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ABSTRACT 

 
This thesis report introduces a new technique of document clustering based on 

frequent senses. The developed system, named GDClust (Graph-Based Document 
Clustering) [1], works with frequent senses rather than dealing with frequent keywords 
used in traditional text mining techniques. GDClust presents text documents as 
hierarchical document-graphs and uses an Apriori paradigm to find the frequent 
subgraphs, which reflect frequent senses. Discovered frequent subgraphs are then utilized 
to generate accurate sense-based document clusters. We propose a novel multilevel 
Gaussian minimum support strategy for candidate subgraph generation. Additionally, we 
introduce another novel mechanism called Subgraph-Extension mining that reduces the 
number of candidates and overhead imposed by the traditional Apriori-based candidate 
generation mechanism. GDClust utilizes an English language thesaurus (WordNet [2]) to 
construct document-graphs and exploits graph-based data mining techniques for sense 
discovery and clustering. It is an automated system and requires minimal human 
interaction for the clustering purpose. 
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CHAPTER 1  

INTRODUCTION 

1  
In this chapter, we introduce the motivation of Graph-based Document Clustering, 

its mutual benefits over traditional clustering techniques, and the related literature. We 

call our system GDClust, which stands for Graph-based Document Clustering. We also 

developed an enhanced version of the GDClust-structure that significantly outperforms 

our original version of the system. We call this new system GDClust-Plus. The overall 

GDClust system is described in Chapter 2. As an improvement in GDClust-Plus, we 

introduced a new mechanism and named it Subgraph-Extension mining. It is described in 

Chapter 3. In the context of this thesis, we shall use the terms GDClust and GDClust-Plus 

interchangeably. When we refer to GDClust-Plus, we indicate our specific enhancement. 

It should be mentioned that both systems are built on the GDClust-architecture, but some 

of the graph-mining techniques are enhanced in GDClust-Plus to improve performance. 

 
Problem Description and Motivation  

Behind Graph-based Document Clustering 
 

 The last decade has seen a significant increase in research on text clustering, 

natural language processing and textual information extraction. Most of these techniques 

rely on searching for identical words and counting their occurrences. The goal of our 

research is to develop a new, human-like, hierarchical document clustering technique 

driven by recent discoveries in the area of graph-based data mining and hierarchical 

clustering of text documents.  The major motivation for our approach comes from typical 
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human behavior when people are given the task of organizing multiple documents. As an 

example, consider the behavior of a scientific book editor who is faced with the 

complicated problem of organizing multiple research papers into a single volume with a 

hierarchical table of contents. Typically, even papers from the same research area are 

written (1) in multiple writing styles (e.g. using “clusters” instead of “concentration 

points”), (2) on different levels of detail (e.g. survey papers versus works discussing the 

complexity of a single algorithm) and (3) in reference to different aspects of an analyzed 

area (e.g. clustering of numeric versus descriptive data). Instead of searching for identical 

words and counting their occurrences, as many well-known computer-based text 

clustering techniques do [3, 4, 5], the human brain usually remembers only a few crucial 

keywords, which provide the editor with a compressed representation of the analyzed 

document. These keywords, discovered thanks to the expert’s knowledge (replaced in our 

case by ontology), are then used by the book editor to fit a given research paper into a 

book’s organization scheme, reflected by the table of contents. 

The major focus of this work was to develop techniques that deal effectively with 

the multiple levels of abstraction occurring in our natural language. We developed an 

approach that organizes text data into a meaningful hierarchy based more on the gradual 

similarity of ideas carried in the papers and reflected by the topic’s ontology rather than 

on the identity of words included in the papers. This provides a broad range of computer 

users with the ability to process text data in a more effective way. 

As the outcome, we achieve a hierarchy of meaningful terms that are generated by 

the intersection of graphs (i.e. graph representation of text files) and the WordNet 
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ontology [2, 6] available for the topic. Human beings or computers can use this hierarchy 

to efficiently navigate enormous repositories of text data.  

We sight an example where traditional keyword based techniques are unable to 

retrieve similar senses from two text documents, but GDClust is able to discover their 

similarity. Consider two documents, doc1 and doc2. Suppose doc1 contains the terms 

insect, lepidopteran and caterpillar, whereas doc2 contains the terms myriapod, 

merostomata and mealworm. Although human beings can easily understand that both of 

the documents contain information about some arthropod, traditional text mining 

techniques will consider these two documents distinct from each other (i.e., in two 

Figure 1: Traditional keyword-based approach and sense-based approach. 
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different clusters) because the documents do not have any common term. In contrast, 

GDClust offers a graph-based approach where the system is able to automatically 

investigate the abstractions of the terms. GDClust detects high similarity between doc1 

and doc2 by detecting a common subgraph for these two documents in the language 

ontology and places them in the same cluster. Figure 1 illustrates this scenario between 

the traditional approach and our sense based approach. In a traditional approach, these 

two documents are totally different, as they do not have any common terms, but in our 

approach the abstractions of both documents overlap and signify high degree of 

similarity.  

With implementing GDClust, we aim to develop a document clustering technique 

that is able to cluster documents using common senses rather than perfectly matching 

keywords. We provide a clustering technique that uses knowledge about terms, rather 

than trust in document corpora to provide such information implicitly. Therefore, the 

developed system works well both for a very large set of documents as well as for smaller 

document repositories with skewed (e.g., certain topic related) distributions of frequent 

terms. 

 
Scope 

 

In this thesis, we developed a graph-mining technique for clustering text 

documents. We represent the documents of a repository as graphs. Our system depends 

on background knowledge of the English language ontology that is constructed from the 



 
TABLE  
 

5 

IS-A relationships of noun words of the WordNet lexical reference system [2]. In this 

work, we have concentrated on the noun keywords of the documents. 

We utilize an Apriori paradigm [7] to mine subgraphs that was originally 

developed for mining frequent itemsets in a market basket dataset [8]. We exploit 

Hierarchical Agglomerative Clustering (HAC) [9] to cluster text documents based on the 

appearance of frequent subgraphs in the graph representations of the documents. Another 

aim of this thesis is to analyze clustering quality by investigating different similarity 

measures. We use the Silhouette Coefficient to calculate the quality of the clustering. We 

also compare the quality of clustering using GDClust with the traditional keyword-based 

approaches. 

 
Literature Review 

 

The benefit of our document clustering approach is that it can group documents in 

the same cluster even if they do not contain common keywords. Instead, the clustered 

documents possess the same sense, discovered by the similarity of common abstract 

terms and relations between them, which is reflected in our document-graphs. Other 

existing clustering techniques cannot perform this sort of discovery or do this work only 

to a limited degree, such as Latent Semantic Index (LSI) [10, 11]. LSI can cluster 

documents even if their keywords are not common, but it depends on other common 

words appearing frequently in the document while looking for a specific keyword. 

