carrier in France that

employs CTPs to split HTTPS sessions. In Table 5.4, I show that for France

Telecom, the Server RTT for HTTPS sessions is significantly lower than the

Client RTT, therefore I believe that France Telecom uses CTPs to split HTTPS

sessions. Telefonica in Spain is another cellular carrier for which I observe that CTPs

split HTTPS sessions, as the latency estimated by CDN servers is lower than latency

estimated by clients. Further, Telefonica’s recent design of mcTLS protocol indicates

128

Table 5.6: Distribution of HTTP latency estimated by clients (Client RTT)
and servers (Server RTT) for T-Mobile across different domains & locations.

that ISPs work towards deploying CTPs for HTTPS sessions [213], likely to support

content caching and connection optimization for secure connections [292].

The fourth observation I make is that for some carriers, the p75 of Server

RTT is similar to p25 of Client RTT, when the p25 and p50 of Server RTT

indicate the presence of CTPs in that carrier. For example, the p75 of Server RTT

for HTTP sessions in Etisalat network in Table 5.3, suggests that CTPs may not be

used for splitting all HTTP sessions. I speculate that when CTPs get overloaded,

client requests are likely not sent to CTPs and instead sent directly to servers. As a

result servers occasionally experience (unproxied) latency of end-to-end connections

to mobile devices. To deal with such occasional instances, TCP stacks of servers

should interpret such connections as direct connections to mobile devices.

Finally, the fifth observation I make is that for a few cellular carriers the

Server RTT is either higher or lower than Client RTT by at least 80 ms for p75.

Specifically, if I observe Server RTT to be higher than Client RTT, I speculate

129

Table 5.7: Distribution of TCP latency estimated by clients (Client RTT) and
servers (Server RTT) for IPv6 cellular networks in North America.

that CTPs are deployed near the gateway and Internet egress points are far from the

gateway. If I observe Server RTT to be lower than Client RTT, I speculate that

CTPs are near to both egress points and gateways but clients connect to gateways

far in the network. For such cellular carriers I place a ‘-’ in the Proxy? column in

Tables 5.2, 5.3, 5.4, and 5.5. I argue that for such cellular carriers, passive techniques

in the following sections may be used to detect the presence of CTPs.

Detecting CTPs from Packet Loss on the Server-side

In previous section, I discussed how server operators could use latencies

measurements by clients and servers to detect the presence of CTPs. In this section,

I are interested in verifying another technique, based on packet loss, to passively

detect CTPs across cellular networks worldwide using measurement data collected by

Akamai CDN servers. Since I observe TCP latency estimated by CDN servers to CTPs

is significantly low, I argue that CTPs and CDN servers are usually deployed within

the same or nearby datacenters. Therefore, when a CTP is employed to split connec-

tions, the number of packets retransmitted by servers should be lower than packets

retransmitted for connections where CTPs are not used. Following this assumption,

130

0 10 20 30 40 50 60 70

0.
6

0.
7

0.
8

0.
9

1.
0

Packet Loss (%)

C
D

F
of

 T
C

P
 C

on
ne

ct
io

ns

HTTP - AT&T
HTTPS - AT&T
HTTP - Verizon
HTTPS - Verizon
HTTP - Sprint
HTTPS - Sprint
HTTP - T-Mobile
HTTPS - T-Mobile

(a) USA

0 10 20 30 40 50 60 70

0.
6

0.
7

0.
8

0.
9

1.
0

Packet Loss (%)

C
D

F
of

 T
C

P
 C

on
ne

ct
io

ns

HTTP - Bell Canada
HTTPS - Bell Canada
HTTP - Rogers
HTTPS - Rogers

(b) Canada

0 10 20 30 40 50 60 70

0.
6

0.
7

0.
8

0.
9

1.
0

Packet Loss (%)

C
D

F
of

 T
C

P
 C

on
ne

ct
io

ns

HTTP - Telefonica
HTTPS - Telefonica
HTTP - Vodafone
HTTPS - Vodafone

(c) Great Britain

0 10 20 30 40 50 60 70

0.
6

0.
7

0.
8

0.
9

1.
0

Packet Loss (%)

C
D

F
of

 T
C

P
 C

on
ne

ct
io

ns

HTTP - DTAG
HTTPS - DTAG
HTTP - Vodafone
HTTPS - Vodafone

(d) Germany

0 10 20 30 40 50 60 70

0.
6

0.
7

0.
8

0.
9

1.
0

Packet Loss (%)

C
D

F
of

 T
C

P
 C

on
ne

ct
io

ns

HTTP - Bouygues
HTTPS - Bouygues
HTTP - France Telecom
HTTPS - France Telecom
HTTP - SFR
HTTPS - SFR

(e) France

0 10 20 30 40 50 60 70

0.
6

0.
7

0.
8

0.
9

1.
0

Packet Loss (%)

C
D

F
of

 T
C

P
 C

on
ne

ct
io

ns

HTTP - Telefonica
HTTPS - Telefonica
HTTP - Vodafone
HTTPS - Vodafone
HTTP - Uni2
HTTPS - Uni2
HTTP - Jazztel
HTTPS - Jazztel

(f) Spain

Figure 5.1: Distribution of packet loss over HTTP and HTTPS sessions for
cellular networks in different countries. For visibility, I reduced the number
of symbols on each line.

in Figure 5.1, I show the distribution of packet loss observed during our tests for

thousands of HTTP and HTTPS sessions. Our first goal is to identify networks

where packet loss observed by CDN servers is higher for one type of connections and

not others. I also aim to determine whether results from using packet loss correlate

with our CTP detection in the previous section. Due to space limitations, I show dis-

tribution of packet loss for only a few cellular carriers in North America and Europe.

In Figure 5.1(a), I show the distribution of packet loss observed for HTTP and

HTTPS sessions in four major cellular carriers in the US. Specifically, in the case of

Verizon, AT&T, and Sprint networks, I observe that for HTTP sessions CDN servers

experience low packet loss, whereas for HTTPS sessions CDN servers experience

131

significantly higher packet loss – indicating the presence of CTPs for HTTP sessions.

The results for these networks agree with our observations from using latency-based

technique. However, in the case of T-Mobile, I see that the packet loss for HTTP

sessions is slightly higher compared to other networks. I speculate that the packet

loss for HTTP sessions in T-Mobile network are influenced by T-Mobile’s policy to

employ CTPs at only a few locations and domain names in the US (Table 5.6).

Next, I compare the packet loss observed for connections in a network where

CTP is not employed, the Rogers network in Canada, as detected by our latency-

based technique in Table 5.2, with a network where our latency-based technique

could not detect the presence of CTPs, the Bell Canada network in Canada. In

Figure 5.1(b), I show that for both HTTP and HTTPS sessions in Bell Canada and

Rogers networks, CDN servers observe similar packet loss. I speculate that either

CTPs are not employed in the Bell Canada network or CTPs are present but CTPs

experience same network conditions as Rogers network without CTPs.

I now extend our discussion and compare packet loss observed by CDN servers

for connections in major cellular carriers in the UK, Germany, France, and Spain.

Similarly to carriers in the US, in Figure 5.1(c) and 5.1(d), I show that packet loss

observed by servers for HTTP sessions is significantly lower than packet loss observed

for HTTPS sessions – indicating the presence of CTPs for HTTP sessions, similar to

our observations from using latency-based technique. For cellular carriers in France

in Figure 5.1(e), I observe that packet loss for HTTPS sessions in France Telecom

network is similar to packet loss for HTTP sessions, with both being almost zero. This

indicates that CTPs are employed by France Telecom for splitting both HTTP and

HTTPS sessions – validating our observations from using latency-based technique.

Finally, in Figure 5.1(f), I show distribution of packet loss observed by CDN

servers for major cellular carriers in Spain. I observe that for Vodafone and Telefonica

132

networks, the packet loss for HTTP sessions is much lower than packet loss for HTTPS

session – indicating the presence of CTPs for only HTTP connections, similar to our

observations from using latency-based technique. For Uni2 and Jazztel, however, I

observe that packet loss for both HTTP and HTTPS is similar. This indicates that

CTPs are used for both HTTP and HTTPS sessions, similar to our observations

from using latency-based technique. One exception to our results is for Telefonica.

Using the latency technique I identified that Telefonica could be a potential carrier

where CTPs are used to terminate HTTPS sessions. However, the high packet loss

for HTTPS sessions indicates that CTPs are not used for splitting HTTPS sessions.

To disambiguate the presence of CTPs, I propose another technique that relies on

analyzing the characteristics of TCP SYN packets, which I discuss next.

Detecting CTPs from TCP SYN Characteristics

Our third technique is based on analyzing TCP SYN packets to detect the presence

of CTPs in cellular networks. Our active experiments on understanding characteristics

of TCP SYN packets generated by different types of mobile devices have revealed that

the advertised Initial Congestion Window Size (ICWS), TCP Timestamp in the

TCP options header, and Maximum Segment Size (MSS) values are different across

different types of mobile devices. I also observed that these values are different

even when the same device connects to Wi-Fi and cellular network. Based on this

observation, our goal is to identify whether analyzing TCP SYN packets (captured

passively for HTTP and HTTPS sessions) have the same ICWS, MSS, and an increasing

TCP Timestamp value, which would indicate that SYN packets are likely being

generated by a single machine (a CTP), instead of from multiple mobile devices

with different hardware.

133

Results from our analysis of TCP SYN packets indicate that for all observed

TCP SYN packets on port 80 from cellular carriers for which our latency and packet

loss-based techniques suggest presence of CTP for HTTP sessions, the ICWS and MSS

fields in the TCP SYN packets have the same value and the TCP Timestamp option

have monotonically increasing values with a near constant skew – indicating the

presence of CTPs for splitting HTTP sessions. For TCP SYN packets (generated from

networks for which our latency and packet loss-based techniques suggest absence of

CTPs for HTTPS sessions) to port 443 of CDN servers, I observed varying values

of ICWS, MSS, and TCP Timestamp – indicating that the TCP SYN packets are likely

generated by different mobile devices, instead of CTPs. I also verified our technique

to be reliable for cellular carriers that employ CTPs for HTTPS sessions. For

example, for France Telecom network in France I observed that the characteristics of

all observed TCP SYN packets to port 443 were similar – indicating the presence of

CTPs for HTTPS connections. For Telefonica in Spain, I did not observe similar

characteristics of observed TCP SYN packets to port 443 – indicating absence of

CTPs for splitting HTTPS sessions. Based on our findings on Telefonica’s CTPs

for HTTPS sessions from our latency, loss, and SYN-based techniques, I argue that

active measurements may be needed to reliably detect CTPs. Finally, based on the

data collected I did not find networks where ICWS and MSS values were similar but

CTP was not detected using latency packet loss based techniques.

Discussion

I believe that one can leverage the use of our latency-based technique to identify

the cellular latency offered by carriers where CTPs are present. I argue that for such

carriers, Client RTT is a reliable indicator of the cellular latency, comprising of the

134

sum of radio latency and latency within the cellular backbone. Specifically, if 4G is

widely deployed by a cellular carrier, the latency offered by 4G would be reflected

in both p25 and p75 of Client RTT. Further, if 3G is more widely deployed than

4G, then the latency offered by 4G would be reflected in the p25 and latency offered

by 3G would be reflected in p75 of Client RTT. For example, for Telefonica in

Spain, Sensorly’s [43] signal strength data suggests a wide deployment of 3G, but

little deployment of 4G. Therefore, in Table 5.4, the p25 of Client RTT for HTTP

sessions (55 ms) reflects Telefonica’s latency over its 4G network, whereas the p75

latency of 372 ms reflects its 3G latency. Further, the Etisalat network in AE (in

Table 5.3) has wide deployment of 4G (based on Sensorly data), thus the HTTP

latency shown in both p25 (30 ms) and p75 (49 ms) of Client RTT represents the

latency offered by Etisalat’s 4G network. For other cellular networks with CTPs also,

I verified that using Sensorly’s data and Client RTT together allows cellular latency

estimation in a given carrier.

Conclusions

Connection Terminating Proxies (CTPs) have been a great area of interest

for many cellular carriers in the past. These proxies allow for optimizing TCP

connections between servers and client devices. In this paper, I propose three

techniques to passively identify the presence of CTPs, based on latency, loss, and

TCP SYN characteristics. I also conduct an extensive measurement study based on

Akamai server logs to demonstrate that our techniques can reliably detect CTPs in

cellular networks worldwide. Based on our measurement results, I argue that server

operators could use our suggested techniques to detect CTPs using server logs only

135

and optimize communications for different cellular networks with the goal of faster

content delivery to end-users.

136

A CASE FOR FASTER MOBILE WEB IN CELLULAR IPV6 NETWORKS

Abstract

The transition to IPv6 cellular networks creates uncertainty for content providers (CPs)

and content delivery networks (CDNs) of whether and how to follow suit. Do CPs

that update their CDN contracts to allow IPv6 hosting achieve better, or worse

performance in mobile networks? Should CDNs continue to host mobile content over

IPv4 networks, or persuade to their CP customers the performance benefits of IPv6

content delivery?

In this paper we answer these questions through a comprehensive comparison

of IPv4 and IPv6 mobile Web performance in cellular networks in the US from the

point of view of Akamai’s content delivery infrastructure. Our data show that IPv6

hosting outperforms legacy IPv4 paths in mobile Web. Our analysis leads to clear

recommendations for CPs to transition to IPv6-hosted mobile Web. Finally, we

propose new mechanisms, through which CDNs can safely transition mobile content

to IPv6-enabled servers for improved content delivery.

Introduction

Despite many years of research to improve Web performance in mobile and

wireless networks, users remain dissatisfied with lengthy webpage load times [263].

As Internet Service Providers (ISPs) upgrade their network infrastructure from IPv4

to IPv6, understanding the performance of mobile content delivery in cellular IPv6

networks is crucial. In this study, we take a novel approach to characterize the

dynamically changing IPv6 ecosystem from the point of view of Akamai’s content

delivery infrastructure for cellular networks [224]. We argue that, unlike PlanetLab

137

and Amazon EC2 datacenters [2,45], Akamai’s content delivery servers are so deeply

deployed inside several cellular ISPs’ networks that the end-to-end communication

between mobile devices and Akamai’s servers need not, strictly speaking, touch the

wired public Internet outside the cellular network. As a result, Akamai’s unique

content delivery infrastructure enables us to view the end-to-end cellular ecosystem

between mobile devices and cellular gateways and evaluate how content is delivered

over cellular IPv6 networks from the perspective of content providers (CPs), ISPs,

and other content delivery networks (CDNs) [28,55].

CPs, such as Facebook and others, care about the experience of users with their

respective applications. To deliver application content from datacenters to users in a

timely manner, CPs make contractual agreements with CDNs to ensure content has

high availability, is secure, and is delivered to users through low latency connections.

Some CPs sign contracts with CDNs for content delivery only over a cellular ISP’s

IPv4 network, while other CPs sign contracts for content delivery over IPv6 networks.

Although, CPs are aware that ISPs are deploying IPv6 in their networks and CDNs

are offering IPv6 hosting of mobile content, CPs remain uncertain whether upgrading

to IPv6 will improve or worsen the performance of mobile content delivery.

CDNs, such as Akamai and others, care about the performance of content

delivery to their mobile users. Although CDNs strive to upgrade their infrastruc-

ture to overcome IPv4 address scarcity and to make content available over IPv6

networks [34,110,113,222,262], one of their goals is to ensure that the performance

of content delivery over an ISP’s IPv6 network is as good as over that ISP’s IPv4

network. CDNs generally act as a surrogate infrastructure for its many CPs, and for

stability, reliability, and contractual implications, the configurations for each CP are

often only changed with respective permission granted from the CP. Thus, adoption

of new content delivery techniques, such as IPv6, is often a multi-year process as

138

its performance implications become better-understood in real-world conditions over

time.

As cellular network operators adopt IPv6 addressing to resolve the challenges

imposed by IPv4 address scarcity [113], the research community has shown interest in

understanding different IPv6 deployment strategies within ISPs worldwide, and the

adoption rate of IPv6 among mobile users and content providers [110,222,274]. Conse-

quently, CPs and CDNs remain reluctant to embrace a wide-scale transition to IPv6,

as they remain unaware of performance of IPv6 networks deployed by cellular carriers.

In this paper, we take a novel approach to investigate and expose performance

of IPv6 and IPv4 ecosystems from a CDN’s perspective – in between cellular ISPs

and Content Providers. Our goal is to improve awareness within different networking

communities about performance benefits (if any) of serving mobile content over IPv6,

as opposed to IPv4. Our work precisely describes the current role of a CDN in

connecting mobile users to content servers in the evolving cellular ecosystem in the

US. To the best of our knowledge, our work is the most detailed investigation to

compare mobile Web performance over IPv4 and IPv6 networks. We classify the four

major contributions of this work as follows:

Dataset Richness: We conducted a large scale, comprehensive study to measure

IPv6 performance in four major cellular carriers in the US to compare its native and

NAT64/DSLite deployments. Using Akamai CDN infrastructure, we collected a rich

dataset consisting of millions of data points of measured IPv6 and IPv4 performance,

during the months of January - August in 2015.

Measurement: Our study investigates IPv6 performance across multiple factors

that influence Web performance on cellular networks.

139

Figure 6.1: T-Mobile’s
IPv6 network.

Figure 6.2: Verizon’s IPv6
network.

Figure 6.3: AT&T and
Sprint’s IPv6 net.

• We compare IPv6 and IPv4 networks through 1) round trip time between clients

and CDN servers; 2) time to resolve domain names from cellular DNS; and

3) webpage load time.

• We extend Akamai’s Real User Monitoring System (RUM) [41] to accurately

extract Web performance metrics for mobile content hosted on IPv6-enabled

content servers in US cellular networks.

Inferences Drawn: Our experience with Akamai’s content delivery infrastructure

shows that IPv6 networks deployed by cellular ISPs outperform their IPv4 networks.

• Our analysis includes recommendations for CPs to host mobile content on IPv6

for improved user experience.

• We also recommend that CDNs deliver mobile content over IPv6 to avoid in-

path middleboxes for IP address translation deployed by cellular carriers.

• And finally, we suggest cellular network operators upgrade their network

infrastructure to support IPv6, instead of continuing to deploy legacy IPv4

technologies in their network.

Problems Discovered: During our study, we discovered the following three

problems related to how IPv6 content is delivered in cellular networks. We also

propose several solutions we adopted to address these problems.

140

• We discovered that the DNS lookup process takes longer on Android devices

with IPv6 capability than Android devices with IPv4-only capability. The

lookup time is high because IPv6-capable devices wait for both Type A and

Type AAAA (pronounced ‘quad A’) DNS queries to finish before establishing

a TCP connection. Because of higher DNS lookup time for IPv6-capable

clients, we observe that IPv6 clients in the Sprint network often experience

slower webpage loads when connecting to IPv4 servers, than IPv4-only clients

connecting to same IPv4 servers.

Solution: To address this problem, we made four recommendations to the

Google Android team to reduce long Round Trips Times (RTTs) to cellular

resolvers. First, if the DNS lookup process on IPv6-capable Android devices

could be modified to send AAAA and A DNS queries in parallel, lookup times

could potentially become twice as fast. Second, we suggested that additional

speedup in DNS lookup could be achieved by letting client browsers indicate

to the mobile OS that they do not need to wait to get the A lookup back if

they get an AAAA answer in DNS response. Third, in cases where mobile clients

are on an IPv6-only network, the mobile OS could be modified to only send

DNS AAAA queries, instead of both AAAA and A. Finally, the existence of A or

AAAA only answers could be cached per-name for some time on the device, not

withstanding the caching of the actual answers, which would enable the device

to make a smarter query the following time that an IP address is needed.

• In the case of T-Mobile (and applicable to other major IPv6-only networks

worldwide), we discovered that when IPv6-capable clients resolve an IPv4-only

domain name, the cellular DNS introduces an extra round trip to the DNS

Authorities. We discuss details in Section 6.

141

Solution: We develop and prototype OneTrip, a technique for DNS Authori-

ties to eliminate the extra round trip in DNS lookups when resolving IPv4-only

domains. Through in-lab simulations we show that DNS lookup times reduce

significantly when DNS Authorities use OneTrip. We also experimentally

verify that in T-Mobile’s production cellular network, OneTrip maintains end-

to-end connectivity.

• In a cellular network outside of the US, IPv6 packets were being routed via the

US, which resulted in latency of end-to-end connections on IPv6 to be higher

than IPv4 by 200 ms. While it is possible that IPv6 latency may be higher than

IPv4 in some networks, we argue that it could be due to misconfigured routing

policies.

Solution: Based on our findings, Akamai’s network team is actively working

with that cellular carrier to resolve misconfiguration in its IPv6 routing.

The rest of the paper is organized as follows. In the next section, we offer a

discussion on how IPv6 is deployed by different cellular ISPs in the US. An overview

of different IPv6 deployment strategies will support our measurement techniques and

research findings. In Section 6, we describe our data collection methodology. In

Section 6, 6, and 6, we investigate the component differences of Web performance in

IPv6 and IPv4 networks through measuring the round trip latency between clients

and CDN servers, the DNS lookup time, and the webpage load time. In Section 6,

we introduce OneTrip as a technique for DNS Authorities to eliminate unnecessary

round trips from DNS lookups in IPv6-only networks. In Section 6, we discuss related

work. Finally, we conclude in Section 6.

