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ABSTRACT

Three-dimensional immersive environments have traditionally been developed us-
ing the C and C++ programing language. Do to the increasing performance of the
Java platform, the Java language is becoming more accepted for scientific and graph-
ical applications. Currently developers who choose to use Java are being excluded
from visualizing the results of their programs in a rich three-dimensional immersive
environment. This thesis will work towards correcting this problem by implementing
a Java library called JavaCAVE to control a CAVETM immersive environment.

In addition to being a Java library JavaCAVE also tried to reduce the costs of
a CAVETM by being designed to run on a cluster, which is more affordable than a
super computer. In order to be cross-platform and to support a variety of hardware
manufacturers a plugin system was used. Special care was also taken to provide a
simple and easy interface for the users of JavaCAVE.

Two test applications were created to test the functionality of JavaCAVE. They
prove that JavaCAVE is able to control the necessary hardware and that the Java
Platform ran quickly enough to be a viable choice for controlling a three-dimensional
immersive environment.
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INTRODUCTION

A three-dimensional immersive environment is a virtual environment generated

by a computer system to immerse the user in a computer-generated world. The user

can move about the virtual world and inspect objects from different perspectives and

interact with the environment.

Currently three-dimensional immersive environments are being created using the

C or C++ libraries, with CAVELib and VRJuggler being the most popular. This

creates a problem for the increasing number of developers who choose to use the Java

platform. Without a Java visualization library to run a three-dimensional immersive

environment, developers are forced to write complex bridges to communicate with

their Java program, or create an entirely separate C/C++ program to perform the

visualization. This leads to duplication of work and increases the complexity of a

project. Having a Java library to perform the visualizations would benefit developers

since they can leverage the source code they have already written.

For example, the Advanced Radiotherapy Project (ARTP) team at Montana State

University is developing a radiation simulation and treatment planning program en-

tirely in Java. Team members have already written Java code to load data sets and to

display the data, but they also need to visualize the data. An immersive environment

would allow a richer presentation to the doctors and technicians using the program
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and making decisions affecting the course of radiation treatments given to a patient.

This is the motivation for this work.

This thesis is concerned with the creation of a library, called JavaCAVE, to run

a CAVETM immersive environment, although it could be expanded to handle other

types of immersive environments. A CAVETM is a small room where a virtual world

is projected onto the walls in order to surround the user. The goals for JavaCAVE are

to show that Java is indeed capable of running an immersive environment, provide a

simple interface to the developer, abstract away as many hardware dependencies as

possible, and to reduce the cost of a CAVETM environment.

Previous Work

Ivan E. Sutherland

Sutherland is one of the founders of computer graphics. In 1963 he created the

first interactive computer graphics program called Sketchpad. In the early sixties

most computers ran in batch mode, where you would give the computer a job and

come back in a few hours, or the next day, to retrieve your results. Sutherland wrote

Sketchpad to use one of the few interactive computers in order to graphically create

engineering drawings.

Next Sutherland became interested in virtual reality and wrote a paper, “The

Ultimate Display” where he brainstorms about the possibilities for computer graphics

and describes an environment that resembles a CAVETM.
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The ultimate display would, of course, be a room within which the computer
can control the existence of matter. A chair displayed in such a room would be
good enough to sit in. Handcuffs displayed in such a room would be confining,
and a bullet displayed in such a room would be fatal. With appropriate
programming such a display could literally be the Wonderland into which
Alice walked [1].

Sutherland never did create a CAVETM-like environment that he described but he

did start the virtual reality field by creating the first head mounted displays (HMD)

in the late 1960s. His HMD used CRTs that where suspended from the ceiling and

the user would sit and position the displays in front of their eyes [2].

Carolina Cruz-Neira

In 1991 at the Electronic Visualization Laboratory, at the University of Illinois

in Chicago, Carolina Cruz-Neira along with several fellow graduate students from

created the first CAVETM (CAVE Audio Visual Experience), by projecting stereo

graphics onto three walls and the floor of a small room. They also tracked the

movement of the user and developed methods to correct the perspective based on the

location of the user [3].

CAVELibTM

The CAVELibTM library is currently being sold by VRCO which is the leading

commercial library for CAVETM environments. VRCO was founded by three gradu-

ates of the Electronic Visualization Laboratory (Jim Costigan, Matt Szymanski, and

Jason Leigh) in 1996 when they acquired the distribution rights to CAVELibTM from

the University of Illinois [4].
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VRJuggler

VRJuggler is an open source virtual reality toolkit being developed by Dr. Car-

olina Cruz-Neira at Iowa State University’s Virtual Reality Applications Center. It is

a scalable VR system that can run on a variety of platforms including, single desktop,

single screen systems, and super computer, multi-screen systems. VRJuggler uses a

Java program to configure the CAVETM environment and to provide an interface for

the programs that are running, but it does not use Java for the actual visualization

[5].

