

A Web-Based Interface for the
NeuroSys Database Project

Submitted to the
Department of Computer Science

Montana State University

in Partial Fulfillment of
the Requirements for the Degree of

Master of Science
by

Stuart W. Howard

Supervised by
Dr. John Paxton

April 8, 2004

 ii

Table of Contents

1. INTRODUCTION .. 1

1.1 Project Background .. 1
1.2 Objective of Project .. 3
1.3 Outline of Remaining Chapters... 3

2. RESEARCH AND LITERATURE REVIEW ... 4
2.1 User Interfaces and Interactive Systems: Principles of Good Design .. 4

2.1.1 Design Goals for Human-Computer Interactive Systems ... 4
2.1.2 Styles of Human-Computer Interaction (HCI) .. 5
2.1.3 User Interface Design ... 6
2.1.4 Interface Design Guidelines Relevant to the Project... 8

2.2 Similar Systems ... 9
2.2.1 Internet Brain Volume Database (IBVD).. 9
2.2.2 SenseLab... 12
2.2.3 Axiope Catalyzer .. 14

3. UNDERLYING TECHNOLOGIES ... 17
3.1 HTML.. 17
3.2 Web Application Technology .. 17

3.2.1 Common Gateway Interface (CGI) ... 18
3.2.2 Java Servlets ... 18

3.2.2.1 Servlet Life Cycle ... 19
3.2.2.2 Apache Tomcat Servlet Container .. 20

3.2.3 JavaScript.. 21
3.3 Apache Xindice XML Database .. 21

4. FUNCTIONAL SPECIFICATIONS FOR USERS ... 24
4.1 Logging In... 24
4.2 Database Interface.. 25
4.3 Browsing Records ... 26
4.4 Editing Records... 29
4.5 Saving and Deleting Records .. 29

5. DESIGN SPECIFICATIONS FOR PROGRAMMERS ... 31
5.1 System Layout ... 31
5.2 Class Layout ... 32

5.2.1 The Database Servlet .. 32
5.2.2 The HTML Servlet.. 33
5.2.3 Auxiliary Classes .. 35

5.3 Design Issues .. 37
6. RESULTS AND COMPARISONS ... 38

6.1 Comparative Criteria.. 38
6.2 Internet Brain Volume Database (IBVD).. 39
6.3 SenseLab ... 46
6.4 Axiope Catalyzer... 50
6.5 NeuroSys ... 56
6.6 Evaluation Summary... 60

7. CONCLUSIONS AND FUTURE DIRECTIONS.. 61
7.1 Summary ... 61
7.2 Conclusions... 61
7.3 Future Directions.. 62

 iii

8. REFERENCES ... 64
APPENDIX A - USABILITY TEST AND QUESTIONNAIRE... 66
APPENDIX B – SOURCE CODE... 69

 iv

Figures

FIGURE 1 - INTERFACE FOR CLIENT-SIDE APPLICATION .. 2
FIGURE 2 - IBVD HOMEPAGE.. 10
FIGURE 3 - IBVD SEARCH PAGE ... 11
FIGURE 4 - CA1 PYRAMIDAL NEURON ... 12
FIGURE 5 - I L HIGH THRESHOLD REFERENCE .. 13
FIGURE 6 - STANDARD SEARCH SCREEN ... 13
FIGURE 7 - COMPLEX SEARCH SCREEN ... 14
FIGURE 8 - AXIOPE CATALYZER PUBLISH MENU .. 15
FIGURE 9 - AXIOPE CATALYZER CATALOG WEBSITE .. 15
FIGURE 10 - CGI PROCESSES... 18
FIGURE 11 - SERVLET PROCESS... 19
FIGURE 12 - THE SERVLET LIFE CYCLE... 20
FIGURE 13 - LOGIN PAGE .. 24
FIGURE 14 - INITIAL FRAME LAYOUT.. 25
FIGURE 15 - FORM DISPLAYED IN RIGHT FRAME .. 26
FIGURE 16 - SCREENSELECT FIELD ... 27
FIGURE 17 - SELECTING A NEW SCREEN ... 28
FIGURE 18 - DISPLAY OF NEW SCREEN ... 28
FIGURE 19 - SYSTEM LAYOUT ... 31
FIGURE 20 - STRINGSERVLETCLIENT UML DIAGRAM .. 33
FIGURE 21 - METHOD CALL SEQUENCE IN DOPOST() .. 34
FIGURE 22 - METHOD CALL SEQUENCE FOR MAKEDISPLAY()... 35
FIGURE 23 - HTMLGENERATOR UML DIAGRAM... 36
FIGURE 24 - IBVD HOMEPAGE.. 39
FIGURE 25 - NOMENCLATURE PAGE.. 42
FIGURE 26 - PLOT DISPLAY ... 45
FIGURE 27 - SENSELAB HOMEPAGE .. 46
FIGURE 28 - AXIOPE CATALYZER CATALOG HOMEPAGE .. 51
FIGURE 29 - AXIOPE CATALYZER ERROR MESSAGE.. 53
FIGURE 30 - AXIOPE CATALYZER GRAPH FEATURE .. 54
FIGURE 31 - CATALOG IN XML FORMAT .. 54
FIGURE 32 - AXIOPE CATALYZER ADMINISTRATIVE PAGE.. 55
FIGURE 33 - NEUROSYS WEB INTERFACE ... 57

 v

Abstract

This paper describes and documents the implementation of a web-based interface for an

existing database application. In response to the demand for managing and storing large

amounts scientific data, programmers at the Center for Computational Biology at

Montana State University have developed client-side software that allows a user to

access, edit, and query a remote database. To use this application the client computer

must have a current version of Java installed, the application must be downloaded, and

browser settings may need to be adjusted. While many of the end users are computer

savvy, the setup process challenges other end users. The goal of this project was to

develop a server-side, web-based interface for the application that allows users to browse,

query, and edit a database by simply visiting a website and logging in.

Principles of good design for user interfaces and interactive systems are reviewed and the

resulting system is compared with three other database applications using these design

principles as criteria. Results of the comparisons are summarized and recommendations

for future work on the project are made.

 vi

Acknowledgements

I would like to thank Dr. Gwen Jacobs, Sandy Pittendrigh, and Gary Orser at the Center

for Computational Biology at Montana State University for the opportunity to work on

this project. Sandy, Gary, and the system administrator of the center, Ben Livingood,

were always willing to offer technical help whenever I needed it. Many thanks to Dr.

John Paxton for his excellent guidance and feedback as I wrote the paper. Lastly, I wish

to thank my wife, Kim, for her encouragement and support as I worked on the project and

paper.

 1

1. Introduction

Scientific research, especially in the field of neuroscience, generates large amounts of

often complex data. Such laboratory data are often stored in lab notebooks or

spreadsheets [23]. Sharing of this data among peers is currently accomplished via

published papers, which are not always accessible and are not machine readable.

Published papers may present results on only averaged data or a subset of the data [5].

There is a need for database systems that allow such data to be organized, stored, reused,

and easily shared among peers [23]. In response to these problems, there are many

database projects underway.

Relational database systems can fill this gap; however the complexity inherent in the

design, setup, and maintenance of such a system prohibits many scientists from this

approach [23]. A related constraint that many laboratories face is the lack of resources to

hire professional programmers and a database administrator to manage such a system [9].

There is a need for a system that allows researchers with minimal time and IT skills to

record their data in an organized and network-accessible fashion without hiring

professional programmers [23].

1.1 Project Background

In 2002 the Human Brain Project [11], a federal interagency initiative that supports

research and development of information management systems for neuroscience,

launched four programs to further the study of neuroinformatics. The Center for

Computational Biology (CCB) at Montana State University received a grant from one of

these programs and began the NeuroSys Database Project [22]. Aware of the obstacles of

using relational database technology, the NeuroSys developers chose to store scientific

data in the hierarchical format of XML. Data in this format can easily be stored to and

retrieved from an XML database server in the form of a simple text file.

 2

The CCB currently has an operational prototype software application [22] that allows

users to access and query a remote XML database server with a GUI interface (Figure 1).

However, to use this application the client computer must have Java Version 1.4 [18]

installed, the application must be downloaded, and browser settings may need to be

adjusted. While many of the end users are computer savvy, the setup process challenges

other end users. The goal of this project is to develop a server-side, web-based interface

for the NeuroSys project that allows users to browse, query, and edit a database by

simply visiting a website and logging in. Therefore, the topic of this paper relates to the

development of a web-based interface for the NeuroSys Database Project.

Figure 1 - Interface for Client-side Application

 3

1.2 Objective of Project

The specific objective of this project is to implement a web-based interface for the

NeuroSys application that allows ‘Browse’, ‘Data Entry’, and ‘Query’ capabilities. The

‘Browse’ capability allows users to view records in a database. The ‘Data Entry’

capability allows users to edit their own records and also allows users to save and edit

copies of records belonging to other users. The ‘Query’ capability allows a user to search

for records matching some given parameters.

1.3 Outline of Remaining Chapters

Chapter Two discusses literature related to the topic of user interface design and

introduces several other scientific database systems that provide a web-based interface.

Chapter Three describes the underlying technologies used in the implementation of this

project and explores the reasons for choosing them. Chapters Four and Five consist of

user manuals for end users and for programmers respectively. Chapter Six compares and

contrasts the project to the database systems introduced in Chapter Two. Chapter Seven

summarizes and critically reviews the results of this project and offers recommendations

for future work on the project.

 4

2. Research and Literature Review

This chapter reviews literature related to the topic of user interface design and introduces

several other scientific database systems that offer a web-based interface. The purpose of

the chapter is to acquaint readers with the current state of affairs of such systems and with

the guidelines that can be used to design web interfaces for them.

2.1 User Interfaces and Interactive Systems: Principles of Good
Design

Though this project has some constraints on the design of the user interface as it mimics

an existing application, the principles of good user interface design warrant some

attention. An exploration of this topic may contribute to future interface design decisions

concerning the NeuroSys project.

2.1.1 Design Goals for Human-Computer Interactive Systems

There is a good reason for the great interest in designing interactive systems. As often is

the case the ‘bottom line’ has an influence here. IBM once dedicated $20,000 towards

user-centered design over the seven month lifespan of a project they developed. The first

three days the product was up and running a savings of $40,000 was realized [6]. Many

software products have achieved commercial success due to their superior user interfaces

[25].

Ben Shneiderman, author of Designing the User Interface [25], lists some design goals

for interactive systems:

• Determine the necessary functionality.

Determine what tasks and subtasks must be accomplished and how to handle
emergency and recovery situations. Inadequate functionality frustrates users who
then underutilize the system or do not use it at all. Excessive functionality can

 5

increase clutter and complexity and makes the system more difficult for users to
learn.

• Ensure reliability.

Commands and buttons must function properly. Displayed data must accurately
reflect database contents and updates to data must be recorded and saved correctly to
the database. If a user has one bad experience with data integrity or gets unexpected
results, he will lose the trust and willingness to use the system.

• Ensure availability.

The software and hardware components and the network system must ensure a high
level of uptime. Human interface design is a moot point if the system is unavailable.

• Ensure security, privacy, and data integrity.

Protect the integrity of the data by preventing unauthorized access.

Shneiderman [25] also mentions the attributes of standardization, consistency, and

portability concerning interactive system design. Standardization means using common

user interfaces across different applications. Consistency can apply to many aspects of a

system including action sequences, colors, layouts, and terminology used. Portability

refers to the system’s capability to deploy among multiple hardware and software

platforms.

2.1.2 Styles of Human-Computer Interaction (HCI)

Shneiderman [25] lists five types of human interaction with a computer: direct

manipulation, menu selection, form fill-in, command language, and natural language.

Direct manipulation means visually representing tasks and objects with icons and then

selecting them with a cursor or pointer. In menu selection the user selects from a list of

items and then observes the effect of his choice. Form fill-in is well suited for data entry,

however this method consumes screen space and users must understand the field labels

and know the permissible values for fields. This style is best for knowledgeable

intermittent and frequent users. Command languages are very powerful and flexible,

however they are prone to high error rates, poor error handling, and they require intensive

 6

training. This style is best suited for expert frequent users. The advantage of using a

natural language to interact with a computer is there is no need to learn new syntax, but

the advantage is quickly lost due to the frequent need for clarification dialogs. Natural

language systems can also be unpredictable.

2.1.3 User Interface Design

Usability

Once the basic design goals of a system have been addressed and the interaction style (or

combination of styles) has been selected, the actual design work for a user interface may

begin. A user interface design should be evaluated for a specific user community and for

specific benchmark tasks. A design for one community or set of tasks may not be

efficient for another set of users or another set of tasks. Shneiderman [25] names five

metrics in regards to human interaction. Other authors refer to the following factors as

measurements of usability [6].

1. Learnability.

The system should be easy to learn.

2. Efficiency.

Users should be able to use the system productively.

3. Errors.

The system should have a low error rate and good error handling. Error messages
should be concise, understandable, and should suggest a solution. Users should be
able to reverse an action (i.e. undo, redo).

4. Memorability.

Operation of the system should be easy to remember.

 7

5. Satisfaction.

Users should enjoy using the system and be satisfied with their results.

Optimizing all of these factors simultaneously may not be possible as two goals can

conflict with each other. A designer may need to sacrifice performance speed and

efficiency to achieve a low error rate. The primary goals should be clear at the outset of

the design process [25].

The Eight Golden Rules of User Interface Design

Shneiderman [25] suggests adapting the following guidelines to most interactive systems:

1. Strive for consistency.

Use the same sequences of actions for similar situations. Use consistent terminology
in prompts, menus, and help screens. Keep the appearance consistent.

2. Enable shortcuts for frequent users.

3. Offer informative feedback.

For every action of the user the system should offer feedback. Feedback can be
modest for frequent and minor actions, and more substantial for infrequent and major
actions.

4. Design dialogs to yield closure.

Action sequences should have a distinct beginning, middle, and end with feedback to
the user to confirm his actions and to clear the way for the next action.

5. Offer error prevention and simple error handling.

6. Permit easy reversal of actions.

This feature relieves user anxiety knowing that errors can be undone and it also
encourages more exploration of the system.

 8

7. Support internal locus of control.

Experienced users want a sense of control and initiative. Unexpected system
responses or tedious action sequences lead to frustration and anxiety. Users should
initiate actions rather respond to them.

8. Reduce short-term memory load.

George Miller [19] theorized that humans can process “seven, plus or minus two”
chunks of information at a time. This popular theory suggests that users should not
be required to memorize information between multiple displays.

Authors Mosier and Smith [26] list guidelines for data display and data entry that closely

mirror the ones listed above.

2.1.4 Interface Design Guidelines Relevant to the Project

Since this project involves implementing an interface for a database application, the

aspects of data display, data entry, and interaction style are especially important.

Guidelines in the previous section may be applied to issues related to data display and

data entry. Guidelines for the selected interaction style, form fill-in, are discussed in the

next section.

Form Fill-in Design Guidelines

The form fill-in style is well suited for data entry tasks. The full complement of

information is visible to the user and the user is empowered with a feeling of control.

Few instructions are necessary because electronic forms resemble familiar paper forms

[25]. Shneiderman [25] has gathered the following guidelines for designing forms:

1. Meaningful title.
2. Comprehensible instructions.
3. Logical grouping and sequencing of fields.
4. Visually appealing form layout.
5. Familiar field labels.
6. Consistent terminology and abbreviations.

 9

7. Visible space and boundaries for data entry fields.
8. Convenient cursor movement.
9. Error correction for individual characters and complete fields.
10. Error prevention.
11. Error messages for unacceptable values.
12. Optional fields clearly marked.
13. Explanatory message for fields.
14. Completion signal to direct user’s next step.

The previous sections of this chapter review principles of good design for user interfaces

and human-computer interactive systems. The remainder of the chapter introduces three

other systems that provide a web-based interface for a scientific database.

2.2 Similar Systems

Several other systems that provide a web interface to a scientific database are introduced.

A survey of similar systems offers the reader a snapshot of the current state of affairs in

web interfaces for scientific databases and provides a good background for a critical

analysis of the NeuroSys web interface. As the systems are described, particular

attention is paid to aspects relating to the appearance, design, and usability of the web

interfaces. Other notable features are mentioned and Chapter 6 offers a more detailed

analysis of the systems.

2.2.1 Internet Brain Volume Database (IBVD)

Researchers at Massachusetts General Hospital, Harvard Medical School, Massachusetts

Institute of Technology, and several other institutions have implemented the Internet

Brain Volume Database [13], a web-based resource containing data related to anatomical

studies of the brain. The goal of the project is to improve the amount and quality of data

available to neuroscience researchers and to overcome the paucity of data available

previously only in journal articles.

 10

The project homepage [13] is quite simple and unassuming. A table contains hyperlinks

that describe and initiate each user action. The table headings and action descriptions all

start with lowercase letters, which give the impression of an unfinished product (Figure

2).

Figure 2 - IBVD Homepage

The ‘about IBVD’ link leads to an excellent text-based walk-through tutorial of the

database. Though it lists neuroscience terms in hierarchical fashion, the ‘nomenclature’

link is not especially helpful since it does not provide definitions for the terms. More

impressive is the ‘search’ feature. When selected, the search link loads a form which

spans two full screens (Figure 3). After some suggestions from the tutorial, a novice user

is able to make a reasonable query. The results are displayed in an HTML table and the

user has the options to graphically plot the data or to display and save the results as a flat

text file. An authorized user has the option of adding, editing, or deleting a record. The

 11

placement of the ‘login’ link at the end of the table of user operations does not seem

logical.

