

AN AUTONOMIC SOFTWARE ARCHITECTURE

FOR DISTRIBUTED APPLICATIONS

by

Mohammad Muztaba Fuad

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

Doctor of Philosophy

in

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

June 2007

© COPYRIGHT

by

Mohammad Muztaba Fuad

2007

All Rights Reserved

 ii

APPROVAL

of a dissertation submitted by

Mohammad Muztaba Fuad

 This dissertation has been read by each member of the dissertation committee and
has been found to be satisfactory regarding content, English usage, format, citations,
bibliographic style, and consistency, and is ready for submission to the Division of
Graduate Education.

Professor Michael J. Oudshoorn

Approved for the Department of Computer Science

Professor Michael J. Oudshoorn

Approved for the Division of Graduate Education

Dr. Carl Fox, Vice Provost

 iii

STATEMENT OF PERMISSION TO USE

 In presenting this dissertation in partial fulfillment of the requirements for a

doctoral degree at Montana State University, I agree that the Library shall make it

available to borrowers under rules of the Library. I further agree that copying of this

dissertation is allowable only for scholarly purposes, consistent with “fair use” as

prescribed in the U. S. Copyright Law. Requests for extensive copying or reproduction of

this dissertation should be referred to ProQuest Information and Learning, 300 North

Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted “the exclusive right to

reproduce and distribute my dissertation in and from microform along with the non-

exclusive right to reproduce and distribute my abstract in any format in whole or in part.”

Mohammad Muztaba Fuad

June 2007

 iv

To

My Mom

 v

ACKNOWLEDGMENTS

 I would like to thank my wife Debzani for all her support during the course of my

Ph.D. She deserves more than a mere acknowledgement.

 My advisor Prof. Michael J. Oudshoorn was always there for me. His support and

encouragement rescued me from frustration and guided me to my research. Without his

kind help it would have been impossible to finish this work.

 I would like to express my gratitude to my Ph.D. committee members for their

constant support. I am fortunate to do my Ph.D. in a department where all the faculty

members showed interest in my work and gave constant feedback. I thank them for their

active interest in my research.

 I specially like to thank Ms. Jeannette Radcliffe, Ms. Kathy Hollenback and Scott

Dowdle of Computer Science department for providing me with a wonderful logistical

support for my research and education.

 I like to thank Benjamin Ph.D. Fellowship foundation for awarding me with a

fellowship. I thank Montana NASA EPSCoR for providing financial support for my

research.

 I would like to thank the people of Bozeman for providing me with a perfect

atmosphere to finish my education. I am fortunate to be in the Big Sky Country.

 Finally, I would like to thank my family and friends for always looking after me

and wishing the best for me. Thank you.

 vi

TABLE OF CONTENTS

1. INTRODUCTION .. 1

Problem Specification... 4
Rationale for Autonomic Systems .. 6
Motivation... 8
Goals ... 10
Scope of This Research... 12
Challenges... 14
Methodology... 16
Contributions .. 17
Outline of the Thesis... 18

2. BACKGROUND .. 20

What is Autonomic Computing? .. 20
Why Java?... 25
Which JVM?... 29
Source Code or Byte Code?.. 30
Summary... 30

3. JVM AND JAVA CLASS FILE... 32

Structure of the JVM... 32
Data Types and Values .. 35
Variables .. 35
Fields and Methods .. 36

Structure of Java Class File .. 36
Code Attribute.. 40
Local Variable Attribute. ... 40
Line Number Attribute... 40
Exception. .. 40

Byte Code Instructions.. 41
An Example .. 43
Byte Code Modification Tools ... 46
Summary... 50

4. RELATED RESEARCH .. 51

Existing Middleware Technologies .. 51
Automatic Partitioning.. 54
Automatic Distribution ... 57
Autonomic Systems .. 58
Autonomizing Existing Systems... 60
Autonomic Programming Environment.. 63
Autonomic Element Architecture ... 65
Self-healing Transformation ... 67

 vii

TABLE OF CONTENTS - CONTINUED

Other Related Autonomic Systems... 68
How This Work is Different? ... 69

5. SYSTEM ARCHITECTURE ... 72

Requirements .. 72
Service Architecture ... 75
System Operation.. 78
Policies.. 80
Management Operations ... 82
Autonomic Properties ... 83

Self-configuration. ... 84
Self-healing. ... 86
Self-optimization.. 87
Self-protection.. 89

Distribution Transformation ... 89
Autonomic Transformation... 92
Performance Analysis ... 98
Summary... 104

6. AUTONOMIC ELEMENT ARCHITECTURE... 105

Introduction... 105
Architecture .. 108
Life Cycle ... 111
Implementation Details... 114

Data Structures... 114
Data Atoms .. 114
Priority Queue.. 115
Locker .. 116
Data Streams .. 117
Hooks ... 117
Atom Repository.. 118

Operation of the Sub-components ... 118
Sensors and Effectors... 119
Sub-components... 119

Performance Analysis ... 120
Summary... 123

7. ADDING SELF-HEALING ... 125

Introduction... 125
Self-healing Architecture.. 128
Faults and Fault Model ... 129
Code Transformations... 133
Local Variables ... 137

 viii

TABLE OF CONTENTS - CONTINUED

Adding Checkpoints ... 141
Status Data .. 142
Task of Fault Analyzer and Fault Healer.. 144
Runtime Exceptions.. 145
Performance Analysis ... 147
Summary... 150

8. CONCLUSIONS AND FUTURE WORK ... 152

REFERENCES ... 155

APPENDICES .. 164

 APPENDIX A: Flow Charts of Different Processes.. 165

 APPENDIX B: Test Program Listing .. 172

 ix

LIST OF FIGURES

Figure Page

1. Structure of an Autonomic Element... 23

2. Structure of the Java Virtual Machine... 33

3. JVM Runtime Data Area.. 34

4. Structure of a Java Class File... 37

5. An Example Java Class.. 44

6. Constant Pool of the Given Class.. 45

7. Byte Code Instructions Inside the Methods... 46

8. Autonomic Service Architecture.. 75

9. Hierarchical Management of System... 77

10. Flow of Operation.. 80

11. System Startup Process.. 85

12. Object Transformation... 95

13. Example Class Diagram... 99

14. Transformed Runtime Program Structure.. 101

15. Sequence Diagram of Delegated Calls…………………………………………. 102

16. Timing Information for Delegated Invocation... 103

17. Internal Architecture of the Autonomic Element... 108

18. Autonomic Element Extensions... 111

19. Autonomic Element Life Cycle.. 112

 x

LIST OF FIGURES -CONTINUED

Figure Page

20. Structure of a Data Molecule.. 115

21. Runtime Throughput... 121

22. Flow of Atoms.. 122

23. Self-healing Architecture.. 128

24. Representation of Fault Model... 132

25. Self-healing Transformation Example.. 136

26. Local Variable Access Indexing... 138

27. Code Fragment to generate a New Local Variable Information........................... 139

28. Code Inflation Due to the Addition of Self-healing Primitives............................ 149

29. Execution Times of the Three Test Programs.. 150

 xi

LIST OF TABLES

Table Page

1. Variables inside JVM.. 36

2. Constant Pool Entries.. 38

3. Java Class Files Attributes. ... 39

4. Academic Research Projects on Autonomic Computing.. 69

5. Industry Research Projects on Autonomic Computing... 69

6. Effects of Multiple Calls on Respnose Time. ... 103

7. Code Statistics... 123

8. Faults and Default Actions.. 131

9. Evaluation Framework for the Technique. ... 148

10. Code Inflation Due to Local Variable Addition (in bytes). 149

 xii

ABSTRACT

 Autonomic computing is a grand challenge in computing that aims to produce
software that has the properties of self-configuration, self-healing, self-optimization and
self-protection. Adding such autonomic properties into existing applications is immensely
useful for redeploying them in an environment other than they were developed for. Such
transformed applications can be redeployed in different dynamic environments without
the user making changes to the application. However, creating such autonomic software
entities is a significant challenge not only because of the amount of code transformation
required but also for the additional programming needed for such conversion.

 This thesis presents techniques for injecting autonomic primitives into existing
user code by statically analyzing the code and partitioning it to manageable autonomic
components. Experiments show that such code transformations are challenging, however
they are worthwhile in order to provide transparent autonomic behavior. Software
architecture to provide such autonomic computing support is presented and evaluated to
determine its suitability for a fully fledged autonomic computing system. The presented
architecture is a novel peer-to-peer distributed object-based management automation
architecture. In this model, independent or communicating objects are treated as managed
elements in the geographically distributed autonomic elements.

 The presented organization offers significant advantages over a traditional client-
server organization by permitting the incorporation of self-management properties into
each of the distributed nodes and making each of the Autonomic Elements in the
distributed environment identical in terms of managerial capacity. The unification of
traditional client-server roles allows management functions to be distributed across
different elements in the system, allowing autonomous behavior of the whole system.
This thesis also presents a self regulating design of an autonomic element in a distributed
object environment. Architectural choices have a profound effect on the capabilities of
any autonomic system and affect many of the design decisions during its implementation.
The goal of this architectural design is to provide an easy to program autonomic element
which can be implemented in most domains with minor modifications. Profiling and
experimentation with this design shows that it is lightweight and perform smoothly
without causing extensive overhead.

 1

CHAPTER 1

INTRODUCTION

 Today’s information technology landscape is bristling with innovations and

changes. New technologies are rapidly emerging and new versions of existing

technologies continue to be released. To keep pace, programmers need to quickly adapt

their existing applications to new technologies. The race to be at the cutting edge of

technology makes complexity a major issue in all aspects of information technology as

new technologies are being incorporated into existing systems and overall behavior of the

system becomes unpredictable. Software developers have exploited the rapid upsurge in

computational power in every possible way, producing ever more sophisticated software

applications and environments, which results in enormous growth in the number and

variety of systems and components. As systems become a complex mesh of technologies,

software architects are less able to anticipate and design interactions among components,

which further results in complexity not only in those systems, but also in the

environments they operate within. Although there have been attempts to reduce such

complexities within systems by introducing better software engineering practices, the

complexity remains as more and more new technologies and systems are being

incorporated together. Such an environment is a complex, heterogeneous tangle of

hardware, middleware and software from multiple vendors that is becoming increasingly

difficult to program, integrate, install, configure, tune, and maintain. This leads to the

idea of autonomic computing [42, 58] where the complexity and the management of such

systems is handled by the system itself.

 2

 For computationally intensive, large, parallel applications there is much to be

gained from globally distributing the application across a wide variety of machines and

obtaining an increase in throughput and a performance speed-up. The difficulty is that the

programmer wishing to execute such an application may not have the physical resources

themselves, nor may they have the necessary skills to effectively distribute the

application manually. Programming such a distributed application across a heterogeneous

network is a complex and tedious task and programmers need expert knowledge of the

underlying system to undertake such distribution. In addition, programmers of such

distributed applications must explicitly handle all the associated distribution management

issues, such as fault tolerance [99], load balancing [99] and resource allocation [99] by

themselves. For average programmers, this is a daunting task. The emergence of loosely-

coupled, but highly reliable, clusters of networked machines has motivated people to

build powerful applications (not necessarily client-server applications) using a wide range

of resources. Object oriented technology is currently the most widely accepted

programming methodology convenient for a standard programmer to design and

implement applications for standalone systems. For a programmer, it becomes tedious

when it is necessary to manage the distribution aspects of the program as well. RMI [94],

CORBA [70] and some other middleware platforms try to reduce this tedium to an extent.

However to use them, programmers need advanced knowledge of programming

interfaces and paradigms. In a distributed programming environment, the configuration of

the distribution setting may vary from time to time, but the program interactions may

remain the same. A system which could redeploy the application code according to

resource availability and some other specifications and goals is certainly desirable.

 3

 Programmers may elect to build a distributed application from scratch and ignore

any existing code or system which had previously been developed but not intended to run

in a distributed fashion. In reality, one can not abandon an existing parallel application or

re-implement it for the distributed platform. It is beneficial if it is possible to transform

and retrofit an existing application so that it runs in a distributed fashion, without the

programmer having to deal with the programming or the management issues related to

distribution. These issues interact in complex ways and even a semi-automated system is

unlikely to be as effective as a human expert in terms of reaching a near optimal solution.

However, the vast majority of programmers lack the ability to undertake the distribution

themselves, and few have the ability to find the optimal solution. Worse still, the optimal

distribution is specific to an application and the manner in which it is used. In fact, the

optimal distribution may not be realized as resources may be unavailable and network

congestion may occur. In order to deal with such difficulties, the system must be adaptive

and dynamic in nature – an ideal application for an autonomic computing system.

 This thesis discusses an autonomic distributed system that explores the “all care

and no responsibility” principle of distribution [75] whereby the average programmer

does not wish to take responsibility for the physical distribution and coordination of the

application but is, however, concerned with the application throughput and total

execution time. There are several potential benefits of automatic program distribution

over manual distribution such as increased throughput and productivity, correctness of

distribution, adaptive execution of application and concurrency exploitation. It is

recognized that this approach may not be suited for all computation. However, in many

cases, it is crucial. One such broad area of applications is inherently concurrent data

 4

intensive programs such as image and animation processing, fluid mechanics and

universe exploration models. In the context of all these application domains, autonomic

distributed systems promise to assist with an increase in accessibility, resource sharing,

throughput and scalability and reduction in execution time and programmer involvement

to manage such systems. The other facet of this problem is when the source code of such

application is unavailable [83]. The question then arises of how to inject autonomicity to

an existing non-autonomous system. Adding autonomic properties into existing

applications is immensely useful for redeploying them in an environment other than they

were developed for. Such transformed applications can be redeployed in different

dynamic environments without the user making changes to the application. This would be

of great help to the users of such system, if they do not have to worry about the

consequent transformations and the management of corresponding runtime infrastructure.

Problem Specification

 When building a distributed application from scratch, programmers can use their

own framework and any programming language that they choose and could ignore

existing applications. An existing application may be originally developed with the intent

that it be executed on a single host and whose source code may no longer be available. In

reality, one can not abandon an existing parallel application or re-implement it for the

distributed platform from scratch because of the costs involved in implementing

significant software systems. Although, there are different programming tools for

distributed programming, these programming tools and environments are mainly for

developing new distributed application from scratch. These programming tools do not

 5

adapt existing software to distributed execution on multiple hosts. They are not helpful in

modifying the existing software so that it executes in a distributed fashion. The

programmers have to manually modify the source code of such programs and follow

specific programming conventions. This transformation is not only time consuming and

error-prone, but also requires advanced programming knowledge. The problem is

aggravated when the source code for such an application is no longer available for

transformation. The challenge is then to perform all such transformations at the object

level instead of the source code level.

 It is not always a feasible option to build self-adaptive distributed systems from

scratch. Mostly because of the cost and time associated with such a major development.

Programming such a distributed application is also a tedious task and programmers need

expert knowledge to handle the distribution management issues along with application

specific domain knowledge for the problem at hand. For average programmers, this

becomes a daunting task when they also have to incorporate autonomic primitives into

the system. In general, programmers want to concentrate on the problem in hand, rather

than spend time on incorporating autonomic behavior into their system. It is

tremendously beneficial to programmers if such autonomic behaviors can be added

automatically and transparently to existing systems. Although object oriented technology

provides programmers with the advantage of rapid program development in a networked

environment, it often becomes overwhelming when it is necessary to handle the

autonomic computing aspects of the program as well.

 Since program behavior is highly dynamic and a different distribution

configuration may be appropriate in different phases of the execution of a program,

 6

components should be autonomic in behavior to increase productivity and system

manageability. Such autonomic applications can be redeployed in different dynamic

environments without the user making changes to the application. However, there are

many challenging aspects [74] associated with such program transformations and

incorporation of autonomous behavior into existing programs. Such a distributed system

is envisioned as an Autonomic Computing [42] challenge where Autonomic Elements

(AE) [42, 58] are incorporated automatically to handle the complexities associated with

distribution, coordination and efficient execution of program components.

Rationale for Autonomic Systems

 Although the phrase “autonomic computing” is new to the computing arena; the

goal of designing and implementing self-managed systems has existed for a long time. A

few examples include:

• Personal computers now have some self-configuration abilities to receive updates

from the Internet and update the corresponding software or even the operating

system.

• Redundant Array of Independent Disk (RAID) systems have some self-healing

capabilities. One type of RAID systems (RAID Level 1) mirror data between two

disks at the same time. If either disk fails, the other continues to function as a

single disk until the failed disk is replaced.

 While these technologies move in the right direction, they are just a precursor to

complete autonomic computing. As more and more complex software applications and

environments are developed and systems are distributed, it becomes increasingly difficult

 7

to maintain those systems or even develop such systems. In such a complex mesh of

technologies, it is difficult to anticipate interactions among different systems. Although

there have been attempts to reduce such complexities within systems by introducing

better software engineering practices, the complexity remains as more and more new

 technologies and systems are incorporated together.

 As computing systems continue to evolve to meet ever changing needs, dynamic

computing systems which are self-manageable give business and scientific organizations

the ability to automate their business and scientific tasks. As these systems are an

interconnected mesh of different technologies, an autonomic approach is desirable as new

application modules and functions can be added or removed at a faster rate without

jeopardizing the overall functionality of the system. As computing infrastructure is now

distributing processing power (as in Grid computing [38]) and increasingly more and

more public networks are accessible for use in such environments, programmers need to

consider rapid changes in the configuration and associated unpredictability along with

system wide management issues. The autonomic computing approach is the only viable

solution in such a diverse and uncertain environment.

 If the business and the scientific communities fail to adapt autonomic computing

or similar technologies in the immediate future, there are significant consequences:

1. Systems will be more complex than ever, and will be increasingly difficult to

program, integrate, install, configure, tune, and maintain.

2. More and more highly skilled IT personal will be needed for such systems.

3. The consequent cost will be substantial and senior management will reject those

astronomical budget requests.

 8

4. Reliability and performance of system will deteriorate and the cycle of problems

will continue.

Fortunately, much of the business and scientific community recognizes this looming

crisis and agrees on self manageable systems, which operate in accordance with high

level objectives set by humans, as the most promising solution. Although IBM envisioned

autonomic computing in 2001 [42], Sun Micro System’s N1 [97], Hewlett-Packard’s

Adaptive Enterprise Initiative [41], Microsoft’s Dynamic Systems initiative [65], Intel’s

Proactive Computing [46], Cisco’s ASF [16], are all related industry efforts that

recognize that self-manageable systems are vital for the future of computing. There are

also significant research activities proceeding within the scientific community on this

topic (Chapter 4 provides extensive examples). Although it is difficult to envision what

the next era of computing will bring, success will be achieved when users do not need to

think of the management of their computing systems.

Motivation

 There have been substantial changes in computing practices in recent years

mainly because of the proliferation of low priced powerful workstations connected by

high-speed networks. However, it has been noted that many of these workstations are idle

or lightly loaded most of the time [98]. There is a great potential if one could effectively

harness the computation power of these under-utilized workstations. The most obvious

motivation is that the resulting system can have much larger memory and processing

capability than any standard computer. However, to secure the associated benefits,

excessive programmer involvement is needed. For an average user, the task of

 9

distributing a large computation across a heterogeneous environment proves to be a

tedious and cumbersome process. Therefore providing users with a self-adaptive

distributed environment that automatically and transparently distribute and manage

application across the available resources would be of great help.

 Although it may be desirable to build such self-adaptive distributed systems from

scratch, it is not always a feasible option, mostly because of the cost and time associated

with such a major development, but also because it is not practical to abandon an existing

distributed or parallel application and re-program it from scratch to be self-adaptive.

Programming such a distributed application is also an error-prone task and programmers

need expert knowledge to handle the distribution management issues along with

programming the application problem at hand. For average programmers, this becomes a

daunting task when they also have to incorporate autonomic primitives into the system. In

real life, programmers want to concentrate on the problem in hand, rather than spend time

on incorporating autonomic behaviors in their system. It is helpful to programmers if

such autonomic behaviors can be added automatically and transparently to existing

systems. Although object oriented technology provides programmers with the advantage

of rapid program development in a networked environment, it becomes overwhelming

when it is necessary to handle the autonomic computing aspects of the program as well.

 Huge data and computationally intensive, collaborative e-science research

applications, such as computational biology, bioinformatics and distributed data mining,

are on the rise in recent years in both academic and industry research domains. Each of

these types of applications demands a high-performance, dynamically reconfigurable

distributed system and an easy to use middleware infrastructure to enable successful

 10

achievement of research goals. As scientific groups look to explore larger and more

complex systems, their need for computing support increases. This research addresses the

shortfalls of current distributed technologies by adding autonomic features to the system

and by ensuring efficient utilization of resources across the network. This improved

support and self manageability in the system meets the performance and dependability

demands of these research groups along with making their goals more easily achievable.

 The motivation for this research is to enable highly collaborative engagement of

researchers in different domains by seamlessly utilizing the vast array of computing

resources made available through the creation of self manageable cyber infrastructure.

While centralization of certain large-scale research facilities is critical to achieve

economies of scope and scale, methods for making these resources widely and easily

available are equally important in meeting the goals of different scientific research

groups.

Goals

 This research aims to develop an autonomic computing architecture to distribute

user applications across the available resources and provide autonomic infrastructure

support to the applications programmer. A system is presented where the system analyzes

the existing user code and suggests tasks to be distributed. The system also allows the

user to identify (or modify the system selection) the tasks to be distributed. The tasks are

transformed into autonomic elements by the system. The intention is not the development

of the optimal distribution strategy for each application, but rather an acceptable (near

optimal, but certainly better than a sequential system) distribution in terms of total

 11

elapsed time and throughput. It is necessary that the application demands are identified

and resources utilized appropriately. Following is the outline of the goals of this system:

• Autonomic environment: The underlying system should be autonomic, i.e. it

should support the properties of self-configuration, self-healing, self-optimization

and self-protection. We believe that, only providing an autonomic environment to

the application programmer is insufficient if building programs in such systems is

not made simpler. If programming in such systems requires advanced knowledge

of the workings of the underlying autonomic environment, then the goals of

autonomic computing is not fulfilled. Users should program as usual with

minimal constraints and the underlying system should transform the code in a way

that could be self-managed autonomically.

• Automatic distribution: An average programmer wishing to utilize idle machines

in the network does not want to take the responsibility for the physical

distribution and coordination of objects. They are concerned more with the

throughput and total execution time of the whole application. Therefore,

programmers should need to do little (or nothing) to ensure the distribution of

objects across the distributed environment. The system will automatically

determine object dependability and allocate resources accordingly and coordinate

the objects transparently at runtime. Advanced users can influence the system’s

automatic decisions by providing user specific policies. The system should hide

the rest of the distribution and coordination process from the programmer.

Programmers should have the impression that the objects are all executing on a

 12

single machine, although in reality they may be executing somewhere else in the

network.

• Adding autonomic properties into existing code: The goal is to inject autonomic

primitives into non-autonomous system, whose source code is no longer available.

Therefore the code must be analyzed and the autonomic functionality should be

inserted in such a manner that it is separated from the service functionality of the

existing code.

• Ease of use: The system should require minimal interaction from the programmer

to achieve improved productivity and self-management. Problems encountered

due to distribution should be hidden from the user and dealt with autonomically in

the background. In doing so, the system should not jeopardize the user application

or the integrity of the results. The system must provide an easy to operate user

interface so that naive computer users can easily interact with the system and run

their applications. On average, it should reduce the work and complexity

associated with managing a large system. The system should be able to better

respond to sudden changes in the environment and adjust its own settings

appropriately.

Scope of This Research

 The goal of this research is to develop an autonomic computing architecture to

automatically perform the distribution of the user application across the available

resources. This requires different issues [99] to be addressed. Addressing all of those

issues and developing solutions for them in a single research project is somewhat

 13

impractical. Only the most important and essential issues are addressed and put forward

to produce a robust and useful system within the time period of this research’s life span.

Further analysis and experimentation of other issues will continue as future work.

Following is the scope of this research:

1. Development of an autonomic architecture to support autonomic element

execution. This includes development of different repositories for autonomic

systems, development of policy management scenarios, developing a self

configurable and self optimizing framework for distribution.

2. Automatic distribution of user programs. This includes code transformation at

byte code level and development of different design patterns for such

transformations.

3. Code transformation to inject autonomic primitives into the existing application.

The code needs to be analyzed and the autonomic functionality to be inserted in

such a manner that it is separated from the service functionality of the existing

code. However, transforming existing code to have all the different autonomic

primitives is a daunting and time consuming task. Therefore, the thesis addresses

self-healing primitive and associated transformations required to add this

functionality into existing code.

4. Formalize the creation and management of autonomic elements. This includes,

designing interfaces for user interaction with the system, and implementing policy

management between autonomic elements.

 14

 This research has a broad scope that a single Ph.D. research project can not cover.

Currently two Ph.D. researchers are working on different aspects towards the previously

specified goals. However, more work needs to be done to develop a full-fledged system.

The software architecture, code transformation techniques and algorithms that were

developed by this research will assist in building such an extensive and complete

autonomic system.

Challenges

 Although nearly every aspect of autonomic computing offers significant

engineering challenges [57, 83], the scope of this research has the following challenges to

overcome:

1. There is no well designed software architecture for a distributed autonomic

system. Designing and developing such software architecture is a substaential

research challenge.

2. How should autonomic behaviors be injected with in an existing non-autonomous

system? What if the source code for such system is unavailable and programmers

has no knowledge of the code to include monitoring and actuating functions in the

system.

3. The life cycle of an autonomic element (see Chapter 2 for definition) has several

stages during its life time. Transition from one stage to the next seamlessly is a

major challenge. How should the internal workings of an autonomic element be

designed and modeled? What is a good architecture for an autonomic element?

Furthermore, how should users interact with those elements? What would be a

 15

good interface between the user and the autonomic elements or the autonomic

system as a whole?

4. Program behavior is highly dynamic and a different distribution configuration

may be appropriate in different phases of the execution of a program. As a

consequence, program components should be able to relocate at runtime to

enhance locality and communication benefits. What techniques are needed to

seamlessly provide such support in a system?