Why Java?

Java is making inroads into scientific computing due to several factors. It is

cross-platform, which allows researchers to develop systems on powerful Unix-based

computers while being able to deploy, these systems on less expensive platforms.

Java has robust language features such as automatic memory management, opaque

pointers, index safe arrays, strong typing, enforced exception handling, and built-

in synchronization, making the Java language more reliable than C or C++. This

is especially important in the medical field where mistakes can be fatal. Java also

comes with large and full featured support libraries which makes development easier

and faster [6].
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The Execution Speed of Java Programs

When Java was first released in 1995 the virtual machines suffered from perfor-

mance problems and those early experiences have stigmatized the language. Advances

in computer speed, compilers, and virtual machines have greatly increased the execu-

tion speed of Java programs so that it can come close to and sometimes even surpass

that of a natively compiled language (see the section on SciMark 2.0).

HotSpot Virtual Machine

The most important advance in Java’s speed is the HotSpot virtual machine. The

HotSpot virtual machine is a just-in-time compiler that compiles the Java byte-code

into native machine code while the Java program is running. The HotSpot compiler

saves the native machine code so it does not have to re-compile when the same parts

of Java program is executed again.

Another advantage of the HotSpot virtual machine is that it can use runtime

information to decide when to inline a method. Inlining is the process of copying the

code required to run a called method directly into the calling method at the point

of the call, thus eliminating the overhead of making a method call. A traditional

compiler can only rely on programmer hints and guesses about what methods would

be good ones to inline. The HotSpot virtual machine can also inline methods from

libraries, which is currently not being done by any C/C++ compiler.

Finally, the HotSpot compiler can take advantage of processor specific enhance-

ments. For example, Intel’s x86 architecture has changed over time, but in order to
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make sure their programs work on the older processors developers typically don’t take

advantage of the newer and potentially faster instructions. The HotSpot compiler, on

the other hand, can take full advantage of the newer processors because it is trans-

lating a program into native code at runtime, at which point it knows the processor

type [7].

SciMark 2.0

The SciMark benchmark was created at the National Institute of Standards and

Technology with the objective of evaluating different Java implementations for ap-

plicability for scientific computing. In addition to the Java benchmark they also

created a C version which can be used to compare the performance of Java to C. Sci-

Mark benchmarks five common scientific operations (fast fourier transform, Jacobi

successive over-relaxation, Monte Carlo, sparse matrix multiply, dense LU matrix

factorization) and measures the floating point operations rate. The author ran both

the C and Java versions of SciMark with a large data set on a dual Opteron 240

computer. After compiling the results the Java version was slightly faster then the C

version. This is shown Figure 1, where Java is faster on two of the five benchmarks,

and for the rest either tied or came close to the performance of the C version.

Java and Visualization

Since its creation Java has always had visualization capabilities. In order to

make Java cross-platform Sun created the AWT (Abstract Windowing Toolkit) a
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Figure 1. SciMark 2.0 Benchmark Comparing Java and C.

GUI framework that worked across all supported platforms. AWT used the native

controls of each platform, so it only implemented a common subset of controls. This

was limiting, so Sun later created Swing, which also included a two-dimensional vector

graphics package. Swing is a lightweight GUI since it does not use native controls

and implements the GUI controls entirely in Java and therefore is not constrained by

the native toolkit of any platform.
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Visualization Libraries

In addition to the built-in visualization capabilities of Java, several libraries have

been created both by Sun and other third party organizations to enhance Java.

Java Advanced Imaging (JAI). JAI is a Java library from Sun that adds support

for a variety of image file formats and provides a framework for image processing.

It comes with over one hundred image processing operations, such as scale, rotate,

color conversion, and statistical functions such as a histogram generation. JAI also

allows developers to subclass base operations and extend them to create their own

operations. Like many other Java libraries JAI works on Mac OS X, Linux, Solaris,

and Windows.

Java Media Framework (JMF). JMF is another graphics library from Sun that

adds support for playing or displaying audio, video, and other time-based media. It

supports most of the common audio and video formats such as AIFF, AVI, MPEG,

Quicktime, and Waves. JMF is distributed both as a Java-only implementation that

will work on any platform that supports Java, and specialized versions for Linux,

Solaris, and Windows where parts of the library have been rewritten in native code

to increase performance.

