
 
 
 

 
Achieving Self-managed Deployment in a Distributed 

Environment via Utility Functions 
 

 

 

 

By 

Debzani Deb 

 

 

 
 

A dissertation proposal submitted as part 

of the requirements for the degree 

of 

Doctor of Philosophy 

In Computer Science 

 

 

 

 

 

MONTANA STATE UNIVERSITY 

Bozeman, Montana 

January, 2008 

 

 



 2

 
ABSTRACT 

 
By harnessing the computational power of distributed heterogeneous resources, it is 
possible to build a large scale integrated system so that a centralized program is 
partitioned and distributed across those resources in a way that maximizes the system’s 
overall utility. However, building such a system is a staggering challenge because of the 
associated complexities. This paper proposes a self-managing distributed system ADE 
(Autonomic Distributed Environment), which engages autonomic elements to 
automatically take an existing centralized application and distribute it across available 
resources. The autonomic elements provide self-management to handle the complexities 
associated with distribution, configuration, coordination and efficient execution of 
program components. The proposed approach models a centralized application in terms 
of an application graph consisting of application components and then deploys the 
application components across the underlying utility-aware hierarchically organized 
distributed resources so that all constraints and requirements are satisfied and the 
system’s overall utility is maximized. Then, based on the observations obtained by the 
monitoring of the system resources, ADE redeploys the application graph to maintain 
maximized system utilization in spite of the dynamism and uncertainty involved in the 
system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 3

TABLE OF CONTENTS 
 

CHAPTER 1: INTRODUCTION.................................................................................... 4 
1.1 CHALLENGES IN DESIGNING SELF-MANAGING DISTRIBUTED SYSTEM ....................... 7 
1.2 GOALS ........................................................................................................................ 9 
1.3 SCOPE AND ASSUMPTIONS ........................................................................................ 11 

CHAPTER 2: BACKGROUND AND RELATED WORKS...................................... 13 
2.1 AUTONOMIC COMPUTING ......................................................................................... 13 

2.1.1 Characteristics of Autonomic Systems .............................................................. 14 
2.1.2 Architectural Framework for Autonomic Systems ............................................ 15 
2.1.3 Policies .............................................................................................................. 16 
2.1.4 Related Work ..................................................................................................... 18 

2.2 AUTOMATIC APPLICATION PARTITIONING AND DISTRIBUTION................................. 21 
2.2.1 Related Work ..................................................................................................... 22 

2.3 ADAPTIVE SYSTEMS ................................................................................................. 25 

CHAPTER 3: RESEARCH PLAN................................................................................ 27 
3.1 PROJECT ADE: ENABLING SELF-MANAGED DISTRIBUTION ...................................... 27 

3.1.1 Flow of Operation in ADE ................................................................................ 27 
3.1.2 Autonomic Elements in ADE............................................................................. 28 

3.2 APPLICATION DEPLOYMENT IN ADE ........................................................................ 29 
3.3 DEPLOYMENT ARCHITECTURE.................................................................................. 31 
3.4 APPLICATION LAYER ................................................................................................ 31 
3.5 UNDERLYING LAYER ................................................................................................ 34 
3.6 AUTONOMIC LAYER.................................................................................................. 37 

3.6.1 Middleware Module .......................................................................................... 37 
3.6.2 Resource Monitoring Module............................................................................ 37 
3.6.3 Utility Evaluation Module................................................................................. 37 
3.6.4 Initial Deployment Module................................................................................ 38 
3.6.5 Self Optimization Module.................................................................................. 39 

3.7 EVALUATION ............................................................................................................ 40 
3.7 EXPECTED CONTRIBUTIONS OF THIS RESEARCH....................................................... 41 

REFERENCES................................................................................................................ 43 
 

 
 
 
 
 
 
 
 



 4

CHAPTER 1: INTRODUCTION 

The growth of the Internet, along with the proliferation of powerful workstations 

and high speed networks as low-cost commodity components, is revolutionizing the way 

scientists and engineers approach their computational problems.  With these new 

technologies, it is possible to aggregate large numbers of independent computing and 

communication resources with diverse capacities into a large-scale integrated system. 

Many scientific fields, such as genomics, astrophysics, geophysics, computational 

neuroscience and bioinformatics require massive computational power and resources and 

can benefit from such an integrated infrastructure.  

In most corporations, research institutes or universities, there are significant 

numbers of computing resources underutilized at various times. By harnessing the 

computing power and storage of these idle or underutilized resources, a large-scale 

computing environment with substantial power and capacity can be formed. With such an 

infrastructure, it is possible to solve computationally intensive problems efficiently in a 

cost effective manner as opposed to replacing these systems with expensive 

computational resources such as supercomputers. Having such a large-scale system, one 

can effectively partition an existing centralized application in terms of communicating 

components and distribute those components among the available resources in a manner 

which results in the efficient execution of user program and maximizes resource 

utilization. This was also the motivating factor for many of the today’s emerging 

concepts such as Peer-to-Peer (P2P) Computing [1], Software Agents [2], Internet 

Computing [3], and Grid Computing [4]. 

However, there are many challenging aspects associated with effectively 

partitioning large-scale applications into several components as well as the mapping and 

scheduling of those components over the heterogeneous resources across the system. 

Firstly, the programmer wishing to execute such an application may not have necessary 

skills to rewrite the application to achieve effective partitioning and distribution across 

the network. To transform a regular, centralized application into a distributed one, the 

programmer needs to perform a large number of changes and most of these changes 

require thorough knowledge of both the application structure and the underlying 



 5

architecture where the application is going to be deployed. Secondly, ensuring maximum 

utilization requires mechanisms to estimate the application component’s computational 

and communication needs and their interdependencies so that an efficient mapping of 

components to resources can be achieved and the mapping’s overall communication cost 

is minimized. Thirdly, application behavior is highly dynamic and a different distribution 

configuration may be appropriate in different phases of the execution of an application. 

As a consequence, application components should be easy to migrate at runtime to 

enhance locality and to minimize communication cost. Finally, the application 

components should be tailored to dynamically respond to their environment by expanding 

their functionality or enhancing their performance as the underlying infrastructure is 

heterogeneous and changes over time. Each of these factors introduces additional 

complexities. In order to deal with them the system must be adaptive and dynamic in 

nature.  

It would be tremendously useful to have a system that can automatically 

transform an existing application into a distributed one without the programmer being 

concerned about distribution and management issues, and which can deploy the 

distributed application across a large-scale integrated infrastructure efficiently. The 

complexity and cost associated with the management of such an infrastructure and the 

necessary enhancement of an existing application such that they deploy effectively on 

that dynamic infrastructure is significant. Therefore, automation is paramount in order to 

lower operation costs, to allow developers to largely ignore complex distribution issues, 

to manage system complexities and to maximize overall utilization of the system. This 

research envisions such an automatic system as an autonomic computing challenge [5,6].  

Autonomic Computing is a relatively new idea that focuses on delivering self-

managing computer systems; systems that regulate themselves much in the same way our 

autonomic nervous system regulates and protects our bodies [7]. With choosing the term 

autonomic, researchers attempted to provide self-managing capabilities in computer 

systems with the aim of decreasing the cost of developing and managing them.  An 

Autonomic Computing System is essentially a collection of Autonomic Elements (AE), 

which can manage their internal behaviors as well as the relationship with others in 



 6

accordance with high-level policies from a human administrator [5]. At its core, an 

Autonomic System should posses the following four essential properties: 

• Self-configuring: An autonomic computing system must be able to dynamically 

configure and reconfigure itself based on its state and the state of its execution 

environment. 

• Self-optimizing: An autonomic system should have the capability of maximizing 

resource allocation and utilization for satisfying user requests and application 

demands. 

• Self-healing: An autonomic system must detect a failed component, eliminate it, 

or replace it with another component without disrupting the system. On the other 

hand, it must predict problems and prevent failures. 

• Self-protecting: An autonomic system should be capable of detecting and 

protecting its resources from both internal and external attack and maintaining 

overall system security and integrity. 
 

This proposal presents ADE, Autonomic Distributed Environment, a self-

managed distributed system which engages autonomic elements to automatically take an 

existing centralized application and distribute it across available resources. The 

autonomic elements provide self-management capabilities to handle the complexities 

associated with distribution, configuration, coordination and efficient execution of 

program components. The proposed approach models a centralized application in terms 

of an application graph consisting of application components and then deploys the 

application components across the underlying utility-aware hierarchically organized 

distributed resources so that all constraints and requirements are satisfied and the 

system’s overall utility [8] is maximized. Then, based on the observations obtained by the 

monitoring of the system resources, ADE redeploys the application graph to maintain 

maximized system utilization in spite of the dynamism and uncertainty involved in the 

system.  

The remainder of this proposal is organized as follows. The rest of this chapter 

discusses the challenges needed to be met in order to design a self-managing distributed 

system, the goals of this research, the scope and the assumptions that have been made for 



 7

this research. Chapter two provides background information on some important concepts 

related to this research and also discusses the relevant research initiatives undertaken at 

different universities and industries. Chapter three gives an overview of the research plan 

detailing different design, implementation and evaluation aspects.  

1.1 Challenges in Designing Self-Managing Distributed System 

 High performance applications are playing an increasingly important role in the 

scientific and engineering research community. Typically these applications are 

inherently multi-phased, highly dynamic, composed of a large number of software 

components along with dynamic interactions among the components. The proposed 

distributed infrastructure is similarly heterogeneous and dynamic, formed by harnessing 

the spare compute cycles of distributed computation and communication resources. The 

combination of these two results in tremendous complexities in application development, 

distribution, configuration and management. Some of the challenges ADE must meet are 

detailed as follows:   

• Distributed Application Development: For an average user, the task of 

distributing a large computation across a dynamic, unpredictable and 

heterogeneous environment proves to be a tedious and cumbersome job.  

Programmers wishing to do so need to perform a large number of changes to 

distribute an existing application and most of these changes require thorough and 

extensive knowledge of both the application structure and the underlying system. 