142

Overview of IPv6 Deployment in Cellular Networks

A cellular carrier that supports IPv6 addressing must provide a way for its

IPv6 devices to connect with IPv4 and dual-stacked (both IPv4 and IPv6 addresses)

Internet servers. Cellular network architectures are influenced by a variety of factors

such as the capabilities of the existing infrastructure hardware to support IPv6

addressing, urgency to upgrade networks to IPv6, number of users with IPv6-capable

devices, number of available IPv4 addresses, etc., which result in ISPs taking different

approaches to IPv6 deployment [63]. In this section we provide an overview of how

the different cellular carriers in the US have upgraded their IPv4 networks to provide

IPv6 addressing to their users, based on the publicly available information from those

carriers.

T-Mobile is an IPv6-only network for all phones with support for 464XLAT, which

includes all phones with Android version 4.3 and above [90]. For older versions of

Android, as well as iPhone, Blackberry, and Windows devices, T-Mobile is an IPv4-

only network. As a result, IPv6 devices in T-Mobile network always transmit IPv6

packets, whereas, IPv4 devices always transmit IPv4 packets. Thus, the choice of

addressing (IPv4/IPv6) for devices is based on whether the device supports 464XLAT.

In Figure 6.1 we depict the high level infrastructure of the IPv6 network deployed

by T-Mobile. We show that when an IPv6 device communicates with an IPv6 server

the packets are routed directly to the server through the IPv6 network without any

NAT-based stateful middleboxes (Steps 1 and 2). However, when an IPv6 device

communicates with an IPv4 server, the IPv6 packets generated by the device are

routed to a stateful NAT64 middlebox (Steps 3 and 4). The NAT64 middlebox

translates IPv6 packets to IPv4 address family and forwards the translated packets

to the IPv4 server (Step 5). The NAT64 middlebox also converts reply IPv4

143

Figure 6.4: Sequence of
Akamai’s RUM interactions
with client’s browser.

T-Mobile Verizon AT&T Sprint
Cellular Carriers

M
ed

ia
n

La
te

nc
y

(m
s)

0
5

15
25

Figure 6.5: Round trip
latency between Akamai
CDN servers and cellular
TCP Split proxies.

packets (from the IPv4 server) to IPv6 packets (forwarded to the mobile device),

as shown in Steps 5, 4, and 3.

In summary, there are two ways in which T-Mobile routes packets from IPv6

devices: 1) via IPv6 network with no stateful middleboxes, and 2) via NAT64

middlebox, where IPv6 network is used between clients and NAT64 and IPv4 network

is used between NAT64 and IPv4 servers.

Verizon Wireless (Verizon) provides both IPv6 and IPv4 addressing to all of its

devices connected to its LTE network [60]. For devices with no IPv6 support or not

connected to the LTE network, Verizon provides only IPv4 addressing – resulting in

the devices using Verizon’s IPv4 network. Thus, in the Verizon network, the choice

of addressing on the device is based on whether the device is connected to the LTE

network [260].

In Figure 6.2, we depict a high level infrastructure of Verizon’s IPv6 network.

Similarly to T-Mobile, when an IPv6 device communicates with an IPv6 server, the

packets are routed to the server through Verizon’s IPv6 network without any stateful

NAT middleboxes (Steps 1 and 2). However, when an IPv6 device communicates with

144

an IPv4 server, the device uses the Gateway-Initiated Dual-Stack Lite (DS Lite), a

software installed on the phone, to encapsulate IPv4 packets inside IPv6 headers (Step

3) [79,130]. The encapsulated packets are then forwarded to a middlebox that decap-

sulates the packet contents and strips out the IPv6 header (Steps 4 and 5). Finally,

the IPv4 packets are forwarded to the IPv4 server (Step 6). One of the benefits of

using a gateway initiated DS Lite is that encapsulating IPv4 packets in an IPv6 header

allows Verizon to use IPv6 addressing for routing packets within the cellular network.

In summary, there are two different ways in which Verizon routes packets from

IPv6 devices: 1) via IPv6 network with no stateful middleboxes, and 2) via IPv4-in-

IPv6 tunnels using DS Lite software on the phone.

AT&T Mobility (AT&T) and Sprint provide both IPv6 and IPv4 addressing to

only some of their IPv6-capable devices [5,64]. For other IPv6-capable and IPv4-only

devices, both these networks provide only IPv4 addressing. Therefore, the choice

of addressing for devices in these networks is neither dependent on 464XLAT nor on

the cellular technology and is rather likely to be decided by the carrier’s respective

network configurations.

In Figure 6.3, we depict a high level infrastructure of the IPv6 network deployed

by AT&T and Sprint. We show that when an IPv6 device communicates with an

IPv6 server, the packets are routed directly to the server, through the IPv6 network

without any stateful middleboxes (Steps 1 and 2) [5, 64]. However, when an IPv6

device communicates with an IPv4 server, unlike in T-Mobile and Verizon networks,

the packets route through the IPv4 network, which consists of several stateful NAT

middleboxes, such as NAT 44 and NAT 444, to convert private IPv4 addresses to

public IPv4 addresses (Steps 3, 4, and 5).

145

In summary, there are two different ways in which both AT&T and Sprint route

packets from IPv6 devices: 1) via IPv6 network with no stateful middleboxes, and

2) via IPv4 network with several stateful NAT middleboxes.

Data Collection Methodology

Recent studies on measuring CDN adoption rate among websites show that out

of the most popular 1,000, 10,000, and 100,000 websites listed on Alexa [44], 77%,

35%, and 19% are hosted on different CDN infrastructures, respectively [15]. Further,

a study on understanding the CDN market share indicates that Akamai CDN infras-

tructure leads in delivering content for majority of the popular websites, including

several e-commerce, media, government, news, and social media websites [28] [55].

Specifically, out of the most popular 1,000, 10,000 websites listed on Alexa, as well

as, top 500 websites listed on Fortune [17], Akamai delivers content for over 23%,

16.4%, and 32% websites, respectively [31]. Based on these results, we believe that

our dataset on cellular network performance collected by globally distributed CDN

servers of Akamai is representative of mobile Web performance in general.

We now shift our focus to organize our measurement data collection to accurately

represent performance of native IPv6, legacy IPv4, NAT64, and DS-Lite sessions.

First, we provide an overview of how we collect performance data from client devices

and CDN servers. Next, we discuss techniques used to filter data generated by a

number of independent sources, such as client’s browser caching of content, Web

proxies in the cellular network, and mobile device’s operating system. Finally, we

describe how we sanitize our measurement data to only contain RTTs, DNS lookup

times, and webpage load times for pages loaded over end-to-end (E2E) IPv6 and

146

IPv4 sessions between clients and CDN servers, as well as pages loaded via NAT 64

middleboxes and DS-Lite.

Experimental Setup: To compare the Web performance perceived by end-users on

IPv6 and IPv4 networks, we use Akamai’s RUM system [41], as depicted in Figure 6.4.

Akamai’s Web servers inject JavaScript (RUM Javascript) into a small fraction of user

requests for some of the customer-websites hosted on Akamai infrastructure (Steps

1 and 2). The injected JavaScript uses the browser exposed Navigation Timing API

to capture the time to resolve domain names, time to establish TCP connections,

and webpage load time, among several other metrics [36]. The JavaScript then sends

the collected timing data in the form of a RUM Beacon to a dual-stacked RUM server

after the page load completes (Step 3). The RUM server then sends the data in

the RUM Beacon to the RUM database (Step 4). Finally, in Step 5, the Web server

complements the data into the database with the TCP latency estimated by the Web

server that served the webpage, the publicly routable IP addresses of the CDN server

and the client, indicator of whether the webpage was available via IPv4-only, or dual-

stacked GET requests, an indicator of whether the webpage was requested over IPv4

or IPv6, an indicator of whether the RUM Beacon was submitted over IPv4 or IPv6,

and the cellular ISP name to which the client’s IP address belongs as determined by

Akamai’s EdgeScape [1].

Note: Earlier CDN deployments only served some of the static webpage content.

However, as the need for responsive Web performance increased, CPs moved their

base pages and other page resources onto replica servers as well. DNS CNAMEing

allows base page domain to resolve to a domain page hosted by a CDN [207].

Using Akamai’s RUM, in Figure 6.5 we show the round trip TCP latency esti-

mated by Akamai servers when connecting to TCP terminating proxies deployed by

147

cellular ISPs using measurement techniques developed by Goel et al. [148]. The height

of each bar graph represents the median TCP latency, and the extreme ends of error

bars represent the 25th and 75th percentile of the latency respectively. We show that

the median latency between Akamai CDN servers and cellular gateways of T-Mobile

and AT&T is only 2 ms and 4 ms, respectively. For Verizon and Sprint, the latency

is less than 10ms. We argue that such a low latency is possible only when Akamai’s

CDN servers are in extreme proximity with the cellular gateways, as opposed to

significantly higher latency estimated by Amazon EC2 and PlanetLab datacenters in

the US [112]. Therefore, our view of the IPv6 ecosystem using Akamai’s infrastructure

allows us to isolate the performance differences if IPv4 and IPv6 within the cellular

network (without introducing the confounding factor of the public Internet).

Data Sanitization: We filter our dataset to include performance numbers that

pertain only to webpages loaded on Google Chrome browser on Android devices. Our

choice to eliminate any influence of iOS was based on lack of IPv6 support on iOS

devices at the time of this study. During this study, IPv6 support on iOS devices was

not available and was only made available in late 2015 with the release of iOS 9 [185].

Therefore, we choose to consider measurement data for Android devices only. Next,

in our dataset, we observe that the Web browsers, from which the webpages were

mostly requested were Chrome Mobile on Android and Safari on iOS devices. The

lack of support for Navigation Timing API on Safari browser installed on iOS version

8 and below motivated us to eliminate any RTT, DNS, and webpage load time related

measurement data from our dataset [37].

Recent study on detecting Performance Enhancing Proxies (PEPs) in cellular

networks has revealed that cellular networks in the US do not use PEPs for HTTPS

traffic [148]. Therefore, to remove any influence of PEPs (in terms of Web content

148

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Latency (ms)

C
D

F
of

 S
es

si
on

s

E2E IPv6
NAT64
E2E IPv4

Figure 6.6: RTT
distribution for T-
Mobile clients.

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Latency (ms)

C
D

F
of

 S
es

si
on

s

E2E IPv6
DS-Lite
E2E IPv4

Figure 6.7: RTT
distribution for Ver-
izon clients.

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Latency (ms)

C
D

F
of

 S
es

si
on

s

E2E IPv6
E2E IPv4 on IPv6 device
E2E IPv4 on IPv4 device

Figure 6.8: RTT
distribution for
AT&T clients.

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Latency (ms)

C
D

F
of

 S
es

si
on

s

E2E IPv6
E2E IPv4 on IPv6 device
E2E IPv4 on IPv4 device

Figure 6.9: RTT
distribution for
Sprint clients.

0 5 10 15 20

0
10
0
20
0
30
0
40
0
50
0

Hour of day (24 hour format)

La
te

nc
y

(m
s)

E2E IPv6
NAT64
E2E IPv4

Figure 6.10: 24-hour
RTT distribution for
T-Mobile.

0 5 10 15 20

0
10
0
20
0
30
0
40
0
50
0

Hour of day (24 hour format)

La
te

nc
y

(m
s)

E2E IPv6
DS-Lite
E2E IPv4

Figure 6.11: 24-hour
RTT distribution for
Verizon.

0 5 10 15 20

0
10
0
20
0
30
0
40
0
50
0

Hour of day (24 hour format)

La
te

nc
y

(m
s)

E2E IPv6
E2E IPv4 on IPv6 Client
E2E IPv4 on IPv4 Client

Figure 6.12: 24-hour
RTT distribution for
AT&T.

0 5 10 15 20

0
10
0
20
0
30
0
40
0
50
0

Hour of day (24 hour format)

La
te

nc
y

(m
s)

E2E IPv6
E2E IPv4 on IPv6 Client
E2E IPv4 on IPv4 Client

Figure 6.13: 24-hour
RTT distribution for
Sprint.

caching and TCP split connections) in our dataset, we consider latency for only

HTTPS sessions. Latency for HTTPS sessions allows us to accurately estimate the

latency between CDN servers and client devices and ensure that the estimated latency

is not between servers and PEPs in cellular networks. In this work we focus on Web

performance over native IPv6 and legacy IPv4 networks, and so eliminate factors, such

as presence of PEPs that may confound our measurement data. Analysis of how PEPs

in cellular networks impact Web performance is potential future work of this study.

Finally, to remove any influence of content caching in Web browsers on the

measurement data, we consider data for only newly created TCP connections. We

extract data for connections whose setup time is more than 20ms, which ensures that

a TCP socket was created over the cellular network and that an existing connection

was not used [38]. We employ a similar technique to extract DNS resolution times

149

that were resolved at the time of webpage load, thus eliminating the influence of any

cached DNS resolutions in the browser.

Our sanitized dataset consists of measurement data for RTT and DNS lookup

time for several million sessions between clients and Akamai CDN servers, and

webpage load time from several hundred page loads.

Data Analysis: To record the latency over an IPv6 connection we use RTT to

clients estimated by CDN servers for webpages requested over IPv6 network. To get

the latency over connections via NAT64 (in T-Mobile) or DS-Lite (in Verizon), or by

IPv6 clients using IPv4 network (in AT&T and Sprint), we use latency estimated by

CDN servers for connections, where webpages were requested over IPv4 network and

the RUM Beacon was submitted over IPv6 – indicating that the webpage loaded on an

IPv6 client. To record the latency over IPv4 connections, we use latency estimated

by CDN servers for webpages requested over IPv4 and where RUM beacon was also

submitted over IPv4 – indicating that the webpage is loaded on an IPv4 client. We

apply similar techniques to extract webpage load time.

To record DNS lookup times that pertain to domain names resolved by IPv6

clients, we extract data points for clients on which either websites were loaded over

IPv6, NAT 64, or DS-Lite connectivity, or the RUM beacon was submitted to the

RUM server over an IPv6. Similarly, to get DNS lookup times that pertain to domain

names resolved by IPv4 clients, we extract data points for clients on which either

websites were loaded over IPv4 or the RUM Beacon was submitted to the RUM server

over IPv4 network.

150

Round Trip Latency over IPv6 and IPv4 Cellular Networks

The Round trip time (RTT) between clients and servers plays an important role

in influencing Web performance [151]. In this section, we investigate whether serving

mobile content over IPv6 results in lower latency between mobile clients and content

servers. We also investigate whether the performance of IPv6 network as well as the

performance gap between IPv6 and IPv4 remains same at peak and non-peak traffic

hours of a day.

In Figures 6.6–6.9, we show the overall distribution of RTT between clients and

CDN servers over IPv6 and IPv4 networks of different cellular carriers, collected in

five months of 2015. The solid CDF lines in these graphs show the RTT when IPv6

clients connect to IPv6 servers, over the IPv6 network. The dashed CDF lines show

the RTT when IPv6 clients connect to IPv4 servers via NAT64 middleboxes (in T-

Mobile), via IPv4-in-IPv6 tunnel (in Verizon), or via the IPv4 network (in AT&T

and Sprint). The dotted CDF lines show the RTT when IPv4 clients connect to IPv4

servers, over the IPv4 network. Additionally, in Figures 6.10–6.13, we show the RTT

distribution for 24-hour period, averaged over two months (June and July in 2015).

In the case of T-Mobile in Figure 6.6, we observe that the RTT for sessions over

IPv6 network is lower than the RTT over the IPv4 network. For example, for median

and 80% of sessions, the RTT over IPv6 network is about 49% and 64% faster than

RTT over IPv4 network, respectively. Even for sessions via NAT64 middlebox, the

IPv6 RTT is lower than RTT over IPv4 network. For example, for connections that

go through NAT64 middleboxes, the latencies for median and 80% of sessions are

about 18% and 27% faster than RTT over the IPv4 network, respectively.

Further, to eliminate any effects of provisioning differences between IPv4 and

IPv6 networks, we compare performance over IPv6 and IPv4 networks at peak and

151

non-peak traffic hours in Figure 6.10. We observe that the RTT over T-Mobile’s

IPv6 network outperforms latency over its IPv4 network at all times. In fact, NAT64

sessions also experience lower latency than IPv4 sessions at all times of the day.

Although we see that the performance gaps between all three distributions is not same

at all times, native IPv6 connectivity always provides least possible latency among

others. Based on our observations, we argue that such differences in round trip latency

in T-Mobile network arise from the elimination of overhead of NAT middleboxes

deployed in the IPv4 network to perform address translation of client sessions. With

no middleboxes in case of end-to-end IPv6 connectivity or one middlebox in case of

NAT64 sessions, users experience lower latency.

In the case of Verizon in Figure 6.7, we observe that RTT for IPv6 sessions is sim-

ilar to RTT for DS Lite sessions. We expect the two RTTs to be similar since in case

of DS Lite (IPv4-in-IPv6 tunneling) all packets are sent from the device over the IPv6

network, resulting in similar RTT as end-to-end IPv6 sessions. The RTT over IPv4

network however is influenced by Carrier Grade NATs and Large Scale NATs and thus

experience significantly higher latency than end-to-end IPv6 or IPv4-in-IPv6 tunneled

sessions. For example, for median and 80% of sessions on Verizon, the RTT over IPv6

network is about 29% and 44% faster than RTT over its IPv4 network, respectively.

Additionally, when comparing performance over 24-hour periods in Figure 6.11, we

observe that IPv6 latency inside Verizon’s network outperforms latency over its IPv4

network in both peak and non-peak traffic hours. Based on our observations, we

argue that the reduced RTT over Verizon’s IPv6 network is due to two major factors:

1) no stateful middleboxes in its IPv6 network, and 2) use of IPv6 connectivity only

over LTE network, as opposed to use of IPv4 connectivity over 3G network.1

1We could not disambiguate our measurement data specific to sessions over LTE and 3G networks,
because Akamai RUM uses JavaScript to collect client-side performance and at the time of our

152

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DNS Lookup Time (ms)

C
D

F
of

 R
eq

ue
st

s

IPv6 Client
IPv4 Client

Figure 6.14: DNS
Lookup time for
T-Mobile clients.

0 200 400 600 800

0.
2

0.
4

0.
6

0.
8

1.
0

DNS Lookup Time (ms)

C
D

F
of

 R
eq

ue
st

s

IPv6 Client
IPv4 Client

Figure 6.15: DNS
Lookup time for
Verizon clients.

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DNS Lookup Time (ms)

C
D

F
of

 R
eq

ue
st

s

IPv6 Client
IPv4 Client

Figure 6.16: DNS
Lookup time for
AT&T clients.

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DNS Lookup Time (ms)

C
D

F
of

 R
eq

ue
st

s

IPv6 Client
IPv4 Client

Figure 6.17: DNS
Lookup time for
Sprint clients.

Finally, in the case of AT&T and Sprint in Figures 6.8 and 6.9 respectively,

we observe that RTT over IPv6 network is lower than RTT over their respective

IPv4 networks, especially in the long tail. For example, for median and 80% of

sessions on AT&T network in Figure 6.8, the RTT for IPv6 network is 17% and 24%

faster than RTT over its IPv4 network respectively. Further, the RTT for sessions

established by IPv6 clients with IPv4 servers is similar to RTT for sessions established

by IPv4 clients with IPv4 servers. We expect the two RTTs to be similar because

both AT&T and Sprint are dual-stacked networks and therefore both IPv6 and IPv4

clients must connect to IPv4 servers over their respective legacy IPv4 networks with

NAT 44 and NAT 444 middleboxes – resulting in similar latency. Additionally, when

comparing AT&T and Sprint’s IPv6 network performance with their respective IPv4

networks over 24-hour periods in Figures 6.12 and 6.13, we observe that IPv6 sessions

on both AT&T and Sprint experience lower RTT than latency experienced by IPv4

sessions. Therefore, based on our observations we argue that similarly to T-Mobile,

IPv6 networks of both AT&T and Sprint outperform their respective IPv4 networks

because there are no stateful middleboxes in their IPv6 networks.

measurement (Jan - Aug 2015), Chrome browser did not capture the cellular technology to which
the client is connected when loading a webpage [114].

153

Discussion: Although, we observe that providing mobile content over IPv6 offers

reduced latency for end-users, we identified a cellular network outside the US where,

during our study, RTT over IPv6 network was higher than RTT over its IPv4 network

by almost 200 ms. To investigate, we ran traceroutes from CDN servers to several

IPv6 client IP addresses in that network and identified that IPv6 packets were being

routed through another country, resulting in higher RTT over its IPv6 network. To

investigate whether similar routing was applicable to IPv4 packets in that network at

the time of our measurement, we ran traceroutes from the same CDN servers to IPv4

client IP addresses in that network and found that packets were not being routed via

another country. While it is possible that IPv6 could be slower than IPv4 in some

networks, it could be related to how IPv6 packets are forwarded on the Internet.

Therefore, proximity of Akamai servers to cellular gateways eliminates the effects of

misconfigured routing in the public Internet.

DNS Lookup Time for IPv6 and IPv4 Clients

in addition to RTT, DNS lookup time is another important factor which

influences the Web performance in cellular networks [307]. In this section, we

measure the DNS lookup time for both IPv6 and IPv4 clients resolving dual-stacked

domain names (domains which can be resolved to both IPv4 and IPv6 addresses).

In Figures 6.14–6.17, we show the distribution of DNS lookup times when IPv6 and

IPv4 clients resolve dual-stacked domain names. The dotted CDF lines represent the

lookup time when domains are resolved for IPv6 clients, whereas, the solid CDF lines

represent lookup time when domains are resolved for IPv4 clients.

In general and contrary to the trends in the previous section, we see that the

DNS lookup takes longer for IPv6 clients than IPv4 clients in T-Mobile, AT&T, and

154

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Page Load Time (S)

C
D

F
of

 R
eq

ue
st

s

E2E IPv6
E2E IPv4

Figure 6.18: Dual-
Stack webpage PLT
for T-Mobile.