Java3D. Java3D was an effort by Sun to bring a three-dimensional graphics API

to the Java platform. It uses a scenegraph to render the virtual world. A scenegraph
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is a collection of three-dimensional objects that the developer builds by adding prim-

itives, such as boxes, triangles, and transformations into a data structure. After the

scenegraph is created, Java3D displays everything in the scene, a traditional graphic

pipeline requires the developer to explicitly draw all of the elements in the scenegraph

each time the display needs an update. Unfortunately, Java3D proved to be complex

and unwieldily. Thus, it did not gain acceptance in the marketplace and Sun has dis-

continued development of Java3D in favor of sponsoring JavaOpenGL (see the next

section). Since Java3D is no longer being supported by Sun it was not used for this

project.

Java OpenGL (JOGL). JOGL is an open source community project sponsored by

Sun. It is a thin binding between Java and the popular OpenGL three-dimensional

graphics API. Unlike Java3D, JOGL provides no built-in scenegraph and is much

simpler and more low-level. Several higher-level, three-dimensional APIs, such as

Xith3D have been built on top of JOGL. JOGL is also cross-platform and supports

Mac OS X, Linux, 64-bit Linux, Solaris, Irix, and Windows. It is currently the

only three-dimensional API in which a single executable file can run on six different

platforms without recompilation. JOGL was chosen for this project because it is open-

sourced, has Sun’s official sponsorship, and many developers are already familiar with

OpenGL and that experience will carry over to JOGL.
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Lightweight Java Game Library (LWJGL). LWJGL is another binding between

Java and OpenGL. LWJGL also has bindings to OpenAL (a three-dimensional sound

library) and provides for input control devices such as gamepads and joysticks. LWJGL

is even more low-level than JOGL and cannot be embedded into a Swing interface,

so it was not used with this project.

Maestro Case Study

One of the most recent success stories regarding Java’s visualization capabilities

has to do with the recent NASA missions to Mars. JPL used many of the Java vi-

sualization libraries listed above to create a program called Maestro. Maestro does a

combination of data visualization, collaboration, and command and control. It ana-

lyzes the images that the rovers send back from Mars and creates three-dimensional

reconstructions of the terrain. Those models are then used by scientists all over the

world to plan the rover operations. A scaled down version can be downloaded for free

from the JPL website allowing amateurs to easily analyze the images that NASA has

made available. Since it is implemented in Java, Maestro runs on Mac OS X, Linux,

Solaris, and Windows.
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ENVIRONMENT

A three-dimensional immersive enviroment is an environment in which the user

is fully immersed inside of a computer-generated virtual world where he or she is able

to move around and observe the objects in the environment from different angles,

and interact with the environment. In addition to visual immersion, the user should

also have the sensation of presence in the environment. This provides a sense of

realism. The two most common ways to create an immersive environment are with a

head-mounted display or a CAVETM [8].

Head-Mounted Displays

Head-Mounted displays, or HMDs, have two small screens that are held in place

in front of the user’s eyes by a harness mounted on the user’s head (Figure 2). The

display in front of the user’s left eye shows the view of the virtual world as it would be

seen by the left eye, and conversely the display for the right eye shows how the virtual

world would look to the right eye, thereby creating a life-like, three-dimensional image.

HMDs are popular and common because they are relatively cheap and use little

space. The small size of the screens restricts their resolution making it more difficult

to display crisp images, and their location immediately in front of the user’s eyes can
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Figure 2. Head Mounted Display.

cause eye strain. They can also cause cybersicknes, which is a form of motion sickness

caused by the delay between users moving their heads and the display updates.

Cave

A CAVETM accomplishes the same result as a HMD, but instead of having two

displays in front of the user’s eyes, the images are projected onto the walls of a small

room (Figure 3). To create the three-dimensional stereo effect the displays quickly

flicker between displaying the left eye and the right eye views. The user must wear

LCD shutter glasses that block the right eye while the left eye view is being displayed

and vice-versa.
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Figure 3. 3D Immersive Cave at the BP Visualization Center.