Distributing an application involves splitting up the functionality of an application 

into independent/communicating entities so that they can execute in a distributed 

fashion while minimizing the interaction among the entities. For example, 

consider the scenario of a large simulation based application written for a 

centralized environment which collects some data from several sensors, runs 

some simulation on that data, analyzes and transforms the simulated results (if 

necessary) and then eventually visualizes the results. Currently if the programmer 

wishes to execute this application on a heterogeneous distributed system he/she 

needs to undertake a sequence of complicated activities to ensure efficient 

distributed execution of the application. Firstly, the programmer needs to 



 8

manually identify the partitions (e.g. sensor, simulation, analysis, visualization) in 

the code and then understand how the data is exchanged among the partitions. 

Then, the programmer needs to decide which partitions should be given to which 

resources so that the overall communication and latency is minimized. After that, 

the application needs to be rewritten to incorporate middleware mechanisms to 

handle the communication and coordination between heterogeneous nodes. Each 

of the above steps requires a high skill base that most programmers lack. 

Middleware paradigms such as Java RMI and CORBA are useful to a certain 

extent, but to utilize them, a programmers need advanced knowledge of complex 

programming interfaces and paradigms.  

• Resource Allocation: Application performance can vary significantly depending 

on various resource assignments. When an application is deployed in a distributed 

collection of heterogeneous machines, an effective resource allocation mechanism 

allocates a set of resources that meets the application’s specific needs. For 

instance, in case of the above sensor, simulator, analysis and visualization 

example, perhaps the most effective way to distribute the application is to let the 

sensors run on moderately loaded and less powerful standalone nodes, simulation 

run on a high performance server and multiple visualization components run on 

lightly loaded,  powerful machines with high end graphics. Additionally, 

depending on the interdependencies among these components, resources should 

be allocated in such a way so that the overall communication is minimized. 

However, identifying the resource requirements of an application and mapping 

the components to the resources is difficult and time consuming for application 

developers. Moreover, as the current workload of the available resources may 

vary and the network configuration may change over time, resources need to be 

dynamically re-allocated and re-distributed among all executing applications to 

achieve high resource utilization. To deal with these issues, a self-managing 

approach should choose the right set of resources for each application and its 

components to satisfy the application’s configuration and performance 

requirements, to avoid scarcity of resources, to accomplish certain goals, or to 

enforce certain user-defined policies or constraints (e.g. the simulator component 



 9

requires some input data that resides on Machine A, so the simulator code should 

execute on Machine A).   

• Heterogeneity: The proposed infrastructure incorporates a large number of 

independent and distributed computational and communication resources where 

the challenge is to support processing at any node despite varying capabilities and 

environment. 

• Scalability: A self-managed system should promote scalability. It should 

incorporate decentralized approaches which are essential to overcome high 

communication overheads and to enhance robustness.  

• Adaptability: The proposed infrastructure is highly dynamic and is continuously 

evolving during the lifetime of an application. This includes the availability and 

the load on resources, changes in network conditions, etc. Application needs 

become dynamic when the interactions among runtime instances change during 

execution. To deal with these dynamic behaviors, it is crucial to support dynamic 

adaptation such as repartitioning, redeployment and reconfiguration. 

Incorporating dynamic behavior into an existing application such that it executes 

effectively in dynamic environments, not envisioned during the original design 

and development, is more challenging than developing new adaptable 

applications.  

• Uncertainty: Uncertainty can be caused by the dynamic nature of the runtime 

environment and application, which may introduce unpredictable behavior and 

can only be detected and resolved during runtime. There are other factors that also 

may trigger uncertainty such as the failure of a system component, decisions 

motivated by partial or incomplete knowledge (typical in the case of decentralized 

architecture), etc. 

1.2 Goals  

The goal of our research is to build a self-managed distributed system that 

explores the “all care and no responsibility” principle of distribution whereby the average 

programmer does not wish to take responsibility for the physical distribution and 

coordination of the application but is, however, concerned with metrics such as the 



 10

application throughput and total execution time. Our aim is to provide an autonomic 

distributed system by automatically injecting self management and distribution 

capabilities into the user code so that the programmers do not have to deal with the 

distribution, management or optimization issues and, at the same time, system resources 

are utilized properly. The objective is to build a cost effective, self-managed, computing 

environment by offering spare compute cycles to the scientific and engineering research 

groups to satisfy their various demands including ease of use, performance, dynamism, 

adaptability, scalability, heterogeneity and so on and at the same time maximizing the use 

of existing resources. More specifically, the goals of our system are as follows: 

• Autonomic environment: The objective is to provide an autonomic environment 

that transforms the existing centralized application in a way so that it becomes 

self-configured, self-optimized, self-healing and self-protecting. 

• Automatic Partitioning and Distribution: ADE should be able to analyze an 

existing application, determine program partitions and their interactions 

automatically, distribute them while allocating appropriate resources, and 

coordinate them transparently at runtime. In general, ADE should be able to fully 

automate the partitioning and distribution tasks for the class of applications that 

interests us. However, in the proposed system, knowledgeable users can override 

system generated distribution and placement decisions by providing high-level 

policies and constraints.   

• Resource utilization: ADE should work towards efficiently utilizing available 

resources. Resources are highly dynamic both in activity and availability. 

Therefore, the system must monitor itself and make the allocation and migration 

decisions based on the application characteristics and requirements as well as 

various runtime factors such as user demands, machine failure, network 

connectivity changes, workload, etc.  

• Efficiency: ADE should optimize itself at both the individual user application 

level and as an execution environment. Instead of using a single optimization 

criterion such as minimum application response time, the proposed approach 

requires evaluating a certain utility function that combines various factors such as 



 11

response time, application priority, throughput, bandwidth utilization, etc. The 

aim is to dynamically maximize the utility function based on temporal factors. 

1.3 Scope and Assumptions 

 Our goal is to design and implement an autonomic architecture to perform the 

distribution of user applications across the available resources and provide support for 

self-management. However, addressing all the issues related to self-management is 

beyond the capabilities of a single Ph.D. research project. ADE is a work-in-progress 

[9,10,11] currently being studied as a number of Ph.D. projects, and different aspects of 

self-management are addressed by different Ph.D. projects. The scope of this proposal is 

to explore two aspects of self-management: self-configuration and self-optimization. 

More specifically, this proposal is concerned with the identification of program partitions 

and the deployment and execution of those partitions across a self-organized network to 

maximize the overall utility of the system. The other two aspects of autonomic computing 

defined in [5,6] are the focus of other research projects [11,12,13] under ADE.  The 

specific objectives that this proposal attempts to pursue are: 

1. To automatically identify the communicating application components, and their 

dependencies, within a centralized application and to deploy them automatically to 

best take advantage of the underlying distributed computing resources.  

2. To enable distributed resources to self-organize and self-manage. 

3. To develop techniques that self-optimize the program execution and the use of 

distributed computational resources in order to maximize the system’s overall 

business utility rather than focusing on single metrics such as minimizing 

execution time or maximizing throughput. 

 

It is impractical to expect that all centralized applications can be distributed 

without rewriting the application’s source code to achieve acceptable performance. ADE 

targets high performance scientific and engineering applications, where the computation-

to-communication ratio is significant and the partitioning of tasks across the network 

results in increased performance. These applications typically make significant 

computation demands which are difficult to meet with a set of co-located computer 



 12

clusters. Adaptive and distributed execution environments make these computations 

easier and also create potential to improve performance via dynamic adaptation. More 

specifically, the proposed system targets two types of application as follows: 

• Concurrent execution application: These applications are characterized by a large 

number of computationally intensive independent tasks, which makes it feasible to 

deploy them in a distributed environment despite the communication overhead. By 

load balancing and parallelizing the execution, the distributed version may result 

in some performance speedup. Examples of this type of application include 

SETI@home [14], factoring large numbers [15], genomics [16], etc. 

• Inherently distributed application: These are the types of applications that must 

execute in a distributed setting to fulfill their functional constraints. Often these 

applications are sequential in execution; however the goal is to provide a 

distribution that meets the constraints with minimum communication overhead. 

For example, consider the sense-simulate-analyze-visualize application discussed 

in section 1.1. A large number of scientific and engineering applications can be 

characterized by this notion, where data is acquired by the sensor, then forwarded 

to a simulator for simulation, then passed to some analyzer that analyzes, operates 

and transforms the data, and eventually delivers it to some clients for visualization. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 13

CHAPTER 2: Background and Related Works 

ADE engages autonomic elements to automatically partition a centralized 

application and to deploy it over a set of distributed heterogeneous machines while 

maintaining the efficiency of the deployment. ADE addresses a few important issues such 

as self-management, automatic partitioning, resource utilization, decentralization and 

dynamic behavior in an integral way. As a result, ADE draws on many approaches and 

techniques practiced in research fields like Autonomic Computing, Automatic Program 

Partitioning and Distribution, Grid Computing and Adaptive Systems, and becomes 

relevant to the research projects in these areas. The following few sections detail the 

basics of these research fields along with the relevant research projects. 

2.1 Autonomic Computing 

The increasing complexity of computing systems, and their interaction with the 

physical world, gives rise to the need for systems capable of self-management. 

Autonomic Computing aims at realizing computing systems and applications capable of 

managing themselves with minimum human intervention [17]. The term autonomic 

derives from the human body’s autonomic nervous system, which controls key functions 

without conscious awareness or involvement [7]. An autonomic system, modeled after 

the autonomic nervous system, refers to a system that is able to protect itself, recover 

from faults, reconfigure as required by changes in the environment and always maintain 

its operations at a near optimal performance, all with minimal human intervention. Some 

benefits of autonomic computing include reduction of costs and errors, improvement of 

services and reduction of complexity [18]. 

Automating the management of the computing resources is not a new idea to be 

explored by computer scientists. For decades, software systems have been evolving to 

deal with the increased complexities associated with system control, adaptation, resource 

sharing, and operational management. Research in many isolated fields such as security, 

fault tolerance, artificial intelligence, human computer interaction, networking, software 

agents, dynamic resource management, etc. has delivered systems that managed to handle 

the complexities in their own domains. Autonomic computing is just the next logical 



 14

evolution of these past trends to address today’s increasingly complex and distributed 

computing environments in an integral way and by using the notion of self-management, 

the idea is to converge these disciplines into a single field namely Autonomic Computing.  