Although this kind of clustering is very popular, it depends entirely on a large number of 

input documents to broaden knowledge, which is naturally limited to the information 
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implicitly stored in the clustered documents’ corpus. Other document clustering 

techniques [3, 4, 5] depend on either probabilistic methods or distance and similarity 

measures between keywords. Their performance depends on the selection of keywords 

and on the construction of feature vectors for documents. All these mechanisms suffer 

from the fact that they do not offer human-like, sense-based document clustering. 

Developing algorithms that discover all frequently occurring subgraphs in a large 

graph database, is particularly challenging and computationally intensive, since graph 

isomorphism plays a key role throughout the computations [12]. Nevertheless, various 

researchers have used graph models in complex datasets and found them useful in the 

chemical domains [13, 14, 15, 16], computer vision technology [17, 18], image and 

object retrieval [19], social network analysis [20] and machine learning [21, 22, 23]. In 

our work, we utilize the power of graphs to model a complex sense of text data. 

There had been extensive research work on generating association rules from 

frequent itemsets [24, 25]. Agrawal et al. [7] proposed the Apriori approach for 

association rule mining [8].  Park et al. [26] proposed a hash table-based version of the 

Apriori approach improve the efficiency of association rule mining. Additionally, some 

transaction reduction approaches have been proposed by Agrawal et al. [7], Park et al. 

[26] and Han et al. [27]. In our work, we utilize a variation of multilevel association rule 

mining [27] for the frequent sense discovery process by proposing a novel Gaussian 

minimum support strategy [1] for the frequent subgraph discovery on multiple levels of 

the English language taxonomy.  
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Kuramochi et al. [12, 28] present an efficient algorithm named Frequent Subgraph 

Discovery (FSG) that finds all frequent subgraphs in a large graph database. In the paper, 

the researchers evaluated the performance of the algorithm using both real and artificial 

datasets. Their results show that despite the underlying complexity associated with graph 

isomorphism, FSG is effective in finding all frequently occurring subgraphs in datasets 

containing over 100,000 graphs and scales linearly with respect to the size of the 

database. Moreover, Yan et al. [29] describe an algorithm called gSpan (graph-based 

Substructure pattern mining) that discovers frequent substructures without candidate 

generation. gSpan builds a new lexicographic order among graphs and maps each graph 

to a unique minimum Depth First Search code (commonly, known as DFS-code), its 

canonical label. Based on this lexicographic order, gSpan adopts the depth-first search 

strategy to mine connected frequent subgraphs efficiently. The performance study, 

portrayed in the paper, shows that gSpan substantially outperforms some of the other 

substructure mining algorithms [29], sometimes by an order of magnitude. The existence 

of efficient algorithms to mine frequent subgraphs from graphs leads us to believe that 

constructing document-graphs and discovering frequent subgraphs to gain sense-based 

clustering of our work is feasible. Therefore, in our preliminary version of GDClust [1], 

we used the FSG strategy in the Apriori paradigm. Later, we introduced the Subgraph-

Extension mining technique for efficient candidate generation. We call this enhanced 

system GDClust-Plus. 

There are other well-known subgraph discovery systems like DSPM (Diagonally 

Subgraph Pattern Mining) [30], TreeMiner [31], GRAFIL (Graph Similarity Filtering) 
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[32], PIS (Partition-based Graph Index and Search) [33] and SUBDUE [34]. All these 

systems deal with multiple aspects of efficient frequent subgraph mining. Most of these 

systems have been tested on real and artificial datasets of chemical compounds. However, 

none of them has been used to mine text data. In this report, we discuss GDClust that 

performs frequent subgraph discovery from a text repository with the aim of document 

clustering.  

The work closest to our approach of sense-based clustering that we managed to 

find in recent literature is a graph query refinement method proposed by Tomita et al. 

[35]. Their system depends on user interaction for the hierarchic organization of a text 

query. In contrast, we depend on a predefined ontology (WordNet) to automatically 

retrieve frequent subgraphs from text documents. GDClust offers a fully automated 

system that utilizes the Apriori-based subgraph discovery technique to harness the 

capability of sense-based document clustering. 

 
Outline of the Thesis 

 

We give an overview of the GDClust architecture in Chapter 2. Crucial internal 

mechanisms of our work are explained in details in Chapter 3 and Chapter 4. We 

concentrate on graph-mining strategies and their enhancements in Chapter 3. Chapter 4 

includes the Hierarchical Agglomerative Clustering (HAC) technique and evaluation 

measures to assess our clusters’ accuracy. We describe important implementation details 

in Chapter 5. All the experimental results of this work are placed in Chapter 6. Then, we 
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conclude this thesis in Chapter 7 describing the current limitations of GDClust and our 

plans for improvements in the future. 
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CHAPTER 2  

GDClust OVERVIEW 

 
In this chapter, we provide an overview of our GDClust system for sense 

discovery and document clustering. GDClust takes text documents as input, converts 

each document into corresponding document-graph, finds subgraphs in the document-

graphs to establish similarity between senses of the documents and finally outputs 

possible sense-based clusters of those text documents. This chapter illustrates a top-view 

of the overall GDClust system. 

 
Architecture 

 

GDClust is composed of two basic components: (1) Conversion Module and (2) 

GDClust Module. It uses three different databases: (1) Text Document Archive, (2) 

WordNet and (3) Document Graph Database (DGD). Overview of the entire system is 

shown in Figure 2. 

 
Conversion Module 
 

Conversion Module is responsible for converting each text document into its 

corresponding graph representation. The module uses WordNet [2] as its background 

knowledge. It utilizes BOW Toolkit [36] to retrieve meaningful keywords from the 

documents. After the retrieval, keywords are stored in the Term-Document Archive. The 

Conversion Unit picks the document’s keywords from the archive (all keywords for a 

single document at one time) and converts them into a corresponding document-graph. 
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The Conversion Unit utilizes the WordNet’s IS-A hierarchy (hypernymy-hyponymy 

relationship) to construct the document-graphs. It targets one document at a time to 

minimize the memory consumption because the generated document-graphs (for say 

20,000 document-graphs) may not fit into the main memory. All document-graphs are 

stored in the same repository, called Document-Graph Database (DGD). The document-

graph construction algorithm is described in Table 1 of “Construction of Document-

Graph and Master Document-Graph” section. 

 
GDClust Module 
 

GDClust module is composed of two units: Subgraph Discovery Unit and 

Clustering Unit. The Subgraph Discovery Unit picks up document-graphs from DGD to 

discover frequent subgraphs representing frequent senses. Discovered subgraphs are 

assigned ID’s and stored in DGD. The Clustering Unit takes the advantage of the 

frequent subgraph discovery process. It clusters documents utilizing the discovered 

frequent senses by the Subgraph Discovery Unit. All other information regarding the 

clustering (frequent subgraphs, frequency counts of the subgraphs in the documents, etc.) 

is stored in DGD for future use. Chapter 3 and Chapter 4 respectively describe the 

subgraph discovery process and the clustering mechanism used by GDClust module. 

