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ABSTRACT

We study two geometric optimization problems motivated by cartographic appli-
cations: Map Labeling with Uniform Circles (MLUC) and Map Labeling with Uni-
form Circle Pairs (MLUCP). We show that the decision problems of both MLUC and
MLUCP are NP-hard, and that the related optimization problems for maximizing
the label sizes are NP-hard to approximate within factor 1.0349. We design ap-
proximation algorithms with constant performance guarantees for the two problems:
for MLUC, we present a (3 + ǫ)-approximation and a (2.98 + ǫ)-approximation; for
MLUCP, a (1.5+ǫ)-approximation and a (1.491+ǫ)-approximation. We also describe
the implementation of AMLUC, a software system for automated map labeling with
uniform circles. The system is based on our approximation algorithms for MLUC and
uses an effective shake-and-grow heuristic to find near-optimal label placements.
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CHAPTER 1

INTRODUCTION

Cartography is an important application domain of the design and analysis of

computer algorithms. In maps and diagrams, feature objects such as points, lines,

and polygons are often annotated by textual or graphical labels to convey informa-

tion. Aesthetic standards and practical concerns demand that each label on the map

associates clearly and unambiguously with its feature object, that no labels overlap

or obscure the feature objects, and that all labels have large enough size to be legible

[24, 31, 20]. Manually labeling a map to meet these restrictive and often conflicting

requirements is a notoriously tedious task that takes about 50% of the total map

production time [32]. Since the 1970s, cartographers and computer scientists have

been interested in designing efficient computer algorithms to automate this task [46].

With the rapid growth of information to be visualized, the interest in map label-

ing automation algorithms has been steadily increasing. The ACM Computational

Geometry Impact Task Force report [6] identifies automated label placement as an

important research area in computational geometry [10]; a number of recent Ph.D.

theses [2, 14, 33, 19, 25, 43, 37, 39] are devoted to this topic.

Early research efforts on automating label placement experimented with a large

variety of heuristic methods such as force simulation [23], expert systems [3, 15], log-
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ical programming [28], mathematical programming [48], simulated annealing [7, 16],

and constraint satisfaction [42]. These heuristics may be very effective in practice, but

they seldom offer any theoretical guarantees on the quality of their label placements.

Theoretical computer scientists formulate the task of automated label placement

as a geometric optimization problem: Given a set of feature objects in the plane,

and a label to be placed near each object, the goal of Map Labeling is to label the

maximum number of objects with the maximum label size such that no labels overlap.

The two quality measures, the number of labeled objects and the label size, lead to

three different optimization goals:

Size: Maximize the label size such that all objects are labeled;

Number: Maximize the number of labeled objects with a given label size;

Bi-criteria: Maximize the number of labeled objects with a label size close to (not

necessarily equal to) a given size.

As a geometric optimization problem, Map Labeling is closely related to famous

NP-hard problems such as Maximum Independent Set [22] and Geometric Packing

[21]. When the objects are point sites and the labels are uniform squares tangent

to their respective sites, Map Labeling is NP-hard in general [20, 29] and admits

approximation algorithms that maximize either the label size [34, 35] or the number

of labeled points [1, 40, 41] or both [11, 47].

While textual labels can be conveniently modeled as axis-parallel rectangular
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boxes framing the texts, labels conveying graphic information are more suitably mod-

eled as circles. Furthermore, the circular shape, with its close relation to the Euclidean

metric in planar geometry, is the most natural label shape for the map labeling model

of sliding labels [40, 41], where each label is not restricted to a few pre-specified dis-

crete label positions but can slide continuously around its site while keeping tangent

to it. In this sliding model, a circular label always remains at the same distance to its

site as it slides around the site—this uniformity of label positions makes map labeling

with circular labels especially interesting for theoretical study. In this dissertation,

we study two hard computational problems motivated by map labeling with circular

labels, and focus on designing approximation algorithms and proving lower bounds

for the optimization goal of maximizing the label size such that all objects are labeled.

We study two closely related geometric problems: Map Labeling with Uniform

Circles (MLUC) and Map Labeling with Uniform Circle Pairs (MLUCP). We first

define the decision versions of the two problems:

Definition 1.1 (MLUC/MLUCP Decision Problems)

Instance: Given n point sites P = {P1, P2, . . . , Pn} in the plane, and a label size

r > 0.

MLUC: Is there a placement for n uniform open circles of radii r, one circle for each

input site Pi ∈ P, such that each site is on the boundary of its labeling circle and no

circles intersect?
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MLUCP: Is there a placement for 2n uniform open circles of radii r, two circles for

each input site Pi ∈ P, such that each site is on both boundaries of its two labeling

circles and no circles intersect?

Note that, by requiring each site to be on the boundary (boundaries) of its labeling

circle (circles), we enforce a clear association between the label and the site. We next

define the optimization versions of the two problems:

Definition 1.2 (MLUC/MLUCP Optimization Problems)

Instance: Given n point sites P = {P1, P2, . . . , Pn} in the plane.

MLUC: Find a placement for n uniform open circles of radii r, one circle for each

input site Pi ∈ P, such that each site is on the boundary of its labeling circle, no

circles intersect, and the label size r is maximized.

MLUCP: Find a placement for 2n uniform open circles of radii r, two circles for each

input site Pi ∈ P, such that each site is on both boundaries of its two labeling circles,

no circles intersect, and the label size r is maximized.

When the MLUC problem was first studied by Doddi et al. [11], they proposed

a 29.86-approximation for maximizing the label size such that all sites are labeled,

and a polynomial-time approximation scheme (PTAS) for the bi-criteria optimiza-

tion problem. For maximizing the number of labeled sites with a given label size,

Erlebach et al. [18] also presented a PTAS. Maximizing the label size such that all

sites are labeled seems to be the most difficult optimization goal for approximation
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algorithms, and it has attracted the most research effort. The initial approximation

factor of 29.86 was improved to 19.35 by Strijk and Wolff [38], who also proved the

NP-hardness of this problem. Later, Doddi et al. [12, 13] introduced the concept of

feasible region, and improved the approximation factor to 3.6 + ǫ. Still later, Jiang

et al. [27] presented a conceptually simple (3 + ǫ)-approximation. This was achieved

by proving a combinatorial lemma on labeling disjoint unit circles with points, and

by generalizing the concept of feasible region further to maximal feasible region. Re-

cently, Jiang et al. [26] presented a (2.98 + ǫ)-approximation for this problem; this

algorithm built on the important concept of maximal feasible region, and handled the

previous difficult cases with new algorithmic techniques.

The MLUCP problem was first studied by Zhu and Poon [47] as part of the

research effort in multi-label map labeling. They proposed a 2-approximation [47]

for maximizing the label size. This bound was subsequently improved to 1.96 [34],

1.686 [36], and 1.5 [44, 45]. Recently, Jiang et al. [26] designed a remarkably simple

(1.5+ǫ)-approximation for MLUCP using the concept of maximal feasible region, then

improved the approximation factor to 1.491 + ǫ with new algorithmic techniques.

For the hardness of approximation, Strijk and Wolff [38] proved that the MLUC

decision problem is NP-hard; their proof also implied that it is NP-hard even to

approximate the MLUC optimization problem (maximizing the label size) within

factor 1 + O(1/n). For the MLUCP optimization problem, a 1.37 inapproximability

result [34] was claimed (no details were given); it was later found to be actually
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1 + O(1/n). In the recent work of Jiang et al. [26], a completely new reduction was

designed to obtain the first nontrivial lower bound of 1.0349 for both MLUC and

MLUCP.

This dissertation focuses on our recent theoretical work on MLUC and MLUCP.

We organize the rest of this dissertation as follows: In Chapter 2, we introduce some

preliminary concepts. In Chapter 3, we present our approximation algorithms for

MLUC. In Chapter 4, we present our approximation algorithms for MLUCP. In

Chapter 5, we present our NP-hardness and inapproximability results for MLUC and

MLUCP. In Chapter 6, we present an efficient MLUC implementation based on our

approximation algorithms with additional heuristics. In Chapter 7, we conclude the

dissertation.
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CHAPTER 2

PRELIMINARIES

In this chapter, we introduce some preliminary concepts used by our approxima-

tion algorithms: maximal feasible region, distance graph, and 3-diameter.

We first define a few common terms: A unit circle is a circle of unit radius. The

distance between a circle and a point is the distance between the circle center and the

point; the distance between two circles is the distance between the two circle centers.

Two sites interfere each other if their labels intersect. An approximation algorithm

A for a maximization problem Π has a performance guarantee ρ > 1 if, for every

instance I of Π, the solution of A has a value that is at least 1/ρ of the optimal value

for I; the factor ρ is also called the approximation factor of A.

Maximal Feasible Region

In the MLUC problem, a site can be anywhere on the boundary of its labeling

circle; from a different perspective, the circle slides around the site while keeping

tangent to it; or, the site is a fixed pivot on the boundary of the circle, and the circle

rotates around the site. The position of a circle, given its radius, is determined by its

direction: the vector from the site to the circle center. If a circle contains a site in its

interior, then it always intersects the circle of the contained site; therefore, a circle
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at a feasible position contains no sites in its interior. As a circle rotates continuously

from one feasible position to another, the corresponding direction vector sweeps a

cone, or, a feasible region. We consider only maximal feasible regions, in the sense

that no maximal feasible region is a proper subset of another feasible region; this

concept was introduced by Jiang et al. [27].

P
i

)

-

Figure 1. Maximal Feasible Regions.

We refer to Figure 1 for an example. With the label size as shown in the figure,

the maximal feasible regions for the site P include a cone and a single vector (a

degenerated cone).

Because a site is always on the boundary of its circle, which, at a feasible position,

contains no sites in its interior, each site is a closest site to its circle in a label

placement. Maximal feasible regions are naturally related to the Voronoi diagram:

the center of a labeling circle is within the Voronoi cell of its site if and only if the

circle is at a feasible position.
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The MLUCP problem can be considered as a special case of the MLUC problem

where each MLUCP site becomes two coinciding MLUC sites. To avoid overlapping,

the two circles of each site must always be labeled in opposite directions, and the site

is at the midpoint of its two circle centers. The concept of maximal feasible region

can be defined also for MLUCP, but we first need to prove a circle packing property

stated in the following lemma.

Lemma 2.1 Given three disjoint unit circles and one point on the boundary of each

circle, if two points have distance d ≤
√

3 − 1, then the distance from the third point

to the two points is at least D(d) =
√

5 − 4 cos(π
3
− φ) − 1, where φ = cos−1 5−(1+d)2

4
.

φ

A

B C

X

Y Z

Figure 2. A Circle Packing Property.

Proof. We refer to Figure 2. Points X, Y , and Z are on the boundaries of three

circles centered at A, B, and C, respectively. Y and Z have distance d ≤
√

3 − 1.

Without loss of generality, we assume that XY < XZ, that is, the distance between

points X and Y is smaller than the distance between points X and Z. We show that
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XY has the lower bound D(d).

Imagine that a spring connects X and Y , and that a rigid rod of length d connects

Y and Z. The three circles may not intersect but can move freely otherwise. When

the spring shrinks till XY reaches the minimum, the three points A, X, and Y become

collinear; the three points C, Z, and Y become collinear; and the three circles are

tightly packed in an equilateral triangular formation.

In △Y BC, BY = 1, BC = 2, Y C = 1 + d, and 6 Y BC = φ. Therefore, we have

φ = cos−1 BY 2 + BC2 − Y C2

2 · BY · BC
= cos−1 5 − (1 + d)2

4
.

For d ≤
√

3 − 1, we have φ ≤ π
3
.

In △Y BA, BY = 1, BA = 2, AY = 1 + D(d), 6 ABY = π
3
− φ. A similar

calculation shows that

D(d) =

√

5 − 4 cos
(

π

3
− φ

)

− 1.