Figure 3 - IBVD Search Page

 12

2.2.2 SenseLab

The SenseLab project [24] was started in 1993 by researchers at Yale who wished to

manage different types of neuroinformatics data. It was originally implemented as four

separate databases with a common web interface. As the amount and the diversity of the

data increased, so did the complexity of interconnecting the databases and the web. By

adopting a different framework for the database schema, the researchers were able to

consolidate the four databases into a single physical database [20]. There are currently

six neuronal and olfactory databases housed at the SenseLab homepage [24].

Upon entering the Cellular Properties Database (CellPropDB) [7] and selecting from a

column of hyperlinked neuronal cell names, the user is presented with the screen shown

in Figure 4. The data is neatly displayed with all relevant fields highlighted by an aqua

background. Clicking a relevant attribute which is hyperlinked will show a table of all

other cells with the same attribute. Selecting the ‘Ref’ link to the right of the attribute

leads to a detailed description of the attribute and related journal references, which are

also hyperlinked to sources for the articles (Figure 5).

Figure 4 - CA1 pyramidal neuron

 13

Figure 5 - I L high threshold reference

Figure 6 - Standard Search Screen

 14

The database has an excellent search capability. The search buttons are located in the left

frame and a standard search screen is shown in Figure 6. The complex search button (Cx

Search) brings up a table of checkboxes that can be selected in any combination desired.

A nice feature of the complex search screen is the user’s ability to control the display of

the properties either alphabetically or logically (Figure 7).

Figure 7 - Complex Search Screen

2.2.3 Axiope Catalyzer

Axiope Catalyzer [3] is a database system for managing and sharing scientific data that

was developed by researchers at the Informatics Division at Edinburgh University in

Scotland. It is more similar to the NeuroSys project than the centralized Internet Brain

Volume Database and SenseLab systems in that it provides client-side software for

building user-defined forms on the fly. This capability is touted as the system’s most

important feature [9].

 15

In the Axiope Catalyzer system records are stored in ‘catalogs’, analogous to a database

name, and conform to a particular ‘class’, or schema. A catalog can contain records

belong to any number of classes. The catalog can be converted to a browsable set of web

pages by selecting the ‘Publish Catalog’ link from the application’s main menu (Figure

8). The catalog website can be viewed from a local directory or can be uploaded to a web

server for public access (Figure 9).

Figure 8 - Axiope Catalyzer Publish Menu

Figure 9 - Axiope Catalyzer Catalog Website

 16

It should be noted that the web interface does not allow the user to add, edit, or delete

records. The functionality of the web interface will be discussed in more detail in

Chapter 6.

This chapter reviewed literature related to the topic of user interface design and

introduced several other scientific database systems that offer a web-based interface.

Chapter Three describes the underlying technologies used in the implementation of the

NeuroSys web interface project.

 17

3. Underlying Technologies

The challenge of mimicking a Java Swing-based [17] application with a server-side

HTML interface involves the use of varying technologies:

• HTML

• Java Servlets to create dynamically generated HTML

• Apache Tomcat servlet container

• JavaScript scripting language for dynamic updating of frames

This project also demands familiarity with the back end Apache Xindice XML database

server [2] and the XPath query language [32]. This chapter describes these underlying

technologies and where appropriate, offers reasons for the choice of a particular

technology.

3.1 HTML

The project application produces HTML that conforms to the HTML 4.01 Specification

[10]. If the reader is not familiar with HTML (HyperText Markup Language), consult the

following websites for more information:

http://www.w3.org/MarkUp/ [27]
http://www.w3schools.com/html/default.asp [29]

The next section describes technologies that are often used in web applications.

3.2 Web Application Technology

There are several technologies for producing web applications that generate dynamic

content in response to client requests. The following sections describe two of those

technologies: Common Gateway Interface and Java Servlets.

 18

3.2.1 Common Gateway Interface (CGI)

The Common Gateway Interface was the first technique for creating dynamically

generated web pages. Though it was intended as a standard for communication between

information servers and external applications, the use of CGI quickly became a standard

for creating web applications [12]. With this technique a server passes a client request to

an external program which creates some content and then sends a response back to the

client. Though CGI allowed web developers exciting, new options for adding

functionality to web pages, its life cycle is not optimal for a web server environment [12].

When a server receives a request that calls a CGI program, it creates a new process to run

the CGI code (Figure 10) [8]. This not only leads to high overhead with one process per

client request, but also limits the number of concurrent requests that a server can handle.

Another disadvantage is that a CGI program can not interact with the web server or

utilize its capabilities once it begins execution because it is a separate process [12].

Figure 10 - CGI Processes

3.2.2 Java Servlets

A servlet is compiled Java code that can be loaded dynamically into a running server to

extend its functionality. Servlets are most often used to extend web servers and to create

 19

dynamic web page content in response to user interaction, thus creating a web application

versus a static web page [12].

Servlets are similar to CGI in that they allow a program to process a request and produce

a dynamic response [8]. The main difference between the two methods is the life cycle.

Unlike the multiple process paradigm of CGI, servlets run from within a single process

and handle client requests via multiple lightweight threads (Figure 11) [8]. This approach

leads not only to a more efficient use of resources, but is also scalable and allows the

parent process to access and share resources with their threads and other servlets [8].

Figure 11 - Servlet Process

There are other reasons for using Java servlets. Java code is highly portable among

different operating systems and server implementations [12]. Java servlets also have

access to a standard and powerful API (Application Programming Interface) that allows

networking, database connectivity, and many other useful features. In addition the Java

Servlet API [15] handles routine tasks associated with servlets. Errors can be handled

gracefully with Java’s exception handling capabilities and Java’s automatic garbage

collection can help prevent memory leaks.

3.2.2.1 Servlet Life Cycle

Knowing the basics of the servlet life cycle is helpful for comparing servlet technology to

other paradigms and is important for understanding the Servlet API. Servlets follow a

simple three-phase life cycle: initialization, service, and destruction (Figure 12) [8].

 20

Figure 12 - The Servlet Life Cycle

The initialization phase represents the creation and initialization of resources required to

service any requests. All servlets must implement the javax.servlet.Servlet

interface which defines the corresponding init() method for this phase of the cycle.

The service phase involves handling zero or more requests from clients. The Servlet

interface defines the service() method for this phase. The service() method is

invoked once per request and is responsible for generating a reply. As mentioned before

servlets create a thread for each request and it is this thread that executes the service()

method. The destruction phase entails a call to the destroy() method of the Servlet

interface which disallows more requests to a particular servlet instance, destroys the

servlet, and performs garbage collection [8].

3.2.2.2 Apache Tomcat Servlet Container

The servlet environment requires not only Java support but a container for the servlets to

reside in. A container is a piece of software that manages the servlet life cycle and is

responsible for loading, executing, and unloading the servlets. A container can be a

module installed within an existing web server or in some cases can act as the web server

itself, as is the case with the Apache Tomcat container [8]. The Java Servlet

Specification [15] defines the API that a container must implement and many different

vendors implement servlet containers.

 21

The CCB chose the open source Apache Tomcat container [1] because it is the official

Sun J2EE Reference Implementation for servlets. Downloads and documentation are

available at the Apache Tomcat homepage [1].

3.2.3 JavaScript

In addition to leveraging servlets for producing dynamic content, the application also

employs a scripting language call JavaScript [16]. JavaScript was developed by Netscape

and is now supported by all major web browsers. JavaScript consists of executable code

that can be embedded directly in HTML pages. JavaScript code can place dynamic text

into an HTML page, read and write HTML elements, and react to events [30]. In this

project JavaScript is used primarily for dynamically updating a frame displaying a form if

a change has been made to the form. A sequence of screenshots that involve JavaScript

will be shown in Chapter 4.

3.3 Apache Xindice XML Database

Implementation of a web-based front end for a database application requires some

knowledge of the inner workings of the back end database. The developers at the CCB

chose to use an open source XML database system called Apache Xindice [2]. Xindice is

a database designed solely to store XML data and thus can be referred to as a native

XML database. XML documents are stored in ‘collections’ which are arranged in

hierarchical fashion like a UNIX file system. Data is stored and retrieved as simple XML

text files without the possibly complex mapping between tables that a relational database

requires. The desire to avoid the complexity inherent in relational database design and

implementation is the primary reason for the choice of an XML database for the

NeuroSys project [22].

Each XML record in the database is complete and autonomous, with no bindings to other

data structures. Furthermore, any node in an XML file can be uniquely identified by its

 22

path to the root element therefore allowing the node and corresponding data value to be

easily mapped to a GUI object (button, form field, or any other ‘widget’) which can then

be displayed on the fly. Likewise it is possible for users of a program to interactively

create their own database forms and map the form elements to label-value pairs in an

XML file [22]. This valuable feature is provided in the client-side Java Swing version of

NeuroSys.

 This autonomy does come at the price of storing redundant data. Well-designed

relational databases store common and recurring data in only one table without the need

for storing data redundantly. Updating multiple XML files (records) entails more

overhead than updating a single table in a relational database and redundant data can

introduce errors more easily [22].

For database operations like retrieving files, saving files, and deleting files the project

application is able to leverage the API provided by the client-side version of NeuroSys.

For development and debugging purposes it is necessary to know the basic command line

database commands for listing collections and documents, retrieving and deleting

documents, and adding new documents. The project application must also query the

database occasionally. Xindice supports the XML Path Language (XPath) as defined by

the World Wide Web Consortium (W3C) [32].

Shown below are two code snippets that define XPath query strings used in the

application. The first query string is a parameter to a method that retrieves all records in

the collection. The second query string retrieves documents that belong only to the

current user of the interface. The code is taken from the displayHyperlinks() method

in htmlHandler.HtmlGenerator.java.

1) String xpath = "/EML/HEAD";
2) xpath = "/EML[HEAD/OWNER[text()='" + user_name + "']]/HEAD";

 23

Shown below is a XML file from the Xindice database that displays a simple form with a

text field, a text area, and a pull down menu.

<?xml version="1.0" encoding="UTF-8"?>
<EML>
 <HEAD>
 <DISPLAYVIEW CATEGORY="CCB">
 <DISPLAYVIEW CATEGORY="STU">
 <DISPLAYVIEW CATEGORY="stuarth"></DISPLAYVIEW>
 </DISPLAYVIEW>
 </DISPLAYVIEW>
 <TEMPLATE>STU</TEMPLATE>
 <TEMPLATE_DOC_ID>STU_0.1</TEMPLATE_DOC_ID>
 <DOC_ID>STU-stuarth-03_16_2004-3</DOC_ID>
 <DESCRIPTION>mix</DESCRIPTION>
 <OWNER>stuarth</OWNER>
 <GROUP>CCB</GROUP>
 <CREATIONDATE>03_16_2004</CREATIONDATE>
 </HEAD>
 <BODY>
 <TextField1 DATATYPE="String">a</TextField1>
 <TextArea1 DATATYPE="String">b</TextArea1>
 <PullDown1 DATATYPE="String">opt7</PullDown1>
 </BODY>
</EML>

This chapter discusses the underlying technologies that are used in the implementation of

the web-based interface for the NeuroSys Database Project. Chapter Four describes how

to use the web-based interface and serves as a manual for the end user.

 24

4. Functional Specifications for Users

This chapter serves as a manual for an end user. The steps of logging in, navigating the

interface, browsing records, and editing and saving records are described and

corresponding screenshots are displayed.

4.1 Logging In

A simple log in screen is provided for secure access to a database. The user enters a user

name and password and presses the button labeled ‘login’ (Figure 13). If the username

and password are legal, the user is presented with the database interface described in the

next section.

Figure 13 - Login Page

 25

4.2 Database Interface

The database interface consists of three frames (Figure 14). The top frame displays the

database name and two hyperlinks that are described in the next section. The left frame

serves as the navigation panel for the database and contains a list of hyperlinked record

names. The right frame is the form display area and initially appears with only some

database identification information. Selection of a hyperlinked record name in the left

frame displays the record in form fashion in the right frame (Figure 15).

Figure 14 - Initial Frame Layout

 26

Figure 15 - Form Displayed in Right Frame

4.3 Browsing Records

Browsing a record is a simple matter of viewing a form in the right frame once a link has

been selected in the left navigation panel. Information in the form is displayed in the

general format: <field name> <field value>.

A user may access all records in the database by selecting the ‘Show All Records’ link in

the top frame. This is the default behavior when a user logs in. Selection of the ‘Show

Your Records’ link displays only the records that belong to the user that is currently

logged in. The list of records in the left frame is hierarchically organized by the

following headings in a top down fashion: group, template, owner, document id. The

group heading designates the laboratory group that the owner of the record belongs to.

The template heading groups records that have same schema. The last two headings are

self explanatory.

 27

Some fields in the form are simple text fields and text areas. Many of the fields are drop

down menus with an arrow icon on the far right of the field area. The value displayed in

the field is the current value.

The items in the drop down menu are not relevant for browsing the data except in the

case of a ‘ScreenSelect’ field. A ScreenSelect field is identified by the presence of a drop

down menu field enclosed within a border immediately to the right of a field name. The

STAINING_PROTCOL field in Figure 16 is a ScreenSelect field. Selection of a

different item in a ScreenSelect menu displays a new subform with format and data

corresponding to the selected item. (Figures 17, 18). A ScreenSelect subform may be

edited as any other portion of the form. Editing a form is described in the next section.

Figure 16 - ScreenSelect Field

 28

Figure 17 - Selecting a New Screen

Figure 18 - Display of New Screen

 29

4.4 Editing Records

A text field or text area may be edited by highlighting the displayed text and typing a new

entry. The displayed text may also be edited by use of the blinking cursor that behaves

like those seen commonly in text editors and word processors.

Drop down menu fields may be changed by selecting a new item in the drop down menu.

Many of these fields have the option of entering a new item as the field value and adding

it to subsequent displays of the menu. Such fields are distinguished by the presence of a

text field immediately to the right of the drop down menu field. An entry in the text field

takes precedence over a newly selected item from the drop down menu and the text field

entry is the value that is written to the database using the save operations described in the

next section.

4.5 Saving and Deleting Records

Any user may edit and save a copy of any record listed in the left navigation panel by

pressing the ‘Save As’ button at the bottom of the corresponding form in the right frame.

The record is saved to the database with the user as the owner and with the record name

following the convention:

<template name>_<user name>-<MM>_<DD>_<YY>-<sequence number>

A user that owns a record has the option of editing and overwriting the record by pressing

the ‘Save’ button at the bottom of the form. The record is saved to the database with its

original name. A user may also delete one of his records by pressing the ‘Delete’ button.

The ‘Save’ and ‘Delete’ buttons are not displayed for records that do not belong to the

current user.

This chapter consisted of instructions for the end user. The steps of logging in to a

database, navigating the interface, browsing records, and editing and saving records were

 30

described and relevant screenshots were displayed. The next chapter discusses design

specifications of the system and the reasons for design decisions that were made over the

life of the project. The chapter is intended for future programmers on the project and for

those interested in the technical aspects of the system.

 31

5. Design Specifications for Programmers

This chapter discusses design specifications of the system and is intended as a manual for

future programmers on the project.

5.1 System Layout

Implementation of this project required constructing a Java servlet that accepts HTTP

requests from a client machine and generates HTML in response. The HTML servlet

leverages the API of another class that communicates with the XML database servlet

(Figure 19). The database servlet had already been constructed for use with the

NeuroSys client-side Java Swing application.

Figure 19 - System Layout

The next section describes the classes associated with the servlets, concentrating

primarily on the HTML servlet.

 32

5.2 Class Layout

5.2.1 The Database Servlet

The servlet class that handles low level database operations, XindiceServer.java,

resides in package xmlserver. A programmer working on the web interface project must

know how to install and configure this servlet on a web server, but need not be intimately

familiar with the API of this class. An auxiliary class, StringServletClient.java,

acts as a layer between XindiceServer.java and the HTML servlet described in the

next section. StringServletClient.java facilitates database operations for the HTML

servlet by providing an API for performing tasks such as connecting to the database

server, pulling files, running queries, adding and saving files, and deleting files. The

primary methods in this class are:

• logon() // connects to the database server
• pullfile() // retrieves a file
• saveWithString () // saves (overwrite) a file
• saveAsWithString() // saves a file by a different name (copy)
• deleteFile() // deletes a file
• runQuery() // runs a query using an XPath string

A Unified Modeling Language (UML) diagram of the StringServletClient is shown

in Figure 20. The class named htmlHandler appears in the upper right of the diagram

and a dotted line with an open arrow tip points from htmlHandler to the

StringServletClient class. htmlHandler is the HTML servlet and the arrow with

the dotted line indicates that htmlHandler depends on StringServletClient by using

an object of that class, which is consistent with the HTML servlet instantiating a

StringServletClient object and utilizing its API. The htmlHandler class is

discussed in more detail in the next section.