2.1.1 Characteristics of Autonomic Systems  

An autonomic computing system can be a collection of autonomic components, 

which can manage their internal behaviors and relationships with others in accordance to 

high-level policies. The principles that govern all such systems is summarized by eight 

defining characteristics [18]: 

• Knowledge of itself: An autonomic system must have detailed knowledge of its 

components, current status, capabilities, limits, boundaries, interdependencies 

with other systems, and available resources.  

• Self-configuring capabilities: An autonomic system must be able to configure and 

reconfigure itself under varying and unpredictable conditions. An autonomic 

system must have the ability to dynamically adjust its resources based on its state 

and the state of its execution environment. 

• Self-optimizing capabilities: An autonomic system must provide operational 

efficiency by tuning resources and balancing workloads. Such a system must 

continually monitor itself to detect performance degradation in system behaviors 

and intelligently perform self-optimization functions to meet the ever-changing 

needs of the application environment. Capabilities such as repartitioning, load 

balancing, and rerouting must be designed into the system to provide self-

optimization.  

• Self-healing capabilities: An autonomic systems must provide resiliency by 

discovering and preventing disruptions as well as recovering from malfunctions. 

Such a system must be able to recover from routine and extraordinary events that 

might cause some of its parts to malfunction. It must be able to discover problems 

or potential problems that might cause service disruptions, and then find an 

alternative way of using resources or reconfiguring the system with minimal loss 

of information or delay. 



 15

• Self-protecting capabilities: Self-protecting systems secure information and 

resources by anticipating, detecting, and protecting against various types of 

attacks such as viruses, unauthorized access, and denial-of-service. Such a system 

must be able to maintain the overall security and integrity through the use of 

pattern recognition and other techniques.  

• Knowledge of environment and context: An autonomic system must be aware of 

its execution environment and the context surrounding its activity, and be able to 

react to changes accordingly.  

• Ability to function in a heterogeneous computing world:  An autonomic system 

must be able to function in a heterogeneous world and consequently it must be 

built on standard and open protocols and interfaces. In other words, an autonomic 

system can not, by definition, be a proprietary solution.    

• Ability to Anticipate: An Autonomic Computing System can anticipate its optimal 

required resources while hiding its complexity from the end user and attempts to 

satisfy user requests. 
 

It should be noted that, among these eight properties, self-configuration, self-

healing, self-optimization, and self-protection are considered as major characteristics and 

the rest are considered as minor characteristics. 

2.1.2 Architectural Framework for Autonomic Systems 

IBM researchers have established an architectural framework for autonomic 

systems [5]. An autonomic system consists of a set of Autonomic Elements that contain 

and manage resources and deliver services to humans or other autonomic elements. An 

autonomic element consists of one autonomic manager and one or more managed 

elements. At the core of an autonomic element is a control loop that integrates the 

manager with the managed element. The autonomic manager consists of sensors, 

effectors, and a five-component analysis and planning engine as depicted in Figure 1. The 

monitor observes the sensors, filters the data collected from them, and then stores the 

distilled data in the knowledge base. The analysis engine compares the collected data 

against the desired sensor values also stored in the knowledge base. The planning engine 

devises strategies to correct the trends identified by the planning engine. The execution 



 16

 
 
 
 

  

  

 

 

 

 

 

 

 

Figure 1 . Autonomic Element. 
 
engine finally adjusts parameters of the managed element by means of effectors and 

stores the affected values in the knowledge base.  

An autonomic element manages its own internal state and its interactions with its 

environment (i.e., other autonomic elements). An element’s internal behavior and its 

relationships with other elements are driven by the goals and policies the designers have 

built into the system. One of the key values of autonomic computing is that the interface 

between the autonomic manager and the managed element are standardized. That is, a 

single standard manageability interface can be used to manage routers, servers, 

application software, middleware, a web service, or any other autonomic element. This 

single manageability interface constitutes a level of indirection and is the key to 

adaptability.  

2.1.3 Policies  

Policy plays a fundamentally important role to play in autonomic computing as 

they actually guide the behavior of the system. Autonomic elements can function at 

different levels of behavioral specification. At the lowest levels, the capabilities and the 

interaction range of an autonomic element are limited and hard-coded. At higher levels, 

elements pursue more flexible goals specified with policies, and the relationships among 



 17

elements are flexible and may evolve. Recently, Kephart and Walsh proposed a unified 

framework for policies based on the well-understood notions of states and actions [19]. In 

this framework, a policy will directly or indirectly causes an action to be taken that 

transforms the system into a new state. Kephart and Walsh distinguish three types of 

policies useful for Autonomic Computing, from the lowest to the highest level of 

behavioral specification, as follows:  

• Action Policies: An action policy determines the action that should be taken 

when the system is in a given current state. Typically this action takes the form of 

“IF (condition) THEN (action),” where the condition specifies either a specific 

state or a set of possible states that all satisfy the given condition. This type of 

policy is generally necessary to ensure that the system is exhibiting rational 

behavior.  

• Goal Policies: Rather than specifying exactly what to do in the current state, goal 

policies specify either a single desired state, or one or more criteria that 

characterize an entire set of desired states and let the system itself figure out how 

to achieve the desired state. The system generates rational behavior from the goal 

policy by using sophisticated planning or modeling algorithms. This type of 

policy permits greater flexibility and frees the human administrator from learning 

low-level details of system function.  

• Utility-function policies: Utility function policies define an objective function 

that aims to model the behavior of the system at each possible state. Instead of 

performing a binary classification into desirable versus undesirable states, they 

ascribe a real-valued scalar desirability to each state. Since the most desired state 

is not specified in advance, it is computed on a recurrent basis by selecting the 

state that has the highest utility from the present collection of feasible states. 

Utility function policies provide more fine-grained and flexible specification of 

behavior than goal and action policies. In situations in which multiple goal 

policies would conflict (i.e., they could not be simultaneously achieved), utility 

function policies allow for unambiguous, rational decision making by specifying 

the appropriate tradeoff. On the other hand, utility function policies can require 

policy authors to specify a multidimensional set of preferences, which may be 



 18

difficult to elicit; furthermore they require the use of modeling, optimization, and 

possibly other algorithms.  

2.1.4 Related Work 

Since Paul Horn introduced Autonomic Computing Systems to the National 

Academy of Engineering at Harvard University in 2001, IBM has been extremely 

successful in rallying the research community behind their autonomic computing 

initiative. Fully automating the organization and optimization of a large distributed 

system is a staggering challenge and there are numerous research groups working 

towards this goal. While there are numerous studies that have addressed all four or some 

aspects of self-management, this section only discusses the autonomic research 

approaches similar to this study i.e. focus primarily on self configuration and self 

optimization.     

Accord [20] is a component-based programming framework to support the 

development of autonomic application in grid environments. Their research is motivated 

by the observation that the underlying grid computing environment is inherently large, 

complex, heterogeneous and dynamic and so are the emerging applications that exploit 

such a system. In their work, they have proposed a new programming paradigm where 

the composition (configuration, interaction and coordination) aspect is separated from 

computations in component/service-based models and both computations and 

compositions can be dynamically managed by the rules that are introduced during 

runtime.  

The overall objective of the AutoMate [21] project is to investigate key 

technologies to enable the development of autonomic grid applications that are context 

aware and capable of self-configuring, self-composing, self-optimizing, and self-

adapting. More specifically, it investigates the definition of autonomic components, the 

development of autonomic applications as dynamic compositions of autonomic 

components, and the design of key enhancements to existing grid middleware and 

runtime services to support these applications. AutoMate develops an autonomic 

composition engine to calculate a composition plan of components based on dynamically 



 19

defined objective constraints that describe how a given high-level task can be achieved 

by using available basic grid services.  

The goal of the Autonomia [22] project is to develop an infrastructure and tools 

that provide dynamically programmable control and management services to support the 

development and deployment of autonomic applications. Their prototype implements two 

important properties of autonomic systems: self-configuring and self-healing by using a 

mobile agent system.  

The aforementioned approaches [20,21,22] are developing environments and 

suggest new programming metaphors in order to realize the desired benefits of self-

management in a distributed environment. In other words, these approaches are well 

suited for the development of new autonomic applications, but they cannot be applied to 

inject self-managing behavior into the existing ones. On the contrary, ADE is an 

execution environment intended for transforming applications written in a centralized 

fashion to the corresponding distributed version and executing it in a networked 

environment while offering self-management at both the application and network level. 

Unity [23] is a research project, undertaken at IBM’s Thomas J. Watson Research 

Center, that investigates some of the methodologies and technologies that allow a 

complex distributed systems to be self-managed. In their prototype environment, the self-

management is achieved via interconnections amongst a number of autonomous agents. 

The major autonomic computing aspects realized by Unity are 1) the way the system uses 

goal-driven self-assembly to configure itself at runtime, 2) the use of the utility function 

to maximize the system’s overall business objectives and 3) the design patterns that 

enable self-healing within the system. However, in Unity resource-level utility functions 

for multiple application environments are sent to an element called the Resource Arbiter, 

which computes a globally optimal allocation of servers across the application. In 

contrast, by utilizing a hierarchically organized network model, this research intends to 

make local optimization decisions that are lightweight and decentralized, and as a result, 

provides better adaptability and scalability in a dynamic environment.  

The goal of the Kinesthetics eXtreme or KX Project [24] is to inject autonomic 

computing technology into legacy software systems without any need to understand or 

modify the code of the existing system. More specifically, KX retrofits autonomic 



 20

capabilities onto legacy systems designed and developed without monitoring and 

dynamic adaptation in mind. The project designed a four-tiered architecture composed of 

probe, gauge, controller and effectors to add autonomic services explicitly via an attached 

feedback loop that provides continual monitoring and, as needed, reconfiguration or 

redeployment. The lightweight design and separation of concerns enables easy adoption 

of individual components, as well as the full infrastructure, for use with a large variety of 

systems. KX is being used to add self-configuration and self-healing functionality to 

several legacy systems, whereas this study is focused to provide self-organization and 

self-optimization. In addition to retrofitting autonomic computing, without any need to 

understand or modify the target system’s code like KX, this research also aims to relieve 

the programmer from the distribution concerns by automatically transforming a 

centralized application into a distributed one and deploying it to the underlying network. 