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Page Load Time (S)

C
D

F
of

 R
eq

ue
st

s

E2E IPv6
E2E IPv4

Figure 6.19: Dual-
Stack webpage PLT
for Verizon.

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Page Load Time (S)

C
D

F
of

 R
eq

ue
st

s

E2E IPv6
E2E IPv4

Figure 6.20: Dual-
Stack webpage PLT
for AT&T.

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Page Load Time (S)

C
D

F
of

 R
eq

ue
st

s

E2E IPv6
E2E IPv4

Figure 6.21: Dual-
Stack webpage PLT
for Sprint.

Sprint networks. However, for Verizon’s IPv6 and IPv4 clients, the DNS lookup times

are similar. DNS lookup times for IPv6 clients are influenced by their technique of

DNS resolution. Client devices are unaware of whether content from a domain is

available over IPv4 network or over IPv6 network. Therefore, clients must send both

AAAA (IPv6) and A (IPv4) DNS queries to their local resolvers to resolve domain

names. If an IPv6 address for the requested domain is available, Android clients

prefer to connect with the IPv6 address, instead of the IPv4 address of the server [317].

Although the two DNS requests could be sent in parallel to reduce the time to perform

the DNS lookups, we observe that regardless of the type of domain (IPv4-only or

dual-stack), IPv6 Android clients always issue both AAAA and A DNS queries serially.

Further, before returning the DNS response to the application the IPv6 clients wait

until responses for both queries arrive, or the resolutions times out. Therefore, the

DNS resolution on IPv6 Android clients require two round trips between clients and

DNS server, whereas IPv4 Android clients wait for only one round trip for resolving

the domain via type A query.

In the case of T-Mobile in Figure 6.14, we observe that the median DNS lookup

time for IPv6 clients is 25.7% slower than IPv4 clients, because IPv6 clients wait for

both type AAAA and A queries to finish, whereas IPv4 clients wait for only type A

155

queries. However, for about 20% of DNS requests, IPv6 clients experience faster res-

olution time than IPv4 clients. Since T-Mobile’s IPv6 clients can only transmit IPv6

packets into its network, DNS lookups for IPv6 clients take place over T-Mobile’s IPv6

network. Our earlier observation from Figure 6.6 shows that RTT over T-Mobile’s

IPv6 network is lower than IPv4 network, which likely helps about 20% of IPv6 DNS

lookups to complete faster in spite of the additional RTT. Therefore, DNS lookups

for some IPv6 clients outperform the lookup time for IPv4 clients, even though DNS

lookup process for IPv6 clients waits for an additional DNS query to finish.

In the case of Verizon in Figure 6.15, we observe that about 60% of the DNS

queries by IPv6 clients take same time as queries by IPv4 clients. Similarly to T-

Mobile, IPv6 clients in Verizon network transmit IPv6 packets into the network, which

results in DNS lookups over the IPv6 network. From Figure 6.7, we know that RTT

over Verizon’s IPv6 network is significantly lower than its IPv4 network, therefore the

DNS lookup time for IPv6 clients is similar to lookup time for IPv4 clients.

In the case of AT&T and Sprint in Figures 6.16 and 6.17 respectively, we observe

that the median DNS lookup times for IPv6 clients are about 38% slower than lookup

times for IPv4 client. Since both IPv4 and IPv6 clients in these networks use their

respective IPv4 networks to send DNS queries to local resolvers and that RTTs for

IPv4 packets sent by IPv6 and IPv4 clients are similar (from Figures 6.8 and 6.9),

IPv6 clients wait for responses for two DNS queries in serial, as opposed to IPv4

clients that wait for only one DNS lookup.

Discussion: We observe that the DNS lookup process takes longer for devices with

IPv6 capabilities than devices with IPv4-only capabilities in AT&T, Sprint, and partly

in T-Mobile networks. Following our observation, we argue that if the DNS lookup

process on IPv6 capable Android devices could be modified to send AAAA and A DNS

156

queries in parallel, lookup time could be significantly reduced. Additionally, if the

client browser could indicate to the mobile OS that they do not need to wait to get

the A lookup back if they get an AAAA answer in DNS response, the DNS lookup

time can be further reduced. And finally, for devices in T-Mobile network (and other

IPv6-only networks such as Orange Poland and SK Telecom, Telenor [222]), if the

OS installed on the device could identify whether the connected network is IPv6-

only, the DNS lookup process could only resolve a AAAA DNS query, instead of the

current implementation where both type A and AAAA DNS requests are resolved. Such

a network specific DNS resolution process will allow clients connected to IPv6-only

networks to speed up their DNS lookups. We are working with the Android team at

Google to improve DNS resolution process.

Page Load Time over IPv6 and

IPv4 Networks

Interactive webpages often require multiple DNS lookups and many round trips

between clients and servers to download Web objects onto the client’s browser. To

investigate the overall impact on Web performance of IPv6’s low RTTs and high DNS

lookup times, we compare the webpage load time (PLT) over IPv6 and IPv4 networks,

using the browser’s Navigation Timing API. For this part of the study, we analyze

measurement data for two types of webpages: 1) those available over both IPv6 and

IPv4 networks (dual-stacked), and 2) those available over IPv4 network only. Our

comparison of PLTs only includes page load requests, for which DNS lookups were

performed by the client browser and the pages were loaded over newly established

TCP connections. Our immediate goal is to eliminate any PLT data that includes

DNS lookup from Web browser’s cache and reuse of an existing TCP connection.

157

Table 6.1: Selected mobile device models with highest number of webpage load
requests in different cellular networks.

Network Device Model Name Model ID
T-Mobile Samsung Galaxy S5 SM-G900
Verizon Samsung Galaxy S5 SM-G900V
AT&T Samsung Galaxy S6 Edge SM-G925
Sprint Samsung Galaxy S6 Edge SM-G925

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Page Load Time (S)

C
D

F
of

 R
eq

ue
st

s

NAT64
E2E IPv4

Figure 6.22: IPv4
webpage PLT for T-
Mobile.

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Page Load Time (S)

C
D

F
of

 R
eq

ue
st

s

DS-Lite
E2E IPv4

Figure 6.23: IPv4
webpage PLT for
Verizon.

0 5 10 15
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Page Load Time (S)

C
D

F
of

 R
eq

ue
st

s
E2E IPv4 on IPv6 device
E2E IPv4 on IPv4 device

Figure 6.24: IPv4
webpage PLT for
AT&T.

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normalized Page Load Time

C
D

F
of

 R
eq

ue
st

s

E2E IPv4 on IPv6 device
E2E IPv4 on IPv4 device

Figure 6.25: IPv4
webpage PLT for
Sprint.

To mitigate the influence of mobile hardware on PLT, we consider PLTs from

only one specific device model for each cellular network. For each carrier we selected

the device model for which Akamai’s RUM had highest number of requests for

downloading webpage over both IPv4 and IPv6 networks of the corresponding carrier.

We list the device models selected for each network from our dataset in Table 6.1.

Further, to accurately characterize the performance of webpage loads over IPv6

and IPv4 networks, we consider PLTs for only one Web URL loaded on one specific

device model for each network. Similarly to our choice of device model, we selected the

URL for which Akamai’s RUM received highest number of requests from the selected

device model. Interestingly, the URL for a major postal service website was the only

dual-stacked webpage that was loaded the most number of times on all four cellular

networks, with the page having 94 embedded Web objects in total and 0.83 MB in

size. To prevent the influence of any in-network HTTP caches on PLTs, the page

158

Table 6.2: Details of IPv4-only webpages loaded over IPv4 networks of different
cellular carriers.

Network Webpage #Object Size
T-Mobile Clothing 444 0.70 MB
Verizon Internet Retailer 165 1.30 MB
AT&T Home Improvement 63 0.67 MB
Sprint Internet Retailer 165 1.30 MB

was loaded over Secure HTTP (HTTPS). Further, we identified different IPv4-only

webpages for different carriers that had the most number of page load requests from

the selected device. We list the details of IPv4-only URLs selected in each network

for performance comparison in Table 6.2 respectively.

IPv6 webpage load time: In Figures 6.18–6.21, we show the distribution of page

load time of one dual-stacked webpage loaded by IPv6 clients over networks and

loaded by IPv4 clients over IPv4 network. The solid CDF lines show PLTs when the

page was loaded over IPv6 network. The doted CDF lines show PLTs when the page

was loaded over IPv4 network. In general, we observe that for all four US carriers,

the PLTs of pages loaded by IPv6 clients over IPv6 networks are lower than PLTs

of the same pages loaded by IPv4 clients over the respective carrier’s IPv4 networks.

Further, despite DNS lookup times being higher for IPv6 clients, we observe that

PLTs are lower for IPv6 clients loading pages over IPv6 network. We argue that DNS

lookup times for IPv6 clients influence the overall page load time by just one extra

round trip and that the actual benefits of faster IPv6 network are observed when

multiple Web objects are loaded over the IPv6 network in several round trips.

In case of T-Mobile in Figure 6.18, we observe that for median and 80% of page

loads by IPv6 clients, the PLTs over IPv6 network are 9% and 14% faster than PLTs

over T-Mobile’s IPv4 network. In Figure 6.19, we observe similar reductions in PLTs

159

for pages loaded by Verizon’s IPv6 clients over Verizon’s IPv6 network. Specifically,

we show that the median and 80% of the PLTs by IPv6 clients over Verizon’s IPv6

network are 48% and 64% faster than PLTs over its IPv4 network, because of the

differences in RTTs between Verizon’s IPv6 and IPv4 networks as shown in Figure 6.7.

For AT&T and Sprint as well, we observe that PLTs are lower over the IPv6 network.

IPv4 webpage load time: In Figures 6.22–6.25, we show distribution of PLTs of an

IPv4 webpage, loaded by IPv6 and IPv4 clients. The dashed CDF lines show PLTs

when IPv6 clients load an IPv4 webpage via NAT64 (in T-Mobile), via IPv4-in-IPv6

tunnel (in Verizon), or via IPv4 network (in AT&T and Sprint). The dotted CDF

lines show PLTs when IPv4 clients load an IPv4 webpage over the IPv4 network.

In general, we observe that T-Mobile and Verizon IPv6 clients experience reduced

PLTs for IPv4 webpages, due to reduced RTT when using NAT64 in T-Mobile (as

shown in Figure 6.6) and the use of LTE and IPv6 network in Verizon (as shown in

Figure 6.7). For example, in Figure 6.23, we show that the median and 80% of the

IPv4 page loads in Verizon, are about 49% and 67% faster than page loads over IPv4

network. In the case of IPv6 clients in AT&T and Sprint network in Figures 6.24

and 6.25 respectively, we observe that IPv4 webpage PLTs are similar (in AT&T),

or occasionally slower (in Sprint) than PLTs experienced by IPv4 clients. We expect

the two PLTs to be similar since both IPv6 and IPv4 clients use the IPv4 network to

load IPv4 websites. However, in some cases we expect the PLTs by IPv6 clients to

be slower than PLTs by IPv4 clients, since such clients wait for an additional DNS

query for each domain in the webpage.

Although we only show performance gains with IPv6 for only one URL loaded

on one type of device model, we also looked at other URLs loaded from other device

models as well. We identified that IPv6 connectivity also improves the page load time

160

of other URLs, though due to space constraints we do not show PLT distributions

for other URLs and devices.

Discussion: Based on our findings on webpage load times, we show that for IPv6

clients in T-Mobile and Verizon networks, both IPv4-only and dual-stacked websites

will load faster than IPv4 clients loading the same websites over the carrier’s respective

IPv4 network. Although, we observe DNS lookups are slower for IPv6 clients in T-

Mobile, AT&T, and Sprint networks, we observe their impact on the overall PLT

over these networks to be minimal, since the RTT over IPv6 network is lower than

RTT over IPv4 networks, which accounts for most of the round trips when loading a

webpage [151].

For dual-stacked networks, such as AT&T and Sprint, IPv6 clients in such

networks experience faster page loads for only dual-stacked websites. Further,

websites available over IPv4 only may occasionally experience poor performance on

IPv6 clients, likely due to slower DNS lookups that lower IPv6 latency cannot offset.

Finally, we argue that since users are likely to visit websites from different networks,

providing mobile content over IPv6 will not hurt the Web performance and in fact in

some cases the Web performance will improve if pages are served over IPv6.

DNS Lookups in T-Mobile’s

IPv6-only Network

As cellular carriers upgrade their network infrastructure to IPv6 to mitigate

IPv4 address scarcity, we find that the DNS protocol starts to introduce avoidable

performance overhead. We observe an extra round trip in cellular ISPs, such

as T-Mobile, Orange Poland, SK Telecom, and others [222], which use IPv6-only

161

Figure 6.26: Sequence of how IPv4-only domains are resolved for IPv6-clients in
IPv6-only networks.

addressing in their network [90]. In effect, ISPs that fully embrace IPv6 technology

are penalized with slower domain name resolution.

We illustrate the problem scenario in Figure 6.26, which shows a sequence of

DNS messages exchanged between a user device, T-Mobile’s DNS 64 server, and a

DNS Authority. An IPv6-only environment requires a mobile client to send a AAAA

DNS query to the cellular DNS server to resolve an IPv4-only domain (Step 1).

The DNS request then travels to the DNS Authority (Step 2). The DNS Authority

replies with NOANSWER flag in the DNS response (Step 3), because an IPv6 address

is not available for the IPv4 domain in question. Instead of returning the DNS

response with NOANSWER back to the client, T-Mobile’s DNS server sends a subsequent

A DNS query for the same domain (Step 4), to which the DNS Authority replies

with an IPv4 address (Step 5). After receiving the IPv4 address, T-Mobile’s DNS

server synthesizes an IPv6 address corresponding to the IPv4 address and sends the

synthesized address to the client in response to the client’s DNS request (Step 6).

At this point, the mobile client is unaware whether the returned IPv6 address is

a synthesized address, or a real address returned by the DNS Authority. Since T-

162

Mobile employs NAT 64 middleboxes to translate synthesized IPv6 addresses back to

real IPv4 addresses (Figure 6.1), the synthesized address that the clients receive does

not alter their end-to-end connectivity [67,90].

Thus, if IPv6 addresses are available for a domain, the DNS lookup will finish in

Step 3. However, when a domain has only IPv4 addresses available, the DNS lookup

requires an extra round trip between the cellular DNS and the DNS Authority (Steps

4 and 5) [90]. The latency of this extra round trip could significantly influence the

PLT when cellular DNS servers are not in proximity to DNS Authorities and the

webpage requires multiple DNS lookups.

To address this overhead in DNS lookup process, we design OneTrip – a

technique for DNS Authorities to eliminate the extra round trip from DNS lookup

process in IPv6-only mobile networks. We show that for mobile clients in IPv6-only

networks, a DNS Authority can proactively synthesize IPv6 addresses from IPv4

addresses, for all domains it holds mappings between domains and IPv4 addresses.

The DNS Authorities could then reply with a synthesized IPv6 address, instead of a

NOANSWER, to any IPv4-only domain name lookup from IPv6-only networks.

ONETRIP’s Approach

To synthesize an IPv6 address from an IPv4 address, similarly to how T-Mobile’s

DNS 64 servers synthesize [90], OneTrip requires two types of datasets that identify

the /64 prefix used to synthesize an IPv6 address by cellular DNS servers. The first

are mappings between client and cellular DNS server IP addresses. The second are

mappings between cellular DNS server IP addresses and the /64 prefix used by the

NAT 64 middlebox to which their clients connect. The two datasets collectively allow

OneTrip to map a client IP address to /64 prefix, used by the NAT 64 middlebox

associated with each DNS (DNS 64) server. OneTrip makes these mappings available

163

1
5

50
50
0

50
00

US East - US East
2 ms

US East - US West
82 ms

US East - EU West
101 ms

US West - US West
4 ms

US West - EU West
155 ms

Latency between Cellular DNS and DNS Authorities

R
ed

uc
tio

n
in

 P
LT

 fr
om

 D
N

S
 L

oo
ku

p
(m

s) 12 domains/page
18 domains/page
30 domains/page

Figure 6.27: Reduction in DNS Lookup time when using OneTrip on DNS Authority.

to DNS Authorities so that when a cellular DNS server sends a request to the

Authority, the Authority already knows (based on cellular DNS IP in the DNS

query) the /64 prefix of the NAT 64 middlebox to which the client is connected.

The Authority then uses the corresponding /64 prefix to synthesize the IPv6 address

from the IPv4 address associated with the IPv4-only domain name in question.

Next, we describe OneTrip’s approach to collect the above mappings using

Akamai’s global infrastructure of content delivery.

Collecting DNS IP – NAT 64 Prefix mappings: Using the crowd-sourced

dataset collected by Netalyzr in over 11 months in 2013-2014 [183], we extracted

mappings between cellular DNS server IP addresses and the /64 prefixes used by

NAT 64 middleboxes deployed in T-Mobile’s network [297]. The Netalyzr mobile

application sends a AAAA DNS request to a cellular DNS server for resolving an IPv4-

only domain name whose DNS Authority replies with the IP address of the DNS server

that made the request. From the DNS response received by the client, we extract the

IP address of the cellular DNS server by converting the last (least significant) 32 bits

of the synthesized IPv6 address format from HEX to DEC. We also extract the /64

prefix from the first (most significant) 64 bits of the synthesized IPv6 address.

164

Collecting Client IP – DNS IP mappings: For the purpose of this work, we

modified our measurement system to make clients resolve a unique hostname that

allows us to map the client IP addresses to the cellular DNS IP addresses in a manner

similar to the above.

Finally, from the above two mappings we generate the associations between

client IP addresses and /64 prefixes that enable DNS Authorities to identify the

NAT 64 middlebox, to which the clients connect. These mappings are also useful

when DNS requests use the EDNS0 extension (containing the IP address of the mobile

client) for CDNs to perform server selection based on the client IP instead of the

DNS server IP [98]. Specifically, when ISP resolvers send IPv6 client addresses in

the DNS request, DNS Authorities search for the NAT 64 address, to which the

client is currently connected, and then perform mapping based on the location of

NAT64 address in the network. DNS Authorities may also combine NAT64 location

information with the (limited) information about the location of client’s IPv6 address.

Additionally, the mappings between client IP and NAT64 prefixes enable

Web/proxy servers to reduce latency for HTTP transactions, as opposed to using

synthetic IPv6 addresses only for the purposes of DNS lookups. Specifically, servers

that currently embed static IPv4 addresses in HTTP headers or payload [90], can now

embed synthesized IPv6 addresses to sidestep 464XLAT software on resource limited

mobile devices. This procedure reduces latency perceived by end users because the

464XLAT software on the client first converts the IPv4 address (returned in HTTP

response) into an IPv6 address. Next, IPv6 packets are forwarded to the NAT64

middlebox that converts them back to IPv4 packets for the IPv4 host. By allowing

servers to embed synthetic IPv6 addresses in HTTP headers, or payloads, latency

introduced by 464XLAT software on the client is eliminated.

165

Discussion: Based on the mappings we collect between clients and DNS server

IP addresses, we find that each DNS IP is used by thousands of mobile clients to

resolve domain names. Therefore, OneTrip’s implementation on DNS Authorities

can improve DNS lookup time for thousands of cellular clients for every IPv4-only

domain name in resolution. We also observe from the data collected by Netalyzr

that the DNS server address and /64 prefix mappings were stable and that there

were no changes over a period of 11 months in 2013-2014. We argue that such

demonstrated historical mapping stability supports OneTrip’s approach to reliably

synthesize IPv6 addresses on the DNS Authorities, however there is a serious risk

that doing this mapping outside of operator control could impair their ability to

operate their network. The OneTrip mechanism is however a good way to identify

the performance improvements available by improving the DNS protocol.

Speeding DNS Lookups with ONETRIP

We discussed OneTrip’s approach for DNS Authorities to eliminate the extra

round trip during DNS resolutions. However, it still remains unclear whether

T-Mobile’s cellular DNS would honor, or reject, the IPv6 addresses synthesized by

an Authority outside of T-Mobile’s network. To answer this question, we configured

IPv6 clients in T-Mobile’s network to send AAAA DNS requests to their respective

cellular DNS servers. We also setup a DNS Authority, outside of T-Mobile’s network,

maintaining DNS records for a domain name with only IPv4 address. Using the two

mappings collected by OneTrip, we configured the DNS Authority to reply with a

synthesized IPv6 address to the DNS request for the IPv4-only domain name, instead

of a NOANSWER.

Our experiments show that T-Mobile’s DNS servers do not discard any DNS

replies with IPv6 addresses synthesized by a DNS Authority outside of the T-Mobile’s

166

network. Further, the mobile clients successfully connect to the IPv4 servers, using

the synthesized IPv6 address.

Finally, we perform several experiments to understand the performance improve-

ments that OneTrip brings to DNS content delivery when DNS Authorities are

hosted at different proximity from cellular DNS servers. Specifically, our evaluation of

OneTrip is based on several possible latency values that exist between cellular DNS

servers and DNS Authorities. We expect geographically-distributed DNS Authorities

to have lower latency to cellular DNS servers than a centralized DNS Authority.

For example, a previous study has shown that Internet backbone round-trip time is

around 82 ms between the East and West coast in the US [286]. The same study

also provides latencies between different regions in the US and the EU. We use these

latency values as representative of latency between cellular DNS servers and DNS

Authorities hosted at these different locations.

A recent study by Varvello et al. shows that the 25th, 50th, and 75th percentile

of websites (out of the top 9000 Alexa Websites that support HTTP/2) consists of

over 12, 18, and 30 unique domain names, respectively [299]. We therefore argue that

depending on the number of unique domain names in a given webpage and the latency

between cellular DNS servers and DNS Authorities, the webpage load time could be

significantly improved through OneTrip’s removal of one round trip per resolution.