 33

Figure 20 - StringServletClient UML Diagram

5.2.2 The HTML Servlet

The servlet class that processes client requests and enables dynamically generated

responses is named htmlHandler.java and is the key class in the htmlhandler

package. The htmlHandler.java doPost() method serves as the launching point for

the servlet and dispatches calls to various methods depending on parameters delivered in

an HttpServletRequest object. Pseudocode for the doPost() method is shown below.

doPost()
{
 if mode is null

generate login page
 else if mode is mkFrameSet
 generate the 3-frame interface layout
 else if mode is defaultLeft
 generate the left navigation frame
 else if mode is defaultTop
 generate the top header frame
 else if mode is messagePage
 generate a generic HTML page that displays a given string

 34

 else if mode is save
 pull the file from the database
 compare each element with HTTP POST parameters

update the file with any changes
 display the new file
 save the new file to the database
 else if mode is save_as
 same as “save”
 else if mode is delete
 delete the file
 else if mode is screenSelect
 pull the file from the database
 compare each element with HTTP POST parameters

update the file with any changes
 display the new file
 else if mode is pullFile
 pull the file from the database
 display the file
}

The first several cases in the sequence of if-else statements in doPost() handle requests

to construct HTML frames that comprise the database interface. The method login()

builds the login page shown in Figure 13. A successful login attempt prompts a call to

mkFrameSet() which defines the frame layout shown in Figure 14. The mkFrameSet()

method in turn calls the methods defaultTop(), defaultLeft(), and messagePage()

to populate the top, left, and right frames respectively with HTML content (Figure 21).

Figure 21 - Method Call Sequence in doPost()

When a user clicks a hyperlinked record name in the left frame, ‘mode=pullFile’ is sent

to doPost() as an HTTP request parameter and the corresponding file is pulled from the

database as a DataEntryModel object which is sent as a parameter to the method

makeDisplay(). The makeDisplay() method begins a recursive process that displays

the record as a form in the right frame (Figure 22).

 35

Figure 22 - Method Call Sequence for makeDisplay()

The makeDisplay() method generates the required opening and closing tags for an

HTML form page. Calls to the auxiliary methods makeDisplayHelper() and

nodeToHtml() recurse through the GUINode objects that make up the DataEntryModel

tree and dispatch the GUINodes to methods that generate HTML for a particular type of

‘widget’ (i.e. text field, text area, drop down menu, etc.). The remaining cases in the

doPost() if-else statements handle operations such as saving or deleting a record and

redisplaying it if changes have been made.

If a record is altered, the fixWholeTree() method loops through the DataEntryModel

object that represents the original record and compares the value of each node in that data

structure with the corresponding HTTP POST parameter. If the two values differ, the

value of the node is updated with the new parameter.

5.2.3 Auxiliary Classes

The htmlHandler class utilizes some custom classes that perform certain tasks. The

‘bucket’ classes GroupBucket, TemplateBucket, OwnerBucket, and

DescriptionBucket serve as nested containers that ultimately contain Descripton

objects that hold basic information about a record. These classes assist in grouping the

records in their appropriate categories.

The method htmlHandler.defaultLeft() receives an array of records from the

database, creates a Descripton object for each record, and then puts the record

 36

description into its appropriate DescriptionBucket. The DescriptionBucket is put

into the appropriate OwnerBucket, which is put into the appropriate TemplateBucket,

which is finally put into the appropriate GroupBucket. After all the records are

processed, a hashtable of GroupBucket objects is sent to the defaultLeftDisplay()

method which is responsible for unwinding the nested buckets and displaying the record

names in their respective groupings.

The HtmlGenerator class contains static methods that generate HTML components such

as text fields, text areas, checkboxes, pull down menus, and hyperlinks. To aid in

generating valid HTML there are methods that produce elements with DOCTYPE and

version information. The UML diagram for HtmlGenerator is shown in Figure 23.

Figure 23 - HtmlGenerator UML Diagram

 37

5.3 Design Issues

This project initially defined four servlets to generate the web interface. Each frame was

generated by a separate servlet and these servlets were called by htmHandler.java. To

increase the simplicity and to reduce the amount of code, it was decided to merge all the

functionality into the htmHandler servlet. Previous calls to multiple servlets are now

replaced by method calls within htmHandler.java. As a result only one servlet class

must be compiled and loaded into the web server.

Two methods in htmHandler.java are defined for debugging purposes. The

showDebuggingInfo() method displays information on HTTP POST parameters and

session variables. Calls to this method are currently placed in the methods

makeDisplay() and defaultLeft(). The calls are made if a servlet initiation parameter

named ‘debug’ is set to ‘true.’ This parameter is set in the servlet’s web.xml file.

Another useful debugging method is debugTree() which takes a DataEntryModel

object as a parameter and returns a string that contains all attributes and values for every

node in the tree. This string may be sent to the messagePage() method which generates

a generic HTML page that displays the string.

This chapter discussed design specifications of the system. Chapter Six compares and

contrasts the Neurosys project to the database systems introduced in Chapter Two.

 38

6. Results and Comparisons

This chapter is dedicated to comparing the web interface for NeuroSys with the web

interfaces for similar scientific database systems. The first section lists the evaluation

criteria. The subsequent sections list results of evaluating the three similar systems

introduced in section 2.2 and the NeuroSys project with these criteria. The last section

summarizes the evaluation results in a table.

6.1 Comparative Criteria

The author of this paper has selected eight criteria for evaluating web interfaces for

database systems. The criteria are selected primarily from usability and user interface

design guidelines cited in Chapter 2 [6, 25]. The author has added two criteria

concerning help documentation and valid HTML. The criteria are summarized below.

• Visual Design – The system should be aesthetically appealing and have a minimalist

design.

• Learnability – The system should be easy to learn.

• Efficiency – The system should allow users to perform their tasks productively (i.e.

provide shortcuts for experienced users, avoid redundant actions).

• Errors – The system should have a low error rate and good error handling. Error

messages should be concise, understandable, and should suggest a solution.

• Consistency – The system should be consistent in all aspects (i.e. layout, colors, text

format, terminology, action sequences, etc.).

• User Control – The system should the allow user to modify the data entry and data

display format.

• Help and Documentation – The system should have Question and Answer and/or FAQ

pages.

 39

• Valid HTML – The system should produce web pages that conform to the HTML 4.01

standard [10] and that can be verified by the World Wide Web Consortium (W3C)

validator [28].

Each database system reviewed will be scored on each criterion with the following

scoring scale:

1 – poor 2 – fair 3 – average 4 – good 5 – excellent

6.2 Internet Brain Volume Database (IBVD)

Visual Design

At first glance, the Internet Brain Volume Database homepage [13] is simple and

uncluttered (Figure 24).

Figure 24 - IBVD Homepage

That said, the right one third of the screen area is whitespace which could be better

utilized or redistributed to balance the scarcity of whitespace on the left side of the

 40

screen. The heading, IBVD, is prominent but not centered in the page and it is not clear

that it is an acronym for Internet Brain Volume Database. The user most likely can piece

together what the heading means when he sees the expanded name down the page and to

the right of the colored logo. The user may accidentally discover that the colored logo is

a hyperlink. The target of the hyperlink is unclear. One might suspect that the link leads

to an important section of the database since it is adjacent to the expanded name of the

database. Experimentation shows that the logo is linked to the homepage of the project

supporting the development of the database instead. To the far right of the expanded

database name is hyperlinked text that more explicitly links to the homepage of the

organization funding the project. Two links to the same location introduce redundancy

and may confuse the user.

Below the logo appears the statement “not logged in.” This appears to be a confirmation

of the user’s login status, but there is not a label to confirm this. The prominent

placement of this statement is puzzling.

A table midway down the page serves as the launching point for the website and database

operations. The table contains hyperlinked text that initiates each operation. The

meanings of the table headings and hyperlinks are for the most part self-explanatory

except for the ‘bulk changes’ hyperlink under the ‘changes’ heading. The parenthesized

portion of the ‘sign out (use a bad login/password)’ link under the ‘users’ heading is

confusing. All headings and hyperlinks in the table start with lowercase letters which

give the page the look of an unfinished prototype.

A bulleted list of database statistics appears below the table and at the bottom of the page

the statement “no errors reported” appears. This statement does not specify what types

of errors have not been reported and may make the user hesitate to explore the system for

fear of making errors.

The author considered giving a score of good for visual design because the IBVD index

page is simple and uncluttered. Because of the issues with balance of whitespace,

 41

lowercase table entries, and confusing hyperlinks and status messages the score for visual

design is average.

Learnability

The simplicity of the index page and a walk-through tutorial of the system contribute to

making this system fairly easy to learn. The location of the tutorial is not obvious

however and it is found a couple of layers below the ‘about IBVD’ link. This system gets

a score of good for learnability.

Efficiency

Several operations in the database require navigating through multiple pages or links

where better design would allow one user action to perform the same task. One example

mentioned in the previous section is locating the database tutorial. A direct link from the

index page labeled ‘Tutorial’ would suffice.

Another operation requiring multiple user actions is following the ‘nomenclature’ link on

the index page. This link leads to a page containing a hierarchical listing of brain-related

terminology, but no apparent way to find the definition of a term (Figure 25). Further

browsing reveals that the ‘BrainInfo’ link in the upper left corner of the display leads to

an external website [4] that allows a user to search for information on brain structures by

name. A search for the definition of the term Operculum requires the user to:

1) highlight and copy the term text

2) click on the ‘BrainInfo’ link to reach the external website

3) press the ‘Search By Name’ button

4) paste the term text into the dialog box

5) press the ‘Submit Query’ button

6) select a link from the search matches

 42

Figure 25 - Nomenclature Page

Though the information provided about a term on the external website is very complete, a

hyperlinked term that led to a definition of the term would suffice and would relieve the

user of five extra actions.

On the plus side for efficiency is the presence of the table of database operations at the

top of every page in the website. A user is not required to backtrack if he suddenly

wishes to perform another operation.

This system receives a score of average for efficiency.

Errors

As mentioned in the section on visual design, the status messages “not logged in” and “no

errors reported” appear on the index page. Although the messages are concise, their

meaning and origin are not completely clear.

 43

The author was able to elicit an error message by clicking on the restricted action ‘add a

record’ under the ‘changes’ heading. If the user presses the ‘Cancel’ button on the

password dialog that appears, the following message appears:

You must log in with a valid usename and password to add to the

database.

The message is clear and suggests a solution, though ‘username’ is misspelled. A similar

sequence of actions on the ‘sign in’ link produced the following response:

sign in (id is -1)

array(7) {

 ["Accept"]=>

 string(164) "image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/vnd.ms-excel, application/vnd.ms-powerpoint,

application/msword, application/x-shockwave-flash, */*"

 ["Referer"]=>

 string(45) "http://www.cma.mgh.harvard.edu/ibvd/index.php"

 ["Accept-Language"]=>

 string(5) "en-us"

 ["Accept-Encoding"]=>

 string(13) "gzip, deflate"

 ["User-Agent"]=>

 string(69) "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET

CLR 1.0.3705)"

 ["Host"]=>

 string(23) "www.cma.mgh.harvard.edu"

 ["Authorization"]=>

 string(10) "Basic Og=="

}

The message is unclear, there is no suggested solution, and the display of some code

appears to be an oversight of the programmer. Perhaps it is debugging output that was

not meant to be displayed to the user.

This system receives a score of fair for errors and error handling.

 44

Consistency

The appearance of the database operations table in practically every page in the website

along with the same logo and background offer a sense of consistency. The lowercase

table and field labels, though not desirable, are carried throughout the website and used

consistently in all other table and field labels.

This system receives a score of excellent for consistency.

User control

It is not possible for an unauthorized user to determine if the data entry format may be

modified. Data from a query is available however and user control over the display of

this data will serve as the basis for the score.

A particular query displays search results in an HTML table by default. The user has the

option to display the data in two other ways. Pressing the ‘flat text table’ button displays

the search results in the form of a text file. The fields are separated by tabs by default,

but the user has the option of entering a one character custom field separator. The user

also has the option of plotting the search results in a graph by pressing the ‘plot volume’

button (Figure 26). This appears to be a very useful and powerful feature.

This system receives a score of excellent for user control.

Help and Documentation

As mentioned previously, the location of the system tutorial is buried two levels below

the index page and the ‘nomenclature’ link is not intuitive to use. The system does make

an attempt to provide help and documentation pages so it receives a score of average for

this category.

 45

Figure 26 - Plot Display

HTML Validation

Entry of the IBVD homepage URL [13] into the W3C HTML validator produced the

following message in bright red font:

Fatal Error: No DOCTYPE specified!

This system receives a score of poor for valid HTML.

 46

6.3 SenseLab

Visual Design

The SenseLab homepage [24] gives a favorable first impression (Figure 27). The

graphics and logos are pleasing in both style and color, the information is centered on the

page giving a sense of balance with respect to whitespace, and the complete page is

visible in the browser so no scrolling is required to view all of it.

Figure 27 - SenseLab Homepage

Links to all of the databases in the project are displayed in a table in the center of the

screen. The links are well labeled and are distinguished from each other by either color

or a particular logo. The lower portion of the page has a menu bar that provides links to

other pages in the site. One improvement the site administrator could make is to place

the three hyperlinks that are ‘floating’ in the space above and below the database table

 47

into the menu bar at the bottom. They could also be placed ‘Links’ portion of the

website. The result would be slightly cleaner and simpler page.

The system receives a score of excellent for visual design.

Learnability

 The ‘Help and Introduction’ link in the bottom menu bar does lead to a page labeled

‘Project Help and Introduction,’ but the page consists of four bulleted sentences

containing little information and irrelevant links. The one sentence that does not contain

any links is the one that could most use one. It appears as follows:

• For information about the different databases in the SenseLab Project see the FAQ

links in these projects

A link leading a user to the FAQ page of each project would be helpful. An inspection of

each of the six databases in the project reveals that only three of them have FAQ or help

pages. All six databases display a navigation panel on the left side of each page in the

particular site. Pressing the ‘Resources’ button in this panel in each database results in

the message, “This page is under construction.”

For such a complex database system, the help documentation is not easy to find and is

incomplete. A walk-through tutorial of the system, either text-based or web-based,

would be helpful for learning to use the system.

This system receives a score of fair for learnability.

Efficiency

As mentioned in Chapter 2, relevant attributes of a particular cell in the Cellular

Properties Database (CellPropDB) [7] are hyperlinked for viewing a list of other cells

with the same attribute. The ‘Ref’ link associated with each attribute allows the user to

 48

view a description of the cell property and to view links to related journal references.

Links at the top of the form lead to related data in the Neuronal Database [21]. The

abundance and orchestration of hyperlinks in the data displays allow the experienced user

to quickly find the data he is searching for. A navigation panel on the left side of each

page allows the user to easily perform another action, with the exception of the

‘Resources’ link which is not operable. All of these features allow a user to use the

system productively.

This system receives a score of excellent for efficiency.

Errors

The author was able to elicit the following error message by performing a search with no

entry in the ‘Condition’ field:

 Error

 id: condition

 Description: The query requires at least one conditon to run

 value:

The message identifies the field that was empty and suggests a solution, although the

word ‘condition’ is misspelled. An attempt to log in to the system with a blank user

name and password produced the following message:

Your web agent either does not support cookies or have them disabled.

Cookies are required to log in.

Again, the message is concise and suggests a solution. This system receives a score of

excellent for error handling.

 49

Consistency

Each of the six databases in the system offer consistency throughout their respective

database by using the same logos, color schemes, and page layouts. The different color

scheme for each database is especially helpful for a user to track his current location in

the system. One deviation from the uniform color scheme seems to occur in the Neuronal

Database (NeuronDB) [21] where the user has the choice to view various properties of a

particular cell. The property names are hyperlinked and each link displays information

about the corresponding property. The background color of the data display is different

for each property. Viewing the same property for a different cell reveals that the

background color remains consistent for each property.

This system receives a score of excellent for consistency.

User Control

This system allows the user a great degree of control and flexibility with respect to data

display and searching. The user has the option of displaying data fields in alphabetical or

logical order. Likewise the complex search option as shown in Figure 7 in Chapter 2

allows the search properties to be listed logically or alphabetically. The standard search

feature allows four options for displaying the results: HTML, XML Text, XML

Formatted, and Text. Another useful feature is the hyperlink labeled ‘[Print]’ that

appears in the upper right corner of each page that displays data. Pressing this link

redisplays the data as a full screen view without the navigation panel that was previously

on the left side of the page.

This system receives a score of excellent for user control.

 50

Help and Documentation

As mentioned in the section on Learnability, help pages are either incomplete or are not

easy to find.

This system receives a fair for help and documentation.

Valid HTML

A first attempt to validate the HTML of the SenseLab homepage [24] failed with four

errors reported. The author saved a copy of the source code and commented out two

‘
’ elements which responsible for two of the complaints. The next attempt to

validate the page produced the following message:

This Page Is Valid XHTML 1.0 Transitional!

The designers of the website obviously attempted to conform to XHTML 1.0 standards

[31].

This system receives a good for valid HTML.

6.4 Axiope Catalyzer

Visual Design

The homepage of a catalog website consists of three frames (Figure 28). The top frame

displays the URL of the website in bold font and provides icons that allow a user to jump

to other areas of the website or to perform a search. The left frame is a navigation panel

and lists the contents of a catalog in a hierarchical fashion. A user may expand and

collapse the file tree as is done commonly in a Microsoft Windows file manager. All

 51

headings in the file tree are hyperlinked and lead to the corresponding level in the

database. The right frame serves as a data display area. This frame by default contains a

table that summarizes the contents of the catalog. The design of the homepage is clean

and simple and by excellent use of hyperlinks and icons, it offers a great amount of

functionality without being cluttered. The color scheme and logo combine to give a

visually appealing web page.