 
Text Document Archive 
 

Text Document Archive contains the actual input for GDClust. This archive 

contains the text documents that need to be clustered. In our experiments, we have used 

text documents from 20 News Groups dataset [37]. 20 News Groups dataset is used in 
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different literature and considered as a benchmarking dataset for clustering and 

classification purpose. 

 
WordNet Dictionary Database 
 

GDClust utilized the WordNet lexical reference system as background 

knowledge. Our approach does not directly look at the meaning of the related keywords 

in the WordNet dictionary rather it utilizes the language ontology from references of 

synsets and their semantic relations. In the context of WordNet ontology, a synset is a set 

of synonymous words in WordNet. GDClust is not a traditional corpora-based 

mechanism of sense disambiguation. It does not use the description or example sentences 

of synsets provided by WordNet to distinguish meaning of two keywords. Instead, it 

GDClust Module 
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od
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Figure 2: Architecture of GDClust and its flow of data. 
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completely relies on document-graphs and the discovered subgraphs in them to find 

similarity between two documents. Therefore, the use of WordNet in GDClust is limited 

to the retrieval of the language ontology only. 

WordNet divides its whole lexical reference system into five categories: nouns, 

verbs, adjectives, adverbs and function words [38]. Function words are basically non-

content words like prepositions and conjunctions that may mislead language-processing 

tasks since they are non-informative. In our work, we have concentrated on noun synsets. 

In WordNet, synsets are usually connected to other synsets via a number of semantic 

relations. These relations vary based on the type of word. For example, nouns have five 

kinds of relations, which are stated below [39]: 

(1) hypernyms: Y is a hypernym of X if every X is a kind of Y. Example: Agaric is a 

hypernym of mushroom, because mushroom is a kind of agaric. 

(2) hyponyms: Y is a hyponym of X if every Y is a kind of X. Example: Mushroom is a 

hyponym of agaric, because mushroom is a kind of agaric. 

(3) coordinate terms: Y is a coordinate term of X if X and Y share a hypernym. Example: 

Lepiota is a coordinate term of mushroom, because both Lepiota and mushroom are 

agarics. 

(4) holonym: Y is a holonym of X if X is a part of Y. Example: Fomes is a holonym of 

agaric, because agaric is a member of genus Fomes. 

(5) meronym: Y is a meronym of X if Y is a part of X. Example: Agaric is a meronym of 

Fomes, because agaric is a member of genus Fomes. 
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We have utilized the hypernymy-hyponymy relationships of noun synsets to build 

up the English language ontology.  

 
Document-Graph Database 
 

GDClust uses BOW Toolkit and the WordNet 2.1 taxonomy to convert a 

document to its corresponding document-graph. The outcomes of the Conversion Module 

of Figure 2 are document-graphs representing the input text documents. These documents 

are stored in Document-Graph Database to be used later by the GDClust module. Besides 

the regular document-graphs, we store a Master Document-Graph (MDG) in the 

Document-Graph Database, which helps us later during subgraph discovery by providing 

the language ontology. The construction mechanism of Master Document-Graph is 

described in the following section. 

 
Construction of Document-Graph and Master Document-Graph 

 

GDClust utilizes document-graphs representing text documents. Constructed 

document-graphs become inputs for the GDClust Module of Figure 2. In this section, we 

describe the algorithm for constructing document-graphs and our Master Document-

Graph. 

 Table 1 illustrates the algorithm for construction of individual document-graphs. 

WordNet provides a hierarchic representation of English words. We utilized the 

WordNet’s noun taxonomy, which provides a hypernymy-hyponymy relation between 

concepts and allows constructing a concept tree with up to maximum 18 levels of 
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abstractions. A concept in a document-graph is a node containing the synset from 

WordNet. All nouns in WordNet are merged to a single topmost synset (i.e. {entity}). Our 

document-graph construction algorithm selects informative keywords from the document 

and retrieves corresponding synsets from WordNet. Then, it traverses to the topmost level 

of abstraction to discover all related abstract terms and their relations. The graph of the 

links between keywords’ synsets of each document and their abstracts compose the 

individual document-graph. 

As stated in previous section, Document-Graph Database also contains another 

large graph representing the whole ontology needed for subgraph discovery. We name 

this graph a Master Document-Graph (MDG). An MDG is a single graph composed of all 

the edges and vertices of all the document-graphs in the database. In other words, a 

Master Document-Graph is a combined document-graph containing all the keywords 

found in all text documents. More formally, 

Table 1: Algorithm for construction of document-graphs. 
(1) For each document Di, construct a document-graph Gi, where 1≤i≤n, and n is 

the total number of documents { 
(2) For each keyword, kj where 1≤j≤m and m is the number of keywords in 

document Di { 
(3) Traverse WordNet taxonomy up to the topmost level. During the traversal, 

consider each synset as a vertex. E is considered as a directed edge between 
two vertices V1 and V2, iff V2 is the hypernym of V1. 

(4) E is labeled by V1:::V2. If there is any repeated vertex or edge that was 
detected earlier for another keyword kt (t ≠ j) of the same document, Di, do 
not add the repeated vertices and edges to Gi, otherwise, add vertices and 
edges to Gi. 

(5) }  // End of “For each keyword” 
(6) }  // End of “For each document” 
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iD MDGE E⊆  (2.1) 

where 
iDE  indicates the edge-set of a document-graph iD  and MDGE  denotes the edge-set 

of the Master Document-Graph. Equation (2.1) indicates that the edge-set of a document-

graph is a subset of the edge-set of the Master Document-Graph. Besides that, 

i
i

MDG D
D

E E≡ U  (2.2) 

Equation (2.2) indicates that the Master Document-Graph is composed of all the edges of 

all the document-graphs. Each edge of a document-graph has a unique DFS-code. This 

DFS-code is generated from the DFS order traversal of the DFS-tree [40] of the Master 

Document-Graph. GDClust forces the DFS-code of the edges of the Master Document-

Graph to all the edges of all document-graphs. Therefore, an edge of a document-graph 

can be identified using the Master Document-Graph-driven DFS-code.  

Later, in Chapter 3, we illustrate how a Master Document-Graph benefits the 

pruning mechanism at the very first level of the Apriori paradigm. We also show how it 

benefits subgraph discovery process by enhancing candidate generation mechanism.  
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CHAPTER 3  

INTERNAL MECHANISMS: APRIORI PARADIGM 

 
Both GDClust and GDClust-Plus use frequent subgraphs to represent senses 

common among the document-graphs. Two document-graphs, which contain some 

common frequent subgraphs, do not necessarily have to have common keywords. Our 

system not only looks at the original keywords but also the origin of the keywords and 

their neighboring (i.e. abstract) synsets. Two different words, leading to the same 

hypernym, have a good chance to generate two highly similar subgraphs, which reflects 

their shared sense. Our aim is to discover frequent senses rather than to look for frequent 

common keywords in the text documents. We utilize an Apriori paradigm for subgraph 

discovery in the document-graphs.  