The Rainbow Project [25] investigates the use of software architectural models at 

runtime as the basis for reflection and dynamic adaptation. This architectural model 

provides a global perspective on the system by revealing all the components (the 

system’s principal computational elements and data stores) and how they connect. The 

model also contains important properties such as each server’s load, each connection’s 

bandwidth, and the response time experienced by each client. This architectural model is 

used to monitor and reason about the system and therefore self adaptation holds. The 

project aims to provide capabilities that will reduce the need for user intervention in 

adapting systems to achieve quality goals, improve the dependability of changes, and 

support a new breed of systems that can perform reliable self-modification in response to 

dynamic changes in the environment. Rainbow only abstracts the underlying 

infrastructure to provide self-adaptation, whereas my research aims to model both the 

application and the underlying network into a common abstraction in order to achieve 

self-managed deployment. Also Rainbow is inherently centralized, with monitoring and 

adaptation performed within a single Rainbow instance. 

Astrolabe [26] is designed to automate self-configuration and self-monitoring and 

to control adaptation. Astrolabe operates by creating a virtual system-wide hierarchical 

database of the state of a collection of distributed resources, which evolves as the 

underlying information changes. A novel peer-to-peer protocol is used to implement the 



 21

Astrolabe system, which propagates the updates within seconds, even in large networks 

and operates without any central servers. Astrolabe is secure and robust under a wide 

range of failure and attack scenarios, and it imposes low loads even under stress. 

   The AutoFlow [27,28] project aims to develop a self-adaptive middleware high-

end enterprise and scientific applications. Applications are abstracted into an Information 

Flow Graph consisting of source, sink, flow operators and edges. Once a flow graph is 

described, its deployment creates an overlay across the underlying physical distributed 

system. Automated methods for initial deployment and runtime reconfiguration are based 

on resource awareness and on utility functions. AutoFlow scales to large underlying 

platforms by using hierarchical techniques for autonomic management, which allow 

decentralized decision making rather than a globally optimal decision that involves costly 

communication among the nodes. To achieve their goal, they adopt a hierarchical 

organization of underlying resources clustered according to various system attributes.  

   None of the abovementioned systems has the same goal as this research. Our 

objective is to provide self-managed deployment of centralized applications in distributed 

settings. More specifically, this proposal focuses on the automatic decomposition of the 

centralized application into self-managed components and their distribution across the 

underlying network in order to maximize certain utilities. 

2.2 Automatic Application Partitioning and Distribution  

   Automatic partitioning systems are able to partition an existing program, written 

for a standalone system, into several communicating components. These partitioned 

components can then be distributed amongst the underlying network nodes. The idea is to 

be able to reconfigure and redeploy an existing centralized application without rewriting 

the application’s source code or modifying the existing runtime environment. Automatic 

partitioning can offer several advantages and can greatly simplify the way many 

distributed systems are developed, such as 1) there is no need of writing complex and 

error prone code for interprocess communication, 2) applications written in a centralized 

fashion can be re-partitioned and re-deployed in different distributed settings without 

modifying the source code, 3) network traffic may be reduced as related program 

segments are placed near the resources and 4) as the applications are capable of executing 



 22

within a standard runtime environment; this also allows an easy and efficient deployment 

of the application on a wide variety of resources.  

   The idea has been explored in a number of earlier systems, mostly Java-based 

[29,32,33]. Such systems basically take centralized code in Java as input along with user 

specified location information for application data and code (e.g. classes, methods etc.). 

The original application code is then rewritten so that code and data are divided into 

components that can be executed in the desired location. Depending upon the user inputs, 

some of the classes are made remotely accessible by using standard OO techniques of 

inheritance and interfaces. Local data exchange in the centralized application (e.g. 

function calls, data sharing through references and so on) is replaced with remote 

communication (e.g. remote function calls using Java RMI, references to a proxy object – 

that could be pointing either to a local object or to a remote object, etc). Many other 

additional transformations need to be done to ensure correct execution of the transformed 

program in distributed settings. The following few sections give a brief overview of some 

of these systems.   

2.2.1 Related Work 

   Java Party [29] is an extension of Java that automatically transforms regular Java 

classes into remotely accessible ones. Users specify which objects are to be made remote 

by annotating their classes with an access modifier (keyword remote). The system is 

designed to have a translator before JVM to generate Java code for remote classes as well 

as translate the other code referencing it. JavaParty is centralized in the way that the 

Runtime Manager runs as a central component, keeps track of all the classes and a local 

component runs at each node that hosts objects and helps in migration, etc. Object 

migration is handled by making an explicit call to the central component.   

   Like JavaParty, Doorastha [30] also allows the user to annotate a centralized 

program to turn into a distributed application. However, the Doorastha annotations are 

quite expressive compared to JavaParty annotations and the user has to go through a lot 

of detailed semantic specification to use the system correctly. Doorastha requires the user 

to annotate – classes, instance fields, methods, and method arguments and specify the call 



 23

semantics (by reference, copy, etc) for them. These tags are then evaluated by the system 

to generate the Java byte-code.  

   Pangaea [31] is an automatic partitioning tool that statically analyzes object-

oriented programs and distributes them automatically on a networked system using both 

JavaParty and Doorastha as back ends. Pangaea does static analysis of the application 

source code to determine the Object Graph approximating the runtime program structure. 

With the help of this graph, a user then creates partitions (consisting of groups of objects) 

and specifies, through a graphical user interface, which partitions are tied to which hosts. 

This information is then used to generate the code that can directly be fed into an existing 

partitioning system like Java Party or Doorastha.  

   Addistant [32] is a Java byte-code translator for automatic distribution of legacy 

Java applications. It takes a Java application to be partitioned and uses a user specified 

placement policy to translate it into a distributed version. More specifically, the user 

needs to write a policy file for specifying where the instances of each class are allocated 

and how remote references to those instances are implemented. Therefore the user must 

have some knowledge of the source code to specify placement policies. Another 

limitation of Addistant is that it only provides class-based distribution: all instances of a 

class must be allocated on the same node.   

   J-orchestra [33] is GUI-based and performs all transformations at the byte-code 

level. J-orchestra provides the user with a front-end profiler that reports the statistics on 

the interdependencies of various classes based on profiled runs of the application. Based 

on this information the user then specifies the mobility properties and location of the 

classes. For every Java System or application level class involved in the system, the user 

can specify whether the class instances will be mobile or anchored (classes that contain 

platform-specific code in native format are considered unmodifiable and should be 

anchored to their host). For mobile classes, the user needs to provide a migration policy 

and for the anchored classes, the user needs to specify their locations. Using this input, J-

orchestra then rewrites the application code to create the final distributed application. J-

orchestra is the first system to address the problem with unmodifiable code effectively. 

This is actually done with static analysis of the code that tries to determine heuristically 

what references lead to unmodifiable code and a sophisticated rewrite mechanism then 



 24

transforms those indirect references to direct references (and vice-versa) at runtime. The 

role of the analysis and profiler are strictly advisory, the user may or may not follow the 

guidance and can override the analysis results at will. Thus J-orchestra provides the user 

with tools that automatically infer many of the essential concerns for partitioning and 

distribution, but the user has complete control and can override the distribution decisions 

at any time.   

   Coign [34] is an automatic partitioning system for software based on Microsoft’s 

proprietary Component Object Model (COM) and thereby its applicability is limited to a 

small range of application.  Coign uses scenario-based profiling to profile communication 

among components and based on the profiled data, partitions and distributes components 

among the distributed resources.   

   Reference [35] automatically translates monolithic applications written in Java 

byte-code into multiple communicating parts in a networked system. However, it does 

not give the user any control over distribution. 

   Systems based on Distributed Shared Memory (DSM) [36, 37, 38, 39] also share 

the same goal as automatic partitioning. However they use a specialized runtime 

environment in order to detect access to remote data and to ensure data consistency and 

therefore lose portability. In contrast, automatically partitioned Java application executes 

on original, unmodified JVMs and thereby is deployable on a wide range of distributed 

resources supporting JVM.   

   The main difference between the abovementioned automatic partitioning systems 

and ADE is that ADE’s partitioning and distribution decisions are resource aware and 

utility-driven. Typically, an automatic partitioning system only contains knowledge about 

the internal structure of the application, not about the environment where the application 

is going to be deployed. ADE, on the other hand, is knowledgeable about both the 

application and the underlying network and automatically reallocates resources and 

reconfigures the deployed application graph to maximize the overall utility of the system. 

Another important difference is the level of transparency provided by ADE compared to 

the above systems. Some systems rely on user’s knowledge of the application to a certain 

extent and require the user to specify the network locations of hardware and software 

resources and annotate the code using them directly [30,31,32], while others completely 



 25

rely on the results of their automatic analysis and do not give the user any control at all 

[35]. However, in ADE, control can be entirely automatic (where all the specifications 

are inferred automatically by the framework), entirely manual (where the end-user is 

responsible for all specifications), or anywhere in the space in-between. In ADE, user-

level control can be exerted by providing high level policies and constraints.   

2.3 Adaptive Systems 

An adaptive software system is capable of changing its behavior dynamically in 

response to changes in its execution environment. The interest in dynamically 

reconfigurable software systems has increased significantly during the past decade due to 

the advances in supporting technologies like computational reflection, aspect-oriented 

programming and component-based design [40].  

2.3.1 Related Works 

One particularly widely used technique for adaptation is aspect-oriented 

programming (AOP) [41], where the code implementing a crosscutting concern (e.g. 

quality of service, performance, fault tolerance, security), called an aspect, is developed 

separately from other parts of the system and woven with the application code at compile- 

or runtime. AspectJ [42] and ApectC# [43] are examples of systems that perform 

weaving at compile time; Weave.NET [44] and Aspect.NET [45] on the other hand 

perform weaving after compile time but before load time; and A Dynamic AOP-Engine 

for .NET [46], AspectIX [47] and CLAW [48] perform dynamic weaving at the byte-

code level.  