⊓⊔

The function D(d) is monotonically decreasing in [0,
√

3 − 1]; it achieves the

maximum
√

3− 1 at d = 0, and the minimum 0 at d =
√

3− 1. For completeness, we

define D(d) = 0 for d >
√

3 − 1. A calculation shows that the equation

D(d) = d (2.1)

has solution d0 ≃ 0.24 <
√

3 − 1. For any distance d such that 0 ≤ d < d0, the

decreasing property of function D(d) guarantees that D(d) > d. This implies the

following corollary.
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Corollary 2.1 If an MLUC instance with unit label size has a label placement, then

each site in the instance has at most one neighbor within distance d0.

We are now ready to define maximal feasible region for MLUCP, which is implied

by the following corollary.

Corollary 2.2 In an MLUCP instance with unit label size, the two circles of a site

labeled at a feasible position have distances at least
√

3 to the other sites.

In the MLUC problem, maximal feasible regions based on the classic definition

[27] exclude obviously infeasible label positions where the circles contain other sites

in their interiors. The following corollary, also immediate from Lemma 2.1, defines

more restricted maximal feasible regions that exclude a broader range of infeasible

positions.

Corollary 2.3 In an MLUC instance with unit label size, the circle of a site labeled

at a feasible position has distance at least D(PQ) + 1 to any two other sites P and

Q in the instance.

We now revise our definitions of feasible position and maximal feasible region for

MLUC based on Corollary 2.3. We use the term revised maximal feasible region to

distinguish this new concept with the classic maximal feasible region. As we will see

later, this concept of revised maximal feasible region is crucial for our improvement

of the approximation factor for MLUC from 3 + ǫ to 2.98 + ǫ.



12

Distance Graph

Given a set P of point sites and a threshold distance d, we define the distance

graph GP(d) to be the graph where each site is represented by a vertex, and where

an edge connects two vertices if and only if their corresponding sites have distance

less than d. We use the abbreviated notation G(d) when the set of sites is clear from

context.

When the set P of sites has a label placement with a label size larger than

the threshold distance d, the distance graph GP(d) has an interesting combinatorial

property. This important property was discovered by Jiang et al. [27] (Lemma 1); we

rephrase it here using the concept of distance graph.

Lemma 2.2 Given P, a set of sites labeled with disjoint unit circles, and a threshold

distance 1 − δ, where 0 < δ < 1, the maximum size of a connected component in the

distance graph GP(1 − δ) is bounded by a constant O(1/δ2).

For the proof of this property, we first observe that every simple path in the

distance graph G(1 − δ) has length bounded by O(1/δ). An extreme case happens

when the path has unit edge lengths, and each site is labeled by a unit circle directed

to alternating side along the path; as shown in Figure 3(a), this path can be infinitely

long. If we shrink the edge lengths from 1 to 1 − δ, as shown in Figure 3(b), while

keeping the circles at the same size, every circle has to rotate a little to compensate

for the lost space of δ between consecutive sites. Since the rotation adjustment is
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-�

(a)

-�

(b)

Figure 3. From 1 to 1 − δ.

accumulative, a simple calculation shows that the path can only contain O(1/δ) sites.

The O(1/δ2) bound follows immediately by an area argument. We refer to Fig-

ure 4. Take an arbitrary site from a connected component; every other site in the

component is within distance O(1/δ) from this site, since every other site is connected

to this site by a simple path of length O(1/δ). All the unit circles labeling the sites of

the component are enclosed in a large circle of radius O(1/δ). Since each disjoint unit

circle occupies at least a constant area of the large circle, there are at most O(1/δ2)

unit circles labeling O(1/δ2) sites in the connected component. (A tighter bound of

O(1/δ) for the connected component size was recently proved by Bereg [4].)
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Figure 4. From 1/δ to 1/δ2.

As we will see later, Lemma 2.2 provides a natural way for us to apply the

divide-and-conquer strategy in our approximation algorithms: first divide the sites

into components of manageable size, next obtain a label placement independently

within each component, then combine the partial results for all components to obtain

a complete label placement.

3-Diameter

Given three sites X, Y , and Z, we define their 3-diameter D3(X, Y, Z) as the

maximum value among the three distances XY , Y Z, and ZX. For a set P of at least

three sites, its 3-diameter D3(P) is the smallest value of the 3-diameter among all

size-3 subsets of P. We use the simpler notation D3 instead of D3(P) when there is
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Figure 5. R∗ ≤ (2 +
√

3)D3.

no ambiguity. We have the following lemma about the 3-diameter.

Lemma 2.3 Given an MLUC instance of at least three sites, the optimal label size

R∗ satisfies D3/8 ≤ R∗ ≤ (2 +
√

3)D3.

Proof. Given three sites with a fixed 3-diameter, their uniform label size reaches the

maximum in the label placement where both the three sites and their three circles

are arranged in equilateral triangular formations as shown in Figure 5. From this

extreme case, a calculation shows that R∗ ≤ (2 +
√

3)D3.

To prove that R∗ ≥ D3/8, we construct a label placement by labeling each site

with label size D3/8 in the opposite direction to its nearest neighbor (if it has two

or more nearest neighbors, choose one arbitrarily). We refer to Figure 6. Take an

arbitrary site P from P, and draw a dashed circle of radius D3/2 and a dotted circle

of radius D3/4 centered at P .

For those sites outside the dashed circle, their labeling circles can never intersect
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Figure 6. R∗ ≥ D3/8.

the labeling circle of P , since their labeling circles, of radii D3/8, are always outside

the dotted circle, while the labeling circle of P stays inside regardless of its direction.

Furthermore, we observe that P has at most one neighbor Q within distance D3/2 (in

the dashed circle); otherwise there will be three sites in the dashed circle of diameter

D3, contradicting our definition of the 3-diameter. By labeling P in the opposite

direction to Q and, symmetrically, labeling Q in the opposite direction to P , we can

ensure that their two labeling circles do not intersect. ⊓⊔
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CHAPTER 3

APPROXIMATIONS FOR MLUC

In this chapter, we present two approximation algorithms for MLUC. We first

present a simple (3 + ǫ)-approximation algorithm, then present a more sophisticated

(2.98 + ǫ)-approximation algorithm.

(3 + ǫ)-Approximation for MLUC

Our first approximation algorithm for MLUC achieves approximation factor 3+ǫ,

where the tunable parameter ǫ is a positive constant that can be arbitrarily close to

zero.

Let R∗ be the optimal label size. Lemma 2.3 suggests that R∗ is in the range

[R−, R+], where R− = D3/8 and R+ = (2 +
√

3)D3. Given the parameter ǫ, our

algorithm finds a label placement with label size at least R∗

3+ǫ
by a binary search. The

binary search has range [R−, R+] and minimum interval δR−, where δ = ǫ
2(3+ǫ)

, and

employs a decision procedure that, given a tentative label size r, either decides that r

exceeds R = (1− δ)R∗ and aborts, or finds a label placement with label size r
3
. When

the binary search converges, we have a label placement with label size

r

3
≥ (1 − δ)R∗ − δR−

3
≥ (1 − 2δ)R∗

3
=

R∗

3 + ǫ
.

We now describe the decision procedure.
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1. Compute the distance graph G(r) and group the sites into components cor-

responding to the connected components in G(r). If the size of the largest

component exceeds the bounding constant O(1/δ2), abort.

2. With label size r, first compute the maximal feasible regions for all sites, then

label each component independently (ignoring possible interferences from other

components):

(a) Partition the maximal feasible regions of each site into cones of maximum

angle θδ, where θδ =
d2

0

16
δ.

(b) If any site has more than one neighbor within distance d0r, abort. If two

sites P and Q have distance less than d0r, and if a cone C of P contains an

internal (non-boundary) vector ~v in the opposite direction to a boundary

vector of a cone of Q, divide C into two smaller cones along ~v.

(c) Limit the label direction of each site to the boundary vectors of its cones.

Enumerate all possible combinations to find a label placement for this

component. If no label placement can be found, abort.

3. Shrink each circle to radius r
3
.

The correctness of step 1 of the decision procedure is immediate from Corol-

lary 2.2. It remains to prove that, if r ≤ R, then step 2 always finds a partial label

placement within each component, and step 3 always transforms the output of step 2
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into a complete label placement for all sites.

We first prove the following lemma.

Lemma 3.1 Given two sites of distance d and labeled by two disjoint unit circles,

the two circles can shrink to radii 1 − δ, where 0 < δ < 1, then rotate independently

for an angle up to θ = d2

16
δ, either clockwise or counterclockwise, without intersecting

each other.

Proof. Let P and Q be the two sites. The two circles labeling P and Q are centered at

A and B before shrinking, and at C and D after shrinking. Without loss of generality,

we assume that the two circles are tangent before shrinking.

P

A

C

Q

B

D

Figure 7. Shrink and Rotate (1).

We refer to Figure 7. We have PQ = d, PA = QB = 1, AC = BD = δ,

and AB = 2. Let γ = max{ 6 PAB, 6 QBA}. It is easy to see that γ reaches the

minimum 2 sin−1 d
4

when the midpoint of AB coincides with the midpoint of PQ.
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Assume that γ = 6 PAB. The distance between C and B along AB is at least

AB − AC cos γ = 2 − δ cos γ, so we have

CD ≥ CB − BD ≥ (2 − δ cos γ) − δ.

The two small circles of radii 1 − δ at C and D are disjoint and separated by a gap

of at least

g = CD − 2(1 − δ) ≥ (2 − δ cos γ − δ) − 2(1 − δ) = δ(1 − cos γ).

Each small circle can rotate for an angle g/2 without closing the gap, so we have

θ =
δ

2

(

1 − cos

(

2 sin−1 d

4

))

=
d2

16
δ.

⊓⊔

We now prove the correctness of step 2.

Lemma 3.2 If r ≤ R, then the brute-force search in step 2 always finds a label

placement for each component.

Proof. We prove the lemma by construction. Given any continuous label placement

L with label size R∗, we construct a discrete label placement L′ with label size R

that is included in the search space of step 2.

Since R = (1 − δ)R∗ < R∗, each radius-R∗ circle in L is directed in one of the

cones that comprise the maximal feasible regions of its site at label size R. To obtain

L′, we simply shrink each circle in L to radius R, then relabel it along one of the two

boundary vectors of its cone.
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If a site has distance at least d0r to its nearest neighbor, we choose either boundary

vector arbitrarily. The angle between the circle’s original continuous direction in L

and its discrete direction in L′ is bounded by the maximum cone angle. Lemma 3.1

implies that, with a rotation angle at most θδ =
d2

0

16
δ, there is no intersection.

If a site has distance less than d0r to its nearest neighbor, then according to

Corollary 2.1 all the other sites are at least distance d0r away from the two sites and

do not interfere them. To label these two sites, we examine the four candidate pairs

of boundary vectors of their two cones. If the two cones have a pair of opposing

boundary vectors, we label the two sites along the opposing vectors. Otherwise, the

two cones must have no opposing vectors at all (not even opposing internal, or, non-

boundary, vectors) because of the dividing vectors in step 2b. In this case we choose

the pair of boundary vectors with the largest spreading angle. ⊓⊔

We next prove the correctness of step 3, that is, if r ≤ R, then step 3 always trans-

forms the output of step 2 into a complete label placement for all sites. In particular,

we need to show that the non-intersection within each component is maintained, and

that the possible interferences between different components are eliminated.

Lemma 3.3 If r ≤ R, then step 3 obtains a label placement for all sites.

Proof. Since the circles shrink without changing label directions, the non-intersection

within each component is clearly maintained. We consider two sites P and Q from

different components. The fact that P and Q are not in the same component implies
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O

P Q

Figure 8. From r to r/3.

that the distance PQ is at least the threshold distance r. Before step 3, both P and

Q are labeled in their respective maximal feasible regions with label size r. In the

worst case, the two circles of P and Q coincide and are tangent to both P and Q; as

shown in Figure 8, the three points P , Q, and the circle center O are in an equilateral

triangular formation. A calculation shows that the two circles become tangent after

shrinking to radii r
3
. ⊓⊔

We have proved the correctness of the decision procedure. Together with our

earlier analysis of the binary search, this result immediately implies that our algorithm

does achieve an approximation factor of 3 + ǫ. We next analyze the running time of

our algorithm.