5. How should such a system be evaluated? Should traditional benchmarking

approaches with different functional data (execution time, throughput, latency

etc.) be employed? Providing only such a functional evaluation of the system is

not enough to judge its effectiveness in the field. Since one of the primary goals

of this research is to provide an easy to use interface to the average user, an

evaluation framework needs to be developed to address issues (openness,

scalability, transparency, etc.) that can not be functionally evaluated.

6. Effectively partitioning a large computational problem and mapping and

scheduling those partitions over the heterogeneous resources across the network is

a substantial challenge.

7. Proper utilization of such a computing environment requires ways of estimating

each components computation and communication needs and their dependencies

so that an efficient mapping of components to resources can be achieved and the

communication cost associated with the mapping is minimized.

Autonomic computing is a grand challenge for this century, where advances in several

fields of science and technology (such as better machining learning techniques,

 16

knowledge representation and mathematical models for interaction among entities) are

required to achieve the goals of autonomic computing. However, it is very important that

the scientific and business community work towards the ultimate vision of autonomic

computing and cooperate in building prototypes that quantifiably demonstrate the

benefits of self-manageability.

Methodology

 By defining a clear boundary of the problem and by having a detailed plan to

solve the problem, the result of the research is likely to end up close to the goal. Although

Autonomic Computing is still a new concept, the different technologies which are

necessary to accomplish the vision of autonomic computing have mostly been developed

over the past couple of decades. To improve our knowledge, existing research on the

different facets of the autonomic computing paradigm which are researched

independently and sparingly are studied. From this, generic theories can be setup and

strategies to meet the goals set previously can be devised.

 Java has been selected as the vehicle to demonstrate this thesis. The first step is

to explore the functionality provided by the Sun Java API. In addition, the extensive

range of middleware technologies is explored and compared to facilitate the development

of the system and techniques for self-management. Since this research is performed at the

byte-code level of the user code, it is then logical to explore all the tools that provide

functionalities to work with byte codes. The exploration of such tools comprises technical

literature survey, API evaluation and experimental coding. Furthermore, a comprehensive

literature study was performed to try to understand the problem area.

 17

 Even though the approach presented in this thesis is well rooted as a method of

research in computer science, we believe that if an application works in practice then the

theories which it is built upon are valid. For this reason, we will be providing examples

and experimented results that will show that our approach works in practice.

Contributions

 The aim of this thesis is to explore self-managing software architectures, tools and

techniques which hide programming and distribution complexities from the user.

Towards this goal, the following original contributions are made by this thesis:

• A novel approach to autonomic management organization, autonomic element

design and instrumentation of autonomic primitives into existing systems.

• A new approach to automatically transform an existing application into a self-

managed application. This includes code transformation techniques to add

autonomic primitives into existing applications. To perform such code

transformations, requirements for autonomic computing are identified and

solutions are provided for fulfilling those requirements.

• A software architecture to support self-managing distributed applications on

heterogeneous platforms is developed. A three layered service-oriented peer-to-

peer architecture is presented to provide self-management of user applications in a

distributed environment.

• The design and development of basic autonomous entities is achieved to facilitate

transparent self-management of systems.

 18

• A prototype implementation of self-healing primitives into test applications is

presented. The effects of such code transformations are analyzed and discussed.

• New software tools to improve a programmer’s productivity in developing self-

adaptive applications. The thesis also explores new software engineering

approaches for emerging domains such as autonomic computing.

• The software tools explored in this thesis can be adapted to work for other

experimental distributed systems. By further investigating into this work and

improving the software tools we can get closer to fulfilling the vision of

autonomic computing.

• A detailed survey of existing self-managing systems and approaches along with

an intensive study of byte code manipulation tools and the shortcoming of

existing middleware technologies in fulfilling the vision of autonomic computing

is completed.

 The research results of this thesis can benefit several areas of research and

practice. Although the primary contributions of this research are in the area of self-

adaptive distributed computing, some of the ideas explored by this thesis are applicable to

other research areas, such as software engineering, programming languages, computer

networking and operating systems.

Outline of the Thesis

 The rest of the thesis is organized as follows: Chapter 2 discusses background

information required to comprehend this thesis. This chapter gives a general overview of

autonomic computing and explains issues relating to the research topic.

 19

 Chapter 3 presents a brief description of the Java Virtual Machine structure and

Java’s class file structure. This chapter also discusses Java byte code and the tools to

manipulate byte codes.

 Chapter 4 looks into other research projects that share similar goals to our

research with respect to providing autonomic environments to users.

 Chapter 5 presents the system architecture and discusses the code transformations

required to achieve such self-managing properties in the system.

 Chapter 6 presents the internal architecture of the autonomic element and

provides an evaluation of the basic building block of any autonomic system.

 Chapter 7 presents a prototype implementation of adding self-healing primitives

into existing applications. The technique is evaluated and analyzed with different test

applications.

 Finally, Chapter 8 concludes this thesis and presents future work.

 20

CHAPTER 2

BACKGROUND

 This chapter introduces and discusses important background information

necessary to comprehend this thesis and provides insight into the nature of autonomic

computing systems.

What is Autonomic Computing?

 The rapid upsurge in computational power over the past decades helped to

produce ever more sophisticated software applications and environments, and fuelled the

enormous growth in the number and variety of systems and components. As those

systems become distributed and increasingly complex, software architects are less able to

anticipate and design interactions among different components. Although there have been

attempts to reduce such complexities within systems by introducing better software

engineering practices (OOP, component based architecture etc.), the complexity remains

as more and more new technologies and systems are being incorporated together. Such

an environment is a complex, heterogeneous tangle of hardware, middleware and

software from multiple vendors that are becoming increasingly difficult to program,

integrate, install, configure, tune, and maintain. This leads to the idea of autonomic

computing [42, 58] where the complexity and the management of such system is handled

by the system itself.

 This computing paradigm has been inspired by the human autonomic nervous

system (ANS) [68]. ANS is the “body’s master controller that monitors changes inside

 21

and outside the body, integrates sensory inputs and effects appropriate response” [77].

Examples of ANS’s operations include, directing the heart to beat as a specific rate

depending on body conditions; monitoring and correcting blood sugar and oxygen level;

controlling eye pupils so that right amount of light enters the eye for reading; keeping

one’s body temperature close to 98.6 °F (37.0 °C) without any conscious effort and so on.

 Autonomic computing is a new paradigm where computing systems possess the

properties and capabilities of self-awareness and self-management. An autonomic

computing system is an “Intelligent” open system that [35, 42, 58, 77]:

– “knows” itself,

– manages complexity,

– continuously tunes itself,

– adapts to unpredictable conditions,

– prevents and recovers from failures, and

– provides a safe environment.

There is an important distinction between autonomous activities in the human body and

autonomic activities in an autonomic computing system. The decisions for many

autonomic capabilities in the body are involuntary. On the contrary, autonomic

capabilities in computer systems make decisions based on goals that the user sets for the

system using policies. Usually these are adaptive policies, rather than hard-coded

procedures, which determine the types of decisions and actions that autonomic

capabilities should perform.

 22

 For any autonomic application or system, the autonomic element is the

fundamental atom, which is a modular unit of composition with pre-defined interfaces

and mechanisms for self-manageability. As shown in Figure 1, an autonomic element

typically consists of one managed element, which could be any computing entity that

requires self-management. The autonomic element interacts with other elements and

programmers via their autonomic managers. Each autonomic element is responsible for

managing its own internal state and behavior and for managing its interactions with other

autonomic elements and the environment in which it is residing. The internal behavior of

any autonomic element and its interaction with other such elements is governed by the

goal set by the developer of that element. The elements may be required to help other

elements to achieve their goals. As it can be seen from Figure 1, each autonomic manager

has four distinct functional component devoted to individual functionality of the

autonomic element.

− The monitor component monitors the managed element and itself and provides that

data to the analyze part.

− The analyze component takes data from the monitor and analyzes the current

operation with respect to the set policies.

− If any changes to be made in the behavior of the autonomic element, the plan

component assigns task/resources based on policies and performs policy management.

− Once a new plan is devised, the execute component performs that operation on the

autonomic element or on the managed element.

There are sensors and effectors in the autonomic elements, which are interfaces either

between the autonomic manager and the environment or between autonomic manager and

 23

the managed element. The sensors help the autonomic manager to monitor and sense the

environment or the managed element, whereas the effectors helps propagate external

policies to an autonomic element or send control information to a managed element.

 As shown in Figure 1, an autonomic system is composed of autonomic elements,

which are capable of managing the system’s behavior as a whole and may engage in

Monitor

Analyze

Sensors

Execute

Plan

Effectors

Knowledge

Autonomic
Manager

Managed
Element

Managed Software
Component

Autonomic Systems

Autonomic Elements

Figure 1. Structure of an Autonomic Element.

 24

relationships with other autonomic systems in accordance with high level policies. Any

autonomic system should exhibit the following major characteristics [58, 67]:

• Self-configuring: An autonomic system must be able to install and establish itself

automatically across the available resources. In addition, such systems should adapt

automatically and dynamically to environment changes.

• Self-healing: An autonomic system must be able to detect any faults and runtime

anomalies and should recover from that and continue running smoothly. The main

objective of self-healing is to maximize availability, survivability, maintainability

and reliability of the system [36]. This, however, does not include logic errors and

poor programming on behalf of the application developer.

• Self-optimizing: An autonomic system must be able to detect any sub-optimal

behaviors and optimize itself to improve its execution [77]. Autonomic elements

attempt to optimize resource allocation and in turn will try to maximize their

utilization for satisfying goals set by the user.

• Self-protecting: Autonomic systems must detect and protect computing assets from

both internal and external threats. Autonomic systems must maintain integrity and

accuracy of the system and should administer the overall system security.

Along with the above described major characteristics, autonomic systems also have the

following minor characteristics [77, 83]:

• Self-awareness: An autonomic system should know its current state and behavior,

so that it can collaborate with other autonomic systems.

• Context-awareness: An autonomic system should be aware of its environment and

can react to any change in its environment.

 25

• Anticipatory: An autonomic system should be able to anticipate to any extent

possible, changes in the state of the system and should be able to manage itself

proactively.

• Open: An autonomic system should be portable across heterogeneous computing

environments and should be implemented with open standards and protocols.

Why Java?

 The current trends in computer software is that it is network centric,

comprehensive, heavily distributed, mobile, highly integrated and incorporated with just

about everything. Java presents features, such as platform-independence, easy but

powerful programming concepts and transparent network integration. This research

employs Java [95] because of its features, ease of programming and its ability to meet the

demands of future software developments.

 Java and Java Remote Method Invocation-Over Internet Inter-ORB (Object

Request Broker) Protocol (RMI-IIOP) [96] is used for implementing the framework and

algorithms. Although Remote Procedure Call (RPC) [8] and Message Passing Interface

(MPI) [63] are well known and well-understood mechanisms for making distributed

computing look like centralized computing, both of them have severe limitations [34]

which hinders the goals of this project. However, the distributed object model, with the

help of an object oriented programming language such as Java, eliminates several of

these limitations and simplifies the function of a distributed system. In Java RMI, from

the viewpoint of a process, a distributed object appears to be the same as a local object.

Using an object centric communication protocol permits the use of standard web centric

 26

communication protocols, such as WSDL [105] or SOAP [91], in the future. The Java

RMI environment greatly simplifies distributed object programming by allowing

communication between two remote objects with minimum constraints.

 Java RMI enables Java programmers to distribute computation across a networked

environment without having to worry about low-level networking details. Since RMI is

central to Java, it brings the power of Java’s safety and portability to distributed

computing. Java includes features which serve as important building blocks for

implementing the proposed system:

• Reflection: Java provides reflection that allows objects to determine type

information from an object instance or to create an object instance from type

information. Reflection allows instances of objects to be created even if the class

name is not known until run-time. Reflection can also be used to determine the

methods and fields of objects that are dynamically created. Reflection is needed to

gather user program’s information and during dynamic class loading in the

autonomic elements.

• Object Serialization: Java serialization converts objects into a format where they

may be stored as a sequence of bytes. Serialization is vital for the transfer of

objects between autonomic elements. Serialization occurs transparently in Java

when an object is passed as a parameter in a remote method invocation or when

objects are passed through I/O streams.

• Dynamic class loading: Java supports dynamic class loading, which allows code

to be loaded only when required. Dynamic class loading implies the ability to

reference and instantiate objects that are unknown to the application at compile

 27

time. This enables an autonomic element to keep executing and requesting remote

object, without having any prior knowledge about the objects to be created.

• Security manager: The Java security manager is a class that allows application to

implement a security policy. A security policy defines those Java features that

objects are allowed to access. The security manager allows the system to ensure

security for those who provide computing resources, by restricting object access

to those API features, which do not affect the remote host.

 With the above features, RMI provides a simple yet direct model for distributed

computation with Java objects. RMI allows calls to be made between Java objects in

different virtual machines or even on different physical machines. Coupled with the Java

platform’s code portability, RMI greatly simplifies distributed object programming.

Primary advantages of RMI are [109]:

• Object oriented: RMI can pass full objects as arguments and return values, not

just pre-defined data types. In RPC systems, peers have to decompose such an

object into primitive data types, ship those data types and reconstruct the object

back on the other side.

• Write Once, Run Anywhere: RMI is part of Java’s “Write Once, Run Anywhere”

approach. Any RMI-based system is totally portable to any Java Virtual Machine

(JVM).

• Design patterns: RMI provides the full power of object oriented technology in

distributed computing. This opens up new opportunities to use object oriented

design patterns to simplify the system design [59].

 28

• Secure, portable applications: RMI preserves Java Runtime Safety, enabling

developers to write distributed applications that are both secure and portable.

• Parallel Computing: RMI is multi-threaded that allows the autonomic elements to

exploit Java threads for better concurrent processing of managed elements.

• Ease of use: RMI is easy to write and easy to use. RMI makes it simple to write

remote Java servers and Java clients that access those servers.

 RMI provides a solid background for object oriented distributed computing. RMI

which uses Internet Inter-ORB Protocol (IIOP) [96] as its transport protocol is chosen as

the primary communication method instead of standard RMI over JRMP (Java Remote

Messaging Protocol). RMI-IIOP comes with the Object Management Group’s (OMG)

Interface Definition Language (IDL) [47] (Sun Version) through which programs written

in other languages can also be connected and form part of the application or system.

RMI-IIOP is a robust choice for a dynamic environment as it is necessary to implement

the autonomic elements in a manner that it follows different industry standards for

interfacing and internetworking. RMI-IIOP permits the extension of the benefits of RMI

with new standards and functionalities.

 Although, the target application should be written in Java; the proposed approach

could also be implemented in other Common Language Runtime [66] based interpreted

languages, such as C#. However, currently this avenue is not being explored as it

constraints the approach to a machine dependent environment. Hopefully with

improvements in inter-system interfaces, such as Mono [80] and Wine [108], this work

can be extended in C# in the future.

 29

Which JVM?

 Although the standard JVM developed by Sun Microsystems provides different

functionalities for distributed programming and for developing autonomic elements, it is

limited to a certain extent when it comes to interaction with the environment. One

solution to this limited functionality is to modify the JVM and tailor it to meet the needs

of this research. There are several modified JVMs [5, 9, 21, 25] available which provide

extensive functionalities to interact with the underlying machine. However, using a

modified virtual machine is not an acceptable solution in all situations as it would require

the modified JVM to run on all nodes of a distributed application and, therefore, disable

the use of a standard JVM. Furthermore, the modified JVMs are typically not tested well

as compared to the standard JVM. This may have a negative impact on performance.

 Currently this research uses native methods for machine dependent interaction

needed by the autonomic elements. The autonomic elements need to interact with the

environment for several reasons, such as, measuring machine and networking load,

bootstrapping autonomic elements and migration of autonomic elements. Currently the

standard support provided by the Java API is used for these operations. Native methods

will be implemented in the future for these operations on different platforms for extensive

support needed for those operations. The transformed existing user code uses only Java

and RMI-IIOP and does not require any changes to the JVM to perform object

manupilation and environment interaction in different hosts.

 30

Source Code or Byte Code?

 The motivation for choosing byte code level modification comes from the fact

that existing systems usually do not have the source code for modification. In those

scenarios, it is beneficial if one could work with byte code and perform associated

transformations necessary to run that program autonomically. Furthermore, the byte code

is already free of compilation errors and optimized for execution. Byte code also follows

a strict format compared to corresponding source code version of the program. This

makes it easy to manipulate and to work with byte codes. If users wish to automate a new

program, which has its source code available, the presented approach still works as the

only thing that needs to be done is to simply compile the source code with the standard

Java compiler and then input it to the presented system. This factor gives an extra edge to

the approach presented in this thesis, as a source code pre-processor with extra

functionality that assists application programmers can be developed to add new

functionalities (as meta-programming) in a new program and the pre-processor simply

converts that to the corresponding Java source code, which in turn can be provided to the

system after compilation and conversion to byte code.

Summary

 Autonomic computing is a new paradigm in computing, which aims to produce

software that has the properties of self-configuration, self-healing, self-optimization and

self-protection. This chapter presents the basic concepts of autonomic computing and

describes different aspects of it. Java has been chosen for this research mainly because of

 31

its features, ease of programming and its ability to meet the demands of future software

developments. Different features of Java, which is important to this research, are

discussed in detail. Since the Java Virtual Machine (JVM) specification is implemented

by multiple parties, the selection of a particular JVM implementation for this research is

important. Although modified JVMs provided some extended functionalities, the

standard JVM developed by Sun Microsystems is the most widely used in industry and

academia. For this reason, this research chooses to use Sun JVM for wider acceptance in

future. Finally, reasons for working at byte code level are explained and discussed.

 32

CHAPTER 3

JVM AND JAVA CLASS FILE

 This chapter provides an introduction to the Java Virtual Machine (JVM) [50]

which is an abstract computer where all Java programs execute. Later in the chapter, a

detailed discussion of Java’s class file is provided; this is the runtime representation of a

class from the source code.

Structure of the JVM

 The Java Virtual Machine (JVM) is a specification of an abstract computer to run

Java programs. The specification defines a set of features that every Java Virtual Machine

must have. However, the implementation is left to the developers. The specification is

flexible enough to allow a Java virtual machine to be implemented either completely in

software or to varying degrees in hardware. The flexible nature of the specification

enables the JVM to be implemented on a wide variety of devices. The main job of a JVM

is to load class files and execute the byte code [37, 110] inside them. As shown in

Figure 2, the class loader inside the JVM loads class files for both the running program

and any system classes that the program utilizes. The execution engine is responsible for

the execution of the byte code inside those classes. A Java program usually interacts with

the host operating system by invoking native methods. Java has two kinds of methods:

Java methods and native methods. A normal Java method is written in Java, compiled to

byte code, and then stored in class files. On the other hand, a native method is written in

some other programming language and compiled to the underlying machine code of a

 33

particular processor. Usually native methods are stored in a platform specific dynamically

linked library. Native methods are the connection between a Java program and an

underlying operating system. The runtime data area of the JVM holds all the necessary

runtime data of a running Java program. The runtime data area consists of the following:

• Method area: This area holds runtime information of the class file. The method area

is shared among all threads of that class. It contains static class information such as

field and method data, the code for the methods and the constant pool. The constant

pool is a per-class table, containing various kinds of constants similar to a symbol

table.

• Heap: The heap is the data area where all objects and arrays are allocated. The heap

is shared among all threads. As a program executes, all the objects that the program

instantiates are placed on the heap.

.java .class
Java

Source
Code

Java
Compiler

Class Loader Subsystem

Runtime Data Area

Native
Method
Interface

Native
Method

Libraries

Execution Engine

Java
Class file

Java
Virtual
Machine

Figure 2. Structure of the Java Virtual Machine.

 34

• PC register: The program counter (PC) register indicates the next byte code

instruction to be executed.

• Stack: Each thread has a private stack area that is created at the same time as the

thread. The Java stack is composed of stack frames. A stack frame contains the state

of one Java method invocation. When a thread invokes a method, the Java virtual

machine pushes a new frame onto that thread’s Java stack. When the method

completes, the virtual machine pops and discards the frame for that method.

 Figure 3 shows a snapshot of the runtime data area of the JVM at a particular

moment. In this particular situation, four individual classes are loaded in the method area.

The method area and the heap are shared among all the threads running inside that

particular instance of the JVM. As the program executes, all objects that the program

Class Data

Constant
Pool

Method Area

Class Data

Class Data

Class Data

Class Data

Heap

Object

Object

Object

Object

PC Register

Thread 1

Thread 2

Java Stack

Thread 1

Stack
Frame

Thread 2

Stack
Frame

Stack
Frame

Stack
Frame

Stack
Frame

load a constant to the operand stack

Native Stack

Thread 2

Currently
running

Local Variables

Operand Stack

store load

Figure 3. JVM Runtime Data Area.

Object

Object

 35

instantiates are placed on the heap. In Figure 3, five individual objects of different classes

have been created. As additional new threads are created, each thread receives its own

program counter (PC) and stack area. If the thread is executing a Java method, the PC

register indicates the next byte code instruction to execute. For native methods, this

information is either stored in the PC or an implementation dependent memory area. The

JVM has no registers (analogues to registers inside any modern processor) to hold

intermediate data values. However, the operand stack replaces the registers in a

conventional processor.

Data Types and Values

 The type of a variable or expression in Java is known at compile time. In doing

so, much of the runtime type checking is avoided. The types in JVM are classified into

following two groups:

1. Primitive types: This data type represents different types of numeric values and

can only hold values of any one specific type. Primitive data types are always

passed by value.

2. Reference types: This type represents complex data such as interface, class, array

and null (reference to nothing) pointer. Reference types pass values indirectly.

Variables

 There are several different kinds of variables in JVM as shown in Table 1.

Depending on the scope and context of the variable, it has to be handled accordingly in

byte code level.

 36

Table 1. Variables inside JVM.

Variable Type Description
Class Created on a per class basis.

Instance Created on a per instance basis.

Array component Created for each array element. However, each of these
is unnamed and can not be accessed directly.

Method parameter Temporary variable to hold an argument passed to a
method.

Constructor
parameter

Same as a method parameter, but used for constructor
arguments.

Exception handler
parameter

Temporary variable to catch any exception that has
been thrown.

Local Temporary variable that exists during the execution of
a statement or block of statements.

Fields and Methods

 Each class in Java consists of two parts, fields and methods. Fields are the

variables defined outside of any method that hold the properties of that class, whereas the

methods are operations through which those properties are manipulated. The

constantpool of the class file, which holds information for each of the fields and methods,

is discussed in the next section.

Structure of Java Class File

 The Java class file is the compiled code (byte-code) corresponding to the source

code, which is ready to be executed by the JVM and is represented using a platform

independent binary format. A Java class file is defined as an array of bytes with a format

defined by Sun Microsystems [50]. Figure 4 shows the overall structure of the class file

[37, 110]. The first eight bytes of the class file hold the header information. Of these

eight bytes, four bytes denotes the magic number, which makes non-Java class files

 37

easier to identify. The next four bytes of the header contains versioning information

related to the Java technology development. The constant pool is a heterogeneous array

of constants about different components of the class file. It occupies the most space in

any class file. The constant pool is organized as a list of entries. Entries in the constant

pool are referenced by the corresponding element’s index, where the index starts from 1.

Many entries in the constant pool refer to other entries in the constant pool. Table 2

shows the different types of element inside the constant pool and what they represent.

 The next two bytes after the constant pool is an encoded bit mask, which

represents access privileges about the class and any interfaces being implemented by that

Magic number

Minor version

Major version

 Method

Class

Name

Type

 Field

Class

Name

Type

“foo”

“(I)V”

“I”

“aField”

“testClass”

…
…

Header

Constant Pool

Access Rights

This class name

Super class name

Implemented interfaces

Declared Fields

Declared Methods

Class Attributes

Figure 4. Structure of a Java Class File.

 38

Table 2. Constant Pool Entries.

Constant Pool Entry Representing Description
CONSTANT_Class A Class or Interface Fully qualified name.

CONSTANT_Fieldref A Field
Fully qualified name of the

class containing the field and
the descriptor of the field.

CONSTANT_Methodref A Method in an
object

Fully qualified name of the
class containing the method

and the descriptor of the
method.

CONSTANT_InterfaceMethodref A Method in an
interface

Fully qualified name of the
interface containing the

method and the descriptor of
the method.

CONSTANT_String Sequence of
characters

Constant objects of type
String.

CONSTANT_Integer An integer
CONSTANT_Float A float
CONSTANT_Long A long

CONSTANT_Double A double

CONSTANT_NameAndType
Name and type
information of a
method or a field

Method or Field name and
descriptor.

CONSTANT_Utf8 Sequence of
characters String values.

class. The next two bytes represent the name of the current class and its super class.

These are actually indices into the constant pool, where the entry at that position in the

constant pool is a CONSTANT_Class entry, representing the corresponding classes. The

next information in the class file represents the number of interfaces the class is

implementing and corresponding indices of those interfaces in the constant pool table.

Following this information, a list of fields and methods declared in the class is

represented in the same way as the interfaces are represented.

 The last components in the class file are the attributes, which give general

information about a particular class or interface defined in the class. Attributes come in

 39

various forms and are generally defined by the JVM specification. However,

programmers can create their own attributes and add them to the class file. The JVM will

ignore those user defined attributes at runtime. Furthermore, attributes can appear in

several places in the class file, not only at the top level class file table (Figure 4).

Attributes can have other attributes nested within them, representing different aspects of

that particular attribute. The attributes that appear in the class file table (Figure 4),

provide more information about that class or the interfaces that the class is implementing.

Similarly, attributes that give more information about a field are attached to the fields,

and attributes that give more information about a method are attached to the methods.

Table 3 shows the attributes that are defined by the JVM specification. Since this thesis is

focused on modifying the runtime behavior of a method, following is the description of

some of the most important attributes, which are attached to the methods and its byte

code instructions.

Table 3. Java Class Files Attributes.

