VISUALIZING THE MINIMIZATION OF A DETERMINISTIC

FINITE STATE AUTOMATON

by

Kshatriya Jagannath Rajini Singh

A thesis submitted in partial fulfillment
of the requirements for the degree

of
Master of Science
n

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

November 2007

©COPYRIGHT
by
Kshatriya Jagannath Rajini Singh
2007

All Rights Reserved

1

APPROVAL

of a thesis submitted by

Kshatriya Jagannath Rajini Singh

This thesis has been read by each member of the thesis committee and has been
found to be satisfactory regarding content, English usage, format, citations, biblio-
graphic style, and consistency, and is ready for submission to the Division of Graduate
Education.

Dr. Rockford. J. Ross

Approved for the Department of Computer Science

Dr. John Paxton

Approved for the Division of Graduate Education

Dr. Carl A.Fox

111

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a master’s
degree at Montana State University, [agree that the Library shall make it available
to borrowers under rules of the Library.

If I have indicated my intention to copyright this thesis by including a copyright
notice page, copying is allowable only for scholarly purposes, consistent with “fair
use” as prescribed in the U. S. Copyright Law. Requests for permission for extended
quotation from or reproduction of this thesis in whole or in parts may be granted

only by the copyright holder.

Kshatriya Jagannath Rajini Singh

November 2007

v

ACKNOWLEDGEMENTS

I would like to thank my academic advisor Dr. Rockford. J. Ross for giving
me the opportunity to do this work, for his guidance and patience throughout my
Masters program. Dr. Ross has been a very strong mentor to me these past few years
and I have learned immensely from him not only technically regarding this work, but
how to approach work and research in general. His mentoring will influence me far
beyond this work. His time and guidance are truly appreciated.

I would also like to thank Dr. Denbigh Starkey and Prof. Lloyd for their guidance,
encouragement, and for serving on my thesis committee. I am also thankful to the
CS department staff Jeannette Radcliffe and Kathryn Hollenback, who have always
made the environment congenial and have helped me in every possible way.

I would like to thank God and my family who are my pillars of strength and
encouragement, including my parents Mr. Jagannath Singh and Mrs. Nalini Singh,
and my brothers Giridhar Singh and Srinath Singh. Their contributions cannot be
put in words and i cannot thank them enough. And last but farthest from least, i

would like to thank my invaluable friends.

TABLE OF CONTENTS

INTRODUCTION .o 1
THE SIS 3
RELATED AND PREVIOUS WORK ... 5
Webworks Laboratory Projects...............co i)
Context Free Grammar Animatorooiiiiiiiiiiiiie... 6
FSA Animator ... 7
Pumping Lemma Animator ... 13
Regular Expression Animator............oooiiiiiiiiiiii ... 14
Pushdown Automatao 16
NFA to DFA conversion Animator...............ooiiiiiiiiiiiiiainain... 18
JE L A P 20
Minimizing a DFA .. 21
VISUALIZING THE MINIMIZATION OF DETERMINISTIC FINITE
STATE AUTOMATON ... i 26
Background 26
Equivalent States ... 27
Distinguishable States ... 27
The Algorithmo 27
Visualizing the algorithm 29
Step 1 — removing useless states 29
Step 2 — identifying final and non final states 29
Step 3 — initial marking of state pairs.............. ...l 30
Step 4 — determining distinct states L 31
Step 5 — completing the marking of states 31
Step 6 — merging the redundant statesl 31
Step 7 — reforming states and transitions 31
Step 8 — resetting the start state 32
Step 9 — removing individual states that were merged 32
DFA MINIMIZATION APPLET ... 33
MINIMIZE DEMO VISUALIZATION ... 34
CON CLUSION S . e e 49
EVA LU AT ON L 50
The Regular Expression Animator......................oiiiiiiii. 50

Evaluating the DFA Minimization Applet 51

vi

TABLE OF CONTENTS (CONTINUED)

8. FUTURE DIRECTIONS ...t i 53
Exercise MoOde. . ..o e e H3

MiInor EXGensionso e e 53
BIBLIOG R A PH Y .o 55
AP PEN DI CES .o 57
APPENDIX A - SAMPLE PRE AND POST TEST ..., 58
SAMPLE QUESTIONS FOR PRE.............o 59

AND POST TES T .o i 59
APPENDIX B — ASSIGNMENT SAMPLE ... i, 61
SAMPLE ASSIGNMENT QUESTIONS ... 62
APPENDIX C - FORMATIVE FEEDBACK QUESTIONNAIRE 63
SAMPLE FORMATIVE ..o i 64

FEEDBACK QUESTIONNAIRE ... 64

Figure

10.

11.

12.

13.

14.

15.

16.

17.

18.

vii

LIST OF FIGURES

Lutey’s Context Free Grammar Animator- LL(1) Animator
Grinder’s F S A L.
Grinder’s FSA in Run modeooo i i

FSA in Compare mode displaying a string that is not part of the
Jan@UAZE ...

A correct FSA oo
Cogliati’s Pumping Lemma in one of the four modes
Walsh’s Regular Expression Animatoroooiiiiiiiin....
William’s Pushdown Automata ...,
FSA in Demo mode.o
Rodger’s JFLAP- Minimization of DFA.........

Rodger’s JFLAP- Minimization of DFA with the pop up box to enter
aterminal ...

Start of Minimization demo i
Applet showing useless states inred...................o i
Applet showing non final states............ i
Applet showing the first pair of states being marked.....................
Applet showing pairs of distinct states....................
Applet displaying one of the pairs of states that can be merged

Applet displaying all pairs of states that can be merged.................

viil

LIST OF FIGURES (CONTINUED)

Figure Page
19. Applet displaying merged statescoooiiiiiii i 42
20. Applet displaying transitions within the merged states 43

21. Applet displaying transitions among other states and the merged states 44

22. Applet cleaning up transitions among individual states that form
merged states and other states.............. ..., 45

23. Applet displaying the new start statecoooiiiiiiii. 46

24. Applet with individual states which are now part of the merged states,
being removedo 47

25. Applet displaying the minimized DFA 48

26. Sample DEFA . o 60

X

ABSTRACT

The minimization of deterministic finite state automata is one of the challenging
concepts that students of an introductory theory of computation course must master.
The minimization algorithm identifies redundant states that may occur in any de-
terministic finite state automaton and combines them in order to minimize the total
number of states. Traditional textbooks provide a static presentation of this process.
The average student seems to grasp the process better if it is presented dynamically.