The association rule mining technique [8] presents a problem for discovering the 

associated items in a list of transactions. A sample transaction list is shown in Table 2. 

We can easily find that Bread is more likely to be associated with Peanut Butter. We can 

easily sort small lists. However, human judgment does not work that well when there are 

millions of transactions in the transaction-table. The aim of the Apriori algorithm is to 

Table 2: A sample transaction table of market basket. 
Transaction Items 

T1 Bread, Jelly, Peanut Butter 

T2 Bread, Peanut Butter 

T3 Bread, Milk, Peanut Butter 

T4 Beer, Bread 
T5 Beer, Milk 
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find frequent itemsets from a list of transactions. The algorithm concentrates on the 

corresponding supports of the items and itemsets. A support of x% for an association rule 

R means that x% of all the transactions under analysis show that items mentioned in R 

appear together in market baskets. The support of {Bread, Peanut Butter} from Table 2 is 

60% as Bread and Peanut Butter appear together in 60% of transactions.  

In our work, we replace transactions with document-graphs, items with edges and 

item-sets with subgraphs (i.e., sets of connected edges). The association rule mining 

problem of market basket data analysis crops up in our research area in the form of 

frequent subgraph discovery problem. While discovering subgraphs, we take advantage 

of domain characteristics of the background knowledge for efficient processing (We 

discuss the domain characteristics of background knowledge later in this chapter). The 

advantages mainly emerge in the form of Master Document-Graph. This chapter 

illustrates the internal mechanism of our Apriori paradigm used in GDClust and its 

improved version proposed in GDClust-Plus.  

 
Apriori Paradigm 

 

Table 3 portrays the modified high-level algorithm for frequent subgraph 

discovery using the Apriori paradigm. The find_frequent_1-edge_subgraphs 

procedure utilizes the Dynamic minimum support strategy (explained in the next section) 

to select 1-edge subgraphs from the document-graphs. The apriori_gen procedure in 

the algorithm joins and prunes the subgraphs. In the join operation, a k-edge candidate 

subgraph is generated by combining two (k-1)-edge subgraphs of Lk-1. This k-edge 
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subgraph becomes a member of Lk only if it passes the min_sup threshold. The details of 

this joining operation are described later in this chapter. In GDClust, we used FSG [12, 

28] to generate potential candidates. In GDClust-Plus, this portion is enhanced, and we 

introduce a novel mechanism named Subgraph-Extension mining. Our major change to 

improve efficiency is incorporated in apriori_gen procedure. We explain Subgraph-

Extension mining in section titled “Candidate Generation in GDClust-Plus: Subgraph 

Extension Mining”. 

 

Dynamic Minimum Support Strategy 
 

We use the WordNet ontology as background knowledge of the natural language 

domain. Since using the WordNet ontology results in a large graph of the whole 

language-domain used in our system, we introduce a Master Document-Graph (MDG) 

Table 3: Apriori algorithm. 
Input: 
D: a database of document-graphs 
min_sup: the minimum support threshold 
Output:  
L: frequent subgraphs in D 
Method: 
(1) L1= find_frequent_1-edge_subgraphs(D); 
(2) for (k=2; Lk-1≠Φ; k++ ){ 
(3)     Ck=apriori_gen(Lk-1); 
(4)     for each document-graph g∈D{ 
(5)         Cg= CkI g; 
(6)         for each candidate subgraph s∈Cg 

(7)             s.count++; 
(8)     } 
(9)     Lk={ s∈  Ck | s.count ≥ min_sup} 
(10) } 
(11) return L= kU Lk 
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and propose a Dynamic minimum support strategy in both GDClust and GDClust-Plus. 

Dynamic minimum support removes unnecessary edges so that they are not considered in 

the Apriori process. Unnecessary edges are those that appear in too many (or all) 

documents, as well as those that are too specific and appear rarely in the document-

graphs. 

 
Motivation toward Gaussian Minimum Support Strategy 
 

We observed that human-based communications tend to be conducted on common 

levels of abstraction. For instance, general day-to-day conversations contain neither too 

abstract nor too specific keywords. In contrast, lectures by professors and presentations 

by graduate students may contain specific keywords that are found at the bottom level of 

a natural language ontology. This establishes that the distribution of informative 

keywords is highly domain dependent. 

Figure 3(a) shows an example of abstraction-based distribution of keywords 

where keywords are concentrated at two levels of the ontology. This may indicate an 

ontology that has a complex hypernymy-hyponymy relation, in which it is hard to figure 

out a single level of communication. This type of behavior may be expected in popular 

magazine articles (e.g., the magazines of IEEE Communications Society), where some of 

the documents are general in notion but the others are specific. Figure 3(b) shows a 

document corpora with specific keywords. Research papers, scientific journals, technical 

books fall into this category.  
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In our work, we used the 20 News Groups dataset [37] for all experiments. Figure 

3(c) is a representation of our keywords in the context of WordNet’s ontology. The gray 

dots indicate keywords found in our repository when matched to the levels of the 

ontology. It shows that the majority of the keywords are located at the mid-levels of the 

hierarchy, and very few keywords are placed at the bottom and top levels. Our 

experimental result on a subset of the 20 News Groups dataset (shown in Figure 3 (d)) 

supports our keyword-distribution theory. The black line of Figure 3(d) indicates that the 
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Figure 3: Behavior of datasets and the relation with MDG taxonomy. 
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most frequent words are found at level 8 of the WordNet ontology. Gaussian trend-line 

(the gray dashed line) can be compared with the black line to find a support for a 

Gaussian shaped distribution of keywords. Therefore, since our domain follows the 

Gaussian trend, we remove edges from the Apriori paradigm in a Gaussian fashion. 

We use Gaussian minimum support strategy to limit the number of candidate 

subgraphs with extremely abstract and very specific meanings. Since WordNet’s 

ontology merges to a single term (i.e., “entity” ), the topmost level of abstraction is a 

common vertex for all the generated document-graphs. Because of this, subgraphs 

involving vertices from the top levels of abstraction will be less useful for clustering. 

Moreover, terms near the lowest level of abstraction are less important because they 

appear rarely in the document-graphs, and as a result, terms appearing in the intermediate 

levels of the taxonomy generate more representative clusters labels than subgraphs 

containing terms at high and low levels of abstraction. 

Our Apriori paradigm imposes the minimum support to the 1-edge subgraphs at 

the very beginning of the Apriori algorithm in Gaussian normalization fashion. It assigns 

different minimum support thresholds based on the term’s abstraction level, and to do this 

assignment in less time, the paradigm uses the Master Document-Graph instead of 

WordNet. Each edge of the Master Document-Graph is ranked according to the levels in 

WordNet taxonomy. Currently, WordNet has 18 abstraction levels in its noun taxonomy, 

but the edges of the Master Document-Graph do not have to cover all the levels. 