To speed up the computation, we use a preprocessing step before the binary

search to identify the 15 nearest neighbors of each site for all sites in O(n log n) time

[9, 17]. With the nearest neighbors precomputed, we can compute D3 in linear time,
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as implied by the following lemma, and determine the range and interval of the binary

search.

Lemma 3.4 Given three sites O, P , and Q in P, if D3(O, P, Q) = D3(P), then O

must have two sites X and Y among its six nearest neighbors such that D3(O, X, Y ) =

D3(P).

Proof. Denote D3 = D3(P). We clearly have OP ≤ D3 and OQ ≤ D3, that is, both

P and Q are within distance D3 to O. If O has at most six neighbors within distance

D3, then both P and Q are among the six nearest neighbors of O.

Suppose that O has at least six neighbors within distance D3. We can always

find two sites X and Y from its six nearest neighbors such that 6 XOY ≤ 360◦

6
= 60◦.

Since we have OX ≤ D3 and OY ≤ D3, this implies that XY ≤ D3. Therefore we

must have D3(O, X, Y ) = D3. ⊓⊔

With the nearest neighbors precomputed, we can also compute the distance graph,

the connected components, and the maximal feasible regions for all sites in linear time,

as implied by the following lemma.

Lemma 3.5 If an MLUC instance with label size r has a label placement, then each

site in the instance has at most 15 neighbors within distance 2r.

Proof. Both a site and its neighbors within distance 2r have their circles of radii

r completely enclosed in a large circle of radius 4r centered at the site. A simple

packing argument completes the proof. ⊓⊔
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Given an MLUC instance with label size r, the maximal feasible regions of each

site are restricted only by its neighbors within distance 2r. Lemma 3.5 implies that we

can compute the maximal feasible regions of each site considering only its 15 nearest

neighbors. To compute the connected components in the distance graph, it is also

sufficient to consider only the edges between each site and its 15 nearest neighbors,

because we have the threshold distance r < 2r. Let d15(P ) be the distance from a

site P to its 15th nearest neighbor in P, and denote d∗
15 = min{d15(P ) | P ∈ P}.

Lemma 3.5 implies that R∗ ≤ d∗
15/2. With the nearest neighbors precomputed, we

can compute d∗
15 in linear time and ensure that the upper bound of the binary search

does not exceed d∗
15/2.

In each run of the decision procedure, all computation except the brute-force

search in step 2 takes only linear time with the nearest neighbors precomputed. The

brute-force search takes O(1/ǫ)O(1/ǫ2) time for each component because each compo-

nent contains at most O( 1
δ2 ) = O( 1

ǫ2
) sites and each site has O( 1

θδ

) = O(1
δ
) = O(1

ǫ
)

discrete label positions. There are at most n components; the binary search calls the

decision procedure at most

log
R+ − R−

δR− = O
(

log
1

δ

)

= O
(

log
1

ǫ

)

times. Therefore the overall complexity of the binary search is

O

(

n
(

1

ǫ

)O(1/ǫ2)

log
1

ǫ

)

= O

(

n
(

1

ǫ

)O(1/ǫ2)+1
)

= O

(

n
(

1

ǫ

)O(1/ǫ2)
)

.

In summary, we have the following theorem.
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Theorem 3.1 Our algorithm approximates MLUC with factor 3 + ǫ and runs in

O(n log n + n(1/ǫ)O(1/ǫ2)) time.

A A′

B

C

D

E

F

O

Figure 9. An Example of Seven Circles.

With the classic concept of maximal feasible region, it is difficult to improve the

approximation factor 3 + ǫ further. We refer to Figure 9. The unit circle centered

at O has six sites A, B, C, D, E, and F on its boundary in a regular hexagonal

formation. A′ is another site outside the circle and is very close to A. In our (3 + ǫ)-

approximation algorithm, these seven sites are grouped into six different components

at unit threshold distance, and each component is labeled independently. A and A′

are in the same component and have to be labeled along vectors
−→
AO and

−−→
OA′ since

this is the only choice in their maximal feasible regions. If B, C, D, E, and F

are labeled along
−−→
OB,

−→
OC,

−−→
OD,

−−→
OE, and

−→
OF , respectively, we can obtain a label

placement with unit label size. However, the vectors
−−→
BO,

−→
CO,

−−→
DO,

−−→
EO, and

−→
FO,
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respectively, are feasible positions of B, C, D, E, and F ; in the worst case these sites

may be labeled along these vectors. When the label size shrinks to 1
3
, we still obtain

a label placement, but there is no room for the circles to grow larger. If we can label

some sites, say, B and F , along
−−→
OB and

−→
OF instead, then we will have more space

for the other sites to maneuver. This is exactly the idea behind our new concept of

revised maximal feasible region: B and F are near some closely-clustered sites (A

and A′), so their feasible regions should be more restricted.

(2.98 + ǫ)-Approximation for MLUC

Our improved algorithm achieves approximation factor c + ǫ, where c = 2.98.

Similar to the (3+ ǫ)-approximation algorithm, our algorithm finds a label placement

with label size at least R∗

c+ǫ
by a binary search with a decision procedure. The binary

search has range [R−, R+] and minimum interval δR−, where δ = ǫ
2(c+ǫ)

. The decision

procedure, given a tentative label size r, either decides that r exceeds R = (1− δ)R∗

and aborts, or finds a label placement with label size r
c
. When the binary search

converges, we have a label placement with label size

r

c
≥ (1 − δ)R∗ − δR−

c
≥ (1 − 2δ)R∗

c
=

R∗

c + ǫ
.

The decision procedure of our (2.98+ ǫ)-approximation is almost identical to that

of the (3 + ǫ)-approximation except that revised maximal feasible regions are used

instead of classic maximal feasible regions, and that an advanced rotation technique is
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used in the third step. We now describe the third step of the new decision procedure:

3. (a) Compute the distance graph G(dcr), where dc =
√

4 − ( c2−3
c

)2 ≃ 0.326, and

group the sites into clusters corresponding to the connected components

in G(dcr). (We call them clusters to avoid confusion with the components

defined in step 1.) If a cluster contains only one site, we call it a single-site

cluster ; otherwise, a multi-site cluster.

(b) Shrink each circle to radius r
c
. For each single-site cluster, rotate its cir-

cle clockwise for an angle α = cos−1 c2−3
2c

≃ 9.37◦. If the resulting label

placement has intersection, abort.

The correctness of the first two steps of the decision procedure is already proved

in the previous section. We still need to prove the correctness of step 3, that is,

if r ≤ R, then step 3 always transforms the output of step 2 into a complete label

placement for all sites. In particular, we need to show that the non-intersection within

each component is maintained, and that the possible interferences between different

components are eliminated.

We need to prove the following lemma first.

Lemma 3.6 Given two sites of distance d > dc and labeled with two disjoint unit

circles, the two circles can shrink to radii 1
c
, then rotate independently for an angle

up to θ = cos−1 dc

4
− cos−1 cdc

4
, without intersecting each other.

Proof. This is a stronger form of Lemma 3.1. Let P and Q be the two sites. The
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two circles labeling P and Q are centered at A and B before shrinking, and at C

and D after shrinking and rotation. Without loss of generality, we assume that the

two circles are tangent both before and after the shrinking and rotation. We have

PQ = d, PA = QB = 1, AB = 2, PC = QD = 1
c
, and CD = 2

c
.

A B

C D

P Q
(a)

A

B

C

D

P

Q

(b)

Figure 10. Shrink and Rotate (2).
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We refer to Figure 10 for the two extreme cases. If the two circles rotate in

opposite directions, then the configuration in Figure 10(a) is the worst case that

gives the minimum rotation angle

θ1 = sin−1

(

1 − d

2

)

− sin−1

(

1 − cd

2

)

.

If the two circles rotate in the same direction, then the configuration in Figure 10(b)

is the worst case that gives the minimum rotation angle

θ2 = cos−1 d

4
− cos−1 cd

4
.

We prove that θ2 ≤ θ1, which is equivalent to

cos−1 d

4
− sin−1

(

1 − d

2

)

≤ cos−1 cd

4
− sin−1

(

1 − cd

2

)

.

This reduces to proving that

d

dx
f(x) ≥ 0 for

d

4
≤ x ≤ cd

4
,

where

f(x) = cos−1 x − sin−1(1 − 2x).

Here is the proof:

d

dx
(cos−1 x − sin−1(1 − 2x)) ≥ 0

d

dx
cos−1 x ≥ d

dx
sin−1(1 − 2x)

−1√
1 − x2

≥ −2
√

1 − (1 − 2x)2

4(1 − x2) ≥ 1 − (1 − 2x)2

x ≤ 1
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To see why the last inequality is satisfied, we note that, to impose any restriction

on the rotation angles after the shrinking, we must have d ≤ 4
c
, that is, the distance

between the two sites must be at most four times the circle radius; on the other hand,

we only need to prove the inequality for d
4
≤ x ≤ cd

4
. ⊓⊔

We now show that the non-intersection within each component is maintained.

Lemma 3.7 If r ≤ R, then step 3 maintains the non-intersection within each com-

ponent.

Proof. The circles labeling multi-site clusters do not rotate after shrinking, so there

is no interference between multi-site clusters in the same component. A site from a

single-site cluster is at least distance dc away from its nearest neighbor in the same

component; its circle shrinks to radius r
c

and rotates for an angle α = cos−1 c2−3
2c

.

Lemma 3.6 guarantees that this rotation causes no intersection because dc is the

solution to the following equation:

cos−1 c2 − 3

2c
= cos−1 dc

4
− cos−1 cdc

4
. (3.1)

We show that dc is indeed the solution:

cos−1 c2 − 3

2c
= cos−1 d

4
− cos−1 cd

4
.

c2 − 3

2c
=

d

4

cd

4
+

√

√

√

√

(

1 − d2

16

)(

1 − c2d2

16

)

(

c2 − 3

2c
− cd2

16

)2

=

(

1 − d2

16

)(

1 − c2d2

16

)

(

c2 − 3

2c

)2

− c2 − 3

16
d2 +

c2d4

256
= 1 − c2 + 1

16
d2 +

c2d4

256
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1

4
d2 = 1 −

(

c2 − 3

2c

)2

d =

√

√

√

√4 −
(

c2 − 3

c

)2

The last equation exactly matches our definition for dc. ⊓⊔

We next show that the interferences between different components are eliminated.

We examine two cases in the following two lemmas.

O

O′

P Q

S
T

T ′

αα

Figure 11. Interferences Between Single-site Clusters.

Lemma 3.8 If r ≤ R, then step 3 eliminates interferences between single-site clusters

from different components.

Proof. We refer to Figure 11. Sites P and Q are from two single-site clusters of

different components. PQ = e ≥ r; OP = OQ = O′P = O′Q = r.
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One extreme case happens when PQ = r and when P and Q are labeled along

−→
PO and

−→
QO before the rotation. Even in this extreme case, the two circles do not

intersect after shrinking to radii r
3
, as we have shown in our (3 + ǫ)-approximation.

To improve the approximation factor, we observe that, if both circles rotate in the

same direction for an angle α, a gap will appear between them, which allows both

circles to grow a little larger, from radii r
3

to radii r
c
, without causing intersection.

Indeed, the α-rotation in our algorithm is motivated by this observation.

Let 6 OPQ = 6 OQP = 6 O′PQ = 6 O′QP = β. We have

β = cos−1 e

2r
.

The two circles centered at S and T have coordinates:

(

r

c
cos(β − α),

r

c
sin(β − α)

)

and
(

e − r

c
cos(β + α),

r

c
sin(β + α)

)

.

It follows that

ST =
e

c

√
c2 − 2c cosα + 1.

Since e ≥ r and α = cos−1 c2−3
2c

, a calculation shows that ST ≥ 2r
c
. In fact, the

parameter α is deliberately defined as such in order to eliminate the interference in

this case.