In this thesis we visualize every step of a minimization algorithm in sequence
through a Java applet. Animations are used at every step in order to bring out the
dynamism of the process. Students are also presented with a demonstration of both
the original automata and the minimized automata running on the same input, in
order to see that both automata accept/reject the same language.

The applet will be included in a hypertextbook project as a benefit to both the
instructor and the student.

INTRODUCTION

Minimization of a deterministic finite state automaton is one of the challenging
concepts for theory students at an introductory level to understand and learn. The
focus of this thesis is the development of a visual software system that aids student
understanding of the minimization process and the formulation of a strategy for eval-
uating the efficacy of the developed system on student learning. The idea is that by
a dynamic and a detailed approach to learning, students will be able to understand
the minimization process better and be able to apply it on their own.

This visual software system is intended to be incorporated into a much larger
system called a hypertextbook [2]. Ross, who is the author of some hypertextbooks,
describes a hypertextbook this way

The hypertextbook is a novel teaching and learning resource built around web

technologies that incorporates text, sound, pictures, illustrations, slide shows,

video clips, and most importantly, active learning models of the key concepts

of the theory of computing, into a single integrated source.

The hypertextbook is thus a complete learning resource that provides not only
text presentations, but also includes representations of important concepts through
active learning applets that can be accessed through any standard web browser, and
can be used by both instructors and students. Theory of Computing: The Hyper-
textbook is proposed to be the first working example of the hypertextbook concept.

The minimization of deterministic finite state automaton software of this thesis will

become part of this larger system.

2

This theory hypertextbook is the result of the combined efforts of a group of
people with the intent of presenting the dynamism of the concepts of the theory of
computation through visualizations. It contains a collection of several active learning
applets covering different aspects of the theory of computation, such as finite state
automata, regular expressions, pushdown automata, and others. The hypertextbook
has been designed and developed with the intent of augmenting or replacing the tra-
ditional static textbook paradigm of teaching and learning with that of the animated
versions, which have been more effective in helping students learn.

This approach of using active learning applets will be simple enough for instructors
to integrate into their curriculum and it will free them to focus on the underlying
theory rather than on preparing intuitive presentations of the models of computations
Along with being useful in the classroom, the applets of the hypertextbook help
students study on their own. They will not have to restrict themselves with the
number of examples that they get to deal with in the class. Instead, they can go
over other examples that were not covered by the instructor, on their own, thereby

increasing the depth of their understanding of the concept.

THESIS

The tenet of this thesis is that it is possible to design and construct an applet
that demonstrates the minimization of a finite state automaton that helps students
learn this process at least as well as they would if they used a traditional textbook
instead. The major effort of this thesis was to build an applet that demonstrates the
algorithm of minimizing a deterministic finite state automaton (DFA). The applet
has been designed and developed with average students in mind. It guides them
through the conversion process at a deliberate pace, one step after another. The
applet encourages both instructors and students to construct their own examples by
providing them with directions for using the controls to create and label the states
and transitions.

Measuring the effectiveness of the above applet was also a consideration. This
can best be done in a classroom environment consisting of two groups, one being the
test set and the other being the control set. The test set would learn the concept by
having access to the applet and by experimenting with its different examples. The
control set would learn the concept without having access to the applet.

The applet was successfully constructed and is fully functional. A measure of its
performance could not be completely done as it was not completed at the time when
the theory class was in progress. However a few preliminary questionnaires were given

to the students of the previous offering of that course to evaluate the effectiveness

4

of active learning applets in general. These helped guide the development of this
project. Also, a set of instruments for evaluating the applet was developed for use in

future offerings of the theory course. These appear in appendices A and B.

RELATED AND PREVIOUS WORK

This section discusses the fundamental work done on the FSA applet and the

previous work done on the process of minimizing a DFA.

Webworks Laboratory Projects

The Webworks Project [1, 2] at Montana State University is the result of a col-
lection of various projects put together with a focus on developing a complete hyper-
textbook on the theory of computing. The aim of this hypertextbook is to serve as
a single integrated theory learning resource based around active learning models of
the key concepts in a theory of computation course. The hypertextbook is accessible
through any standard web browser. The project is done partly with the intention
of minimizing the effort required of instructors in finding and integrating web-based
animations of key theory concepts into their courses. A fully integrated resource will
also help clear the misconception of students that web-based animations lead to ex-
tra unnecessary work [3]. The embedded animations will also help students construct
correct mental models of important theory concepts.

Mental models are the small-scale representations of real or imaginary situations
that the human mind constructs and uses to anticipate events [4]. They can be con-
structed from perception/observation, imagination, or the comprehension of discourse

[5]. Hence, in order to construct a functionally correct mental model of a particular

6

concept, students must be given a chance to observe and model the behavior that
leads to positive reinforcement [6].

The algorithm of minimizing a DFA central to this thesis will help students con-
struct an accurate mental model of the minimization process. The applet will be
integrated into the theory hypertextbook of Dr. Ross, although it can also be used

as a standalone system.

Context Free Grammar Animator

A context free grammar animator was developed by Teresa Lutey [1]. Tt involves
animating the parse trees that represent the expansion of the strings belonging to the
context free grammar.

In order to run the animator, the user has options to select a grammar from the
library provided or to supply one of their own. The user can select any nonterminal
for expansion and a rule to use for that expansion. This expansion of the string
belonging to the grammar is represented by parse trees. Figure 1 is a snapshot of this
animator in action.

There are many other tools and animation applets that have been built and
included in the hypertextbook. Most of them are being applied in the classroom by
Dr. Ross as part of the compilers course. As these were not used as the basis for this

thesis, they have been excluded from any description here.

7

Current Instruction: Current Grammar: Sample Arithmetic Expression

. . [1] Expression --= Term Add_Op Term
Parse tree is finished -- there are no more terms to [2] Expression = Term

expand. [3] Term = Factor Mult_Op Factar

[4] Term--= Factor

[5] Factor--= { Expression)

[6] Factar--= 2

[7] Factar-—-= b

[8] Factor--= ¢

[Add_Op-—=+
[10] Add_Op-->-
[11] Mult_Op--=*
[12] Mult_Op --= f
Symbol to Expand: I:D ‘ Unda H Collapse | Animation Speed:
EXPAND L)
Current Expansion Mode: l:lj ‘ Clear Tree & Restart |
1] 5 10
Parse Tree Pane r String History Pane r Instructions
CurrentString: {2 * b)+ ¢ =
< Il I v |
Expression =
Telrm Add Op Telrm [
Factor Factor
Exprelssmn
A
Factor Nult Op Factor
+ 3 =
< I v |

Figure 1. Lutey’s Context Free Grammar Animator-LL(1) Animator.