Therefore, the maximum abstraction level in the Master Document-Graph is bounded by 

maxl 18≤ .  
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The Gaussian function possesses a shape that matches our criteria. It has a smaller 

minimum support for the terms located at the intermediate levels, and the function 

assigns higher minimum support thresholds to terms located at the lower and higher 

levels of the Master Document-Graph. The approach makes the mid-levels of the 

taxonomy formed by Master Document-Graph more important. It also assumes, based on 

observation, that the generated document-graphs contain a lot of common, but 

uninteresting, subgraphs at the topmost level and distinct, but not frequent, subgraphs at 

the bottom levels. The first would generate large clusters with low inter-cluster similarity, 

and the second would generate a huge number of very small clusters. 

The Gaussian function can be defined as: 

2 2( x b ) 2cf ( x ) Ae− − ÷=  (3.1) 

where A is the height of the Gaussian peak, b is the position of the center of the peak and 

c is defined as: 

w
c

2 2 ln( 2 )
=  (3.2) 

where w is the width of the curve at A/2. In our case, maxb l / 2= . We apply this 

behavior to model the minimum support of mining multilevel senses from the WordNet 

taxonomy. This is illustrated in Figure 4 (Figure 3(c) is repeated in Figure 4). The 

hierarchy drawn in the figure indicates our Master Document-Graph. The Gaussian graph 

indicates that the varying minimum support threshold is largest at the highest and lowest 

levels (i.e., level 1 and level lmax). The model generates our pre-defined minimum 

support, min_sup only at the mid level of the taxonomy and applies a gradual increment 
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of minimum support at higher and lower levels. One can shift the min_sup value to other 

levels by changing b of equation (1). Moreover, more 1-edge subgraphs can be removed 

from Apriori’s candidate list by reducing w to make the curve narrower. The impacts of 

different values of min_sup and w on subgraph mining are explained in Chapter 6. 

 
Gaussian Minimum Support Strategy and Motivation toward Data Dimensionality 
 

In a document-graph, some edges are directly linked with keyword-synsets (since 

at least one of its vertices contains the keyword-synset) while most are not. Although our 

Gaussian minimum support strategy removes edges from 1-edge candidate list (L1) in the 

find_frequent_1-edge_subgraphs procedure of the Apriori paradigm (Table 

3), the aim is not to prune edges related to keywords but rather to emphasize all edges 

near frequent keywords. This pruning physically changes neither the document-graphs 

nor the Master Document-Graph. Dynamic minimum support strategy is used to prune 

edges from 1-edge candidate list (L1), just before feeding L1 to the next iteration of the 

Apriori algorithm. In all subsequent iterations of Apriori, the minimum support threshold 
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Figure 4: Gaussian minimum support strategy for multilevel mining. 
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is no longer dynamic. Rather, it becomes a constant min_sup (this is the lowest minimum 

support threshold of Figure 4). All the edges pruned from L1 in find_frequent_1-

edge_subgraphs never become a part of the higher-order candidate lists (Ln where 

n>1). We can quickly perform the pruning operation on L1 because our edges in L1 have 

incorporated information about their corresponding abstraction level in the Master 

Document-Graph. Details of this procedure are described in chapter 5 (section title: 

“LabeledEdge Object”). 

The pruning mechanism works in such a way that the edges at the upper part of 

the Master Document-Graph are forced higher minimum support than the edges 

representing a moderate degree of abstraction. Similarly, an edge with extremely high 

specificity is also forced a higher minimum support than an edge with moderate 

abstraction. This does not disqualify such edges completely, but it implies that the edges 

with high and low abstraction values must appear in more document-graphs to be 

considered as candidates. Because an edge with a moderate (mid-level) abstraction value 

has the lowest minimum support threshold, it can appear in fewer document-graphs and 
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Figure 5: Illustration of edges at different depth of Master Document-Graph. 
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still be recognized as frequent. For example, consider the three edges 1e , 2e  and 3e  in 

L1(Figure 5). Using an object-oriented paradigm, we can present an edge’s abstraction 

level as depth. Assume 1e .depth 2= , 2e .depth 8=  and 3e .depth 17= . Also consider that, 

after applying the Gaussian minimum support strategy on L1, the imposed minimum 

supports of these three edges become 1e .minimum _ sup port 98%= , 

2e .minimum _ sup port 5%=  and 3e .minimum _ sup port 97%= . If there are 200 document-

graphs, then1e  must appear in at least 196 document-graphs, 2e  must appear in at least 10 

document-graphs and 3e  must be an edge of at least 194 document-graphs. This way, we 

get rid of the too abstract and too specific edges of L1.  

Now, after pruning 1-edge candidates, we may be left with no edges directly 

linked with keyword-synsets. But we have at least some edges from the mid-levels, even 

if the keyword-synset is at the bottom. We can say this because the construction of 

Master Document-Graph ensures its monotonic behavior. We call our Master Document-

Graph monotonic in terms of support count of the edges because an edge a connected 
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Figure 6: A document-graph containing only one keyword-synset. 
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(directly or not) to an edge b at the lower abstraction level always has a support higher, or 

at least equal, to the one represented in b. Hence, removing a keyword-edge b at the 

bottom of the tree would at least keep its abstraction a in midlevel. We show an example 

in Figure 6, where we consider that the document-graph has only one keyword-synset 

indicated by gray circle. For this document-graph, although edges that are directly 

attached to the keyword-synset (e.g., 4e  and 5e ) may not appear in L1 after the Gaussian 

minimum support strategy is applied, (because they have been imposed high minimum 

support threshold i.e., they must appear in a higher number of document-graphs to pass 

Gaussian-based threshold), some edges from the mid-levels (e.g., 6e , 7e , etc) will still 

survive in L1 because they must have the lowest minimum support threshold (i.e., 

min_sup) and Master Document-Graph is monotonic. We refer to min_sup as the user-

provided minimum support parameter indicated in Figure 4. This is generally the static 

minimum support used in regular bag-of-token-based approaches. If someone ensures 

that a keyword will survive in a vector-based representation of a document with a 

minimum support min_sup using the regular approach, then we can ensure that at least 

some edges will survive from the mid-levels for this keyword. This  is true for  two 

reasons: 

1. The minimum support at exactly mid-level is min_sup 

2. The monotonic behavior of Master Document-Graph ensures that the usual support 

count of an edge at mid-level (and for top level) is greater or equal to the usual 

support count of an edge at lower level.  

Now, we summarize three cases:  
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1. For very specific keyword-synsets, we ensure that at least some edges would be 

picked up by Gaussian minimum support strategy if that keyword was considered 

frequent in traditional bag-of-tokens-based approach. From the experiment in Figure 

3(d) we can see that keywords at the bottom levels are mostly infrequent. Previous 

arguments on the monotonic property of Master Document-Graphs show that if an 

infrequent keyword is frequent enough to pass the min_sup of the Apriori paradigm, 

even if its directly connected edge is removed from L1, there will be at least one edge 

left in L1 from mid-level of the MDG that represents its higher level of abstraction. 

Hence, Gaussian minimum support automatically picks mid-level abstractions of 

infrequent keyword-synsets. 