Attribute Name Represent Where used
ConstantValue Value of a static constant field Field

Code JVM instructions Method
Exceptions The exceptions a method may throw Method

InnerClasses Any inner classes Class file

Synthetic A class member that does not appear
in the source code

Class file, Field and
Method

SourceFile Name of the source code file Class file

LineNumberTable A mapping between source code line
number and byte code instructions Code Attribute

LocalVariableTable

A mapping between the
representation of local variable (a

number) and the source code
representation (a name)

Code Attribute

Depricated A class, interface, field or method
has been superseded

Class file, Field and
Method

 40

Code Attribute

 The variable length code attribute contains the JVM instructions and auxiliary

information for a method. The code attribute holds the body of the method it is associated

with. Since the JVM is a stack based interpreter, the code attribute defines the maximum

stack depth that may be reached while executing its method body. It also defines the

maximum number of local variables being used. An array inside the code attribute holds

the actual byte code instruction sequence. The code attribute also defines an exception

table. The exception table holds the information related to each of the try-catch exception

handling blocks in the code attribute.

Local Variable Attribute

 This is an optional, variable-length attribute, which may be used by debuggers to

determine the value of a given local variable during the execution of a method. Usually,

the Java compiler does not write this attribute during compilation. Only when the

debugging switch is used during compilation (javac –g), does Java add this attribute to

each method’s code attribute. Each local variable that appears in the code attribute is

represented by its scope information and an index in the constant pool defining its type.

Line Number Attribute

 This variable length attribute provides a mapping between the byte code offset to

line numbers in the source file. The entries in this table may appear in any order.

Exception

 This variable length attribute lists the checked exceptions that a method may

 41

throw. This is an array of indexes into the constant pool entries for the exceptions

declared in this method’s throw clause.

Byte Code Instructions

 The instruction set of the JVM contains 201 different instructions [50]. Most of

these instructions in the JVM instruction set explicitly encode type information about the

operations they perform. For instance, opcodes for integer type start with ‘i’, opcodes for

floating point type start with ‘f’ and so on. All of these byte codes can be grouped into

the following categories:

• Load and store: Load instructions push values from the local variable table onto the

operand stack. On the other hand, store instructions transfer values from the stack

back to the local variable table. 70 different instructions belong to this category.

Short versions (single byte) exist to access the first four local variables in the stack.

There are unique instructions for each basic type (int, long, float, double and

reference). This differentiation is necessary for the byte code verifier, but is not

needed during execution. For example iload (load an integer), fload (load a float)

and aload (load an object) all transfer one 32-bit word from a local variable to the

operand stack.

• Arithmetic: This type of instruction operates on the values found on the operand

stack and pushes the result back onto the operand stack. There are arithmetic

instructions for int, float and double. There is no direct support for byte, short or

char types. These types are converted back and forth to integers and manipulated as

 42

integers. An example of these instructions is, iadd, to add top two stack elements

(which are integers) and put the results back to the operand stack.

• Type conversion: The type conversion instructions perform numerical conversions

between all Java types, as implicit widening conversions (e.g. int to long, float or

double) or explicit (by casting to a type) narrowing conversions. For instance, i2b

will convert an integer value to a byte value.

• Object creation and manipulation: Class instances and arrays (which are also

objects) are created and manipulated with these instructions. Objects and class

fields are accessed with type-less instructions. For example, new will create a new

class instance.

• Operand stack manipulation: All direct stack manipulation instructions are type-

less and operate on 32-bit or 64-bit entities on the stack. Examples of these

instructions are dup, to duplicate the top operand stack value, and pop, to remove

the top operand stack value.

• Control transfer: Conditional and unconditional branches cause the JVM to

continue execution with an instruction other than the one immediately following the

current instruction. Branch target addresses are specified relative to the current

address with a signed 16-bit offset. The JVM provides a complete set of branch

conditions for int values and references. A conditional branch based on a

comparison between data of types long, float, or double is initiated using an

instruction that compares the data and produces an int result of the comparison. A

subsequent int comparison instruction tests this result and affects the original

conditional branch.

 43

• Method invocation and return: The different types of methods are supported by four

instructions: invoke a class method (invokestatic), invoke an instance method

(invokevirtual), invoke a method that implements an interface (invokeinterface) and

an invokespecial for an instance method that requires special handling, such as

private methods or a superclass method.

 Other than these, there are a few instructions for throwing exceptions or for

synchronization or to implement Java’s finally construct. Usually all byte code consists of

one instruction byte followed by optional operand bytes. The length of the operand is one

or two bytes, with the following exceptions:

1. multianewarray contains 3 operand bytes,

2. invokeinterface contains 4 operand bytes, where one is redundant and one is always

zero,

3. lookupswitch and tableswitch (used to implement the Java switch statement) are

variable length instructions, and

4. goto_w and jsr_w are followed by a 4 byte branch offset, but neither is used in

practice as other factors limit the method size to 65535 (28) bytes.

An Example

 In this section, through a simple example, the class file format is illustrated. The

testClass program, whose source code is presented in Figure 5, is discussed at the byte

code level. The example program has a single field and method, where the method only

prints some information on the standard output device. This example program presents a

 44

simplified view of the class file and associated components and it does not cover all the

Java semantic elements.

 Once the program is compiled with the Java compiler (javac testClass.java), the

supplied byte code analyzer (javap) can be used to examine the content of the class file.

Figure 6 shows the constant pool structure of the class file. The compiler automatically

generates a zero argument constructor which calls the default constructor of the class

Object. As shown in Figure 6, this newly added constructor information is illustrated with

the help of arrows. So, entry 1 of the constant pool indicates that it is a method which is

of the class identified at index 8 and this method’s name and type information is at index

19. This process repeats and the method descriptor for this method is determined from the

constant pool. For the example entry (entry 1), the method is of java.lang.Object class, its

name is <init>, and has no argument (()) and returns nothing (V for void).

 The method structure for the given class is shown in Figure 7. As described

earlier, the body of the automatically inserted default constructor is also shown. The

default constructor first invokes the default constructor of the class java.lang.Object and

Figure 5. An Example Java Class.

1 public class testClass{

2 int aField=10;

3

4 public void foo (int num){

5 System.out.println("Hello to Java Byte Codes");

6 System.out.println(num);

7 }

8 }

 45

then initializes any fields in the class. Byte code instructions point to constant pool entry

by using the corresponding constant pool index number. LineNumberTable is used to

map between the source code line and byte code offset for debugging purposes.

const #1 = Method #8. #19;
const #2 = Field #7.#20;
const #3 = Field #21.#22;
const #4 = String #23;
const #5 = Method #24.#25;
const #6 = Method #24.#26;
const #7 = class #27;
const #8 = class #28;
const #9 = Asciz aField;
const #10 = Asciz I;
const #11 = Asciz <init>;
const #12 = Asciz ()V;
const #13 = Asciz Code;
const #14 = Asciz LineNumberTable;
const #15 = Asciz foo;
const #16 = Asciz (I)V;
const #17 = Asciz SourceFile;
const #18 = Asciz testClass.java;
const #19 = NameAndType #11:#12;
const #20 = NameAndType #9:#10;
const #21 = class #29;
const #22 = NameAndType #30:#31;
const #23 = Asciz Hello to Java Byte Codes;
const #24 = class #32;
const #25 = NameAndType #33:#34;
const #26 = NameAndType #33:#16;
const #27 = Asciz testClass;
const #28 = Asciz java/lang/Object;
const #29 = Asciz java/lang/System;
const #30 = Asciz out;
const #31 = Asciz Ljava/io/PrintStream;;
const #32 = Asciz java/io/PrintStream;
const #33 = Asciz println;
const #34 = Asciz (Ljava/lang/String;)V;

Figure 6. Constant Pool of the Given Class.

 46

Byte Code Modification Tools

 It is important to survey all necessary tools that manipulate byte code and that

could fulfill the needs of the system being developed and associated code

transformations. It is essential to ensure that there are no byte code manipulation tools

already exists which offer the same set of features that are presented in this thesis.

Furthermore it becomes important to find the most extensive byte code manipulation tool

that may help develop the system advocated in this thesis. Moreover developing a tool

that could simplify the abstractions presented in the last few sections is a challenging

public testClass();
 Code:
 0:aload_0
 1:invokespecial #1;
 4:aload_0
 5:bipush 10
 7:putfield #2;
 10:return
 LineNumberTable:
 line 1: 0
 line 2: 4

public void foo(int);
 Code:
 0:getstatic #3;
 3:ldc #4;
 5:invokevirtual #5;
 8:getstatic #3;
 11:iload_1
 12:invokevirtual #6;
 15:return
 LineNumberTable:
 line 5: 0
 line 6: 8
 line 7: 15

Source code line 5

Source code line 6

Byte code Attribute

Automatically
inserted default
constructor

Index into
constant pool

Invoke default
constructor in class

java.lang.Object

Initialize the field
with the initializing

value

Source code line number
Corresponding
byte code offset

Figure 7. Byte Code Instructions Inside the Methods.

 47

task. To avoid reinventing the wheel, it is preferable to use third party tools already in

existence and utilize them in the development of the proposed system. From this

viewpoint, this section is an integral part of this thesis, which gives a glimpse into the

tools that were surveyed and evaluated. Although there are several byte code

manipulation tools [11, 12, 15, 17, 90, 92], the behavior sought from the tools available is

discussed first.

 The choice between the different byte code manipulation tools is governed by the

following issues:

1. Expressiveness: How well the tool can express the constraints appearing in the

class file, which are described by the JVM specification [50]. For example, a

particular tool, which is not able to realize the exception table, will prevent

faithful handling of the exceptions mechanism used in Java source code to handle

errors.

2. Maturity: How long the tool has being used by others and whether any substantial

analysis of that tool has ever been done and a comparison to other such tools

performed? How many different systems were developed using a particular tool?

If the selected tool is well used and tested and free of any software bugs, it is

unlikely to have runtime anomalies due to the use of that tool for dynamic

modification of the byte code.

3. Programming language in which it is implemented: Since the tool is required at

runtime for dynamic reflection and modification of byte codes, it is desired that

the tool itself is built in Java. To achieve the goal of portability, it is also desirable

 48

that the tool is shipped as portable packages and is not tied to any other packages

other than Java system packages.

4. The quality of the abstractions provided: What level of abstraction do the tools

provide? Although a higher level of abstraction is required for achieving the

proposed approach, sometimes lower level manipulation primitives are also

necessary. A tool that provides both levels of abstraction is useful. For instance, a

low-level abstraction may allow the addition of a byte code instruction by using

an index in the constant pool after checking that this index is not outside of the

constant pool. A higher level abstraction may ease that programming task by

hiding all the low level details and by automatically maintaining the constraints

imposed by the JVM specification.

5. Open source: Does one need to worry about any licensing issues? Is the tool

completely open source? Can the tool be modified to suit the goals of this thesis?

6. Documentation/help provided: How much help is provided by a certain tool? Are

there well developed manuals and examples to use that particular tool? Do the

developers provide any sort of support for using their tool?

 There are several general-purpose implementations of byte code manipulation

tools available. Some are developed to assist with Aspect-oriented programming, while

others translate the class file format into an internal representation and then allow the

programmer to work on it. After extensive surveying, the following two byte-code

manipulation tools were selected as candidates for consideration. Both of the following

fulfill the above described selection criteria:

 49

• BCEL: As described in [20], the purpose of BCEL (Byte Code Engineering

Library) [12] is “to give the users a convenient possibility to analyze, create, and

manipulate (binary) Java class files”. BCEL provides two different

representations of the class file: a static one and a dynamic one. Each

representation has an associated package in BCEL that clearly separates the scope

of the different abstractions in use. The static level is used to describe a class from

a virtual machine point of view while the dynamic level allows actual

modifications on a class file. The static level acts as an intermediate

representation; using the dynamic level requires building the abstractions

representing a given class at a static level first. Saving a dynamically modified

class file requires the regeneration of a static description from the dynamic

description. This approach makes it rather cumbersome to use and BCEL’s

method of improving the abstraction relies upon the use of programmer’s object-

oriented techniques and knowledge of design patterns. Although BCEL has been

used to develop several systems, it was not selected for use due to its steep

learning curve and awkwardness of use.

• Javassist: Javassist (Java programming assistant) [15] is a load-time reflective

system for Java. It is a class library for editing byte codes in Java. It provides

source-level and byte-code level abstractions. Javassist enables Java programs to

define a new class at runtime and to modify a class file even before the JVM loads

it. Unlike other similar systems, Javassist provides source-level abstractions

which allow programmers to modify a class file without detailed knowledge of

the Java byte code. Javassist comes with a built in compiler that can compile a

 50

fragment of source text and insert the corresponding byte code inside an existing

byte code sequence. This ease of use is a unique feature of Javassist compared to

other tools and is a key element in choosing Javassist as a byte-code manipulation

tool for this research.

Summary

 Since the research work with byte-code and run-time code transformations, it is

important to have a clear idea of internal workings of the Java Virtual Machine and Java

Class file. This chapter therefore gives a brief introduction of both the JVM and the

structure of the Java class file. Since this research is working at the byte code level,

discussion of byte-code instructions is then followed with examples to illustrate different

aspects of class structure and byte-code instruction format. There are a number of tools

available to manipulate byte codes. It is important to survey all necessary tools that could

manipulate byte codes and that could fulfill the needs of the system being developed and

associated code transformations. Therefore requirements are identified and available tools

are surveyed to see whether they fulfill the requirements being set.

 51

CHAPTER 4

RELATED RESEARCH

 This thesis investigates new software tools for automating and separating the

distribution concerns in programming distributed systems. This work is placed at the

intersection of automatic program partitioning, automatic program distribution,

autonomic system management, software engineering and distributed systems. The

motivation of this research comes from the fact that it is inherently difficult to automate

the process of distributing an existing centralized system over a set of distributed

heterogeneous machines. Current related research focuses on a single issue at a time.

Typically, the options explored are not transparent to the user and, in fact, require the

user to be an expert in that area in order to manage a large distributed system. This

section presents related research work classified into distinct sub-areas of research

corresponding to different aspects of the research performed in this thesis. Before

discussing the related research works, existing middleware technologies that help develop

distributed systems are presented and their shortcoming in fulfilling the vision of

autonomic computing is discussed.

Existing Middleware Technologies

 There are a number of different kinds of middleware tools and systems developed

in the past two decades. They vary in terms of the programming abstractions they provide

and the kinds of heterogeneity they manage beyond network and hardware. One such

middleware technology for object oriented programming is Distributed Object

 52

Middleware or DOM. DOM is the middleware that supports the object oriented

programming paradigm and objects located on different machines. Distributed object

computing is a computing paradigm that allows objects to be distributed across a

heterogeneous network, and allows each of the components to interoperate as a unified

whole. Distributed objects are like jigsaw puzzle pieces, because they can combine with

each other, act independently and are portable. Distributed objects can combine to form

part of an application or the entire one. The reasons behind DOM’s popularity are [86]:

− Provides abstraction beyond those of the message passing system.

− Provides the power of OOP: encapsulation, inheritance and polymorphism, available

to the distributed application developer.

− Enables clients to program distributed applications much like stand alone applications

without the need for hard-coding dependencies.

− Growing focus on integration rather than on programming from scratch. This has the

benefit of having less development time and more test time for the application

programmer. Consequently the development cost decreases and level of support

increases.

 There are several kinds of DOM available as follows:

− Sun's Java Remote Method Invocation (RMI) [94] enables developers to create

distributed Java-to-Java applications, in which the methods of remote Java objects can

be invoked from other JVMs, possibly on different hosts. RMI supports more

sophisticated object interactions by using object serialization to marshal and

unmarshal parameters, as well as whole objects. This flexibility is made possible by

Java’s virtual machine architecture and is greatly simplified by using a single

 53

language. The newest RMI version is RMI-IIOP [96], which uses CORBA’s IIOP as

its transport protocol compared to RMI’s JRMP protocol. RMI-IIOP provides an

alternative for complex CORBA [70] implementations.

− Microsoft's Distributed Component Object Model (DCOM) [64] enables software

components to communicate over a network via remote component instantiation and

method invocations. Unlike CORBA and Java RMI, which run on many operating

systems, DCOM is implemented primarily on Windows platforms.

− Simple Object Access Protocol (SOAP) [91] is an emerging distributed object

middleware technology based on a lightweight and simple XML-based protocol that

allows applications to exchange structured and typed information on the Web. SOAP

is designed to enable automated Web services based on a shared and open Web

infrastructure. SOAP applications can be written in a wide range of programming

languages, used in combination with a variety of Internet protocols and formats (such

as HTTP, SMTP, and MIME), and can support a wide range of applications from

messaging systems to Remote Procedure Call (RPC).

− The Object Management Group's (OMG) Common Object Request Broker

Architecture (CORBA) [70], which is an open standard for DOM, that allows objects

to interoperate across networks regardless of the language in which they were written

or the platform on which they are deployed. Like RMI, CORBA also allows an

application to call a remote object's method and it provides a mechanism to access

remote data fields of that object. CORBA is intended to be a generic framework for

building systems involving distributed objects. The framework is meant to be platform

and language-independent, in the sense that client stub interfaces to the objects, and

 54

the server implementations of these object interfaces, can be specified in any

programming language. The stubs and skeletons for the objects must conform to the

specifications of the CORBA standard in order for any CORBA client to access these

CORBA objects. As for RPC, CORBA defines an Interface Definition Language

(IDL) through which a programmer defines any remote objects. Typically, a separate

pre-compiler translates this IDL source code into C++, Ada or another language, and

programmers link the resulting code with their applications. In CORBA, objects can

never really leave their implementation hosts; they can only roam the network in the

virtual sense, sending stub references to themselves and to clients. Users do not have

the option of offloading an object from one host to another as in RMI. CORBA failed

to make a greater impact on application programmers because of the tremendous

learning curve associated with it and because it sometimes makes simple tasks more

complex to programmers compared to non-distributed computation. In 1998 the OMG

adopted the Real-time CORBA (RTCORBA) [87] specification, which extends

CORBA with features that allow real-time applications to reserve and manage CPU,

memory, and networking resources.

All the above DOMs uses some form of broker based system, where new objects are

registered with a broker and all objects are invoked by obtaining the object location from

the broker.

Automatic Partitioning

 The following systems automatically break up the structure of a program into

separate entities and execute them in a distributed setting.

 55

 Pangaea [93] statically analyzes Java programs and distributes the objects

automatically on a networked system using a middleware mechanism. It derives an object

interaction graph from the Java source code, which is an approximation of the program's

runtime structure, and distributes the objects using remote communication mechanisms in

a way such that inter-processor communication cost is minimized. The programmer can

also override object placement decisions taken automatically by Pangaea based on the

derived object interaction graph to satisfy any specialized distribution requirement.

Pangaea also monitors interaction between objects at run time and migrate objects to

complement the initial placement and to take advantage of locality.

 Coign [43] automatically partitions applications built from binary components

without accessing the source code. Coign uses scenario-based profiling to profile

communication among components and based on the collected profile information, Coign

partitions and distributes components to minimize the communication cost for a given

distributed environment. Its applicability is limited as Coign only supports applications

consisting of binary components that conform to Microsoft's proprietary Component

Object Model [64]. Furthermore, Coign can only handle situations with two-host, client-

server applications.

 Addistant [100] is a Java byte-code translator for the automatic distribution of

legacy Java software. It takes Java software to be partitioned and uses a separate user

specified placement policy to translate it into a distributed version. Addistant requires

placement policies be specified at the class level, limiting the opportunity to exploit

object-level concurrency.

 56

 J-Orchestra [100] is an automatic partitioning system for Java programs.

J-Orchestra operates at byte-code level and rewrites application code and replaces local

data exchange with remote communication (e.g., Java RMI, indirect pointers). It uses

information from static analysis and execution profiling to make the partitioning

decisions. It requires no annotative inputs from users other than the network locations of

various hardware and software resources. J-Orchestra also operates at class level

granularity but unlike Addistant it does not require the user to explicitly specify policy

for every class, instead it includes automatic analysis that ensures the correctness of

partitioning.

 The main difference between the approach taken by the above systems and the

advocated approach in this thesis is that in addition to automatic partitioning, this

research also aims to utilize resources efficiently. During the initial placement of

partitions, none of the above systems consider processor and network load as selection

criteria and therefore may generate a potentially bad allocation strategy. Object migration

is supported by Pangaea only, but usually triggered by the frequent access between

different objects, again not because of a heavily loaded machine or communication

channel. The second important difference is that the above systems assume a static and

dedicated environment, whereas this research considers a dynamic computing

environment where resources may be shared with other users. In this unpredictable and

dynamic environment machines can come and go and where a large number of them are

dedicated to certain users thereby offering only a portion of their CPU time to the other

applications running on this environment. All the above systems require the user to have

complete knowledge about the hardware and software resources in their static

 57

environment; in contrast the system presented in this thesis automatically manages the

resources in the system and relieves the user of the associated complexities. Among the

automatic partitioning systems, only J-Orchestra provides partial fault tolerance, whereas,

self-healing is a major focus of this research.

Automatic Distribution

 In recent years, automatic program distribution has gained interest within the Java

community as a means to design distributed virtual machines. Although most of the

automatic partitioning systems intend to automate the code distribution, the systems

actually do not provide any underlying infrastructure support for the distribution itself.

Those systems are more concerned with program partitioning and not with the

distribution of the resultant partitions. Here two of the prominent systems that try to

provide distribution aspects along with program partitioning are mentioned.

 JavaParty [78] introduces a new class modifier into the Java language, and a

modified Java compiler translates such classes into Java/RMI remote classes, while also

adapting any calls from client code. JavaParty offers a higher degree of distribution

transparency than standard Java/RMI, as a result, making a class remotely invokable (i.e.

distributed) requires no effort within the source code, neither on the client side, nor on the

server side. JavaParty’s approach only provides for initial program distribution and

limited load balancing at run time. However, there is no support for other aspects of

distribution or system management.

 The shortfalls of JavaParty inspired the development of an automated distribution

system known as AdJava [33]. AdJava shows that higher performance can be gained by

 58

providing automation and transparency in distribution of user programs. AdJava provides

increased performance and throughput without any user involvement and without any

change to the underlying middleware technology. This work also shows that by relieving

the application programmer from complex middleware interfaces the system is more

accessible to users who do not have advanced knowledge in middleware programming

systems. Although AdJava shares some of the same drawbacks as JavaParty, the research

in this thesis leverages off the experience gained in the AdJava project.

Autonomic Systems

 There is no full fledged autonomic system either in the business domain or in the

research domain that the author is aware of [83]. Most of the autonomic systems so far

are actually prototypes or provide a limited amount of required functionality [58, 106] of

an autonomic system. The most important aspect that is missing in all these systems is

that the authors do not actually describe how to write programs in such systems or how to

utilize such a system in a simpler fashion. They either introduce new metaphors or

provide a completely new approach to autonomic computing that adds additional

complexity and a steep learning curve to the programmer. The goal of this research is to

make the resultant system simple to use, by making the underlying autonomic framework

transparent. None of the following systems match this goal.

 The Unity system [14] provides a platform designed to help autonomic elements

interact with each other and their environment. It uses goal-driven self-assembly to

configure itself. However, the utility function it uses for self assembly assumes that one

can quantify the utility of different choices. The Unity system does not address the

 59

question of how complex it is for application programmers to use this prototype. There is

no discussion of programming in such an autonomic system. Along with providing a

runtime environment for autonomic elements, the goal of this research is to provide the

programmer with simple to use interfaces to program in such a system.

 Autonomia [26] is a ‘proof-of-concept’ prototype software development

environment that provides application developers with tools for specifying and

implementing autonomic requirements in a distributed application. The goal of

Autonomia is to automate the deployment of mobile agents that have self manageable

attributes. Autonomia only addresses self configuration and self healing properties of

autonomic systems. Users of Autonomia have to use a well defined library and a

predefined Application Service Template to create their programs. Therefore, users are

exposed to the underlying system and need to know specific interfaces explicitly to

program in Autonomia.

 AutoMate [76] is an execution environment for Grid-based autonomic

applications. AutoMate develops an autonomic composition engine to calculate a

composition plan of components based on dynamically defined objectives and constraints

that describe how a given high-level task can be achieved by using available basic Grid

services. AutoMate provides a set of tools within a programming framework such as,

autonomic composition and coordination middleware. However, as with IBM’s toolkit

(Please see Autonomic Programming Environment Section later on), AutoMate does not

address the complexity of integrating autonomic functionality into applications and

introduces so many new metaphors and paradigms that eventually make programming

such an autonomic system more complex than its current counterparts.

 60

 QADPZ [19] provides an open source framework that allows the management and

use of the computational power of idle computers in the network using autonomic

principles. QADPZ is implemented in C++ and uses MPI as its communication protocol,

which restricts this system to a certain class of architectures. It also deploys a master-

slave pattern for task distribution, which actually does not follow the autonomic system

architecture and it does not take any measure to overcome a single point of failure, e.g.

the master node. The clients and the slaves (which do the actual work on behalf of the

client) talk to each other by the use of a shared disk space, which is certainly a

performance bottleneck and requires costly synchronization.

Autonomizing Existing Systems

 There is little research being conducted to add autonomic functionalities into

existing systems and typically, the options explored are not transparent to the user and, in

fact, require the user to have an extended knowledge of the existing code.

 Haydarlou et al. [40] present an approach and a conceptual architecture for fault

diagnosis and self healing of interpreted object oriented application. Their approach is to

equip current and legacy interpreted object oriented code with their proposed technique

so that the application can heal itself and can also attempt to solve the root cause that

initiated the fault. Although this work shares similar goals and employs a similar

approach, the solution provided in this thesis is extensive and completely transparent to

the user. Details of code injection methodologies and different issues that arise during

such code injection are addressed in this thesis. The authors in [40] propose a conceptual

architecture for fault diagnosis; however, they fail to elaborate how the learning

 61

algorithm actually learns new fault scenarios. The authors experiment with their proposed

technique with an application, for which there is no need to save any state information for

a restart after a fault. Although the authors introduced a unique approach, in the form that

they implemented may not work for more complicated programs, having nested try-catch

blocks, local variable interactions, conditional branches, etc. The authors also do not

provide any code inflation or execution time information for their proposed approach.