FSA Animator

The Finite State Automata Animator (FSA) upon which the applet of this thesis
is based, was created by Michael Grinder [7, 8, 9] and forms the basis for the mini-
mization animator of this thesis. The FSA animator is designed to be a visualization
tool that animates the operation of an FSA.

The idea behind building this FSA Java applet was to animate the operation of
an FSA and to animate the process of running the FSA on various input strings.
The FSA applet also has an exercise feature that provides the students with the
flexibility of creating their own FSA’s and running various input strings on them.

This feature compares the FSA provided by the students with a background hidden

Run | Clear | | Alphabet | Compare

Figure 2. Grinder’s FSA.

FSA which is the correct FSA given by the instructor. Therefore, the student’s FSA
would be termed correct only if it recognizes the language that the hidden correct
FSA recognizes. This FSA applet is designed in such a way that it works for both
deterministic FSA’s and non-deterministic FSA’s.

In the FSA applet an FSA can be constructed by using mouse clicks combined
with the control key. States can be created and moved around as desired. Transitions
can be created by using the same combination of a mouse click with control key and
by dragging it from the states from which a transition starts and ending it at the

state where the transition ends.

9

As seen in figure 2, the FSA animator applet displays a series of buttons that can
be clicked at its very top. The Run button engages the automaton into processing
mode; this makes the automaton read the symbols that are available on the virtual
tape one at a time and, depending on the symbol being read and the action defined,
changes the state of the automaton. The virtual tape that appears at the top of the
applet and just below the buttons is made up of a grid of cells, holding the string
that is to be processed by the automaton. The FSA tape head is represented by a
triangle that appears at the bottom of the tape cells.

The Clear button pops up a dialog box with options to either clear the tape, clear
the alphabet, or to clear the FSA. Depending on the choice opted, the corresponding
action is taken. The Alphabet button displays the alphabet dialog box that contains
a variety of symbols that can be used to build an FSA. Symbols can be selected
individually. And once all the symbols are selected, clicking on the OK button on
the alphabet dialog box confirms all the symbols as being used for the FSA under
consideration, and closes the dialog box.

As seen in figure 3, the FSA is in the Run mode. A yellow light is turned on
which signifies that the FSA is currently processing the input string available on the
virtual tape. The Step and the Cancel buttons are also now enabled. The Review
button activates the Forward and the Back buttons which allow the user to move

forward or back through the currently processed tape.

10

ool L] LI LU L L L]

J Processing

Cancel

Figure 3. Grinder’s FSA in Run mode.

A red circle moves along the transition arrows between states of the FSA on every
click of the Step button, effectively demonstrating the effect of processing the current
input symbol. Acceptance or rejection of an input string is determined by the state
in which the red circle is after reading the entire string. If the red circle is in a final
state the circle turns green, the yellow light from the panel of lights is turned off, and
a green light is turned on. Otherwise the red circle remains red, the yellow light is
turned off, and a red light is turned on.

The Compare button adds to the exercise feature of the FSA applet. This way
instructors can develop exercises for the students to work on and provide a correct

FSA hidden in the background. Students can then create their own FSA according to

11

Run || Clear | | Alphabet

=

N
'\J,,J Your FSi accepts the string "10" which is not part of the language.

Java Applet Window

Figure 4. FSA in Compare mode displaying a string that is not part of the language.

the exercise and measure its correctness during the construction process by clicking
on the Compare button to compare their FSA against the hidden, correct automaton
in the background. If the automaton constructed is not correct, messages showing
example strings on which the automaton’s language acceptance differs from that of
the hidden correct automaton are displayed.

Figure 4 emphasizes the Compare feature and shows the pop up that displays a
string that is not part of the language of the FSA currently constructed.

Figure 5 shows a possible correct FSA. The process of building an FSA is quite
simple. An individual state is created by pressing and holding the Ctrl key while left

clicking with the mouse on the exact location where it is desired to have a state. If at

12

Figure 5. A correct FSA.

a later stage, it is required to have a particular state at a different location, this can
be accomplished with a left mouse click over the state and dragging and dropping it
at the location desired. A state can be labelled and can be set as start/final state by
placing the mouse over the state and right clicking over it. Transitions are created
by clicking inside the state from which a transition is desired, and dragging and
dropping the transition arrow inside the state where it has to end. Right clicking on
the transition while it is highlighted allows the user to select the alphabet symbols

governing the transition.

13

alblelblelal LLLLLL LU LD

J Processing

Step

Cancel

Figure 6. Cogliati’s Pumping Lemma in one of the four modes.

Pumping Lemma Animator

Josh Cogliati [1] added four more modes to Grinder’s [7, 8, 9] FSA to animate
the pumping lemma for regular languages. The visualization is made effective by
breaking the input string into 3 parts—x, y and z. The first mode illustrates a way
of dividing an input string into 3 separate sections—section x, section y and section
z according to the pumping lemma-such that pumping y will result in new strings
belonging to the language. The second mode provides the capability to the user to
select a subsection of the string w to break into x, y and z sections.

The third mode again allows the user to select a subsection of string w, but the

subsection should be such that it causes the FSA to loop. The applet then checks to

14

Language

| ¥

{w | w starts with a 0 and has odd length, or starts with a 1 and has even length}

4]

explanation steps Regular Expression steps

Mo force the remainder ofthe string [OCET (00 (001 (1 |00 [0 |00
to come in pairs just like on the first

branch, which makes the strings be of
lenagth 2, 4,6, 8, etc. Mowwe're done. | =

q

4

Figure 7. Walsh’s Regular Expression Animator.

see that the selection was correct or not. The fourth mode highlights the states and
the transitions that have already been visited as part of processing the input string.

Figure 6 display’s the fourth mode with states and the transitions highlighted.

Regular Expression Animator

A regular expression animator was developed by Katie Walsh and was later ex-
tended by Brad Pascoe [1]. The visualization applet is divided into 3 panes with a
toolbar containing buttons on its left side. It has a demonstration and an exercise
mode. In the demonstration mode, the user is given a language and is shown how

the regular expression that is responsible for it can be built. The topmost pane in

15

the applet contains a description of the language being considered. The toolbar has
Step, Reverse, Run, and Pause buttons.

Figure 7 shows the regular expression animator in demonstration mode. On every
click of the Step button the lower left pane provides the user with an explanation about
the process taking place, and the the lower right pane displays the regular expression
that is being built. Clicking the Reverse button will back up the presentation by one
step. The Run button starts the applet running through the entire animation with
short pauses at each step. The Pause button pauses the run mode.