A number of adaptive systems provide a programming framework that enables 

programmers to design, develop and optimize adaptive distributed applications with 

explicit constructs for adaptation and reconfiguration. Open Java [49], Adaptive Java 

[50], and PCL [51] are examples of such systems. This approach is well suited for the 

development of new adaptive applications. However, injecting adaptation into existing 

non-adaptive programs requires modifying the application source code and therefore this 

approach can not be applied transparently to the existing programs.  



 26

Another way of providing adaptive behavior to an application is to use adaptive 

middleware, usually extensions of popular object oriented middleware platform such as 

CORBA, Java RMI, DCOM and .NET, where adaptation is incorporated by intercepting 

and modifying messages passed through the middleware. Examples include TAO [52], 

Dynamic TAO [53], Open ORB [54], QuO [55], Squirrel [56], and IRL [57]. Component-

oriented middleware is a recent evolution of object-oriented middleware which uses the 

abstraction of a component instead of an object to encapsulate reconfiguration 

capabilities. Examples include Enterprise JavaBeans [58] and the CORBA Component 

Model (CCM) [59].  

Other approaches implement adaptive behavior by extending the virtual machine 

to intercept method invocation, object creation and reading and writing operations to a 

data field during runtime. The intercepted operation is then made adaptable by loading 

new code dynamically. Examples include Iguana/J [60], metaXa [61], Guarana [62] and 

PROSE [63]. While this method can add adaptive code transparently to an application, 

the application needs that specific virtual machine to execute, thus limiting its 

applicability.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 27

CHAPTER 3: RESEARCH PLAN 

This chapter details the design and architecture of ADE and then elaborates how 

the main concern of this proposal - self configuration and self-optimization fit into the 

overall flow of operation.  It then presents the three-tier architecture derived to realize the 

self-managed deployment of a centralized application in a distributed environment. The 

rest of the chapter then elaborates the research plan to accomplish different aspects of 

application deployment in ADE while justifying each choice.  

3.1 Project ADE: Enabling Self-managed Distribution 

  ADE aims to achieve self-management of a distributed system via 

interconnections among autonomic elements across the system. ADE targets existing 

Java programs, consisting of independent or communicating objects as components, and 

automatically generates a self-managed distributed version of that program. Based on the 

cross-platform Java technology, ADE is expected to support all major contemporary 

platforms and handle heterogeneous issues successfully. The availability of the source 

code can not always be assumed, so the proposed system performs analysis and 

transformations at the byte-code level. However, applications for which source code is 

available can be transformed to byte-code and can exploit the benefits offered by this 

research.  

3.1.1 Flow of Operation in ADE 

  Figure 2 shows ADE’s overall flow of operation [11]. At first, a code analyzer 

statically inspects the user supplied byte-code to derive an object interaction graph. Based 

on this graph, the partitioner then generates several partitions (consisting of a single 

object or groups of objects) along with the distribution policies and deploys those 

partitions to a set of available resources. Deployment decisions are based on several 

criteria such as the resource (CPU, memory, communication bandwidth, etc.) requirement 

of the objects and their interactions, various system information collected via monitoring 

services such as resource availability, workload, usage pattern, or any user supplied 

policy.  

  



 28

  

 

 

 

 

 

 

 

 

 

 

 

 
  During deployment, an autonomic transformer injects the distribution and self-

management primitives to the partitions according to the system deduced distribution 

policies and any other user-supplied policies/constraints (e.g. the component C requires 

some input data that resides on Machine M, so the component C should execute on 

Machine M) so that the resultant self-managed partitions can execute on different nodes 

in a distributed fashion. The underlying system comprises a platform-agnostic language 

and the associate pre-processor for byte-code to byte-code translation. The transformed 

program is based on self-contained concurrent objects communicating through any 

standard communication protocol and incorporates salient features from existing 

middleware technologies. 

3.1.2 Autonomic Elements in ADE 

 In ADE, every distributed site (i.e. PCs, laptops, workstations, servers, etc.) is 

managed by an autonomic element that controls resources and interacts with other 

autonomic elements in the system. More specifically, each autonomic element 

encapsulates the program partition allocated to the site managed by it as its Managed 

Element and interacts with the environment by using standard autonomic metaphors. 

Each autonomic element monitors the actual execution of the application and the 

behavior of the resource itself. They also set up a mutual service relationship to interact 

Autonomic 
Transformer 

 

Policy 
Editor 

 
S E

S E

S E

S E

S E

S E

 
 
 
 

Policy 
Repository 

 ………   …..
 ………   ….. 
 ………   ….. 
 

Registry 

Byte-code 

Static Analyzer

Graph info. 

 
Partitioner 

System data 

 

Figure 2. Overall flow of operation in ADE. 

Object Graph

Manageable autonomic 
partitions  



 29

with each other so that information can be shared among them. Based on the information, 

the underlying autonomic system then adjusts the parameters found by static analysis 

such as computational and communication requirements to their run time values and if 

needed dynamically repartitions the graph. Besides this basic functionality, some of the 

autonomic elements in the system are given some higher level management authority 

such as managing the system registry or policy depository; acting as the user interface for 

program partitioning and transformation; being the source or destination of program input 

and output, etc.  

To use the autonomic resources, a potential user must first register her computer 

with the autonomic system through a user portal. Once registered, an autonomic element 

is initiated on that machine and configures itself properly with all the necessary system 

data and policy information and consequently makes its services available to other 

autonomic elements. A user may deregister his/her machine at any time and consequently 

the autonomic element running on that machine will delegate its current managed 

element to other available autonomic element without the loss of useful computation. 

Since the distributed environment is shared by many users, the environment can change 

at runtime and so does the application’s communication pattern, consequently the 

autonomic element needs to adapt accordingly. To achieve that, the autonomic element 

provides monitoring services and based on the monitored data automatically makes 

decisions such as migrating the managed element (or portion) to a less busy autonomic 

element, delaying other non-dedicated tasks to consume more resource, initiating backup 

to accommodate more tasks, etc. 

3.2 Application Deployment in ADE 

ADE supports multiple, logically separated application environments each 

capable of supporting a distinct application. As the application components within an 

application execute with different constraints and requirements, they should be mapped to 

appropriate hardware resources in the distributed environment so that their constraints are 

satisfied and they provide the desired level of performance. Mapping between these 

resource requirements and the specific resources that are used to host the application is 

not straightforward.  



 30

 

 

 

 

 

 

 

 

 

 

 

A three step process is designed to perform this mapping in ADE as shown in 

Figure 3. In the first step of mapping, the application’s code is statically analyzed to 

extract an application model expressed as lower-level resource requirements such as 

processing, bandwidth, storage, etc. The next step involves constructing a model of the 

underlying network by obtaining knowledge about available resources such as their 

computational and storage capabilities, workloads, etc. and then organizing them 

according to network proximity (considering latency, bandwidth, etc). The third and final 

step allocates a specific set of resources to each application with respect to the resources 

required by the application components and the resources available in the system.  The 

goal of the mapping is to maximize the system’s overall utility based on certain policies, 

priorities, user-defined constraints and environmental conditions. In short, ADE focuses 

on the modeling of the application and underlying architecture into a common abstraction 

and on the incorporation of autonomic features to those abstractions to achieve self-

managed deployment. 

 Once the application components are automatically deployed into the distributed 

environment, dynamic reconfiguration can be triggered as needed. Based on the 

observations obtained by the monitoring of the system resources, ADE may automatically 

migrate application components, reallocate resources and redeploy the application graph. 

With respect to the self-optimizing criteria, ADE is designed to maximize a specific 

utility function [8] that returns a measure of the overall system utility based on the 

Application 
Extracted 

Application 
Model 

Distributed 
Environment 

 

Network 
Model 

Deployment 

Constraints 
and 

policies 

Figure 3. Application Deployment Process in ADE. 



 31

executing application’s requirements, the system’s operating conditions as well as some 

user policies, priorities and constraints. During execution, resource allocation and other 

operating conditions may change; the corresponding change in the overall utility of the 

system can be calculated by this utility function and decisions can be taken toward 

maximizing this value.  

3.3 Deployment Architecture 

  Self-managed deployment in ADE is achieved by adopting the three-layer 

architecture as shown in Figure 4 and described as follows: 

• The Application layer is responsible for analyzing the application code and deriving 

the application model. 

• The Autonomic Layer is responsible for deployment of the application and for 

ensuring self-managing behavior of the system. This layer is divided among 

autonomic elements that are responsible for resource monitoring, utility function 

evaluating, initial deployment considering policies and constraints, reconfiguration, 

middleware services, etc.  

• The Underlying layer organizes the physical nodes in the network and is utilized by 

the upper level autonomic layer for deployment.    

3.4 Application Layer  

To be truly autonomic, a computing system needs to know and understand each of 

its elements. One such element is the application executing on the autonomic 

infrastructure and the system  needs detailed  knowledge  about it. An application  can be 

 

 

 

 

 

 

 

Figure 4. Deployment Architecture. 

Application layer: static analysis, component 
graph construction, partitioning 

Autonomic layer: resource monitoring, utility, 
deployment & reconfiguration, middleware 

 

Underlying layer: Organizing network nodes 



 32

characterized by a set of components that communicate with each other in a certain way. 

In this proposal, an application is modeled as a graph consisting of application 

components and the interactions among them. Analyzing and representing software in 

terms of its components and their internal dependencies is important in order to provide 

the self managing capabilities because this is actually the system’s view of the runtime 

structure of a program. Well structured graph-based modeling of an application also 

makes it easier to incorporate autonomic features into each of the application 

components. Moreover, graph theory algorithms can be exploited during deployment of 

such an application. 

To construct such an application graph, two pieces of information must be 

determined, namely: 1) the resources (i.e. computation time, storage, network and so on) 

consumed by each application component and 2) the dependencies (directionality and 

weight) among the components which is caused by the interactions among them. 