2. For edges that are at mid-levels, Gaussian minimum support strategy applies 

minimum support near to min_sup, so that their candidacy becomes something like in 

the traditional approach. Figure 3(d) also shows that most frequent keyword-synsets 

are found at the mid-levels. So, Gaussian minimum support strategy directly keeps 

keyword-edges in L1, where the keyword-synsets are found in mid-levels, and Figure 

3(d) ensures that keywords are most frequent at mid-levels. 

3. For very abstract keywords, we do not guarantee that any edge with or without a 

keyword-synset attached will appear in L1 after we apply the Gaussian minimum 

support strategy. This is because, in our case, the abstract edges with attached 

keyword-synsets are poor candidates for clustering because of the result of the 

monotonic behavior of our MDG where the edges linked with abstract keywords tend 
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to appear in a majority of our document-graphs (sometimes, even in all the 

documents).  

 
Candidate Generation 

 

In this section, we describe the candidate generation mechanisms of GDClust and 

GDClust-Plus. GDClust-Plus outperforms GDClust due to its efficient candidate 

generation technique which is based on Subgraph-Extension mining.  

 

Candidate Generation Mechanism in GDClust 
 

The document-graph construction algorithm (Table 1) ensures that each 

document-graph does not contain more than one direct edge between two vertices. 

Additionally, the overall sense discovery concept ensures that a subgraph does not appear 

more than once in an individual document-graph. In our case, all the edges and vertices 

of a document-graph are uniquely labeled. We generate a k-edge candidate subgraph by 

combining two (k-1)-edge subgraphs where these two (k-1)-edge subgraphs have a 

common core subgraph [12] of (k-2)-edges. In GDClust, each k-edge subgraph object is 

composed of a connected edge-list and a list of edges that generated this k-edge subgraph 

from a (k-1)-edge subgraph. Consider the 6-edge subgraph lmnopq of Figure 7 that has 
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Figure 7: Generation of a 6-edge subgraph from two 5-edge subgraphs. 
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been generated from two 5-edge subgraphs lmnop and mnopq (each of the 5-edge 

subgraphs having a common core mnop).  

GDClust requires multiple comparisons between core subgraphs while generating 

a higher order subgraph. To avoid the cost of comparison between each edge of 

subgraphs, GDClust assigns a unique code for each subgraph from the list of their edges. 

This code is stored as the hash-code of the subgraph object. Section “Subgraph Object” 

of Chapter 5 explains how hash-codes are generated for a subgraph object. Therefore, 

checking two core subgraphs to see whether they correspond to each other is just an 

integer hash-code comparison. The resulting candidate subgraphs, maintaining the 

minimum support, are chosen for the next iteration of the Apriori algorithm. 

Now, we describe an example to better illustrate the high cost of the Core-

subgraph strategy of GDClust. Consider an instance in which we have a total of 21 5-

edge subgraphs in the candidate list L5. We would try to generate a 6-edge subgraph from 

this list. Consider the situation of generating candidates using one 5-edge subgraph (e.g., 

lmnop) of L5. The FSG approach of our original GDClust tries to combine all other 20 

subgraphs with lmnop but succeeds, let us assume, only in three cases. Figure 8 illustrates 

that lmnop is successfully combined with only mnopq, mnopr and mnops. All 17 other 

attempts to generate a 6-edge subgraph with lmnop fail because the 4-edge core-

subgraphs, analyzed in this case, do not match. Among these 17 failed attempts, only the 

attempt with tmnoz is shown in Figure 8 with the label “Not Generated”. The rest of the 

failed attempts are indicated by dotted lines. 



 
TABLE  
 

31 

The instance of Figure 8 is depicted only for one subgraph (lmnop). For all these 

5-edge subgraphs of L5, there would be a total of 21 20 420× =  blind attempts to generate 

6-edge subgraphs. Some of these attempts would succeed, but most would fail to generate 

acceptable 6-edge candidates. Although the original GDClust [1] utilizes hash-codes of 

subgraphs and core-subgraphs for faster comparisons, it cannot avoid comparing a large 

number of hash-codes for all candidates. In GDClust-Plus, we smartly reduce the number 

of attempts to combine subgraphs by applying our Subgraph-Extension Mining 

technique, which is described in the following sub-section. 
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Figure 8: Attempts to combine lmnop with other 5-edge subgraphs of (L5). 
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Candidate Generation in GDClust-Plus: Subgraph Extension Mining 
 

Rather than trying a brute-force strategy of all possible combinations, like in 

Frequent Subgraph Mining (FSG) [28], in GDClust-Plus we use the Master Document-

Graph (MDG) as the source of background knowledge to reduce number of attempts 

needed to generate a k-edge subgraph from (k-1)-edge subgraphs. The Master Document-

Graph ensures that an extension of a k-edge subgraph can generate a (k+1)-edge 

subgraph. We maintain a neighboring-edges’ list for each (k-1)-edge subgraph (see 

“Subgraph Object” section of Chapter 5) and try to generate candidates for frequent 

higher order subgraphs by taking edges only from this neighboring-edges’ list. The 

neighboring-edges’ list of a subgraph contains only those edges that passed Dynamic 

minimum support strategy in find_frequent_1-edge_subgraphs procedure of 

Apriori Algorithm (Table 3), which further reduces the unnecessary generation of higher 

order subgraphs that will not pass min_sup of step 9 of the Apriori Algorithm.  

Figure 9 shows the Subgraph-Extension mechanism for subgraph lmnop, which 

can be compared with FSG approach of Figure 8. The gray edges of Figure 9 indicate the 

subgraph subject toward an extension, while a black edge indicates an extension of the 

gray subgraph maintained in our MDG. The same instance is used for both Figure 8 and 

Figure 9. The neighboring-edges’ list of lmnop contains edges {q, r, s}. Unlike in Figure 

8, in the (GDClust-Plus) example presented in Figure 9, the new Subgraph-Extension 

mining strategy does not try to generate higher order subgraphs 20 times. Rather, it tries 

only three times, using the knowledge about neighboring edges of lmnop in MDG. This 

results in only three attempts to generate higher-order candidate subgraphs, and none of 
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these attempts fails at step 3 of the Apriori Algorithm (Table 3) because the mechanism 

depends on the physical evidence of possible extension. Therefore, the Subgraph-

Extension mining strategy in GDClust-Plus offers a novel knowledge-based mechanism 

that eliminates unnecessary comparisons (of core subgraphs) or attempts to combine 

subgraphs.  

A Performance comparison between GDClust and GDClust-Plus is shown in 

Chapter 6 (section title: “GDClust vs. GDClust-Plus”). 
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Figure 9: Subgraph-Extension Mining of subgraph lmnop for GDClust-Plus. 
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CHAPTER 4  

INTERNAL MECHANISMS: CLUSTERING 
 

This chapter describes the clustering mechanism which we used both with 

GDClust and GDClust-Plus. The first section of this chapter describes our clustering 

technique, and the second section presents the similarity measures used during our 

clustering experiments. We also present traditional clustering mechanisms and explain 

our measure for evaluation of clusters’ quality in this chapter.  