This system receives a score of excellent for visual design.

Figure 28 - Axiope Catalyzer Catalog Homepage

Learnability

The top frame contains a ‘Help’ icon that is always available as a user navigates through

the website. The icon leads to a simple page that highlights the features of the web

server. The clean design of the website pages and the easily accessible help page make

this system intuitive and easy to use.

 52

This system receives a score of excellent for learnability.

Efficiency

As mentioned in the section on visual design, efficient use of hyperlinks and icons

provides the user with a great deal of functionality in every page of the website. A single

click of the mouse initiates the desired action.

This system receives a score of excellent for efficiency.

Errors

At a point in the website a user may add records of interest to a ‘shopping basket’. The

records can be downloaded as XML files which may then be saved as a catalog by the

client-side application. If no records are selected and the user presses the ‘Add To My

Records’ button, the error message shown in Figure 29 appears. The heading concisely

states that an error has occurred but does not clearly specify the type of error. The

remainder of the information is not understandable to the average user and seems

appropriate only for the programmers that implemented the system. The message does

not suggest a clear solution for avoiding the error. This error message is typical of other

error messages generated by the system, although the ‘Error Message’ field in other

messages gave more specific information about the type of error.

This system receives a score of fair for errors and error handling.

 53

Figure 29 - Axiope Catalyzer Error Message

Consistency

The layout of all pages in the system is consistent with the frame layout of the site

homepage. The frame proportions are consistent from page to page as is the color

scheme of each frame. Table headings and fields remain consistent from page to page.

This system receives a score of excellent for consistency.

User Control

The Axiope Catalyzer web interface offers users a great deal of control in displaying the

data from a record or a class. Field values from a particular record may be plotted as bar

graphs, line graphs, or pie chart graphs (Figure 30). When viewing the contents of a

particular class (schema), the user has the option of an ‘[expanded view]’ or a ‘[compact

 54

view]’ which provide larger or smaller field areas respectively. The expanded view is

helpful for viewing records that contain images.

Figure 30 - Axiope Catalyzer Graph Feature

Figure 31 - Catalog in XML Format

 55

A user may download the contents of a catalog as an XML file (Figure 31). A user can

also download the contents of a class as a comma-separated value (CSV) file which can

then be imported into a spreadsheet program. An especially nice user control feature is

the administrative page that allows the owner of a website to manage catalogs and to

configure and change network, web server, and password settings (Figure32).

Figure 32 - Axiope Catalyzer Administrative Page

One disappointing lack of user control is the inability for a user to edit records via the

web interface. The interface provides a read-only view of the database. Despite all the

other excellent user control features, the inability to edit records detracts from what easily

was an excellent score.

This system receives a score of average for user control.

 56

Help and Documentation

As mentioned in the section on Learnability the system has a simple but useful help page

available at all times. Although not especially obvious, the Catalyzer logo in the top

frame is hyperlinked to the project homepage [3] which contains extensive information

on publishing and configuring the website.

This system receives a score of excellent for help and documentation.

Valid HTML

Attempts to validate the HTML for a catalog homepage and individual frames were not

successful. The validator was not able to detect a character encoding label and therefore

could not validate any pages.

This system receives a score of poor for valid HTML.

6.5 NeuroSys

The ratings for the NeuroSys web interface, except for the category of generating valid

HTML, are calculated with the input of the author which is averaged with the input of

five independent evaluators. The summary for each category consists of the author’s

evaluation and score, the scores of the independent evaluators, and the overall score for

the category.

Visual Design

The first page of the NeuroSys interface is the login page, so the subsequent page that

represents the actual database interface is evaluated (Figure 33). The database interface

is similar in design to that of the Axiope Catalyzer system. It consists of three frames

 57

with similar functions. The top frame displays the title, the left frame is the navigation

panel, and the right frame is the data display area. The systems differ in that the left

frame of the NeuroSys interface does not allow users to expand and contract the file tree

icons. Each file category is expanded by default and only the record names are

hyperlinked. The right frame by default displays the title of the database unlike the

database summary table provided by the Axiope Catalyzer system.

Figure 33 - NeuroSys Web Interface

The design of the interface is simple and clean, though no logos or color scheme are

provided. The NeuroSys interface also offers less functionality than the Catalyzer

interface, so the author assigns a score of good for visual design.

The independent evaluators gave the following scores:

The overall score for visual design is average.

fair average poor good fair

 58

Learnability

The NeuroSys web interface does not currently offer links to help documentation. The

system however is simple and intuitive to use. The text fields that allow a user to enter a

new option for a pull down menu are clearly labeled ‘Enter New Option’ and the submit

buttons are clearly labeled with the associated action. Due to the lack of help and

documentation the author assigns a score of fair for learnability.

The independent evaluators gave the following scores:

The overall score for learnability is average.

Efficiency

The NeuroSys interface does not force users to make redundant actions to perform a task.

However it does not provide access to a table or frame containing links for database

operations as the previously reviewed systems did. For this reason the author assigns the

system a score of fair for efficiency.

The independent evaluators gave the following scores:

The overall score for efficiency is average.

Errors

Though the system is designed to avoid errors with data entry, it lacks in its capability to

provide error messages. For instance if user does enter a user name or password and

presses the ‘Login’ button, the login page is simply redisplayed with no prompt for the

missing information. The author assigns this system a score of poor for error handling.

The independent evaluators gave the following scores:

fair good good average fair

average good fair good average

poor fair excellent average good

 59

The overall score for errors and error handling is average.

Consistency

As with the Axiope Catalyzer system the frame layout is consistent from page to page.

The frame proportions are consistent as are the font and terminology for field labels in a

form. The author assigns a score of excellent for consistency.

The independent evaluators gave the following scores:

The overall score for consistency is good.

User Control

The NeuroSys system offers little user control over the data display. The data is

displayed in form fashion only. The user may control the selection of which record

names to display in the left frame by selecting either the ‘Show Your Records’ or ‘Show

All Records’ link in the top frame. The system does however offer the ability edit and

delete files remotely, unlike the Axiope Catalyzer system. The author assigns a score of

average for user control.

The independent evaluators gave the following scores:

The overall score for user control is average.

Help and Documentation

The system currently offers no Question and Answer or FAQ pages and the author

assigns a score of poor for help and documentation.

The independent evaluators gave the following scores:

good average excellent good good

fair good average good poor

poor fair poor poor poor

 60

The overall score for help and documentation is poor.

Valid HTML

The URL’s of both the login page and the initial database interface were entered into the

W3C HTML validator and the follow message was displayed:

This page is valid HTML 4.01 Transitional!

This system receives a score of excellent for producing valid HTML.

6.6 Evaluation Summary

This section summarizes the evaluation results in a table.

System Visual
Design Learnability Efficiency Errors Consistency User

Control
Help and

Documentation Valid HTML Average
Score

IBVD 3 4 3 2 5 5 3 1 3.2
SenseLab 5 2 5 5 5 5 2 4 4.1
Axiope 5 5 5 2 5 3 5 1 3.9
NeuroSys 3 3 3 3 4 3 1 5 3.1

1 – poor 2 – fair 3 – average 4 – good 5 – excellent

The numeric results indicate that the overall score for each system is as follows:

Internet Brain Volume Database average
SenseLab good
Axiope good
Neurosys average

Chapter Seven summarizes this paper and project, critically reviews the results of the

evaluation, and offers recommendations for future work on the project.

 61

7. Conclusions and Future Directions

This chapter summarizes this paper and critically reviews the web-based interface

implemented for the NeuroSys database project. The chapter ends with recommendations

for future work on the project.

7.1 Summary

This paper introduces the NeuroSys Database Project [22] and explains the motivation for

the development of a web-based interface for the project. Literature related to the topic of

user interface design is reviewed and several other scientific database systems that

provide a web-based interface are introduced. The underlying technologies used in the

implementation of this project are discussed and information about the system is provided

for both end users and future programmers. The web interfaces for this project and the

other systems are evaluated primarily on criteria that serve as guidelines for usability and

user interface design.

7.2 Conclusions

The original objective of this project was to implement a web-based interface for the

NeuroSys project that allows browsing, data entry, and query capabilities for a remote

database. The first two goals were fully met. The goal of a useful query mechanism was

not met. The system has the limited query capability of either pulling records that belong

to a particular user or pulling all the files in the database.

The study and evaluation of three other web-based database systems provides a good

background for further evaluating the NeuroSys web interface. The NeuroSys system

scores strongly in the areas of consistency and generating valid HTML. The system does

 62

not fare as well in the areas of visual design, learnability, efficiency, error handling, and

adequate help and documentation pages; receiving average or poor scores in those areas.

7.3 Future Directions

The NeuroSys web interface project is a fully functional prototype that meets the original

goals of allowing users to browse and edit a remote database. A flexible query

mechanism would greatly enhance the system. Programmers for the client-side NeuroSys

application [22] are currently enhancing the query mechanism and future programmers

on the web interface project may be able to utilize the API of the client-side program.

Visual design of the system could be improved by adding graphics and a logo and by

adopting a consistent color scheme throughout the site. The system has an obvious lack

of help documentation. A help icon in the top frame that links to a simple help page

would be a useful addition. Axiope Catalyzer [3] offers this feature. A walk-through

tutorial, as provided by the IBVD system [13], would also enhance the system.

Effort should be put into evaluating all the scenarios that can generate an error and

appropriate routines for handling the errors need to be implemented. The SenseLab

system [24] does an excellent job of handling errors and would be a good system to

emulate.

The efficiency of the system could be improved by the addition of hyperlinked icons in

the top frame, as in the Axiope Catalyzer system. Such icons allow quick and easy

navigation to other areas of the web site. Expandable and collapsible file trees in the left

navigation frame would be useful. Axiope Catalyzer provides this feature and it also

hyperlinks all levels of the file tree hierarchy.

Lastly, user control for data display and data entry could be improved. All of the other

systems allowed a great deal of flexibility in how to display the data, including text and

 63

XML format, tables, forms, and various types of graphs. A new data entry feature for the

NeuroSys system could be the ability to expand the form in the right frame to a full

screen view as is done in one of the SenseLab databases. Another nice user control

feature would be the addition of an administrative page to control web site and network

settings as in the Axiope Catalyzer system.

The foundation for an operational web interface for the NeuroSys Database Project has

been built. Addition of the enhancements mentioned above will offer challenges and

rewards for future programmers on the project and will result in a world class web

interface for the system.

 64

8. References

[1] Apache Tomcat, http://jakarta.apache.org/tomcat/ (2004).

[2] Apache Xindice, http://xml.apache.org/xindice/ (2004).

[3] Axiope Catalyzer, http://www.axiope.com/ (2004).

[4] BrainInfo, http://braininfo.rprc.washington.edu/mainmenu.html (2004).

[5] Cannon, R. C., Howell, F. W., Goddard, N. H. and De Schutter, E. Non-curated

Distributed Databases for Experimental Data and Models in Neuroscience. Network:

Computation In Neural Systems 13, 415-428 (2002).

[6] Cato, J. User-centered Web Design (Pearson Education Limited, 2001).

[7] Cellular Properties Database,

http://senselab.med.yale.edu/senselab/CellPropDB/default.asp (2004).

[8] Falkner, J., and Jones, K. Servlets and JavaServer Pages: the J2EE Web Tier

(Addison Wesley, 2003).

[9] Goddard, N. H., Cannon, R. C. and Howell, F. W. Axiope Tools for Data

Management and Data Sharing. Neuroinformatics Journal 1, 271-284 (2003).

[10] HTML 4.01 Specification, http://www.w3.org/TR/html4/ (2004).

[11] Human Brain Project, http://www.nimh.nih.gov/neuroinformatics/index.cfm (2004).

[12] Hunter, J., and Crawford, W. Java Servlet Programming (O'Reilly and Associates,

Inc., 1998).

[13] Internet Brain Volume Database, http://www.cma.mgh.harvard.edu/ibvd/ (2004).

[14] Java 2 Platform, Standard Edition (J2SE) 1.4.2 API Specification,

http://java.sun.com/j2se/1.4.2/docs/api/ (2004).

[15] Java Servlet API Specification - Version 2.3,

http://java.sun.com/products/servlet/reference/api/index.html (2004).

[16] JavaScript, http://developer.netscape.com/docs/manuals/javascript.html (2004).

[17] Java Swing, http://java.sun.com/products/jfc/ (2004).

[18] Java Version 1.4, http://java.sun.com/j2se/1.4.2/docs/index.html (2002).

[19] Miller, G. A. The Magical Number Seven, Plus or Minus Two: Some Limits on Our

Capacity for Processing Information. The Psychological Review 63, 81-97 (1956).

 65

[20] Nadkarni, P., Marenco, L., Chen, R., Skoufos, E., Shepherd, G., and Miller, P.

Organization of Heterogeneous Scientific Data Using the EAV/CR Representation.

Journal of the American Medical Informatics Association 6, 478-493 (1999).

[21] Neuronal Database, http://senselab.med.yale.edu/senselab/NeuronDB/default.asp

(2004).

[22] NeuroSys, http://neurosys.cns.montana.edu (2004).

[23] Pittendrigh, S. and Jacobs, G. Neurosys: A Semistructured Laboratory Database.

Neuroinformatics Journal 1, 167-176 (2003).

[24] SenseLab, http://senselab.med.yale.edu/senselab/ (2004).

[25] Shneiderman, B. Designing the User Interface: Strategies for Effective Human-

Computer Interaction (Addison-Wesley, 1998).

[26] Smith, S., and Mosier, J. Guidelines for Designing User Interface Software

(Technical Report ESD-TR-86-278). Hanscom Air Force Base, MA: USAF Electronic

Systems Division (1986).

[27] W3C HTML Home Page, http://www.w3.org/MarkUp (2004).

[28] W3C MarkUp Validation Service, http://validator.w3.org/ (2004).

[29] W3Schools HTML Tutorial, http://www.w3schools.com/html/default.asp (2004).

[30] W3Schools JavaScript Tutorial, http://www.w3schools.com/js/default.asp (2004).

[31] XHTML 1.0 Recommendation, http://www.w3.org/TR/xhtml1/ (2004).

[32] XPath, http://www.w3.org/TR/xpath (2004).

 66

Appendix A - Usability Test and Questionnaire

 67

Usability Test for the Web-Based Interface for the
NeuroSys Database Project

Thank you for helping evaluate my web interface! This is an anonymous evaluation and
it should take about 10 minutes.

Below are directions for some simple tasks to perform. Attached is a questionnaire to fill
out after performing the tasks.

1. go to: http://wage.cns.montana.edu:8080/Xindice_stuart_html

2. the user name and password are hard-coded, so press ‘Login’

3. select one of the ‘gwen’ records in the left frame

4. edit various fields and press ‘Save As’ to save a copy of the record
(i.e. try changing the URL field at the bottom to your homepage URL)

PLEASE NOTE the name of the new record that appears. It will look something
like BBT-stuarth-04_05_2004-XX (where XX is a sequence number).
If other users are testing, there will be other files with a similar name but a
different sequence number. Be sure you are editing and/or deleting your file.

5. note if the changes were saved under the newly created file
(i.e. does the new URL hyperlink reflect your changes? Does it work?)

6. attempt to ‘break’ the interface
(i.e. can you cause an exception or error condition?)

7. delete the file that you saved

8. fill out the attached questionnaire

Thanks again for your help!

Stuart Howard

 68

Usability Questionnaire for the Web-Based Interface for the
NeuroSys Database Project

Adapted from: Cato, John User-centered Web Design (Pearson Education Limited,
2001).

Date:

What did you like?

What did you dislike?

Did you meet your objectives?

Please read the statements below and score each with a number
between 1 and 5 to indicate how true the statement is for you.
Feel free to add any other comments.

Totally
disagree

 Totally
agree

About the system 1 2 3 4 5

I found the visual presentation excellent.
It is very easy to understand straight away.
I found it a very efficient way to get things done.
I never made any mistakes.
I never had to change or correct anything I entered.
The system was coherent and consistent (i.e. page
layout, text format, terminology, etc.).

I am able to modify the data entry and data display
format.

I always feel in control using the system.
I could always get help quickly (i.e. Help page, FAQ).
I achieved what I wanted very effectively.