Therefore it is necessary to construct a node-weighted, edge-weighted directed graph G = 

(V, E, wg, cg), where each node v∈V represents an application component and the edge 

(u,v)∈E resembles the communication from component u to component v. The 

computational weight of a node v is wg(v) and represents the amount of computation that 

takes place at component v and the communication weight cg(u,v) captures the amount of 

communication (volume of data transferred) between nodes u and v. Figure 5 illustrates 

an example application graph with computational and communication weights. When 

deployed to a distributed heterogeneous environment, these weights along with various 

system characteristics, such as the processing speed of a resource and the communication 

latency between resources determine the actual computation and communication cost.  

Statically analyzing the application code and constructing an application graph 

signifying the resource requirements of the application components and their links is a 

challenging task. Exact or even close approximation of these resource requirements 

requires a great deal of domain knowledge and experience with the specific application, 

and also involves benchmarking exercises. In our approach, application components are 

realized as Java objects. There are several Java automatic partitioning tools [29, 30, 32, 

33], however, they only detect interaction at the class level, and therefore perform 

partitioning  at the  class  granularity  and  limit  the  opportunity  to  exploit  object  level 



 33

 

 

 

 

 

 

Figure 5. An application graph labeled with weights. 
 
concurrency. To our knowledge, Spiegel’s Pangaea [31] is the only system that performs 

analysis at the object level and potentially is able to fulfill our purpose. Spiegel’s 

algorithm statically analyzes the Java source code and produces a directed graph where 

nodes and edges represent runtime instances and relations (create, use and reference) 

among them respectively.  

  While Spiegel’s algorithm [31] provides important insight about object 

dependency graph construction, it is not sufficient for our purpose. For instance, the 

original algorithm simply produces a directed graph representing the runtime instances 

and their interactions. In contrast, ADE employs a weighted directed graph to effectively 

extract the computation and communication requirements of the objects and their 

dependencies. Moreover, instead of having a general use relation between a pair of 

objects, ADE’s target is to further categorize it as read-only and write based on whether 

the data members of an object are simply accessed or modified during use. Such 

read/write relations become valuable when determining distribution policies for objects. 

The original implementation assumes the presence of source code, while this study 

performs analysis at the byte-code level. Consequently, significantly different algorithmic 

aspects and implementation strategies need to be incorporated to fulfill the intents of this 

research. 

  This research plans to perform the static analysis of Java byte-code on top of the 

Jimple [64] representation, which is part of the Soot [64] framework. The Soot 

framework is a set of Java APIs for manipulating and optimizing Java byte-code. We 

plan to analyze the complete application, therefore by using Soot we first read all class 

files that are required by the application starting with the main method and recursively 

 

  

 

 

 

  

wg(v6) cg(v1,v6) 

cg(v6,v1) 

wg(v1) 

v1 

v2 v3 

v4 

v5 

v6 

v7 v8 



 34

loading all class files used in each newly loaded class. As each class is read, it is 

converted into Jimple IR, suitable for our analysis and transformations. Jimple is a typed, 

stackless and compact three-address code representation of byte-code. Jimple only 

involves 19 kinds of instruction and as a result is much easier to manipulate compared to 

stack oriented byte-code representation that involves 201 different instructions. 

3.5 Underlying Layer  

In this research, the target environment for the deployment of the application is a 

distributed environment consisting of a non-dedicated heterogeneous and distributed 

collection of nodes connected by a network. A resource (node) in this environment could 

be a single PC, laptop, server or a cluster of workstations. Therefore, each node has 

different resource characteristics. The communication layer that connects these diverse 

resources is also heterogeneous considering the network topology, communication 

latency and bandwidth. This research aims to organize the heterogeneous pool of 

resources in a structure such that nodes that are closer to each other in the structure are 

also closer to each other considering network distance (latency, bandwidth, etc.). Once 

structured in this way, it is possible to detect higher utility paths that correspond to low 

latency and high bandwidth between network nodes. The deployment of the application 

graph then can be performed in a utility-aware way, without having full knowledge about 

the underlying resources and without calculating the utility between all pairs of network 

nodes. 

To achieve this, a hierarchical model of the computing environment is utilized 

where the execution begins at the root and each node either executes the tasks assigned to 

it or propagates them to the next level. More specifically, this proposal adopts a tree to 

model the underlying heterogeneous infrastructure.  Each node in the tree has the sole 

responsibility for deciding whether to execute the components allocated to it or send 

them down the hierarchy. Each parent node is capable of calculating the utility of its child 

based on processor speed, workload, communication delay, bandwidth, etc. and selects its 

best child’s subtree to delegate the tasks in a way such that the overall communication is 

minimized and the delegated component’s resource requirements are satisfied. 



 35

There are three main advantages of representing the underlying layer as a tree. 

First, a tree model promotes decentralization and therefore is scalable. Each deployment 

decision can be made locally, which may not be optimal considering centralized 

deployment, but certainly is scalable and adaptive. Maintaining a global view of a large-

scale distributed environment becomes prohibitively expensive, even impossible at a 

certain stage, considering the unprecedented number of nodes and the unpredictability 

associated with a large-scale computing system. The proposed tree model can grow and 

reconfigure itself to adapt to the dynamically evolving computing environment.  

Second, this model relieves us from the costly evaluation of the utility function 

globally by limiting the utility evaluation within a subtree performed by the parent of that 

subtree. Each parent is capable of monitoring its children and calculating the 

corresponding utilities. As a result of that, the parent is capable of redeploying the subtree 

assigned to it, based on the changes in utilities of its children. Optimizing certain utility 

functions globally is certainly more attractive, however it does not scale very well when 

the number of deployed applications and/or number of resources grow in the system. On 

the other hand, this research may not be able to optimize utility or resource allocation, but 

by reducing the problem of evaluating and maintaining the utility across the whole 

system to the problem of managing the utility within a sub-tree promises to provide better 

adaptability and scalability in such a dynamic environment.  

Third, the model fits very well with the classes of applications we are concerned 

with. For instance, concurrent execution applications basically exhibit master-slave 

behavior and easily correlate with the tree model. Inherently distributed applications on 

the other hand can be modeled as divide and conquer type applications where 

components are divided among partitions and allocated to the children for execution. 

Even in the case of applications containing a large number of communicating 

components, there is still a single entity that initiates the set of communicating 

components and allocates them to processors. It is natural to think of the initiator as the 

root of the tree. 

The proposed hierarchical organization is obtained by modeling the target 

distributed environment as a tree in which the nodes correspond to compute resources, 

edges correspond to network connections and execution starts at the root. More 



 36

specifically, a tree structured overlay network is used to model the underlying resources, 

which is built on the fly on top of the existing network topology. Such an architecture 

was utilized recently in [65,66]. Figure 6 shows a small computing environment where 

resources are distributed in three domains and Figure 7 illustrates this environment 

hierarchically organized as a tree.  

Formally, the entire network is represented as a weighted tree T = (N, L, wt, ct), 

where N represents the set of computational nodes and L represents network links among 

them. The weights attached to the nodes and edges represent the associated computation 

and communication costs. The computational weight wt(n) indicates the cost associated 

with each unit of computation at node n. The communication weight ct(m,n) models the 

cost associated with each unit of communication of the link between node m and n 

considering both bandwidth and latency. Figure 7 shows an example tree model with 

computation and communication weights. When two nodes are not connected directly, 

their communication weight is the sum of the link weights on the shortest path among 

them. Therefore, larger values of node and edge weights translate to slower nodes and 

slower communication respectively.  

 

 

Figure 6. Sample target distributed 
environment spans at three domains. 

Domain 1 Domain 2 

Domain 3 

Source 

n1 

n2 
n3 

n4 
n5 

n6 
n8 

n7 

n9 

n10 

n11 

n13 
n12 

wt(n1) 

Figure 7. Hierarchical model of the 
environment. 

 

 

ct(n1, n3) ct(n1, n4) 

n1 

n2 n3 n4 

n5 n8 

n6 n7 

n11 

n9 n12 n13 

n10 



 37

3.6 Autonomic Layer 

 The purpose of the autonomic layer is to ensure self-organization and self-

optimization. To achieve this, the autonomic layer is divided among the following 

modules. 

3.6.1 Middleware Module  

  This module is responsible for providing middleware services such as handling 

communication among distributed entities. 

3.6.2 Resource Monitoring Module 

  The purpose of this module is to manage resource availability information across 

the network. Each resource corresponds to an instance r = {a1, a2 … aj}, where each ai 

measures the value of some performance attribute of that resource. The performance 

attributes are measurable entities, e.g. for a computational resource, the attributes may 

include processor speed, cache size, memory size, memory latency, current load, memory 

usage, etc. Based on this information, the system’s overall utility is recalculated and the 

application graph is redeployed in response to the changes in resource conditions. This 

research intends to utilize directory services to provide information about different 

resource instances in the environment. The chosen directory service should provide a 

simple interface, easy and efficient enough to insert and retrieve resource instances, 

should operate in highly dynamic environments and most importantly should scale well 

in case of a large number of instances. To reduce communication overhead, the intention 

is to initiate resource updates only when the environment changes instead of costly 

periodical updates.   

3.6.3 Utility Evaluation Module 

In a distributed environment, the utility can be calculated based on many criteria 

such as application performance, resource utilizations, user defined policies, or economic 

concerns. These issues can be associated with different objective functions of the 

optimization problem. In this research, the utility function governs both the initial 

placement of application components and their reconfigurations. The goal is to minimize 



 38

the average application execution time and to provide high utilization ensuring that both 

application level (each application may have a different importance to the system) and 

system level requirements and constraints are satisfied. Toward our goal, we have 

identified that the following criteria should be considered by the utility function: 

• While mapping partitions containing a large number of components in the tree 

network, nodes with a higher degree of connectivity should result in a higher utility as 

a higher degree allows more directions for partition growth. 

• Nodes with a faster communication link should be preferred over nodes with a slower 

communication link. 

• Faster and less busy nodes should be favored over slower and overloaded nodes. 

• High priority applications should be preferred during deployment over low priority 

jobs. 