 The work by Schanne et al. [83] attempts to inject autonomic functionality to

existing object oriented code. The authors used the standard proxy/wrapper architecture

to inject additional functionality, namely self-updating, self-configuration and self-

optimization capabilities. The authors used static reflection to determine the structure of a

class and then modify the methods according to their needs. One of the major drawbacks

of their approach is that the user needs to supply the pre-processor with some meta-

information about the code, such as, pre- and post-conditions and invariants of methods.

The assumption is that the user has access to the application source code and could

provide such meta-information about the methods. This assumption is not realistic for

existing application code, as exploring the meta-information for such code is nearly

impossible. Users can not get this required meta-information by simply examining the

byte-code; source code is necessary to derive the meta-information, which in real life,

may not be available for an existing code. Furthermore, as the authors in [83] rewrite

only a portion of the byte code of the original class (either through mutators or directly

and via proxy classes), all calls to the original class must be synchronized to ensure the

consistency between the proxy and the original class. This sort of synchronization is

costly and time consuming for frequent method calls.

 62

 Abbas et al. [1] build an infrastructure that offers adaptation, evolution and

autonomic management support to existing systems. Their technique is based on

dynamically linked libraries and therefore restricts itself to GNU C library. Their

approach of injecting autonomic properties into existing code for run time diagnosis

purpose is performed by inserting dynamic linker hooks in the existing code, so that at

run time, corresponding libraries are loaded for diagnosis purpose. Since their approach is

tied to C, it can not be used in a platform agnostic environment.

 Kinesthetic eXtreme [55] provides a completely new approach for making legacy

system autonomic. They use DASADA standards [6] for probes and gauge techniques to

monitor and adapt an existing system. The existing code is retrofitted with probes and all

probes in the system send runtime information to a centralized array of gauges where the

overall system status is determined from the gathered information and any feedback to

the system is relayed back to the corresponding components through the embedded

probes. According to the vision of autonomic system [42, 58], each of the sub-

components in the system should be self-managed and therefore, as a whole, the system

is self managed also. However, this approach centrally collects status information from

the whole system and then tries to change the behavior of the whole system. Since probes

from all the sub-components are providing data to the gauges constantly, there is

significant communication traffic. Furthermore the system provides self-healing

capabilities at the level of the whole system level and not at the single component level.

The self-healing approach provided in this thesis is completely different from the

approach presented by Kinesthetic eXtreme. Instead of putting the monitoring and

decision making code outside of the existing code, the approach advocated in this thesis

 63

injects code segments into the existing code. This allows finer level granularity with

respect to control and make the resultant components fully self-sustained in any

environment in which it is running.

Autonomic Programming Environment

 Autonomic programming environments provide programming tools and

development environments for building autonomic systems. Most of these systems

provide support for heterogeneous platforms and limited autonomic capabilities.

Although this research shares some of the same goals of these systems, its goal is to

provide a transparent and easy to use underlying autonomic framework along with an

associated development environment. This thesis presents a runtime system that adds

those missing and required autonomic capabilities as an add-on or plug-in to the

application and which modifies the user code transparently by injecting appropriate

hooks and wrappers automatically into existing code.

 IBM’s Autonomic Toolkit [22] provides tools and an API for the purpose of

monitoring, analysis, planning, and executing autonomic applications. The toolkit hosts

several class libraries, plug-ins and tools for the Eclipse development environment [28]

as follows:

• Common Base Events: The toolkit defines a standard data format known as

Common Base Events [22] based on XML that define a standard data format for

communication purposes.

• Generic Log Adapter: This plug-in for autonomic computing converts existing log

files to the Common Base Event format.

 64

• Log and Trace Analyzer: This tool reads log files in the Common Base Event

format, correlates the logs based on various criteria, and displays the correlated

log records in a user friendly manner.

• Resource Model Builder: This tool generates data models of monitored resources

using Common Information Model format.

• Autonomic Management Engine: The Autonomic Management Engine hosts

deployed resources models [22] and then monitors events on those models.

• Integrated Solutions Console: This is a web based user interface built on IBM’s

WebSphere Application Server [45] for a centralized management of autonomic

capabilities.

 Although these tools provide some inter-dependent functionality for an autonomic

environment, they however, do not address the complexity of integrating autonomic

functionality into applications. These tools do not help programmers to design their

autonomic applications or to implement the logic required by autonomic elements. The

toolkit also provides limited forms of communication primitives required for a more

general autonomic environment. Developers of autonomic systems [62] agree that this

toolkit is difficult to integrate into various distributed environments and requires real

effort on behalf of the application programmer to use its functionality. The approach in

this thesis is very different and attempts to relieve the application programmers from the

burden of such complex and ever changing metaphors. It is our belief that programming

an autonomic system should be made easy and transparent to the user, otherwise the goal

of autonomic computing is sacrificed.

 65

 Orso et al. [73] present a technique to dynamically update an executing Java

application. Orso uses proxy classes to rewrite application code and allows substitution,

addition and deletion of classes at run time. Their technique operates by first statically

modifying the application code (by class renaming and code rewriting) to facilitate its

dynamic updating and then performs the hot-swapping of classes at run-time, when a new

version of a class is available. Although this technique provides a novel way of

reconfiguring an existing distributed system, it does not follow the autonomic paradigm

and it needs direct user intervention to perform the hot-swapping. It also does not address

all the other autonomic computing issues. This thesis employs Orso’s technique for self-

configuration and also for dynamic composition of the different components of the

autonomic element.

 The work by Griffith et al. [39] presents a technique to add self-healing

capabilities to the Common Language Runtime, explicitly for the .NET platform. They

provide a framework that allows a repair engine to dynamically attach and detach to/from

a managed application for self healing purposes. Since the .NET platform provides more

control to a user to access the runtime program and environment parameters, this

technique does not work for a JVM platform because of its more restricted access to

runtime environment.

Autonomic Element Architecture

 There have been several autonomic system projects that describe autonomic

infrastructure and define the architectural aspects of an autonomic element. However

these research projects address the issue of designing an autonomic element with

 66

different objectives than those presented in this thesis. The goal of this research is to

make the autonomic element simple to program and use and which, in turn, is sufficiently

universal that it can be used in most cases. From the perspective of implementing the

fundamental autonomic element, most of these related works are instructive. However,

they typically do not clarify the design of the autonomic element necessary to build an

autonomic system.

 The work by Jarrett et al. [49] has the same objective as this research. The authors

describe an autonomic computing architecture and accompanying implementation

infrastructure on top of the Cognitive Agent Architecture [18]. However, they did not

provide an architectural implementation of the autonomic element itself.

 Wang et al. [104] propose an autonomic element design based on the mind agent

model. It is a promising and intuitive approach to meet some challenges in autonomic

computing initiative; however the authors actually did not implement the design to

observe its workings in a real environment.

 Accord [61] provides some good ideas on how to design autonomic elements and

identifies the issues that should be addressed. However, Accord does not provide any

architectural design. Similar to Accord’s work, AutoMate [76] presents a prototype

autonomic system without defining the internal workings of the autonomic elements.

Autonomia [26] proposes a design of autonomic elements using proprietary techniques

that add additional complexity and a steep learning curve for the programmer. The IBM

Autonomic Toolkit [22] provides tools and an API for monitoring, analysis, planning,

and executing autonomic applications. Although these tools provide some inter-

 67

dependent functionality for an autonomic environment, they, do not address the

development of autonomic elements.

 Existing research on multi-agent systems is a rich source of good ideas for

system-level architectures and software engineering practices [14, 51] for autonomic

computing. Systems such as Unity [14] use multi-agent paradigms for developing

autonomic systems. However, these approaches typically lack common agreement on the

exact design of most agents. The autonomic computing community could certainly

benefit from their experience.

Self-healing Transformation

 Traditional software fault-tolerance in Java is being actively studied by a number

of researchers [28, 53, 78, 81, 85, 101, 103] in different aspects of software development.

However, these approaches either work towards traditional stop and go fault tolerance or

have different goals to this work. Typically these approaches:

− Operate at the source code level [28].

− Program through pre-defined interfaces to utilize such approaches [53].

− Deal with runtime software component update [78, 85]. [84] provides a detailed

review of such approaches.

− Employ serialization techniques, which places extra burden on the programmers by

requiring them to implement the serialization and de-serialization methods [101].

− Use monitoring and profiling during run time [55, 81].

 68

− Use a modified Java Virtual Machine for better control over the checkpointing and

recovery process [54, 103], however it scarifies portability and interoperability for

doing so.

− Use different programming languages [1, 39, 61].

 Please see the “Autonomizing Existing Systems” Section in this chapter for more

information on those works.

 The technique presented in this thesis differs from the work described above and

from traditional fault tolerance approaches in the way that it relieves the application

programmer from the burden of complex programming interfaces and ever changing

metaphors by abstracting all such transformations automatically. In addition,

programmers do not have to learn any new programming interface to utilize the technique

advocated in this thesis. The aim is that any autonomic and self-managed system should

be easy for the users to program, operate, and maintain, otherwise the goal of autonomic

computing is sacrificed. Relatively little research has been done to integrate autonomic

functionalities into existing user code and, typically the options explored by others are

not transparent to the user and, in fact, require the user to have an extensive knowledge of

the source code.

Other Related Autonomic Systems

 There is further research being undertaken in area related to autonomic computing

both in academia and in industry. Table 4 and Table 5 list such systems respectively.

Although the functionalities provided by these systems do not match this thesis’s stated

 69

goals, the experience gained by these approaches is utilized to design and develop the

system discussed in this thesis.

Table 4. Academic Research Projects on Autonomic Computing.

System Description

AntHill [4]
This is an adaptive multi-agent based peer-to-peer system. The
decentralized control techniques could be used in the system

discussed in this thesis.

eBiquity [27] Offers different artificial intelligence interaction techniques
between mobile and pervasive computing entities.

OceanStore [71] Focuses on working on large scale persistent data stores.

Wildstorm et al.
[107]

Provides methods to handle variable workloads by
dynamically reallocating hardware resources between

machines.

Table 5. Industry Research Projects on Autonomic Computing.

Company Description

Microsoft [65] The AutoAdmin system makes databases self-optimizing and
self-administering.

IBM [44] Several prototype software architecture for autonomic systems
and self configurable and self manageable server systems.

Sun [97] Assists large data stores through service provisioning and policy
management.

HP [41] Helps customers in building system by autonomizing the process
of business, service and resources.

How This Work is Different?

 This thesis explores a new software tool for automating and separating the

distribution concerns in programming distributed systems. The outcomes of this research

benefit several areas of research and practice. Although the primary concern of this

research is autonomic computing, the ideas explored by this dissertation are applicable to

other domains, such as software engineering (system design, reengineering and software

 70

architecture), programming languages (meta-programming and code transformations),

distributed and parallel processing (automating distribution issues and static analysis) and

artificial intelligence (machine learning and policy management).

 As scientific groups look to explore larger and more complex systems, their needs

for computing support increases. This research looks to address the shortfalls of current

middleware technologies by ensuring efficient utilization of resources including memory

and communication needs as well as the distribution of the application. This improved

support will meet the performance demands of these scientific groups and make their

goals more achievable. There are several grid and autonomic computing projects in

existence; however most focus on providing specialist middleware support and few, if

any, examine automated support for distribution with transparent support for autonomic

primitives. Furthermore, most approaches do not provide support for dynamic

environments consisting of a network of heterogeneous machines. This research

leverages off these existing software solutions and provides the necessary layer to hide

the complexities involved in automatic distribution and autonomic self-management.

 This research is significant in that it differs from the majority of the current

research by trying to hide, as much as possible, the underlying distribution mechanisms

and associated issues from the programmer, and incorporating a dynamic environment

that consists of heterogeneous computing resources. In this research, there is no

assumption that each of the computation nodes is equivalent in terms of performance or

capability. The nodes are available for general use and so there is a need to dynamically

monitor the machine usages and migrate autonomic elements as needed. In the presented

system, the existing user code is analyzed and corresponding tasks are identified for

 71

distribution and they are then transformed into autonomous elements that handle

associated issues automatically. The intention is not the development of the optimal

distribution strategy for each application, but rather an acceptable distribution in terms of

total elapsed time. The autonomic elements implement a policy whereby the program

aspect they are monitoring is maintained within a range of acceptable values.

 72

CHAPTER 5

SYSTEM ARCHITECTURE

 This chapter introduces a novel peer-to-peer distributed object management

automation architecture. In this model, independent or communicating objects are treated

as managed elements within the geographically distributed autonomic elements. The

presented organization offers significant advantages over traditional client-server

organization by allowing the incorporation of self-management properties into each of

the distributed nodes and making each Autonomic Element (AE) in the distributed

environment equivalent in terms of managerial capacity. The unification of the traditional

client-server roles allows management functions to be distributed across different

elements in the system, thereby providing autonomous behavior of the whole system.

Requirements

 To deliver support for autonomic behavior in a distributed object system, it is

identified that the architecture should satisfy the following basic requirements:

1. Support for expressing relationships among distributed autonomic elements. The

proposed architecture denotes each of the distributed autonomic elements as an

individual service provider for the individual managed element assigned to that

autonomic element. Users do not have to assign each individual program component

to a corresponding service provider. A utility driven algorithm [23] is devised to map

such services to provider mapping that uses service level agreements with a service

 73

provider (autonomic element) before assigning it with a specific program partition

(managed element).

2. Support for management event notification in the distributed environment. During the

lifetime of the system, events for system management and accounting are generated

and propagated across the system. To distinguish it from inter-autonomic element

messages and to safe-guard it from network packet lost, a failsafe approach has to be

formulated to propagate such event notification across the distributed environment.

3. Support for consistent representation of element properties across the system.

Although in other related research, such information is represented with flat structures

in the form of attribute-value pair, we utilize the Autonomic Computing Policy

Language (ACPL) [2] to represent properties across the system. ACPL is a

hierarchical tree model based on XML tokens that provide extensibility in the form of

tree branching. Since ACPL uses a text based representation, it is easy to manipulate,

space saving and faster in transmitting over the network.

4. Support for autonomic element discovery, deployment, configuration and access

control. To support such system management issues, short messages have to be

transmitted over the network at regular intervals. The implementation normally piggy

backs or chains such messages together to reduce network congestion.

However, satisfying these requirements is insufficient as long as basic operational units

for the programming framework for an autonomic system remain undefined.

− Managed element: A managed element (See Chapter 2) in the system is the minimum

entity of execution, which comprises of one or more inter-dependent objects. During

the lifetime of the system, managed elements can be broken down to smaller portions

 74

(or managed elements) and can be migrated to other autonomic elements to maximize

system performance.

− Communication: The underlying communication mechanism should conform to

uniform syntax and semantics and should follow open source protocol to fulfill the

basic requirements set by autonomic computing principles [42, 58]. The Web Service

Definition Language (WSDL) [105] is an XML-based communication protocol for

describing network services as a set of endpoints operating on messages containing

either document-oriented or procedure-oriented information that conforms to the

requirement of our autonomic framework and is a candidate for future improvement.

In the current implementation, Java RMI-IIOP is utilized to perform all

communication between entities. Since XML data atoms (Chapter 6) are encapsulated

into RMI packets and transmitted over the network to a destination entity, it requires

the development of a WSDL translator to extend the functionalities in the future.

− Naming: The scheme for naming individual managed elements and autonomic

elements is implementation independent and platform agnostic. It is dynamically

generated and the name reflects some property of the entity (for instance source

domain or number of objects) that it is representing. Currently this research is using

simple domain specific name conventions [29] to implement naming of entities across

the system.

 Although other issues (such as security, protection and element discovery) related

to a self-managed distributed system need to be addressed, in the current implementation,

we are not addressing those due to the scope of this work (See Chapter 1).

 75

Service Architecture

 In this section, the architecture of the system is presented. The design is driven by

the desire to produce a transparent and easy to use system that can be self-managed. The

architecture provides services (physical resources) to the submitted workload (user

application), where services are defined as an engagement of resources (service

providers) for a period of time according to a contractual relationship (Service Level

Agreement or SLA) with a service requester (application user). Figure 8 shows the

overall system architecture. The architecture is broken into two views: structural and

managerial. In the structural view, the lowest layer consists of the actual physical

resources that are providing the services. This layer is abstracted by a virtual resource

layer to hide the interface complexity of the actual physical devices. Having this virtual

Figure 8. Autonomic Service Architecture.

 76

layer with a pre-defined interface allows the architecture to incorporate new physical

devices in the future without re-programming the whole architecture for each new device.

The upper layers provide a set of predefined services dependant on the state the current

autonomic element is currently in. Some of the autonomic elements are directed to act as

managerial elements to provide certain services across the entire system, so that other

autonomic elements can work smoothly and can provide the service as requested. The

application layer, normally kept dormant, can be brought alive if needed by either the

user or by another autonomic element. The autonomic element layer is responsible for the

management of autonomic elements and general system wide management. The

middleware service layer performs actual communication services which are used for

inter autonomic element communication, repository update, notification of migration of

managed elements etc. The managerial view consists of the management functions

necessary to manage the services delivered. Management functions primarily involve

policy management, resource management, service management and life-cycle

management. All management functions are performed by autonomic elements which are

self-managing and whose role is to ensure automated delivery of services.

 Figure 9 shows the hierarchical management view of the architecture. The global

autonomic manager acts as the interface between the user and the underlying system.

Each of the program partitions is treated as a service instance and encapsulated by an

autonomic element for self-management. Each of the service instances are assigned to

resource domains that best suit the instance’s needs. See reference [23] for more

information on devising such service instance to domain composition details. Each of the

 77

 actual physical resources has a corresponding virtual resource adapter that provides a

uniform and consistent interface to the physical resources. This simplifies resource

management, service composition and dynamic resource addition/deletion. In order to

perform autonomic service management, the system must maintain appropriate

Figure 9. Hierarchical Management of System.

 78

information about the different components of the runtime environment in repositories

(databases). Repositories are classified into three distinct types:

• Policy repository (PR): This repository contains the policies created at runtime or pre-

defined by operators or users following a template policy implementation. The user

can browse through existing policies and can use them to create new policies using a

policy editor interface.

• Service repository (SR): The service repository contains information (such as parties

involved in a service level agreement) about the different service instances activated

by the global autonomic manager, types of resource used, amount of resource being

used and past operation history.

• Resource repository (RR): This repository holds information about the resources

available to the service providers at any given time. Information that may be stored

for each resource includes type of resource, resource performance matrices,

communication matrices, etc.

The implementation of these repositories is performed hierarchically to avoid a single

point of failure. Usually each service domain has its own copy of the repository and inter-

domain repository information is passed only when the system is idle or there is a need

for service re-distribution.

System Operation

 After the user presented the code to the system (at the global autonomic manager),

a static code analyzer builds an object graph from the user supplied byte code. See

 79

reference [24] for more details on the static code analyzer. Once it generates the object

graph, the graph is partitioned according to the underlying system configuration,

communication requirements or any user supplied policy. The underlying system

comprises a collection of platform-agnostic autonomic elements as an interface to the

service provider and the associated pre-processor for comprehensive byte code to byte

code translation, so that the resultant transformation produces a self-adaptive version of

the user code. The transformed program is based on self-contained concurrent objects

communicating through standard object based communication protocols and incorporates

salient features (such as Broker architecture and asynchronous call) from existing

middleware technologies. Then the global autonomic manager communicates with the

underlying system for various runtime parameters (such as the number of service

providers, service provider information and domain information) and generates an initial

deployment scheme detailing aspects such as object placement, selection of service

provider, target node and communication protocol. Once such a deployment scheme is

generated, the underlying autonomic framework performs automatic application

partitioning and placement based on site-specific application placement policies,

capabilities, and current system load. Once the program partitions are distributed, the

underlying autonomic system gains control of the objects and manage the distributed

program thereafter. As a result the underlying framework is adaptive, since it adapts the

user application to various platforms and protocols on the network and to unpredictable

runtime conditions (See Chapter 7). Figure 10 shows the system’s flow of operation.

After the static analyzer has created the object graph of the user program, the autonomic

 80

transformer transforms the corresponding partitions into managed elements assigned to a

specific autonomic element and directs it to execute its partition with a given policy.

Policies

 An important aspect of any autonomic system is for the user to specify the

behavior of the system at a high level with broadly scoped directives. The benefit of

policy-based management is that the behavior of the computing resources can be guided

to follow certain rules, and dynamically configured so that the system can achieve

Figure 10. Flow of Operation.

Policy
Editor

S E

S E

S E

S E

S E

S E

Policy Repository

Resource
Repository

Byte code

Static Analyzer

Graph info.

Partitioner

System data

Object Graph

Manageable
autonomic chunks

Distribution Transformer

Autonomic Transformer

Service
Repository

Environment Data

Global
Autonomic

Element

 81

specific goals and can react more promptly to environment changes. The system allows

two forms of policies to cover most of the possible contexts. The first form of policy is

the if-then-else policy and is static in nature. These policies are static and have nearly no

abstraction and describes actions based on the value of a predicate. Examples include:

distribution decisions dependent on a certain number of service providers in the system;

what to do in case a service provider joins or leaves a domain; a domain becomes

unreachable. The second form of policy is more abstract and can be composed of several

if-then-else policies. This form of policy can be changed during runtime depending on

service demand change and varying loads. Chapter 7 provides an example of such a

policy. The Autonomic Computing Policy Language (ACPL) [2] is adapted for policy

management as it provides a user friendly form of a policy definition, policy management

and different tools as well as an API to work with policies. Currently the user of the

system can define their own policies through pre-defined interfaces and templates.

However, future development of a graphical policy editor can overcome the lack of a

simple interface for the users of the system. The policy manager requires the following

components along with a policy editor for better management of system policies:

− Policy validator: The role of this component is to ensure that no conflicts arise due to

redundant or duplicate policies or inconsistency in policy definition.

− Policy adaptor: The role of this component is to translate policies defined in other

standards to the adopted standard or export existing policies to other standards for

cross domain deployment.

 82

− Policy distributor: This component is responsible for proper delivery of policies across

the system and accumulation of policies from across the system and saving them

consistently in the policy depository.

Currently, the static analyzer and the partitioner provide some basic policies, comprising

of resource allocation, computation and communication directives derived from the

analyzed code. Users can add or modify these system generated policies and can

supervise the deployment. Incorporating different machine learning techniques will assist

the system learn new policies over its life time.

Management Operations

 In this three tier peer to peer architecture (Figure 8), each autonomic element can

also act as a managerial element. All autonomic elements operate over a unified

management model that provides a set of operations and interface common to all

autonomic elements. Normal autonomic elements access this model to retrieve their

current configuration and save their current state, whereas managerial elements use it to

discover other elements in the system. Representation of management information is a

crucial part of any self-management architecture. The representation should be easy to

manipulate and should follow an open standard for faster incorporation and future

extensibility. XML-based WSDL is used to represent such management operations for

these reasons. Currently, there are four types of management information kept by the

system:

1. Resource information: Resource and service provider properties are expressed by

this type of information. Care should be taken so that there are no duplicate

 83

entries and periodically (heuristically decided) this information needs to be

updated to keep it consistent and non-redundant.

2. Performance information: This type of information represents the performance

status of a running autonomic element. Before two autonomic elements come to a

service agreement, they transfer performance information to learn more about

each other, which includes different performance measurements and current

operational state.

3. Configuration information: This type of information is used to configure the

behavior of an autonomic element. Concurrency control has to be in place so that

multiple configuration information is in play at the same time.

4. Relationship information: This type of information expresses dependency

relationships between autonomic elements.

A model similar to DNS revolver is employed to discover autonomic elements in the

system. Each domain has its own name server and name server in different domains

correspond to each other to solve inter-domain name discovery. Nodes in the same

domain are listed in the name server of that domain and very node in a domain is kept

aware of the designated name server for that particular domain. This is the most reliable

way of discovering elements in a domain centric environment.

Autonomic Properties

The four main properties of this autonomic system are discussed below.

 84

Self-configuration

 To use the autonomic resources, potential users must first register their

computer with the autonomic system through a user web portal. This makes their

computational resources available to other users while granting them access to other

machines. The intent is that the computational resources will only be made available to

other users while the computer is idle (amount of CPU utilization is less than a certain

threshold). There should be no observable degradation of performance apparent to the

user of the computer. A user may deregister their machine at any time and consequently

the autonomic element running on that machine will delegate its current managed

element to other available autonomic elements without the loss of useful computation.

Figure 11 shows the scenario of a user registration into the system. For a first time user of

the system, the process of registration into the system is as follows:

1. A web portal for the system is maintained. Users visit the portal and register that

particular resource into the system.

2. A unique identifier for that particular resource is created and added to the

resource repository. It is verified that a single resource does not have more than

one entry in the resource repository.

3. The user is notified of the registration status and given a user name and password

combination (authentication information) to utilize the system in the future. An

autonomic element in the form of an executable program is then downloaded for

that particular platform and installed by the user. Once installed, the

 85

authentication information is used by the autonomic element to join the

distributed system.

Figure 11. System Startup Process.

Once joined to the system, the process of submitting a computational task to the system is

as follows:

4. Assuming the user is logged into the system, the user application is submitted for

conversion and execution.

5. A list of available resources is requested from the resource repository.

6. The resource repository sends a list of resources with the usage pattern and

contact information for each resource.

Code
transformation and

execution

Registry

Web
portal

Resource
Repository

Visit a well-known
web page

1

Perform user registration
and an autonomic
manager will be

downloaded and installed

3
Add/

Delete/
Get

2

Autonomic
Elements

with usage
pattern

6

Login and ask for
live autonomic

elements

4

Not trusted
User

Trusted
User

7

5

 86

7. After that, the user code is delivered to the static analyzer and follow up code

transformations and program executions proceed as usual.