Another extreme case happens when Q is labeled along
−−→
QO′ instead before the

rotation. By symmetry, we only need to show that the circle centered at S does not

include the midpoint of PQ. This leads to the constraint 6 SPQ ≥ γ, where

γ = cos−1 ce

4r
.
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Because we also have 6 SPQ = β − α, we need to show that α + γ ≤ β. Here is the

proof:

α + γ ≤ β

cos(α + γ) ≥ cos β

cos α cos γ − cos β ≥ sin α sin γ

c2 − 3

2c

ce

4r
− e

2r
≥

√

1 − (c2 − 3)2

4c2

√

1 − c2e2

16r2

(c2 − 3)ce − 4ce ≥
√
−c4 + 10c2 − 9

√
16r2 − c2e2

(c2 − 7)2c2e2 ≥ (−c4 + 10c2 − 9)(16r2 − c2e2)

(c4 − 14c2 + 49)c2e2 + (−c4 + 10c2 − 9)c2e2 ≥ (−c4 + 10c2 − 9)16r2

4(10 − c2)c2e2 ≥ (10 − c2)c216r2 − 144r2

(10 − c2)c2

(

4 − e2

r2

)

≤ 36

Because e ≥ r, we have 4 − e2

r2 ≤ 3. The last inequality reduces to (10 − c2)c2 ≤ 12,

which is confirmed by calculation. ⊓⊔

To satisfy Lemma 3.8, we need a constant rotation angle α ≥ cos−1 c2−3
2c

for any

constant factor c < 3. On the other hand, the maximum safe rotation angle at each

site is determined by the distance d from the site to its nearest neighbor. According

to Lemma 3.6, we must have α ≤ cos−1 d
4
− cos−1 cd

4
(note that limd→0 α = 0). As a

compromise of these two conflicting constraints, we choose the threshold distance dc

to be the solution of Equation (3.1), and handle the difficult case of multi-site clusters
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differently from single-site clusters.

Lemma 3.9 If r ≤ R, then step 3 eliminates inter-component interferences involving

multi-site clusters.

OO′

P Q

SS ′ T

α

Figure 12. Interferences Involving Multi-site Clusters.

Proof. We refer to Figure 12. Sites P and Q are from two different components;

Q is from a multi-site cluster. PQ = e ≥ r, OP = OQ = O′P = r, and O′Q =

(D(dc) + 1)r. In the worst case, Q’s circle (centered at T ) is labeled along
−→
QO,

P ’s circle (centered at S ′) is labeled along
−−→
PO′ (because of our definition of revised

maximal feasible region) and rotates from
−−→
PO′ for an angle α toward Q (its center

moves from S ′ to S). We show that P and Q do not interfere even in this worst case,

that is, ST ≥ 2r
c
. To simplify the analysis, we prove a stronger claim: let Dx(X, Y )

denote the distance along PQ between points X and Y ; we show that Dx(S, T ) ≥ 2r
c
.

Let β = 6 O′PQ. S ′S is parallel to PQ when β = π
2

+ α
2
. We first consider the
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case when β ≥ π
2

+ α
2
. In this case, we have

Dx(P, S) ≤ r

c
sin

α

2
.

Since we also have

Dx(P, T ) = e − e

2c
≥ r − r

2c
,

it follows that

Dx(S, T ) = Dx(P, T ) − Dx(P, S)

≥ r − r

2c
− r

c
sin

α

2

≥ 2r

c
.

The last inequality is confirmed by calculation.

We next consider the case when β < π
2

+ α
2
. Dx(S, T ) is a function of e. As e

increases, β becomes smaller, and segment S ′S tilts farther away from the horizontal

position; this implies that

d

de
Dx(S

′, S) ≤ 0.

We know that

Dx(P, S ′) =
r

c
cos β =

r2 + e2 − (D(dc) + 1)2r2

2ce
;

therefore we have

d

de
Dx(P, S ′) =

1

2c
+

(D(dc) + 1)2 − 1

2c
· r2

e2

≤ 1

2c
+

(
√

3 − 1 + 1)2 − 1

2c

=
3

2c
.
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We also know that

Dx(P, T ) = e − e

2c
;

therefore we have

d

de
Dx(P, T ) = 1 − 1

2c
.

Combining all the pieces, we have

d

de
Dx(S, T ) =

d

de
Dx(P, T ) − d

de
Dx(P, S ′) − d

de
Dx(S

′, S)

≥ 1 − 1

2c
− 3

2c

> 0.

The inequality above implies that the worst case happens when e = r. In this

worst case, we have

Dx(S, T ) = Dx(P, T ) − Dx(P, S) = r − r

2c
− r

c
cos(β − α),

where

β = cos−1 PO′2 + PQ2 − O′Q2

2 · PO′ · PQ
= cos−1 2 − (D(dc) + 1)2

2
.

The equation Dx(S, T ) = 2r
c

simplifies to

cos(β − α) = c − 5

2
. (3.2)

To ensure Dx(S, T ) ≥ 2r
c

in this worst case, we choose the parameter c = 2.98 to

be an approximate solution to Equation (3.2). Note that the two other important

parameters, α and dc, are closely related to c according to Equation (3.1) (Page 31).
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Due to the complexity of these two equations, we have to resort to a computer program

to search for the solution instead of solving the equations explicitly. ⊓⊔

The proof of Lemma 3.9 also explains why the revised maximal feasible region

needs to be introduced in place of the classic maximal feasible region. It is exactly

the difference between the two regions, the cone 6 O′PO in Figure 12, that allows us

to handle the difficult case of multi-site clusters.

The running time analysis of our (2.98 + ǫ)-approximation algorithm is similar

to that of our (3 + ǫ)-approximation algorithm. In summary, we have proved the

following theorem.

Theorem 3.2 Our algorithm approximates MLUC with factor 2.98 + ǫ and runs in

O(n log n + n(1/ǫ)O(1/ǫ2)) time.
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CHAPTER 4

APPROXIMATIONS FOR MLUCP

In this chapter, we present approximation algorithms for MLUCP. We first show

a very simple algorithm that achieves a 1.5-approximation, then present a more so-

phisticated (1.491 + ǫ)-approximation algorithm.

(1.5 + ǫ)-Approximation for MLUCP

We first show a very simple algorithm for MLUCP that achieves a (1.5 + ǫ)-

approximation. Again, our algorithm is based on a binary search with a decision

procedure. The decision procedure, given tentative label size r, either decides that r

exceeds R∗ and aborts, or finds a label placement with label size 2
3
r:

1. Compute maximal feasible regions for all sites at label size r. If any two sites

have distance less than 2r, or if any site has no feasible position, abort; oth-

erwise, label each site with a circle pair of radii 2
3
r in an arbitrary feasible

position.

The following lemma claims the correctness of the decision procedure.

Lemma 4.1 If r ≤ R∗, then the decision procedure always finds a label placement

with label size 2
3
r.
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Figure 13. At Least 2r Between MLUCP Sites.

P Q

S ′ T ′

S T

Figure 14. From r to 2r/3.

Proof. We refer to Figure 13. The solid and dashed circle pairs have radii r, and

each labels a site. The large dotted circle has radius 2r and is centered at the site

labeled with the solid circle pair; the two small dotted circles have radii
√

3r and are

concentric with the two solid circles. All neighbors of the solid site must be outside

the union of the three dotted circles; therefore, any two sites must have distance at

least 2r.

To show that the radii-2
3
r labels do not intersect as long as all sites are labeled



40

in feasible positions, we refer to Figure 14 for the extreme case. Sites P and Q have

distance 2r. The two circles centered at S and T are from the two circle pairs labeling

P and Q. S ′P = T ′Q = r, SP = TQ = 2
3
r, and S ′Q = T ′P =

√
3r. Corollary 2.2

implies that, in the worst case, the labels of P and Q are directed along PS ′ and

QT ′, respectively. Even in this worst case, a calculation shows that ST = 4
3
r; the two

radii-2
3
r circles centered at S and T do not intersect. ⊓⊔

Similar arguments as in the previous chapter show that a binary search on the

decision procedure yields a (1.5 + ǫ)-approximation algorithm. After the initial

O(n log n) time on preprocessing, each run of the decision procedure takes only linear

time. The binary search takes O(log 1
ǫ
) steps. The total running time of our algorithm

is therefore O(n log n + n log 1
ǫ
). In summary, we have the following theorem.

Theorem 4.1 Our algorithm approximates MLUCP with factor 1.5 + ǫ and runs in

O(n log n + n log 1
ǫ
) time.

(1.491 + ǫ)-Approximation for MLUCP

Our (1.491 + ǫ)-approximation algorithm also uses a binary search on a decision

procedure; in fact it is almost identical to our (1.5+ǫ)-approximation algorithm except

that the more sophisticated rotation technique is used in the decision procedure, as

in our (2.98 + ǫ)-approximation algorithm for MLUC. We now describe the decision

procedure:
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1. Compute maximal feasible regions for all sites at label size r. If any two sites

have distance less than 2r, or if any site has no feasible position, abort; other-

wise, label each site with a circle pair of radii r
c
, where c = 1.491, in an arbitrary

feasible position, then rotate the circle pair clockwise for an angle α ≃ 8.89◦.

Note that the two parameters, c and α, are defined differently in the previous

chapter; we reuse them here without the risk of confusion.

The following lemma for MLUCP is analogous to Lemma 3.8 for MLUC.

Lemma 4.2 If r ≤ R∗, then the decision procedure always finds a label placement

with label size r
c
.

Proof. We refer to Figure 15 for the two extreme cases. Sites P and Q have distance

PQ = e ≥ 2r. The two circles centered at S and T are from the two circle pairs

labeling P and Q. S ′P = T ′Q = r, S ′Q = T ′P =
√

3r, SP = TQ = r
c
, 6 S ′PS =

6 T ′QT = α, and 6 S ′PQ = 6 T ′QP = β, where

β = cos−1 e2 − 2r2

2re
.

We need to show in both cases that ST ≥ 2r
c
.

We first consider the case of Figure 15(a). Since S and T have coordinates

(

r

c
cos(β − α),

r

c
sin(β − α)

)

and
(

e − r

c
cos(β + α),

r

c
sin(β + α)

)

,

we have

ST 2 = e2 +
4r2

c2
cos2 β − 4re

c
cos α cos β
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P Q

S
T

S ′ T ′

α α

(a)

P

Q

S

T

S ′

T ′

α

α

(b)

Figure 15. Interferences Between MLUCP Sites.

= e2 +
4r2

c2

(

e2 − 2r2

2re

)2

− 4re

c
cos α

e2 − 2r2

2re

=
(

1 +
1

c2
− 2

c
cos α

)

e2 +
4r4

c2

1

e2
− 4r2

c2
+

4r2

c
cos α

When e = 2r (assuming this is the worst case for now), we have

ST 2 =
(

1 +
1

c2
− 2

c
cos α

)

4r2 +
4r4

c2

1

4r2
− 4r2

c2
+

4r2

c
cos α

=
r2

c2
(4c2 − 4c cos α + 1).
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To ensure that ST ≥ 2r
c
, we must have

α ≥ cos−1 4c2 − 3

4c
. (4.1)

We next consider the case of Figure 15(b). S and T are symmetric. If ST ≥ 2r
c
,

then the distance from S to the midpoint of PQ must be at least r
c
. So we have the

constraint 6 SPQ ≥ γ, where

γ = cos−1 e/4

r/c
= cos−1 ce

4r
.

Since 6 SPQ = β − α, it follows that α ≤ β − γ. To bound α, we need to find the

minimum value of β − γ, which reduces to solving the equation d
de

(β − γ) = 0. We

have

cos β =
e2 − 2r2

2re
,

cos γ =
ce

4r
,

d

de
cos β = − sin β

d

de
β =

1

2r
+

r

e2
,

d

de
cos γ = − sin γ

d

de
γ =

c

4r
.