3.6.4 Initial Deployment Module 

Once both the application and underlying resources have been modeled, the 

deployment problem reduces to mapping different application components and their 

interconnections to different nodes in the target environment and network links among 

them so that all requirements and constraints are satisfied and the system’s overall utility 

is maximized. In ADE, the assumption is that the application can be submitted to any 

node which acts as the source of the application and can terminate either at the source or 

at one or more clients at different destination nodes. The nodes in the system are self-

organized into a tree-shaped computing environment rooted at the source of execution 

according to the model described in Section 3.5   

Once the application graph G is submitted to the root node, the root then decides 

which application components to execute itself and which components to forward to its 

child’s sub-tree so that the overall mapping results in the highest utility. The child, who 

has been delegated a set of components again deploys them in the same way to its 

subtrees. For effective delegation of components at a particular node having |P| children, 

graph coarsening techniques [67] can be exploited to collapse several application 

components to a single partition, so that ≤ |P| partitions are generated at that stage. The 



 39

coarsened graph is projected back to the original or to a more refined graph once it is 

delegated to a child.   

In the above approach, each parent selects the highest utility child to delegate a 

particular partition (set of components). Finding the highest utility child to delegate a 

partition to means finding the highest utility mapping M of the edges (vj,vk) where vj∈ Vr 

(represents the set of components that the parent decides to execute itself) and vk∈Vs 

(represents the set of components that belong to a partition that a parent decides to 

delegate). More formally, a mapping needs to be produced, which assigns each vk∈Vs to a 

nq∈ N  in a way such that the network node nq is capable of fulfilling the requirements 

and constraints of application node vk and the edge (vj,vk) is mapped to the highest utility 

link considering all children available at that stage for delegation. We expect to derive an 

appropriate utility function that will take into consideration all the factors detailed in 

section 3.6.3 and will govern the initial deployment efficiently. 

3.6.5 Self Optimization Module 

After initial placement, the environment may change and as a result the  utility 

may drop. Therefore it is necessary to monitor the utility and trigger reconfiguration as 

required. Reconfiguration can be triggered in response to a variety of events such as 

changes in network delays, changes in available bandwidth, changes in available 

processing capability, etc. Some business specific events may also trigger reconfiguration 

such as the arrival of a higher priority job, etc. Reconfiguration within a subtree is 

expected to be a less expensive process because of the way the underlying network is 

modeled. Through the resource monitoring module, each parent node periodically 

measures the workload at each child and its bandwidth to the child and consequently 

changes computational and communication weights attached to that child. By 

incorporating this monitored information into the utility function, it is possible for a 

parent to observe the change in utility due to the changes in network and compute nodes, 

and therefore reconfiguration can initiate autonomously. Reconfiguration is costly and 

disruptive, therefore, it is not feasible to initiate reconfiguration unless it is productive. 

This research plans to trigger reconfiguration whenever the utility drops more than a 



 40

certain threshold (user specified or system generated by comparing the utility during 

initial deployment).  

3.7 Evaluation 

We intend to evaluate the performance of the self-managed deployment 

architecture by proof-of-concept implementation and by using simulation and 

experiments. More specifically we want to evaluate the effectiveness of self-

configuration and self-optimization of the application graph in the proposed self-

organized tree network. Since, our aim is not to use a single application or system 

specific attribute such as response time, throughput or resource utilization for evaluation; 

we will be using system’s overall business utility instead as the performance metric in our 

experiments. For instance, we will be justifying our architecture by measuring the utility 

achieved by it and will compare it against the utility produced by other models. The 

experiments are outlined as follows. 

• In order to justify the applicability of our self-organized tree network, we will 

conduct some experiments that will evaluate the quality of the utility-driven 

configuration of an application graph which is automatically generated by our 

approach. For comparison, we will manually create a good initial configuration with 

prior knowledge of system parameters. We will then find the configuration generated 

by our approach and will examine the deviation of it from the manually generated 

one.  We will also measure the time needed for the computation to reach all nodes of 

the tree and the overall execution time of an application. 

• In order to justify the effectiveness of our decentralized utility evaluation, we will 

conduct some experiments that compare the overall utility of an initially deployed 

application graph using the centralized model (a central node keeps track of utility 

information for all other nodes and based on this global knowledge calculates the 

optimal utility) as opposed to the decentralized utility calculation in our tree network. 

We will also estimate the cost associated with both approaches to determine the 

cost/optimality tradeoff. 



 41

• To examine the effectiveness of our dynamic reconfiguration, we will perform 

experiments that show the variation of utility for a deployed application graph with 

changing network conditions. With this set of experiments, we expect to find out how 

costly the reconfiguration can be and whether it is worth considering or not. With 

rigorous experiments, we expect to find a suitable threshold value for triggering 

reconfiguration. 

•  Our next set of experiments will study the behavior of the deployment architecture in 

case of more than one application graph. The intention is to observe how ADE 

behaves in case of simultaneous deployment of many applications. We will also 

simulate the factors that trigger self-optimization such as network traffic, increased 

processor workload, reduced bandwidth, arrival of a higher priority job, etc. to see 

how those changes effect the utility evaluation and how the system optimizes itself. 

3.7 Expected Contributions of This Research 

As systems and application grow in scale and complexity, attaining the desired 

level of performance in today’s highly dynamic and uncertain environment using current 

approaches based on global knowledge, centralized scheduling and manual reallocation 

becomes infeasible. To address this challenge, application components need to be self-

managed in order to be able to dynamically detect and respond, quickly and correctly, to 

changes in the application’s behaviors and the state of the underlying environment.   

In my thesis, I expect to design and implement algorithms and mechanisms for 

achieving self-managed deployment of high performance scientific and engineering 

applications in highly dynamic and unpredictable distributed environment. My approach 

is to incorporate autonomic entities to handle the complexities associated with 

distribution, configuration, coordination and efficient execution of application 

components and to adapt to the changes in application behavior and the underlying 

environment. I believe that such an automated approach results in higher utilization of 

distributed resources while meeting application performance demands. In particular, I am 

expecting to make following key contributions towards the design of self-managed 

deployment.  



 42

• I intend to develop techniques for automatically identifying application components 

and their estimated resource requirements within a centralized application and use 

them in order to model the application into a graph abstraction.  

• I expect to develop techniques that allow the distributed resources to self-organize in 

a utility-aware way while assuming minimal knowledge about the underlying 

environment.  

• To achieve efficient initial deployment of application components to the network 

nodes and their runtime reconfigurations, I plan to design a decentralized scheduling 

algorithm based on utility functions. The approach is novel in its consideration of 

overall system’s utility (combining multiple application and system level attributes) 

during deployment and reconfiguration. The approach is scalable and adaptive in its 

use of decentralized and minimal knowledge-based scheduling algorithm to find the 

highest utility association among the set of application components and the set of 

distributed nodes.    

 

 

 

 

 

 

 

 

 

 

 



 43

REFERENCES 

1. D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. 

Rollins, and Z. Xu. Peer-to-Peer Computing. In Proceedings of the Second 

International Conference on Peer-to-Peer Computing, pages 1–51, 2002. 

2. H. S. Nwana. Software Agents: An Overview. Knowledge Engineering Review, 

Vol. 11, No. 3, pages 1–40, 1996. 

3. M. P. Singh (Ed). Practical Handbook of Internet Computing. Chapman & Hall/ 

CRC Press, 2004. 

4. I. Foster, C. Kesselman (Ed). The Grid 2: Blueprint for a New Computing 

Infrastructure. Morgan Kaufmann Publishers, 2003.  

5. J. O. Kephart and D. M. Chess. The vision of autonomic computing. In IEEE 

Computer, Vol. 36, No. 1, pages 41–50, 2003.  

6. A. Ganek and T. Corbi. The Dawning of the Autonomic Computing Era. IBM 

Systems Journal, Vol. 42, No. 1 pages 5-18, 2003. 

7. IBM Research. Autonomic Computing. http://www.research.ibm.com/autonomic  

8. W. E. Walsh, G. Tesauro, J. O. Kephart, R. Das. Utility functions in autonomic 

systems. Proceedings. Of the First International Conference on Autonomic 

Computing (ICAC), pages 70-77, 2004. 

9. M. J. Oudshoorn, M. M. Fuad and D. Deb. Towards an Automatic Distribution 

System - Issues and Challenges. PDCN, pages 399-404, 2005. 

10. M. M. Fuad and M. J. Oudshoorn. An Autonomic Architecture for Legacy 

Systems, Third IEEE Workshop on Engineering of Autonomic Systems (EASe), 

pages 79-88, 2006.  

11. M. M. Fuad. An Autonomic Software Architecture for Distributed Applications. 

Ph. D. thesis, Department of Computer Science, Montana State University, USA, 

2007.  

12. M. M. Fuad and M. J. Oudshoorn. Transformation of Existing Programs into 

Autonomic and Self-healing Entities. The 14th IEEE International Conference on 

the Engineering of Computer Based Systems (IEEE/ECBS), pages 133-144, 2007.  



 44

13. M. M. Fuad, D. Deb and M. J. Oudshoorn, An Autonomic Element Design for a 

Distributed Object System, ISCA 20th International Conference on Parallel and 

Distributed Computing Systems (PDCS), pages 273-279, 2007.  

14. SETI@home. http://setiathome.ssl.berkeley.edu, 2001. 

15. J. Cowie, B. Dodson, R. Elkenbrach-Huizing, , A. Lenstra, P. Montgomery, and J. 

Zayer. A World Wide Number Field Sieve Factoring Record: On to 512 Bits. 

Advances in Cryptology, pages 382–394, 1996, Vol. 1163 of LNCS. 

16. M. Waterman and T. Smith. Identification of Common Molecular Subsequences. 

Journal of Molecular Biology, Vol. 147, pages195–197, 1981. 

17. S. Hariri , B. Khargharia , H. Chen , J. Yang , Y. Zhang , M. Parashar, H. Liu. 

The Autonomic Computing Paradigm, Cluster Computing, Vol. 9 No.1, pages 5-

17, 2006.   

18. R. Murch. Autonomic Computing. Prentice-Hall, 2004. 

19. J. O. Kephart and W. E. Walsh. An Artificial Intelligence Perspective on 

Autonomic Computing Policies. In International Workshop on Policies for 

Distributed Systems and Networks, pages 3–12, 2004.  