Other comments (optional):

 69

Appendix B – Source Code

 70

package htmlHandler;

import java.util.Vector;
import java.util.Arrays;

/**
 * HtmlGenerator.java
 *
 * Utility class that offers static methods for generating
 * HTML elements.
 *
 * @author Stuart Howard
 * @version 1.0
 */
public class HtmlGenerator
{
 protected static final String BR = "
"; // line break
 protected static final String AMP = "&"; // ampersand

 /**
 * Constructor (no-op).
 */
 public HtmlGenerator()
 {
 }

 /**
 * Returns HTML string that represents a text field.
 *
 * @param name name of the text field
 * @param value value of the text field
 * @param size size of the text field
 * @return HTML string to generate text field
 */
 public static String makeTextField(String name, String value, int size)
 {
 String txt = ""; // text field string
 txt += "<input type=\"text\" name=\"";
 txt += name;
 txt += "\" value=\"";
 txt += value;
 txt += "\" size=\"";
 txt += String.valueOf(size);
 txt += "\">";
 return txt;
 }

 /**
 * Returns HTML string that represents a text area.
 *
 * @param name name of the text area
 * @param rows depth of the text area
 * @param cols width of the text area
 * @param value value of the text area
 * @return HTML string to generate text area
 */
 public static String makeTextArea(String name, int rows, int cols, String value)
 {
 String txt = ""; // text area string
 txt += "<textarea name=\"";
 txt += name;
 txt += "\" rows=\"";
 txt += String.valueOf(rows);
 txt += "\" cols=\"";
 txt += String.valueOf(cols);
 txt += "\">\n";
 txt += value;
 txt += "\n";
 txt += "</textarea>";
 return txt;
 }

 71

/**
 * Generates an HTML check box.
 *
 * @param name the name of the check box
 * @param checked 'true' if checked, otherwise 'false'
 * @return HTML string that generates a check box
 */
 public static String makeCheckBox(String name, boolean checked)
 {
 String txt = ""; // check box string
 txt += "<input type=\"checkbox\" name=\"";
 txt += name;
 txt += "\" value=\"true\"";
 if(checked) // check the box
 {
 txt += "checked=\"checked\"";
 }
 txt += ">";
 return txt;
 }

 /**
 * Generates an HTML pull down list.
 *
 * @param name the name of the select element
 * @param firstValue the first value to display in the pull down menu
 * @param guiInfo a vector containing rest of items to display
 * @return HTML string that generates a pull down list
 */
 public static String makePullDownBox(String name, String firstValue,
 Vector guiInfo)
 {
 String str = ""; // pull down list string
 str += "<select name=\"";
 str += name;
 str += "\">\n";
 str += "<option value=\"";
 str += firstValue; // assure this appears first
 str += "\">";
 str += firstValue;
 str += "\n";
 for(int i = 0; i < guiInfo.size(); i++) // remaining items in menu
 {
 String item = (String)guiInfo.get(i);
 if(!item.equals(firstValue)) // avoid duplicates in pull down box
 {
 str += "<option value=\"";
 str += item;
 str += "\">";
 str += item;
 str += "\n";
 }
 }
 str += "</select>";
 return str;
 }

 /**
 * Generates an HTML pull down list for a ScreenSelect widget.
 * Utilizes JavaScript to react to 'onClick' event.
 *
 * @param name the name of the select element
 * @param firstValue the first value to display in the pull down menu
 * @param guiInfo a vector containing rest of items to display
 * @param selfURL the target URL for the JavaScript call
 * @param docID the document ID number
 * @return HTML string that generates a pull down list for ScreenSelect widgets
 */
 public static String makeSSelectPullDownBox(String name, String firstValue,
 Vector guiInfo, String selfURL,
 String docID)
 {
 String str = ""; // pull down list string
 String getstr = selfURL + "?mode=pullFile" + AMP + "docID=" + docID
 + AMP + "screenSelect=yes" + AMP + "freshFromDB=no" + "#" + name;
 str += "<select name=\"" + name + "\" onClick=\"postform('0','" + getstr + "')\">\n";
 str += "<option value=\"";
 str += firstValue; // assure this appears first
 str += "\">";
 str += firstValue;
 str += "\n";

 72

 int size = guiInfo.size();
 for(int i = 0; i < size; i++) // remaining items in menu
 {
 String item = (String)guiInfo.get(i);
 if(!item.equals(firstValue)) // avoid duplicates in the pull down box
 {
 str += "<option value=\"";
 str += item;
 str += "\">";
 str += item;
 str += "\n";
 }
 }
 str += "</select>";
 return str;
 }

 /**
 * Generates an HTML anchor element(hyperlink).
 *
 * @param in_link he target URL of the link
 * @param target where to open the target URL(_blank, _self, _parent, _top)
 * @param label the text to hyperlink
 * @return HTML string that generates a hyperlink
 */
 public static String makeHyperLink(String in_link, String target, String label)
 {
 String link = "<a href=\"" + in_link + "\""; // the hyperlink string
 if(target != null)
 {
 link += " target=\"" + target + "\">";
 }
 link += label + "";
 return(link);
 }

 /**
 * Generates element that defines the relationship between two linked documents.
 *
 * @param rel defines the relationship between the current document and the targeted
document
 * @param href he target URL of the resource
 * @param type specifies the MIME type of the target URL
 * @return HTML string that generates a link element
 */
 public static String makeLink(String rel, String href, String type)
 {
 String link = ""; // the link string
 link += "<link rel=\"";
 link += rel;
 link += "\" href=\"";
 link += href;
 link += "\" type=\"";
 link += type;
 link += "\">";
 return(link);
 }

 /**
 * Defines a script.
 *
 * @param language specifies the scripting language
 * @param type indicates the MIME type of the script
 * @param src defines a URL to a file that contains the script
 * @return HTML string that generates a script element
 */
 public static String makeScript(String language, String type, String src)
 {
 String script = ""; // the script string
 script += "<script language=\"";
 script += language;
 script += "\" type=\"";
 script += type;
 script += "\" src=\"";
 script += src;
 script += "\">";
 script += "\n";
 script += "</script>";
 return(script);
 }

 73

 /**
 * Generates bold text.
 *
 * @param toBold the string to bold
 * @param classString he class of the element
 * @return HTML string that generates bold element
 */
 public static String makeBold(String toBold, String classString)
 {
 String bold = ""; // the bold string
 bold += "<b class=\"";
 bold += classString;
 bold += "\">";
 bold += "\n";
 bold += toBold;
 bold += "\n";
 bold += "";
 return bold;
 }

 /**
 * Generates the beginning element for a form.
 *
 * @param action a URL that defines where to send the data when the submit button is
pushed
 * @param target where to open the target URL(_blank, _self, _parent, _top)
 * @param method the HTTP method for sending data to the action URL(get, post)
 * @return HTML string that generates the opening form element
 */
 public static String makeOpenForm(String action, String target, String method)
 {
 String openForm = ""; // the opening form element string
 openForm += "<form action=\"";
 openForm += action;
 openForm += "\" target=\"";
 openForm += target;
 openForm += "\" method=\"";
 openForm += method;
 openForm += "\">";
 return openForm;
 }

 /**
 * Generates HTML string that represents a button element.
 *
 * @param name name of the button
 * @param value value of the button
 * @return HTML string that generates the button element
 */
 public static String makeButton(String name, String value)
 {
 String bttn = ""; // the button string
 bttn += "<input type=\"submit\" name=\"";
 bttn += name;
 bttn += "\" value=\"";
 bttn += value;
 bttn += "\">";
 return bttn;
 }

 /**
 * Generates HTML string that contains DOCTYPE information.
 *
 * @param type document type
 * @return HTML string to generate DOCTYPE element
 */
 public static String makeDocType(String type)
 {
 String title; // strict, loose, transitional
 if(type.equals("strict"))
 {
 title = "";
 }
 else if(type.equals("loose"))
 {
 title = " Transitional";
 }
 else
 {
 type = "frameset";
 title = " Frameset";

 74

 }
 String front = "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01";
 String middle = "//EN\"\n\"http://www.w3.org/TR/html4/"; // commom parts of
DOCTYPE element
 String end = ".dtd\">";
 return(front + title + middle + type + end);
 }

 /**
 * Generates an HTML string that contains version information.
 *
 * @return HTML string to generate version information element
 */
 public static String makeVersionInfo()
 {
 return("<?xml version=\"1.0\" encoding=\"UTF-8\" ?>");
 }

 /**
 * Generates an HTML string that displays validator icon
 * and link to validator.
 *
 * @author http://validator.w3.org/ Modified by: Stuart Howard
 * @return HTML string to generate the validator
 */
 public static String makeValidator()
 {
 String validator = ""; // the validator icon/hyperlink
 validator += "<p>\n";
 validator += "\n";
 validator += "<img border=\"0\" src=\"http://www.w3.org/Icons/valid-html401\"\n"
 + " alt=\"Valid HTML 4.01!\" height=\"31\" width=\"88\">\n";
 validator += "\n";
 validator += "</p>";
 return validator;
 }
}

 75

package htmlHandler;

import emlCommon.*;
import emldb.*;
import java.io.*;
import java.text.*;
import java.util.*;
import java.util.regex.*;
import java.net.*;
import javax.servlet.*;
import javax.servlet.http.*;
import nanoxml.*;
import org.apache.log4j.Logger;
import org.apache.log4j.PropertyConfigurator;
import xmlserver.*;
import ScreenModel.*;

/**
 * htmlHandler.java
 *
 * Servlet class that generates HTML interface for the Neurosys
 * Database Project. Allows users to query and edit a remote XML
 * database via a web interface.
 *
 * @author Stuart Howard
 * @version 1.0
 */
public class htmlHandler
 extends HttpServlet
{
 public final Logger log; // message logger
 protected boolean info; // logger flag
 protected Properties emldbProperties; // URL properties
 protected Properties protocolProperties; // database properties
 protected String serverURL; // database server URL
 protected String selfURL; // htmlHandler servlet URL
 protected String dataTemplateCollection; // template collection name
 protected String dataDataCollection; // data collection name
 protected String debug; // flag for debug display on/off
 protected final String BR; //
 element
 protected final String AMP; // &
 protected final String SPC; //
 protected int count; // session count

 /**
 * Constructor.
 *
 * @return an instance of htmlHandler
 */
 public htmlHandler()
 {
 log = Logger.getLogger(this.getClass().getName());
 info = log.isDebugEnabled();
 serverURL = "";
 selfURL = "";
 dataTemplateCollection = "";
 dataDataCollection = "";
 debug = "";
 BR = "
";
 AMP = "&";
 SPC = " ";
 count = 0;
 }

 /**
 * Initializes an instance of the servlet.
 *
 * @param config supplies servlet with initialization parameters
 */
 public void init(ServletConfig config) throws ServletException
 {
 try
 {
 super.init(config);
 debug = config.getInitParameter("debug"); // this is set in the web.xml
file
 ClassLoader cl = this.getClass().getClassLoader();
 URL url = cl.getResource("resources/log4j.properties");
 PropertyConfigurator.configure(url);
 // load property lists and retrieve values
 InputStream is = cl.getResourceAsStream("./resources/emldb.properties");

 76

 emldbProperties = new Properties();
 emldbProperties.load(is);
 is.close();
 is = cl.getResourceAsStream("./resources/protocol.properties");
 protocolProperties = new Properties();
 protocolProperties.load(is);
 is.close();
 serverURL = emldbProperties.getProperty("serverURL"); // assign database server URL
 selfURL = emldbProperties.getProperty("selfURL"); // assign htmlHandler
servlet URL
 dataTemplateCollection = protocolProperties.getProperty("dataTemplateCollection");
 dataDataCollection = protocolProperties.getProperty("dataDataCollection");
 }
 catch(Exception e)
 {
 e.printStackTrace(System.err);
 }
 }

 /**
 * Handles HTTP GET requests.
 *
 * @param request the HTTP request object
 * @param response the HTTP response object
 */
 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws IOException, ServletException
 {
 doPost(request, response);
 }

 /**
 * Handles HTTP POST requests. Serves as main dispatcher for this class.
 *
 * @param request the HTTP request object
 * @param response the HTTP response object
 */
 public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws IOException, ServletException
 {
 count++;
 PrintWriter out = response.getWriter(); // output stream
 String mode = request.getParameter("mode"); // determines servlet
action
 String save = request.getParameter("save"); // save parameter
 String save_as = request.getParameter("save_as"); // save_as parameter
 String delete = request.getParameter("delete"); // delete parameter
 String screenSelect = request.getParameter("screenSelect"); // screen select
parameter
 StringServletClient scc = null; // offers API for DB
operations
 String user_name = request.getParameter("user_name"); // current user
 if(user_name != null) // replace spaces with '_'
 {
 Pattern p = Pattern.compile("[\\s]+");
 Matcher m = p.matcher(user_name);
 user_name = m.replaceAll("_");
 }
 String password = request.getParameter("password"); // current user's password
 String group = request.getParameter("group"); // current user's lab group
 String message = request.getParameter("message"); // message parameter
 String docID = request.getParameter("docID"); // document ID parameter
 response.setContentType("text/html");
 // refer to http://novocode.de/doc/servlet-essentials/chapter2c.html
 response.setHeader("pragma", "no-cache");
 HttpSession session = request.getSession(true);
 if(user_name != null) // set session variables
 {
 session.setAttribute("user_name", user_name);
 session.setAttribute("password", password);
 session.setAttribute("group", group);
 }
 String session_user_name = (String)session.getAttribute("user_name");
 String session_password = (String)session.getAttribute("password");
 String session_group = (String)session.getAttribute("group");
 if(session_user_name != null &&
 session_password != null &&
 session_group != null)
 {
 // build StringServletClient object for use in database operations (pullfile,
save, save_as)

 77

 scc = new StringServletClient(serverURL, session_user_name,
 MD5.md(session_password), session_group);
 }
 if(mode == null || session_user_name == null)
 {
 out.println(logIn()); // make login page
 }
 else if(mode.equals("mkFrameSet"))
 {
 if(session_user_name != null && !session_user_name.equals(""))
 {
 out.println(mkFrameSet()); // make DB interface
 }
 else
 {
 out.println(logIn()); // make login page
 }
 }
 else if(mode.equals("defaultLeft"))
 {
 out.println(defaultLeft(request, response)); // make left navigation frame
 }
 else if(mode.equals("defaultTop"))
 {
 defaultTop(request, response); // make top frame
 }
 else if(mode.equals("messagePage"))
 {
 out.println(messagePage(message)); // make generic HTML page
 }
 else if(save != null) // 'save' button pressed ->
save file
 {
 DataEntryModel liveTree = getGUITree(serverURL, session_user_name,
session_password,
 session_group, docID);

 fixWholeTree(request, liveTree); // update tree with
any changes
 out.println(makeDisplay(request, liveTree, session_user_name)); // display the
new tree
 saveFile(liveTree, docID, scc); // save new tree to database
 }
 else if(save_as != null) // 'save_as' button pressed -
> save copy of file
 {
 DataEntryModel liveTree = getGUITree(serverURL, session_user_name,
session_password,
 session_group, docID);
 fixWholeTree(request, liveTree); // update tree with
any changes
 String newDocID = addFile(liveTree, scc, session_user_name); // save to the
database
 out.println(messagePage(refreshLeftFrame())); // refresh left navigation
frame
 out.println(messagePage(refreshRightFrame(newDocID))); // refresh right frame
 }
 else if(delete != null) // the 'delete' button was
pressed
 {
 scc.deleteFile(docID); // delete the file
 out.println(messagePage(refreshLeftFrame())); // refresh left frame
 out.println(messagePage(confirmDelete(docID))); // confirmation
message in right frame
 }
 else if(screenSelect != null) // a new ScreenSelection item
was chosen
 {
 DataEntryModel liveTree = getGUITree(serverURL, session_user_name,
session_password,
 session_group, docID);
 // alter the tree with the new SS parameter
 fixWholeTree(request, liveTree);
 // display the new tree
 out.println(makeDisplay(request, liveTree, session_user_name));
 }
 else if(mode.equals("pullFile")) // pull a file from database
 {
 // pull the file from the DB
 DataEntryModel liveTree = getGUITree(serverURL, session_user_name,
session_password,

 78

 session_group, docID);
 // display the form
 out.println(makeDisplay(request, liveTree, session_user_name));
 }
 }

 /**
 * Saves(overwrites) a file identified by docID to the database.
 *
 * @param liveTree the DataEntryModel object representing the file
 * @param docID the name of the file
 * @param scc the StringServletClient object that provides API for database operations
 */
 protected void saveFile(DataEntryModel liveTree, String docID, StringServletClient scc)
 {
 String dataString = liveTree.SaveData(); // save template information
 scc.saveWithString(dataString, docID, dataDataCollection);
 String userAdditionsString = liveTree.SaveUserAdditions(); // save data
information
 scc.saveWithString(userAdditionsString, docID, dataTemplateCollection);
 }

 /**
 * Copies a file to the database with a new doc ID.
 *
 * @param liveTree the DataEntryModel object representing the file
 * @param scc the StringServletClient object provides API for database operations
 * @param owner the owner of the new file
 */
 protected String addFile(DataEntryModel liveTree, StringServletClient scc, String
owner)
 {
 // get template value
 GUINode templateNode = liveTree.getNode("/EML/HEAD/TEMPLATE/");
 String template = templateNode.getValue();
 // get the OWNER node and set to new owner
 GUINode ownerNode = liveTree.getNode("/EML/HEAD/OWNER/");
 ownerNode.setValue(owner);
 // save the file to DB
 String dataString = liveTree.SaveData();
 String update = scc.saveAsWithString(dataString, dataDataCollection, owner,
template);
 String docID = update.substring(update.indexOf(":") + 1);
 GUINode docIDNode = liveTree.getNode("/EML/HEAD/DOC_ID/");
 docIDNode.setValue(docID);
 String userAdditionsString = liveTree.SaveUserAdditions();
 if(userAdditionsString != null && !userAdditionsString.equals(""))
 {
 scc.saveWithString(userAdditionsString, docID,
 Protocol.dataTemplateCollection);
 }
 return docID;
 }