We now solve the equation d
de

(β − γ) = 0:

d

de
β =

d

de
γ

1

sin β

(

1

2r
+

r

e2

)

=
1

sin γ

(

c

4r

)

1

c

(

2 +
4r2

e2

)

=
sin β

sin γ

1

c2

(

2 +
4r2

e2

)2

=
1 − cos2 β

1 − cos2 γ
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1

c2

(

2 +
4r2

e2

)2

=
1 − e4−4r2e2+4r4

4r2e2

1 − c2e2

16r2

Substitute d = c2 and f =
e2

r2
:

1

d

(

2 +
4

f

)2

=
1 − f2−4f+4

4f

1 − df
16

4

d

(

1 +
2

f

)2

= 4
8f − f 2 − 4

16f − df 2

(

1 +
2

f

)2

(16f − df 2) = (8f − f 2 − 4)d

16f

(

1 +
2

f

)2

− (f + 2)2d = (8f − f 2 − 4)d

16f

(

1 +
2

f

)2

= (8f − f 2 − 4 + f 2 + 4f + 4)d

16f

(

1 +
2

f

)2

= 12fd

1 +
2

f
=

√
3d

2

1

f
=

√
3d − 2

4

r2

e2
=

√
3c − 2

4

e

r
=

2
√√

3c − 2

The constraint

α ≤ β − γ

= cos−1 e2 − 2r2

2re
− cos−1 ce

4r

= cos−1
e2

r2 − 2

2 e
r

− cos−1 ce

4r

simplifies to

α ≤ cos−1 λ2 − 2

2λ
− cos−1 cλ

4
, where λ =

2
√√

3c − 2
. (4.2)
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To satisfy both inequalities (4.1) and (4.2), we find an approximate solution to the

equation

cos−1 4c2 − 3

4c
= cos−1 λ2 − 2

2λ
− cos−1 cλ

4
, where λ =

2
√√

3c − 2

and determine c = 1.491 and α ≃ 8.89◦.

With our choices of c and α, a calculation shows that, for the case in Figure 15(a),

we have

d

de
ST 2 = 2

(

1 +
1

c2
− 2

c
cos α

)

e − 8r4

c2

1

e3

≥ 2
(

1 +
1

c2
− 2

c
cos α

)

2r − 8r4

c2

1

8r3

=
(

4 +
3

c2
− 8

c
cos α

)

r

≥ 0.

This implies that the worst case for the case of Figure 15(a) indeed happens when

e = 2r. ⊓⊔

We immediately have the following theorem.

Theorem 4.2 Our algorithm approximates MLUCP with factor 1.491 + ǫ and runs

in O(n logn + n log 1
ǫ
) time.
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CHAPTER 5

LOWER BOUNDS

In this chapter, we study the computational hardness of MLUC and MLUCP.

We first prove the NP-hardness of the MLUC and MLUCP decision problems, then

extend the proof to obtain a lower bound of 1.0349 for their optimization problems

for maximizing the label sizes.

NP-Hardness Results

We first show that the MLUCP decision problem is NP-hard. Our proof is

based on a polynomial-time reduction from the NP-hard Planar-3SAT problem [30]

to MLUCP.

The Planar-3SAT problem is to decide whether a given Planar-3SAT instance

is satisfiable. A 3SAT instance is Boolean formula in the form of a conjunction of

clauses, where each clause is a disjunction of exactly three Boolean literals. A Planar-

3SAT instance is a 3SAT instance with an additional graph property: the bipartite

graph associated with the instance, where each clause is represented as a clause vertex,

each variable as a variable vertex, and an edge connects a clause vertex to a variable

vertex if and only if a literal of the variable appears in the clause—this graph can be

embedded in the plane without crossing edges.
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Given an input Planar-3SAT instance, our reduction constructs an MLUCP deci-

sion problem instance that “simulates” the Planar-3SAT instance, that is, the input

Planar-3SAT instance is satisfiable if and only if the constructed MLUCP instance

has a label placement. Our MLUCP instances have unit label size and are built from

small groups of MLUCP sites called variable gadgets and clause gadgets.

Figure 16. Variable Gadget.

A variable gadget is a four-site cluster as shown in Figure 16. The four variable

sites in the cluster are placed in a square formation with side length av = 1 +
√

3.

There are exactly two ways to label the variable gadget with unit circle pairs, thereby

encoding the value of a Boolean variable.

A clause gadget is shown in Figure 17. Each clause has a clause circle C (the

dotted circle in the figure) centered at a clause site S, with three variable sites O, P ,

and Q on the boundary of C in an equilateral triangular formation. A variable site

X is labeled in a critical position if its two circles are directed along the line through

XS; a label position perpendicular to a critical position is a perpendicular position.
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O

P Q

S

(a)

O

P Q

S

(b)

Figure 17. Clause Gadget.

In our construction, the variable gadgets are connected to the clause gadgets in such

a way that every variable site on the clause circles has exactly two labeling choices,

either in a critical position or in a perpendicular position. To complete the description

of the clause gadget, we need to specify the radius of the clause circle, the choice of

which is restricted by the following lemma.

Lemma 5.1 In order to label a clause gadget, the radius of the clause circle must be

at least 3+
√

13
2

≃ 3.303 if exactly two variable sites on the clause circle are labeled in

critical positions, and at least 2+
√

3+
√

15
2

≃ 3.802 if all three variable sites are labeled

in critical positions.

Proof. We refer to Figure 17(a) for the case where P and Q are labeled in critical

positions and O is labeled in a perpendicular position. The radius of C is minimum

when the label of S is perpendicular to PQ and tangent to the labels of P and Q. A

calculation shows that the radius of C is 3+
√

13
2

in this extreme case.
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We refer to Figure 17(b) for the case where all three variable sites are labeled in

critical positions. The radius of circle C is minimum when the label of S is parallel

to PQ and tangent to the labels of P and Q. A calculation shows that the radius of

C is 2+
√

3+
√

15
2

in this extreme case. ⊓⊔

We choose rc = 3+
√

13
2

as the radius of the clause circle in our clause gadget.

Lemma 5.1 implies that, with such a radius for the clause circle, a clause gadget has

a label placement if and only if at least one of its three variable sites is labeled in a

perpendicular position, which simulates the property of a Planar-3SAT clause that

the clause is satisfiable if and only if at least one of its three literals is true.

X

X

X

Figure 18. Variable Segment and Literal Leg.

We refer to Figure 18. Similar to other reductions from Planar-3SAT [20, 29],
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our reduction models each variable as a variable segment—geometrically, a sequence

of variable gadgets in the plane. All variable gadgets in the same variable segment

must be labeled in the same formation; this ensures the consistency of the variable

segment’s Boolean value. For each literal of a variable in a clause of the input Planar-

3SAT instance, we draw a literal leg to connect the corresponding variable segment

and clause gadget. Similar to a variable segment, a literal leg is a sequence of variable

gadgets all labeled in the same formation, either true or false. By drawing a literal

leg at appropriate locations from a variable segment, we can choose the literal to be

either a positive variable or its negation.

X

X

Y

Y

Z

Z

Figure 19. Planar Layout of Construction.

The planar layout of the clause gadgets, the variable segments, and the literal
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legs connecting them is shown in Figure 19. The planarity of the input Planar-3SAT

instance guarantees no crossing literal legs in our construction. A technical detail that

our construction has to attend to is that the three variable sites on the clause circle

must be placed in an equilateral triangular formation and labeled in either critical or

perpendicular positions. This is achieved by twisting each literal leg, that is, shifting

and rotating the variable gadgets in the literal leg, by very small constant amounts

(the size of our construction is inversely related to this constant), until it eventually

reaches the clause gadget at the required position.

By assigning a true (respectively, false) value to a literal if and only if its corre-

sponding literal leg has its variable site on the clause circle labeled in a perpendicular

(respectively, critical) position, we ensure that each satisfying Boolean assignment for

the input Planar-3SAT instance corresponds to a label placement for the constructed

MLUCP instance, and vice versa. We have the following lemma.

Lemma 5.2 Our constructed MLUCP instance with unit label size has a label place-

ment if and only if the input Planar-3SAT instance is satisfiable.

An input Planar-3SAT instance with n clauses has O(n) variables and O(n) lit-

erals. We need O(n) sites to model the n clause gadgets; we also need O(n) variable

gadgets to model each literal leg and each variable segment because of the planarity

of the input instance. In total, we need O(n2) sites to encode an input Planar-3SAT

instance as an MLUCP instance; the reduction consequently takes polynomial time.
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We have proved the following theorem.

Theorem 5.1 The MLUCP decision problem is NP-hard.

By replacing every site in an MLUCP instance with a pair of coinciding (or

sufficiently close) sites in an MLUC instance, we obtain a linear-time reduction from

MLUCP to MLUC. From Theorem 5.1, this reduction immediately leads to the

following corollary.

Corollary 5.1 The MLUC decision problem is NP-hard.

Inapproximability Results

To obtain the 1.0349 lower bound for the MLUC and MLUCP optimization prob-

lems, we show that our reduction from Planar-3SAT to MLUCP still works even if

we shrink the label size of the MLUCP instance by a small amount.

In a label placement for a variable gadget, the labels, at the original unit label

size, are tightly packed in a rigid formation. If we shrink the labels to slightly smaller

sizes, gaps appear between the labels, which allow each label to rotate for a small

angle. Let θ be the maximum angle that a label can rotate after we shrink the labels

to radii r = 1/1.0349. We now calculate θ.

We refer to Figure 20. P and Q are two sites of distance av = 1+
√

3 from the same

variable gadget; they are labeled in directions parallel and perpendicular, respectively,

to PQ before the rotation. The rotation angle is the maximum when the two labels
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P
Q

C

D

Figure 20. Rotation in Variable Gadget.

of P and Q rotate in opposite directions until they become tangent. In Figure 20,

the label of P rotates clockwise and the label of Q rotates counterclockwise until the

two circles centered at C and D become tangent. We have PQ = av, PC = QD = r,

CD = 2r, 6 QPC = θ, and 6 PQD = π
2
− θ. Let δx and δy be the distances between

C and D along directions parallel and perpendicular, respectively, to PQ. We have

δx = av − r sin θ − r cos θ = av − rfθ

and

δy = r sin θ + r cos θ = rfθ,

where

fθ = sin θ + cos θ =
√

2 sin
(

θ +
π

4

)

.

The tangency condition CD =
√

δ2
x + δ2

y = 2r leads to the equation

2r2 · f 2
θ − 2avr · fθ + a2

v − 4r2 = 0.
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Solving this equation, we have

fθ =
1 −

√

8(r/av)2 − 1

2(r/av)

and

θ = sin−1
1 −

√

8(r/av)2 − 1

2
√

2(r/av)
− π

4
. (5.1)

A calculation shows that θ ≃ 31.6◦. Because θ < 45◦, and because the angle

between a label’s two directions in the true and false formations is 90◦, it is impos-

sible for the label placement of a variable gadget to morph continuously from a true

formation to a false one; the correctness of the variable gadget’s Boolean encoding

is therefore maintained. It is easy to check that, with the smaller label size r, the

consistency of Boolean value propagation in the variable segments and the literal legs

is also maintained.

We next examine the effect of smaller labels on the clause gadgets. With the

smaller label size r, the label of each variable site on the clause circles can rotate for

an angle at most θ away from its original position, that is, each variable site on the

clause circles is now labeled near either a critical or a perpendicular position. The

following lemma shows that, at the smaller label size r, an MLUCP clause gadget still

has the necessary property to simulate a corresponding Planar-3SAT clause correctly.

Lemma 5.3 If a clause gadget has a label placement with label size r = 1/1.0349, then

at least one of its three variable sites must be labeled near a perpendicular position.

Proof. We prove the lemma by contradiction. Assume that all three variable sites
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are labeled near critical positions in a label placement for a clause gadget, as shown

in Figure 17(b) (Page 48). Among the three intruding circles from the labels of the

variable sites, at least two of them must have centers in the same half-plane bounded

by the line through the two circle centers of S’s label. Without loss of generality,

assume that these two variable sites are P and Q. By symmetry, the extreme case

happens when the label of S is parallel to PQ, and the labels of both P and Q rotate

for an angle θ away from their critical positions to make room for the label of S, that

is, the label of P rotates clockwise and the label of Q rotates counterclockwise.

S

P

C

D

Figure 21. Rotation in Clause Gadget.