The CAVETM method does have some advantages over the HMDs. More than

one person can be in the immersive environment at a time, allowing for group collab-

oration. Cave users have also reported that they experienced less eye strain in the

CAVETM than with a HMD, mainly because the screens in the CAVETM are farther

away from the user. The occurrence of cybersickness is also reduced since the system

does not have to display a new image every time the users move their heads thus

eliminating the delay problem [9]. Cave environments require a significant amount of

space since they need both the room that is the CAVETM and room for projectors
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behind the walls. Caves are quite expensive due to the computer systems, the back

projection screens, and the projectors.

Input

The user interacts with a CAVETM environment through input devices. In order

to be completely effective the input devices need to be able to report their current

location and their orientation so that the user can point at an object. In addition,

the input devices may have additional buttons or other sensory inputs. For example

a wand (Figure 4) is useful for pointing and has buttons that can be used to select

and modify objects. A data glove on the other hand might have sensors for the joint

angles of the fingers or touch sensors to detect a pinching action. Speech recognition

could also be used to navigate menus or activate certain actions.

Figure 4. InterSense IS-900 Wand Tracker.
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Site Description

The testing of the JavaCAVE library was done using the three-dimensional CAVETM

immersive environment located at the British Petroleum (BP) Center for Visualiza-

tion in Boulder, CO. The center was established in October of 2000 when BP donated

its visualization lab to the University of Colorado at Boulder. This CAVETM is a three

wall, one floor, re-configurable MechDyne MD-FlexTMunit. In its closed configuration

it is 12x12x10 feet. Its side walls can be opened up to create a 36x10 foot screen that

can be used by large group. To eliminate shadows, back projection is used and the

floor projector is suspended above the floor. Input is provided by an InterSense 900

VET tracker, with a head tracker and one wand.

Figure 5. The BP Cave Environment in its Open and Closed Configurations.
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DESIGN

The design of JavaCAVE was heavily influenced by the goals set for this library.

A cluster is used to reduce the cost of a CAVETM environment. The use of a cluster

then led to a client-host design. To abstract away any hardware dependencies, a

plugin system was created to isolate the dependencies from the core of the library,

and to provide a consistent interface for the users of JavaCAVE. The delegate design

pattern was used to simply the interface to make it easy for the users of JavaCAVE.

Cluster

A cluster is a group of computers connected with a network to collaborate on a

single problem. Clusters are attractive because they can be built using inexpensive

processing components that, when combined, can provide an impressive amount of

computing power. For example, according to Top500, an orginzation that tracks the

top 500 supercomputers, Virginia Tech recently placed third by connecting 1100 Apple

Power Mac G5 computers together with a high speed Mellanox network [10]. The cost

to build their supercomputer was only $5.2 million while the other supercomputers

in its class cost between $80 and $100 million [11].

For JavaCAVE a cluster is used to run a CAVETM immersive environment where

each node in the cluster is responsible for the displaying on one wall of the CAVETM

environment. A cluster is used because a normal desktop computer has insufficient
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Figure 6. Cluster Diagram for a Cave Environment.

power, and faster computers, from venders such as SGI, that are capable of running

the CAVETM on one computer are expensive. A single desktop computer can easily

handle the rendering for a single wall. So an obvious solution to the price versus

computing power problem is to simply cluster enough computers so that there is one

computer for each wall (Figure 6).

The cluster architecture provides challenges that would not exist if just a single

computer was used. With a single computer, all of the rendering for all of the walls

will be done on that single computer in-combination with high speed synchronization

facilities to control the projectors. Synchronization becomes much more difficult with
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a cluster because the nodes are connected by a much slower network with high latency

and no built-in synchronization.

Using a cluster also complicates communication with input devices. With a single

computer the input devices can be connected directly to that computer and the single

process running the CAVETM environment can claim ownership of the input devices

and directly use them. In a cluster, input devices can only be connected to one

computer, which then must retrieve and forward the input data to all of the other

computers in the cluster.

Client-Host

The use of a cluster naturally leads to a client-host design pattern. There is

exactly one host per cluster, and one client per wall. The host software can run on

any of the computers in the cluster, as long as that computer is connected to the

input devices. The host can run on its own computer, as depicted in Figure 6 or it

can run on the same computer as one of the clients. A dedicated host is sometimes

helpful when the user starts a computationally expensive operation. Running the

host software on a dedicated computer will not slow down the computers responsible

for displaying the data. The host is also responsible for retrieving the input from the

hardware and for updating the clients with that new input. The clients, on the other

hand, need to render their data as quickly as possible.
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Network

The computers in the cluster are connected through a standard Ethernet network

and can use one of several different protocols. These included the standard TCP and

UDP protocols, as well as some more exotic networking protocols provided by the

Java frameworks such as Remote Method Invocation (RMI).