 /**
 * Refreshes right frame with file-delete confirmation message.
 *
 * @return a Javascript command to confirm that a file is deleted
 */
 protected String confirmDelete(String docID)
 {
 String jscript = null; // the javascript command
 try
 {
 jscript = "";
 String message = docID + SPC + "deleted";
 message = StringServletClient.encodeString(message);
 String src = selfURL + "?mode=messagePage&message=" + message;
 jscript += ("<script language=\"JavaScript\">");
 jscript += ("setTimeout('parent.frames[2].location.replace(\"" + src +
 "\")',800)");
 jscript += ("</script>");
 }
 catch(UnsupportedEncodingException exception)
 {
 log.error(exception.getMessage() + "\n" +
emlCommon.util.StackTrace.print(exception));
 }
 return jscript;
 }

 79

 /**
 * Refreshes the right frame with the given document ID.
 *
 * @return a JavaScript command to refresh the right frame with the given file
 */
 protected String refreshRightFrame(String docID)
 {
 String jscript = ""; // the javascript command
 String src = selfURL + "?mode=pullFile&docID=" + docID + "&freshFromDB=yes";
 jscript += ("<script language=\"JavaScript\">");
 jscript += ("setTimeout('parent.frames[2].location.replace(\"" + src +
 "\")',800)");
 jscript += ("</script>");
 return jscript;
 }

 /**
 * Refreshes the left frame.
 *
 * @return a JavaScript command to refresh the left frame
 */
 protected String refreshLeftFrame()
 {
 String jscript = ""; // the javascript command
 String src = selfURL + "?mode=defaultLeft";
 jscript += ("<script language=\"JavaScript\">");
 jscript += "\n";
 jscript += ("setTimeout('parent.frames[1].location.replace(\"" + src +
 "\")',800)");
 jscript += "\n";
 jscript += ("</script>");
 jscript += "\n";
 return jscript;
 }

 /**
 * Generates an HTML login page.
 *
 * @return an HTML string that is the login page
 */
 protected String logIn()
 {
 String login = ""; // the HTML string
 try
 {
 login += (HtmlGenerator.makeVersionInfo()); // version element
 login += (HtmlGenerator.makeDocType("loose")); // DOCTYPE element
 login += ("<html>");
 login += ("<head>");
 login += ("<link rel=StyleSheet href=\"http://wage.cns.montana.edu/styles/lib.css\"
type=\"text/css\">");
 login += ("<title>");
 login += ("</title>");
 login += ("</head>");
 login += ("<body>");
 login += ("<center>");
 login += ("<b class=\"group\">");
 login += ("NeuroSys Login Page");
 login += ("");
 login += (BR);
 login += (BR);
 login += ("<form action=\"");
 String src = selfURL + "?mode=mkFrameSet"; // call mkFrameSet()
 login += (src);
 login += ("\" method=\"post\">");
 login += (BR);
 login += ("Enter your user name: "); // enter user information
 login += ("<input type=\"text\" name=\"user_name\" value=\"stuarth\">");
 login += (BR);
 login += ("Enter your password: ");
 login += ("<input type=\"password\" name=\"password\" value=\"stuarth\">");
 login += ("<input type=\"hidden\" name=\"group\" value=\"CCB\">");
 login += (BR);
 login += (BR);
 login += ("<input type=\"submit\" name=\"login\" value=\"Login\">");
 login += ("</form>");
 login += ("</center>");
 login += ("</body>");
 login += ("</html>");
 }

 80

 catch(Exception e)
 {
 e.printStackTrace(System.err);
 }
 return login;
 }

 /**
 * Generates an HTML frame layout.
 *
 * @return an HTML string that is a frame layout
 */
 protected String mkFrameSet()
 {
 String set = ""; // the HTML string
 try
 {
 set += ("<html>");
 set += ("<head>");
 set += ("<title>");
 set += ("NeuroSys");
 set += ("</title>");
 set += ("</head>");
 set += ("<frameset rows=\"10%,*\">");
 set += ("<frame name=\"topframe\" src=\""); // set top frame
 String src = selfURL + "?mode=defaultTop";
 set += (src);
 set += ("\" frameborder=\"0\" scrolling=\"no\">");
 set += ("<frameset cols=\"25%,*\">");
 String xpath = "/EML/HEAD";
 src = selfURL + "?mode=defaultLeft" + AMP + "xpath=" + xpath;
 set += ("<frame name=\"leftframe\" src=\""); // set left frame
 set += (src);
 set += ("\" scrolling=\"yes\">");
 src = selfURL + "?mode=messagePage&message=NeuroSys";
 set += ("<frame name=\"rightframe\" src=\""); // set right frame
 set += (src);
 set += ("\" scrolling=\"yes\">");
 set += ("</frameset>");
 set += ("</frameset>");
 set += ("</html>");
 }
 catch(Exception e)
 {
 e.printStackTrace(System.err);
 }
 return set;
 }

 /**
 * Returns a sequence of ' ' for indenting an HTML page.
 *
 * @param howdeep how far to indent
 * @return the sequence of ' ' as a string
 */
 protected String indent(int howdeep)
 {
 String indent = ""; // indent string
 int cnt = 3 * howdeep;
 for(int i = 0; i < cnt; i++) // augment indent string
 {
 indent += SPC;
 indent += "\n";
 }
 return indent;
 }

 /**
 * Generates an HTML string to display the file navigation pane in the left frame.
 * @author Sandy Pittendrigh
 *
 * @param request the HTTP request object
 * @param response the HTTP response object
 * @return an HTML string responsible for displaying the file navigation pane in the
left frame
 */
 protected String defaultLeft(HttpServletRequest request, HttpServletResponse response)
 {
 String left = ""; // the left frame HTML string
 try
 {

 81

 left += (HtmlGenerator.makeVersionInfo());
 left += (HtmlGenerator.makeDocType("loose"));
 left += ("<html>");
 left += ("<head>"); // stylesheet links(currently
inactive)
 left +=(HtmlGenerator.makeLink("StyleSheet",
"http://wage.cns.montana.edu/styles/lib.css","text/css"));
 /*
 left += (HtmlGenerator.makeLink("StyleSheet",
 "http://localhost:8080/stylesheets/pages.css",
 "text/css"));
 */

 left += ("<title>");
 left += ("</title>");
 left += ("</head>");
 left += ("<body>");
 if(debug.equals("true")) // display debug info
switch
 {
 left += (showDebuggingInfo(request));
 }
 else
 {
 trackSessionCount(request);
 }
 HttpSession session = request.getSession(false);
 String user_name = (String)session.getAttribute("user_name");
 String login_group = (String)session.getAttribute("group");
 String xpath = request.getParameter("xpath");
 if(xpath == null)
 {
 xpath = "/EML/HEAD";
 }
 String passWord = (String)session.getAttribute("password");
 String md5pwd = emlCommon.MD5.md(passWord); // construct
StringServletClient to use DB API
 StringServletClient scc = new StringServletClient(serverURL, user_name, md5pwd,
 login_group); // query DB for array
of records
 String results[] = scc.runQuery(xpath, user_name, login_group);
 int size = results.length;
 Hashtable groupbuckets = new Hashtable();
 for(int i = 0; i < size; i++) // loop results and start
messy sorting process
 {
 String res = null;
 String tmp = results[i];
 try
 {
 res = URLDecoder.decode(tmp, "UTF-8");
 }
 catch(Exception ex)
 {
 ex.printStackTrace(System.err);
 }
 XMLElement xml = new XMLElement();
 xml.parseString(res);
 String owner = NanoXMLToolkit.valueofFirstLabelInstance(xml, "OWNER");
 String template = NanoXMLToolkit.valueofFirstLabelInstance(xml, "TEMPLATE");
 String group = NanoXMLToolkit.valueofFirstLabelInstance(xml, "GROUP");
 String docID = NanoXMLToolkit.valueofFirstLabelInstance(xml, "DOC_ID");
 GroupBucket local_group_bucket; // make the 'buckets'
for sorting
 TemplateBucket local_template_bucket;
 OwnerBucket local_owner_bucket;
 DescriptionBucket local_description_bucket;
 Description local_description;
 local_description = new Description(owner, template, group, docID);
 if((local_group_bucket = (GroupBucket)groupbuckets.get(group)) == null)
 { // start sorting process
 GroupBucket gb = new GroupBucket(group);
 groupbuckets.put(group, gb);
 local_group_bucket = gb;
 }
 if((local_template_bucket =
 (TemplateBucket)local_group_bucket.getBucket(template)) == null)
 {
 local_template_bucket = new TemplateBucket(template);
 }
 if((local_owner_bucket = (OwnerBucket)local_template_bucket.getBucket(owner))

 82

 == null)
 {
 local_owner_bucket = new OwnerBucket(owner);
 }
 if((local_description_bucket =
 (DescriptionBucket)local_owner_bucket.getBucket(template)) == null)
 {
 local_description_bucket = new DescriptionBucket(template);
 }
 description2DescriptionBucket(local_description, local_description_bucket);
 descriptionBucket2OwnerBucket(local_description_bucket, local_owner_bucket);
 ownerBucket2TemplateBucket(local_owner_bucket, local_template_bucket);
 templateBucket2GroupBucket(local_template_bucket, local_group_bucket);
 }
 left += defaultLeftDisplay(response, groupbuckets);
 left += ("</body>");
 left += ("</html>");
 }
 catch(Exception e)
 {
 e.printStackTrace(System.err);
 }
 return left;
 }

 /**
 * Generates an HTML string to display the file navigation pane in the left frame.
 * @author Sandy Pittendrigh
 *
 * @param response the HTTP response object
 * @param groupBuckets a hashtable of objects that contains descriptions of database
records
 * @return an HTML string responsible for displaying the file navigation pane in the
left frame
 */
 protected String defaultLeftDisplay(HttpServletResponse response,
 Hashtable groupbuckets)
 {
 String left = ""; // left frame HTML substring
 try
 {
 Enumeration gb = groupbuckets.elements();
 while(gb.hasMoreElements()) // 'unwind' the buckets
 {
 GroupBucket groupBucket = (GroupBucket)gb.nextElement();
 String group = groupBucket.getName();
 left += (HtmlGenerator.makeBold(group, "group")); // lab group heading
 left += (BR);
 Hashtable templateBuckets = groupBucket.getBuckets();
 Enumeration tb = templateBuckets.elements();
 while(tb.hasMoreElements())
 {
 TemplateBucket templateBucket = (TemplateBucket)tb.nextElement();
 String template = templateBucket.getName();
 left += (BR);
 left += (HtmlGenerator.makeBold(template, "template")); // record
template heading
 left += (BR);
 Hashtable ownerbuckets = templateBucket.getBuckets();
 Enumeration ob = ownerbuckets.elements();
 while(ob.hasMoreElements())
 {
 OwnerBucket ownerBucket = (OwnerBucket)ob.nextElement();
 left += indent(1);
 left += (HtmlGenerator.makeBold(ownerBucket.getName(), "user")); //
record owner heading
 left += (BR);
 DescriptionBucket descriptionBucket = (DescriptionBucket)ownerBucket.
 getBucket(template);
 Vector descriptions = descriptionBucket.getDescriptions();
 int size = descriptions.size();
 for(int i = 0; i < size; i++)
 {
 Description description = (Description)descriptions.elementAt(i);
 String target = "rightframe";
 String docID = description.getName();
 String link = selfURL + "?mode=pullFile";
 link += AMP + "docID=" + docID + AMP + "freshFromDB=yes";
 left += indent(2);
 String label = description.getName();
 String outlink = HtmlGenerator.makeHyperLink(link, target, label);

 83

 left += (HtmlGenerator.makeBold(outlink, "label")); // hyperlinked
record name
 left += (BR);
 }
 }
 }
 left += (" ");
 }
 }
 catch(Exception e)
 {
 e.printStackTrace(System.err);
 }
 return left;
 }

 /**
 * Places a Description(of file) object into the DescriptionBucket's list of files
 * for a particular template.
 * @author Sandy Pittendrigh
 *
 * @param description a Description object that contains file information
 * @param description_bucket a DescriptionBucket object that groups file descriptions
 * under template heading
 */
 protected void description2DescriptionBucket(Description description,
 DescriptionBucket description_bucket)
 {
 description_bucket.putBucket(description);
 }

 /**
 * Places a DescriptionBucket object into the OwnerBucket's hashtable of
 * DescriptionBuckets (keyed by template of the DescriptionBucket).
 * @author Sandy Pittendrigh
 *
 * @param description_bucket a DescriptionBucket object that contains list of file
descriptions
 * @param owner_bucket a OwnerBucket object that groups DescriptionBuckets (keyed by
template)
 */
 protected void descriptionBucket2OwnerBucket(DescriptionBucket description_bucket,
 OwnerBucket owner_bucket)
 {
 owner_bucket.putBucket(description_bucket.getName(), description_bucket);
 }

 /**
 * Places a OwnerBucket object into the TemplateBucket's hashtable of
 * OwnerBuckets (keyed by owner of OwnerBucket object).
 * @author Sandy Pittendrigh
 *
 * @param owner_bucket an OwnerBucket object that groups DescriptionBuckets (keyed by
template)
 * @param template_bucket a TemplateBucket object that groups OwnerBuckets
 * (keyed by owner of OwnerBucket object)
 */
 protected void ownerBucket2TemplateBucket(OwnerBucket owner_bucket,
 TemplateBucket template_bucket)
 {
 template_bucket.putBucket(owner_bucket.getName(), owner_bucket);
 }

 /**
 * Places a TemplateBucket object into the GrouptBucket's hashtable of
 * TemplateBuckets (keyed by name of TemplateBucket object).
 * @author Sandy Pittendrigh
 *
 * @param template_bucket a TemplateBucket object that groups OwnerBuckets
 * (keyed by owner of OwnerBucket object)
 * @param group_bucket a GroupBucket object that groups TemplateBuckets
 * (keyed by name of TemplateBucket object)
 */
 protected void templateBucket2GroupBucket(TemplateBucket template_bucket,
 GroupBucket group_bucket)
 {
 group_bucket.putBucket(template_bucket.getName(), template_bucket);
 }

 /**

 84

 * Returns an HTML string that represents the 'Show All Records'
 * and 'Show Your Records' hyperlinks.
 *
 * @param request the HTTP request object
 * @return HTML string that represents two hyperlinks
 */
 protected String displayHyperLinks(HttpServletRequest request)
 {
 String link = ""; // the hyperlinks
 try
 {
 // XPath query string to display all files
 String xpath = "/EML/HEAD";
 String src = selfURL + "?mode=defaultLeft" + AMP + "xpath=" + xpath;
 link += HtmlGenerator.makeHyperLink(src, "leftframe", "Show All Records");
 link += SPC;
 link += "||";
 link += SPC;
 HttpSession session = request.getSession(false);
 String user_name = (String)session.getAttribute("user_name");
 // XPath query string to display owner's files only
 xpath = "/EML[HEAD/OWNER[text()='" + user_name + "']]/HEAD";
 src = selfURL + "?mode=defaultLeft" + AMP + "xpath=" + xpath;
 link += HtmlGenerator.makeHyperLink(src, "leftframe", "Show Your Records");
 }
 catch(Exception e)
 {
 e.printStackTrace(System.err);
 }
 return link;
 }

 /**
 * Generates a generic HTML page displaying the given string.
 *
 * @param message the string to display
 * @return HTML string that generates the page displaying the given string
 */
 protected String messagePage(String message)
 {
 String str = ""; // the HTML string
 try
 {
 str += (HtmlGenerator.makeVersionInfo()); // version element
 str += (HtmlGenerator.makeDocType("loose")); // DOCTYPE element
 str += ("<html>");
 str += ("<head>");
 str += ("<link rel=StyleSheet href=\"http://wage.cns.montana.edu/styles/lib.css\"
type=\"text/css\">");
 /* //test stylesheet format
 str += (HtmlGenerator.makeLink("StyleSheet",
 "http://localhost:8080/stylesheets/pages.css",
 "text/css"));
 */
 str += ("<title>");
 str += ("</title>");
 str += ("</head>");
 str += ("<body>");
 str += ("<center>");
 str += ("<b class=\"group\">");
 str += (message); // the string to
display
 str += ("");
 str += ("</center>");
 str += ("</body>");
 str += ("</html>");
 }
 catch(Exception e)
 {
 e.printStackTrace(System.err);
 }
 return str;
 }

 85

/**
 * Updates a DataEntryModel tree according to POST parameters.
 *
 * @param request the HTTP request object
 * @param liveTree the DataEntryModel object to update
 */

 protected void fixWholeTree(HttpServletRequest request, DataEntryModel liveTree)
 {
 String postParameter; // the parameter
 String currentValue = ""; // node's current
value
 HttpSession session = request.getSession(false);
 String currentUser = (String)session.getAttribute("user_name"); // current
user
 GUINode bodyNode = liveTree.getNode("/EML/BODY/"); // the <BODY> element
 Enumeration enum = bodyNode.preorderEnumeration();
 while(enum.hasMoreElements()) // loop children (preorder
traversal)
 {
 postParameter = "";
 GUINode myNode = (GUINode)enum.nextElement();
 String nodeStatus = myNode.getStatus();
 if(nodeStatus.equals(DataNode.WIDGET)) // if its a widget
 {
 String widgetType = myNode.getWidgetType(); // widget type
 String xPath = myNode.getXPath(); // unique xpath of widget
 String parameterArray[] = request.getParameterValues(xPath); //
parameter array
 String pullDownParameter = request.getParameter(xPath + "_pull_down"); // new
pull down option
 if(parameterArray != null)
 {
 postParameter = parameterArray[0];
 }
 if(myNode.getValue() != null)
 {
 currentValue = myNode.getValue();
 }
 // if a new option is entered for a pull down menu, use new option
 if(pullDownParameter != null && !pullDownParameter.equals("Enter New Option") &&
 !pullDownParameter.equals(""))
 {
 myNode.setValue(pullDownParameter);
 // add the new option to the list of items
 addPullDownMenuItem(myNode, pullDownParameter, currentUser);
 }
 else if(widgetType.equals("CheckBoxWidget")) // if
check box
 {
 fixCheckBoxWidget(myNode, currentValue, postParameter); // update node
 }
 else if(widgetType.equals("UrlWidget")) // if URL
widget
 {
 fixUrlWidget(myNode, request, currentValue, currentUser); //
update node
 }
 // handle default case for most widgets
 else if(!currentValue.equals(postParameter))
 {
 myNode.setValue(postParameter);
 }
 } // end if widget
 } // end while
 }