Because of the symmetry of P and Q, we only need to consider the interference

between P and S. We refer to Figure 21. The intruding circle of P is centered at C; the

left circle of S is centered at D. We have PS = rc = 3+
√

13
2

, PC = SD = r = 1/1.0349,

6 SPC = θ ≃ 31.6◦, and 6 PSD = γ = 30◦. Let δx and δy be distances between C

and D along directions parallel and perpendicular, respectively, to PS. We have

δx = rc − r cos θ − r cos γ
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and

δy = r sin θ + r sin γ.

Therefore, we have

CD =
√

δ2
x + δ2

y

=
√

r2
c + 2r2(1 + cos(θ − γ)) − 2rcr(cos θ + cos γ).

A calculation shows that the distance CD is less than 2r; the two labels of P and S

still intersect even in this extreme case. In fact, the label size r = 1/1.0349 is carefully

chosen to satisfy the constraint CD < 2r in this case while balancing Equation 5.1

(Page 54). ⊓⊔

We are ready to prove that our constructed MLUCP instance indeed simulates

the input Planar-3SAT instance correctly.

Lemma 5.4 Our constructed MLUCP instance with label size r = 1/1.0349 has a

label placement if and only if the input Planar-3SAT instance is satisfiable.

Proof. The “if” direction is easy to prove. If the input Planar-3SAT instance is

satisfiable, our constructed MLUCP instance has a label placement even with the

original unit label size, as we have shown earlier in the NP-hardness proof for the

MLUCP decision problem, so it obviously has a label placement with a smaller label

size.

We next prove the “only if” direction. If our constructed MLUCP instance has

a label placement with label size r = 1/1.0349, then according to Lemma 5.4 at
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least one of the three variable sites in each clause gadget must be labeled near a

perpendicular position. For the variable sites labeled near perpendicular positions,

we assign true values to their corresponding literals; for those near critical positions,

false values. Because of the consistency of Boolean value propagation in the literal

legs and the variable segments, the resulting Boolean assignment for the variables

satisfies the corresponding Planar-3SAT instance. ⊓⊔

We have the following theorem and corollary.

Theorem 5.2 It is NP-hard to approximate the MLUCP optimization problem within

factor 1.0349.

Corollary 5.2 It is NP-hard to approximate the MLUC optimization problem within

factor 1.0349.

Finally, we note that a problem is NP-complete [22] if it is both NP-hard and

in NP. So far our discussion has been focused on only the aspect of NP-hardness

because we don’t know whether the MLUC and MLUCP decision problems are in

NP. In fact, for a lot of geometric problems, including MLUC and MLUCP, whether

they belong to NP remains open due to a rather curious technical difficulty with high

precision arithmetic [5]. Let’s take the famous Traveling Salesman Problem (TSP) as

an example. The decision problem of Euclidean TSP asks whether a tour of length

at most k exists, where the length of a tour is a sum of n square roots. To check

whether a tour has a length no more than k, we need to compare the integer k to
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the sum of n square roots of integers. For this task, no polynomial-time algorithm

is known; a straightforward algorithm that removes the square roots by repeated

squaring may generate very large numbers with encoding lengths exponential to the

input length, and therefore requires super-polynomial time. We refer to this difficulty

with high precision arithmetic as a technical difficulty because it affects not only

NP-hard problems such as Euclidean TSP but also the supposedly easy problems

such as Euclidean Minimum Spanning Tree. Researchers in computational geometry

often avoid this precision issue by assuming exact real arithmetic in the model of

computation, and discuss only the NP-hardness (instead of the NP-completeness) of

geometric problems.
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CHAPTER 6

IMPLEMENTATION AND EXPERIMENTS

In this chapter, we describe our implementation of a software system for auto-

mated map labeling. The name of the software system is AMLUC, abbreviated from

“Automated Map Labeling with Uniform Circles,” and pronounced as “am-luck.”

Our implementation is based on our approximation algorithms for MLUC; it also

includes an effective heuristic that improves the quality of the label placements.

Given a set of input sites, AMLUC finds a label placement by computing in three

phases: preprocessing, searching, and improving. In the following three sections, we

examine each of these three phases in detail. In subsequent sections, we introduce

the Graphical User Interface of AMLUC and present our experimental results.

Preprocessing Phase

In the preprocessing phase of AMLUC, we first compute the distances between

every pair of sites, and store them in a look-up table, then compute the 15 nearest

neighbors for each site, and finally determine the lower and upper bounds of the

binary search for the next phase.

For the computation of the distance look-up table, a straight-forward O(n2) algo-

rithm is used. To compute the 15 nearest neighbors for each site, we use a randomized
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selection algorithm [8] that takes expected O(n) time on each site.

After we have computed the nearest neighbors, we compute d2(P ) and d15(P ) for

each site P ∈ P, where d2(P ) and d15(P ), respectively, are the distances from P to

its 2nd and 15th nearest neighbors. We then compute d∗
2 = min{d2(P ) | P ∈ P}

and d∗
15 = min{d15(P ) | P ∈ P}. We also compute D3(P) by finding the smallest D3

among all combinations of three sites consisting of one site and two of its 15 nearest

neighbors.

We choose R− = D3/8 and R+ = min{(2+
√

3)D3, d
∗
15/2, d∗

2/d0} as the lower and

upper bounds of the binary search for the next phase. The D3/8 and (2 +
√

3)D3

bounds come from Lemma 2.3 (Page 15). The d∗
15/2 bound is implied by Lemma 3.5

(Page 23). The d∗
2/d0 bound is implied by Corollary 2.1 (Page 11), where d0 is the

solution to Equation 2.1 (Page 10).

The expected time complexity of our preprocessing phase is O(n2). We are aware

of faster O(n log n) time algorithms [9, 17] for nearest neighbors computation, but de-

cided against them for practical reasons. While in designing approximation algorithms

we need to apply the most rigorous analysis to obtain the tightest approximation fac-

tors and time bounds, AMLUC is designed as an experimental and proof-of-concept

system with only moderate input size. For the ease of implementation, we choose

simple algorithms such as the randomized selection algorithm, and compensate for

the possible loss in performance by careful software engineering. For example, we

precompute the distance look-up table to reduce the floating-point computation; we
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also try to avoid expensive numerical functions such as square root by using squares

of distances whenever possible instead of distances.

Searching Phase

In the searching phase of AMLUC, we run a binary search that repeatedly calls

a decision procedure with tentative label sizes. If the decision procedure succeeds,

we record the label directions, update the lower search bound to the label size, and

call the decision procedure again with a larger label size, that is, the average of the

updated lower and upper search bounds; if the decision procedure fails, we update

the upper search bound and try a smaller label size. When the search converges, that

is, the difference between the lower and the upper search bounds becomes a small

fraction of their average, we copy back the most recent successful label directions

from the record, and return 1
3

of the final lower search bound as the label size.

The decision procedure has three steps. First, we compute the maximal feasible

regions for all sites. Second, we compute the distance graph and the connected

components in it. Third, we try to label each component by brute force.

To compute the maximal feasible regions of a site, we discretize the 360◦ contin-

uous direction range into 72 evenly spaced directions. For each direction, we check

whether a circle labeled in that direction contains any of the site’s 15 nearest neigh-

bors, and record the result in an array associated with the site.

To compute the distance graph, we use the tentative label size as the threshold
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distance, and consider only edges between each site and its 15 nearest neighbors;

this results in an undirected graph with O(n) edges. To compute the connected

components within the distance graph, we use Tarjan’s disjoint set algorithm with

union-by-rank and path-compression heuristics [8]. This algorithm does not run in

linear time in the strict sense, but it is extremely simple and its amortized time

complexity is almost linear. To obtain guaranteed linear running time instead, we

could cast our undirected distance graph into a directed graph, by replacing every

undirected edge with two directed edges in both directions, and compute the strongly

connected components in the directed graph using depth-first search [8]. However, as

we discussed before, we prefer simple algorithms for the ease of implementation.

After we have obtained the connected components, we try to find a label place-

ment for each component by brute force. Our brute-force implementation is a simple

branch-and-bound variant, with the label directions of each site limited to the previ-

ously computed discrete feasible directions.

Improving Phase

The improving phase of AMLUC employs a shake-and-grow heuristic which is

motivated by our (2.98+ ǫ)-approximation algorithm for MLUC. In our presentation

of that approximation algorithm, we proved that by rotating the circles of single-site

clusters by small angles, we can break the barrier imposed by the worst case as shown

in Figure 8, and grow the circles to larger sizes. To improve the approximation factor
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from 3 + ǫ to 2.98 + ǫ, and at the same time to simplify our analysis and proof, we

had all circles rotate in the same direction in our algorithm, which was indeed very

unintuitive. A question naturally comes to mind: if we allow every circle to rotate in

both directions, will this result in a better algorithm? This simple question proved to

be quite puzzling: it is intuitively true that we can find better label placements with

the freedom of rotating the circles in both directions, but we haven’t been successful

in designing algorithms with provable better approximation factors.

With the belief that rotating the circles in both directions leads to better label

placements, we designed the shake-and-grow heuristic for the improving phase of

AMLUC. Our heuristic tries to improve the label placement output by the searching

phase using several shake-and-grow rounds; each shake-and-grow round includes a

large number of shake steps followed by a single grow step.

In a shake step, we randomly choose a site, compute the two maximum angles

that the circle of this site can rotate continuously clockwise and, respectively, coun-

terclockwise, without intersecting the circles of other sites, then relabel the site in the

middle of the two extreme positions. When computing the maximum rotation angles

for a site, we only consider the interferences from its 15 nearest neighbors, so each

shake step takes only constant time.

In a grow step, we increase the label size to the maximum radii that the circles can

grow to at their current label directions. For each site, and for each of its 15 nearest

neighbors, we compute the maximum radii their two circles can grow to without
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intersection; we then set the label size to the minimum value among all the examined

pairs. Each grow step clearly takes linear time. Given n input sites, we run 3n shake

steps and one grow step in each shake-and-grow round, so each round also takes linear

time.

In a later section, we will show our experimental results on the effectiveness of

the shake-and-grow heuristic.

Graphical User Interface

The Graphical User Interface (GUI) of AMLUC is designed to be simple and

intuitive. From Figure 22, which contains a screenshot of AMLUC in action, we can

see that the GUI of AMLUC has a single window; a canvas occupies most of the

window’s central space, and a control panel resides near the bottom of the window.

The canvas serves three purposes. First, it displays the map, which includes the

point sites contained in a square frame, and a circle labeling each site. Second, it

displays an information string near its top-left corner. The information string informs

the number of sites in the map, the label size obtained by the searching phase, the

label size obtained by the improving phase, and the ratio of the two sizes. Third, it

is a scratch pad where the user can add or remove sites by directly clicking on the

map.

The control panel contains two groups of controls. The input group is on the left

side of the panel. It contains two checkboxes for “Add” and “Remove,” a textfield,
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Figure 22. Graphical User Interface of AMLUC.



66

a “Random” button, and a “Clear” button. The “Add” and “Remove” checkboxes

control the manipulation mode of input sites: when set to “Add,” the user can add

a site anywhere in the map by clicking in the square frame; when set to “Remove,”

the user can remove a site from the map by clicking on or near the site. When the

“Random” button is pressed, depending on the current manipulation mode, some

random sites will be either added to or removed from the map, the exact number of

which is controlled by the number entered in the textfield to the left of the button.

When the “Clear” button is pressed, all sites are removed from the map.

The compute group is on the right side of the control panel. It contains a textfield

where the user can specify the number of shake-and-grow rounds in the improving

phase of AMLUC, and a “Compute” button that, when pressed, starts the three-phase

computation of a label placement for the input sites.

Experimental Results

AMLUC is implemented in the Java programming language, using standard

JDK packages including the Java Collections Framework and the Abstract Windows

Toolkit. Our development and testing system is an Apple iBook with a 1.07 GHz

PowerPC G4 CPU and 256 MB RAM running Mac OS X Version 10.3.8 and Java 2

Platform Standard Edition 1.4.2.

Let r1 and r2, respectively, be the label sizes of the label placements output by the

searching phase and the improving phase, respectively, of AMLUC. The ratio r2/r1
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can used as a rough measure for the effectiveness of our shake-and-grow heuristic in

the improving phase.

We tested AMLUC on randomly generated MLUC instances of 64 input sites.