 Dynamic allocation of a partition (managed element) to an autonomic element is

required since the environment is one that is shared by other users. Flowchart 3

(Appendix A) shows the dynamic process of setting up a managed element within an

autonomic element. Consequently, the autonomic element load may vary over time and

some autonomic elements may be unavailable at the time of execution. The autonomic

element characteristics and load patterns are learned and retained in a database which is

used to determine potential candidates for the distribution of a program partition based on

the resources it requests. Consideration of specific conditions is taken into account

before allocating a partition to an autonomic element. These conditions include factors

such as the need for particular objects to be co-located within a single autonomic

element, the need for specific hardware architectures (e. g. shared memory) or the need to

access large data repositories such as satellite information that can not efficiently be

shipped to the program partition.

Self-healing

 The goal of self-healing is to produce resilient autonomic elements and a resilient

autonomic system as a whole; however there could be situations, from time to time, when

it may fail (like electricity outage). However, the system does not provide any single

point of failure as it replicates all the essential services and saves those replicated copies

in a hierarchically implemented repository. The challenge is to make the system work as

a whole, although part of the system may have failed for any unforeseen reason. There

 87

are numerous fault scenarios [88] that the self-healing property of any autonomic system

has to cater for. This thesis focuses on proof of concept by providing support for a small

number of predetermined faults that are transient in nature [111]. Therefore, the system in

its current implementation is covering the following fault scenarios:

1. The user code produces some runtime exceptions. Chapter 7 extensively describes

corresponding code transformations and self-healing approaches.

2. The autonomic element crashes. At regular intervals, each autonomic element

status is saved so that after a crash, it can restart from the last saved state.

3. The resource, on which an autonomic element is running, crashes. The same

policy as above is used for this scenario also.

4. Different repositories are unreachable. Since all repositories are implemented

hierarchically (each domain has its own repository and repositories in different

domain share information only when needed), the repository on top of the current

domain is accessed in such situation. However, if ambiguities arise for such

access, or repositories in other domains are also inaccessible, then a random

amount of time is waited to check whether repositories are accessible again.

Self-optimization

 The system provides self-optimization at the autonomic element level by being

light-weight in terms of resource requirements and continuously monitoring itself and

dynamically changing its mode to reflect the monitored status. It is recognized that good

optimization behavior by each element does not necessarily guarantee that the whole

system will be optimized. For system wide self optimization, the system would also need

 88

to resolve any conflicts that arise between two autonomic elements. To make the

scheduling process dynamic, periodic exchange of state information among the machines

is necessary. However in doing so it is necessary to take care not to overwhelm the

transmission medium to the extent that the overall system suffers performance

degradation. Although broadcasting state information is the most widely used approach,

it tends to cause congestion and it does not scale well. There is no need for an autonomic

element to exchange its state information with all other autonomic elements in the

system. Rather, each machine’s usage pattern and load characteristics are monitored over

time and a general pattern is deducted by each autonomic element. This information is

saved in the resource repository along with additional machine information (such as

machine characteristics, operating system installed and JVM type and version) and shared

among autonomic elements. Therefore, when an autonomic element needs the

cooperation of another autonomic element for load balancing or other optimization, it

chooses one with a usage pattern that satisfy its needs. Once it finds a desired autonomic

element, the final service relationship is developed by polling each other with pre-

determined service primitives. This reduces network traffic and allows autonomic

elements to response quickly to changes. The static analyzer [24] employs a utility

driven algorithm [23] to optimize initial program partition placement. The same

algorithm is used to place sub-partitions in other autonomic elements if later, during

execution, it is necessary to break up larger partitions into smaller ones to optimize

program execution.

 89

Self-protection

 Security is a major concern for any autonomic distributed system. Security is

necessary to guard against malicious attack and faults. Security is needed on two fronts:

the autonomic element itself and the distributed infrastructure. All the autonomic

elements require access control and authentication during communication. Since

autonomic elements communicate by building a relationship with each other; the nature

of the relation (initiate, setup, status, terminate etc.) provides a set of access control

primitives. Since each of the service relationships has a pre-defined set of communication

primitives, malicious attacks (which are not part of the per-defined set) are treated as

unrecognized commands. Similarly, the resources over which the application is

distributed may be subject to attack by intruders and it is necessary to ensure their

integrity also. In order for such distributed systems to be effective, the issue of security,

or more specifically integrity, confidentiality, and availability, must be addressed. The

issue of availability is addressed by the fault tolerant nature of the architecture. However,

controls at various levels, such as the operating system, application, and network are

necessary to guard against integrity and confidentiality failures. The thesis does not

address self-protection at this moment due to its overwhelming research scope.

Distribution Transformation

 Once a group of objects has been identified as a managed element of an

autonomic element, the corresponding class files must be transformed accordingly to

facilitate insertion of autonomic primitives into the code. The static portion of the class is

first moved to a separate class by the static analyser [24] and corresponding redirection is

 90

established to preserve the semantic and functional flow of the original execution.

Communication between distributed objects is permitted, but such interaction should be

kept to a minimum in order to reduce the communication overheads. The assumption is

that the distributed classes are multi-threaded to allow asynchronous execution. This

assumption is true for the problem domain of the research where the whole program is

modelled as a collection of concurrent objects,

 For each of the distributed objects, the code transformer transforms the byte code

by instrumenting code to provide autonomic properties. Specifically the points where

distributed objects are declared and called are now transformed to call and invoke

corresponding proxy object classes. The proxy can itself redirect that call to a distributed

autonomic element depending on the system level distribution policy. Every distributable

class is transformed and the distribution transformer makes the following changes:

− The distributed class is modified to implement a new interface which holds

distribution primitives.

− Any input/output statements in the user code are marked for redirection as

specified by system level policy. The reason for redirecting all input/output is

explained in the next section.

− The constructor is replaced with an initialize method.

− Based on the parameter-passing mode (pass-by-value or pass-by-reference), all

parameters and corresponding local variables are changed. Since RMI uses object

serialization to pass parameters and return values in RMI calls, it can pass the true

type of an object from one virtual machine to another in a remote call. In RMI, a

 91

non-remote object that is passed as a parameter to a remote method invocation, or

returned as a result of a remote method invocation is passed by copy. So, in this

case the content of the non-remote object is copied before invoking the call on the

remote object. When a non-remote object is returned from a remote method

invocation, a new object is created in the calling virtual machine. On the other

hand, when passing a remote object as a parameter or return value in a method

call, it is passed by reference. However, there are situations when non-remote

objects are required to be passed by reference. For instance, if a non-remote

object is passed as a parameter that itself refers to other non-remote objects, then

the whole graph of objects is copied to the recipient. If the receiving method

changes the graphs, then there will be different versions of it in the system. As

RMI does not support pass by reference for non-remote objects, the code

transformer employs RMI’s callback feature [94] to simulate pass by reference for

non-remote objects.

− All public methods in the distributed class are modified to throw a

RemoteException (to satisfy RMI requirements) and MigratedException (to

satisfy runtime migration) along with any other existing exception thrown by the

method.

− To make remote objects migratable, they are transformed to implement the

Serializable interface. The code transformer checks whether the class itself or any

of the class in its inheritance tree implements Serializable, and adds it if

necessary. However, not every class in Java can be made Serializable in that way

 92

because of the language level constraints. Such objects have to be anchored in one

single node during the execution of the program.

Other than making these changes, the remainder of the code remains intact. As a

requirement of RMI, all methods must be public so that they can be called remotely. So

the code transformer checks that all access rights are maintained. Only after the semantic

check and transformation, the methods in the generated class are made public.

Autonomic Transformation

 The static analyzer converts computationally intensive, large parallel applications

and models them as a collection of independent computing and communication resources

with diverse capabilities within a large-scale integrated system. Since the transformed

program runs as a distributed program, any single node in the system could have one or

more objects executing on it. As all of the related objects within any single node have to

be manipulated transparently, several different scenarios present themselves for

consideration:

1. One AE per node with each object as a ME (Managed Element): The traditional

proxy approach [102] could be employed; however, the full computation power of

a particular node is not utilized in this scenario. The traditional proxy approach

only supports a single object per proxy, but multiple objects per proxy are

required for the approach presented in this thesis.

2. One AE per node with multiple objects as ME: This is the most common scenario

where multiple objects run concurrently in one node. The traditional proxy

notation must be extended to address this scenario.

 93

3. Multiple AEs per node with multiple objects as a ME: Although this scenario is

possible, it is not supported by the autonomic computing paradigm and is not

considered further.

 A proxy structure is implemented that encapsulates one or more runtime objects

into a single manageable entity that communicates with other such entities in the system

with a single communication channel provided by the proxy object. Having an

encapsulating proxy object allows us to incorporate the autonomic functionalities

seamlessly into the user objects with the help of sensors, actuators and control interfaces.

Once user classes are transformed using the traditional proxy approach, a new proxy class

is created to encapsulate all the other proxies in that node. Any inter-object

communication inside a single ME proceeds as usual; however, any inter-object

communication between two different MEs is delegated to the encapsulating proxy

object. There are two possible choices to create such an encapsulating proxy:

1. The proxy class inherits the original class: This works for only one class as Java

does not support multiple inheritance. This can be overcome by creating a new

interface with all the methods of each of the target classes and then having the

proxy implement that interface by copying the method’s body into the proxy

class.

2. Renaming the original class with the proxy class: This is the traditional approach

and does not work without modification for the proposed approach as it is

difficult to delegate all proxy invocations separately. This approach needs to be

extended by creating a clone of the original class structure as the new proxy

structure and, at the byte code level, redirect all calls to the proxy class. This

 94

allows the existing methods to be overridden with additional functionalities and

the class to be extended with new methods. Since all associated transformations

are performed at the byte code level, users do not need to be concerned about

following any specific programming rules.

For such transformations of user code, the following issues need to be addressed:

1. Methods (M) and constructors (C): There are more methods in the proxy class to

interact with the AE and also to manipulate the object itself. So,

 if Mn , Cn ∈ Original Class Mn′ , Cn′ ∈ Proxy Class, where n′ >n.

The original methods are overridden with the following structure:

 Pre-processing

 Original method call

 Post-processing

Instead of instrumenting each method, a wrapper method is created to ensure

consistency with the existing line number table for debugging purpose. Figure 12

shows a possible proxy creation scenario. The original object graph (Figure 12

(a)) is transformed to a corresponding proxy object relationship. More

information about generating object graphs and how to partition such graphs can

be found in reference [24]. Next, each partition of the graph is encapsulated with a

master proxy (Figure 12 (b)) to add extra functionality and to have a second level

of delegation. So, if there was a method call in U1 such as X2.foo(arg1,arg2), it is

transformed to Proxy_AE1.invoke(X2, foo, args), where args is an Object array

having all the arguments of the calling method wrapped appropriately with their

object classes. The invoke method inside Proxy_AE1 identifies which node X2 is

 95

located in (node 2 for this example) and makes a remote call to the method

Proxy_AE2.invoke(X2, foo, args). The remote invoke method unwraps the

arguments and calls the local method foo in X2 and wraps any return value from

that method and sends it to the caller (Proxy_AE1). Having an encapsulating

proxy allows migration of an object from one node to another (Figure 12 (c)) for

optimization purposes by creating a new proxy wrapper in the new node that

encapsulates the migrated object. This permits invocation of a method even if the

original object has migrated to some other node and the original proxy is left

somewhere else.

(b)

Z

X1 U1

X2 W2

Y1 U2 W1

(a)

Proxy_AE2

P_X2

P_W1

Proxy_AE1

P_Z

P_X1 P_U1

S E S E
Proxy_AE3

P_W2

P_Y1 P_U2

S E

Node 1 Node 2 Node 3

Proxy_AE2

P_X2

Proxy_AE4

P_W1

(c)

S E S E

 Effector Sensor

Node 2 Node 4

Proxy of object Y1

Figure 12. Object Transformation.

 96

2. Polymorphic method calls: To determine the original calls of a method in a

polymorphic call requires a stack oriented emulator such as that in the JVM.

Creating such an emulator is a separate research problem and in the initial version

of the transformations, polymorphic method calls are not considered.

3. Direct field access: All direct field access is converted to getter and setter

methods to facilitate remote method invocation.

4. System classes: Since the system classes cannot be modified, the same techniques

as used in J-Orchestra [102] are adopted. System objects are either moved with

the user objects or, if they use any platform dependent code, remain on the same

node and other proxies access these system objects using a callback facility.

5. Handling distributed I/O: It is undesirable to have user code produce output in a

remote machine or ask for input somewhere other than it is intended to. Therefore

all input/output operations need to be redirected. This leads to the following

possible transformations:

a. Standard output and error: The user has the choice of redirecting all

remote output/error to the client machine, saving it in a log file in the

remote machine or ignoring it as a whole. Redirection to the client

machine is undesirable as this may overwhelm the network with excess

traffic.

b. Standard input: All standard input is redirected to the client machine.

c. File input: The user has the choice of redirecting all file read operations to

the client machine or has the underlying framework copy the file to the

remote machine and have file input operations precede as usual. Both of

 97

these choices have their own tradeoff and one is better than the other in

different situations.

d. File output: File output could be redirected to the client machine or saved

as a local file in the remote machine and moved to the client machine at

the end of the computation.

6. Exception handling: Chapter 7 illustrates the approach adapted for handling

exceptions. Users could utilize different system level policies to steer the

exception handling approach, such as permit the exception to propagate through

the class hierarchy or try to heal the exception with user interaction or previously

saved solutions.

7. ‘final’ class: To extend the functionality of a un-modifiable class in the proxy, the

final keyword is removed from the classpool [50] inside the class file. In this way,

the semantic and functional consistency of the class remains the same but now

extra methods can now be added and existing methods can be overridden in the

proxy to add the extra functionality.

8. Existing interfaces: Since Java allows a single class to implement as many

interfaces as required, no changes are required in this case.

9. Static methods and fields: Any class that has static methods and fields is divided

into two subclasses where one has all the static methods and fields and another

has the non-static entities. Separate proxies are created for each subclass and the

static subclass is anchored in one node and interacts with other proxies using RMI

callbacks.

 98

10. Use of ‘this’ and ‘super’: Use of super does not cause any problem in the

transformed code. However, the use of this needs to be delegated to the

appropriate proxy class.

11. Use of reflection: Reflection in the user code is not considered due to the added

complexity in the byte code rewriting phase. A separate package on reflection that

delegates user enforced reflection must be developed to address this issue.

 To handle other Java language features, the techniques used have similarities with

the techniques used in J-Orchestra [102]. The major distinction with the approach in this

thesis is that object level distribution is attempted, whereas J-Orchestra uses class-level

distribution. One significant drawback with both of these approaches is that it incurs extra

space and time cost to run the resulting distributed application. Since new proxy classes

are created and segments of byte code are inserted into the exiting byte code, some

inflation in the resulting code size is expected.

Performance Analysis

 Experiments were conducted to find the time requirement of delegated method

calls using proxy-based managed elements. After code transformation, every remote

method call now takes place through the autonomic element. Therefore the call can be

broken down into several parts:

1. Call to local proxy.

2. Call from local proxy to remote proxy (AE).

3. AE locates the remote class, loads it and uses runtime reflection to delegate the

execution to the corresponding method.

 99

To explain the process, consider the UML diagram of an example program presented in

Figure 13 (a). The application class (which is the starting point of this application) creates

an instance of classA which is run as a threaded object. For instance, we like to transform

transform the instance of classA into a managed element of an autonomic element. The

class diagram is now transformed into three separate portions with separate

transformations as follows:

+main()

applicationClass«uses»

+<init>()
+m1()
+m2()
+init()

+A1
-objRef

classA_proxy

(b)

+initialize()
+m1()
+m2()

+A1
classA

java.lang.Thread

(d)

classB «interface»
java.io.Serializable

(c)

Figure 13. Example Class Diagram.

+main()

applicationClass

+<init>()
+m1()
+m2()

+A1
classA

java.lang.Thread«uses»

classB

«uses»

(a)

 100

1. Application Class: Instead of referring to classA, it will now refer to the proxy

instance of classA (Figure 13 (b)). A new wrapper class is created for classA that

acts as the proxy of the original class. Along with the traditional proxy

transformation, a new private variable that holds the reference (local or remote) of

the actual object, and a new method that helps initialize the actual object

reference, is inserted into the proxy class.

2. Used classes inside the managed instance: Objects of any class that classA is

using must now implement the java.lang.Serializable interface to help the system

to transfer the instance over the network if needed (Figure 13 (d). All such classes

are checked to see whether they implement either the Serializable interface or a

subclass of that interface. If not, then it is added automatically. If such classes use

any object instance which is not serializable (for instance having another thread

inside that object), then that particular managed element must be anchored on a

single machine during the life time of the application.

3. Original class: The original class relationship is kept unchanged (Figure 13 (c)).

Only the constructor is now replaced by a new method initialize to create an

instance of the class during runtime by the autonomic element using a consistant

interface.

 A new class is designed to house the managed object instance which implements

a pre-defined interface. The AutonomicElement class creates an instance of the

managedElement class. Figure 14 shows the runtime structure of each proxy class in the

system. The init method in the proxy class is responsible for gathering necessary

information (such as location of an available AE and naming of the AE) and establishing

 101

the deployment of the object to an autonomic element. Once all necessary information is

gathered and processed, the proxy initially invokes the setup method of the corresponding

managedElement with necessary information (such as class name for object instance,

location of class and generated name for identifying that instance) as arguments. Next,

the init method is invoked to create the actual object instance in the autonomic element

with any initializing arguments. Any further method call from the proxy is then delegated

by using the invoke method inside the proxy class. The overall sequence of managed

element deployment is shown in Figure 15.

Figure 14. Transformed Runtime Program Structure.

+setup()
+init()
+call()

«interface»
aeInterface

+<init>()
+m1()
+m2()
+init()

+A1
-objRef

classA_proxy

AutonomicElement«uses»

-objRefs[]
-classes[]

managedElement

«uses»

java.lang.Thread

 102

Fi
gu

re
 1

5.
 S

eq
ue

nc
e

D
ia

gr
am

 o
f D

el
eg

at
ed

 C
al

ls
.

 103

 Figure 16 shows the timing for such remote calls, where other denotes the time it

takes for local proxy class loading and locating the remote AE using the standard naming

protocol. For a single remote call using the delegated proxy pattern, the increase in

execution time is approximately 45%. With several calls to the same AE, this reduces to

less then 10% as the JVM normally caches classes and for subsequent calls class loading

and reflection occur faster than the initial time. Table 6 shows this behavior of the proxy

based remote invocation.

Figure 16. Timing Information for Delegated Invocation.

Table 6. Effects of Multiple Calls on Respnose Time.

Number of calls Standard Remote Call
(ms)

Delegated Remote Call
(ms) % Change

1000 391 476 21.74
10000 2289 2593 13.28
100000 19372 20261 4.59

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time(ms)

Normal Remote Call Delegated Remote Call

Remote Call

Other

Reflection

 104

 The benefit of having a double delegated structure is that the distribution concerns

and the self-management concerns are separated at the code level. This allows future

code extension, since adding the two level delegations work in two separate processes

and in sequence. Programmers can add their own transformations in the future if they

wish following a similar approach; however the penalties for doing so are further

increased code inflation and reduced response time due to extra code execution and class

loading.

Summary

 The software architecture of the system is presented and different aspects of it is

discussed. Architectural choices have a profound effect on the capabilities of any

autonomic system and affect many of the design decisions during its implementation. The

presented architecture supports computational and data intensive centralized applications

where the computation-to-communication ratio is significant. The approach to transform

code to add distribution concerns and self-management concerns is also presented and

evaluated in this chapter.

 105

CHAPTER 6

AUTONOMIC ELEMENT ARCHITECTURE

 Current research in autonomic computing suffers from the lack of a common

definition of the basic autonomic entities. Defining and developing the basic autonomic

entities and making it publicly available would greatly simplify prototyping of different

self-management techniques and permit autonomic techniques to be compared and

benchmarked. Although different aspects of autonomic computing are explored in

isolation, the structural operation of an autonomic element itself has not been completely

modeled. This chapter presents a self regulating design of an autonomic element in a

distributed object environment. The goal of this architectural design is to provide an easy

to program autonomic element which can be implemented in most domains with only

minor modifications. Profiling and experimentation with this design shows that it is

lightweight and performs smoothly without causing deadlock (since all internal

communication and data structures are deadlock resistant) or producing excessive

overhead.

Introduction

 In order to cope with the increasing complexity of software management, the

autonomic computing paradigm was introduced such that computing systems possess the

capability of self-management. As computing systems continue to evolve to meet ever

changing needs, dynamic computing systems which are self-manageable give business

and scientific organizations the ability to automate their computing activities.

 106

Unfortunately many programmers lack the skill to develop such self-managed systems

due to the added programming complexity. It is tremendously beneficial to programmers

if they do not have to be concerned with the programming complexity of implementing

different issues related to self-management. A computing environment that hides the

complexity of distributed programming and addresses such self-management issues

automatically is certainly desirable. However, this sort of support should be provided

without the need for programmer intervention or consideration other than the generation

of policies to guide the execution process. The provision of all such self-management

features is an unresolved problem [83] and there are no truly autonomic computing

systems in existence at this time.

 Although every aspect of autonomic computing is a significant research

challenge, it is necessary to commence designing and developing tools and methods

towards the goal of autonomic computing. While different aspects of autonomic

computing have been explored in isolation, there is a lack of effective autonomic

infrastructure that enables programmers to develop and integrate their programs using

autonomic primitives. Although there is general agreement on the structure of the

autonomic element, there are no general implementation details of the internal

architecture of the autonomic component. The lack of a common implementation of this

basic autonomic component hinders the interactions among different self-managed

technologies. Since most other research employs proprietary techniques to develop such

components, it is difficult for programmers to incorporate autonomic properties in the

design and development of such systems. The programmer is left still more concerned

 107

with learning and implementing such proprietary techniques rather than concentrating on

the actual problem in hand.

 This chapter presents an architectural design of the standard autonomic element

and simulation in a realistic environment. Having an open and flexible structure for the

most basic component of any autonomic system alleviates programmers from the

complexities associated with designing, developing, integrating and managing autonomic

systems. Design goals of the presented structure of the autonomic element are as follows:

1. It should be transparent to use and programmers should “program as usual” with

minimal constraints.

2. It should employ open standards and common metaphors to develop the autonomic

element.

3. It should be lightweight and should not consume system resources unnecessarily.

 This chapter presents a Java-based autonomic element design that greatly

simplifies prototyping of self-management techniques. Although this design is based on

Java, any programming language that supports standard object oriented metaphors can be

easily used to develop the equivalent model of the autonomic element. The design allows

different techniques to be compared and helps investigate the interaction among different

techniques. The goal of this architecture is to incorporate it into the autonomic

infrastructure to assist the rapid deployment of user applications and easy-to-use

transparent, self-management of distributed systems.

 108

Architecture

 Autonomic elements are the heart of any autonomic system. An autonomic

element is described by two distinct parts. The autonomic manager provides the

functional abilities of the element and the managed element is the entity that the

autonomic manager is monitoring and controlling. All autonomic elements have a control

loop (MAPE-Monitor, Analyze, Plan, Execute) that dictates the work flow of the

different sub-components of the autonomic element. Figure 17 shows the design for the

autonomic element.

 An autonomic element is envisioned as a multi-threaded server (daemon) having

multiple components (monitor, analyze, plan and execute) and interfaces (sensors and

effectors) running concurrently for better CPU utilization. Another alternative is to design

the sub-components as threaded objects and schedule them according to a control loop.

Figure 17. Internal Architecture of the Autonomic Element.

Managed Element

Se
ns

or

E
ffector

Sensor Effector

A
nalyze Pl

an

Exe
cu

te

Knowledge(Atom
Repository)

Monitor

Data
Stream

Priority
Queue

Hooks

AlgorithmLocker

Sink

 109

As Java does not support language level thread control (stop, suspend etc. are deprecated

as of Java 1.2), it is not possible to write a scheduler for Java threads without sacrificing

performance. Writing such a scheduler is a complicated programming task and makes the

autonomic element bulky and consumes more CPU power for scheduling. Instead, this

thesis proposes each sub-component as a threaded object and delegates the scheduling

decisions to the underlying JVM. The benefit of having a threaded model for the MAPE

control loop over a sequential loop is:

1. Better CPU utilization by concurrently executing the sub-components. Since

multi-core and multi-processor machines are more affordable and common then

ever a concurrent MAPE loop allows autonomic elements to respond quickly to

environment changes.

2. Algorithms which are responsible for different aspects of self-management can

easily be incorporated as a child thread inside any of these parent threads denoting

the four major components of the autonomic element.

3. Better throughput for information processing as no sub-component will be

blocked waiting for another slower processing sub-component. Having a

sequential control loop can block the execution of the whole element when one

component is blocked for any reason and therefore may have an adverse

performance effect.

To have the same semantic functionality as the control loop, this design uses

semaphores in strategic places to order the execution of the sub-components and

synchronize the threads when accessing shared data. This way, the control loop in this

design is non-blocking due to concurrent execution of the individual sub-components.

 110

This allows faster execution of autonomic behaviors but introduces the following

challenges:

1. Asynchronous execution: Since each component is running asynchronously, it has

to be guaranteed that no internal messages are passed inadvertently to a different

component.

2. Deadlock and starvation: Care must be taken during development of shared data

structures and data components to ensure that access to those shared resources are

mutually exclusive. This is accomplished by using semaphore in strategic places

to control concurrent access to shared data.

 There are separate threads for environment interfaces (sensors and effectors) and

for the main components (monitor, analyze, etc.) of the autonomic element. From time to

time, the autonomic element has to perform its own management and accounting tasks.

So the design is extended beyond the standard notion of autonomic elements with an

element manager and several control interfaces. As shown in Figure 18, the autonomic

manager assumes the role (setup or active, see Life Cycle Section) that is being required

of it. Some of the autonomic elements in the system are allocated some higher level

administrative authority. These managerial autonomic elements will either manage

system registry and policy depository, or will act as the user interface for program

partitioning and transformation, monitoring, or as the source or destination of program

input and output. However, all the autonomic elements in the system have the same

properties and they could act in any of the above roles if they are instructed to by other

autonomic element.