 /**
 * Updates a UrlWidget according to POST parameters.
 *
 * @param toFix the GUINode to update
 * @param request the HTTP request object
 * @param value the current value of the UrlWidget
 * @param currentUser the user currently logged in
 */
 protected void fixUrlWidget(GUINode node, HttpServletRequest request, String value,
String currentUser)
 {
 String xPath = node.getXPath();
 // get various parameters related to a UrlWidget
 String protocolPostParameter = request.getParameter(xPath + "_protocol");

 86

 String hostPostParameter = request.getParameter(xPath + "_host");
 String pathPostParameter = request.getParameter(xPath + "_path");
 String hostPullDownParameter = request.getParameter(xPath + "_host_pull_down");
 String pathPullDownParameter = request.getParameter(xPath + "_path_pull_down");
 String fileNameParameter = request.getParameter(xPath + "_file_name");

 String urlInfo[] = parseUrlString(value); // parse URL into component
parts
 String currentProtocol = (urlInfo[0]);
 String currentHost = (urlInfo[1]);
 String currentPath = (urlInfo[2]);
 String currentFileName = (urlInfo[3]);

 String newProtocol = currentProtocol; // initialize new values with
current ones
 String newHost = currentHost;
 String newPath = currentPath;
 String newFile = currentFileName;

 boolean protocolChanged = false; // flags for certain
parameters
 boolean hostChanged = false;
 boolean pathChanged = false;
 boolean fileNameChanged = false;
 boolean isHostPullDown = false;
 boolean isPathPullDown = false;

 GUINode protocolNode = (GUINode)node.getChildAt(0); // get sub-nodes
 GUINode hostNode = (GUINode)node.getChildAt(1);
 GUINode pathNode = (GUINode)node.getChildAt(2);

 if(protocolPostParameter != null && !protocolPostParameter
 .equalsIgnoreCase(currentProtocol)) // check POST
parameters and set flags
 {
 protocolChanged = true;
 }
 if(hostPostParameter != null && !hostPostParameter
 .equalsIgnoreCase(currentHost))
 {
 hostChanged = true;
 }
 if(pathPostParameter != null && !pathPostParameter
 .equalsIgnoreCase(currentPath))
 {
 pathChanged = true;
 }
 if (hostPullDownParameter != null && !hostPullDownParameter.equals("")
 && !hostPullDownParameter.equals("Enter New Host"))
 {
 isHostPullDown = true;
 // remove any slashes from front or back of string
 hostPullDownParameter = removeLeadingSlashes(hostPullDownParameter);
 hostPullDownParameter = removeTrailingSlashes(hostPullDownParameter);
 }
 if (pathPullDownParameter != null
 && !pathPullDownParameter.equals("Enter New Path"))
 {
 isPathPullDown = true;
 // remove any slashes from front or back of string
 pathPullDownParameter = removeLeadingSlashes(pathPullDownParameter);
 pathPullDownParameter = removeTrailingSlashes(pathPullDownParameter);

 }
 if(fileNameParameter != null && !fileNameParameter.equals(currentFileName))
 {
 fileNameChanged = true;
 // remove any slashes from front or back of string
 fileNameParameter = removeLeadingSlashes(fileNameParameter);
 fileNameParameter = removeTrailingSlashes(fileNameParameter);
 }
 if(protocolChanged)
 {
 newProtocol = protocolPostParameter;
 }

 // if a value entered in the textfield, trump a new value in the dropdown box
 if(isHostPullDown)
 {
 // alter the host value
 newHost = hostPullDownParameter;

 87

 // if current host or new host not in current list of hosts
 // make new host menu item(s) and add it the host node
 addUrlMenuItem(hostNode, hostPullDownParameter, currentUser);
 addUrlMenuItem(hostNode, currentHost, currentUser);
 }
 else if(hostChanged)
 {
 newHost = hostPostParameter;
 addUrlMenuItem(hostNode, hostPostParameter, currentUser);
 addUrlMenuItem(hostNode, currentHost, currentUser);
 }

 // if a value entered in the textfield, trump a new value in the dropdown box
 if(isPathPullDown)
 {
 // alter the path value
 newPath = pathPullDownParameter;
 // if current path or new path not in current list of paths
 // make new path menu item(s) and add it the path node
 addUrlMenuItem(pathNode, pathPullDownParameter, currentUser);
 addUrlMenuItem(pathNode, currentPath, currentUser);
 }
 else if(pathChanged)
 {
 newPath = pathPostParameter;
 addUrlMenuItem(pathNode, pathPostParameter, currentUser);
 addUrlMenuItem(pathNode, currentPath, currentUser);
 }
 if(fileNameChanged)
 {
 newFile = fileNameParameter;
 }
 // compose new hyperlink
 String newHyperLinkValue = newProtocol + "://" + newHost + "/" + newPath + "/" +
 newFile;
 node.setValue(newHyperLinkValue); // set node's value
 }

 /**
 * Adds an item to a UrlWidget menu.
 *
 * @param myNode the GUINode to update
 * @param newItem the item to add
 * @param owner the user adding the item
 */
 protected void addUrlMenuItem(GUINode myNode, String newItem, String owner)
 {
 Vector items = myNode.getChildrensValues(); // list of children's values
 if(!newItem.equals("") && !items.contains(newItem))
 {
 GUINode tempItem = StringServletClient.mkGUINodeMenuitem(newItem, owner);
 myNode.add(tempItem);
 }
 }

 /**
 * Updates a CheckBoxWidget according to POST parameters.
 *
 * @param toFix the GUINode to update
 * @param currentValue the current value of the GUINode
 * @param postParameter the POST parameter value for a given GUINode
 */
 protected void fixCheckBoxWidget(GUINode toFix, String currentValue, String
postParameter)
 {
 // if value true and corresponding parameter is empty string => set to false
 if(currentValue.equals("true") && postParameter.equals(""))
 {
 toFix.setValue("false");
 }
 // if value false and corresponding parameter is true => set to true
 else if(currentValue.equals("false") && postParameter.equals("true"))
 {
 toFix.setValue("true");
 }
 }

 88

/**
 * Tests a PullDownWidget node for an item and if not present
 * adds the item as child of the node.
 *
 * @param myNode the PullDownWidget node
 * @param pullDownParameter the item we are looking for
 * @param owner the owner of the PullDownWidget
 */
 protected void addPullDownMenuItem(GUINode myNode, String pullDownParameter, String
owner)
 {
 // this is the <MENUITEMS> node
 GUINode menuItems = myNode.getChild("MENUITEMS");
 // test it's children (the <ITEM>s) for the new value
 Vector childValues = menuItems.getChildrensValues();
 //if it's not in the list of items, make a new GUINode and attach it to parent
 if(!childValues.contains(pullDownParameter))
 {
 GUINode newNode = StringServletClient.mkGUINodeMenuitem(pullDownParameter, owner);
 menuItems.add(newNode);
 }
 }

 /**
 * Shows all attributes and values for each GUINode object in a
 * DataEntryModel tree. Shows all POST parameters in a client
 * HttpServletRequest object.
 *
 * @param request the HTTP request object
 * @param liveTree the DataEntryModel object to inspect
 * @return a string composed of all attributes/values and POST parameters
 */
 protected String debugTree(HttpServletRequest request, DataEntryModel liveTree)
 {
 String str = ""; // debug information
 str += "<pre>";
 str += liveTree.showTree(); // attributes/values
of tree
 str += "\n\n\n";
 str += postParams(request); // POST parameters
 str += "</pre>";
 return str;
 }

 /**
 * Builds the form that displays a database record.
 *
 * @param request the HTTP request object
 * @param rootNode the DataEntryModel object(record) to display in the form
 * @param userName the user currently logged in
 * @return a string representing an HTML form
 */
 protected String makeDisplay(HttpServletRequest request, DataEntryModel rootNode,
 String userName)
 {
 GUINode docIDNode = rootNode.getNode("/EML/HEAD/DOC_ID/");
 String docID = docIDNode.getValue(); // document ID number
 String form = "";
 // begin building the form
 form += (HtmlGenerator.makeVersionInfo()); // version element
 form += "\n";
 form += (HtmlGenerator.makeDocType("loose")); // DOCTYPE element
 form += "\n";
 form += ("<html>");
 form += "\n";
 form += ("<head>");
 form += "\n";
 form += (HtmlGenerator.makeLink("StyleSheet",
 "http://localhost:8080/stylesheets/noSuchFile.css",
 "text/css"));
 /* test stylesheet format
 form += (HtmlGenerator.makeLink("StyleSheet",
 "http://localhost:8080/stylesheets/pages.css",
 "text/css"));
 */
 form += "\n";
 // reference to external javascript file that refreshes a particular frame
 form += (HtmlGenerator.makeScript("javascript", "text/javascript",
 "http://localhost:8080/scripts/postform.js"));
 form += "\n";
 form += ("<title>");

 89

 form += "\n";
 form += ("</title>");
 form += "\n";
 form += ("</head>");
 form += "\n";
 form += ("<body>");
 form += "\n";
 if(debug.equals("true"))
 {
 form += showDebuggingInfo(request);
 }
 else
 {
 trackSessionCount(request);
 }
 form += ("<center>");
 form += "\n";
 form += HtmlGenerator.makeBold(docID, "group"); // print document ID at top
of form
 form += "\n";
 form += ("</center>");
 form += "\n";
 form += (BR);
 form += "\n";
 String src = selfURL + "?mode=pullFile" + AMP + "docID=" + docID + AMP +
 "freshFromDB=no";
 form += HtmlGenerator.makeOpenForm(src, "rightframe", "POST"); // make opening form
element
 form += "\n";
 GUINode bodyNode = rootNode.getNode("/EML/BODY/"); //get <BODY>
node and recurse on it
 if(bodyNode.getChildCount() > 0)
 {
 form += makeDisplayHelper(bodyNode, docID); // bulk of form built
here
 }
 boolean isOwner = isOwner(userName, rootNode);
 if(isOwner) // 'Save'
button if file owner
 {
 form += HtmlGenerator.makeButton("save", "Save");
 form += "\n";
 form += BR;
 form += "\n";
 }
 form += BR;
 form += "\n";
 form += HtmlGenerator.makeButton("save_as", "Save As"); // 'Save As' button
for all users
 form += "\n";
 if(isOwner)
 {
 form += BR;
 form += "\n";
 form += BR;
 form += "\n";
 form += HtmlGenerator.makeButton("delete", "Delete"); // 'Delete' button if
file owner
 form += "\n";
 }

 form += "</form>";
 form += "\n";
 form += "</body>";
 form += "\n";
 form += "</html>";
 return form;
 }

 /**
 * Converts a GUINode object to an HTML element.
 *
 * @param node a GUINode object to display
 * @param docID the docment ID of the record
 * @return string representing the GUINode as HTML
 */
 protected String makeDisplayHelper(GUINode node, String docID)
 {
 String form = ""; // form elements
 if(node == null)
 {

 90

 // base case -> empty string will be returned
 }
 else
 {
 form += nodeToHtml(node, docID); // add HTML elements
 }
 return form;
 }

 /**
 * Accepts GUINode object and generates HTML string that
 * represents a text field.
 *
 * @param node a GUINode object that is a text field
 * @return HTML string representing a text field
 */
 protected String makeTextFieldWidget(GUINode node)
 {
 String str = "";
 String value = node.getValue(); // node's value
 String xPath = node.getPathString(); // node's XPath
 str += HtmlGenerator.makeTextField(xPath, value, 30); // make text field
 return str;
 }

 /**
 * Accepts GUINode object and generates HTML string that
 * represents a text area.
 *
 * @param node a GUINode object that is a text area
 * @return HTML string representing a text area
 */
 protected String makeTextAreaWidget(GUINode node)
 {
 String str = "";
 String value = node.getValue(); // node's value
 String xPath = node.getPathString(); // node's XPath
 str += HtmlGenerator.makeTextArea(xPath, 5, 30, value); // make text area
 return str;
 }

 /**
 * Accepts GUINode object and generates HTML string that
 * represents a page/heading banner.
 *
 * @param node a GUINode object that is a banner
 * @return HTML string representing a banner
 */
 protected String makeBannerWidget(GUINode node)
 {
 String str = "";
 String label = node.getLabel(); // node's label
 str += HtmlGenerator.makeBold(label, "banner"); // make banner
 return str;
 }

 /**
 * Accepts GUINode object and generates HTML string that
 * represents a check box.
 *
 * @param node a GUINode object that is a check box
 * @return HTML string representing a check box
 */
 protected String makeCheckBoxWidget(GUINode node)
 {
 String str = "";
 String value = node.getValue(); // node's value
 String xPath = node.getPathString(); // node's XPath
 boolean checked = false; // flag for check or not
 if(value != null && value.equals("true"))
 {
 checked = true;
 }
 str += HtmlGenerator.makeCheckBox(xPath, checked); // make check box
 return str;
 }

 91

/**
 * Accepts GUINode object and generates HTML string that
 * represents a pull down menu.
 *
 * @param node a GUINode object that is a pull down menu
 * @return HTML string representing a pull down menu
 */
 protected String makePullDownMenu(GUINode node)
 {
 String str = "";
 String value = node.getValue(); // node's value
 String xPath = node.getPathString(); // node's XPath
 if(node.getChildCount() > 0)
 {
 GUINode menuItems = (GUINode)node.getChildAt(0); // the <MENUITEMS>
node
 if(menuItems.getChildCount() > 0)
 {
 Vector items = menuItems.getChildrensValues(); // the <ITEM...> nodes
 // make the pull down box
 str += HtmlGenerator.makePullDownBox(xPath, value, items);
 }
 }
 return str;
 }

 /**
 * Accepts GUINode object and generates HTML string that
 * represents a PullDownWidget. Displays a text field to
 * right of the pull down menu for adding new options.
 *
 * @param node a GUINode object that is a PullDownWidget
 * @return HTML string representing a PullDownWidget
 */
 protected String makePullDownWidget(GUINode node)
 {
 String str = "";
 String xPath = node.getPathString(); // node's XPath
 str += makePullDownMenu(node); // make pull down
 str += "\n";
 str += SPC;
 str += "\n";
 // make a textfield so new option may be entered
 str += HtmlGenerator.makeTextField(xPath + "_pull_down", "Enter New Option", 30);
 return str;
 }

 /**
 * Accepts GUINode object and generates HTML string that
 * represents a pull down menu for a ScreenSelectWidget.
 *
 * @param node a GUINode object that is a ScreenSelectWidget
 * @return HTML string representing a pull down menu for a ScreenSelectWidget
 */
 protected String makeScreenSelectPullDownMenu(GUINode node, String docID)
 {
 String str = "";
 String value = node.getValue(); // node's value
 String xPath = node.getPathString(); // node's XPath
 str += "\n";
 str += SPC;
 str += "\n";
 Vector items = node.getChildrensLabels(); // make pull down menu
 str += HtmlGenerator.makeSSelectPullDownBox(xPath, value, items, selfURL, docID);
 str += "\n";
 return str;
 }

 /**
 * Accepts GUINode object and generates HTML string that
 * represents a pull down menu with no choice to add a new option.
 *
 * @param node a GUINode object that is a pull down menu
 * @return HTML string representing a pull down menu
 */
 protected String makeMustChooseWidget(GUINode node)
 {
 String str = "";
 str += makePullDownMenu(node); // make pull down menu
 return str;
 }