20. H. Liu and M. Parashar. Accord: A Programming Framework for Autonomic 

Applications. IEEE Transactions on Systems, Man and Cybernetics, Special Issue 

on Engineering Autonomic Systems, Editors: R. Sterritt and T. Bapty, IEEE Press, 

Vol. 36, No 3, pages. 341 – 352, 2006.  

21. M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt, G. Zhang and S. Hariri. 

AutoMate: Enabling Autonomic Grid Applications. Cluster Computing: The 

Journal of Networks, Software Tools, and Applications, Special Issue on 

Autonomic Computing, Kluwer Academic Publishers, Vol. 9, No. 1, 2006. 

22. X. Dong, S. Hariri, L. Xue, H. Chen, M. Zhang, S. Pavuluri, and S. Rao. 

AUTONOMIA: An Autonomic Computing Environment. Proc. of the 2003 IEEE 

International Performance, Computing, and Communication Conference, pages 

61-68, 2003. 

23. D. M. Chess, A. Segal, I. Whalley and S. R. White. Unity: Experiences with a 

Prototype Autonomic Computing System. 1st International. Conference on 

Autonomic Computing (ICAC), pages 140-147, 2004. 



 45

24. J. Parekh, G. Kaiser, P. Gross and G. Valetto. Retrofitting Autonomic Capabilities 

onto Legacy Systems. Journal of Cluster Computing, Kluwer Academic 

Publishers, Vol. 9, No. 2 pages 141-159, 2006. 

25. S. Cheng, A. Huang, D. Garlan, B. Schmerl, P. Steenkiste. Rainbow: 

Architecture-Based Self-Adaptation with Reusable Infrastructure. First 

International Conference on Autonomic Computing (ICAC) pages 276-277, 2004. 

26. R. V. Renesse , K. P. Birman , W. Vogels. Astrolabe: A robust and scalable 

technology for distributed system monitoring, management, and data mining. 

ACM Transactions on Computer Systems (TOCS), Vol.21 No.2, pages164-206, 

2003.   

27. K. Schwan et al. Autoflow: Autonomic information flows for critical information 

systems. Autonomic Computing: Concepts, Infrastructure, and Applications, CRC 

Press, 2006.  

28.  V. Kumar, B. F. Cooper, K. Schwan. Distributed Stream Management using 

Utility-Driven Self-Adaptive Middleware.  Second International Conference on 

Autonomic Computing (ICAC), pages 3-14, 2005. 

29. M. Philippsen and M. Zenger. JavaParty - transparent remote objects in Java. 

Concurrency: Practice and Experience, Vol. 9, No. 11, pages 1125-1242, 1997. 

30. M. Dahm. Doorastha—a step towards distribution transparency. JIT, 2000. 

31. A. Spiegel. Automatic Distribution of Object-Oriented Programs. PhD thesis, 

Fachbereich Mathematik u. Informatik, Freie Universitat, Berlin, 2002.  

32. M. Tatsubori, T. Sasaki, S. Chiba and K. Itano. A Byte-code Translator for 

Distributed Execution of Legacy Java Software. ECOOP, pages 236-255, 2001.  

33. E. Tilevich and Y. Smaragdakis. J-Orchestra: Automatic Java Application 

Partitioning. ECOOP, 2002. 

34. G. C. Hunt, and M. L. Scott. The Coign Automatic Distributed Partitioning 

System. 3rd Symposium on Operating System Design and Implementation 

(OSDI), pages 187-200, 1999. 

35. R. E. Diaconescu, L. Wang, Z. Mouri and M. Chu. A Compiler and Runtime 

Infrastructure for Automatic Program Distribution. International Parallel and 

Distributed Processing Symposium (IPDPS), 2005.  



 46

36. Y. Aridor, M. Factor, and A. Teperman. CJVM: a Single System Image of a JVM 

on a Cluster. ICPP, 1999. 

37. H. E. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langendoen, T. Ruhl, and M. 

F. Kaashoek. Performance Evaluation of the Orca Shared-Object System. ACM 

Trans. on Computer Systems, Vol. 16, No.1, pages 1-40, 1999 

38.  J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and performance 

of Munin. 13th ACM Symposium on Operating Systems Principles, pages 152-

164, 1991. 

39. W. Yu, and A. Cox. Java/DSM: A Platform for Heterogeneous Computing. 

Concurrency: Practice and Experience, Vol. 9, No. 11, pages 1213-1224, 1997. 

40. S. M. Sadjadi and P. K. McKinley. A survey of adaptive middleware. Technical 

Report MSU-CSE-03-35, Computer Science and Engineering, Michigan State 

University, 2003. 

41. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J. M. 

Loingtier, and J. Irwin. Aspect-oriented programming. Proceedings of the 

European Conference on Object-Oriented Programming (ECOOP), Springer-

Verlag LNCS 1241, 1997. 

42. G. Kiczales et al.. An Overview of AspectJ. In Proceedings of European 

Conference on Object-Object Programming (ECOOP), pages 327–353, 2001. 

43. H. Kim. AspectC#: An AOSD implementation for C#, Masters Thesis, 

Department of Computer Science, Trinity College, Dublin, September 2002. 

44. D. Lafferty et al. Language Independent Aspect-Oriented Programming In 

Proceedings of the 18th ACM SIGPLAN conference on Object-Oriented 

Programming, Systems, Languages and Applications, pages 1–12, 2003. 

45. B. Rasmussen et al. Aspect.NET - A Cross-Language Aspect Weaver. 

Department of Computer Science, Trinity College, Dublin, 2002.  

46. A. Frei et al., A Dynamic AOP-Engine for .NET, Technical Report 445, 

Department of Computer Science, ETH Zurich, May 2004.  

47. F. Hauck, U. Becker, M. Geier, E. Meier, U. Rastofer, and M. Steckmeier. 

AspectIX: An Aspect-Oriented and CORBA-Compliant ORB Architecture. In 



 47

Proceedings of the IFIP International Conference on Distributed Systems 

Platforms and Open Distributed Processing (Middleware), 1998. 

48. J. Lam. CLAW: Cross-Language Load-Time Aspect Weaving on Microsoft’s 

Common Language Runtime Demonstration at the 1st International Conference 

on Aspect-Oriented Software Development, 2002.  

49. M. Tatsubori, S. Chiba, K. Itano, and M.-O. Killijian. OpenJava: A class-based 

macro system for Java. In Proceedings of OORaSE, pages 117–133, 1999. 

50. E. P. Kasten and P. K. McKinley. Adaptive Java: Refractive and transmutative 

support for adaptive software. Tech. Rep. MSU-CSE-01-30, Computer Science 

and Engineering, Michigan State University, 2001 

51. V. Adve, V. V. Lam, and B. Ensink. Language and compiler support for adaptive 

distributed applications. in Proceedings of the ACM SIGPLAN Workshop on 

Optimization of Middleware and Distributed Systems (OM 2001), 2001. 

52. D. C. Schmidt, D. L. Levine, and S. Mungee. The design of the TAO real-time 

object request broker. Computer Communications, Vol. 21, pages 294–324, 1998. 

53. F. Kon, M. Rom´an, P. Liu, J. Mao, T. Yamane, L. C. Magalh˜aes, and R. H. 

Campbell. Monitoring, security, and dynamic configuration with the 

dynamicTAO reflective ORB. in Proceedings of the IFIP/ACM International 

Conference on Distributed Systems Platforms (Middleware 2000),  2000. 

54. G. S. Blair, G. Coulson, P. Robin, and M. Papathomas. An architecture for next 

generation middleware. in Proceedings of the IFIP International Conference on 

Distributed Systems Platforms and Open Distributed Processing 

((Middleware’98), 1998. 

55. J. A. Zinky, D. E. Bakken, and R. E. Schantz. Architectural support for quality of 

service for CORBA objects. Theory and Practice of Object Systems, Vol. 3, No. 

1, 1997. 

56. R. Koster, A. P. Black, J. Huang, J.Walpole, and C. Pu. Thread transparency in 

information flow middleware. in Proceedings of the International Conference on 

Distributed Systems Platforms and Open Distributed Processing, Springer Verlag, 

2001. 



 48

57. R. Baldoni, C. Marchetti, and A. Termini. Active software replication through a 

three-tier approach. in Proceedings of the 22th IEEE International Symposium on 

Reliable Distributed Systems (SRDS02), pages 109–118, 2002. 

58. Sun Microsystems, http://java.sun.com/products/ejb/, Enterprise JavaBeans 

Technology, 2001. 

59. Object Management Group, http://www.omg.org/cgi-bin/doc?ptc/99-10-05, 

CORBA Components Model - FTF drafts for MOF chapter. 

60. B. Redmond and V. Cahill. Supporting unanticipated dynamic adaptation of 

application behaviour. in Proceedings of the 16th European Conference on 

Object-Oriented Programming, 2002. 

61. M. Golm and J. Kleinoder. metaXa and the future of reflection. in Proceedings of 

Workshop on Reflective Programming in C++ and Java, pages. 1–5, 1998. 

62. A. Oliva and L. E. Buzato. The implementation of Guaran´a on Java. Tech. Rep. 

IC-98-32, Universidade Estadual de Campinas, Sept. 1998. 

63. A. Popovici, T. Gross, and G. Alonso. Dynamic homogenous AOP with PROSE. 

Tech. Rep., Department of Computer Science, Federal Institute of Technology, 

Zurich, 2001. 

64. Sable research group, www.sable.mcgill.ca/soot. 

65. O. Beaumont, A. Legrand, Y. Robert, L. Carter, J. Ferrante. Bandwidth-Centric 

Allocation of Independent Tasks on Heterogeneous Platforms. International 

Parallel and Distributed Processing Symposium (IPDPS), 2002. 

66. B. Kreaseck, L. Carter, H. Casanova, and J. Ferrante, "Autonomous protocols for 

bandwidth-centric scheduling of independent-task applications", International 

Parallel and Distributed Processing Symposium (IPDPS), 2003. 

67. G. Karypis and V. Kumar, "Multilevel k-way Partitioning Scheme for Irregular 

Graphs", Journal of Parallel and Distributed Computing, Vol. 48, pages 86-129, 

1998. 