RMI is a high level network interface built on top of TCP that lets one Java

process invoke a method in another Java process over a network connection. It does

this transparently to the developer, making it very easy to use once the connections

between the two Java virtual machines has been set up. RMI also has facilities

for automatically downloading class files from a server if needed, simplifying the

distribution and installation of clients.

RMI would have been the easiest protocol to implement for our project, but it

was rejected because of the amount of overhead required to make a method call across

the network and to resolve all the class types. UDP was a strong contender since it

has the lowest overhead, but it does not guarantee delivery, so it was also rejected.

TCP was selected since it guarantees delivery and doesn’t add as much overhead as

RMI.

Plugins

There are several different manufacturers of three-dimensional immersive environ-

ment hardware, and each of those manufacturers has a different way of communicating
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with their products that is platform specific. In order to support the different types

of hardware we use plugins. A plugin is just a file that contains some executable code

that the executing program can load while it is running. This allows a program to

be customized and expanded at a later date. JavaCAVE currently has two types of

plugins, one for the input devices and another for synchronizing the displays. Users

of JavaCAVE can create their own plugins to support their hardware without hav-

ing to change any of JavaCAVE’s code. The plugins have to conform to a specified

interface which allows the users of JavaCAVE to move their program between differ-

ent CAVETM installations and platforms without having to recompile or change their

program.

To make things a bit easier on the developer and the user, JavaCAVE plugins are

distributed as Java Archive (jar) files. A jar file is a compressed archive of files. Java

has built-in libraries to load executable code from jar files and allows the program to

retrieve any file that is stored in the archive. This allows the developer to bundle any

extra resources, such as icons, pictures, or anything else with their code in one file.

Delegation

Delegation is a software design technique in which a portion of the program hands

a task over to another part of the program. This simple but very powerful concept

allows developers to build libraries that can be customized by the users of the library

by suppling a delegate to the library. The library will then turn to the delegate at
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Figure 7. Plugin Enclosed in a Jar File.

critical times and ask it to perform a task. JavaCAVE uses delegates for both the

host and client processes. The host’s delegate allows the user of JavaCAVE to send

extra information to all of the clients, and allows the user to filter events and respond

to them at the host level. The client uses its delegate to do the actual rendering.

Delegation makes it easy for a developer to use JavaCAVE. The only thing a

developer must do is supply a client delegate with three methods: one to initialize

the delegate, another that will render the delegate’s image data using JOGL, and one

that will update the data based on any input changes received from the host.

Run Loop

A run loop is the main loop of a program. It is responsible for retrieving events

from the operating system and dispatching those events to the proper parts of the
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program to be processed. When processing is complete, control passes back to the

run loop and it restarts by waiting for the next event.

Host

The JavaCAVE host is responsible for setting up the network, reading in the

configuration, configuring the clients, dispatching the input, and synchronizing the

clients. When started, the host listens for TCP connections and once enough clients

have joined, the host reads in a specified configuration file and broadcasts the config-

uration to all of the clients. Next it allows the host’s delegate to send any additional

information to the clients. When the host has configured all of the clients, the host

tells them to start their run loops, and then it enters its own run loop.

The Host’s Run Loop

The host’s run loop is shown in Figure 8. It consists of four major stages. First

the host polls the input devices for any changes. Next it updates any cluster-wide

global variables. Then the host’s delegate is given a chance to respond to any updates.

Finally the host updates all of the clients.

Input. The first step in the host’s run loop is to poll the input devices to deter-

mine their current status. Polling the input devices is typically a platform specific

operation, and breaks the cross-platform compatibility of JavaCAVE. To make this
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Figure 8. Host Run Loop.

less of a problem the code required to poll the input devices is implemented as a

plugin.

Global Variables. After polling for input changes the host updates cluster-wide

global variables. A cluster-wide global variable is a variable that must have the same

value in all of the nodes. An example of a cluster-wide global variable is the “current

time” variable. JavaCAVE cannot rely on the clocks of the individual computers

since they will not maintain synchronization independently. So JavaCAVE samples

the host’s clock during this step and updates the cluster-wide time variable properly.

Delegate Update. Before the host sends the environment changes to the clients

the host’s delegate is given a chance to respond to any of those changes. A delegate
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may want to do this if the user took an action that requires it to load data. It might

be faster to have the host load the data once, and then redistribute the data to the

clients, rather than having each individual client load the data. This is especially

true if all of the clients are trying to retrieve the data from a single database.