In Figure 6.27, using simulations we show the absolute reduction in DNS lookup

time when using OneTrip on DNS Authorities. To measure the effectiveness of

OneTrip, we perform in-lab simulations to emulate the behavior of T-Mobile’s

DNS 64 servers, where we perform DNS lookups from an emulated cellular DNS

issuing name resolutions to a DNS Authority. On the x-axis, we represent five different

latency values between cellular DNS and DNS Authority. On the y-axis, we show the

167

latency reduction in the DNS lookup time achieved when OneTrip is used on the

DNS Authority.

In general, we see that as the network latency between cellular DNS and

Authority increases, the gains increase as well because OneTrip shaves off the extra

round in the DNS lookup process. The overall gain further increases when the number

of unique domain names associated with different Web objects embedded in a webpage

increases, because OneTrip reduces the latency for resolving each of these unique

domain names. For example, when the latency between cellular DNS server and DNS

Authority is about 82 ms and the number of unique domain names (that needs to

be resolved from that Authority) on a webpage is 18, OneTrip reduces the overall

DNS lookup time by about 1.4 seconds (18 * 82 ms). The latency reduction shown in

Figure 6.27 is the maximum saving OneTrip offers when all domain name lookups

are critical for webpage rendering; the minimum benefit is just one RTT saved on the

lookup of the base page. In general, as OneTrip reduces the number of round trips

between the cellular DNS and DNS Authorities from two to one, OneTrip offers a

reduction of about 50% in the DNS lookup time between cellular DNS servers and

DNS Authorities in IPv6-only network environments for IPv4-only content.

Discussion on ONETRIP’s Approach

OneTrip relies on identifying the /64 prefix associated with the NAT 64

middlebox, to which a client connects. Similarly, previous studies have developed

several techniques to detect the presence of NAT 64 middleboxes in the network [120],

including techniques to resolve an IPv4-only domain name with a AAAA DNS request

and checking if an IPv4 answer is available [277]. Other studies have developed

techniques to identify IPv4 addresses from synthesized IPv6 packets [72]. Some other

techniques showcase new extensions to DNS protocol and a new Resource Record that

168

DNS servers can adopt to let clients know what the original IPv4 address is for the

domain name in question [82,182,316]. Previous studies also investigated application

layer protocols such as STUN to detect the NAT 64 prefix [268]. A study by Ding et al.

offers a detailed comparison of different techniques used to identifying NAT 64 prefix

in IPv6 networks [121]. The same study also showcase how the EDNS0 extension could

be used by DNS resolvers to send NAT 64 prefixes in the DNS request, together with

the the technique to calculate the prefix by resolving an IPv4-only domain name.

OneTrip, in contrast to the previous techniques, is unique in that it enables

DNS Authorities to detect and effectively use NAT 64 prefixes to reduce DNS lookup

time, without the need of any support from the cellular ISPs, allowing measurement

of the performance difference. Our motivation for OneTrip is to eliminate the extra

round trip present in DNS lookups in IPv6-only networks, with the goal of faster

mobile Web for the end-users. Similar round trip elimination has also been proposed

in QUIC [171] and TCP Fast Open [255]. Although for eliminating the extra round

trip, we also recommend the use of the EDNS0 option in the DNS query for the cellular

DNS servers to pass along the NAT 64 prefix that they are using, such that in the

absence of an AAAA record DNS Authorities could synthesize one from the A record

using the contents of the EDNS0 option. However, we argue that support for such an

EDNS0 option may not be appealing for some cellular ISPs as it introduces additional

operational overheads in ISPs’ functionality. Therefore, we designed OneTrip for

DNS Authorities maintained by Content Providers, Content Delivery Networks, and

any independent server operator, which they can implement without any support from

cellular ISPs. A strictly better option for Content Providers is to make their content

available over IPv6 as this reduces the round-trip by making the AAAA record available.

Finally, although OneTrip does not address performance overhead introduced by

Android DNS lookup process when IPv6 clients wait for both AAAA and A replies (as

169

discussed in Section 6), our recommendations to Google’s Android team would address

the issue of sequential lookups.

Related Work

IPv6 adoption and deployment challenges: Previous studies have measured the

adoption rate of IPv6 across different ISPs worldwide and indicate a significant growth

in IPv6 traffic over the recent years [29, 110, 180, 222, 274]. While understanding the

adoption of IPv6 is important, several communities (including network operators,

CDNs, and content providers) have shown interest in discussing challenges faced by

mobile ISPs and content providers to adopt IPv6 in their infrastructures in a panel

at the @Scale conference held in 2015 [34]. Several case studies conducted at Akamai

and Fortinet provide experiences with IPv6 deployment on a global scale [221] and

the current state of the IPv6 in terms of information security [30,142].

IPv6 performance measurement: A study by Dhamdhere et al. investigates the

impact of BGP route changes on the performance of IPv6 networks [119]. Plonka et al.

investigate the flow bit rates of IPv4 and IPv6 traffic at different times of the day [254].

A study by Donley et al. investigates the impact of several NAT middleboxes on

IPv4 latency and offers a performance comparison between IPv4 and native IPv6

connectivity in wired networks [124]. Other studies investigate throughput, RTT,

packet loss, and hop counts provided by IPv6 networks [186,208,312,325,330].

Addressing IPv6 connectivity issues: At the 2015 @Scale conference, a

representative from Verizon Wireless suggested that browsers should not fallback

on IPv4 when IPv6 connectivity is slow, because a fallback to IPv4 can mask critical

performance issues related to IPv6 connectivity [34]. Collectively, several mobile

operators suggested that application developers should support IPv6 connectivity to

170

help kickstart a transition from IPv4 to IPv6. This suggestion complements Apple’s

recent announcement of IPv6 support in all iOS9 applications [185].

Redirecting clients from broken IPv6 links: Several studies suggest methods to

improve Web performance by selectively handing out answers to AAAA queries based

on the performance of the current IPv6 connectivity is behind the client’s resolver

network [109,159,181,221].

Our work, in contrast to these studies, focuses on understanding how different

IPv6 deployment strategies in cellular networks influence the mobile Web perfor-

mance, from the perspective of CDNs deployed in the middle of cellular networks

and content providers. Based on our study, we argue that hosting mobile content

on IPv6-enabled networks and content servers is another direction that CDNs and

content providers could adopt to improve the end-user experience.

Conclusions

Content Providers (CPs) and Content Delivery Networks (CDNs) are not fully

aware of the differences in mobile Web performance in cellular IPv6 and IPv4

networks. In this paper, we provide our experience with the changing IPv6 ecosystem

in major cellular networks from the perspective Akamai’s global infrastructure for

content delivery. We perform extensive measurement to understand how different

IPv6 technologies deployed by cellular carriers impact mobile Web performance. Our

results indicate that cellular IPv6 networks outperform their legacy IPv4 networks.

We argue to CPs and CDNs that the transition from IPv4 to IPv6 is another milestone

for improving mobile Web performance.

171

THE PROPOSAL

In spite of several years of research to improve the mobile Web performance,

quest for even better performance still remains. My conjecture in my PhD proposal

is that improvements to application layer protocols can improve the mobile Web

performance and thus the quality of user experience. Therefore, in this chapter, I

introduce three of the most pressing problems in the area of mobile Web performance

that remain unaddressed till date.1

1. HTTP/2 Performance in Cellular Networks

The new HTTP protocol (HTTP/2) was recently introduced by IETF after

16 years of extensive analysis of the legacy HTTP/1.1 protocol [78]. HTTP/2 is

primarily designed to reduce the webpage load time. The HTTP/2 protocol is built

on the legacy HTTP/1.1 protocol and introduces the following changes in the HTTP

protocol:

• Elimination of the Head-of-line blocking: The Head of line blocking

happens in the HTTP/1.1 protocol because only one HTTP request could be

processed by the Web server at any given point in time. The HTTP/2 protocol

eliminates the head-of-line blocking by allowing multiple independent HTTP

streams to be created over a simgle TCP connection.

• Request Prioritization: In HTTP/1.1, Web browsers were not allowed to

indicate to the Web server the priority in which the Web browser would like to

receive the contents of the webpage. In HTTP/2, the Web browser is enabled

1Although, I introduce three challenging problems related to improving mobile Web performance
in cellular networks, however, I plan to work on only one of the three problems towards my PhD
dissertation.

172

to indicate a priority number to the Web server so that that most important

Web object can be downloaded before other objects with low priority.

• HTTP Header compression: In HTTP/1.1, the Web browsers are required

to send client’s meta-data in each HTTP request. Such meta-data includes the

information such as the client’s browser name and version, operating system,

client’s compression capabilities of the payload, etc. Further, such meta-data

was redundant across HTTP requests sent for the same webpage to the same web

server. In HTTP/2, however, these redundant meta-data have been removed

and only new or modified HTTP headers are transmitted. The headers are then

compressed using HPACK algorithm to ensure further reduction in the header

size [248].

With such features, HTTP/2 is expected to bring significant improvements to Web

performance. In fact, several studies have already been conducted to investigate the

performance of the HTTP/2 protocol, but only on either wired networks or under

simulated environments. Some of these studies show that HTTP/2 does not improve

Web performance for all the websites and in fact for some websites, the performance

gets degraded [116,129,310]. While some other studies show that HTTP/2 is effective

in improving the webpage load time for all the websites [299]. However, disagreement

among results from these studies, it remains unclear as to whether serving Web

content over HTTP/2 brings any improvements to webpage load time or not. For

example, does upgrading a website content to IPv6 improves the performance or

upgrading to the HTTP/2 protocol, or both?

In this study, I seek to perform a detailed and large scale measurement on

HTTP/2 performance in cellular networks worldwide. My goal for this study is to

understand the performance improvement or degradation that the HTTP/2 protocol

173

brings for cellular clients, in comparison to the legacy HTTP/1.1 protocols. My

criteria for comparison between HTTP/2 and HTTP/1.1 protocol performance is

based on the time the protocol takes to perform Transport Layer Security handshakes,

time to receive the first bit of the HTML DOM, and the overall page load time.

Further, I seek to investigate whether or not the performance of HTTP/2 varies for

clients in different cellular networks. I also seek to investigate whether the HTTP/2

performance varies across Web browsers, mobile devices, and different times of the

day. One of the questions I am interested to look at is, which combination of IP

protocol (IPv4 or IPv6) and HTTP protocol (HTTP/2 or HTTP/1.1) works best for

improving the mobile Web performance. In other words, would it be beneficial to

upgrade a website’s content to IPv6 and remain on HTTP1.1? or to remain on IPv4

but upgrade the website content to HTTP2? Would for some websites, upgrading

website content to both IPv6 and HTTP/2 improves the overall performance? I

believe my contributions in this work would set another milestone in understanding

mobile Web performance, similar to my IPv6 study [149].

2. Impact of Web Proxies on Video Streaming Quality in Cellular Networks

Cellular networks deploy connection terminating proxies to isolate the per-

formance issues of the cellular radio channels from the wired backbone of the

Internet [80, 148]. Such proxies allows cellular carriers to improve the end-to-end

performance of the two connections together [80]. Using these proxies cellular

networks can also cache popular content in their network and serve the client requests

from its local network, instead of forwarding the request to a host outside of the

network. Several simulation studies have investigated the performance of these

connecting terminating proxies on Web performance and have found that these proxies

are effective in reducing webpage load time under simulated cellular environments and

174

real world wired networks [81, 127, 134, 214]. However, the video streaming quality

is not measured in terms of page load time and therefore the conclusions from these

studies cannot be applied directly towards improving the video stream quality. The

videos streaming quality is measured in terms of the video startup delay, number of

buffering events, time to fill the buffer, encoded video bitrate, total waiting time/total

watching time, total video length, etc.

In this study I seek to investigate the impact of connection terminating proxies

on video streaming by understanding the extent to which these factors are affected

by a use of proxies, especially in cellular networks. My approach is to compare the

video streaming quality when proxies are used against cases when proxies are not

used. For this part of the study, I plan to use the techniques I developed previously

to detect connection terminating proxies in cellular networks worldwide [148]. I then

seek to investigate whether similar video streaming quality persists across different

cellular networks and mobile devices. One of the other questions I am interested in

investigating is, whether bypassing connection terminating proxies can result in better

performance than letting the proxy split the connections? If so, I would then argue

that CPs and CDNs should use Secure HTTP to transfer video chunks over cellular

networks, as Secure HTTP connections are currently not split by cellular ISPs [148].

I believe that this study would set another milestone in understanding and improving

the quality of video streaming experience for mobile users.

3. IP-to-Location Services for Cellular Networks

IP-to-location services have been a great area of interest among developers and

the research communities, as such services allow for optimized delivery of the request

content. Some popular areas for which IP-to-location services are used are as follows:

175

• Infrastructure Planning: Content Delivery Networks care about deploying

sufficient capacity close to where the most requests come from the users. As a

result, CDN providers use IP-to-location services to identify the locations where

users requests come to their CDN servers, based on the client’s IP address. Such

knowledge allows CDNs to monitor the usage of their current deployment and

analyze whether more capacity would be required at any given deployment

location.

• DNS-based Server selection: DNS-based server selection techniques are

most popular among CDN providers, as such technique allow CDNs and CPs to

find a server closest to the IP address of the DNS server from where the requests

are coming for resolution. Therefore, DNS Authorities hosted by CDNs and CPs

use IP-to-location services to identify a geographic region where the client’s DNS

server is hosted. Although, an accurate location of the DNS server in this case

may not needed, but an IP-to-location service could provide accurate country,

state, and city level information to the DNS Authorities.

• End-user Mapping: Many DNS service providers have emerged in recent

years, such as Google public DNS, Open DNS, etc. As DNS providers grow,

clients get several options to configure the DNS on their devices. Therefore,

as clients configure for DNS servers not hosted by their home ISP, the notion

of clients being close to their DNS becomes invalid. Therefore, End-user was

introduced as an alternative to DNS-based mapping, where CDNs and CPs

could find servers near to the location of client’s IP address, instead of the DNS

IP address. To achieve this goal, CDNs and CPs use IP-to-location services to

get an approximate location of where the clients might be in the network.

176

• Business Modelling: Online business companies care about the growth of

their userbase. They also show interest in where the client requests are coming,

who are their major customers, from which geographic locations they see high

popularity of their content. Therefore, online business companies use IP-

to-location services to map their users to different locations, with the goal

of providing faster, appropriate, and targetted content to user population in

different areas of the world.

• Customer Billing: Generally, customers of a CDN provider are billed based

on how many requests the CDN served for a given customer. Some CDN

providers also have different prices for serving content from different locations.

For example, if cost of electricity for running a datacenter is cheaper in Europe,

then the cost of serving the content from Europe datacenters could be cheaper

than serving from any other place. Therefore, when a billing cycle appears, CDN

providers calculate the number of requests seen for a customer from different

areas of world using IP-to-location services.

• Data Security: Finally, application developers and content providers may

desire to generate content based on the geographic locations. For example,

some advertisements or content related to an event may be relevant or need to

be accessed from only a few places in the world. Therefore, content providers

use IP-to-location services to identify whether the client requesting the content

belongs to one of the white-listed locations.

IP-to-location services have become important in recent years, because of

different benefits they bring to the online business companies. Although, such services

are reliable and often provide up-to-date information when polling them for clients

IP addresses on the wired Internet, however, these services still lack accuracy when

177

polling for information to clients IP addresses in cellular networks. This is because

of the following five reasons:

• First, cellular carriers employ dynamic assignments of IP addresses among

different packet gateways deployed in a given country [21]. Therefore, anytime

there is a change in IP address pool that any gateway holds, the cellular ISP

needs to communicate the change to all of its gateways. Consequently, these

changes needs to be propagated to all such tools that seek to maintain IP address

to location for cellular IP addresses. However, when cellular ISPs frequently

reassign IP address blocks, it becomes extremely difficult for such IP-to-location

services to maintain an up-to-date information for cellular IP addresses.

• Second, a cellular ISP may use a single block of IP subnet for users at

geographically different locations to support reuse of their limited IPv4 address

space, via NAT middleboxes [69, 294]. In such cases, locating cellular users

becomes even more challenging.

• Third, mobile roaming users are often identified at locations far away from their

actual locations, because such users connect to their home gateway, instead of

the foreign gateway of the cellular network [218,294].

• Next, cellular networks dynamically forward user requests to different gateways

to either distribute the load on their overall cellular infrastructure or to allocate

more bandwidth to some areas in the network [21]. For example, a study on

AT&T’s DNS protocol behavior shows that for AT&T clients in Washington,

AT&T encoded IP address in the DNS request that belonged to California.

• And finally, with IPv6 seeing significant adoption among cellular carriers, it

becomes extremely difficult to use standard IP-to-location techniques to scan the

178

complete IPv6 address space. This is because the IPv6 address space consists

of 340 trillion trillion trillion IP address and scanning such a huge address

space is practically not possible in even hundreds of years to come [9,160]. As a

result, it becomes difficult for content providers, CPs, and IP-to-location service

providers to reliably identify the location of cellular clients. Therefore, the the

benefits of using IP-to-location services when it comes to cellular networks are

minimized. Therefore, what is needed is an application layer technique that does

not rely on expensive and time consuming measurements to identify locations

of IPv4 and IPv6 addresses.

As cellular network ecosystem changes dynamically in terms of how cellular

ISPs assign IP addresses to their mobile clients, the need to monitor these network

changes and the growth of cellular carrier becomes important for CDN operators.

In this study, I seek to investigate the stability and consistency of the IP address

assignments in cellular networks deployed in the US. More specifically, from my work

on detecting cellular middleboxes, I identified that CDN servers of Akamai estimate

round trip latencies of less than 5 ms when connecting splitting proxies are present

in the network. I argue that since CDN servers only communicate with these Web

proxies, what matters the most to CDNs is to identify the locations of these Web

proxies. Specifically, I argue that Web proxies in cellular networks are good surrogate

for clients’ locations, as connections from cellular clients are terminated by these

Web proxies. Therefore, approximating a client’s locations based on how far the Web

proxy (currently in use by the client) is from the CDN server, in terms of latency,

should accurately reflect clients location in the network. For example, if for a given

set of IPv4 or IPv6 connections received by a CDN server, the latency is 2 ms and

we know the location of that CDN server, we could then confidently say that the

179

observed IP addresses belong to the location same as (or in close proximity) to the

CDN server. Based on this conjecture, I plan to investigate how different IPv4 and

IPv6 addresses could be clustered and mapped to different network locations. I also

plan to investigate whether meaningful mappings between clusters of IPv4 addresses

and IPv6 addresses could be generated, so that one could identify locations of IPv6

addresses using location traces of IPv4 addresses. I believe such a measurement

study would set another milestone in monitoring and understanding the growth of

the mobile ecosystem.

180

CONCLUSIONS

The mobile ecosystem is growing rapidly. In order to ensure significant growth

of innovative applications, in terms of scalability and usability among mobile users,

we need to ensure that network and application layer protocols are efficiently used.

In this proposal, I argue for a shift in our current research directions from addressing

network layer challenges to application layer. Specifically, I present several techniques

that bring intelligence into the application layer protocols and thus improve the end-

user experience. I then present three of the most challenging problems that remain

unaddressed in the mobile space and argue that work in the proposed direction would

enable the Internet to scale and sustain in the years to come.

181

RESEARCH TIMELINE

I plan to complete my PhD dissertation by April 2017. The following is the

timeline for the proposed work:

Table 9.1: Research Timeline.

Begin End Goal

- March 2016 PhD Proposal
April 2016 Feb 2017 Work on a proposed problem
Feb 2017 April 2017 Write and defend PhD dissertation

182

REFERENCES CITED

[1] Akamai EdgeScape. http://uk.akamai.com/dl/brochures/edgescape_

service_description.pdf, Mar. 2002.

[2] PlanetLab. https://www.planet-lab.org/, Jun. 2007.

[3] UMass Trace Repository. http://traces.cs.umass.edu/, Dec. 2009.

[4] NetNetwork. https://github.com/pragma-/networklog, 2011.

[5] Sprint to Participate in World IPv6 Day. http://newsroom.sprint.com/

news-releases/sprint-to-participate-in-world-ipv6-day.htm, Apr.
2011.

[6] The ’secret’ app installed on millions of mobile phones that
records your keystrokes, your browsing and reads your messages.
http://www.dailymail.co.uk/sciencetech/article-2068225/

Secret-app-installed-millions-Android-phones-reads-messages.html,
Dec. 2011.

[7] Akamai Mobitest: Mobile Web Performance Measurement Agents.
https://code.google.com/p/mobitest-agent/source/browse/trunk/

mobitest-agent/Android/BZAgent/README?r=2, Mar 2012.

[8] Geni. http://www.geni.net/, Oct. 2012.

[9] Just how many IPv6 addresses are there? Really? http://rednectar.net/

2012/05/24/just-how-many-ipv6-addresses-are-there-really/, May
2012.

[10] Archipelago measurement infrastructure. http://www.caida.org/projects/

ark/, June 2013.

[11] FIRE: Future Internet Research and Experimentation. http://www.ict-fire.
eu/, July 2013.

[12] Ripe atlas. http://atlas.ripe.net/, July 2013.

[13] ROOT Metrics. http://www.rootmetrics.com/, July 2013.

[14] Devices Supported by SciWiNet. http://sciwinet.org/SciWiNet-Devices.

html, 2014.