The number of shake-and-grow iterations in the improving phase is set to 8. In

our experiment, AMLUC spent only a couple of seconds on average on each MLUC

instance; the ratio r2/r1 was typically in the range between 2.0 and 2.7.

Since the label placements with label sizes r1 are found by the searching phase of

AMLUC, which is adapted from our (3+ǫ)-approximation algorithm, we know that r1

is approximately at least one third of the optimal label size. Our experimental results

of the r2/r1 ratio show that AMLUC often finds near-optimal label placements: our

shake-and-grow heuristic is very effective on random MLUC instances.
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CHAPTER 7

CONCLUSION

In this dissertation, we studied two geometric optimization problems motivated

by cartographic applications: Map Labeling with Uniform Circles (MLUC) and Map

Labeling with Uniform Circle Pairs (MLUCP). We showed that the decision prob-

lems of both MLUC and MLUCP are NP-hard, and that the related optimization

problems for maximizing the label sizes are NP-hard to approximate within factor

1.0349. We designed approximation algorithms with constant performance guaran-

tees for the two problems: for MLUC, we presented a (3 + ǫ)-approximation and a

(2.98 + ǫ)-approximation; for MLUCP, a (1.5 + ǫ)-approximation and a (1.491 + ǫ)-

approximation. We also described the implementation of AMLUC, a software system

for automated map labeling with uniform circles. The system is based on our approx-

imation algorithms for MLUC and uses an effective shake-and-grow heuristic to find

near-optimal label placements.

In conclusion, this dissertation shows that rigorous mathematical reasoning and

analysis, intuitive and effective heuristics, and sound software engineering principles

are three indispensable elements in deploying successful attacks on hard computa-

tional problems.
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APPENDIX A

SOURCE CODE FOR NUMERICAL CHECKING
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/*

* mluc.c

*

* Minghui Jiang

*/

#include <stdio.h>

#include <math.h>

double D(double d) {

if (d > sqrt(3.0) - 1.0)

return 0.0;

else {

double phi = acos((5.0 - (1.0 + d) * (1.0 + d)) / 4.0);

return sqrt(5.0 - 4.0 * cos(M_PI / 3.0 - phi)) - 1.0;

}

}

int main() {

double c, d;

for (c = 2.9; c < 3.0; c += 0.001) {

double tmp = (c * c - 3.0) / c;

double d_c = sqrt(4.0 - tmp * tmp);

double D_ = D(d_c);

double alpha = acos((c * c - 3.0) / (2.0 * c));

double beta = acos((2.0 - (D_ + 1.0) * (D_ + 1.0)) / 2.0);

if (cos(beta - alpha) <= c - 2.5) {

printf("mluc: c = %f d_c = %f alpha = %f\n",

c, d_c, alpha * 180.0 / M_PI);

break;

}

}

for (d = 0.5; d > 0; d -= 0.0001)

if (D(d) > d) {

printf(" d_0 = %f\n", d);

break;

}

}
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/*

* mlucp.c

*

* Minghui Jiang

*/

#include <stdio.h>

#include <math.h>

int main() {

double c;

double alpha, beta, gamma;

for (c = 1.0; c < 1.5; c += 0.001) {

double lambda = 2.0 / sqrt(sqrt(3.0) * c - 2.0);

if (lambda < 2.0 || lambda > 4.0 / c)

continue;

alpha = acos((4.0 * c * c - 3.0) / (4.0 * c));

if (alpha < 0.0 || alpha > M_PI / 4.0)

continue;

beta = acos((lambda * lambda - 2.0) / (2.0 * lambda));

if (beta < 0.0 || beta > M_PI / 3.0)

continue;

gamma = acos(c * lambda / 4.0);

if (gamma < 0.0 || gamma > M_PI / 3.0)

continue;

if (alpha > beta - gamma)

continue;

printf("mlucp: c = %f alpha = %f\n",

c, alpha * 180.0 / M_PI);

break;

}

}
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/*

* gadget.c

*

* Minghui Jiang

*/

#include <stdio.h>

#include <math.h>

int main() {

double a_v = 1.0 + sqrt(3.0);

double r_c = (3.0 + sqrt(13.0)) / 2.0;

double gamma = M_PI / 6.0;

double c;

for (c = 1.05; c > 1.0; c -= 0.0001) {

double r = 1.0 / c;

double x = r / a_v;

double theta = asin((1.0 - sqrt(8.0 * x * x - 1.0))

/ (2.0 * sqrt(2.0) * x)) - M_PI / 4.0;

double diff = r_c * r_c + 2.0 * r * r * (1.0 + cos(theta - gamma))

- 2.0 * r_c * r * (cos(theta) + cos(gamma))

- 4.0 * r * r; /* CD^2 - 4 r^2 */

if (diff < 0) {

printf("gadget: c = %f theta = %f\n",

c, theta * 180.0 / M_PI);

break;

}

}

}
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APPENDIX B

SOURCE CODE FOR MLUC IMPLEMENTATION
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/*

* MLUC.java

*

* Minghui Jiang

*/

import java.applet.Applet;

import java.awt.*;

import java.awt.event.*;

import java.awt.image.*;

import java.util.List;

import java.util.*;

public

class MLUC extends Applet

{

static String title =

"AMLUC - Automated Map Labeling with Uniform Circles";

static String copyright = "Copyright 2005 Minghui Jiang";

static String version = "Sun Apr 10 13:34:20 MDT 2005";

public void init() {

MyWindow window = new MyWindow();

window.setLayout(new BorderLayout());

window.setResizable(false);

MyMap map = new MyMap();

map.addMouseListener(map);

map.addMouseWheelListener(map);

window.add("Center", map);

Panel panel = new Panel();

map.registerPanel(panel);

CheckboxGroup cbg = new CheckboxGroup();

Checkbox cb = new Checkbox("Add", cbg, true);

cb.addItemListener(map);

panel.add(cb);

cb = new Checkbox("Remove", cbg, false);

cb.addItemListener(map);

panel.add(cb);

TextField tf = new TextField("32", 3);
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map.registerRandomField(tf);

panel.add(tf);

Button button = new Button("Random");

button.addActionListener(map);

panel.add(button);

button = new Button("Clear");

button.addActionListener(map);

panel.add(button);

panel.add(new Label(" Shake-and-Grow Iterations:"));

tf = new TextField("8", 2);

map.registerShakeAndGrowField(tf);

panel.add(tf);

button = new Button("Compute");

button.addActionListener(map);

panel.add(button);

window.add("South", panel);

window.pack();

window.setVisible(true);

}

public String getAppletInfo() {

return title + "\n" + copyright + "\n" + version + "\n";

}

} // class MLUC

class MyWindow extends Frame

{

MyWindow() {

super(MLUC.title);

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {

e.getWindow().dispose();

}

});

}
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} // class MyWindow

class MyMap extends Canvas implements ActionListener, ItemListener,

MouseListener, MouseWheelListener

{

private final static int A = 666; // square map A^2

private double zoom = 0.8; // zoom factor for drawing

private VolatileImage offscr; // off-screen for double-buffering

private Graphics2D g2; // graphics handle of offscr

private Panel panel; // control panel

private TextField tfRandom; // # of random actions

private TextField tfShakeAndGrow; // # of shake-and-grow iterations

private List list = new LinkedList(); // list of sites

private Site[] array; // array of sites

private String state = "Add"; // current list-manipulation state

private double r = 0.0; // current label size

private double r_low; // lower bound of binary search

private double r_high; // higher bound of binary search

private double r1 = 0.0; // label size after 3-approximation

private double r2 = 0.0; // label size after shake-and-grow

private double[][] D2; // matrix of distance^2 between two sites

/*

* MyMap-to-Screen and Screen-to-MyMap coordinate transformation

*/

private int m2s(double xy) { // map (0.0, 1.0)^2 to screen A^2

return (int) ((0.5 + (xy - 0.5) * zoom) * A);

}

private double s2m(int xy) { // screen A^2 to map (0.0, 1.0)^2

return (xy * 1.0 / A - 0.5) / zoom + 0.5;

}

/*

* Rounding to n digits after decimal point

*/
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private double round(double x, int n) {

return ((int) (x * Math.pow(10.0, n) + 0.5)) / Math.pow(10.0, n);

}

/*

* Map drawing

*/

public void update(Graphics g) { paint(g); }

public void paint(Graphics g) {

// initialize off-screen image for double buffering

if (g2 == null) {

offscr = createVolatileImage(A, A);

g2 = offscr.createGraphics();

g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);

g2.setFont(new Font(null, Font.PLAIN, 12));

}

// draw background

g2.setColor(Color.gray);

g2.fillRect(0, 0, A, A);

// draw map boundary

drawFrame();

// drawSite() after drawCircle() so that no site is obscured

for (Iterator i = list.iterator(); i.hasNext(); ) {

Site site = (Site) i.next();

drawCircle(site);

}

for (Iterator i = list.iterator(); i.hasNext(); ) {

Site site = (Site) i.next();

drawSite(site);

}

// draw info string at top-left corner

String info = list.size() + " sites";

info += " r1 = " + round(r1, 4) + " r2 = " + round(r2, 4);

if (r1 > 0.0 && r2 > r1)

info += " r2/r1 = " + round(r2 / r1, 1);
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g2.setColor(Color.white);

g2.drawString(info, 4, 12);

// show everything when off-screen image is ready

g.drawImage(offscr, 0, 0, this);

}

private void drawFrame() {

int delta = (int) ((zoom - 1.0) * 0.5 * A);

int newA = (int) (zoom * A);

g2.setColor(Color.lightGray);

g2.drawRect(-delta, -delta, newA, newA);

}

private void drawSite(Site site) {

int x = m2s(site.x);

int y = m2s(site.y);

g2.setColor(Color.black);

g2.drawLine(x - 2, y, x + 2, y);

g2.drawLine(x, y - 2, x, y + 2);

g2.drawLine(x - 1, y - 1, x + 1, y + 1);

g2.drawLine(x - 1, y + 1, x + 1, y - 1);

}

private void drawCircle(Site site) {

int cx = m2s(site.cx());

int cy = m2s(site.cy());

int cr = (int) (r * zoom * A);

g2.setColor(Color.white);

g2.drawOval(cx - cr, cy - cr, cr + cr, cr + cr);

}

public Dimension getPreferredSize() {

return new Dimension(A, A);

}

/*

* List (of sites) manipulation

*/

private void addSite(double x, double y) {
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// perturb a little bit for numerical stability

x += (Math.random() - 0.5) * 0.001;

y += (Math.random() - 0.5) * 0.001;

if (x < 1.0 && x > 0.0 && y < 1.0 && y > 0.0)

list.add(new Site(x, y));

}

private void removeSite(double x, double y) {

Site s_ = null;

double min = Double.MAX_VALUE;

for (Iterator i = list.iterator(); i.hasNext(); ) {

Site s = (Site) i.next();

double d2 = s.dist2(x, y);

if (d2 < min) {

min = d2;

s_ = s;

}

}

if (s_ != null)

list.remove(s_);

}

/*

* Control panel interface

*/

void registerPanel(Panel panel) {

this.panel = panel;

}

void registerRandomField(TextField tf) {

tfRandom = tf;

}

void registerShakeAndGrowField(TextField tf) {

tfShakeAndGrow = tf;

}

private int parseRandomField() {

try {

return Integer.parseInt(tfRandom.getText());
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} catch (NumberFormatException e) {

return 0;

}

}

private int parseShakeAndGrowField() {

try {

return Integer.parseInt(tfShakeAndGrow.getText());

} catch (NumberFormatException e) {

return 0;

}

}

/*

* Event handlers for GUI

*/

public synchronized void actionPerformed(ActionEvent e) {

String command = e.getActionCommand();

if (command.equals("Random")) {

int count = parseRandomField();

for (int i = 0; i < count; i++)

if (state.equals("Add"))

addSite(Math.random(), Math.random());

else if (state.equals("Remove"))

removeSite(Math.random(), Math.random());

r1 = r2 = 0.0;

} else if (command.equals("Clear")) {

list.clear();

r = r1 = r2 = 0.0;