Update Client. The last step in the host’s run loop is to distribute any changes

in the environment to the clients. To do this the host uses the cluster’s network and

broadcasts the changes to all of the clients. After updating the clients with any input

and global variable changes, the host allows the host’s delegate to send any custom

updates to the client. Finally the host waits for an acknowledgment from the client

saying that it got the update. The acknowledgment insures that the host will not

overrun the client with data.

Client

A JavaCAVE client is responsible for rendering data onto a single wall, using the

delegate to do the actual drawing. In addition, the delegate is responsible for loading

and storing the data – either retrieving the data from the host’s delegate or loading

the data itself.

Once started, the client first connects to the host and waits for the host to send

it the configuration for the CAVETM environment. After it has received the configu-

ration the client allows the delegate to receive any information from the host. Next

the JavaCAVE client creates a JOGL context and allows the client to initialize any
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OpenGL settings. After everything has been initialized the client enters its run loop

and stays in the run loop until the user stops the program.

The Client’s Run Loop

The client’s run loop is shown in Figure 9. It is composed of five major stages.

First the client waits for any update information from the host. Next the client’s

delegates are given a chance to respond in the frame update stage. Then the client

calculates and applies the view and projection transformations given the user’s posi-

tion and the wall that the client is in charge of. Next the client’s delegate is told to

display its data. Finally the clients synchronize the swapping of their buffers.

Client Update. During the client update stage, the client receives any environment

updates that the host sent. This includes any changes to the input and cluster-wide

global variable changes. After receiving the update the client allows its delegate to

receive any additional information that the host’s delegate wants to send. After all of

the updates have been received the client sends a small acknowledgment to the host

to let it know that it got the update.

Frame Update. For the frame update stage the JavaCAVE client calls the del-

egate’s frame update method. The delegate should check for any changes to the

environment and update its internal representation of the data to respond to any

changes. These changes could be changes in user input, a timer that has expired,

or a previously started sub-task completed. For example, if the user can spin an



26

Update Client

Frame Update

Apply View & Projection
Transformations

Display

Synchronize Buffer
Swap

Figure 9. Client Run Loop.

object by holding down a button and waving a wand input device, then the frame

update method should check to see if that action has occurred. If it occurred then

the delegate should calculate the new rotation angle for that object and save the

results for the display method. The delegate’s update frame method is only called

once per frame, while the display method could be called multiple times. So, any

computationally expensive operation should be conducted in this stage.

View Transformations. As shown in Figure 10 the viewing volumes for each wall

are different and will change based on the location of the user. JavaCAVE needs
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to establish the correct perspective projections to make sure that each wall joins

seamlessly with all of the others. We will use the methods described by Dave Pape

in his paper “Transparently supporting a wide range of VR and stereoscopic display

device.”

Front Wall

eye

Figure 10. Cave View Volumes.

To establish the projections, JavaCAVE uses OpenGL’s glFrustum() function.

This function is used to specify the points on the near clipping plane that are mapped

to the lower left, and upper right corners of the screen. To figure out these points the

user’s eye position is projected onto the screen and the distances to the left, right,

top, and bottom of the screen are computed (Figure 11).
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In addition to the projection transformation, JavaCAVE also has to rotate the

coordinate system so that each wall is displaying a different section of the world. The

coordinate system of the wall can be calculated by using the three normalized axis

vectors ~X, ~Y , and ~Z. They define a transformation from world-space to screen-space.

The inverse of this transformation is therefore the rotational part of a transformation

matrix. We also have to translate the world to center the user’s position at (0,0,0),



29

which is accomplished by the following calculation [12].

~X =
LR− LL

width
, ~Y =

UL− LR

height
, ~Z = ~X × ~Y

Mview =
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Display. The client draws a new frame of animation by telling the client’s delegate

to perform the drawing. By this time all of the viewing and projection transformations

have been established, so the delegate needs to be careful not to reset OpenGL’s

transformation matrices. JavaCAVE uses OpenGL’s double buffering to draw to a

back buffer while OpenGL is still displaying the contents of the front buffer. This

allows the program to draw a complete frame of animation before showing anything

to the user, and allows JavaCAVE to synchronize displaying the new frame among

all of the clients.

If stereo mode is enabled, the delegate’s draw method will be called twice, once

for each eye. The client usually does not have to change anything to support stereo

mode because JavaCAVE sets up the projection matrix for each eye before calling

the draw method. A slight offset in the projection matrix will cause OpenGL to

render the scenes from two different points, thereby creating a stereo effect. Since

the delegate is called twice, the delegate needs to be careful about doing any serious

calculations in the draw method. It should instead perform those calculations in the

frame update stage and save the results to use in the draw methods. This will prevent
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these calculations from being computed twice which would unnecessarily slow down

rendering speed.