[15] Dyn Research: CDN Adoption By The Numbers. http://dyn.com/blog/

dyn-research-cdn-adoption-by-the-numbers/, Jun. 2014.

http://uk.akamai.com/dl/brochures/edgescape_service_description.pdf
http://uk.akamai.com/dl/brochures/edgescape_service_description.pdf
https://www.planet-lab.org/
http://traces.cs.umass.edu/
https://github.com/pragma-/networklog
http://newsroom.sprint.com/news-releases/sprint-to-participate-in-world-ipv6-day.htm
http://newsroom.sprint.com/news-releases/sprint-to-participate-in-world-ipv6-day.htm
http://www.dailymail.co.uk/sciencetech/article-2068225/Secret-app-installed-millions-Android-phones-reads-messages.html
http://www.dailymail.co.uk/sciencetech/article-2068225/Secret-app-installed-millions-Android-phones-reads-messages.html
https://code.google.com/p/mobitest-agent/source/browse/trunk/mobitest-agent/Android/BZAgent/README?r=2
https://code.google.com/p/mobitest-agent/source/browse/trunk/mobitest-agent/Android/BZAgent/README?r=2
http://www.geni.net/
http://rednectar.net/2012/05/24/just-how-many-ipv6-addresses-are-there-really/
http://rednectar.net/2012/05/24/just-how-many-ipv6-addresses-are-there-really/
http://www.caida.org/projects/ark/
http://www.caida.org/projects/ark/
http://www.ict-fire.eu/
http://www.ict-fire.eu/
http://atlas.ripe.net/
http://www.rootmetrics.com/
http://sciwinet.org/SciWiNet-Devices.html
http://sciwinet.org/SciWiNet-Devices.html
http://dyn.com/blog/dyn-research-cdn-adoption-by-the-numbers/
http://dyn.com/blog/dyn-research-cdn-adoption-by-the-numbers/

183

[16] Everything You Need To Know About CDN Load Balancing.
http://www.webtorials.com/main/resource/papers/Dyn/paper1/

CDN-LoadBalancing.pdf, Sept. 2014.

[17] List of Fortune 500 companies and their websites. http://www.zyxware.com/

articles/4344/list-of-fortune-500-companies-and-their-websites,
Jul. 2014.

[18] LiveLabs Registration. http://athena.smu.edu.sg/livelabs_register/,
Oct 2014.

[19] M-Lab Tests. http://www.measurementlab.net/tests, 2014.

[20] Perfecto Mobile. http://www.perfectomobile.com/, 2014.

[21] PointRoll IP. http://www.pointroll.com/wp-content/uploads/2015/02/

IP-Geo-Location-FAQ.pdf, Jul. 2014.

[22] Portolan network tools. https://play.google.com/store/apps/details?

id=it.unipi.iet.portolan.traceroute&hl=en, May 2014.

[23] SciWiNet. http://sciwinet.org/, 2014.

[24] Sensibility testbed. http://sensibilitytestbed.com, July 2014.

[25] Traffic Director. http://dyn.com/traffic-director/, Sept. 2014.

[26] USTREAM. http://www.ustream.tv/, July 2014.

[27] What is Measurement Lab? http://www.measurementlab.net/about, 2014.

[28] Akamai Facts and Figures. https://www.akamai.com/us/en/about/

facts-figures.jsp, Aug. 2015.

[29] Akamai’s State of the Internet. http://www.wsta.org/wp-content/uploads/
2013/11/Q1-2015-SOTI-Security-Report-Low-Res.pdf, 2015.

[30] Akamai’s State of the Internet/Security. https://www.stateoftheinternet.
com/downloads/pdfs/2015-q1-state-of-the-internet-report.pdf, 2015.

[31] Alexa and Fortune 500 CDN Marketshare. http://blog.cloudharmony.com/

2015/03/cdn-marketshare-alexa-fortune-500.html, Mar. 2015.

[32] Apptimize. http://apptimize.com/, May 2015.

[33] CRAWDAD: A Community Resource for Archiving Wireless Data At Dart-
mouth. http://crawdad.org/, Jan. 2015.

http://www.webtorials.com/main/resource/papers/Dyn/paper1/CDN-LoadBalancing.pdf
http://www.webtorials.com/main/resource/papers/Dyn/paper1/CDN-LoadBalancing.pdf
http://www.zyxware.com/articles/4344/list-of-fortune-500-companies-and-their-websites
http://www.zyxware.com/articles/4344/list-of-fortune-500-companies-and-their-websites
http://athena.smu.edu.sg/livelabs_register/
http://www.measurementlab.net/tests
http://www.perfectomobile.com/
http://www.pointroll.com/wp-content/uploads/2015/02/IP-Geo-Location-FAQ.pdf
http://www.pointroll.com/wp-content/uploads/2015/02/IP-Geo-Location-FAQ.pdf
https://play.google.com/store/apps/details?id=it.unipi.iet.portolan.traceroute&hl=en
https://play.google.com/store/apps/details?id=it.unipi.iet.portolan.traceroute&hl=en
http://sciwinet.org/
http://sensibilitytestbed.com
http://dyn.com/traffic-director/
http://www.ustream.tv/
http://www.measurementlab.net/about
https://www.akamai.com/us/en/about/facts-figures.jsp
https://www.akamai.com/us/en/about/facts-figures.jsp
http://www.wsta.org/wp-content/uploads/2013/11/Q1-2015-SOTI-Security-Report-Low-Res.pdf
http://www.wsta.org/wp-content/uploads/2013/11/Q1-2015-SOTI-Security-Report-Low-Res.pdf
https://www.stateoftheinternet.com/downloads/pdfs/2015-q1-state-of-the-internet-report.pdf
https://www.stateoftheinternet.com/downloads/pdfs/2015-q1-state-of-the-internet-report.pdf
http://blog.cloudharmony.com/2015/03/cdn-marketshare-alexa-fortune-500.html
http://blog.cloudharmony.com/2015/03/cdn-marketshare-alexa-fortune-500.html
http://apptimize.com/
http://crawdad.org/

184

[34] Facebook: IPv6 is here and You’re Hurting your Users. https://www.youtube.
com/watch?v=_7rcAIbvzVY, Sept. 2015.

[35] M-Lab. http://www.measurementlab.net/, Mar. 2015.

[36] Navigation Timing. http://w3c.github.io/navigation-timing/, Aug. 2015.

[37] Navigation Timing API. http://caniuse.com/#feat=nav-timing, Jun. 2015.

[38] NSF Workshop on Achieving Ultra-Low Latencies in Wireless Networks. http:
//inlab.lab.asu.edu/nsf/files/WorkshopReport.pdf, Mar. 2015.

[39] Ookla. http://www.ookla.com/, 2015.

[40] Optimizely. http://www.optimizely.com/, May 2015.

[41] Real User Monitoring. https://www.akamai.com/us/en/resources/

real-user-monitoring.jsp, Aug. 2015.

[42] Splitforce. http://splitforce.com/, May 2015.

[43] Unbiased Wireless Network Information. http://www.sensorly.com, Aug.
2015.

[44] Alexa: Your Complete Web Analytics Toolkit. http://www.alexa.com/, Jan.
2016.

[45] Amazon EC2 - Virtual Server Hosting. https://aws.amazon.com/ec2/, Feb.
2016.

[46] Free Basics by Facebook. https://info.internet.org/en/story/

free-basics-from-internet-org/, Feb. 2016.

[47] Google Peering and Content Delivery. https://peering.google.com/, Feb.
2016.

[48] Project Loon. https://www.google.com/loon/, Feb. 2016.

[49] Johanna. OpenSignal Blog. http://opensignal.com/blog/2015/01/09/

our-academic-partners/, Jan. 2015.

[50] C. Aaron. Net Neutrality Is Dead. Here’s How to Get It
Back. http://www.savetheinternet.com/blog/2014/01/14/

net-neutrality-dead-heres-how-get-it-back, Jan 2014.

https://www.youtube.com/watch?v=_7rcAIbvzVY
https://www.youtube.com/watch?v=_7rcAIbvzVY
http://www.measurementlab.net/
http://w3c.github.io/navigation-timing/
http://caniuse.com/#feat=nav-timing
http://inlab.lab.asu.edu/nsf/files/WorkshopReport.pdf
http://inlab.lab.asu.edu/nsf/files/WorkshopReport.pdf
http://www.ookla.com/
http://www.optimizely.com/
https://www.akamai.com/us/en/resources/real-user-monitoring.jsp
https://www.akamai.com/us/en/resources/real-user-monitoring.jsp
http://splitforce.com/
http://www.sensorly.com
http://www.alexa.com/
https://aws.amazon.com/ec2/
https://info.internet.org/en/story/free-basics-from-internet-org/
https://info.internet.org/en/story/free-basics-from-internet-org/
https://peering.google.com/
https://www.google.com/loon/
http://opensignal.com/blog/2015/01/09/our-academic-partners/
http://opensignal.com/blog/2015/01/09/our-academic-partners/
http://www.savetheinternet.com/blog/2014/01/14/net-neutrality-dead-heres-how-get-it-back
http://www.savetheinternet.com/blog/2014/01/14/net-neutrality-dead-heres-how-get-it-back

185

[51] V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan, B. Greenstein,
S. McDaniel, M. Piatek, C. Scott, M. Welsh, and B. Yin. Flywheel: Google’s
data compression proxy for the mobile web. In Proceedings of the 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 2015),
2015.

[52] S. Agarwal and J. R. Lorch. Matchmaking for online games and other latency-
sensitive P2P systems. In ACM SIGCOMM, August 2009.

[53] Akamai. Free Mobile Web Performance Measurement Tool. http://mobitest.
akamai.com/m/index.cgi, 2012.

[54] Akamai. Test Your Website Performance On A Mobile Device.
http://www.akamai.com/html/awe/login.html?campaign_id=F-MC-16282&

curl=/html/awe_auth/mobitest.html, 2012.

[55] Akamai. Our Customers. https://www.akamai.com/us/en/our-customers.

jsp, Jun. 2015.

[56] Amazon. Aws device farm. https://aws.amazon.com/device-farm/, Aug.
2015.

[57] M. Ammori. The next big battle in Internet policy. http://www.slate.com/

articles/technology/future_tense/2012/10/network_neutrality_the_

fcc_and_the_internet_of_things_.html, Oct. 2012.

[58] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. Experience
with an evolving overlay network testbed. SIGCOMM CCR, 33(3):13–19, July
2003.

[59] N. Anderson. Huge ISPs want per-GB payments from Netflix,
YouTube. http://arstechnica.com/tech-policy/2011/01/

huge-isps-want-per-gb-payments-from-netflix-youtube/, Jan 2011.

[60] APNIC 34. IPv6 at Verizon Wireless. https://www.hpc.mil/images/

hpcdocs/ipv6/vzw_apnic_13462152832-2.pdf, Aug. 2012.

[61] Aqualab. Application Time (AppT). https://play.google.com/store/apps/
details?id=edu.northwestern.aqualab.behavior.research, Apr 2014.

[62] Aqualab. Namehelp. https://play.google.com/store/apps/details?id=

edu.northwestern.aqualab.namehelp&hl=en, Apr. 2014.

[63] J. Arkko and F. Baker. Guidelines for Using IPv6 Transition Mechanisms during
IPv6 Deployment. https://tools.ietf.org/html/rfc6180, May 2011.

http://mobitest.akamai.com/m/index.cgi
http://mobitest.akamai.com/m/index.cgi
http://www.akamai.com/html/awe/login.html?campaign_id=F-MC-16282&curl=/html/awe_auth/mobitest.html
http://www.akamai.com/html/awe/login.html?campaign_id=F-MC-16282&curl=/html/awe_auth/mobitest.html
https://www.akamai.com/us/en/our-customers.jsp
https://www.akamai.com/us/en/our-customers.jsp
https://aws.amazon.com/device-farm/
http://www.slate.com/articles/technology/future_tense/2012/10/network_neutrality_the_fcc_and_the_internet_of_things_.html
http://www.slate.com/articles/technology/future_tense/2012/10/network_neutrality_the_fcc_and_the_internet_of_things_.html
http://www.slate.com/articles/technology/future_tense/2012/10/network_neutrality_the_fcc_and_the_internet_of_things_.html
http://arstechnica.com/tech-policy/2011/01/huge-isps-want-per-gb-payments-from-netflix-youtube/
http://arstechnica.com/tech-policy/2011/01/huge-isps-want-per-gb-payments-from-netflix-youtube/
https://www.hpc.mil/images/hpcdocs/ipv6/vzw_apnic_13462152832-2.pdf
https://www.hpc.mil/images/hpcdocs/ipv6/vzw_apnic_13462152832-2.pdf
https://play.google.com/store/apps/details?id=edu.northwestern.aqualab.behavior.research
https://play.google.com/store/apps/details?id=edu.northwestern.aqualab.behavior.research
https://play.google.com/store/apps/details?id=edu.northwestern.aqualab.namehelp&hl=en
https://play.google.com/store/apps/details?id=edu.northwestern.aqualab.namehelp&hl=en
https://tools.ietf.org/html/rfc6180

186

[64] AT&T Public Policy Blog. It’s World IPv6 Day. http://www.

attpublicpolicy.com/administration/it’s-world-ipv6-day/, Jun. 2011.

[65] A. Aucinas, N. Vallina-Rodriguez, Y. Grunenberger, V. Erramilli, K. Papagian-
naki, J. Crowcroft, and D. Wetherall. Staying online while mobile: The hidden
costs. In ACM CoNEXT, CoNEXT ’13, pages 315–320, New York, NY, USA,
Dec. 2013. ACM.

[66] M. Austin and M. Wish. The official story on AT&T Mark the
Spot. http://www.research.att.com/articles/featured_stories/2010_

09/201009_MTS.html, Oct. 2010.

[67] M. Bagnulo, P. Matthews, and I. van Beijnum.

[68] V. Bajpai and J. Schonwalder. A survey on internet performance measurement
platforms and related standardization efforts. IEEE Communications Surveys
Tutorials, PP(99):1–1, Apr. 2015.

[69] M. Balakrishnan, I. Mohomed, and V. Ramasubramanian. Where’s That
Phone?: Geolocating IP Addresses on 3G Networks. In Proceedings of the
9th ACM SIGCOMM Conference on Internet Measurement Conference, IMC
’09, 2009.

[70] R. K. Balan, A. Misra, and Y. Lee. Livelabs: Building an in-situ real-time
mobile experimentation testbed. In Workshop on Mobile Computing Systems
and Applications (HotMobile), Feb. 2014.

[71] R. Baldawa et al. PhoneLab: A large-scale participatory smartphone testbed.
In USENIX NSDI poster session, Apr. 2012.

[72] C. Bao, C. Huitema, M. Bagnulo, M. Boucadair, and X. Li. IPv6 Addressing of
IPv4/IPv6 Translators. https://tools.ietf.org/html/rfc6052, Oct. 2010.

[73] A. Barbir, B. Cain, R. Nair, and O. Spatscheck. Known Content Network (CN)
Request-Routing Mechanisms. https://tools.ietf.org/html/rfc3568, Jul.
2003.

[74] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In VINI veritas:
Realistic and controlled network experimentation. In ACM SIGCOMM, Aug.
2006.

[75] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and M. Claypool.
The effects of loss and latency on user performance in Unreal Tournament
2003 R©. In ACM workshop on network and system support for games, August
2004.

http://www.attpublicpolicy.com/administration/it's-world-ipv6-day/
http://www.attpublicpolicy.com/administration/it's-world-ipv6-day/
http://www.research.att.com/articles/featured_stories/2010_09/201009_MTS.html
http://www.research.att.com/articles/featured_stories/2010_09/201009_MTS.html
https://tools.ietf.org/html/rfc6052
https://tools.ietf.org/html/rfc3568

187

[76] K. Bell. FCC Launches iOS ’Speed Test’ App. http://mashable.com/2014/

02/25/fcc-speed-test-app-ios/, Feb 2014.

[77] M. Belshe. More Bandwidth Does not Matter (much). https:

//docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=

Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2, Apr. 2010.

[78] M. Belshe, R. Peon, and E. M. Thomson. Hypertext Transfer Protocol Version
2 (HTTP/2). https://tools.ietf.org/html/rfc6146, May. 2015.

[79] Ben Parker. IPv6 Transition for VzW. https://sites.google.com/site/

ipv6implementors/2010/agenda/14_Parker_VerizonWireless.pdf, Jun.
2010.

[80] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby. Performance
Enhancing Proxies Intended to Mitigate Link-Related Degradations. https:

//tools.ietf.org/html/rfc3135, Jun. 2001.

[81] A. Botta and A. Pescape. Monitoring and measuring wireless network
performance in the presence of middleboxes. In Conference on Wireless On-
Demand Network Systems and Services, Jan. 2012.

[82] M. Boucadair and E. Burgey. A64: DNS Resource Record for
IPv4-mapped IPv6 Address. https://tools.ietf.org/html/

draft-boucadair-behave-dns-a64-01, Oct. 2010.

[83] J. Brodkin. FCC votes for net neutrality, a ban on paid fast
lanes, and Title II. http://arstechnica.com/business/2015/02/

fcc-votes-for-net-neutrality-a-ban-on-paid-fast-lanes-and-title-ii/,
Feb. 2015.

[84] S. Buckley. Cogent and Orange France fight over inter-
connection issues. http://www.fiercetelecom.com/story/

cogent-and-orange-france-fight-over-interconnection-issues/

2011-08-31, Aug 2011.

[85] S. Buckley. France Telecom and Google entangled in
peering fight. http://www.fiercetelecom.com/story/

france-telecom-and-google-entangled-peering-fight/2013-01-07,
Jan 2013.

[86] R. L. Burt. Why are images not loading? https://www.facebook.com/

help/community/question/?id=10100214862890089&ref=notif¬if_t=

answers_answered, Jun. 2013.

http://mashable.com/2014/02/25/fcc-speed-test-app-ios/
http://mashable.com/2014/02/25/fcc-speed-test-app-ios/
https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2
https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2
https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2
https://tools.ietf.org/html/rfc6146
https://sites.google.com/site/ipv6implementors/2010/agenda/14_Parker_VerizonWireless.pdf
https://sites.google.com/site/ipv6implementors/2010/agenda/14_Parker_VerizonWireless.pdf
https://tools.ietf.org/html/rfc3135
https://tools.ietf.org/html/rfc3135
https://tools.ietf.org/html/draft-boucadair-behave-dns-a64-01
https://tools.ietf.org/html/draft-boucadair-behave-dns-a64-01
http://arstechnica.com/business/2015/02/fcc-votes-for-net-neutrality-a-ban-on-paid-fast-lanes-and-title-ii/
http://arstechnica.com/business/2015/02/fcc-votes-for-net-neutrality-a-ban-on-paid-fast-lanes-and-title-ii/
http://www.fiercetelecom.com/story/cogent-and-orange-france-fight-over-interconnection-issues/2011-08-31
http://www.fiercetelecom.com/story/cogent-and-orange-france-fight-over-interconnection-issues/2011-08-31
http://www.fiercetelecom.com/story/cogent-and-orange-france-fight-over-interconnection-issues/2011-08-31
http://www.fiercetelecom.com/story/france-telecom-and-google-entangled-peering-fight/2013-01-07
http://www.fiercetelecom.com/story/france-telecom-and-google-entangled-peering-fight/2013-01-07
https://www.facebook.com/help/community/question/?id=10100214862890089&ref=notif¬if_t=answers_answered
https://www.facebook.com/help/community/question/?id=10100214862890089&ref=notif¬if_t=answers_answered
https://www.facebook.com/help/community/question/?id=10100214862890089&ref=notif¬if_t=answers_answered

188

[87] J. Butler, W. Lee, B. McQuade, and K. Mixter. A Proposal for Shared
Dictionary Compression over HTTP. http://lists.w3.org/Archives/

Public/ietf-http-wg/2008JulSep/att-0441/Shared_Dictionary_

Compression_over_HTTP.pdf, Sept. 2008.

[88] J. Butler, W. Lee, B. McQuade, and K. Mixter. A Proposal for Shared
Dictionary Compression over HTTP. http://lists.w3.org/Archives/

Public/ietf-http-wg/2008JulSep/att-0441/Shared_Dictionary_

Compression_over_HTTP.pdf, Sept. 2008.

[89] I. by Facebook. Connecting the world. https://info.internet.org/en/, Feb.
2016.

[90] C. Byrne. 464XLAT: Breaking Free of IPv4. https://conference.apnic.

net/data/37/464xlat-apricot-2014_1393236641.pdf, Feb. 2014.

[91] CacheFly. Technology and Infrastructure. http://www.cachefly.com/

cachefly-cdn/technology/, Mar. 2015.

[92] J. Cainey, B. Gill, S. Johnston, J. Robinson, and S. Westwood. Modelling
download throughput of LTE networks. In Local Computer Networks Workshops
(LCN Workshops), 2014 IEEE Conference on, Oct. 2014.

[93] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Anderson. Seattle: a
platform for educational cloud computing. In ACM SIGCSE Bulletin, Mar
2009.

[94] Carrier IQ. Vodafone Portugal Pioneers Innovative Mobile Broadband
Experience Management Architecture Using Carrier IQ Technology
. http://carrieriq.com/wp-content/uploads/2014/08/PR.

CarrierIQandVodafonePortugal.20090730.pdf, 2009 July.

[95] Cedexis. Openmix. http://www.cedexis.com/openmix/, Aug. 2015.

[96] Cedexis. Radar. http://www.cedexis.com/radar/, Aug. 2015.

[97] F. Chen, R. K. Sitaraman, and M. Torres. End-User Mapping: Next Generation
Request Routing for Content Delivery.

[98] F. Chen, R. K. Sitaraman, and M. Torres. End-User Mapping: Next Generation
Request Routing for Content Delivery. In ACM Sigcomm CCR, Apr. 2015.