} else if (command.equals("Compute")) {

panel.setEnabled(false);

if (list.size() >= 3) {

array = (Site[]) list.toArray(new Site[0]);

compute();

}

panel.setEnabled(true);

}

repaint();

}
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public synchronized void itemStateChanged(ItemEvent e) {

Checkbox cb = (Checkbox) e.getItemSelectable();

state = cb.getLabel();

}

public synchronized void mouseWheelMoved(MouseWheelEvent e) {

int clicks = e.getWheelRotation();

if (clicks > 0)

for (int i = 0; i < clicks; i++)

zoom *= 1.1;

else

for (int i = 0; i < -clicks; i++)

zoom /= 1.1;

repaint();

}

public synchronized void mouseClicked(MouseEvent e) {

double x = s2m(e.getX());

double y = s2m(e.getY());

if (state.equals("Add"))

addSite(x, y);

else if (state.equals("Remove"))

removeSite(x, y);

r1 = r2 = 0.0;

repaint();

}

public void mouseEntered(MouseEvent e) {}

public void mouseExited(MouseEvent e) {}

public void mousePressed(MouseEvent e) {}

public void mouseReleased(MouseEvent e) {}

/*

* Compute the distance^2s between sites for later look-up

*/

private void computeD2() {

D2 = new double[array.length][array.length];

for (int i = 0; i < array.length; i++)
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for (int j = i + 1; j < array.length; j++)

D2[i][j] = D2[j][i] = array[i].dist2(array[j]);

}

/*

* Compute nearest neighbors of all sites

* (selection algorithm from CLR book)

*/

private int randomPartition(int[] is, int p, int q) {

int r = (int) (Math.random() * (q - p + 1)) + p;

double z = D2[i_][is[r]]; // the pivot

while (true) {

while (D2[i_][is[p]] < z)

p++;

while (D2[i_][is[q]] > z)

q--;

if (p < q) {

int t = is[p];

is[p] = is[q];

is[q] = t;

} else

return q;

}

}

private void partition(int[] is, int p, int q, int k) {

if (p == q)

return;

int r = randomPartition(is, p, q);

int k_ = r - p + 1;

if (k < k_)

partition(is, p, r, k);

else if (k > k_)

partition(is, r + 1, q, k - k_);

}

private int i_; // index of current site in computeNearestNeighbors

private void computeNearestNeighbors() {

int[] is = new int[array.length - 1]; // indices of array

double min_d2 = Double.MAX_VALUE;
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double min_dn = Double.MAX_VALUE;

double min_d3 = Double.MAX_VALUE;

for (int i = 0; i < array.length; i++) {

// skip itself

i_ = i;

for (int j = 0; j < i; j++)

is[j] = j;

for (int j = i + 1; j < array.length; j++)

is[j - 1] = j;

// do partition

int n;

if (is.length > Site.NN) {

partition(is, 0, is.length - 1, Site.NN);

n = Site.NN;

} else // too few sites; no need for partition

n = is.length;

// copy nearest neighbors

int[] is_ = new int[n];

for (int j = 0; j < n; j++)

is_[j] = is[j];

// find nearest, 2nd nearest, and farthest

double d1 = D2[i][is[0]];

double d2 = D2[i][is[1]];

if (d1 > d2) {

double d = d1;

d1 = d2;

d2 = d;

}

double dn = d2;

for (int j = 2; j < n; j++) {

double d = D2[i][is[j]];

if (d < d1) {

d2 = d1;

d1 = d;
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} else if (d > dn)

dn = d;

else if (d < d2)

d2 = d;

}

if (d2 < min_d2)

min_d2 = d2;

if (dn < min_dn)

min_dn = dn;

// find 3-diameter

for (int j = 0; j < n; j++)

for (int k = j + 1; k < n; k++) {

double d3 = Math.max(D2[is[j]][is[k]],

Math.max(D2[i][is[j]], D2[i][is[k]]));

if (d3 < min_d3)

min_d3 = d3;

}

// set neighbors

array[i].neighbors = is_;

}

// determine r_low and r_high

double d2 = Math.sqrt(min_d2);

double dn = Math.sqrt(min_dn);

double d3 = Math.sqrt(min_d3);

r_high = (2.0 + Math.sqrt(3.0)) * d3;

r_low = d3 / 8.0;

if (array.length > Site.NN && r_high > dn / 2.0)

r_high = dn / 2.0;

if (r_high > d2 / 0.2393)

r_high = d2 / 0.2393;

}

/*

* Compute connected components with r as threshold distance

*/

private Collection findComponents() {

Map components = new HashMap();
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for (int i = 0; i < array.length; i++)

array[i].makeSet();

double rr = r * r;

for (int i = 0; i < array.length; i++) {

Site s = array[i];

for (int k = 0; k < s.neighbors.length; k++) {

int j = s.neighbors[k];

Site t = array[j];

if (D2[i][j] < rr) {

Site u = s.findSet();

Site v = t.findSet();

if (u != v)

u.linkTo(v);

}

}

}

for (int i = 0; i < array.length; i++) {

Site s = array[i];

Site u = s.findSet();

List component = (List) components.get(u);

if (component == null) {

component = new LinkedList();

components.put(u, component);

}

component.add(s);

}

return components.values();

}

/*

* Find a label placement for one component with r

*/

private boolean bruteForce(Site[] ss) {

int[] as = new int[ss.length]; // label directions

for (int i = 0; i < as.length; i++)
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as[i] = -1; // reset position

int k = 0; // start with the first site

while (k >= 0) {

as[k] = ss[k].getNextFeasible(as[k]);

if (as[k] == Site.ND) { // tried all positions; still bad

as[k] = -1; // reset position

k--;

continue; // backtrack to previous site

}

ss[k].a = as[k];

boolean bad = false;

for (int i = 0; i < k; i++)

if (ss[k].interfere(ss[i])) {

bad = true;

break;

}

if (bad)

continue; // try next position for current site

k++; // advance to next site

if (k == ss.length) // a complete placement!

return true;

}

return false; // cannot label these sites with r

}

/*

* Find a label placement for all sites with r

*/

private boolean labelSites() {

for (int i = 0; i < array.length; i++)

if (!array[i].computeMaximalFeasibleRegions())

return false;
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Collection components = findComponents();

for (Iterator i = components.iterator(); i.hasNext(); ) {

List component = (List) i.next();

Site[] ss = (Site[]) component.toArray(new Site[0]);

if (!bruteForce(ss))

return false;

}

return true;

}

/*

* Find a label placement for all sites with the maximum r

*/

private void binarySearch() {

int[] as = new int[array.length]; // label directions

while ((r_high - r_low) / (r_high + r_low) > 0.005) {

r = (r_high + r_low) / 2.0;

if (labelSites()) {

r_low = r;

// record the label directions

for (int i = 0; i < array.length; i++)

as[i] = array[i].a;

} else

r_high = r;

}

r = r_low / 3.0;

// set label directions to the best in history

for (int i = 0; i < array.length; i++)

array[i].a = as[i];

}

/*

* Find the maximum r with the current label directions

*/

private void grow() {
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double maxr = Double.MAX_VALUE;

for (int i = 0; i < array.length; i++) {

Site s = array[i];

for (int k = 0; k < s.neighbors.length; k++) {

int j = s.neighbors[k];

Site t = array[j];

double r = s.maxr(t);

if (r < maxr)

maxr = r;

}

}

r = maxr;

}

/*

* Shake-and-Grow heuristic

*/

private void shakeAndGrow(int n) {

grow();

for (int i = 0; i < n; i++) {

for (int j = 0; j < array.length * 3; j++) {

int k = (int) (array.length * Math.random());

array[k].shake();

}

grow();

}

}

/*

* Computation starts here

*/

private void compute() {

// preprocessing

computeD2();

computeNearestNeighbors();

// 3-approximation
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binarySearch();

r1 = r;

// shake-and-grow heuristic

shakeAndGrow(parseShakeAndGrowField());

r2 = r;

}

private class Site

{

double x;

double y;

int a; // discrete label direction: a * 2 * PI / N

final static int ND = 72; // number of discrete label directions

boolean[] feasible = new boolean[ND];

final static int NN = 15; // maximum number of nearest neighbors

int[] neighbors; // indices of at most 15 nearest neighbors

double d2; // distance^2 to 2nd nearest among 15 neighbors

double dn; // distance^2 to farthest among 15 neighbors

Site(double x, double y) {

this.x = x;

this.y = y;

}

/*

* Maximal feasible regions

*/

boolean computeMaximalFeasibleRegions() {

double rr = r * r;

boolean hasFeasible = false;

for (a = 0; a < ND; a++) {

double cx = cx();

double cy = cy();

feasible[a] = true;

for (int k = 0; k < neighbors.length; k++) {

int j = neighbors[k];
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if (array[j].dist2(cx, cy) < rr) {

feasible[a] = false;

break;

}

}

if (feasible[a])

hasFeasible = true;

}

return hasFeasible;

}

int getNextFeasible(int k) {

for (int i = k + 1; i < ND; i++)

if (feasible[i])

return i;

return ND; // feasible positions exausted

}

/*

* Convert (int) direction index to (double) direction

*/

double i2d(int i) {

return i * 2.0 * Math.PI / Site.ND;

}

/*

* Distance functions

*/

// x coordinate of circle center

double cx() {

return x + r * Math.cos(i2d(a));

}

// y coordinate of circle center

double cy() {

return y + r * Math.sin(i2d(a));

}

// distance^2 from this site to (x, y)

double dist2(double x, double y) {
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double dx = this.x - x;

double dy = this.y - y;

return dx * dx + dy * dy;

}

// distance^2 from this site to another site

double dist2(Site s) {

return dist2(s.x, s.y);

}

// the maximum r both this site and t can grow to

// with current label directions

double maxr(Site t) {

double x1 = x;

double y1 = y;

double a1 = i2d(a);

double x2 = t.x;

double y2 = t.y;

double a2 = i2d(t.a);

double x12 = x1 - x2;

double y12 = y1 - y2;

double a12 = a1 - a2;

double a = 2.0 * (1.0 + Math.cos(a12));

double b = - 2.0 * (x12 * (Math.cos(a1) - Math.cos(a2))

+ y12 * (Math.sin(a1) - Math.sin(a2)));

double c = -x12 * x12 - y12 * y12;

if (a == 0.0 && b == 0.0)

return Double.MAX_VALUE;

double delta = b * b - 4.0 * a * c;

if (delta < 0.0)

return Double.MAX_VALUE;

double r;

if (a == 0.0)

r = -c / b;

else

r = (-b + Math.sqrt(delta)) / (2.0 * a);
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return r < 0.0 ? Double.MAX_VALUE : r;

}

/*

* Check for interference between this site and another site

*/

boolean interfere(Site s) {

double dx = cx() - s.cx();

double dy = cy() - s.cy();

return dx * dx + dy * dy < 4.0 * r * r;

}

/*

* Check for interference between this site and its neighbors

*/

boolean interfere() {

for (int k = 0; k < neighbors.length; k++) {

int i = neighbors[k];

Site s = array[i];

if (interfere(s))

return true;

}

return false;

}

/*

* Shake

*/

void shake() {

int b = a; // backup the current direction

int l, r;

// turn clockwise

for (l = 0; l < ND; l++) {

a++;

if (interfere())

break;

}
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if (l == ND) { // no restriction on rotation

a = b + ND / 2; // turn 180 degrees

if (a > ND)

a -= ND;

return;

}

// restore to backup direction

a = b;

// turn counter-clockwise

for (r = 0; r < ND; r++) {

a--;

if (interfere())

break;

}

// rotate to middle of the two extremes

a = b + (l - r) / 2;

if (a > ND)

a -= ND;

}

/*

* Disjoint set union algorithm from CLR book

*/

Site p;

int rank;

void makeSet() {

p = this;

rank = 0;

}

void linkTo(Site site) {

if (rank >= site.rank) {

site.p = this;

if (rank == site.rank)

rank++;

} else

p = site;

}

Site findSet() {
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if (this != p)

p = p.findSet();

return p;

}

} // class Site

} // class MyMap