Buffer Swap. Once the clients have drawn the new scene to the back buffer,

the clients must all simultaneously swap the back buffer with the front buffer. Due

to differences in the complexity of each client’s scene and the unpredictable nature

of process scheduling, each client will finish drawing its view at different times. If

JavaCAVE did not try to synchronize the buffer swaps, some of the walls would be

displaying the old frame while others would be displaying the new frame. At the very

least, this would cause disorientation, at the most, the entire stereo effect could fail.

So, JavaCAVE forces all of the clients to wait until the slowest client finishes drawing

before doing the buffer swap.

In addition to synchronizing the buffer swaps, JavaCAVE also has to synchronize

the vertical refresh rate of all of the projectors. Each refresh switches the left and

right eye projections. It would be disconcerting if one wall were half way through

drawing the left eye view while another wall started displaying the right eye view.

With a single computer these problems are relatively easy to overcome. Synchro-

nizing the buffers swaps can be implemented with a simple spin lock shared between

all of the clients. Once all of the clients have checked-in, they can all perform the

buffer swaps at the same time. This technique does require a multi-processor com-

puter since the delay caused by swapping between processes will cause some delay
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between the buffer swaps. On a multi-processor computer all of the clients can run

at the same time and therefore will not have any delays due to processes swapping.

One of the responsibilities of a computer’s video card is to provide a synchronizing

signal to the display device that tells it when it should start painting from the top of

the screen. On a single computer with multiple video cards the developer can control

this synchronization signal and make sure that all of the video cards are outputting

the same signal, thus synchronizing the vertical refresh rate.

On a cluster both the vertical refresh rate and buffer swapping synchronization

become more complicated. The Ethernet network used to connect the cluster together

is not deterministic so any synchronization information sent over an Ethernet network

will be invalid by the time the clients got it. In order to solve this problem, video

card manufacturers (such as Nvidia with the Quadro 3000g) have built Frame Lock-

ing (buffer swap synchronization), and GenLock (refresh synchronization) into their

video cards. Each video card in the cluster is daisy-chained together with standard

CAT-5 cable creating their own network. Nvidia then uses a custom deterministic

network protocol to synchronize the video cards. Unfortunately the Nvidia Quadro

3000g retails for about $3000, which is more than the cost of the computers! Al-

though expensive it is a needed component. Plugins are used to implement the frame

synchronization to allow JavaCAVE to support more manufacturers and different

systems of synchronization.
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TESTS

Two applications were created to test JavaCAVE: the first one was a simple ap-

plication to verify that the view and projection transformations were being calculated

correctly; the second test was a more complex application that displayed a medical

model and allowed the user to interact with the model to test the input system.

The easiest metric to acquire, and a critical one, is the number of frames per

second (frame rate) that the system is capable of displaying. The more frames the

application can draw in one second the smoother the simulation will feel to the user.

For each of the two test applications the frame rate was computed when rendered on

one, two, three, and four walls, respectively.

Basic Test

The first test is a basic application that draws a few cones and cubes and moves

them around the user’s head. It is used to verify that the view and projection trans-

formations are correct by making sure that the cones move smoothly from screen to

screen. It does not respond to any input beyond tracking the user’s head location to

calculate the new view and projection transformations.

As shown in figure 13 with three nodes the frame rate was virtually unchanged,

when the fourth node is added there was a decrease in the frame rate. With each

additional node the host has to spend a little more time sending out the updates to all
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Figure 12. Test Application Displaying Cones.

of the clients. With the fourth node we hit a threshold where the host was spending

more time to complete it’s run loop then the clients were. This caused the frame rate

for the entire cluster to decrease slightly. Although there was a decrease, the cluster

is still displaying 445 frames per second, which is far beyond what the human eye can

register, making the decrease meaningless.

Medical Visualization

A more complex test application leverages the work done by the Advanced Ra-

diotherapy Project (ARTP) at Montana State University. ARTP’s existing Java data
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Figure 13. Basic Test Frame Rate.

classes and three-dimensional visualization tools are used to load a model of a hu-

man head that has been segmented into different regions and render it. The user

can rotate and move the head by using the wand input device. In addition the user

can select a region by using the wand to point at the desired region and clicking one

of the buttons. Then the user can alter the display of the model by changing the

transparency level of the selected region.