 111

 There are multiple interfaces for the different services to be described, discovered

and supplied. For instance, the Service interface allows other autonomic elements to

reach a service agreement with an autonomic element. The Policy interface provides a

way to transfer and modify policies between different autonomic elements. The

Monitoring interface provides methods to monitor each autonomic element’s internal

activities and status information. The Deployment interface provides methods through

which managed elements are allocated, deployed or restarted. Separating the functional

aspects of autonomic management from the management of the autonomic element itself

makes the overall software architecture more modular and extensible.

Life Cycle

 The life cycle for the autonomic element is shown in Figure 19. Once the

autonomic element is initiated, it moves into the setup state. In this state, there is no

managed element attached to the autonomic element and the autonomic element is acting

basically as a bootstrap manager for future deployment of the autonomic element with a

Figure 18. Autonomic Element Extensions.

S E

Managed
Element

S E

Autonomic Element

Element Manager

Control Interfaces

Service Policy

Monitoring Deployment

 112

managed element. In this state, the element remains in the hibernate state until either:

1. The autonomic element is upgraded with a new version: Each of the sub-components

of the autonomic element is implemented using a technique described in [73].

Explicitly, the functional part of a sub-component is implemented through a common

interface so that at runtime it can be updated, if necessary, to fulfill user policy and

goals. The functional code resides inside a class (task.java) which implements a

common interface named (taskInterface.java). At runtime, the old task class is

Figure 19. Autonomic Element Life Cycle.

Parallel Execution

Hibernate Install

ConfigureDeploy

Monitor

Analyze Execute

Plan

Sensor(s)

Effector(s)

Monitor

Suspended

WaitingAlgorithm

Inactive

Resume Suspend
Wait

Wake

Active

Active State

Setup State

Upgrade

Sleep

STOP

 113

replaced by any newer version of its implementation. This allows adaptive

composition of the component by adding, deleting or modifying the algorithm of each

sub-component during run-time. This provides a general framework for the activities

needed for the self-management of systems without forcing a specific programming

model for the implementation of the actual operations. For instance, the programmer

now has the freedom to implement the plan algorithm as either an artificial

intelligence planner or a graph-based solution leveraging domain-specific knowledge

and can switch between multiple algorithms during run-time without jeopardizing

program execution.

2. Autonomic management of a managed element is sought and the autonomic element

switches to the active state: If such a request is received, the element manager first

creates all the necessary threads for the autonomic elements (install) to deploy. The

threads are then configured with any initialization values (configure) and their

execution is initiated (deploy) and the state of the autonomic element is moved to the

active state. In the active state, all threads are subject to the underlying JVM thread

model and can have multiple internal states as the platform dependent implementation

of the threads. If the managed element is no longer to be managed by the autonomic

element, it is switched back to the setup state and remains in the hibernate position

until a new phase begins.

3. The autonomic manager receives a stop signal from the administrator to stop

execution.

 The setup state executes in a sequential fashion to guarantee that the sub-states

follow a pre-determined path of execution. Whereas the active state follows a parallel

 114

execution, where each of the sub-states follows its own execution path determined by the

underlying thread scheduler and communicates with each other via synchronized

semaphores.

Implementation Details

 Prior to describing the implementation of the components, the next section (Data

Structures) describes the data structures used to create the internal formation of the

autonomic element and the section after that (Operation of the Sub-components)

describes the working of the different sub-components.

Data Structures

 The choice of data structures has a profound impact on the performance of the

element. Use of efficient data structures ensures smaller memory usage and faster

execution of the element as a whole.

 Data Atoms. All internal communication is performed in a standard format,

named atoms and molecules. Atoms normally travel between different components in the

direction of the control flow. An atom is essentially a collection of XML tokens which

can be interpreted by all the sub-components of the autonomic element. The main reason

for selecting XML to represent internal data is that it gives flexibility for future

improvement and extension. Since XML is machine agnostic, autonomic elements

developed in other programming languages can be incorporated easily into an existing

system. Data atoms have the capability of chaining n atoms together to form a single

molecule. Figure 20 shows the internal structure of a data molecule. Atoms need to chain

 115

to each other when the occurrence of certain events requires a steady supply of atoms

which have some form of common relationship. However, care needs to be taken with

respect to the size of a molecule (upper bound for n), as making an excessively sized data

molecule can slow down the autonomic element. The self-optimization aspect of the

autonomic element can dynamically change the size of a molecule (value for n) by

monitoring the element over long runs.

 Priority Queue. Each of the components inside the autonomic element has a

buffer implemented as a priority queue. As data molecules are flowing through the

control loop, they are stored temporarily inside the components for processing. Different

components can create new data molecules after processing existing data atoms and can

pass those to the next component. This design permits at most one molecule to pass

between components at any given time. This ensures a consistent flow of information

among the components and ensures that individual components are not overwhelmed.

Therefore, molecules are sorted and stored in the queue based on their priority and are

processed according to the highest priority. Normally the size of the queue starts with a

predefined size. However, over time it may grow or shrink depending on the flow of

molecules in the system.

Figure 20. Structure of a Data Molecule.

 116

 Locker. This is a special data structure that resembles an operating system

semaphore with added functionality (Figure 17). Lockers are placed between each pair of

sub-components in the autonomic element to transfer atoms between them. The main

responsibility of the locker is to receive an atom when it is empty and notify the

destination component of an incoming atom. Although it is desirable to keep the

communication mechanism open between the individual sub-components from an

architectural standpoint, lockers are introduced to pass information (data molecules)

between components for two main reasons. Firstly, to avoid any deadlock situation

between two concurrent components during data transfer. Secondly, to avoid wasting any

processing time of the components unnecessarily. Instead of the components polling each

other for molecules, the locker notifies the corresponding component if there is a new

molecule awaiting processing. Polling introduces synchronization and deadlock issues

and a component is expected to spend most of its allotted schedule time polling for

incoming atoms. Having all atoms transfer through the locker improves the response time

of the components and does not block the receiver if the sender is processing at a slower

rate than itself for any particular reason. All lockers fulfill the following two conditions:

1. The locker is always unidirectional. Therefore, only one component can push a

molecule in a locker and only the adjacent component can pop it. To loop an atom

back to a previous component, it has to passed around the control loop and appear

in the queue of the destination component. It is possible to have a bi-directional

locker between components; however, care should be taken to avoid any

possibility of deadlock. A bi-directional locker does not increase performance,

rather complicates the whole design. In the current version of the design bi-

 117

directional lockers are not permitted, but with extended behavior modeling and

verification, this could possibly be implemented; but no significant gain is

expected from doing so.

2. As with semaphores, the push and pop operations must be atomic. Since Java

does not provide any language level abstraction for atomic methods, we used the

atomic reference object implementation in java.util.concurrent.atomicReference

of the Java 1.5 API to implement those methods. So the methods have an atomic

object reference, where the data atom can be pushed or popped atomically. The

use of this class of variable offers higher performance than is available by using

standard synchronization techniques.

 Data Streams. These are one-way dedicated communication channels between

two entities. Only one thread can write into it and another can read from it. To avoid any

deadlock situation, all read and write operations are forced to be atomic as described

earlier. Data streams are used where no intermediate processing is required, such as in the

sensors and effectors to provide a rapid response.

 Hooks. This is a collection of data structures and methods that allow the sensors

and effectors to actually interact with the environment or the managed element. The

representation for such hooks may not be universal because of the diversity of

applications and environments. The environmental hooks can be as simple as network

level sockets with assigned ports for receiving incoming atoms and sending outgoing

atoms. Hooks for managed elements may require programming the managed elements

through predefined interfaces such that at run time there are predefined methods that can

 118

be called by the sensors or effectors. However, this places extra responsibility and a

burden on the programmer to preserve self-managing aspects. The development of such

hooks is domain specific and should be addressed on a per system/application basis. For

the application domain utilized in this thesis, byte code segments are injected at strategic

places in the distributed Java objects which are treated as the managed element. This sort

of code injection is completely transparent to the programmer and performed during

preprocessing and runtime and before deployment with an autonomic element.

 Atom Repository. Any processed molecules that the system wants to store for

future use are stored in the atom repository. This is identical to the knowledge part of the

autonomic element. Along with storing atoms, it can also store rules and policies

regarding different functional aspects of the autonomic element. Finding a good

knowledge representation is a separate research challenge. This design used ACPL to

represent rules and policies as it provides a user friendly form of policy definition, policy

management and appropriate tools through an API to work with policies. Since ACPL is

based on XML, this permits atoms to be seamlessly incorporated into the repository.

Although multiple components can read simultaneously from the repository, only one

component can write to it at any time. This is to ensure consistency of the data in the

repository.

Operation of the Sub-components

 The functionality of different components of the autonomic element and their

structure is considered in more detail in this section.

 119

 Sensors and Effectors. There are two sensors in every autonomic element. One is

responsible for interfacing with the environment and other is necessary to interface with

the managed element. The common responsibility is to acquire runtime information and

incoming messages from the managed element or environment respectively. The sensors

are not heavyweight processes as they only check the validity and format of any

incoming message and forward them to the monitor component. On the other hand,

effectors receive data from the execute component and verify its format and then either

forward it to the environment or invoke appropriate methods inside the managed element

to effect its execution.

 Sub-components. Usually each component takes molecules from its input source

(locker or sensors) and processes it and puts it in the priority queue. At each scheduling

cycle, it checks whether there is anything in the queue which needs further processing or

needs to be passed to the next stage of execution. If the corresponding locker or effector

is free, it then pushes the topmost data atom to the corresponding destination. Data

molecules may not propagate all the way to the last component (execute) if it is internal

to the autonomic element or there is no further processing available or necessary for a

particular data molecule. Therefore the execute sub-component has a data sink point,

which is basically an object nullifier. The garbage collector is called to free up the

memory of those nullified objects. Since the Java garbage collector blocks all threads

during garbage collection, calling it frequently decreases the performance of the

autonomic element. So different heuristics (such as waiting until the number of nullified

 120

objects reaches a minimum threshold or the queue size reaches a specific length) are used

to decide when to call the garbage collector.

Performance Analysis

 A test bed environment is developed to simulate the behavior of the proposed

autonomic element in a real environment with different parameters, such as input rate and

the size of atom. This allows observation of how components interact with each other to

be made and how much time they really spend for their own management to be measured.

In executing the autonomic element, the following techniques are used to optimize the

operation:

1. Classes for the components are designed in a modular fashion and class loading is

performed only after determining that a particular module is needed. This

provides a fast startup and keeps a small memory footprint when the element is

not used. The drawback is that, response time may increase as classes have to load

dynamically at runtime. However with proper class caching techniques and

designing effective class loaders, this effect can be minimized.

2. Management of atoms (sorting, duplicate matching, updating, deleting, etc.) in the

repository is only performed when the element is idle.

 All experiments were performed on an eight processor (900 MHz each) SPARC

Sun server running Solaris 9. A sequential version of the autonomic element is also

implemented to compare the concurrent version against. In both cases, the MAPE loop

has the same amount of processing on the intermediate atoms. Running both versions of

the autonomic element in a single processor machine provides the sequential version a

 121

significant performance boost as there is no overhead related to thread scheduling. Since

machines with multiple processors or cores are becoming increasingly common now-a-

days, the concurrent version can exploit this architecture. Therefore, from our viewpoint,

it is sensible to measure throughput over a fixed amount of time in both versions instead

of measuring execution time of an atom or a number of atoms. To measure throughput,

both versions are ran for a preset amount of time and are both flooded with data

molecules at the same input rate. It is measured how many atoms both versions of the

control loop can handle within that set amount of time. Figure 21 shows the number of

atoms that both of the versions can handle for different data molecule sizes. The y-axis in

Figure 21 is represented using a logarithmic scale to better signify the difference for

smaller values. It is evident that the proposed concurrent version has a higher throughput

than the sequential version, especially when the size of the data molecule increases

substantially. On average, the concurrent version processed 57% more information than

the sequential version in a fixed amount of time.

Figure 21. Runtime Throughput.

1

10

100

1000

of

 a
to

m

1K 2K 4K 8K 16K

Atom size (byte)

Sequential MAPE

Concurrent MAPE

 122

 To observe how the concurrent architecture behaves in the case of different atom

sizes and input rate, the concurrent version is executed with different atom sizes and

different input rates for a fixed period of time. Figure 22 shows the throughput of the

concurrent model in the case of various input rates and atom sizes. From the figure, it is

obvious that the model is performing as expected by handling more atoms when the atom

size is small and the number of atoms entering the system is high. The throughput

decreases as the atom size increases and the input rate decreases. With 16K atom size, the

throughput becomes independent of the input rate as our fixed period is insufficient to

handle such large atoms.

Table 7 shows different statistics related to the two versions of the control loop. In

the concurrent version, the number of source code files (required to implement the

architecture) may reduce if dynamic composition is not required, however in real-life

situations it is inevitable, and we have to be comfortable with the added code inflation

0

5

10

15

20

25

1K 2K 4K 8K 16K

Atom size (byte)

of

 a
to

m 5/Sec.

2/Sec.

1/Sec.

Figure 22. Flow of Atoms.

 123

and class loading time. Both versions of the control loop are executed with the same input

rate, atom size and for the same amount of time and are profiled using the NetBeans

profiler [69]. Since the sequential version has a smaller number of runtime threads than

the concurrent version, the maximum amount of heap used during the runtime is lower

than the maximum heap used by the concurrent version. As a result, the sequential

version spent 4.8% time less doing Garbage Collection (GC). Although this profile can

change for different runs and for different parameters, the added cost for the concurrent

version is worth taking for improved throughput, dynamic composition and better

response time.

Table 7. Code Statistics.

Profiling data MAPE Version # of source file Total byte
code Heap used GC

Sequential 4 7806 byte 2.2 MB 16.3%
Concurrent 9 14820 byte 3.7 MB 21.1%

Summary

 An autonomic element is the fundamental building block of any autonomic

application and system. Although different aspects of autonomic computing are

researched in isolation, the structural operation of an autonomic element has not been

fully modeled. The standard definition for an autonomic element does not give a clear

picture of how to build one from scratch and several proprietary designs have been

proposed that are not interoperable with each other. This chapter presents an engineering

perspective of building a domain independent autonomic element. It is important to have

 124

a well defined model of the basic building block to develop autonomic systems. The

architectural design presented is self-regulating (in the sense that multiple internal sub-

components are running in parallel but the internal data flow is consistent and

unidirectional) and uses standard object oriented primitives and software engineering

techniques to make it easy to develop and implement.

 Analysis of runtime behavior and profiling shows that the design is sound and can

work smoothly without causing any deadlock or producing extensive overhead. Future

works include the implementation of the same design with other programming languages

and incorporation in a system where autonomic elements from different programming

language are in play. Once a stable and robust implementation is achieved, producing an

API for an autonomic element would assist programmers to design autonomic elements

in a consistent and standard form.

 125

CHAPTER 7

ADDING SELF-HEALING

 Adding different autonomic properties (self-configuring, self-healing, self-

optimizing, self-protecting) into existing applications is immensely useful for redeploying

them in an environment other than they were developed for. Such transformed

applications can be redeployed in different dynamic environments without the user

making changes to the application. However, creating such autonomic software entities is

a significant challenge because of the amount of code transformation required and it will

be tremendously beneficial to developers of such systems if such code transformations

are performed automatically. This chapter presents techniques of injecting Java byte code

with self-healing primitives to transform it to become a self-healing component.

Introduction

An autonomic self healing application should be able to recover from potential

faults and should continue to work smoothly in the presence of such faults [58]. In the

past, self-healing applications were rare and mostly confined to domains such as space

craft control software, where taking a system down to correct faults was not an option.

However, more and more of today’s ever complex and large distributed software systems

have the same requirement. For a large computational task, which is running for an

extended period of time, it is not desirable or acceptable to abandon an execution due to a

mundane fault. A system administrator could certainly fix most faults manually by

analyzing logs and error reports, but that requires the system administrator to spend a

 126

large amount of time solving each individual fault. Furthermore, once the fault is

identified and manually solved by the system administrator, the task has to be restarted

from the beginning (or manually saved checkpoints), resulting in loss of useful

computation and valuable time. However, with well defined policies and pre-defined

goals, the software should heal itself in such situations and continue running

transparently without any loss of valuable computation. This will not only save time and

money in long term, but will also make the whole system more productive and responsive

to environmental changes. The traditional approach for having such self-healing

capabilities (or traditional fault tolerance) in an application is to build the application in

such a way to either have those functionalities built into it (hardwired) or have an

underlying framework to support such self-healing functionalities. Both of these

approaches require that programmers of such systems know about specific details of their

code and that the source code is readily available for modification after any runtime faults

are identified. In reality this situation is often not the case as the original system

developer may not always be readily available to interpret and solve every failure

situation. For a new programmer or system administrator of a particular system, it

becomes daunting to understand the functionality of a significant system and also

interpret any faults produced by that particular system. In turn, it becomes nearly

impossible for a new person to add transparent self-healing functionalities to such

systems. It would be extremely beneficial if an existing application could be transformed

and retrofitted with self-healing primitives so that the programmers do not have to deal

with the self-healing and the fault management issues.

 127

The technique presented in this chapter injects self-healing capabilities into byte

code without any user involvement so that at run time, the application can heal itself after

a limited set of software faults. Following are the design criteria under consideration in

developing this approach:

• The target application should be written in Java; however, the technique could be

implemented to other Common Language Runtime [66] based interpreted

languages, such as C#. Since this technique works on a per method basis,

programs written using object-oriented paradigms can be supported by this

technique.

• No source code is required, all the self-healing capabilities are injected at the byte

code level statically (using static byte code analysis) and dynamically (using

runtime reflection). Since the system can work with byte code, programs whose

source code is available can still be used just by compiling them to byte code with

any standard Java compiler and then applying this technique to the byte code.

• The application programmer does not need to worry about low level

checkpointing issues. Unlike other approaches [60], where users need to write

programs in a specific way in order to accommodate checkpointing, this approach

does not require any such construction. Users can manipulate the check pointing

parameters with the use of high level policies.

• Any transient failures [13, 88] (exceptions) from the application are self-healed. If

the failure can not be healed (such as a non-transient failure), the application is

terminated in the normal fashion and the system administrator is informed. Logs

and the checkpointed status information of the application are saved for the

 128

administrator to diagnose such unsettled failures and once manually fixed, the

program can be restarted using saved checkpointed status data.

Self-healing Architecture

 The targeted application is instrumented with self-healing primitives and also with

sensors and hooks at strategic points, so that at runtime, it is possible to interact with the

managed code. Figure 23 shows the architecture of this approach. During runtime, the

injected sensors are responsible for saving the current status information (SI) of the

application at certain checkpointed locations. Depending on user given policies, sensor

placement can be controlled. When any runtime failure occurs, the sensors also collect

the context information related to that failure and passes that as failure information (FI) to

the fault analyzer. The fault repository holds models and information for some of the

Managed

Application

Backing store

Fault
Analyzer

Fault
Healer

Fault
repository

System
Administrator

Interface

Sensor &
hooks

FI FAI

NFI SI

SI

NFM

FM

RI
Injected

functionality

Figure 23. Self-healing Architecture.

 129

most frequently occurring failures. The fault analyzer uses those fault models (FM) to

analyze the runtime failures.

 Once analyzed, the fault analyzer information (FAI) is passed to the fault healer

for further processing. The fault healer takes the FAI and uses the last consistent

checkpointed status information (SI) and tries to reconstruct the faulted method, so that it

can be restarted at the point where the failure occurs. If the fault healer is successful in

creating such recovery information (RI), it is passed to the managed application for

recovery. Otherwise, the system administrator is notified of the new failure information

(NFI) and the feedback is then saved in the fault repository as a new failure model

(NFM). Once the new fault information is added to the repository, the fault healer will

again try to heal the fault and will try to restart the application as previously described.

Faults and Fault Model

 The approach presented in this chapter is concerned with faults that occur after

the program is deployed. Such faults could result from problems or bugs in the user code,

in the underlying physical node or network connection or in the run-time environment.

Faults caused by bugs in the user code (logical errors), user generated custom exceptions

or faults generated due to the functional aspect of the program are outside the control of

this approach and should be addressed by the system administrator or the developer of the

user program. A fault can be either transient (network outage, memory overload, disk

space outage etc.) or non-transient (bug in the user code) [13, 88]. The technique

presented in this chapter can self-heal such transient faults as once the system starts after

self-healing, the condition that caused the fault will be healed and will not reappear.

 130

However, non-transient faults are generally caused by some bug in the application code

or due to unhandled exceptions. Although some types of non-transient faults can be self-

healed, this may change the original semantic of the program or the fault will occur again

as the condition that is creating the fault actually in the user code.

 Each recoverable fault is represented internally by a four-tuple fault model

FI = <Fname, Findex, Fstack, Oinfo>, where,

 Fname = Name and type of the fault.

Findex = Byte code index where the fault occurs. This must be deduced from the

byte code line number attribute [50] inside the class file as the JVM only

gives the source code line when throwing an exception.

 Fstack =Stack trace of the exception, transformed into chained fault models.

Oinfo= Object information such as, object and method name and formal and

actual parameters of the method that caused the exception.

This representation allows the system to manage faults more easily and effectively.

Representing faults in an accurate and consistent manner is not enough; the associated

actions also have to be represented in some open standards so that the model can be

extended or updated without the need to modify the underlying algorithm. Table 8 shows

a subset of faults that this technique can heal. As shown in Table 8, there can be multiple

possible actions for any specific fault. The number of such possibilities grows or reduces

over time as the system adapts with feedback from the system administrator or through

learning by reinforcement (Actionxn did not heal Faultx for n number of times, so reduce

its priority or disable the action altogether). It is possible to deploy different statistical

and machine learning algorithms to learn new fault scenarios; however, it is out of the

 131

Table 8. Faults and Default Actions.

Faults (Exception/Error) Possible Solution (s)

ClassNotFoundException

Heuristic 1:Extend the class path.
Heuristic 2:Search the file, locate it and then re-load

it.
Heuristic 3:Use custom class loader.

FileLockInterruptionException
Heuristic 1:Make the current thread to wait random

amount (with an upper bound) of time to
acquire the file lock.

UnknownHostException or
CommunicationException

Heuristic 1:If the network is down then wait a
random amount (with an upper bound) of
time and try again (n number of times).

Heuristic 2:If network is not down, then use ICMP
messages and try to locate the host
manually.

Heuristic 3:Retransmit and re-route packets by
delegating all calls to a custom network
level delegation manager.

NoSuchMethodException or
NoSuchFieldException

Heuristic 1:Check whether the correct version of the
class being used to do runtime reflection.

ServerNotActiveException

Heuristic 1:If the network is down then wait a
random amount (with an upper bound) of
time and try again (n number of times).

Heuristic 2:If the network is not down then try to
locate a replacement server for the
remote call.

Heuristic 3:Retransmit and re-route packets by
delegating all calls to a custom network
level delegation manager.

IOException

Heuristic 1:This is the super class of an array of IO
related faults. Carefully analyzing the
message thrown by this exception and
the actual subclass that throws this
exception, it is possible to devise several
heuristics to heal such faults.

AccessControlException

Heuristic 1:Try to change the security level of the
current thread by replacing the current
security manager with a custom security
manager.

BindException

Heuristic 1:Wait a random amount (with an upper
bound) of time to see whether the
intended address/port frees up.

Heuristic 2:Try to use a new address/port and
delegate all calls to the new address.

 132

scope of this thesis. We adopt the Autonomic Computing Policy Language (ACPL) in

describing policies of different fault scenarios. This not only allows us to address a

consistent policy management across the system, but also provides a user friendly form of

policy definition, policy management and tools to work with policies. The fault

repository represents all fault information and actions using ACPL. Figure 24 gives a

snapshot of the fault repository database that stores all fault models. All faults are

described by a pre-condition (what to match), one or more actions with associated setup,

priority of a certain pre-condition and any post-conditions. Priority is used to select

among multiple actions for the same pre-condition. Assignment of priority to an action is

a challenging issue and a simple utility based priority management algorithm is being

used to assign priorities among multiple actions. Since ACPL is XML-based, future

extension of this technique or integration of this technique into an autonomic

environment is simpler for the application programmer.

<EQUAL>
 <IOException>
<FileNotFoundException>
 <RESULT=CALL doSearch (PATH, filename) />
 <STRINGCONSTANT>
 <PATH=<VALUE>CLASSPATH</VALUE> />
 <PATH=<VALUE>PARENT</VALUE> />
 <PATH=<VALUE>ROOT</VALUE> />
 </STRINGCONSTANT>

<PRIORITY> 5 </PRIORITY>
 </RESULT>
<STRINGCONSTANT>
 <CLASSPATH=<VALUE>CLASSPATH ADD RESULT</VALUE> />
</STRINGCONSTANT>
</FileNotFoundException>
….
 ….
 ….

<NOT>
 ….
 ….

Action and
associated setup

Pre-condition

Priority

Post-condition

Figure 24. Representation of Fault Model.

 133

Code Transformations

 To add the extra functionality to an existing class required for the self-healing

purposes, code transformation at byte code level is necessary. The byte code rewriting

tool Javassist [15] is used to introspect and retrofit existing byte codes with self-healing

primitives. To handle any runtime exceptions, an extra try-catch block is inserted in

every method. At runtime, if any runtime exception occurs, it is caught and analyzed to

find the cause of the exception.

All analyzed information is saved as logs, so that the system administrator can

later inspect them and take appropriate action if necessary. Once such actions are taken, it

is recorded to the fault repository so that next time the same fault can be avoided. A clone

of the running method is created where, at the beginning of the code, new code is inserted

to reinitialize the object with a consistent state and to restart the method at the point

where the fault occurs. Since the rest of the code already has the injected self-healing

mechanism, any further faults are handled in the same way as described above. The

algorithm for this process is presented in Algorithm 1. The algorithm works on a per class

basis and initially, it checks whether there is local variable attribute attached with the

methods of the class. If the local variables attribute was originally not included with the

methods, it is added during static analysis [24] using Algorithm 2. This algorithm verifies

the existence of the local variable attribute before transforming the code. Since a new

field is added through which the status information is checkpointed, it needs to be

initialized in the constructors. Byte code sequences are generated and added at the end of

any existing code in the constructor to avoid inheritance related constraints placed on the

 134

constructor (such as calls to super must occur first before any other statement). For

methods, a new Object array is introduced as a local variable and the length of the array

is set to the total number of local variables inside that method. Care needs to be taken in

calculating the number of local variables inside a method since any arguments to that

method are also counted as local variables (see Local Variables Section) and the nature of

Algorithm 1. Self-healing transformations.