The exercise mode requires the user to construct a regular expression for a given
language and provides an auxiliary regular expression to use in their solution. Feed-

back is also provided on the correctness of the user proposed solution.

16

Run | Quick Run | Clear Alphabet | Stack Alpha

. Accepted
Rejected
(0,e=0),(1,5=1) . !
_J Processing

s |
(0,0+5),(1,1-¢)

M

1]

Figure 8. William’s Pushdown Automata.

Pushdown Automata

Pushdown automata were visualized by Cheston Williams. In his applet there
were two modes for the automaton; an example mode and an exercise mode. In the
example mode, the user is required to give an input string that is to be processed by
the PDA and the processing of that string is animated. The applet displays the finite
state component and the stack of the PDA. If the PDA is in multiple states for a
given symbol (as nondeterminism is also allowed in the PDA applet), stacks for each

active state are shown. Figure 8 shows a PDA running on the input string 0110.

17

Different colors are applied to the stacks and active states to signify whether they
are active or not. Red signifies that the stack/state is active, grey signals dead, and
green signifies that the input was accepted. Dead stacks are the result of unproductive
non deterministic branches, and these stacks are removed. In figure 8 the states ql,
g3 and g4 are active states. State g3 is both active and dead which is the result of
nondeterminism. The state is grey in color initially which is masked by the red dot
over it.

In the exercise mode, the applet runs the user constructed PDA on a test suite
of valid and invalid strings providing the student with feedback about its correctness.
The user constructed PDA is said to be correct if all strings pass the test. This is done
in the way described above, as it is theoretically impossible to determine whether or

not two arbitrary PDA’s recognize the same language.

OO O 8-
4 Processing

Step

Cancel

Rendew

The final states have been added
The next steps will add transitions that replace empty transitions.

Figure 9. FSA in Demo mode.

NFA to DFA conversion Animator

A NFA to DFA animator was developed by William Merryman [10] based on
Grinder’s FSA [7, 8, 9]. The applet has four major modes: the Detail Demo mode,
the Demo mode, the Active mode and the Default mode. The Detail Demo mode
places the Detail Demo button on the control panel and this button allows the user
to view the conversion process at a very slow pace with every step described in great
detail.

Figure 9 shows the FSA in Demo mode. The Demo mode places the Slow Demo
and Fast Demo buttons on the control panel of the applet. The Fast Demo mode

is intended for users who are familiar with the conversion algorithm, but who wish

19

to review certain sections, and don’t need all the detail that the Detail Demo mode
provides. The Active mode places the Self-Fzxercise button on the control panel of
the applet, which allows the user to build a DFA that accepts the same language
as the given NFA, using the same steps that the Demo and the Detail modes use.
The Default mode places the Slow Demo, Fast Demo and Self-Ezercise modes on the
control panel.

The idea behind the conversion process is to construct a DFA from the existing
NFA, a process that involves four steps. The first step is the construction of new
states which essentially are the combinations of the existing states. There is also an
additional null state that represents the empty set of states. The second step sets the
new start which is the union of the original start state with any state that the start
state transits to on an € transition. The next step sets the final states as those that
are contain an original final state in their state set. The fourth step determines the
transition function 0’ for the DFA such that, for a state R; € @’ and an input a, ¢’

(R1,a) returns Ry € @, where Ry = U,cg, E(d(r,a)).

20

JFLAP

The other comprehensive software system that helps students visualize various
models/concepts of the theory of computing is Susan Rodger’s JFLAP (Java Formal
Language Automata Package) [11]. Following are some of the concepts that have
been covered by JFLAP:

- Finite state automata

- Pushdown automata

- Turing machines

- Multi-tape turing machines

- Grammars

- L-Systems

- Regular expressions

JFLAP is a good practicing tool for users who are already aware of the concepts
and want to be expert at it. The tutorials and help menus are good places for getting

the details straight, but there is no explanatory text involved in the applets.

21

Minimizing a DFA

Since this thesis concentrates on animating the minimization of a DFA we examine
this feature of JFLAP in detail. The first step is to create a DFA by selecting the
State Creator button to create states. The states are set to the status of initial state
or final state by using the Attributes Editor button. Transitions for those states
can be created by using the Transition Create button and then clicking on the state
from where the transition should start and dragging and ending it at the state where
the transition should end. There are minor difficulties with using JFLAP that can
confuse the user. For instance, there is no initial preset of the automaton’s alphabet,
instead a label editor pops up allowing the user to input label for that transition. An
accidental hit of a space bar while entering the label for a transition will cause the
applet to accept a space as part of the label.

The next step is to select the Minimize DFA option from the Convert menu. This
separates the applet into two panes where the left hand side has the entire DFA and
the right hand side has the current workspace. The current workspace has the DFA
represented in a tree structure with the root node being the one with all the states
of the DFA. This is then broken down into a left child node and a right child node.
The criterion is to separate the final state from non final states, where the left child
node represents all the non final states and the right child node represents all the
final states. Clicking on any one of these nodes will highlight the states that are

represented by that node on the left pane and will also activate some of the tabs that

22

£ JFLAP : <untitled2> X
File Input Test Conmvert Help X

[Editor_|* Minimization |

Set Terminal || Auto Partition | Complete Subtree | Check Node || Add Child | Remowve | Finish

Java Applet Window

Figure 10. Rodger’s JFLAP-Minimization of DFA.

were previously greyed out on the applet. For instance the Set Terminal tab that

was initially greyed out is now activated as one of the nodes were selected.

23

= JFLAP : <untitled1>

File Input Test Comvert Help IE‘ What terminal?

- Minimization
| Set Terminal || Auto Partition || @
= i Cancel

Java Applet Window

—
_0.1.2.3.4.5.6.7
—

Java Applet Window

Figure 11. Rodger’s JFLAP—Minimization of DFA with the pop up box to enter a
terminal.

Clicking on the Set Terminal tab will bring up a popup box asking the user to
enter a terminal symbol. Depending on the input, which is one of the transition
labels, the applet then branches to the group of states in the node. Figure 11 displays
the DFA with the pop up box to enter a terminal. If there is no split of the group
on that terminal symbol a pop up box appears that gives a warning message about
the group not splitting on that terminal symbol. Otherwise the states in the group

within a node will split on a terminal symbol into 2 child nodes.