 
Hierarchical Agglomerative Clustering (HAC) 

 
 

GDClust and GDClust-Plus use Hierarchical Agglomerative Clustering (HAC) [9] 

to group documents. The clustering unit (Figure 2) assigns unique identification to 

frequent subgraphs retrieved by the Apriori algorithm (Table 3). Information about 

document-graphs is stored in a hash table where the key is the document name. The 

corresponding value against a key contains a vector of the subgraphs’ identification 

numbers, which appear in the corresponding document-graph. The hash table does not 

contain the frequent subgraphs; rather it contains only frequent subgraphs’ identification 

numbers against each unique document name.  

The clustering unit (Figure 2) constructs a dissimilarity matrix that stores 

dissimilarities between every pair of document-graphs. Dissimilarity between a pair of 

document-graphs G1 and G2 is measured using the formula: 

d=1.0-similarity (4.1) 
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The similarity values range between [0, 1] for all the measures we used. We describe the 

similarity measures used for our experiments in the following section. 

 
Measures of Similarity between Document-Graphs 

 

Similarity between two document-graphs can be found using different measures. 

We performed our experiments using the following graph similarity measures: 

1. Matching coefficient 

2. Jaccard coefficient 

3. Dice coefficient 

4. Cosine coefficient 

5. Overlap coefficient. 

Among these five types of similarity measures, Matching Coefficient is the 

simplest. It counts only the number of common subgraphs in two document-graphs. More 

formally: 

1 2 Matching 1 2sim( G ,G ) count( FSG( G ) FSG( G ))= ∩  (4.2) 

We normalized it to the range [0, 1]. It is clear that this similarity measure concentrates 

on the matched subgraphs only. If two document-graphs have a large number of matches 

with a large number of mismatches, the matching coefficient only counts the matches and 

totally ignores the mismatches. Matching coefficient can be used in the test where the 

number of mismatches is negligible. In consequence, it does not convey enough 

significance in document clustering domain, because two large document-graphs can 

possess lots of matching subgraphs but an equal number of mismatching subgraphs as 
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well. Hence, ignoring the number of mismatches does not allow for proper similarity 

evaluation of two documents (especially when at least one of them is of a large size).  

Since both the common subgraphs and uncommon subgraphs are important, we 

need other similarity measures. Now, we describe Jaccard Coefficient [42, 43] that takes 

both numbers of matches and mismatches into account. The formula is: 

1 2
1 2 Jaccard

1 2

count( FSG( G ) FSG( G ))
sim( G ,G )

count( FSG( G ) FSG( G ))

∩
=

∪
 (4.3) 

where FSG(G1) and FSG(G2) are the sets of frequent subgraphs that appear in document-

graph G1 and G2 respectively. The dividend of equation (4.3) is the number of common 

frequent subgraphs between document-graphs G1 and G2, and the divisor is the total 

number of unique frequent subgraphs in G1 and G2.  

Although the Jaccard coefficient takes the number of mismatches into 

consideration in some way, it can strongly panelize these document-graphs which have 

small number of common subgraphs but also a much bigger number of subgraphs which 

do not match. We analyze and compare this similarity measure with the Dice coefficient 

[43, 44], which normalizes the number of common subgraphs by the total number of 

subgraphs in two documents:  

1 2
1 2 Dice

1 2

2 count( FSG( G ) FSG( G ))
sim( G ,G )

count( FSG( G )) count( FSG( G ))

× ∩
=

+
 (4.4) 

As a result of this normalization, the Dice coefficient does not penalize the document-

graphs with a small number of common subgraphs as harshly as Jaccard coefficient.  
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To illustrate the effect of this normalization we show a simple example in Table 

4. Let us assume that we have two document-graphs 1G  and 2G . Each of these document-

graphs has a total of 10 frequent subgraphs, i.e., 1count( FSG(G )) 10=  and 

2count( FSG(G )) 10= . Let us now consider cases with different numbers of common 

subgraphs occurring in both the document-graphs. We show that the Jaccard coefficient 

signifies lower similarity between 1G  and 2G  than the Dice coefficient. Table 4 shows the 

results of our analysis. It shows that for any number of common subgraphs, except when 

the number is 10, the Jaccard coefficient is smaller than the Dice coefficient, and the 

percentage of difference between the Dice and Jaccard coefficients is highest (47.4%) 

when the number of common subgraphs is lowest (i.e., only one common subgraph). The 

percentage difference gradually decreases as the number of common subgraphs in both 

document-graphs increases. Therefore, the Jaccard coefficient penalizes document-graphs 

with smaller number of common subgraphs more than the Dice coefficient does. When 

Table 4: Differences between Dice and Jaccard coefficients. 
( 1count( FSG(G )) 10=  and 2count( FSG( G )) 10= ). 

Number of common 
subgraphs 

Jaccard Dice Difference (in %) 
Dice Jaccard

( 100 )
Dice

− ×  

1 0.0526 0.10 47.4 
2 0.1111 0.20 44.4 
3 0.1765 0.30 41.2 
4 0.2500 0.40 37.5 
5 0.3333 0.50 33.3 
6 0.4286 0.60 28.6 
7 0.5385 0.70 23.1 
8 0.6667 0.80 16.7 
9 0.8182 0.90 9.1 
10 1.0000 1.00 0.0 
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number of common subgraphs tends to rise, the difference between Dice and Jaccard 

coefficient has a tendency to get smaller.  

The Cosine coefficient becomes the same as the Dice coefficient only for 

document-graphs with identical number of frequent subgraphs. Plus, it penalizes the 

similarity value of two document-graphs less severely when the numbers of frequent 

subgraphs are very different. Due to the better stability of similarity values even when 

comparing documents with significantly different sizes, the Cosine coefficient is 

commonly used in many text-clustering applications. Also, in our case, we do not want to 

make two document-graphs dissimilar based only on the property that one of them has 

few frequent subgraphs compared the other. The Cosine coefficient [45] for binary 

vectors is defined as follows: 

1 2
1 2 Co sin e

1 2

count( FSG( G ) FSG( G ))
sim( G ,G )

count( FSG( G )) count( FSG( G ))

∩
=

×
 (4.5) 

Table 5 shows that the Dice coefficient is smaller than the Cosine coefficient 

except, except when there are an equal number of frequent subgraphs in G1 and G2. We 

Table 5: Differences between Cosine and Dice coefficients. 
Number of 
common 

subgraphs 

count 
(FSG(G1)) 

count 
(FSG(G2)) 

Dice Cosine Difference (in %) 
Co sine Dice

( 100 )
Co sine

− ×  

50 50 500 0.1818 0.3162 42.5 
50 100 500 0.1667 0.2236 25.5 
50 150 500 0.1538 0.1826 15.7 
50 200 500 0.1429 0.1581 9.6 
50 250 500 0.1333 0.1414 5.7 
50 300 500 0.1250 0.1291 3.2 
50 350 500 0.1176 0.1195 1.6 
50 400 500 0.1111 0.1118 0.6 
50 450 500 0.1053 0.1054 0.1 
50 500 500 0.1000 0.1000 0.0 
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typically see that the higher the difference between the numbers of frequent subgraphs in 

G1 and G2, the higher the percent difference between the Cosine and Dice coefficients. 