1. If there is no local variable attribute with the methods then use Algorithm 2 to
generate and attach the local variable attribute with the methods.

2. Add a new field in the class of type statusObject
3. For each constructor in the class, do

a. Generate a new byte code sequence to initialize the newly added field in the
class.

b. Insert the byte code sequence at the end of any existing code in the
constructor.

c. Calculate the new stack depth for that constructor and change the maxStack
attribute of the constructor.

d. Encapsulate the body of the constructor with a new try-catch block that
catches Throwable and has the fault analyser and fault healer code as the
body of the catch block.

4. For each method in the class, do
a. Generate a new byte code sequence to add a new Object array in the method

as a local variable.
b. Insert the byte code sequence at the top of any existing code in the method.
c. Since a new local variable is added, change the maxLocals attribute and add

the new local variable information in the local variable attribute.
d. For all byte code instructions in the method, do:

i. If the current byte code is within a try block and the current byte code
index is a checkpointable position, then

1. Get all local variables that have scope in that position.
2. Generate byte codes to wrap those local variables with

proper object types (if primitive) and then assign each of
them to different cells of the newly introduced Object array.

3. Generate byte code to call the checkpoint method of the
statusObject field with the Object array as one of its
parameter.

4. Concatenate these two generated byte codes and insert
them in the original code sequence at the point where it was
determined as a checkpointable position.

e. Calculate the new stack depth for that method and change the maxStack
attribute of the method.

f. Encapsulate the body of the method with a new try-catch block that catches
Throwable and has the fault analyser and fault healer code as the body of the
catch block.

 135

the method (static or instance) also dictates how those local variables are numbered.

Therefore, the maxLocal attribute in the method is updated with the newly calculated

number of local variables. At a checkpoint location, the byte code sequence is inserted

that assigns each local variable with in the scope of that position to the cells of the Object

array declared previously. However, the challenge is to wrap each of these variables

(primitive types) with proper Object classes and assign them to individual cells of the

Object array. The local variable attribute is used to determine each of the variable’s type

and then appropriate wrapper classes are used. For reference types (including arrays),

nothing extra needs to be done since standard polymorphism takes precedence in such

assignment. The call to the checkpoint method inside the statusObject class is then

generated in the byte code and added to the sequence generated thus far. To pass all

arguments to that method, each of the arguments are loaded first in the runtime stack in

the same order as the formal parameters, before actually invoking the method. This is to

ensure the correct semantics of the stack-based JVM execution model. The Object array,

current method name, current byte code offset and the current object reference is passed

as arguments to the checkpoint method. Adding new codes in existing methods

(including constructors) introduces some new challenges and forces recalculation of the

maximum stack depth during execution and consequently the corresponding byte code

attribute (maxStack) needs updating. Without recalculating and updating this attribute, the

resulting code will not be verified by the Java Runtime Verifier [50] and will not be

executed by the JVM.

Figure 25 shows the transformations that take place during the lifetime of a

method. Particularly:

 136

Method Body

public void foo (int param 1, String param2) {

}

Method Body

public void foo (int param1, String param2) {

} catch (Throwable fault){

Method Body

Method Body

try {

Fault analyzer
code

}

}

Checkpoints

1.Load the last consistent state
2. Re-initialize with that state
3. Move to the byte code index from

which the method should restart

(b) Static transformations

(a) Original Method

public void foo (int param1, String param2) {
try {

Method Body

} catch (Throwable fault){

Method Body

Method Body

Fault analyzer
code

}
} (c) Runtime transformation

Figure 25. Self-healing Transformation Example.

 137

1. The original method body is wrapped in an extra try-catch block and checkpoint calls

are inserted in the body itself.

2. If any exception is thrown by the code, it is caught by the newly inserted try-catch

block, where the fault analyzer is inserted.

3. The caught exception is analyzed and the process starts to heal that particular fault.

 Several adaptations are needed to support existing programs with the desired

autonomic behavior, which are described in the next few sections in more detail.

Local Variables

 To save the state information of any running method inside the object, local

variable values have to be saved during checkpointing along with other necessary

information, such as the line number of the next instruction to be executed, value of

actual parameters and value of any object field. To gather the current state of the object,

all the local variables in the current scope along with any fields and class variable’s

values need to be saved. As the Java compiler does not save any local variable

information (such as type information or variable scope), the static analyzer gathers this

information by analyzing the byte code and adds that information as a byte code attribute

[50] to each method. During self-healing transformations, this attribute is used to create

appropriate wrappers to save the corresponding object status. The challenge is to recreate

a local variable table from the byte code when there is no information saved for the local

variables. Byte code instructions access local variables from a zero based array in the

 138

runtime stack and depending on the type of method (class or instance), variables and

arguments are indexed differently.

 As shown in Figure 26, along with all local variables, method parameters and

object instance (only with instance methods) are also placed on that array. Depending on

the data type, variables will occupy 1 or 2 cells in the array. Depending on the scope of

the variable, cells can be reused by different variables within different scopes of the

method body. The challenge is to represent such dual usage in a consistent manner so that

the local variable can be accessed with a proper type cast at the proper location in the

byte code. The algorithm adds a duplicate entry with the same index into the local

variable table for such occurrences. Different scope information is used to distinguish

public static void boo (int p1 float p2,){

= p1 + p2;

}
0 int

1 float

2 float

3 double

4 double

double lv1

public void foo (long p3){

long lv2 = p3 * 2;

}
0 reference

1 long

2 long

3 long

4 long

Reference to
the object

(this)

Figure 26. Local Variable Access Indexing.

 139

between these two entries. Figure 27 shows the code segment which is responsible for

adding local variable information into the local variable attribute. If there is no local

variable information in the attribute, then the first variable is added directly. Otherwise,

each variable in the attribute is compared with the given variable information and

corresponding decision (same variable with an extending scope, different variable but

using same index etc.) is made on how to represent that variable. 4 specific data element

are saved for each variable: the start and the end byte code index of the variable’s scope,

for(int i=0;i<numVar;i++){
int varIndex=ByteArray.readU16bit(info,i*8+8);

if(varIndex==index){ // Whether the variable is already been added?
 alreadyAdded=true;
 int typeAtIndex=descriptorIndex(i);
 if(type>0){ // Reference type
 ByteArray.write16bit(length,info,(i*8+4)); // Update the scope then
 break;
 }else if(typeAtIndex==type){ // Identical (type) variable at identical index
 ByteArray.write16bit(length,info,(i*8+4)); // Update the scope then
 break;
 }else{ // Different variable at identical index
 //1. Change the scope of the other entry
 ByteArray.write16bit(length-1,info,(i*8+4));
 //2. Add the new entry
 ByteArray.write16bit(tableLength() + 1, newInfo, 0);
 // 2 bytes for each data
 ByteArray.write16bit(startPc, newInfo, size); // Start of variable scope
 ByteArray.write16bit(length, newInfo, size + 2); // End of variable scope
 ByteArray.write16bit(type, newInfo, size + 4); // Type of variable
 ByteArray.write16bit(index, newInfo, size + 6); // Variable index
 }
}

if(!alreadyAdded){ // If the local variable haven't been added, then add it
 ByteArray.write16bit(tableLength() + 1, newInfo, 0);

 // 2 bytes for each data
 ByteArray.write16bit(startPc, newInfo, size); // Start of variable scope
 ByteArray.write16bit(length, newInfo, size + 2); // End of variable scope
 ByteArray.write16bit(type, newInfo, size + 4); // Type of variable
 ByteArray.write16bit(index, newInfo, size + 6); // Variable index
}

Figure 27. Code Fragment to generate a New Local Variable Information.

 140

the variable type represented by pre-defined numbers for each possible Java data type,

and the index into the local variable array in the method (Figure 26).

To determine variable scope, variable index within the array and data types,

Algorithm 2 is utilized (See Appendix A for the detailed flow chart). The time taken by

Algorithm 2 is proportional to the number of local variables in the method. Only 8 bytes

are used to save all necessary information about a local variable. This keeps code

inflation to a minimum. See Performance Analysis Section for some comparisons. The

algorithm requires only one pass over the code to determine the local variables and it is

performed simultaneously during the static analysis [24], therefore there is no extra

overhead for executing this algorithm.

 Since most opcodes in the JVM instruction set explicitly encode type information

(for instance, opcode for integer type starts with ‘i’, opcode for float type starts with ‘f’

and so on) about the operations they perform, it is easy to determine data types of most

variables by looking at the opcode itself. However, JVM uses integer data types to

1. For all byte code instructions in a method, do
a. Get next opcode (and operand, if any)

i. If the opcode is of a data store type, then determine the
type from the opcode (for primitive type). For reference
(object) type, check the constant pool and determine the
type information.

ii. Determine the variable index from the opcode suffix or
from the operand. Also, determine the corresponding byte
code offset, where it is declared for the first time.

iii. If the opcode represents an already identified variable with
the same data type, then update that variable’s scope
information.

iv. If the opcode represents an already identified variable with
different data type (same variable index is used by two
variables in two different scope), then create a new
variable entry.

Algorithm 2. Generate Local Variable Information.

 141

represent boolean, char, short and byte data types also and includes opcodes that convert

from one primitive type to other. Therefore, care needs to be taken to determine the

actual data type of a variable. Correctness can be guaranteed by looking for a type

conversion opcode, before and after an opcode that is using a variable for the first time.

Adding Checkpoints

 To restart seamlessly from a crash or after a runtime exception, the internal state

(fields, method parameters and local variables, next byte code to be executed) of the

object must be made persistent. According to a given user policy, instrumentation points

in the code are determined and appropriate method calls are inserted to checkpoint the

current state of the object. The following checkpoint locations are identified at the byte

code level:

1. After several write operations.

2. Before and after an I/O interaction.

3. Before and after any data interaction between two objects.

 The checkpointing algorithm below (Algorithm 3) describes adding a status object

as a field into the target class, so that the checkpointed data can be saved through that

field. Algorithm 3 provides checkpointing in byte code on a per method basis and uses

different byte code attributes, such as code, exception, line number and local variable

(generated by Algorithm 2) attributes. See Appendix A for the detailed flow chart of this

algorithm.

 Proper type casting is necessary to store and to restore checkpointed data. All the

local variable and actual parameter information is type sensitive and requires careful type

 142

manipulation. All primitive method data is converted to its corresponding object format

and saved as objects in the persistent data store. During restoration, data is cast back to its

original type by gathering the type information of each local variable and actual

parameter from the local variable attribute.

Status Data

 During runtime, whenever any checkpoint is encountered, the current status of the

object is incrementally saved to a platform independent disk file or backing store. The

implementation of the checkpointed data manipulation algorithm is performed by

synthesizing and re-engineering ideas found in existing fault tolerant techniques for

distributed applications. Using pre-defined policies, users can modify the behavior of

such algorithms to suit their needs. For example, to save disk space, once an object

completes its execution and is garbage collected, all the corresponding status information

related to that object is deleted from the backing store. After a fault, determining a

consistent state from which the program should be restarted is complex and requires

extensive analysis of the runtime structure. However, to keep it simple and to

1. Insert an array of objects at the top of the method body. The size of
this array is equal to the number of local variables in the method.

2. Determine the next checkpointable position in the byte code.
3. Assign object array with local variables having corresponding index

value.
4. Load this object array and all other status information in to the run

time stack.
5. Call the checkpoint method, which takes all the status information

from the runtime stack and saves that in a persistent store.

Algorithm 3. Checkpoint a Class at the Byte Code Level.

 143

demonstrate the viability of the approach, this thesis only considers resuming execution

from the last checkpointed consistent state.

 The implementation of the backing store where checkpointed data is saved is left

open to the application programmer. The only constraint is that access to such backing

store should occur through a standard interface provided by the system so that the self-

healing algorithm requires no change in implementation. Currently, a backing store is

implemented hierarchically (each domain has its own backing store) following the

underlying networking structure and each domain (subnet) has its own backing store to

cater for all object classes in that domain. To keep it simple and to provide faster

response, the following adaptation is made in the current implementation of the backing

store:

1. Objects of class statusObject (which holds the status of a method in a single

checkpoint) are saved in a hash table keyed with the byte code index of the position

where the checkpoint is performed. This is to easily identify checkpoints from the

same method.

2. If the size of the hash table exceeds a pre-defined threshold, only then it is written to

the underlying file. This is to minimize the time required for disk write operations.

One possible downside is that, if the program faults before the hash table ever reaches

the threshold, there will be no state saved in the backing store to restore from. In such

a case, trying to read the last checkpointed state from the cached copy of the hash

table may be the only option.

 144

Task of Fault Analyzer and Fault Healer

 The crucial part of the self healing process is performed by the fault analyzer-fault

healer pair. The fault analyzer code is inserted at the byte code level, whereas the fault

healer is a separate class structure that is initiated by the fault analyzer. The fault analyzer

code inserted inside the method body is responsible for gathering the necessary code to

create the failure information and then call the appropriate algorithm to analyze the

failure information and compare that with the saved fault models to devise a plan of

action for the fault healer. Once the fault healer obtains the required healing information,

it performs the following steps to resume the operation:

1. Find the last consistent state (a consistent state is where all the threads were able to

write their status successfully) and read the saved status data from the backing store.

The backing store is implemented hierarchically across the network and after a fault,

if the backing store in the application’s current domain is not available, then the

backing store in its parent’s domain is accessed and this propagates in the worst case

to the top of the hierarchical domain based backing store.

2. Create a clone of the method and discard all byte code sequences before the byte code

index where execution must be resumed. The difficulty of creating such a cloned

method is that not only the maxLocals and maxStack attribute of the resulting method

must be calculated and updated, but also the local variable indices inside the existing

byte code need to be updated. So, for instance if there is a local variable in the

original method which is using variable index 0, for adding all the re-initialization

code (Step 3), the index of that particular variables now should be updated (if n new

 145

variables are added before that particular variable, its new index should be 0+n) to

reflect correct class file semantics. So, wherever that particular variable was used by

any opcode, it needs to be updated with the newly calculated correct index number. If

this is not done properly, the method will crash during execution due to incorrect type

conversion.

3. Inject byte code at the top of the method that reinitializes the internal data structures

of the object with the status data. The last instruction in this newly added sequence is

a goto instruction that directs the execution to the position in the method where we

want execution to resume.

4. Start executing this cloned method using reflection and on the same object instance as

the original method was running. Running the method on a newly created instance

will create inconsistency in the program flow. Therefore to keep the same functional

flow, the object instance on which the original method was executing is used to run

the cloned method.

Normally, the fault healer saves all intermediate and cloned methods and associated byte

code on the hard drive for debugging purposes. However, if the system administrator

thinks that unnecessary, then it can be switched off and that will not only save disk space

but also will speed up the healing process.

Runtime Exceptions

 To handle any runtime exceptions, the method body is encapsulated within

another try-catch block (which catches the Throwable super class) to give the method

another opportunity to continue after the statement where the exception is thrown.

 146

However, adding a new try-catch block introduces three different scenarios describe

bellow, which need to be addressed at the byte code level to fully support runtime

exceptions:

1. Subclass of Throwable or Exception is already being caught by the method body.

Solution: Re-throw the exception so that the enclosing try-catch block can catch it

and continue with its self-healing mechanism.

2. There is already an encapsulating try-catch block that catches either

java.lang.Exception or Throwable.

Solution: Instead of adding a new try-catch to enclose the entire method, the catch

block is modified and the self-healing mechanism is added.

3. A nested try-catch block already exists within the method body.

Solution: Re-throw every nested exception that is caught, so that the outer most

enclosing try-catch block can catch it and continue with its self healing mechanism.

 Since the rest of the code already has the injected exception handling mechanism,

any recurring faults will be handled in the same way as described above. If the same fault

is regularly occurring, the system administrator is notified to take proper action and the

system will cease execution of that particular program.

 While injecting byte codes for self-healing purpose or determining local variable

information, any existing byte code sequence which is inside a user declared catch block

is ignored. Since the goal is to keep the original functional flow of the program, there is

no point of checkpointing inside an existing catch block or saving local variables

declared in such blocks. Rather, the above mentioned policies to change or handle

existing user declared try-catch block are used.

 147

Performance Analysis

 To judge the applicability of this technique in a real environment, traditional

benchmarking techniques are insufficient. Simply measuring how fast a fault can be

healed is dependent on the underlying platform and the runtime environment. Healing the

same fault on two different platforms will result in different times due to different

environment parameters. Providing only such a functional evaluation of the technique is

insufficient to judge its effectiveness in the field of autonomic computing. Since one of

the main goals of this research is to provide a transparent interface to the user, an

evaluation framework to address other issues that can not be functionally evaluated is

developed. Table 9 shows such an evaluation of this technique. As noted in [10],

benchmarking an autonomic system is difficult and there is no widely accepted

evaluation methodology. Since there are no other similar works to compare this technique

with, this thesis measures the time taken to do such transformations, the resulting code

inflation and the runtime memory usage inflation as metrics giving an insight into

autonomic computing performance.

 Experiments on the presented self-healing techniques were conducted with

several Java programs (sequential and parallel) running on a single machine, having

varying code structure and complexities (Appendix B). Program 1 writes random bytes

into disk files to simulate IO failures. Program 2 attempts to write different data types on

an open socket to simulate network failure scenarios. Finally program 3 implements a

concurrent matrix multiplication algorithm to simulate synchronization and locking

 148

faults. The techniques described in this chapter can support Java byte code from JDK

version 1.2 to 1.5. A standard PC equipped with a Pentium 4, 3.4 GHz CPU and 512 MB

Table 9. Evaluation Framework for the Technique.

Properties Abilities of this technique

Usability This technique is easy to use and programmers do not have to
worry about pre and post processing.

Modularity
This technique is designed in a modular fashion so that it can be
added or deleted from an existing system without any loss of
original program semantic.

Transparency
It is completely transparent (all code transformation is done
automatically) to the user and using this technique is
straightforward.

Scalability

This technique adds self healing primitive on a per method basis.
So other autonomic properties can be added in the same way
without the need to modify this technique. However, with any
such code injection, programmers have to be mindful of the
resulting code inflation.

Persistence

This technique does not modify any data internal to the program
itself. Hence the program execution remains unchanged
functionally and semantically. Checkpointed status data is kept in
a machine independent format using Java Serialization and saved
in different portions of the data store to keep it consistent between
runs.

Maintainability
Over a long period of time, the system can generate valuable
usage data and execution pattern that will help software operators
and programmers to maintain the code more effectively.

RAM running Windows XP is used to conduct all of the experiments described in this

section. To generate the local variable information, algorithm 1 produces smaller files

than using the Java compiler’s debugging switch (-g during compilation). Since

programmers may not use that switch, the self-healing code injector must rely on

Algorithm 2, which, as shown in Table 10, performs well.

 149

Table 10. Code Inflation Due to Local Variable Addition (in bytes).

Program Original Size Algorithm 1 javac –g
1 910 1036 1228
2 1208 1377 1639
3 5823 6155 7320

 Experiments with two different forms of checkpointing policies were conducted.

In the conservative policy, checkpoints are inserted after every statement in the method,

whereas in the optimized policy, checkpointing decisions were made as described in

Section Adding Checkpoints. The resultant code has a O(n) code inflation, where n is the

size of the original code. Figure 28 shows the overall code inflation due to the added

functionality of the code. On average the resulting code has around 51% code inflation.

With better optimization techniques, this can almost certainly be lowered.

Figure 28. Code Inflation Due to the Addition of Self-healing Primitives.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

By
te

s

Program 1 Program 2 Program 3

Original size

Normal

Optimized

 150

Figure 29. Execution Times of the Three Test Programs.

 Figure 29 shows the timing data taken during execution. It is evident from

Figure 29 that the algorithm takes linear time to execute. For the added functionalities in

the code, the application programmer must be comfortable with such a small increase of

pre-processing time along with the execution time. The additional memory requirement

of the added data structure (Object array) is also measured. For this test, the code is

instrumented in such a way that it keeps track of the amount of heap memory available to

the JVM at each step of the self-healing process. On average, the runtime memory

inflation is 10% to 15%. This is a minimal increase of runtime memory usage that will

not typically have any significant adverse effect on the program execution.

Summary

This chapter presents techniques to add self-healing characteristics to existing object

oriented programs. By working at the byte-code level, existing user code is injected with

0

20

40

60

80

100

120

140

160
Ti

m
e

(m
s)

Program 1 Program 2 Program 3

Normal Execution

Local Variable Addition

Normal Transformation

Optimised Transformation

 151

self-healing capabilities by statically analyzing the code and transforming it in such a

way that the application becomes a self-healing component. The goal is to make this

transition as simple and easy to the application programmer as possible in order to fulfill

the goals of an autonomic system. To do that, the code is analyzed and the autonomic

functionality is inserted in a manner that is separated from the service functionality of the

existing code.

 152

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

 Autonomic computing is a new paradigm where computing systems possess the

capability of self-management. Incorporating such autonomic functionality into

applications without user involvement is useful not only for application programmers

who are building distributed systems from scratch, but also for users of existing systems.

Although it may be desirable to build such self-adaptive distributed systems from scratch,

it is not always a feasible option, mostly because of the cost and time associated with

such a major development, but also because it is not practical to abandon an existing

distributed or parallel application and re-program it from scratch to be self-adaptive.

Programming such a distributed application is also an error-prone task and programmers

need expert knowledge to handle the distribution management issues along with

programming the application problem at hand. For average programmers, this becomes a

daunting task when they also have to incorporate autonomic primitives into the system. In

real life, programmers want to concentrate on the problem in hand, rather than spend time

on incorporating autonomic behaviors in their system. It is helpful to programmers if

such autonomic behaviors can be added automatically and transparently to existing

systems.

 This thesis presents techniques of injecting autonomic primitives into existing

user code by statically analyzing the code and partitioning it to manageable autonomic

components. Software architecture to provide such autonomic computing support is

presented to determine its suitability for a fully fledged autonomic computing system.

 153

The presented architecture is a novel peer-to-peer distributed object-based management

automation architecture. In this model, independent or communicating objects are treated

as managed elements in the geographically distributed autonomic elements. This thesis

also presents a self regulating design of an autonomic element in a distributed object

environment. Architectural choices have a profound effect on the capabilities of any

autonomic system and affect many of the design decisions during its implementation. The

goal of this architectural design is to provide an easy to program autonomic element

which can be implemented in most domains with minor modifications.

 As a conclusion, this research demonstrates the suitability and effectiveness of

code transformation to orchestrate addition of autonomic primitives into existing

applications. In a larger context, this thesis shows the feasibility of exerting externalized

self-adaptation with applications that choose object oriented technology for their

distributed environment and program execution. The software architecture presented in

this thesis will be a precursor to the new era of self-adaptive software architecture.

 This work can be pursued further in a number of directions:

− Code transformation and code injection techniques to include other autonomic

properties, namely self-configuration and self-protection. Although this research

injects codes for partial self-configuration, a more extensive analysis and

implementation techniques are needed to fully visualize a totally autonomic

system.

− Devising optimization techniques for the code transformation technique.

Although the code transformation techniques presented in this thesis are

optimized up to a certain extent, incorporating more code transformation for

 154

multiple autonomic properties together might open avenues for exploring further

optimization techniques.

− One of the major motivations of building large-scale self-adaptive distributed

systems is to harvest idle cycles of machines in a large networked environment to

get an access to unprecedented computation power. This is based on the

assumption that resources are contributed by their owners to allow others to share

them. However, in practice, there is no model for trust in such environments.

Developing a new trust model in such a dynamic environment will certainly

facilitate the implementation of autonomic systems.

 155

REFERENCES

1. Abbas N., Palankar M., Tambe S. and Cook J. E., “Infrastructure for Making Legacy
Systems Self-Managed”, 2004 Workshop on Self-Managing Systems, Newport Beach,
CA, USA, October 31 - November 1, 2004, http://www.cs.nmsu.edu/please/ddl/
papers/woss2004.pdf.

2. Agrawal D., Lee K. W. and Lobo J., “Policy-Based Management of Networked

Computing Systems”, IEEE Communications Magazine, Vol. 43, No. 10, pp. 69-75,
2005.

3. Ajmani S., “A Review of Software Upgrade Techniques for Distributed Systems”,

Technical Report, MIT Computer Science & Artificial Intelligence Laboratory,
November, 2004.

4. Anthill, University of Bologna, Italy, http://www.cs.unibo.it/projects/anthill/, 2006.

5. Aridor Y., Factor M. and Teperman A., “cJVM: A Single System Image of a JVM on

a Cluster”, International Conference on Parallel Processing (ICPP'99), 1999.

6. Balzer B., “Probe Run-Time Infrastructure”, Dec. 2001, http://www.schafercorpball

ston.com/dasada/2001WinterPI/ProbeRunTimeInfrastructureDesign.ppt.

7. Bennani T., Blain L., Courtes L., Fabre J., Killijian M., Marsden E. and Taiani F.,

“Implementing Simple Replication Protocols using CORBA Portable Interceptors and
Java Serialization”, International Conference on Dependable Systems and Networks
(DSN'04), pp. 549-554, 2004.

8. Birrel A. D. and Nelson B. J., “Implementing Remote Procedure Calls”, ACM

Transactions on Computer Systems, Vol. 2, pp. 33-59, 1984.

9. Bouchenak S., “Pickling Threads State in the Java System”, Third European Research

Seminar on Advances in Distributed Systems, Portugal, 1999.

10. Brown A. B., Hellerstein J., Hogstrom M., Lau T., Lightstone S., Shum P., Yost M.

P., "Benchmarking Autonomic Capabilities: Promises and Pitfalls", First
International Conference on Autonomic Computing , pp. 266-267, 2004.