24

These child nodes can again have a a single state or a group of states depending
on how many transit to a state within the same group. The group of states is split in
the following way; for every state that occurs in the group within a node, a check is
made to see whether the state transits on the terminal that the user enters in the pop
up box that appears on clicking on the Set Terminal tab to the state that is present
in the group of the other node (at the same level). If it does transit, then it separates
itself from the rest of the states by branching out into a child node that will hold
such states. Otherwise, another child node is formed that will hold a group of states
that transit to one of the states in the same group.

Every such group of states that transit to one particular state on a terminal
symbol is combined into one state. The functionality of Auto Partition and the
Complete Subtree tabs are very similar. They both require the user to select a node.
The former only branches out for the currently selected node, whereas the latter
displays the complete subtree.

Once two or more states are combined to form a single state, the Finish tab gets
highlighted. Clicking on this tab will replace the righthand pane with a new pane
that contains the combined states. This pane is used to add transitions between the
states by using the transition create button. The Hint Complete and Done? buttons
help the user in this process. If the user is finished and the transitions are all correctly
added, on hitting the Done? button, the minimal DFA should be present in a new

window.

25

Although JFLAP presents the conversion process, it seems not quite detailed and
animated enough to be able to replace a textbook. The user has to scroll up and
down to follow what exactly is going on inside the applet. Users must not only take
the tutorial on how to use the applet, but also understand the concept being covered
within the applet. From a naive or intermediate student’s prospective this author
believes that JFLAP! does not provide much help in improving the learning process.
Also from an instructor’s point of view, a textbook will be needed for the class in
addition to JFLAP2. Indeed, JFLAP was not designed for use as an independent

teaching and learning resource.

I This issue has also been partly addressed in that JFLAP has been designed in conjunction with
the theory textbook by Peter Linz [13].
2This issue has been partially addressed through a publication of a JFLAP manual [12].

26

VISUALIZING THE MINIMIZATION OF DETERMINISTIC FINITE STATE
AUTOMATON

Background

Finite state automata are best thought of as pattern recognizers. Certain com-
monly used programs, such as the lexical analyzers found in compilers, are often
designed and built as finite state automata to encode the current state and associ-
ated actions, as well as the set of possible transitions to other states [14].

As discussed in William Merrymen’s thesis [10], a given NFA can be converted
into an equivalent DFA. The resulting DFA is not necessarily minimal. A DFA is
said to be minimal if it has no redundant states. (i.e, if there is no other equivalent
DFA with fewer states). This section presents a reduction algorithm that produces a
minimal DFA recognizing the language L from any given DFA that recognizes L. The
algorithm here generally follows the one presented by John E. Hopcroft and Jeffery
D. Ullman [14].

In the remaining part of the presentation, we consider a DFA M to be a 5-tuple
(Q, Z, 0, q0, F), where

e () is a finite set called the states,

e I is a finite set called the alphabet,

e §: () X £ — () is the transition function,

e g0 e () is the start state, and

27

e [C (@ is the set of final states.
To accomplish the reduction, the notion of equivalent states and distinguishable

states in a DFA are introduced.

Equivalent States

Two states p and ¢ are said to be equivalent if and only if for each input string

z, §(p, z) is an accepting state if and only if § (¢,) is an accepting state.

Distinguishable States

For any two given states p and ¢, p is said to be distinguishable from ¢ if there
exists some input string z such that §(p,) belongs to the group of final states and

d(q, z) does not, or vice versa.

The Algorithm

The marking algorithm from [14] to minimize a given DFA is presented next.
Without creating an entirely new DFA from scratch, this algorithm constructs the
minimized version of the given DFA from the given DFA itself.

The marking algorithm is as follows:

28
begin
for every state p in the set of final states F' and state ¢ in the set of non final
states @ - F, mark the pair (p, q);
for each pair of distinct states (p, ¢) in (F x F)or ((Q-F) x (Q - F)) do
if for some input symbol a, (6 (p, a), §(q, a)) is marked then
begin
mark (p, ¢);
recursively mark all pairs on the list for (p, ¢) and on the list of
other pairs that are marked at this step.
end
else /*If no pair (§(p,a), 6(q, a)) is marked */
for all input symbols a do,
put (p, q) on the list for (§(p, a), (g, a)) unless
o(p, a) =0(q, a)

end

29

Visualizing the algorithm

Since the above algorithm consists mostly of a collection of mathematical phrases,
many students find it difficult to understand and interpret it in this form. The
visualization software developed for this thesis is intended to help students understand
the algorithm better. For the visualization process to be more helpful in this regard,
every step in the algorithm is refined and filtered in such a way that it in fact represents

a collection of steps.

Step 1 — removing useless states

The algorithm starts by first recognizing the useless states in the DFA and displays
them in red. The algorithm used to recognize such states is the depth first search
(DFS) algorithm presented in [15]. Although the book [14] goes through the marking
algorithm first and then later removes the useless states, in this thesis we recognize
and remove the useless states first, to save resources from being wasted. If there
are any such states found by the algorithm, then the applet removes them. Else the

applet moves to the next step of visualization.

Step 2 — identifying final and non final
states

In step 3, the applet marks the pairs of states (p,q), where state p belongs to the
group of final states and state ¢ belongs to the group of non final states. In order to

visualize this step, before marking any of the pairs, the applet first breaks the states

30

of the DFA into two groups. One group consists of final states and the other consists
of non-final states. The states belonging to the group of final states are represented

in blue and those belonging to the group of non final states are left uncolored.

Step 3 — initial marking of state pairs

In the next step the applet then clears out the blue color from the final states,
thereby preparing the user for the next visualization. The applet then considers pairs
of states one at a time such that every pair has one state from the group of final
states and the other state from the group of non final states, and then marks such a
pair.

Marking of states is one of the most important steps of the algorithm. This is
done so that for any pair of states, at any given moment, it can be known whether
they are candidates of being merged. In this step if a pair under consideration is
marked, then they cannot be merged, since the marked pair will have one state from
the group of final states and the other state from the group of non final states and are
therefore distinguishable. And if they are not marked, then they are at this moment
are candidates of being merged.

This step of marking is represented by showing the states within the pair under
consideration as being colored in blue, if they should be marked. If the pair under
consideration is not colored, then it indicates that that pair should not be marked.
Once both the states in the pair being considered are processed, the applet clears this

visualization making way for the next pair of states to be displayed.

31

Step 4 — determining distinct states

Once the marking of state pairs has been completed, the applet then advances
to compute all distinct state pairs in the DFA. Since 0(n?) different colors would be
needed to display the 0(n?) distinct state pairs for n states, the applet only high-
lights distinct pairs in succession with a single color (magenta) while simultaneously

displaying these pairs in the text box.