 92

 /**
 * Accepts GUINode object and generates HTML string that
 * represents a UrlWidget.
 *
 * @param node a GUINode object that is a UrlWidget
 * @return HTML string representing a UrlWidget
 */
 protected String makeUrlWidget(GUINode node)
 {
 String str = ""; // URL widget
 String value = node.getValue(); // node's value(a URL)
 if(value != null)
 {
 String xPath = node.getPathString(); // node's XPath
 String urlInfo[] = parseUrlString(value); // parse URL into
component parts
 String currentProtocol = (urlInfo[0]);
 String currentHost = (urlInfo[1]);
 String currentPath = (urlInfo[2]);
 String currentFileName = (urlInfo[3]);
 if(node.getChildCount() > 0)
 {
 GUINode protocolNode = (GUINode)node.getChildAt(0); // access subnodes and get
childrens' values
 GUINode hostNode = (GUINode)node.getChildAt(1);
 GUINode pathNode = (GUINode)node.getChildAt(2);
 Vector protocolItems = protocolNode.getChildrensValues();
 Vector hostItems = hostNode.getChildrensValues();
 Vector pathItems = pathNode.getChildrensValues();
 hostItems.remove("Enter New Host");
 pathItems.remove("Enter New Path");
 String hyperLink = "";
 str += SPC;
 str += "\n";
 // compose "new" hyperlink
 String newHyperLinkValue = currentProtocol + "://" + currentHost + "/" +
 currentPath;
 if(!currentFileName.equals(""))
 {
 newHyperLinkValue += "/";
 newHyperLinkValue += currentFileName;
 }
 hyperLink = HtmlGenerator.makeHyperLink(newHyperLinkValue, "_blank",
 newHyperLinkValue);
 str += (hyperLink); // hyperlinked URL
 str += "\n";
 str += (BR);
 str += "\n";
 str += makeOpenFieldset(); // start of 'URL Editor"
 str += makeOpenLegend();
 str += (HtmlGenerator.makeBold("URL Editor", "user"));
 str += "\n";
 str += makeCloseLegend();
 str += ("<table border=\"0\">");
 str += "\n";
 str += ("<tr>");
 str += "\n";
 str += ("<td>");
 str += "\n"; // make protocol pull down
 str +=
 (HtmlGenerator.makePullDownBox(xPath + "_protocol", currentProtocol,
 protocolItems));
 str += "\n";
 str += ("</td>");
 str += "\n";
 str += ("<td>");
 str += "\n"; // make host pull down
 str +=
 (HtmlGenerator.makePullDownBox(xPath + "_host", currentHost, hostItems));
 str += "\n";
 str += ("</td>");
 str += "\n";
 str += ("<td>");
 str += "\n"; // make path pull down
 str +=
 (HtmlGenerator.makePullDownBox(xPath + "_path", currentPath, pathItems));
 str += "\n";
 str += ("</td>");
 str += "\n";
 str += ("<td>");

 93

 str += "\n"; // make text field for file
name
 str += (HtmlGenerator.makeTextField(xPath + "_file_name",
 currentFileName, 20));
 str += "\n";
 str += ("</td>");
 str += "\n";
 str += ("</tr>");
 str += "\n";
 str += ("<tr>");
 str += "\n";
 str += ("<td>");
 str += "\n";
 str += (" ");
 str += "\n";
 str += ("</td>");
 str += "\n";
 str += ("<td>");
 str += "\n"; // make text field for host
 str += (HtmlGenerator.makeTextField(xPath + "_host_pull_down", "Enter New Host",
 20));
 str += "\n";
 str += ("</td>");
 str += "\n";
 str += ("<td>");
 str += "\n"; // make text field for path
 str += (HtmlGenerator.makeTextField(xPath + "_path_pull_down", "Enter New Path",
 20));
 str += "\n";
 str += ("</td>");
 str += "\n";
 str += ("<td>");
 str += "\n";
 str += (" ");
 str += "\n";
 str += ("</td>");
 str += "\n";
 str += ("</tr>");
 str += "\n";
 str += ("</table>");
 str += "\n";
 str += ("</fieldset>");
 str += "\n";
 str += (BR);
 str += "\n";
 } // end if node.childCount() > 0
 } // end if value != null
 return str;
 }

 /**
 * Generates the <fieldset> and <legend> HTML elements that represent
 * a border with an enclosed labe.
 *
 * @param node GUINode object whose label is enclosed in the <legend> tags
 * @return HTML string representing the opening <fieldset> and complete <legend> tags
 */
 protected String startFieldset(GUINode node, String docID)
 {
 String str = "";
 String label = node.getLabel(); // node's label
 Hashtable attributes = node.getAttributes(); // node's attributes
 String widgetType = (String)attributes.get("GUI_TYPE"); // node's widget type
 str += makeOpenFieldset(); // make <fieldset> tag
 str += makeOpenLegend(); // make <legend> tag
 str += HtmlGenerator.makeBold(label, "group"); // make label
 // make a pull down menu and submit button for ScreenSelect widgets
 if(widgetType.equals("ScreenSelectWidget"))
 {
 str += makeScreenSelectPullDownMenu(node, docID);
 str += "<input type=\"submit\" name=\"screenSelect\" value=\"View New
Selection\">";
 }
 str += makeCloseLegend(); // make </legend> tag
 return str;
 }

 94

/**
 * Generates an opening <fieldset> tag.
 *
 * @return HTML string that is an opening <fieldset> tag
 */
 protected String makeOpenFieldset()
 {
 String fieldset = "";
 fieldset += "<fieldset>";
 fieldset += "\n";
 return fieldset;
 }

 /**
 * Generates an closing <fieldset> tag.
 *
 * @return HTML string that is an closing <fieldset> tag
 */
 protected String makeCloseFieldset()
 {
 String fieldset = "";
 fieldset += "</fieldset>";
 fieldset += "\n";
 return fieldset;
 }

 /**
 * Generates an opening <legend> tag.
 *
 * @return HTML string that is an opening <legend> tag
 */
 protected String makeOpenLegend()
 {
 String legend = "";
 legend += "<legend>";
 legend += "\n";
 return legend;
 }

 /**
 * Generates an closing <legend> tag.
 *
 * @return HTML string that is an closing <legend> tag
 */
 protected String makeCloseLegend()
 {
 String legend = "";
 legend += "\n";
 legend += "</legend>";
 legend += "\n";
 return legend;
 }

 /**
 * Generates a string that represents a GUINode as an HTML element.
 *
 * @param node GUINode to convert into HTML element
 * @param docID docment ID of the record
 * @return HTML string that represents the GUINode
 */
 protected String nodeToHtml(GUINode node, String docID)
 {
 String form = ""; // the form element
 String label = node.getLabel(); // node's label
 String status = node.getStatus(); // node's status
 String value = node.getValue(); // node's value
 String xPath = node.getPathString(); // node's XPath
 String widgetType = ""; // widget type
 Hashtable attributes = node.getAttributes(); // node's attributes
 if(status.equals("widget"))
 {
 widgetType = (String)attributes.get("GUI_TYPE");
 form += node.getHtmlDepth(); // indenting
 //the internal label so we can return to a particular place in form
 form += "";
 // display a label except for these widgets
 if(!widgetType.equals("PanelWidget") && !widgetType.equals("ScreenSelectWidget")
 && !widgetType.equals("TreeWidget") && !widgetType.equals("TreeNodeWidget")
 && !widgetType.equals("BannerWidget"))
 {
 form += HtmlGenerator.makeBold(label, "group");

 95

 form += "\n";
 form += SPC;
 form += "\n";
 }
 if(widgetType.equals("TextFieldWidget")) // dispatch text field
node
 {
 form += makeTextFieldWidget(node);
 }
 else if(widgetType.equals("BannerWidget")) // dispatch banner node
 {
 form += makeBannerWidget(node);
 }
 else if(widgetType.equals("TextAreaWidget")) // dispatch text area node
 {
 form += makeTextAreaWidget(node);
 }
 else if(widgetType.equals("CheckBoxWidget")) // dispatch check box node
 {
 form += makeCheckBoxWidget(node);
 }
 else if(widgetType.equals("PullDownWidget")) // dispatch pull down node
 {
 form += makePullDownWidget(node);
 }
 else if(widgetType.equals("MustChooseWidget")) // dispatch MustChooseWidget
 {
 form += makeMustChooseWidget(node);
 }
 else if((widgetType.equals("PanelWidget") ||
widgetType.equals("ScreenSelectWidget")
 || widgetType.equals("TreeWidget") || widgetType.equals("TreeNodeWidget"))
 && (label != null && !label.equals("BODY")))
 {
 // create the opening tags/labels for a <fieldset><legend> label
 form += startFieldset(node, docID);
 }
 else if(widgetType.equals("UrlWidget")) // dispatch UrlWidget
 {
 form += makeUrlWidget(node);
 }
 if(!widgetType.equals("PanelWidget") && !widgetType.equals("ScreenSelectWidget")
 && !widgetType.equals("TreeWidget") && !widgetType.equals("TreeNodeWidget"))
 {
 form += "\n"; // add line breaks
 form += BR;
 form += "\n";
 form += BR;
 form += "\n";
 }
 } // end if status == widget
 boolean done = false;
 // loop children of node(regardless of status) and make recursive calls on them
 Enumeration enum = node.children();
 while(enum.hasMoreElements() && !done)
 {
 // get the proper child to display if it is a ScreenSelectWidget
 if(widgetType.equals("ScreenSelectWidget"))
 {
 GUINode selectedNode = node.getChild(value);
 form += makeDisplayHelper(selectedNode, docID);
 done = true;
 }
 // else just grab the next child
 else
 {
 GUINode childNode = (GUINode)enum.nextElement();
 form += makeDisplayHelper(childNode, docID);
 }
 } // end while
 // close the <fieldset> tag for container widgets
 if((widgetType.equals("PanelWidget") || widgetType.equals("ScreenSelectWidget")
 || widgetType.equals("TreeWidget") || widgetType.equals("TreeNodeWidget"))
 && (label != null && !label.equals("BODY")))
 {
 form += makeCloseFieldset();
 }
 return form;
 }

 96

/**
 * Determines if current user is the owner of a record.
 *
 * @param user_name the user currently logged in
 * @param rootNode a DataEntryModel object(record)
 * @return true if current user is owner, false otherwise
 */
 protected boolean isOwner(String user_name, DataEntryModel rootNode)
 {
 GUINode ownerNode = rootNode.getNode("/EML/HEAD/OWNER/"); // get <OWNER> node
 return user_name.equals(ownerNode.getValue()); // compare values
 }

 /**
 * Generates HTML page that is the top frame of the database interface.
 *
 * @param request the HTTP request object
 * @param response the HTTP response object
 */
 protected void defaultTop(HttpServletRequest request, HttpServletResponse response)
 {
 PrintWriter out; // output stream
 try
 {
 out = response.getWriter();
 out.println(HtmlGenerator.makeVersionInfo()); // version element
 out.println(HtmlGenerator.makeDocType("loose")); // DOCTYPE element
 out.println("<html>");
 out.println("<head>");
 out.println(
 "<meta http-equiv=\"Content-Type\" content=\"text/html; charset=UTF-8\">");
 out.println("<link rel=StyleSheet
href=\"http://wage.cns.montana.edu/styles/lib.css\" type=\"text/css\">");
 /*
 out.println(HtmlGenerator.makeLink("StyleSheet",
 "http://localhost:8080/stylesheets/pages.css",
 "text/css"));
 */
 out.println("<title>");
 out.println("</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<center>");
 out.println("<b class=\"group\">");
 out.println("NeuroSys"); // title
 out.println("");
 out.println(BR);
 out.println(BR);
 out.println(displayHyperLinks(request)); // hyperlinks for
selecting records to view
 out.println("</center>");
 out.println("</body>");
 out.println("</html>");
 }
 catch(Exception e)
 {
 e.printStackTrace(System.err);
 }
 }

 /**
 * Generates string that displays various debugging information
 * concering POST parameters and session variables.
 *
 * @param request the HTTP request object
 */
 protected String showDebuggingInfo(HttpServletRequest request)
 {
 String bug = ""; // string of debugging
information
 try
 {
 HttpSession session = request.getSession(false);
 String mode = request.getParameter("mode"); // get various parameters
 String docID = request.getParameter("docID");
 String save = request.getParameter("save");
 String save_as = request.getParameter("save_as");
 String freshFromDB = request.getParameter("freshFromDB");
 String heading;
 bug += ("Version <Enter Version Here>" + BR);
 bug += ("mode : " + mode + BR);

 97

 bug += ("docID : " + docID + BR);
 bug += ("save : " + save + BR);
 bug += ("save_as : " + save_as + BR);
 bug += ("freshFromDB : " + freshFromDB + BR);
 bug += ("Since loading, this servlet has been accessed " + count +
 " times" + BR);
 if(session.isNew())
 {
 heading = "Welcome to Neurosys!";
 }
 else // display session information
 {
 heading = "You have returned to Neurosys: " + session.getAttribute("user_name")
 + BR + "along with your password: " + session.getAttribute("password");
 }
 bug += ("<h5>" + heading + "</h5>");
 Integer cnt = trackSessionCount(request);
 bug += ("You have visited this page " + cnt +
 ((cnt.intValue() == 1) ? " time" : " times" + BR));
 bug += ("<h5>Here is your session data:</h5>" + BR);
 Enumeration enum = session.getAttributeNames();
 while(enum.hasMoreElements())
 {
 String name = (String)enum.nextElement();
 bug += (name + ": " + session.getAttribute(name) + BR);
 }
 bug += ("Session Id: " + session.getId() + BR);
 bug += ("New session: " + session.isNew() + BR);
 bug += ("Creation time: " + session.getCreationTime());
 bug += ("<i>(" + new Date(session.getCreationTime()) + ")</i>" + BR);
 bug += ("Last access time: " + session.getLastAccessedTime());
 bug += ("<i>(" + new Date(session.getLastAccessedTime()) + ")</i>" + BR);
 bug += ("Requested session ID from cookie: " +
 request.isRequestedSessionIdFromCookie() + BR);
 bug += ("Requested session ID from URL: " +
 request.isRequestedSessionIdFromURL() + BR + BR);
 bug += ("<pre>");
 bug += postParams(request); // display POST parameters
 bug += ("</pre>");
 }
 catch(Exception e)
 {
 e.printStackTrace(System.err);
 }
 return bug;
 }

 /**
 * Tracks session count.
 * @author Jason Hunter (Java Servlet Programming, O'Reilley and Associates)
 *
 * @param request the HTTP request object
 * @return Integer object representing session count
 */
 protected Integer trackSessionCount(HttpServletRequest request)
 {
 HttpSession session = request.getSession(false);
 Integer cnt = (Integer)session.getAttribute("tracker.count");
 if(cnt == null)
 {
 cnt = new Integer(1);
 }
 else
 {
 cnt = new Integer(cnt.intValue() + 1);
 }
 session.setAttribute("tracker.count", cnt);
 return cnt;
 }

 /**
 * Displays POST parameters.
 * @author Jason Hunter (Java Servlet Programming, O'Reilley and Associates)
 *
 * @param request the HTTP request object
 * @return string of POST parameters
 */
 protected String postParams(HttpServletRequest request)
 {
 String params = "";
 if("application/x-www-form-urlencoded".equals(request.getContentType()))

 98

 {
 Enumeration enum = request.getParameterNames();
 while(enum.hasMoreElements())
 {
 String name = (String)enum.nextElement();
 String values[] = request.getParameterValues(name);
 if(values != null)
 {
 for(int i = 0; i < values.length; i++)
 {
 params += (name + " (" + i + "): " + values[i]);
 params += BR;
 }
 }
 }
 }
 return params;
 }

 /**
 * Parses a URL string into its protocol, host, path, and file name components.
 *
 * @param url the URL to parse
 * @return an array of strings that represent the protocol, host, path, and file name
 */
 protected String[] parseUrlString(String url)
 {
 String protocol = null; // protocol
 String host = null; // host
 String path = null; // path
 String fileName = null; // name of file
 try
 {
 int colon = url.indexOf(":"); // use ':' and '/' to parse
URL
 protocol = url.substring(0, colon);
 int firstSingleSlash = url.indexOf("/", colon + 3);
 host = url.substring(colon + 3, firstSingleSlash);
 int lastSingleSlash = url.lastIndexOf("/");
 path = url.substring(firstSingleSlash + 1, lastSingleSlash);
 fileName = url.substring(lastSingleSlash + 1);
 }
 catch(IndexOutOfBoundsException ex)
 {
 log.error(ex.getMessage() + "\n" + emlCommon.util.StackTrace.print(ex));
 }
 catch(NullPointerException ex)
 {
 log.error(ex.getMessage() + "\n" + emlCommon.util.StackTrace.print(ex));
 }

 String urlInfo[] = {protocol, host, path, fileName}; // place components into
array

 return urlInfo;
 }

 /**
 * Removes leading forward slashes from a string.
 *
 * @param toFix the string to remove leading forward slashes from
 * @return the altered string
 */
 protected String removeLeadingSlashes(String toFix)
 {
 String tempString = toFix;
 if(tempString.startsWith("/"))
 {
 do
 {
 tempString = tempString.substring(1);
 }
 while(tempString.startsWith("/"));
 }
 return tempString;
 }

 99

/**
 * Removes trailing forward slashes from a string.
 *
 * @param toFix the string to remove trailing forward slashes from
 * @return the altered string
 */
 protected String removeTrailingSlashes(String toFix)
 {
 String tempString = toFix;
 if(tempString.endsWith("/"))
 {
 do
 {
 tempString = tempString.substring(0, tempString.length() - 1);
 }
 while(tempString.endsWith("/"));
 }
 return tempString;
 }

 /**
 * Pulls a file from the database.
 *
 * @param serverURL the URL of the database server
 * @param user_name the user currently logged in
 * @param password the password of the current user
 * @param group the lab group to which the user belongs
 * @param docID the document ID of the file to pull
 * @return a DataEntryModel object that represents a file
 */
 protected DataEntryModel getGUITree(String serverURL, String user_name, String
password,
 String group, String docID)
 {
 DataEntryModel guiTree = null;
 // instantiate StringServletClient to interface with database
 StringServletClient scc = new StringServletClient(serverURL, user_name,
 MD5.md(password), group);
 guiTree = scc.pullFile(docID); // pull the file
 return guiTree;
 }
}