[99] K.-T. Chen, P. Huang, and C.-L. Lei. Effect of network quality on player
departure behavior in online games. Parallel Distributed Systems, 20:593–606,
May 2009.

http://lists.w3.org/Archives/Public/ietf-http-wg/2008JulSep/att-0441/Shared_Dictionary_Compression_over_HTTP.pdf
http://lists.w3.org/Archives/Public/ietf-http-wg/2008JulSep/att-0441/Shared_Dictionary_Compression_over_HTTP.pdf
http://lists.w3.org/Archives/Public/ietf-http-wg/2008JulSep/att-0441/Shared_Dictionary_Compression_over_HTTP.pdf
http://lists.w3.org/Archives/Public/ietf-http-wg/2008JulSep/att-0441/Shared_Dictionary_Compression_over_HTTP.pdf
http://lists.w3.org/Archives/Public/ietf-http-wg/2008JulSep/att-0441/Shared_Dictionary_Compression_over_HTTP.pdf
http://lists.w3.org/Archives/Public/ietf-http-wg/2008JulSep/att-0441/Shared_Dictionary_Compression_over_HTTP.pdf
https://info.internet.org/en/
https://conference.apnic.net/data/37/464xlat-apricot-2014_1393236641.pdf
https://conference.apnic.net/data/37/464xlat-apricot-2014_1393236641.pdf
http://www.cachefly.com/cachefly-cdn/technology/
http://www.cachefly.com/cachefly-cdn/technology/
http://carrieriq.com/wp-content/uploads/2014/08/PR.CarrierIQandVodafonePortugal.20090730.pdf
http://carrieriq.com/wp-content/uploads/2014/08/PR.CarrierIQandVodafonePortugal.20090730.pdf
http://www.cedexis.com/openmix/
http://www.cedexis.com/radar/

189

[100] D. R. Choffnes, F. E. Bustamante, and Z. Ge. Crowdsourcing service-level
network event monitoring. In ACM SIGCOMM, Aug. 2010.

[101] D. R. Choffnes, M. A. Sanchez, and F. E. Bustamante. Network Positioning
from the Edge: An empirical study of the effectiveness of network positioning
in P2P systems. In IEEE INFOCOM, Mar. 2010.

[102] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman. PlanetLab: an overlay testbed for broad-coverage services.
SIGCOMM Computer Communications Review, 33(3):3–12, July 2003.

[103] Cisco Systems, Inc. Cisco Data Meter. http://ciscovni.com/data-meter/

index.html, May 2013.

[104] K. Claffy. The 5th Workshop on Active Internet Measurements (AIMS-5)
Report. In ACM SIGCOMM Computer Communication Review, Volume 43,
Number 3, July 2013.

[105] k. claffy, D. D. Clark, and M. P. Wittie. The 6th Workshop on Active Internet
Measurements (AIMS-6) Report. Sigcomm CCR, October 2014.

[106] J. Clover. FCC Launches ’FCC Speed Test’ iPhone App to Measure
Mobile Broadband Performance. http://www.macrumors.com/2014/02/25/

fcc-speed-test/, Feb 2014.

[107] J. Codorniou. Whats next for social mobile games? http://techcrunch.com/

2012/12/22/whats-next-for-social-mobile-games/, Dec. 2012.

[108] B. Cohen. Incentives build robustness in BitTorrent. In International workshop
on Peer-To-Peer Systems (IPTPS), Feb. 2003.

[109] L. Colitti. Broken IPv6 Clients. https://sites.google.com/site/

ipv6implementors/2010/agenda/BrokenIPv6clients.pdf, Jun. 2010.

[110] L. Colitti, S. H. Gunderson, E. Kline, and T. Refice. Evaluating IPv6 Adoption
in the Internet. In Passive and Active Measurement, Apr. 2010.

[111] Conviva. Internet tv: Bringing control to chaos. http://cdn2.hubspot.net/

hub/468871/file-2377674682-pdf/drop/Internet_TV-Bringing_Control_

to_Chaos-Conviva.pdf, Aug. 2015.

[112] N. Craig. A simple and rough comparison of Akamai
and Cloudfront CDN’s. https://thedotproduct.org/

a-simple-and-rough-comparison-of-akamai-and-cloudfront-cdns/,
Mar. 2014.

http://ciscovni.com/data-meter/index.html
http://ciscovni.com/data-meter/index.html
http://www.macrumors.com/2014/02/25/fcc-speed-test/
http://www.macrumors.com/2014/02/25/fcc-speed-test/
http://techcrunch.com/2012/12/22/whats-next-for-social-mobile-games/
http://techcrunch.com/2012/12/22/whats-next-for-social-mobile-games/
https://sites.google.com/site/ipv6implementors/2010/agenda/BrokenIPv6clients.pdf
https://sites.google.com/site/ipv6implementors/2010/agenda/BrokenIPv6clients.pdf
http://cdn2.hubspot.net/hub/468871/file-2377674682-pdf/drop/Internet_TV-Bringing_Control_to_Chaos-Conviva.pdf
http://cdn2.hubspot.net/hub/468871/file-2377674682-pdf/drop/Internet_TV-Bringing_Control_to_Chaos-Conviva.pdf
http://cdn2.hubspot.net/hub/468871/file-2377674682-pdf/drop/Internet_TV-Bringing_Control_to_Chaos-Conviva.pdf
https://thedotproduct.org/a-simple-and-rough-comparison-of-akamai-and-cloudfront-cdns/
https://thedotproduct.org/a-simple-and-rough-comparison-of-akamai-and-cloudfront-cdns/

190

[113] J. Curran. ARIN IPv4 Free Pool Reaches Zero. https://www.arin.net/

announcements/2015/20150924.html, Sept. 2015.

[114] M. Cceres, F. J. Moreno, and I. Grigorik. Network Information API. https:

//w3c.github.io/netinfo/, Dec. 2015.

[115] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A Decentralized
Network Coordinate System. ACM SIGCOMM, Sept. 2004.

[116] H. de Saxc, I. Oprescu, and Y. Chen. Is HTTP/2 really faster than HTTP/1.1?
In Computer Communications Workshops (INFOCOM WKSHPS), 2015 IEEE
Conference on, pages 293–299, April 2015.

[117] G. Developers. Pre-Resolve DNS. https://developers.google.com/speed/

pagespeed/service/PreResolveDns, Apr. 2015.

[118] G. Developers. Pre-Resolve DNS. https://developers.google.com/speed/

pagespeed/service/PreResolveDns, Apr. 2015.

[119] A. Dhamdhere, M. Luckie, B. Huffaker, k. claffy, A. Elmokashfi, and E. Aben.
Measuring the Deployment of IPv6: Topology, Routing and Performance. In
ACM IMC, Nov 2012.

[120] A. Y. Ding, J. Korhonen, T. Savolainen, Y. Liu, M. Kojo, S. Tarkoma, and
H. Schulzrinne. Reflections on Middlebox Detection Mechanisms in IPv6
Transition. In IAB Workshop on Stack Evolution in a Middlebox Internet
(SEMI), Jan. 2015.

[121] Y. Ding, T. Savolainen, J. Korhonen, and M. Kojo. Speeding up IPv6 transition:
Discovering NAT64 and Learning Prefix for IPv6 Address Synthesis. In IEEE
International Conference on Communications (ICC), June 2012.

[122] M. Dischinger, A. Haeberlen, I. Beschastnikh, K. P. Gummadi, and S. Saroiu.
SatelliteLab: Adding heterogeneity to planetary-scale network testbeds. In
ACM SIGCOMM, Aug. 2008.

[123] M. Dischinger, M. Marcon, S. Guha, K. P. Gummadi, R. Mahajan, and
S. Saroiu. Glasnost: enabling end users to detect traffic differentiation. In
USENIX NSDI, Apr. 2010.

[124] C. Donley. IPv6-IPv4 Performance Comparison: The Effect of
NAT. https://www.nanog.org/sites/default/files/tuesday.general.

donley.ipv6performance.17.pdf, 2013.

[125] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal, A. Jain,
and N. Sutin. An Argument for Increasing TCP’s Initial Congestion Window.
SIGCOMM CCR, 40(3), Jun. 2010.

https://www.arin.net/announcements/2015/20150924.html
https://www.arin.net/announcements/2015/20150924.html
https://w3c.github.io/netinfo/
https://w3c.github.io/netinfo/
https://developers.google.com/speed/pagespeed/service/PreResolveDns
https://developers.google.com/speed/pagespeed/service/PreResolveDns
https://developers.google.com/speed/pagespeed/service/PreResolveDns
https://developers.google.com/speed/pagespeed/service/PreResolveDns
https://www.nanog.org/sites/default/files/tuesday.general.donley.ipv6performance.17.pdf
https://www.nanog.org/sites/default/files/tuesday.general.donley.ipv6performance.17.pdf

191

[126] A. Dyke. What is a HAR File and what do I
use it for? http://www.speedawarenessmonth.com/

what-is-a-har-file-and-what-do-i-use-it-for/, Aug 2012.

[127] N. Ehsan, M. Liu, and R. J. Ragland. Evaluation of Performance Enhancing
Proxies in Internet over Satellite, Jan. 2003.

[128] J. Erman, V. Gopalakrishnan, R. Jana, and K. K. Ramakrishnan. Towards a
SPDY’Ier Mobile Web? In ACM CoNEXT, Dec. 2013.

[129] J. Erman, V. Gopalakrishnan, R. Jana, and K. K. Ramakrishnan. Towards
a SPDY’Ier Mobile Web? In Proceedings of the Ninth ACM Conference on
Emerging Networking Experiments and Technologies, CoNEXT ’13, 2013.

[130] F. Brockners, S. Gundavelli, S. Speicher and D. Ward. Gateway-Initiated Dual-
Stack Lite Deployment. https://tools.ietf.org/html/rfc6674, Jul. 2012.

[131] F. Kaup, F. Jomrich, and D. Hausheer. Demonstration of NetworkCoverage –
A Mobile Network Performance Measurement App. IEEE NetSys, March 2015.

[132] A. Faggiani, E. Gregori, L. Lenzini, V. Luconi, and A. Vecchio. Network
sensing through smartphone-based crowdsourcing. In Embedded Networked
Sensor Systems (SenSys), Nov. 2013.

[133] M. Fahey. Why Gamers Should Care About Net Neutrality. http://kotaku.

com/5512448/why-gamers-should-care-about-net-neutrality, Apr 2010.

[134] V. Farkas, B. Hder, and S. Novczki. A Split Connection TCP Proxy in LTE
Networks. In Information and Communication Technologies, Aug. 2012.

[135] FCC. Measuring Broadband America. http://www.fcc.gov/

measuring-broadband-america/mobile, Nov 2013.

[136] FCC. Measuring Mobile Broadband Methodology - Technical
Summary. http://www.fcc.gov/measuring-broadband-america/mobile/

technical-summary, Nov. 2013.

[137] FCC. FCC Speed Test App Tip Sheet. https://www.fcc.gov/guides/

mobile-speed-test-tip-sheet, 2014.

[138] FCCAPPs. FCC Speed Test App. https://play.google.com/store/apps/

details?id=com.samknows.fcc&hl=en, Dec 2013.

[139] N. Feamster. My Speed Test Mobile Performance Measure-
ment Tool Released. http://noise-lab.net/2012/06/02/

my-speed-test-mobile-performance-measurement-tool-released/,
June 2012.

http://www.speedawarenessmonth.com/what-is-a-har-file-and-what-do-i-use-it-for/
http://www.speedawarenessmonth.com/what-is-a-har-file-and-what-do-i-use-it-for/
https://tools.ietf.org/html/rfc6674
http://kotaku.com/5512448/why-gamers-should-care-about-net-neutrality
http://kotaku.com/5512448/why-gamers-should-care-about-net-neutrality
http://www.fcc.gov/measuring-broadband-america/mobile
http://www.fcc.gov/measuring-broadband-america/mobile
http://www.fcc.gov/measuring-broadband-america/mobile/technical-summary
http://www.fcc.gov/measuring-broadband-america/mobile/technical-summary
https://www.fcc.gov/guides/mobile-speed-test-tip-sheet
https://www.fcc.gov/guides/mobile-speed-test-tip-sheet
https://play.google.com/store/apps/details?id=com.samknows.fcc&hl=en
https://play.google.com/store/apps/details?id=com.samknows.fcc&hl=en
http://noise-lab.net/2012/06/02/my-speed-test-mobile-performance-measurement-tool-released/
http://noise-lab.net/2012/06/02/my-speed-test-mobile-performance-measurement-tool-released/

192

[140] FierceWireless. 3G/4G wireless network latency: Com-
paring Verizon, AT&T, Sprint and T-Mobile in February
2014. http://www.fiercewireless.com/special-reports/

3g4g-wireless-network-latency-comparing-verizon-att-sprint-and-t-mobile-feb,
Mar. 2014.

[141] B. Forrest. Bing and Google Agree: Slow Pages Lose Users. http://radar.

oreilly.com/2009/06/bing-and-google-agree-slow-pag.html, Jun. 2009.

[142] Fortinet. IPv6: Network Security and the Next Generation of IP Communi-
cation. http://www.fortinet.com/sites/default/files/solutionbrief/

SG-IPV6.pdf, 2015.

[143] B. Frank, I. Poese, Y. Lin, G. Smaragdakis, A. Feldmann, B. Maggs, J. Rake,
S. Uhlig, and R. Weber. Pushing CDN-ISP Collaboration to the Limit.
SIGCOMM Comput. Commun. Rev., 43(3), July 2013.

[144] J. Gao, A. Sivaraman, N. Agarwal, H. Li, and L. Peh. DIPLOMA: Consistent
and coherent shared memory over mobile phones. In International Conference
on Computer Design (ICCD), Sept. 2012.

[145] D. Geerts, I. Vaishnavi, R. Mekuria, O. van Deventer, and P. Cesar. Are we
in sync?: synchronization requirements for watching online video together. In
SIGCHI Conference on Human Factors in Computing Systems, May 2011.

[146] A. Gember, A. Akella, J. Pang, A. Varshavsky, and R. Caceres. Obtaining
in-context measurements of cellular network performance. In ACM IMC, Nov.
2012.

[147] U. Goel, A. Miyyapuram, M. P. Wittie, and Q. Yang. MITATE: Mobile Internet
Testbed for Application Traffic Experimentation. In Mobile and Ubiquitous
Systems: Computing, Networking and Services (Mobiquitous), Dec. 2013.

[148] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin. Detecting Cellular
Middle-boxes using Passive Measurement Techniques. In Passive and Active
Measurements Conference (PAM), 2016.

[149] U. Goel, M. Steiner, M. P. Wittie, E. Nygre, R. Gao, M. Flack, and S. Ludin.
Measuring Cellular IPv6 Networks for Web Performance. In Submission, Mar.
2016.

[150] U. Goel, M. Wittie, K. Claffy, and A. Le. Survey of End-to-End Mobile
Network Measurement Testbeds, Tools, and Services. Communications Surveys
Tutorials, IEEE, 18(1):105–123, Firstquarter 2016.

http://www.fiercewireless.com/special-reports/3g4g-wireless-network-latency-comparing-verizon-att-sprint-and-t-mobile-feb
http://www.fiercewireless.com/special-reports/3g4g-wireless-network-latency-comparing-verizon-att-sprint-and-t-mobile-feb
http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html
http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html
http://www.fortinet.com/sites/default/files/solutionbrief/SG-IPV6.pdf
http://www.fortinet.com/sites/default/files/solutionbrief/SG-IPV6.pdf

193

[151] U. Goel, M. P. Wittie, and M. Steiner. Faster Web through Client-assisted
CDN Server Selection. In IEEE International Conference on Computer
Communications and Networks (ICCCN), Aug. 2015.

[152] C. Gomez, M. Catalan, D. Viamonte, J. Paradells, and A. Calveras. Web
browsing optimization over 2.5G and 3G: end-to-end mechanisms vs. usage
of performance enhancing proxies. Wireless Communications and Mobile
Computing, Feb. 2008.

[153] Google. Analytics for mobile apps. http://www.google.com/analytics/

mobile/, Aug. 2015.

[154] Google Developers. Google Maps Developer Documentation. https://

developers.google.com/maps/documentation/, Mar. 2015.

[155] V. Gopalakrishnan, L. E. Li, G. Ricart, J. Breen, J. Martin, Y. Xin, C. Elliott,
A. Banerjee, J. Cho, M. Munakami, A. Chowdhary, N. Alsrehin, I. Alsmadi,
D. Grunwald, E. Eide, R. Ricci, and M. Wittie. SDN and NFV Report-Out.
https://phantomnet.org/workshop/sdnnfv.pdf, Feb. 2015.

[156] E. Gregori, L. Lenzini, V. Luconi, and A. Vecchio. Sensing the Internet through
crowdsourcing. In Proceedings of the Second IEEE PerCom Workshop on the
Impact of Human Mobility in Pervasive Systems and Applications (PerMoby),
May 2013.

[157] I. Grigorik. Latency: The New Web Performance
Bottleneck. https://www.igvita.com/2012/07/19/

latency-the-new-web-performance-bottleneck/, Jul. 2012.

[158] I. Grigorik. High Performance Browser Networking. O’Reilly, 2013.

[159] B. I. T. A. Group. IPv6 AAAA DNS Whitelisting. http://www.bitag.org/

documents/BITAG_TWG_Report-DNS_Whitelisting.pdf, Sept. 2011.

[160] C. Grundemann. IPv6 Security Myth IPv6 Networks are Too Big
to Scan. http://www.internetsociety.org/deploy360/blog/2015/02/

ipv6-security-myth-4-ipv6-networks-are-too-big-to-scan/, Feb. 2015.

[161] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating latency
between arbitrary Internet end hosts. In SIGCOMM Workshop on Internet
Measurement, Nov. 2002.

[162] Guy Podjarny. Open-Sourcing Mobitest. https://blogs.akamai.com/2012/

03/open-sourcing-mobitest.html, Mar 2012.

http://www.google.com/analytics/mobile/
http://www.google.com/analytics/mobile/
https://developers.google.com/maps/documentation/
https://developers.google.com/maps/documentation/
https://phantomnet.org/workshop/sdnnfv.pdf
https://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/
https://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/
http://www.bitag.org/documents/BITAG_TWG_Report-DNS_Whitelisting.pdf
http://www.bitag.org/documents/BITAG_TWG_Report-DNS_Whitelisting.pdf
http://www.internetsociety.org/deploy360/blog/2015/02/ipv6-security-myth-4-ipv6-networks-are-too-big-to-scan/
http://www.internetsociety.org/deploy360/blog/2015/02/ipv6-security-myth-4-ipv6-networks-are-too-big-to-scan/
https://blogs.akamai.com/2012/03/open-sourcing-mobitest.html
https://blogs.akamai.com/2012/03/open-sourcing-mobitest.html

194

[163] Z. Honig. FCC Speed Test app for iOS lets the government track your
iPhone’s network performance. http://www.engadget.com/2014/02/25/

fcc-speed-test-app-ios/, Feb 2014.

[164] T. Hopkins. What Are The Benefits Of Using a CDN? http:

//www.rackspace.com/knowledge_center/frequently-asked-question/

what-are-the-benefits-of-using-a-cdn, Sept. 2012.

[165] E. Howard, C. Cooper, M. P. Wittie, S. Swinford, and Q. Yang. Cascading
impact of lag on user experience in multiplayer games. In ACM NetGames,
Dec. 2014.

[166] J. Huang, C. Chen, Y. Pei, Z. Wang, Z. Qian, F. Qian, B. Tiwana, Q. Xu, Z. M.
Mao, M. Zhang, and P. Bahlc. MobiPerf: Mobile Network Measurement System
(Technical report). Technical report, University of Michigan and Microsoft
Research, 2011.

[167] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl. Anatomizing
application performance differences on smartphones. In ACM MobiSys, June
2010.

[168] IBM. CPLEX optimizer. www.ibm.com/software/commerce/optimization/

cplex-optimizer/, 2013.

[169] Internet2. Network Diagnostic Tool (NDT). http://software.internet2.

edu/ndt/, 2013.

[170] M. Ivanovich, P. Bickerdike, and J. Li. On TCP performance enhancing proxies
in a wireless environment. IEEE Communications Magazine, Sept. 2008.

[171] J. Iyengar and I. Swett. QUIC: A UDP-Based Secure and Reliable Transport for
HTTP/2. https://tools.ietf.org/html/draft-tsvwg-quic-protocol-00,
Jun. 2015.

[172] A. jan Su, D. Choffnes, F. E. Bustamante, and A. Kuzmanovic. Relative
Network Positioning via CDN Redirections. In ICDCS, Jun. 2008.

[173] J.D. Power. Overall wireless network problem rates differ considerably
based on type of service. http://www.jdpower.com/press-releases/

2013-us-wireless-network-quality-performance-study-volume-2, Aug.
2013.