11. Bruneton E., Lenglet R. and Coupaye T., “ASM: a Code Manipulation Tool to

Implement Adaptable Systems”, Proceedings of the Adaptable and Extensible
Component Systems Conference, France, pp. 1-12, 2002.

 156

12. Byte Code Engineering Library, BCEL, http://jakarta.apache.org/bcel/.

13. Cai Z., Kumar V., Cooper B., Eisenhauer G., Schwan K., Strom R. E., “Utility-

Driven Availability-Management in Enterprise-Scale Information Flows”, Technical
Report, College of Computing, Georgia Institute of Technology, USA, 2006.

14. Chess D. M., Segal A., Whalley I. and White S. R., “Unity: Experiences with a

Prototype Autonomic Computing System”, First International Conference on
Autonomic Computing, pp. 140-147, 2004.

15. Chiba S. and Nishizawa M., “An Easy-to-Use Toolkit for Efficient Java Byte code

Translators”, 2nd International Conference on Generative Programming and
Component Engineering, LNCS 2830, pp.364-376, 2003.

16. CISCO System, Adaptive Service Framework (ASF), http://www.cisco.com/

application/pdf/en/us/guest/partners/partners/c644/ccmigration_09186a0080202dc7.p
df.

17. Cojen, http://cojen.sourceforge.net/.

18. Cognitive Agent Architecture (COOGER), http://cougaar.org/, 2007.

19. Constantinescu Z., “Towards an Autonomic Distributed Computing System”, 14th

International Workshop on Database and Expert Systems Applications, pp. 699-
703, 2003.

20. Dahm M.. “Byte Code Engineering with the BCEL API”, Technical Report B-17-98,

Berlin, 2001, http://bcel.sourceforge.net/documentation.html.

21. Danielsson P. and Hulten T., “Jdrums: Java Distributed Run-time Updating

Management System”, Master’s Thesis, Department of Mathematics, Statistics and
Computer Science, Vaxji University, Sweden, 2001.

22. David W., Levine W. et al., “A Toolkit for Autonomic Computing”, IBM Developer

Works Live, 2005, http://www.128.ibm.com/developerworks/autonomic/
overview.html.

23. Deb D. and Oudshoorn, M. J., “On Utility Driven Deployment in a Distributed

Environment”, Fourth IEEE Workshop on Engineering of Autonomic Systems (EASe
2007), Tucson, Arizona, USA, March 26-29, 2007, Accepted for publication.

24. Deb D., Fuad M. M. and Oudshoorn M. J., “Towards Autonomic Distribution of

Existing Object Oriented Programs”, International Conference on Autonomic and
Autonomous Systems, IEEE Press, California, USA, pp. 17-23, 2006.

 157

25. Dmitriev M., “Safe Class and Data Evolution in Large and Long-Lived Java
Applications”, PhD Thesis, University of Glasgow, May 2001.

26. Dong X., Hariri S., Xue L., Chen H., Zhang M., Pavuluri S. and Rao S.,

“AUTONOMIA: An Autonomic Computing Environment”, Proceedings of the 2003
IEEE International Performance, Computing, and Communications Conference, pp.
61-68, 2003.

27. eBiquity, University of Baltimore county, USA, http://ebiquity.umbc.edu, 2006.

28. Eclipse Development Environment, http://www.eclipse.org/, 2007.

29. Falkner Katrina E., “The Provision of Relocation Transparency through a Formalized

Naming System in a Distributed Mobile Object System”, PhD Thesis, Department of
Computer Science, Adelaide University, November 2000.

30. Feng H. T. and Lee E. A., “Incremental Checkpointing with Application to

Distributed Discrete Event Simulation”, Technical Report, EECS Department,
University of California, Berkeley, April, 2006.

31. Fuad M. M. and Oudshoorn M. J., “Transformation of Existing Programs into

Autonomic and Self-healing Entities”, 14th IEEE International Conference on the
Engineering of Computer Based Systems (ECBS), Arizona, USA, March 26 - 29,
2007, Accepted for publication.

32. Fuad M. M. and Oudshoorn M. J., “An Autonomic Architecture for Legacy Systems”,

Third IEEE International Workshop on Engineering of Autonomic Systems (EASe
06), Maryland, USA, April 24-28, pp. 79-88, 2006.

33. Fuad M. M. and Oudshoorn M. J., “AdJava: Automatic Distribution of Java

Applications”, Australian Computer Science Communication, Vol. 24, No.1, pp. 65-
74, 2002.

34. Fuad M. M., “Dynamic Scheduling and Load Balancing in Distributed Java

Applications”, Masters Thesis, Department of Computer Science, University of
Adelaide, 2001.

35. Ganek A. G., Hilkner C. P., Sweitzer J. W., Miller B., Hellerstein J. L., “The

Response to IT Complexity: Autonomic Computing”, Third IEEE International
Symposium on (NCA'04), pp. 151-157, 2004.

36. Ganek A. G. and Corbi T. A., “The Dawning of the Autonomic Computing Era”, IBM

System Journal, Vol. 42, pp. 5-18, 2003.

37. Gosling J. and McGilton H., The Java Language Environment White Paper. Sun

 158

Microsystems, http://java.sun.com/docs/white/langenv/, 1996.

38. Grid Computing Information Centre, 2006, http://www.gridcomputing.com/.

39. Griffith R. and Kaiser G., “Adding Self-healing Capabilities to the Common

Language Runtime”, Computer Science Technical Report, Columbia University,
2005, http://www.cs.columbia.edu/techreports/cucs-005-05.pdf.

40. Haydarlou A. R., Overeinder B. J., and Brazier F. M. T., “A Self-Healing Approach

for Object-Oriented Applications”, Proceedings of the 3rd International Workshop on
Self-Adaptive and Autonomic Computing Systems, pp. 191-195, 2005.

41. Hewlett-Packard, The Adaptive Enterprise, http://www.hp.com/products1/promos/

adaptive_enterprise/us/adaptive_enterprise.html.

42. Horn P., “Autonomic Computing: IBM's Perspective on the State of Information

Technology”, IBM Corporation, October 15, 2001, http://www.research.ibm.com/
autonomic/manifesto/autonomic_computing.pdf.

43. Hunt G. C. and Scott M. L., “The Coign Automatic Distributed Partitioning System”,

Operating Systems Design and Implementation, pp. 187–200, 1999.

44. IBM Corporation, http://www.research.ibm.com/autonomic/, 2006.

45. IBM WebSphere Software, http://www-306.ibm.com/software/websphere/, 2007.

46. Intel Corporation, Proactive Computing, http://www.intel.com/research/exploratory/.

47. Interface Definition Language, Object Management Group, http://www.omg.org/

gettingstarted/omg_idl.htm, 2006.

48. Internet Inter-ORB protocol, Object Management Group, http://www.omg.org/

library/iiop4.html, 2006.

49. Jarrett M. and Seviora R., “Constructing an Autonomic Computing Infrastructure

Using Cougaar”, The Third IEEE International Workshop on Engineering of
Autonomic Systems, Maryland, USA, April 24-28, pp. 119-128, 2006.

50. Java Virtual Machine Specification, http://java.sun.com/docs/books/vmspec/

2ndedition/ html/VMSpecTOC.doc.html.

51. Jennings N. R., “Building Complex, Distributed Systems: The Case for an Agent-

based Approach”, Communications of the ACM, Vol. 44, No. 4, pp.35–41, 2001.

52. Jennings N. R., “On Agent-based Software Engineering”, Artificial Intelligence, Vol.

 159

117, No. 2, pp. 277–296, 2000.

53. Julia L. L. and Gilles M., “Efficient Incremental Checkpointing of Java Programs”,

International Conference on Dependable Systems and Networks (DSN 2000), pp. 61-
70, 2000.

54. Kaffe Virtual Machine for Java, http://www.kaffe.org/, 2006.

55. Kaiser G., Parekh J., Gross P., Valetto G., “Kinesthetics eXtreme: An External

Infrastructure for Monitoring Distributed Legacy Systems”, Fifth Annual
International Workshop on Active Middleware Services, pp. 22-27, 2003.

56. Kazman R., Yan H., Garlan D., Schmerl B. and Aldrich J., “The Recovery of

Runtime Architectures”, news@sei, Vol. 2, pp. 1-5, 2004, http://www.sei.cmu.edu/
news-at-sei/columns/the_architect/2004/2/architect-2004-2.pdf.

57. Kephart J. O., “Research Challenges of Autonomic Computing”, The 27th

International Conference on Software Engineering, USA, pp. 15-22, 2005.

58. Kephart J. O. and Chess D.M., “The Vision of Autonomic Computing”, IEEE

Computer, Vol. 36, No. 1, pp.41–52, 2003.

59. Landis S., “Distributed Event Notification Using RMI”, http://www.javareport.com/,

July, 1999.

60. Lawall J. L. and Muller G., “Efficient Incremental Checkpointing of Java Programs”,

International Conference on Dependable Systems and Networks (DSN 2000), pp. 61-
70, 2000.

61. Liu H. and Parashar M., “Accord: A Programming Framework for Autonomic

Applications”, IEEE Transactions on Systems, Man and Cybernetics, Special Issue on
Engineering Autonomic Systems, Editors: R. Sterritt and T. Bapty, IEEE Press, pp.
341-352, 2005.

62. Melcher B., and Mitchell B., "Towards an Autonomic Framework: Self-Configuring

Network Services and Developing Autonomic Applications”, Intel Technology
Journal, November 2004, http://developer.intel.com/ .

63. Message Passing Interface Forum, “MPI: a Message Passing Interface Standard”,

http://www-unix-mcs.anl.gov/mpi/, 1994.

64. Microsoft Corporation, Component Object Model Technologies, http://www.

microsoft.com/com/default.mspx, 2007.

65. Microsoft Corporation, Microsoft Dynamic Systems Initiative Overview, http://www.

 160

microsoft.com/windowsserversystem/dsi/dsiwp.mspx.

66. MSDN developer’s Manual, Microsoft Corporation, http://msdn.microsoft.com/

library/default.asp, 2006.

67. Murich R., Autonomic Computing, IBM Press, Prentice Hall publishesr, 2004.

68. National Dysautonomia Research Foundation, General Organization of Autonomic

Nervous System, http://www.ndrf.org/ans.htm.

69. NetBeans Profiler, Version 5.5, http://www.netbeans.org/products/profiler

/index.html, 2007.

70. Object Management Group, Common Object Request Broker Architecture, 2006,

http://www.omg.org/gettingstarted/corbafaq.htm.

71. OceanStore, University of California- Berkeley, USA, http://oceanstore.cs.

berkeley.edu/, 2006.

72. Oreizy P., Medvidovic N. and Taylor R. N., “Architecture-Based Runtime Software

Evolution”, 20th International Conference on Software Engineering (ICSE'98), pp.
177 -186, 1998.

73. Orso A., Rao A., Harrold M., “A Technique for Dynamic Updating of Java

Software”, 18th IEEE International Conference on Software Maintenance, pp. 649-
658, 2002.

74. Oudshoorn M. J., Fuad M. M. and Deb D., “Towards an Automatic Distribution

System – Issues and Challenges”, Proceedings of the International Conference on
Parallel and Distributed Computing and Networks, PDCN 2005, Innsbruck Austria,
pp. 399-404, 2005.

75. Oudshoorn M. J., “Scheduling and Latency – Addressing the Bottleneck”. Chapter 5

in Architectural Issues of Web-Enabled Electronic Business (Nansi Shi & V.K.
Murthy (Eds.), Idea Group Publishing, 2003).

76. Parashar M., Liu H., Li Z., Matossian V., Schmidt C., Zhang G. and Hariri S.,

“AutoMate: Enabling Autonomic Grid Applications”, Cluster Computing: The
Journal of Networks, Software Tools, and Applications, Special Issue on Autonomic
Computing, Kluwer Academic Publishers, Vol. 9, No. 1, 2006.

77. Parashar M., and Hariri S., “Autonomic Computing: An Overview”, UPP 2004, Mont

Saint-Michel, France, Editors: J.-P. Banâtre et al. LNCS, Vol. 3566, pp. 247 – 259,
2005.

 161

78. Peyman O., Nenad M. and Richard N. T., “Architecture-Based Runtime Software
Evolution”, 20th International Conference on Software Engineering (ICSE'98), pp.
177 -186, 1998.

79. Philippsen M. and Zenger M., “JavaParty - Transparent Remote Objects in Java”,

Concurrency: Practice and Experience, Vol. 9, No. 11, pp. 1225–1242, 1997.

80. Project Mono, http://www.mono-project.com/Main_Page, 2006.

81. Rick K. et al., “The Recovery of Runtime Architectures”, news@sei, Vol. 2, pp. 1-5,

2004.

82. Ritzau T. and Andersson J., "Dynamic Deployment of Java Applications",

Proceedings of Java for Embedded Systems, London, May 2000.

83. Salehie M. and Tahvildari L., “Autonomic Computing: Emerging Trends and Open

Problems”, SIGSOFT Software Engineering Notes, Vol. 30, No. 4. pp. 1-7, July 2005.

84. Sameer A., “A Review of Software Upgrade Techniques for Distributed Systems”,

Technical Report, MIT Computer Science & Artificial Intelligence Laboratory, 2004.

85. Schanne M., Gelhausen T., and Tichy W. F.. “Adding Autonomic Functionality to

Object-oriented Applications”, 14th International Workshop on Database and Expert
Systems Applications, pp. 725-730, 2003.

86. Schantz R. and Schmidt D. C., “Middleware for Distributed Systems”, Encyclopedia

of Computer Science and Engineering, edited by Benjamin Wah, 2007.

87.Schmidt D. C. and Kuhns F., “An Overview of the Real-Time CORBA Specification”,

Computer, vol. 33, no. 6, pp. 56-63, Jun., 2000.

88. Selic B, “Fault Tolerance Techniques for Distributed Systems”, IBM developers

manual, 2004, http://www-128.ibm.com/developerworks/rational/library/114.html.

89. Segal M. E. and Frieder O., “Dynamic Program Updating: A Software Maintenance

Technique for Minimizing Software Downtime”, Journal of Software Maintenance,
Vol. 1, No. 1, pp. 59-79, 1989.

90. SERP, http://serp.sourceforge.net/.

91. Simple Object Access Protocol (SOAP), XML Protocol Working Group, World Wide

Web Consortium, 2007, http://www.w3.org/2000/xp/Group/.

92. Soot: a Java Optimization Framework, Sable research group, www.sable.

mcgill.ca/soot.

 162

93. Spiegel A., “Automatic Distribution of Object-Oriented Programs”, PhD thesis,

Fachbereich Mathematik u. Informatik, Freie Universitat, Berlin, 2002.
94. Sun MicroSystems, Java Remote Method Invocation, 2006, http://java.sun.

com/j2se/1.5.0/docs/guide/rmi/index.html.

95. Sun MicroSystems, Java Development Kit 5.0, http://java.sun.com/j2se/1.5.0

/docs/index.html, 2006.

96. Sun MicroSystems, Java RMI over IIOP, http://java.sun.com/j2se/1.5.0/docs/guide/

rmi-iiop/index.html, 2006.

97. Sun Micro Systems, Sun N1 Grid Engine, http://www.sun.com/products-n-solutions/

edu/whitepapers/pdf/N1GridEngine6.pdf.

98. Tandiary J. F., Kothari S. C., Dixit A. and Anderson E. W., “Batrun: Utilizing Idle

Workstations for Large-Scale Computing”, IEEE Parallel and Distributed
Technology, pp. 41-48, 1996.

99. Tanenbaum A. S. and Steen M. V., Distributed Systems: Principles and Paradigms,

Prentice Hall Publishers, First Edition, 2002.

100. Tatsubori M., Sasaki T., Chiba S. and Itano K., “A Byte code Translator for

Distributed Execution of Legacy Java Software”, Proceedings of the 15th European
Conference on Object Oriented Programming (ECOOP 2001), Budapest, Hungary,
pp. 236-255, June 18-22, 2001.

101.Teha B. et al., “Implementing Simple Replication Protocols using CORBA Portable

Interceptors and Java Serialization”, International Conference on Dependable
Systems and Networks (DSN'04), pp. 549-554, 2004.

102.Tilevich E. and Smaragdakis Y., “J-Orchestra: Automatic Java Application

Partitioning”, European Conference on Object-Oriented Programming (ECOOP
2002), Malaga, Lecture Notes In Computer Science, Vol. 2374, pp. 178-204, 2002.

103.Tobias R. and Jesper A., “Dynamic Deployment of Java Applications”, Proceedings

of Java for Embedded Systems, London, May 2000.

104.Wang M., Luo J., et al., “Autonomic Element Design Based on Mind Agent Model”,

International Journal of Computer Science and Network Security, Vol. 6, No. 9B, pp.
63- 69, 2006.

105.Web Service Definition Language (WSDL), World Wide Web Consortium, 2007,

http://www.w3.org/TR/wsdl.

 163

106.White S. R., Hanson J. E., Whalley I., Chess D. M., Kephart J. O., “An Architectural
Approach to Autonomic Computing”, First International Conference on Autonomic
Computing (ICAC'04), pp. 2-9, 2004.

107.Wildstrom J., Stone P., Witchel E., Mooney R. J. and Dahlin M., “Towards Self-
Configuring Hardware for Distributed Computer Systems”, Proceedings of the
Second International Conference on Autonomic Computing (ICAC 05), pp. 241-249,
2005.

108.Wine, http://www.winehq.org/, 2006.

109.Wollrath A., Waldo J. and Riggs R., “Java Centric Distributed Computing”, IEEE

Micro, pp. 44-53, June 1997.

110.Venners B., Inside the Java 2 Virtual Machine, Second Edition, McGraw-Hill

publishers, 2000.

111.Zhongtang C., Vibhore K. et al., “Utility-Driven Availability-Management in

Enterprise-Scale Information Flows”, Technical Report, College of Computing,
Georgia Institute of Technology, USA, 2006.

 164

APPENDICES

 165

APPENDIX A

FLOW CHARTS OF DIFFERENT PROCESSES

 166

Process of Generating Local Variable Information from Byte Code

 Flowchart 1 shows the process of generating local variable information from the

byte code of a method. It starts first by checking whether there is already a local variable

attribute attached to the method. If not, then it continues generating the attribute. To

gather local variable information, the algorithm does not need to check every byte code

opcode since a sub-set of byte codes only work with local variables (such as load and

store operations). To optimize the algorithm, any opcode that does not work with local

variables is skipped to speed up the process. The different variants of the store opcode

indicate a write operation and hence if a store opcode appears with a new operand (the

index into the local variable table) that indicates a new local variable that the algorithm

needs to create in the local variable attribute. The type of a variable is determined by

looking at the type of opcode being used to manipulate that variable. However, care must

be taken not to deduce wrong types by only looking at the type of an opcode as JVM

represents several data types as integers. Therefore type conversion opcodes are carefully

checked to make sure of the type of a specific variable. For reference types, the opcode

do not express any new information about the class of that data type. Therefore, the

constantpool is traversed to figure out the class of a reference type variable. To generate

the scope of a variable, each time an opcode of the sub-set is encountered, the

corresponding local variable scope is updated.

 167

Flowchart 1. Generating Local Variable Information from Byte Code.

Yes No

Yes

Yes

Yes

Yes

No

No

No

Start

LV attribute
exists?

End of code
attribute?

Get next opcode
& operand

Is it a store
Opcode?

Get the type of
store opcode

Get the current line
number & the variable

For reference type, look for
the type info of the operand
in the constant pool

Variable with
the same
index?

No

Add a new LV info

Update the scope
of the existing

LV entry

Stop

Is it a LV
Opcode?

 168

Process of Adding Self-healing Information in a Method

 Flowchart 2 shows the process of adding self-healing primitives into a method.

The assumption before running this algorithm () is that the necessary byte code attributes

are already embedded in the method. Most of the attributes that are needed for this

algorithm to work are by default attached to the method. Therefore the local variable

attribute has to be attached with the method before running this algorithm. When

assigning each local variable, fields and arguments to the Object array, proper type

casting have to be performed so that during the healing process variables can be read

from that array accordingly and assigned to appropriate variables. The local variable

attribute is used to do appropriate type casting. A copy of the original method (and class)

is backed up before making any transformations so that the user does not need to worry

about restoring the original state of the method.

 169

Flowchart 2. Self-healing Transformation at Byte Code Level.

Yes

No

Yes

No

Start

More
methods?

Declare a new Object array
and insert that on the top of

the method byte code

End of
method code?

Get the next
checkpoint able point

in the code

Following attributes: code,
exception, line and LV

Stop

Add the checkpoint object
as a field into the class

Get different attributes
from the current method

Size of the array = number of local
variables + argument size+ number of fields

Assign the Object
array with local

variables

Load all status info into
the method stack and call

the checkpoint method

Recalculate
Max_Local &

Max Stack

 170

Process of Setting up a Managed Element

 Flowchart 3 shows the process of configuring an autonomic element (AE) with a

corresponding managed element (ME). The resource repository has an broker based

interface so that other autonomic elements can get a list of autonomic elements from the

resource repository. If the resource repository is unreachable for any reason, the

autonomic elements wait a random amount of time before attempting again. Otherwise, it

asks the resource repository to give the address of the next available autonomic elements

which satisfy its service requirements. Once an autonomic element is found, the two

autonomic elements try to come to a service agreement. If they can, then a secure

communication channel is setup between them to proceed with the managed element

setup process.

 171

Flowchart 3. Setting up an Autonomic Element with its Managed Element.

 172

APPENDIX B

TEST PROGRAM LISTING

 173

Test Program 1

import java.io.*;
import java.util.*;

public class file {

public static void main(String[] args){
 FileOutputStream fos = null;
 ObjectOutputStream oos = null;

 try {
 fos = new FileOutputStream("output.dat");
 oos = new ObjectOutputStream(fos);

 byte[] randomBytes=new byte[1024];
 oos.writeObject("My Street Address");
 oos.writeInt(59717);
 oos.writeObject(new Date());
 oos.write(randomBytes);

 fos.close();
 oos.close();

 }catch (Exception e){
 System.out.println("Exception !!!!");
 e.printStackTrace();
 }
 }
}

 174

Test Program 2

import java.io.*;
import java.net.*;

public class sock {

 public static void main(String[] args){
 Socket aSocket = null;
 PrintWriter out = null;
 BufferedReader in = null;

 try {
 aSocket = new Socket("testServer", 7);
 out = new PrintWriter(aSocket.getOutputStream(), true);
 in = new BufferedReader(new InputStreamReader(aSocket.getInputStream()));

 out.println("A test string");
 System.out.println("echo: " + in.readLine());

 out.println(1.3999939);
 System.out.println("echo: " + in.readLine());

 char[] randomChars=new char[1024];
 randomChars=Character.toChars(124);

 out.println(randomChars);
 System.out.println("echo: " + in.readLine());

 out.close();
 in.close();
 aSocket.close();
 } catch (UnknownHostException e) {
 System.err.println("Don't know about host");
 e.printStackTrace();
 } catch (IOException e) {
 System.err.println("Couldn't get I/O ");
 e.printStackTrace();
 }
 }
}

 175

Test Program 3

import java.io.*;
import java.util.*;

public class dmatrix {

 public static void main(String args[]){
 int nObject=10;
 int SIZE = 600;
 int numRows;
 int startRow=0;
 int endRow=-1;

 Matrix A = new Matrix(SIZE,SIZE,1);
 Matrix B = new Matrix(SIZE,SIZE,1);

 numRows=SIZE/nObject;
 multMatrix remoteMatrix[] = new multMatrix[nObject];

 for (int i=0;i<nObject;i++) {
 if (i>=SIZE%nObject){
 startRow=endRow+1;
 endRow=startRow+numRows-1;
 }else {
 startRow=endRow+1;
 endRow=startRow+numRows;
 }

 remoteMatrix[i]= new multMatrix(i,A,B,startRow,endRow);
 remoteMatrix[i].start();
 System.out.println("Started: "+i);
 }
 }
}

 176

Test Program 3 (Continued)

class multMatrix extends Thread{

 Matrix matrix1;
 Matrix matrix2;
 private int startRow, endRow;
 private int[][] result;
 private int id,row=0;

 public multMatrix(int id, Matrix m1, Matrix m2, int sRow, int eRow){
 this.id = id;
 this.matrix1 = m1;
 this.matrix2 = m2;
 this.startRow=sRow;
 this.endRow=eRow;
 result= new int[endRow-startRow+1][matrix2.GetColumns()];
 }

 public int[][] getVal(){
 return result;
 }

 public void run(){

 for (int thisRow=startRow;thisRow<endRow;thisRow++){
 for(int col=0;col<matrix2.GetColumns();col++){
 for (int k=0;k<matrix2.GetColumns();k++)
 result[row][col]=result[row][col]+(matrix1.GetAt(thisRow,k)*
 matrix2.GetAt(k,col));
 }
 row++;
 }

 System.out.println("Done --> "+id);
 }
}

 177

Test Program 3 (Continued)

class Matrix{

 private int m_rows;
 private int m_columns;
 private int[][] m_array;

 public Matrix(int rows,int columns, int val){
 m_rows=rows;
 m_columns = columns;
 m_array = new int[m_rows][m_columns];
 InitMatrix(val);
 }

 public int GetAt(int row,int column){
 int retvalue=-1;
 if(row>=0 && row<m_rows && column>=0 && column<m_columns)
 retvalue = m_array[row][column];
 return retvalue;
 }

 public int SetAt(int row,int column,int value){
 if(row>=0 && row<m_rows && column>=0 && column<m_columns)
 m_array[row][column] = value;
 else
 return -1;

 return 0;
 }

 public int GetRows(){
 return m_rows;
 }

 public int GetColumns(){
 return m_columns;
 }

 private void InitMatrix(int value){
 for(int i=0; i<m_rows; i++)
 for(int j=0; j<m_columns; j++)
 SetAt(i,j,value);
 }

 public void DisplayMatrix(){
 for(int i=0; i<m_rows; i++){
 System.out.println();
 for(int j=0; j<m_columns; j++)
 System.out.print(GetAt(i,j) + "\t");
 }
 }

}