Step 5 — completing the marking of states

For every pair of distinct states either belonging to the group of final states or
to the group of non final states, it is checked to see if on any input symbol the pair
transits to a pair of states that is marked. If it does, then the distinct states pair
being considered is marked and all the pairs of states on the list associated with that
distinct pair of states are marked. (and so on, recursively, according to the marking
algorithm). If it does not, then that pair is put on the list of the pair of states to
which it transits on the input being considered, unless both the states in that pair

transit to the same state.

Step 6 — merging the redundant states

This step will separate the marked pairs of states from the state pairs that did
not get marked. If a pair did not get marked, then the states within that pair will be
merged. If a pair did get marked, then the states within that pair cannot be merged

and will have to be present in the DFA as two individual states.

32

Step 7 — reforming states and transitions

This step determines the transitions that will have to be created for the newly
formed merged states, and arranges them. The transitions that were present for the
original states that have been merged are removed in this step. Any other transitions
that are present between the states of the newly merged state and the other states
within the DFA, will be created to be consistent, but now pointing to and from the

merged state instead of pointing to and from the states within that merged state.

Step 8 — resetting the start state

Once all the transitions have been arranged, this step determines whether any of
the merged states contain the start state. If so, this new merged state becomes the

start state of the minimal DFA.

Step 9 — removing individual states that
were merged

The final step cleans up the DFA by removing all the individual states that are
now part of the merged states. The resulting DFA will be the minimal one for the
DFA started with.

In order to get the intuition behind this minimization process correct, the FSA
applet of Grinder and Cogliati has been extended to incorporate visualizations of this

algorithm. The next section provides a detailed description of this applet.

33

DFA MINIMIZATION APPLET

The DFA minimization applet described in this section is based on Michael
Grinder’s and Josh Cogliati’s FSA animator applets. The primary focus of this visu-
alization was to be helpful to students falling under the category of being complete
novices to that of being average at the concept.

The original applets were thus extended to include the Minimize Demo mode
along with a Directions button that directs the user in using the applet. A brief
explanation about the Minimization Demo mode and the Directions button is given
below.

e The Minimize Demo mode allows the user to view the minimization process
one step at a time, at a deliberate speed, and with every step being described
in detail.

e The Directions button can be used before starting the minimization process to

understand how to use the applet.

34

This applet will show the steps to minimize a given DFA. For this demo, we consider the
above DFA.

Figure 12. Start of Minimization demo.

MINIMIZE DEMO VISUALIZATION

The visualization applet in this mode goes through the DFS algorithm to find
and remove any useless states, and then follows the marking algorithm presented by
John E. Hopcraft and Jeffery D. Ullman [14]. At every step, the visualization applet
undergoes some visual changes, which are explained in the text box provided in the
applet. The text at some steps also explains what changes are about to take place in
the next step thereby preparing the reader to next look for those changes in the the

displayed FSA.

35

Figure 12 displays the applet when the Minimize Demo button is first clicked. As
seen in the figure, the action of clicking the Minimize Demo button deactivates (greys
out) all the buttons at the top of the applet window corresponding to different modes
in the applet. For example the buttons labelled Run, Clear, Alphabet and Directions
which correspond to different modes in which the applet can be, are all deactivated.
Once this is done, the applet starts executing the minimization algorithm one step at
a time. In order to simplify the visualization process, the applet breaks down many
individual steps in the algorithm into a set of simple steps.

Clicking on the Step button triggers the applet to move to the next visualization
step in the algorithm. If there is a set of visualizations that are to occur in the next
step, a description about these changes will be displayed within the text box of the
applet during the current step.

Figure 13 displays the state of the applet when the Step button is clicked. This
step displays the useless states in the DFA in red, and removes them from the DFA.
If there are no such states, then the applet advances to the next step. Figure 13

displays a DFA with one such state displayed in red.

36

The next step will show the useless states that are presentin the above DFAin red
The state that is not a reachable state is state 3
Showing state 3

Figure 13. Applet showing useless states in red.

Clicking on the Step button will take the user to the next step in the algorithm.
This step will display all the states that belong to the group of final states and the
states that belong to the group of non final states. The applet visualizes this step by

coloring the states belonging to the group of final states in blue.

37

J Processing

The states belonging to the group of non-final states are the ones not colored in blue. -
the group of non final states have state 0
the group of non final states have state 1
the group of non final states have state 4
the group of non final states have state & hd

Figure 14. Applet showing final and non final states.

Once this is done, another click on the Step button causes the states that belong
to the group of non final states (the ones that are not colored in blue) to be listed.
The text box in figure 14 accordingly displays all the states that belong to the group

of final states and non final states.

38

J Processing

Cancel

The pair of states heing shown in blue in the next step will be the ones that are marked.
MNow showing state pair 0 and 2

Figure 15. Applet showing the first pair of states being marked.

The applet now begins to mark all pairs of states such that the first state of a pair
is a non final state and the second state is a final state. The states being considered for
marking are both represented in blue at the same instant. Once a pair is highlighted
in blue and listed in the text box, the applet then clears the highlighting and prepares
the user to look for the next pair being considered for marking. Figure 15 displays

the first pair of marked states.

39

L
L]
J Processing

Cancel

MNow showing distinct state pairs.
Mow showing distinct state pair 0 and 1
Mow showing distinct state pair0 and 4

Figure 16. Applet showing pairs of distinct states.

Once all possible state pairs have been marked successfully, the highlighting is
cleared. The algorithm then advances to the next step and finds all the distinct states
from both the set of final states and the set of non final states within the automaton.
The applet visualizes such distinct states in magenta. Figure 16 displays two such
states. At this point, the algorithm finishes the task of marking distinguishable state
pairs from the set of distinct state pairs identified in the previous step (see step 6 in

the previous section “Visualizing the algorithm”).

40

J Processing

Cancel

Step 5: Depending on wheather the pair of states got marked or notin the previous step, the
next step will show the states that CAN BE MERGED

Showing state 1

and state 7

Figure 17. Applet displaying one of the pairs of states that can be merged.

After all distinguishable state pairs have been marked the next step checks to see
if there are any pairs to be merged. These would be any state pairs not marked in
the previous step. If there are, then the states that are to be merged are displayed in

same color. Figure 17 displays the applet with one such pair in pink.

41

J Processing

Step 5: Depending on wheather the pair of states got marked or notin the previous step, the A
next step will show the states that CAMN BE MERGED

Showing state 1

and state 7

Considering state 0 ~

Figure 18. Applet displaying all pairs of states that can be merged.

Mergeable states are displayed with a click on the Step button. Once all the
states that can be merged are displayed, a brief note about the states that are being

merged is displayed within the text box. Figure 18 displays the state of the applet

during this step.