[174] Jeff Barr. Multi-Region Latency Based Routing now
Available for AWS. https://aws.amazon.com/blogs/aws/

latency-based-multi-region-routing-now-available-for-aws/, Mar.
2012.

http://www.engadget.com/2014/02/25/fcc-speed-test-app-ios/
http://www.engadget.com/2014/02/25/fcc-speed-test-app-ios/
http://www.rackspace.com/knowledge_center/frequently-asked-question/what-are-the-benefits-of-using-a-cdn
http://www.rackspace.com/knowledge_center/frequently-asked-question/what-are-the-benefits-of-using-a-cdn
http://www.rackspace.com/knowledge_center/frequently-asked-question/what-are-the-benefits-of-using-a-cdn
www.ibm.com/software/commerce/optimization/cplex-optimizer/
www.ibm.com/software/commerce/optimization/cplex-optimizer/
http://software.internet2.edu/ndt/
http://software.internet2.edu/ndt/
https://tools.ietf.org/html/draft-tsvwg-quic-protocol-00
http://www.jdpower.com/press-releases/2013-us-wireless-network-quality-performance-study-volume-2
http://www.jdpower.com/press-releases/2013-us-wireless-network-quality-performance-study-volume-2
https://aws.amazon.com/blogs/aws/latency-based-multi-region-routing-now-available-for-aws/
https://aws.amazon.com/blogs/aws/latency-based-multi-region-routing-now-available-for-aws/

195

[175] W. Johnston. Measuring Broadband America. http://www.caida.org/

workshops/aims/1403/slides/aims1403_wjohnston.pdf, Mar. 2013.

[176] J. Kangasharju, K. W. Ross, and J. W. Roberts. Performance Evaluation
of Redirection Schemes in Content Distribution Networks. In Computer
Communications, 2000.

[177] P. Kanuparthy and C. Dovrolis. ShaperProbe: end-to-end detection of ISP
traffic shaping using active methods. In ACM IMC, Nov. 2011.

[178] T. Karr. Verizon’s Plan to Break the Internet. http://www.savetheinternet.
com/blog/2013/09/18/verizons-plan-break-internet, Sept 2013.

[179] J. Kastrenakes. FCC releases Android speed test app to gather data on
cell carrier performance. http://www.theverge.com/2013/11/14/5105090/

fcc-launches-android-mobile-speed-test-app, Nov 2011.

[180] R. Kisteleki. Measuring IPv6 usage at web clients and DNS resolvers.
https://sites.google.com/site/ipv6implementors/2010/agenda/07_

robert-kisteleki-measure-v6.pdf, Jun. 2010.

[181] E. Kline. IPv6 Whitelist Operations. https://sites.google.com/site/

ipv6implementors/2010/agenda/IPv6_Whitelist_Operations.pdf, Jun.
2010.

[182] J. Korhonen and E. T. Savolainen. EDNS0 Option for Indicating
AAAA Record Synthesis and Format. https://tools.ietf.org/html/

draft-korhonen-edns0-synthesis-flag-02, Feb. 2011.

[183] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. Netalyzr: Illuminating
the edge network. In ACM SIGCOMM Conference on Internet Measurement,
Nov. 2010.

[184] N. S. N. S. Labs. Understanding smartphone behavior in the
network. http://www.nokiasiemensnetworks.com/sites/default/files/

document/Smart_Lab_WhitePaper_27012011_low-res.pdf, 2011.

[185] P. Lakhera. Your App and Next Generation Networks. https://developer.

apple.com/videos/wwdc/2015/?id=719, June. 2015.

[186] Y.-N. Law, M.-C. Lai, W. L. Tan, and W. C. Lau. Empirical Performance
of IPv6 vs. IPv4 under a Dual-Stack Environment. In IEEE International
Conference on Communications (ICC), May 2008.

[187] Librato. One Platform. Unlimited Metrics. Monitoring Zen. http://metrics.
librato.com/, Sept. 2014.

http://www.caida.org/workshops/aims/1403/slides/aims1403_wjohnston.pdf
http://www.caida.org/workshops/aims/1403/slides/aims1403_wjohnston.pdf
http://www.savetheinternet.com/blog/2013/09/18/verizons-plan-break-internet
http://www.savetheinternet.com/blog/2013/09/18/verizons-plan-break-internet
http://www.theverge.com/2013/11/14/5105090/fcc-launches-android-mobile-speed-test-app
http://www.theverge.com/2013/11/14/5105090/fcc-launches-android-mobile-speed-test-app
https://sites.google.com/site/ipv6implementors/2010/agenda/07_robert-kisteleki-measure-v6.pdf
https://sites.google.com/site/ipv6implementors/2010/agenda/07_robert-kisteleki-measure-v6.pdf
https://sites.google.com/site/ipv6implementors/2010/agenda/IPv6_Whitelist_Operations.pdf
https://sites.google.com/site/ipv6implementors/2010/agenda/IPv6_Whitelist_Operations.pdf
https://tools.ietf.org/html/draft-korhonen-edns0-synthesis-flag-02
https://tools.ietf.org/html/draft-korhonen-edns0-synthesis-flag-02
http://www.nokiasiemensnetworks.com/sites/default/files/document/Smart_Lab_WhitePaper_27012011_low-res.pdf
http://www.nokiasiemensnetworks.com/sites/default/files/document/Smart_Lab_WhitePaper_27012011_low-res.pdf
https://developer.apple.com/videos/wwdc/2015/?id=719
https://developer.apple.com/videos/wwdc/2015/?id=719
http://metrics.librato.com/
http://metrics.librato.com/

196

[188] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang. A
Case for a Coordinated Internet Video Control Plane. In ACM SIGCOMM,
Aug. 2012.

[189] LiveLabs. Participation. http://livelabs.smu.edu.sg/participant/, Mar.
2013.

[190] Lookout Labs. CarrierIQ Scanner & Protection. https://play.google.com/

store/apps/details?id=com.lookout.carrieriqdetector&hl=en, May
2013.

[191] X. Lu, W. Cao, X. Huang, F. Huang, L. He, W. Yang, S. Wang, X. Zhang,
and H. Chen. A real implementation of DPI in 3G network. In Global
Telecommunications Conference (GLOBECOM), Dec. 2010.

[192] A. Lynn. Cable Companies’ Big Internet Swindle. http://www.freepress.

net/blog/2009/11/24, Nov 2009.

[193] M. Belshe and R. Peon. SPDY Protocol. http://tools.ietf.org/html/

draft-mbelshe-httpbis-spdy-00, Feb. 2012.

[194] J. Manweiler, S. Agarwal, M. Zhang, R. Roy Choudhury, and P. Bahl.
Switchboard: A matchmaking system for multiplayer mobile games. In ACM
MobiSys, June 2011.

[195] P. Marupaka. The future looks bright for augmented reality. http://www.

siggraph.org/discover/news/future-looks-bright-augmented-reality,
May 2014.

[196] Matthew Prince. Mirage 2.0: Solving the Mobile Browsing Speed Chal-
lenge. https://blog.cloudflare.com/mirage2-solving-mobile-speed/,
June 2013.

[197] MaxMind. GeoIP2: Industry Leading IP Intelligence. https://www.maxmind.
com/en/geoip2-services-and-databases, 2012.

[198] K. V. d. Merwe. PhantomNet: An end-to-end mobile network
testbed. http://www.caida.org/workshops/aims/1403/slides/aims1403_

jvandermerwe.pdf, Mar. 2014.

[199] S. Micka, U. Goel, H. Ye, M. P. Wittie, and B. Mumey. Internet Latency
Estimation Using CDN Replicas. In IEEE ICCCN, Aug. 2015.

[200] D. L. Mills. Network Time Protocol (version 2) specification and implementa-
tion. Network Working Group Request for Comments: 1119, Sept. 1989.

http://livelabs.smu.edu.sg/participant/
https://play.google.com/store/apps/details?id=com.lookout.carrieriqdetector&hl=en
https://play.google.com/store/apps/details?id=com.lookout.carrieriqdetector&hl=en
http://www.freepress.net/blog/2009/11/24
http://www.freepress.net/blog/2009/11/24
http://tools.ietf.org/html/draft-mbelshe-httpbis-spdy-00
http://tools.ietf.org/html/draft-mbelshe-httpbis-spdy-00
http://www.siggraph.org/discover/news/future-looks-bright-augmented-reality
http://www.siggraph.org/discover/news/future-looks-bright-augmented-reality
https://blog.cloudflare.com/mirage2-solving-mobile-speed/
https://www.maxmind.com/en/geoip2-services-and-databases
https://www.maxmind.com/en/geoip2-services-and-databases
http://www.caida.org/workshops/aims/1403/slides/aims1403_jvandermerwe.pdf
http://www.caida.org/workshops/aims/1403/slides/aims1403_jvandermerwe.pdf

197

[201] MITATE. MITATE : Mobile Internet Testbed for Application Traffic Experi-
mentation (User Manual). http://mitate.cs.montana.edu/sample/MITATE_
Documentation_v1.0.pdf, Nov 2013.

[202] MLAB. WindRider. http://www.measurementlab.net/tools/windrider,
2009.

[203] MLAB. NDT (Mobile Client). http://www.measurementlab.net/tools/

ndt-mobile, 2013.

[204] MobiPerf. Welcome to MobiPerf. http://www.mobiperf.com/home, Feb. 2012.

[205] MobiPerf. Data Collection and Privacy Policy. http://www.mobiperf.com/

privacy, 2014.

[206] MobiPerf. Welcome to MobiPerf. http://www.mobiperf.com/, 2014.

[207] P. Mockapetris. Domain Names - Implementation and Specification. Nov. 1987.

[208] A. M. Moreiras. Performance comparison between IPv4 and
IPv6 on the Internet. http://www.ceptro.br/pub/CEPTRO/

ArquivoNoticiaIPv6Performance/ipv6xipv4performance-napla.pdf,
May 2011.

[209] S. Muckaden. MySpeedTest: Active and Passive Measurements of Cellular
Data Network Performance. http://www.caida.org/workshops/isma/1302/

slides/aims1302_smuckaden.pdf, Feb. 2013.

[210] S. Muckaden. MySpeedTest: Active and Passive Measurements of Cellular Data
Networks. PhD thesis, Georgia Institute of Technology, 2013.

[211] M. K. Mukerjee, J. Hong, J. Jiang, D. Naylor, D. Han, S. Seshan, and H. Zhang.
Enabling Near Real-time Central Control for Live Video Delivery in CDNs. In
ACM SIGCOMM, Aug. 2014.

[212] A. Nandugudi, A. Maiti, T. Ki, F. Bulut, M. Demirbas, T. Kosar, C. Qiao, S. Y.
Ko, and G. Challen. PhoneLab: A Large Programmable Smartphone Testbed.
In Workshop on Sensing and Big Data Mining, Nov. 2013.

[213] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn, D. Lopez,
K. Papagiannaki, P. R. Rodriguez, and P. Steenkiste. Investigating Transparent
Web Proxies in Cellular Networks. In ACM SIGCOMM, Aug. 2015.

[214] M. Necker, M. Scharf, and A. Weber. Performance of Different Proxy Concepts
in UMTS Networks. In Wireless Systems and Mobility in Next Generation
Internet, Jun. 2004.

http://mitate.cs.montana.edu/sample/MITATE_Documentation_v1.0.pdf
http://mitate.cs.montana.edu/sample/MITATE_Documentation_v1.0.pdf
http://www.measurementlab.net/tools/windrider
http://www.measurementlab.net/tools/ndt-mobile
http://www.measurementlab.net/tools/ndt-mobile
http://www.mobiperf.com/home
http://www.mobiperf.com/privacy
http://www.mobiperf.com/privacy
http://www.mobiperf.com/
http://www.ceptro.br/pub/CEPTRO/ArquivoNoticiaIPv6Performance/ipv6xipv4performance-napla.pdf
http://www.ceptro.br/pub/CEPTRO/ArquivoNoticiaIPv6Performance/ipv6xipv4performance-napla.pdf
http://www.caida.org/workshops/isma/1302/slides/aims1302_smuckaden.pdf
http://www.caida.org/workshops/isma/1302/slides/aims1302_smuckaden.pdf

198

[215] Netflix. Netflix Open Connect Content Delivery Network. https://www.

netflix.com/openconnect.

[216] NetRadar. What’s my mobile operator’s coverage? http://www.netradar.

org/en, Mar. 2015.

[217] T. S. E. Ng and H. Zhang. Predicting Internet Network Distance with
Coordinates-Based Approaches. In IEEE INFOCOM, Apr. 2001.

[218] I. Nir. Latency in Mobile Networks The Missing Link. http://calendar.

perfplanet.com/2012/latency-in-mobile-networks-the-missing-link/,
Dec. 2012.

[219] nPerf.com. Whats nPerf? How does it work? http://www.nperf.com/en/,
Nov. 2014.

[220] NUStudents. NU Signals v2. https://play.google.com/store/apps/

details?id=edu.northwestern.nux, May 2014.

[221] E. Nygren. Implementing IPv6 on a Global Scale: Experiences at Akamai, Dec.
2011.

[222] E. Nygren. Three years since World IPv6 Launch: strong
IPv6 growth continues. https://blogs.akamai.com/2015/06/

three-years-since-world-ipv6-launch-strong-ipv6-growth-continues.

html, Jun. 2015.

[223] E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai Network: A Platform
for High-performance Internet Applications. ACM SIGOPS Operating Systems
Review, 44(3), Aug. 2010.

[224] E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai Network: A Platform for
High-Performance Internet Applications. In ACM SIGOPS Operating Systems
Review, Vol. 44, No.3, July 2010.

[225] Ookla. Ookla SpeedTest Mobile Apps. http://www.speedtest.net/mobile/,
2014.

[226] Ookla. Host a Speedtest Server. http://www.ookla.com/host, 2015.

[227] Ookla. Speedtest.net. https://play.google.com/store/apps/details?id=

org.zwanoo.android.speedtest, Mar. 2015.

[228] Ookla SpeedTest. How do I correct my location?
https://support.speedtest.net/hc/en-us/articles/

203845660-How-do-I-correct-my-location-, Oct. 2012.

https://www.netflix.com/openconnect
https://www.netflix.com/openconnect
http://www.netradar.org/en
http://www.netradar.org/en
http://calendar.perfplanet.com/2012/latency-in-mobile-networks-the-missing-link/
http://calendar.perfplanet.com/2012/latency-in-mobile-networks-the-missing-link/
http://www.nperf.com/en/
https://play.google.com/store/apps/details?id=edu.northwestern.nux
https://play.google.com/store/apps/details?id=edu.northwestern.nux
https://blogs.akamai.com/2015/06/three-years-since-world-ipv6-launch-strong-ipv6-growth-continues.html
https://blogs.akamai.com/2015/06/three-years-since-world-ipv6-launch-strong-ipv6-growth-continues.html
https://blogs.akamai.com/2015/06/three-years-since-world-ipv6-launch-strong-ipv6-growth-continues.html
http://www.speedtest.net/mobile/
http://www.ookla.com/host
https://play.google.com/store/apps/details?id=org.zwanoo.android.speedtest
https://play.google.com/store/apps/details?id=org.zwanoo.android.speedtest
https://support.speedtest.net/hc/en-us/articles/203845660-How-do-I-correct-my-location-
https://support.speedtest.net/hc/en-us/articles/203845660-How-do-I-correct-my-location-

199

[229] Ookla SpeedTest. How does the Begin Test button select a
server? https://support.speedtest.net/hc/en-us/articles/

203845410-How-does-the-Begin-Test-button-select-a-server-, Jan.
2012.

[230] Ookla SpeedTest. How does the test itself work? How is the result
calculated? https://support.speedtest.net/hc/en-us/articles/

203845400-How-does-the-test-itself-work-How-is-the-result-calculated-,
Jan. 2012.

[231] Ookla SpeedTest. Mobile Test Server Selection. https://support.speedtest.
net/hc/en-us/articles/203845480-Mobile-Test-Server-Selection, Oct.
2012.

[232] Ookla SpeedTest. Ookla SpeedTest Mini. http://www.speedtest.net/mini.

php, 2014.

[233] OpenSignal Developers. NetworkStats API. http://developer.opensignal.

com/networkrank/, 2014.

[234] OpenSignal Developers. Tower Info API. http://developer.opensignal.

com/towerinfo/, 2014.

[235] OpenSignal, Inc. OpenSignal Blog. http://opensignal.com/blog/2012/11/

29/new-permissions-in-version-1-99-and-how-to-check-whether-an-app-is-malicious/,
Nov. 2012.

[236] OpenSignal, Inc. How phone batteries measure the weather. http://

opensignal.com/reports/battery-temperature-weather/, Aug. 2013.

[237] OpenSignal, Inc. OpenSignal - Signal Finder and 3G/4G/Wifi Coverage Maps.
https://itunes.apple.com/app/opensignal/id598298030, Mar. 2013.

[238] OpenSignal, Inc. The State of LTE. http://opensignal.com/reports/

state-of-lte/, Feb. 2013.

[239] OpenSignal, Inc. OpenSignal. http://opensignal.com/, 2014.

[240] OpenSignal.com. OpenSignal WiFi map, speedtest. https://play.google.

com/store/apps/details?id=com.staircase3.opensignal&hl=en, Mar.
2015.

[241] Opera Software ASA. Opera Turbo. http://www.opera.com/turbo, Mar.
2015.

https://support.speedtest.net/hc/en-us/articles/203845410-How-does-the-Begin-Test-button-select-a-server-
https://support.speedtest.net/hc/en-us/articles/203845410-How-does-the-Begin-Test-button-select-a-server-
https://support.speedtest.net/hc/en-us/articles/203845400-How-does-the-test-itself-work-How-is-the-result-calculated-
https://support.speedtest.net/hc/en-us/articles/203845400-How-does-the-test-itself-work-How-is-the-result-calculated-
https://support.speedtest.net/hc/en-us/articles/203845480-Mobile-Test-Server-Selection
https://support.speedtest.net/hc/en-us/articles/203845480-Mobile-Test-Server-Selection
http://www.speedtest.net/mini.php
http://www.speedtest.net/mini.php
http://developer.opensignal.com/networkrank/
http://developer.opensignal.com/networkrank/
http://developer.opensignal.com/towerinfo/
http://developer.opensignal.com/towerinfo/
http://opensignal.com/blog/2012/11/29/new-permissions-in-version-1-99-and-how-to-check-whether-an-app-is-malicious/
http://opensignal.com/blog/2012/11/29/new-permissions-in-version-1-99-and-how-to-check-whether-an-app-is-malicious/
http://opensignal.com/reports/battery-temperature-weather/
http://opensignal.com/reports/battery-temperature-weather/
https://itunes.apple.com/app/opensignal/id598298030
http://opensignal.com/reports/state-of-lte/
http://opensignal.com/reports/state-of-lte/
http://opensignal.com/
https://play.google.com/store/apps/details?id=com.staircase3.opensignal&hl=en
https://play.google.com/store/apps/details?id=com.staircase3.opensignal&hl=en
http://www.opera.com/turbo

200

[242] C. Osborne. The state of LTE 4G networks worldwide in 2014
and the poor performance of the US. http://www.zdnet.com/

the-state-of-lte-4g-networks-worldwide-in-2014-and-the-poor-performance-of-the-us-7000026594/,
Feb. 2014.

[243] V. N. Padmanabhan, S. Ramabhadran, S. Agarwal, and J. Padhye. A Study of
End-to-end Web Access Failures. In ACM CoNEXT, Dec. 2006.

[244] K. Park, V. S. Pai, L. Peterson, and Z. Wang. CoDNS: Improving DNS
Performance and Reliability via Cooperative Lookups. In USENIX OSDI, Dec.
2004.

[245] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis. An architecture for large
scale Internet measurement. IEEE Communications, 36(8):48–54, Aug. 1998.

[246] M. Peckham. Carrier IQ Wiretap Debacle: Much Ado
About Something? http://techland.time.com/2011/12/01/

carrieriq-wiretap-debacle-much-ado-about-something/, Dec. 2011.

[247] C. Pelsser, L. Cittadini, S. Vissicchio, and R. Bush. From Paris to Tokyo: On
the Suitability of Ping to Measure Latency. In ACM IMC, Oct. 2013.

[248] R. Peon and H. Ruellan. HPACK: Header Compression for HTTP/2. https:

//http2.github.io/http2-spec/compression.html, May 2015.

[249] PhoneLab. Overview. http://participate.phone-lab.org/info/, 2013.

[250] PhoneLab. PhoneLab A Programmable Smartphone Testbed. http://www.

phone-lab.org/, 2013.

[251] PhoneLab. PhoneLab Experimenter Agreement. http://experiment.

phone-lab.org/terms/, 2013.

[252] M. Piatek. Measurement @ Google. http://www.caida.org/workshops/aims/
1403/slides/aims1403_mpiatek.pdf, Mar. 2014.

[253] PingTest.net. Measuring Network Quality. http://www.pingtest.net/learn.
php, 2014.

[254] D. Plonka and P. Barford. Assessing performance of Internet services on IPv6.
In IEEE Symposium on Computers and Communications (ISCC), July 2013.

[255] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan. TCP Fast
Open. In ACM CoNEXT, Dec. 2011.

[256] RadioOpt GmbH. Download Traffic Monitor. http://www.trafficmonitor.

mobi/en/download/, 2014.

http://www.zdnet.com/the-state-of-lte-4g-networks-worldwide-in-2014-and-the-poor-performance-of-the-us-7000026594/
http://www.zdnet.com/the-state-of-lte-4g-networks-worldwide-in-2014-and-the-poor-performance-of-the-us-7000026594/
http://techland.time.com/2011/12/01/carrieriq-wiretap-debacle-much-ado-about-something/
http://techland.time.com/2011/12/01/carrieriq-wiretap-debacle-much-ado-about-something/
https://http2.github.io/http2-spec/compression.html
https://http2.github.io/http2-spec/compression.html
http://participate.phone-lab.org/info/
http://www.phone-lab.org/
http://www.phone-lab.org/
http://experiment.phone-lab.org/terms/
http://experiment.phone-lab.org/terms/
http://www.caida.org/workshops/aims/1403/slides/aims1403_mpiatek.pdf
http://www.caida.org/workshops/aims/1403/slides/aims1403_mpiatek.pdf
http://www.pingtest.net/learn.php
http://www.pingtest.net/learn.php
http://www.trafficmonitor.mobi/en/download/
http://www.trafficmonitor.mobi/en/download/

201

[257] RadioOpt GmbH. Traffic Monitor & 3G/4G Speed. http://www.

trafficmonitor.mobi/en/download/, 2014.