The same frame rate metric used with the first test application is used to evaluate

this application. The results are shown in Figure 15. Unlike the first application this

one renders a very complicated scene with many vertices. The cost of rendering

greatly offsets the cost of the network, so the frame rate remains unchanged as the

size of the cluster increases.
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Figure 14. Author demonstrating ARTP visualization at the BP Visualization Center.
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CONCLUSION

As demonstrated by the two test applications Java is capable of running a CAVETM

environment. JavaCAVE did meet its goal of being easy to use by allowing the de-

veloper to create a simple delegate that implements three method calls to initialize,

update, and display. An example of a small implementation that draws a spinning

cube in front of the user is given in appendix A. JavaCAVE also allows the developer

to easily distribute data to all of the clients from the host delegate, and allows the

developer to decide where to handle events coming from the user, either in the host

delegate or in the client delegate.

JavaCAVE also abstracts out any hardware dependencies. While this is not

unique (both CAVELib and VRJuggler provide hardware abstractions) JavaCAVE

does this without requiring the developer to recompile and distribute different bina-

ries for various computer platforms (as do CAVELib and VRJuggler). The plugin

system also allows JavaCAVE to be easily customized for a specific installation.

JavaCAVE utilizes a cluster to reduce the cost of a CAVETM-like environment.

Using a cluster has reduced the cost of the computer platform from being the most

expensive component of the system, to being one of the least expensive. The required

back projection screens are now the most expensive component of the CAVETM.
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Future Work

Single Computer

In some cases the speed of a super computer is needed. There are at least two

possible ways JavaCAVE could be modified to work on a single computer. The easiest

would be to convert the TCP network into pipes or shared memory and run a different

process for each wall. Another way would be to modify the client program to create

multiple OpenGL contexts, spawn threads for each wall, and integrate the host into

the client. While more work is required, using threads would reduce the overhead of

communication and speed of the renderers.

SoftGenLock Support

One of the goals of JavaCAVE was to make CAVETM-like systems more affordable.

One way to make them even more affordable would be to replace the expensive Nvidia

Quadro 3000g video cards, since they cost just as much as the cluster computers. The

SoftGenLock project could be a possible replacement for the expensive video cards. It

works by creating a custom network over the parallel ports of Linux computers and,

with the help of a real-time Linux distribution, it is able to synchronize consumer

level video cards. In order to make JavaCAVE work with the SoftGenLock project a

frame synchronization plugin would have to be written to communicate directly with

the SoftGenLock’s API.
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Support Head Mounted Displays

Head mounted displays are a good deal cheaper than CAVETM environments,

but they lack the ability to perform group collaboration. The cost of a collaborative

immersive environment could be reduced by using a cluster of computers, in which

each node drives a single HMD. Then the positional information about each user could

be distributed between the nodes and avatars could be used to insert the members of

the group into the virtual world to simulate a group environment.
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APPENDIX A

Minimal JavaCAVE Program
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This is a minimal implementation of a client delegate, which will draw a spinning

cube in front of the user. A host delegate is optional, so it was not implemented.

pub l i c c l a s s TestRenderer implements CaveRenderer
{

double r o t a t e ;

pub l i c void d i sp l ay (GLDrawable drawable ) {
GL g l = drawable . getGL ( ) ;
GLUT g lu t = new GLUT( ) ;

// move back in to the s c r e en
g l . g lTrans l a t ed (0 ,0 ,−5) ;

// sp in the cube
g l . g lRotated ( rotate , 0 . 0 , 1 . 0 , 0 . 0 ) ;

// draw a blue cube
g l . g lCo l o r 3 f ( 0 . 0 f , 0 . 0 f , 1 . 0 f ) ;
g l u t . g lutSol idCube ( gl , 2 . 0 f ) ;

}

pub l i c void frameUpdate ( CaveClient cave ) {
// i n c r e a s e the r o t a t e ang le
r o t a t e += 1 ;

}

pub l i c void i n i t ( CaveClient cave , GLDrawable drawable ) {
GL g l = drawable . getGL ( ) ;

// setup GL de f a u l t s
g l . glShadeModel (GL.GL SMOOTH) ;
g l . g lC l ea rCo lo r ( 0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f ) ;
g l . g lClearDepth ( 1 . 0 f ) ;
g l . g lEnable (GL.GL DEPTH TEST) ;
g l . glDepthFunc (GL.GL LEQUAL) ;

}
}