42

J Processing

now showing the states to be merged ~
The states to be merged are:1 and 7

States to be merged are: 0 and 4

The state 17 is made by merging 1 and 7

The state 04 is made by merging 0 and 4 b

Figure 19. Applet displaying merged states.

The next step of the visualization creates new states that represent the merged
states. The idea is to have one state represent states that are not distinguishable
from each other as the same merged state. Accordingly, the new state will have a
label that is a combination of the individual state labels. Figure 19 shows the applet

displaying new merged states.

43

L
Q
J Processing

Cancel

Step G: Now that the merged states are created, the next step will show the transitions
starting from and ending atthese merged states, which is a combination of transitions in and
out ofindividual states forming the merged state.

adding transition from state 04 to state 17 on symbol 0

Figure 20. Applet displaying transitions within the merged states.

Once all merged states have been constructed and displayed, the next step will
start computing and displaying the transitions into and out of these new merged
states. The idea is to have the transitions that previously started from and ended
at the individual states that now contribute to merged states, start and end at the
new merged states. In order to visualize this step, transitions between the states
that contribute to the merged states are displayed first. Since this visualization
concentrates on the transitions among the merged states, the color in the states is
removed. The original transitions are deleted from the applet and are applied to the

merged states. Figure 20 shows the applet during this step.

44

9o

L

J Processing
_Sten

| Rovew

adding transition from state 2 to state 04 on symbol 0 ~
adding transition from state 04 to state 5 on symbal 1
adding transition from state 17 to state 2 on symbol 1
adding transition from state 17 to state 6 on symbol 0
adding transition from state & to state 04 on symbal 1 e

Figure 21. Applet displaying transitions among other states and the merged states.

As part of visualizing the step that creates transitions for the merged states, this
step shows the transitions starting from states other than those in merged states but
ending in merged states, and also those that start from merged states and end at other
states. The applet will also display transitions that either start or end at only one of
the states contributing the merged states. This is because the previous visualizations
have handled transitions from and into the states contributing to the merged states
but not the transitions that occur from states contributing to the merged state.

Figure 21 displays the applet showing the transitions at this step. From the
figure, it can be seen that the DFA being considered has one such transition, it starts

at state 4 and goes to state 7 although both 4 and 7 belong to the merged states

45

J Processing

Cancel

Cleaning up transitions

Figure 22. Applet cleaning up transitions among individual states that form merged
states and other states.

labelled 04 and 17. A click on the Step button will remove such transitions from the

DFA. Figure 22 displays the applet cleaning up such transitions.

46

J Processing

Cancel

Step 7: Ifthe start state is present among the merged statas, then it will now be set as new
start state

strt state is O

And this startis present in merged states as 04

Figure 23. Applet displaying the new start state.

Once all the transitions have been recomputed, the next step checks to see if
any of the merged states includes the start state of the DFA. If it does then the
merged state including that start state is set as the new start state. If not, then the
applet moves on to the next step which is to remove old individual states that are
now included in new merged states. Figure 23 displays the applet with the new start

state.

47

J Processing

Cancel

Step 8: The individual states that now are a part of the merged states (those without any ~
transitions) will now be cleaned up

MNaow removing the state 1

Mow removing the state 7

MNow removing the state 0 hd

Figure 24. Applet with individual states which are now part of the merged states,
being removed.

The next step is to delete all the individual states that are now part of the merged
states; in other words, the ones that no longer have any transitions starting from or

ending at them. Figure 24 displays the applet during this step.

48

Run | Clear Alphabet | Minimize Demo | Directions

Cancel

This is the Minimized DFA for the DFA we started with.

Figure 25. Applet displaying the minimized DFA.

Once all such states are deleted a click on the Step button reactivates the buttons
on top of the applet and also deactivates the Step and the Review button. This
confirms that the applet has completed the process of minimization and that the DFA
presented on the applet at this moment is the minimized one. Figure 25 displays the

applet at this step.

49

CONCLUSIONS

As far as we are aware, the applet presented in this thesis is first to visualize the
minimization of DFA’s based on the algorithm presented in [14]. It is designed with
visualizations that will help students to better understand the process of minimization
according to the algorithm. The algorithm does not include some of the visualization
steps presented in this thesis. The concept of useless states—states that do not lie
on a path extending from the start state to a final state, is not part of the marking
algorithm and was implemented using a DFS algorithm from [15].

The applet accepts as its input any DFA in order for the minimization process
to begin. This allows the students the flexibility of having any DFA that they feel
will make understanding the minimization process easier, as input to the applet. The
applet will only work if the input automaton is a completely specified DFA.

Also, the text box at the bottom of the applet provides the user with detailed
descriptions about what is happening at the current step and what is to be expected
in the next step. It also explains how the current step is being visualized and what

that particular visualization includes.

20

EVALUATION

Student evaluations of the use of visualization applets are needed to determine
their effectiveness. This thesis was unfortunately completed during a semester when
the theory of computing course was not offered. However as part of the background
work for this thesis, the author did help in the evaluation of a related applet at the

time when the course was taught earlier.

The Regular Expression Animator

The applet used for the evaluation process was the regular expression applet of Walsh
[9] and Pascoe [1]. A control group and a test group were established for the course.
The control group had a traditional textbook and lectures with which to learn the
concept. A set of questions, called the pre—evaluation questions, was given to the
group as an assignment that tested the level at which the students understood the
concept. The students could use their textbook and class notes and were given the
entire class hour to complete the assignment.

The test group received similar treatment (i.e, they were given the same pre—
evaluation questions). Afterwards, they were allowed to use the regular expression
animation applet. Once comfortable with the applet, the students were then given
with the same assignment as the control group and were given the same amount of

time to complete it.

o1

The results of these questions were evaluated for both the groups and a comparison
about the performance of every student as part of the control group and the test group
was made. Depending on the highest score received by a student as part of a group,
it was determined whether the animation applet was helpful for that student or not.

The average score of all the students in each group was also computed. The test
group scored the highest. No attempt was made at that time to determine if the

difference was significant.

Evaluating the DFA Minimization Applet

The theory of computation course is taught once a year at MSU and since, as noted,
this thesis was completed at the time when the course was not being taught, evaluating
the performance of the minimization applet is yet to be done. However, a set of
questions that could be used for pre and post testing were developed for use with test
and control group students (see appendix A). The intent is to present the pre-test to
both the groups just after the process of minimization is introduced to them. Control
group and test group students would both have access to the textbook and lectures.