[258] RadioOpt GmbH. RadioOpt. https://www.radioopt.com/, Mar. 2015.

[259] Readwrite. Net Neutrality: What Happens Now That Verizon
Has Vanquished The FCC. http://readwrite.com/2014/01/15/

net-neutrality-fcc-verizon-open-internet-order, Jan 2014.

[260] B. Reed. LTE devices must support IPv6, says Verizon.
http://www.networkworld.com/article/2257267/lan-wan/

lte-devices-must-support-ipv6--says-verizon.html, Jun. 2009.

[261] V. W. Reporter. THE VALUE OF A MILLISECOND: FINDING THE
OPTIMAL SPEED OF A TRADING INFRASTRUCTURE . http://www.

tabbgroup.com/PublicationDetail.aspx?PublicationID=346.

[262] P. Richter, M. Allman, R. Bush, and V. Paxson. A Primer on IPv4 Scarcity.
In Sigcomm CCR, Apr. 2015.

[263] V. Rideout and V. S. Katz. Opportunity for all? Technology and
learning in lower-income families. http://www.joanganzcooneycenter.org/

wp-content/uploads/2016/01/jgcc_opportunityforall.pdf, Jan. 2016.

[264] I. Rimington. Leave your wallet at home and pay with
your profile picture. https://www.paypal.co.uk/Blog/

Leave-your-wallet-at-home-and-pay-with-your-profile-picture/,
Aug. 2013.

[265] K. Rogers. What’s next after WhatsApp: a guide to the future of
messaging apps. http://www.theguardian.com/technology/2014/feb/21/

whatsapp-facebook-messaging-apps-viber-kik, Feb. 2014.

[266] RootMetrics. The RootMetrics testing methodology. http://www.

rootmetrics.com/us/methodology, Mar. 2015.

[267] S. Rosen, H. Luo, Q. A. Chen, Z. M. Mao, J. Hui, A. Drake, and K. La.
Discovering Fine-grained RRC State Dynamics and Performance Impacts in
Cellular Networks. In ACM Mobicom, Sept. 2014.

[268] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session Traversal Utilities
for NAT (STUN). https://tools.ietf.org/html/rfc5389, Oct. 2008.

[269] J. Rula. ALICE - Mobile Experiment Engine. http://aqualab.cs.

northwestern.edu/projects/alice, Aug. 2014.

http://www.trafficmonitor.mobi/en/download/
http://www.trafficmonitor.mobi/en/download/
https://www.radioopt.com/
http://readwrite.com/2014/01/15/net-neutrality-fcc-verizon-open-internet-order
http://readwrite.com/2014/01/15/net-neutrality-fcc-verizon-open-internet-order
http://www.networkworld.com/article/2257267/lan-wan/lte-devices-must-support-ipv6--says-verizon.html
http://www.networkworld.com/article/2257267/lan-wan/lte-devices-must-support-ipv6--says-verizon.html
http://www.tabbgroup.com/PublicationDetail.aspx?PublicationID=346
http://www.tabbgroup.com/PublicationDetail.aspx?PublicationID=346
http://www.joanganzcooneycenter.org/wp-content/uploads/2016/01/jgcc_opportunityforall.pdf
http://www.joanganzcooneycenter.org/wp-content/uploads/2016/01/jgcc_opportunityforall.pdf
https://www.paypal.co.uk/Blog/Leave-your-wallet-at-home-and-pay-with-your-profile-picture/
https://www.paypal.co.uk/Blog/Leave-your-wallet-at-home-and-pay-with-your-profile-picture/
http://www.theguardian.com/technology/2014/feb/21/whatsapp-facebook-messaging-apps-viber-kik
http://www.theguardian.com/technology/2014/feb/21/whatsapp-facebook-messaging-apps-viber-kik
http://www.rootmetrics.com/us/methodology
http://www.rootmetrics.com/us/methodology
https://tools.ietf.org/html/rfc5389
http://aqualab.cs.northwestern.edu/projects/alice
http://aqualab.cs.northwestern.edu/projects/alice

202

[270] J. Rula. ALICE - Technical Description. http://aqualab.cs.northwestern.
edu/262-details-alice, Aug. 2014.

[271] J. P. Rula and F. E. Bustamante. Behind the Curtain - Cellular DNS and
Content Replica Selection. Nov. 2014.

[272] J. P. Rula and F. E. Bustamante. Namehelp Mobile. http://aqualab.cs.

northwestern.edu/projects/237-namehelp-mobile, Aug. 2014.

[273] P. Saab. Facebook V6 World Congress 2015. https://www.youtube.com/

watch?v=An7s25FSK0U, Mar. 2015.

[274] P. Saab. Facebook V6 World Congress 2015. https://www.youtube.com/

watch?v=An7s25FSK0U, Mar. 2015.

[275] M. A. Sánchez, J. S. Otto, Z. S. Bischof, D. R. Choffnes, F. E. Bustamante,
B. Krishnamurthy, and W. Willinger. Dasu: Pushing experiments to the
Internet’s edge. In USENIX NSDI, Apr. 2013.

[276] M. A. Sanchez, J. S. Otto, Z. S. Bischof, D. R. Choffnes, F. E. Bustamante,
B. Krishnamurthy, and W. Willinger. Dasu: Pushing Experiments to the
Internet’s Edge. In USENIX NSDI, Apr. 2013.

[277] T. Savolainen and J. Korhonen. Discovery of a Network-Specific
NAT64 Prefix using a Well-Known Name. https://tools.ietf.org/html/

draft-savolainen-heuristic-nat64-discovery-01, Feb. 2011.

[278] Sensorly. Unbiased Wireless Network Information. From people just like you.
http://sensorly.com/, 2013.

[279] A. Shaikh, R. Tewari, and M. Agrawal. On the effectiveness of dns-based server
selection. In IEEE Infocom, Apr. 2001.

[280] H. Shang and C. E. Wills. Piggybacking Related Domain Names to Improve
DNS Performance. Computer Network, 50(11), Aug. 2006.

[281] K. Shubber. Microsoft kinect used to live-translate sign language
into text. http://www.wired.co.uk/news/archive/2013-07/18/

sign-language-translation-kinect, July 2013.

[282] C. Siaterlis, A. Garcia, and B. Genge. On the use of emulab testbeds for
scientifically rigorous experiments. IEEE Communications Surveys Tutorials,
15(2):929–942, Feb. 2013.

[283] S. Silbert. FCC launches speed test app for Android, looks to collect
mobile broadband performance data. http://www.engadget.com/2013/11/

14/fcc-launches-speed-test-app-android/, Nov 2011.

http://aqualab.cs.northwestern.edu/262-details-alice
http://aqualab.cs.northwestern.edu/262-details-alice
http://aqualab.cs.northwestern.edu/projects/237-namehelp-mobile
http://aqualab.cs.northwestern.edu/projects/237-namehelp-mobile
https://www.youtube.com/watch?v=An7s25FSK0U
https://www.youtube.com/watch?v=An7s25FSK0U
https://www.youtube.com/watch?v=An7s25FSK0U
https://www.youtube.com/watch?v=An7s25FSK0U
https://tools.ietf.org/html/draft-savolainen-heuristic-nat64-discovery-01
https://tools.ietf.org/html/draft-savolainen-heuristic-nat64-discovery-01
http://sensorly.com/
http://www.wired.co.uk/news/archive/2013-07/18/sign-language-translation-kinect
http://www.wired.co.uk/news/archive/2013-07/18/sign-language-translation-kinect
http://www.engadget.com/2013/11/14/fcc-launches-speed-test-app-android/
http://www.engadget.com/2013/11/14/fcc-launches-speed-test-app-android/

203

[284] C. R. J. Simpson and G. F. Riley. NETI@home: A distributed approach to
collecting end-to-end network performance measurements. In ACM PAM, Apr.
2004.

[285] R. Singel. Mobile Carriers Dream of Charging per Page. http://www.wired.

com/business/2010/12/carriers-net-neutrality-tiers/2/, Dec 2010.

[286] N. Smith. Latency between Amazon Web Services’
Regions. http://www.nsmith.net/articles/2011-08/

latency-between-amazon-web-services-regions/, Aug. 2011.

[287] sn707. ATT LG G3 Carrier IQ Removal Guide.
http://forum.xda-developers.com/att-lg-g3/general/

att-lg-g3-carrier-iq-removal-guide-t2819295, July 2014.

[288] S. Souders. Extension Mechanisms for DNS (EDNS(0)). http://tools.ietf.
org/html/rfc6891, Apr. 2013.

[289] SpeedSpot. SpeedSpot: Pioneering Hotel WiFi Speed Test. http://

speedspot.org/, Mar. 2015.

[290] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A public Internet
measurement facility. In USENIX Symposium on Internet Technologies and
Systems (USITS), Mar. 2003.

[291] A. Striegel, S. Liu, L. Meng, C. Poellabauer, D. Hachen, and O. Lizardo. Lessons
learned from the netsense smartphone study. In ACM Workshop on HotPlanet,
HotPlanet ’13, Aug. 2013.

[292] M. Thomson. Blind Proxy Caching. https://httpworkshop.github.io/

workshop/presentations/thomson-cache.pdf, Jul. 2015.

[293] I. Trestian, R. Potharaju, and A. Kuzmanovic. Closing the Loop: Feedback at
Your Fingertips. http://www.cs.northwestern.edu/~ict992/docs/draft.

pdf, 2009.

[294] S. Triukose, S. Ardon, A. Mahanti, and A. Seth. Geolocating ip addresses in
cellular data networks. In Passive and Active Measurement Conference (PAM),
2012.

[295] V-Speed. Cloud Managed Speed Test. http://www.v-speed.eu/, Mar. 2015.

[296] N. Vallina-Rodriguez, A. Auçinas, M. Almeida, Y. Grunenberger, K. Papagian-
naki, and J. Crowcroft. RILAnalyzer: A Comprehensive 3G Monitor on Your
Phone. In ACM IMC, IMC ’13, pages 257–264, New York, NY, USA, Oct. 2013.
ACM.

http://www.wired.com/business/2010/12/carriers-net-neutrality-tiers/2/
http://www.wired.com/business/2010/12/carriers-net-neutrality-tiers/2/
http://www.nsmith.net/articles/2011-08/latency-between-amazon-web-services-regions/
http://www.nsmith.net/articles/2011-08/latency-between-amazon-web-services-regions/
http://forum.xda-developers.com/att-lg-g3/general/att-lg-g3-carrier-iq-removal-guide-t2819295
http://forum.xda-developers.com/att-lg-g3/general/att-lg-g3-carrier-iq-removal-guide-t2819295
http://tools.ietf.org/html/rfc6891
http://tools.ietf.org/html/rfc6891
http://speedspot.org/
http://speedspot.org/
https://httpworkshop.github.io/workshop/presentations/thomson-cache.pdf
https://httpworkshop.github.io/workshop/presentations/thomson-cache.pdf
http://www.cs.northwestern.edu/~ict992/docs/draft.pdf
http://www.cs.northwestern.edu/~ict992/docs/draft.pdf
http://www.v-speed.eu/

204

[297] N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, N. Weaver, and V. Paxson.
CRAWDAD dataset icsi/netalyzr-android (v. 2015-03-24). Downloaded from
http://crawdad.org/icsi/netalyzr-android/20150324/middleboxes, Mar. 2015.
traceset: middleboxes.

[298] N. Vallina-Rodriguez, N. Weaver, C. Kreibich, and V. Paxson. Netalyzr for
Android: Challenges and opportunities. In Workshop on Active Internet
Measurements (AIMS), Mar 2014.

[299] M. Varvello, K. Schomp, D. Naylor, J. Blackburn, Alessandro, Finamore,
and K. Papagiannaki. Is The Web HTTP/2 Yet? In Passive and Active
Measurements Conference (PAM), Mar. 2016.

[300] Veloxity, Inc. 4Gmark Mobile performance test. http://www.4gmark.com/,
Nov. 2014.

[301] J. Vijayan. ATT, Sprint confirm use of Carrier IQ software on handsets. http:
//www.computerworld.com/article/2499667/application-security/

at-t--sprint-confirm-use-of-carrier-iq-software-on-handsets.

html, Dec. 2011.

[302] Vodafone. Vodafone Net Perform. https://play.google.com/store/apps/

details?id=com.vodafone.netperform.full, June 2014.

[303] Vodafone. Vodafone Net Perform. https://itunes.apple.com/ie/app/

vodafone-net-perform/id946160163?mt=8, June 2014.

[304] Vodafone. Take control of your data and Wi-Fi usage – Vodafone NetPerform.
http://www.vodafone.co.uk/discover-vodafone/apps-and-downloads/

vodafone_netperform/, Mar. 2015.

[305] Vodafone. Vodafone Net Perform – Terms and Conditions. https://www.

vodafone.co.nz/legal/terms-conditions/netperform/, Mar. 2015.

[306] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker.
Low Latency via Redundancy. In ACM CoNEXT, Dec. 2013.

[307] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker.
Low Latency via Redundancy. In ACM CoNEXT, Dec 2013.

[308] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall.
Demystify page load performance with wprof. In USENIX NSDI, Apr. 2013.

[309] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall.
Demystifying Page Load Performance with WProf. In USENIX Symposium
on Networked Systems Design and Implementation (NSDI), Apr. 2013.

http://www.4gmark.com/
http://www.computerworld.com/article/2499667/application-security/at-t--sprint-confirm-use-of-carrier-iq-software-on-handsets.html
http://www.computerworld.com/article/2499667/application-security/at-t--sprint-confirm-use-of-carrier-iq-software-on-handsets.html
http://www.computerworld.com/article/2499667/application-security/at-t--sprint-confirm-use-of-carrier-iq-software-on-handsets.html
http://www.computerworld.com/article/2499667/application-security/at-t--sprint-confirm-use-of-carrier-iq-software-on-handsets.html
https://play.google.com/store/apps/details?id=com.vodafone.netperform.full
https://play.google.com/store/apps/details?id=com.vodafone.netperform.full
https://itunes.apple.com/ie/app/vodafone-net-perform/id946160163?mt=8
https://itunes.apple.com/ie/app/vodafone-net-perform/id946160163?mt=8
http://www.vodafone.co.uk/discover-vodafone/apps-and-downloads/vodafone_netperform/
http://www.vodafone.co.uk/discover-vodafone/apps-and-downloads/vodafone_netperform/
https://www.vodafone.co.nz/legal/terms-conditions/netperform/
https://www.vodafone.co.nz/legal/terms-conditions/netperform/

205

[310] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall. How
Speedy is SPDY? In Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation, NSDI’14, 2014.

[311] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang. An Untold Story of
Middleboxes in Cellular Networks. In ACM SIGCOMM, Aug. 2011.

[312] Y. Wang1, S. Ye, and X. Li. Understanding Current IPv6 Performance: A
Case Study from CERNET. In Symposium on Computers and Communications
(ISCC), 2005.

[313] N. Weaver, C. Kreibich, M. Dam, and V. Paxson. Here Be Web Proxies. In
Passive and Active Measurements Conference, Mar. 2014.

[314] Webpagetest. Test a website’s performance. http://www.webpagetest.org/,
2008.

[315] WindRider. WindRider A Mobile Network Neutrality Monitoring System.
http://www.cs.northwestern.edu/~ict992/mobile.htm, Oct 2009.

[316] D. Wing. Learning the IPv6 Prefix of a Network’s IPv6/IPv4 Translator.
https://tools.ietf.org/html/draft-wing-behave-learn-prefix-04,
Oct. 2009.

[317] D. Wing and A. Yourtchenko. Happy Eyeballs: Success with Dual-Stack Hosts.
https://tools.ietf.org/html/rfc6555, Apr. 2012.

[318] K. Winstein, A. Sivaraman, and H. Balakrishnan. Stochastic forecasts achieve
high throughput and low delay over cellular networks. In USENIX NSDI, Apr.
2013.

[319] M. P. Wittie, V. Pejovic, L. Deek, K. C. Almeroth, and B. Y. Zhao. Exploiting
locality of interest in online social networks. In ACM CoNEXT, November 2010.

[320] M. P. Wittie, B. Stone-Gross, K. C. Almeroth, and E. M. Belding. MIST:
Cellular data network measurement for mobile applications. In Conference
on Broadband Communications, Networks and Systems (BROADNETS), Sept.
2007.

[321] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A Lightweight Network
Location Service Without Virtual Coordinates. ACM SIGCOMM, Aug. 2005.

[322] X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett, D. Choffnes, and R. Govindan.
Investigating Transparent Web Proxies in Cellular Networks. In Passive and
Active Measurements Conference, Mar. 2015.

http://www.webpagetest.org/
http://www.cs.northwestern.edu/~ict992/mobile.htm
https://tools.ietf.org/html/draft-wing-behave-learn-prefix-04
https://tools.ietf.org/html/rfc6555

206

[323] yanyan. Using Sensors In Seattle. https://seattle.poly.edu/wiki/

UsingSensors, Apr 2012.

[324] H. Yao, A. Nikravesh, Y. Jia, D. R. Choffnes, and Z. M. Mao. Mobilyzer: A
Network Measurement Library for Android Platform. In Workshop on Active
Internet Measurements (AIMS), Mar 2014.

[325] R. Yasinovskyy, A. Wijesinha, R. Karne, and G. Khaksari. A comparison of
VoIP performance on IPv6 and IPv4 networks. In IEEE/ACS International
Conference on Computer Systems and Applications (AICCSA), May 2009.

[326] S. Yaw, E. Howard, S. Poudel, B. Mumey, and M. P. Wittie. Collaborative group
provisioning with QoE guarantees in multi-cloud deployments. In submission,
2014.

[327] YUI Team. Combo Handler Service Available for Yahoo-hosted JS. http:

//yuiblog.com/blog/2008/07/16/combohandler/, July 2008.

[328] B. Zevenbergen, I. Brown, J. Wright, and D. Erdos. Ethical Privacy
Guidelines for Mobile Connectivity Measurements. http://www.oii.ox.ac.

uk/research/projects/?id=107, 2013.

[329] C. Zhang, C. Huang, P. A. Chou, J. Li, S. Mehrotra, K. W. Ross, H. Chen,
F. Livni, and J. Thaler. Pangolin: speeding up concurrent messaging for cloud-
based social gaming. In ACM CoNEXT, Dec. 2011.

[330] X. Zhou, M. Jacobsson, H. Uijterwaal, and P. Van Mieghem. IPv6 Delay and
Loss Performance Evolution. Int. J. Commun. Syst., 21(6), June 2008.

[331] Y. Zhou. Mobiperf. http://www.caida.org/workshops/isma/1302/slides/

aims1302_yyzhou.pdf, Feb 2013.

[332] Y. Zhuang, A. Rafetseder, and J. Cappos. Experience with Seattle: A
Community Platform for Research and Education. In GENI Research and
Educational Workshop (GREE), Mar. 2013.

[333] E. Zohar, I. Cidon, and O. O. Mokryn. Celleration: loss-resilient traffic
redundancy elimination for cellular data. In Workshop on Mobile Computing
Systems (HotMobile), Feb. 2012.

https://seattle.poly.edu/wiki/UsingSensors
https://seattle.poly.edu/wiki/UsingSensors
http://yuiblog.com/blog/2008/07/16/combohandler/
http://yuiblog.com/blog/2008/07/16/combohandler/
http://www.oii.ox.ac.uk/research/projects/?id=107
http://www.oii.ox.ac.uk/research/projects/?id=107
http://www.caida.org/workshops/isma/1302/slides/aims1302_yyzhou.pdf
http://www.caida.org/workshops/isma/1302/slides/aims1302_yyzhou.pdf

	Titlepage
	Copyright
	Acknowledgements

	Table of Contents
	List of Tables
	List of Figures

	Abstract
	Chapter 1 — Introduction
	Motivation and Overview
	Thesis Statement
	Proposal Organization
	Contributions

	Chapter 2 — MITATE - Testbed for Application Prototyping in Mobile Networks
	Abstract
	Introduction
	Related Work
	MITATE
	MITATE Application Traffic Prototyping Capability
	Discussion and Future Work

	Chapter 3 — Survey on Mobile Network Measurement Tools
	Abstract
	Introduction
	Goals of end-to-end mobile network measurement
	Network Testbeds
	Measurement Tools
	Measurement Services
	Conclusions

	Chapter 4 — Role of DNS in Content Server Selection
	Abstract
	Introduction
	DNS-based Load Balancing
	DNS-Proxy (dp)
	Results
	Discussion
	Related Work
	Conclusions

	Chapter 5 — Detecting Cellular Middleboxes Using Passive Measurement Techniques
	Abstract
	Introduction
	Related Work
	Data Collection Methodology
	Detecting CTPs from Client and Server-side Latency
	Detecting CTPs from Packet Loss on the Server-side
	Detecting CTPs from TCP SYN Characteristics
	Discussion
	Conclusions

	Chapter 6 — A Case for Faster Mobile Web in Cellular IPv6 Networks
	Abstract
	Introduction
	Overview of IPv6 Deployment in Cellular Networks
	Data Collection Methodology
	Round Trip Latency over IPv6 and IPv4 Cellular Networks
	DNS Lookup Time for IPv6 and IPv4 Clients
	Page Load Time over IPv6 and IPv4 Networks
	DNS Lookups in T-Mobile's IPv6-only Network
	Related Work
	Conclusions

	Chapter 7 — The Proposal
	Chapter 8 — Conclusions
	Chapter 9 — Research Timeline
	References Cited