After the pre—test, both the groups would then be given the same assignment
to complete. The control group would be able to use the class textbook and lecture
notes. The test group would be able to use the class textbook, lecture notes, and

the DFA minimization applet. An example assignment can be found in Appendix

o2

B. After the assignment were complete, both groups would be given the post—test to
identify any differences in student learning success and attitudes.

As part of the projected evaluation process, a questionnaire was also developed
to identify any issues with applet use. Appendix C provides a sample of this feedback
questionnaire. This questionnaire would be presented to all the students after the
assignment had been completed and when every one would have had the chance to

experiment with the applet.

23

FUTURE DIRECTIONS

Two major and one minor extensions of the applet would increase its usefulness.

Exercise Mode

As it now stands, the DFA minimization applet involves only passive learning. Ex-
tending it to include active learning by engaging the students in the minimization
process will improve its usefulness. The idea is to engage the students in the mini-
mization process by having them select distinguishable states, for example, and then
providing them with immediate feedback on their answers. The second major thing
to be done is to include the construction of the distinguishable states table (see [14])
along with the steps currently displayed. This extension requires a major overhauling

of the FSA applet and is left for another to do.

Minor Extensions

There are also other minor things that could be looked at: the refreshing of the min-
imization applet when the Refresh option on the browser is clicked, and the working
of the Review button. The minimization applet does refresh in the foreground but
does not clean up the data structures associated with the applet animation, which
causes unexpected results to show up.

Presently when the Review button is selected to review any step in the minimiza-

tion process, the applet does not function in the way it is supposed to. This is due

o4

to the way the applet was threaded that causes resource conflicts. Once this issue is
fixed all those animated applets that do not include this feature can add it by adding
a little bit of code, hence making it possible for the user to review any step at any

point in the animation.

95

BIBLIOGRAPHY

Joshua J. Cogliati, Frances W. Goosey, Michael T. Grinder, Bradley A. Pascoe,
and Rockford J. Ross, Realizing the Promise of Visualization in the Theory of
Computing, Journal of Educational Resources in computing, July 2004.

Rockford J. Ross, Hypertextbooks: Animated, active learning, comprehensive
teaching and learning resources for the web. Software Visualization, pages 269-
283, 2002.

Colleen Kehoe, John Stasko and Ashley Taylor, Rethinking the evaluation of al-
gorithm animations as learning aids: an observational study. Int. J. Human-
Computer Studies (2001) 54:265-284. http://www.idealibrary.com

Kenneth James Williams Craik, The Nature of Fxplanation, Cambridge Univ.
Press, Cambridge, 1943.

Phili Johnson Laird and Ruth Byrne, Mental Models-
A Gentle Introduction, available on WWW at
http://www.ted.ie/Psychology /Ruth_Byrne/mental models.

Albert Bandura, Social foundations of thought and action: A social cognitive the-
ory, Englewood Cliffs, NJ: Prentice Hall, 1986.

Michael Thomas Grinder,Active Learning Animations for the Theory of Compu-
tation PhD thesis, Montana State University, Comupter Science Department,
December 2002.

Michael Thomas Grinder, A preliminary empirical evaluation of the effectiveness
of a Finite state automaton animator, Twenty fourth SIGCSE Technical Sym-
posium on Computer Science Education, 35:157-161, March 2003.

Michael Thomas Grinder, S. B. Kim, Teresa L. Lutey, Rockford J. Ross, and Katie
F. Walsh Loving to learn theory: Active learning modules for the theory of
computing, Thirty third SIGCSE Technical Symposium on Computer Science
Education, 34(1):371-375, February 2002.

[10] William Patrick Merryman. Animating the Conversion of Nondeterministic F'i-

nite State Automata to Deterministic Finite State Automata, December 2006.

[11] Susan Rogers. Java Formal Language Automata Package (JFLAP), February

2006. http://www.jflap.org

[12] Susan Rogers and Thomas W. Finley. JELAP: An Interactive Formal Languages
and Automata Package. Jones and Bartlett Publishers, 2006.

[13] Peter Linz. An Introduction to Automata and Formal Languates, 4ed. Jones and
Bartlett Publishers, 2006.

[14] John E. Hopcroft, Jeffery D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison- Wesley Publishing Company, 1979.

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. Introduction to
Algorithms. The MIT Press, Cambridge, Massachusetts London, England.
McGraw- Hill Book Company New York St. Louis San Francisco Montreal
Tornoto, 1990.

57

APPENDICES

o8

APPENDIX A

SAMPLE PRE AND POST TEST

29

SAMPLE QUESTIONS FOR PRE-

AND POST-TEST

. Briefly describe what is meant by a “Minimal DFA”.

. Is every DFA minimal? Explain your answer.

. Can every DFA be minimized? Explain why:.

. What do you understand by the term “equivalent” states?

. What do you understand by the term “distinguishable” states?

. What do you understand by the term “merged states”?

60

Figure 26. Sample DFA.

. Find all the distinguishable states in figure 26, and explain why they are dis-

tinguishable.

. Are there any states in the DFA presented in figure 26, that are mergeable?

Explain your answer.

. Draw the equivalent minimal DFA for the DFA given in figure 26.

61

APPENDIX B

ASSIGNMENT SAMPLE

62

SAMPLE ASSIGNMENT QUESTIONS

Assume that a DFA is given;

1. List a state, if present, that can be termed “useless”.

2. Identify the distinguishable states and list them.

3. Describe in your own words,

The term “marking” pairs of states

The importance of marking pairs of states

The importance of associating a pair of states with a list.

4. List the states that can be candidates of being merged and give reasons for

selecting them.

63

APPENDIX C

FORMATIVE FEEDBACK QUESTIONNAIRE

64

SAMPLE FORMATIVE

FEEDBACK QUESTIONNAIRE

1. Did the applet make learning more time efficient than a hardcopy textbook?

(a) Strongly Agree
(b) Agree
(c) Negligible
(d) Disagree
(e) Strongly Disagree
2. Was learning the minimization process through the applet more enjoyable than
learning from a traditional textbook?
(a) Strongly Agree
(b) Agree
(c) Negligible
(d) Disagree

(e) Strongly Disagree

65

3. Was the applet loading time really long and frustrating?

(a) Strongly Agree

(b) Agree

(¢) Negligible

(d) Disagree

(e) Strongly Disagree

4. Were the controls on the applet all functional

(a) Yes
(b) No, list the non functional items

5. Overall, was your experience using the applet positive?

(a) Strongly Agree

(b) Agree

(¢) Negligible

(d) Disagree

(e) Strongly Disagree