Hence the Dice coefficient panelizes more harshly than the Cosine coefficient when the 

difference between the numbers of frequent subgraphs in the compared document-graphs 

is substantial. Both the coefficients tend to generate close similarity values when the 

difference between the numbers of frequent subgraphs in compared documents is small. 

It should be mentioned that we kept the number of common subgraphs fixed to 50 in 

Table 5, to make sure that the corresponding dividends of Dice and Cosine do not change 

due to varying number of common subgraphs. This ensures that all the presented changes 

in Dice and Cosine coefficients are only outcomes of varying number of frequent 

subgraphs in G1. 

For experimental purpose, we also show another measure named Overlap 

coefficient [46] of similarity. The value of the Overlap coefficient reaches the maximum 

when every frequent subgraph of one document-graph appears in the set of frequent 

subgraphs of the other document-graph. The formula for Overlap coefficient is:  

1 2
1 2 Overlap

1 2

count( FSG( G ) FSG( G ))
sim( G ,G )

MIN ( count( FSG( G )),count( FSG( G )))

∩
=  (4.6) 

Therefore, it reflects inclusion property of subgraphs of one document-graph in another. 

In Chapter 6, we show using experimental results how inaccurate the clustering becomes 

using the Overlap coefficient in our system.  

Chapter 6 (section title: “Clustering Accuracy with Different Similarity 

Measures”) shows experimental results of our clustering for different similarity measures. 
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Traditional Document Clustering Mechanism for Evaluation 
 

There are direct bag-of-token based approaches for document clustering. We 

compared our system against the ordinary vector model representation of documents. We 

can construct the dissimilarity matrix for our Hierarchical Agglomerative Clustering 

using the classic Cosine coefficient, reflecting the angle between every pair of documents 

represented as vectors of tokens. The simplest way to measure the Cosine similarity 

between two document vectors Di and Dj is to utilize the frequencies of the keywords 

without any kind of normalization. The formula is: 

( )

( ) ( )

T

it jt
t 1

i j Co sin e
T T

2 2
it jt

t 1 t 1

f f

similarity( D ,D )

f f

=

= =

×
=

∑

∑ ∑
 (4.7) 

where itf  indicates the frequency of the t-th keyword in document Di, and jtf  indicates 

the frequency of the t-th keyword in document Dj .  

From the previous section, we know that Cosine coefficient is not influenced by 

one document being small compared to the other, yet the frequencies of the keywords in 

equation (4.7) do not portray any parameter to emphasize how important a keyword is to 

the corresponding document in essence to the entire document archive. The term 

frequency-inverse document frequency (tf-idf) is a weight used in text mining for this 

purpose. To get the term frequency tfit, the count fit is normalized by the total number of 

important keywords in document Di to prevent bias toward longer documents to give a 

measure of the importance of the t-th keyword, 
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it
it

ikk

f
tf

f
=
∑

 (4.8) 

The inverse document frequency idft is a measure of the general importance of the 

t-th keyword. It is usually obtained by dividing the number of all documents by the 

number of documents containing the keyword, and taking the natural logarithm of the 

quotient. Therefore, the idft of the t-th keyword is: 

{ }t
i t i

N
idf ln

D : keyword D

 
 =
 ∈ 

 (4.9) 

where N is the total number of documents in the archive and { }i t iD : keyword D∈  indicates 

the number of documents where t-th keyword has frequency itf 0> . tf-idf of the t-th 

keyword in document Di is simply measured by multiplying the corresponding tf and idf : 

it it ttfidf tf idf= ×  (4.10) 

For better results, equation (4.7) can be rearranged using tf-idf in the formula: 

( )

( ) ( )

T

it jt
t 1

i j Co sin e
T T

2 2
it jt

t 1 t 1

tfidf tfidf

similarity( D ,D )

tfidf tfidf

=

= =

×
=

∑

∑ ∑
 (4.11) 

The corresponding experimental results on quality of the clustering using the 

classical Cosine measures are portrayed in Chapter 6. 

 
Measuring Clustering Accuracy: Silhouette Coefficient 

 

In many popular clustering algorithms, the number of expected clusters n is an 

input parameter provided by the user. To evaluate the quality of clustering at the given 
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number of clusters n, one can use silhouette coefficient [47, 48]. It is also possible to find 

out a number of clusters n, for which the average silhouette coefficient has the highest 

value H, by simulating the clustering with different numbers of output clusters 2 n N≤ ≤ , 

where N in our case is the total number of document-graphs.  

Assume that the cluster to which object i is assigned is denoted as A. Let a(i) be 

the average dissimilarity of i to all other objects of the cluster A. For any cluster C 

different from A, let d(i,C) be the average dissimilarity of i to all objects of C. After 

computing d(i,C) for all available clusters (except A), the smallest average dissimilarity 

denoted as [ ]
C A

b( i ) min d( i,C )
≠

= , is selected. The silhouette coefficient of object i, denoted 

as S(i), is then obtained by combining a(i) and b(i) as follows: 

a( i )
1 , if a( i ) b( i )

b( i )

S( i ) 0 , if a( i ) b( i )

b( i )
1, if a( i ) b( i )

a( i )

 − <
= =

 − >


 (4.12) 

Silhouette coefficient of an individual cluster is the average of silhouette coefficient S(i) 

for all the elements assigned to this particular cluster [48]. An overall measure of 

goodness of a clustering can be obtained by computing the average silhouette coefficient 

of all data points [49]. We get the most natural number of groupings by looking at the 

number of clusters for which there is a peak in the plot reflecting average silhouette 

coefficient. Experimental results on this evaluation mechanism are given in Chapter 6. 
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CHAPTER 5  

INTERFACE IMPLEMENTATION  

 
This chapter describes some important classes that we have designed, and some 

pre-existing API that help us to interface GDClust and GDClust-Plus with WordNet.  

 
Object-Oriented Paradigm 

 

The GDClust system has been built using Object Oriented Programming with a 

mechanism allowing to reduce the task of subgraph comparison to an integer comparison 

only. While comparing two subgraphs, GDClust does not require comparing each edge of 

those subgraphs; rather it requires comparing only two hashcodes. The hashcodes are 

generated from the list of DFS-codes of the edges of a subgraph when it is created (see 

section titled “Construction of Document-Graph and Master Document-Graph” of 

Chapter 2 for the generation of DFS-codes). 

 
EdgeLabel Object 
 

The EdgeLabel class is defined to maintain the basic information about an 

edge. An instance of this class stores information like source, target, frequency of the 

edge, etc. In our system, the source and the target are two different synsets of WordNet. 

A LabeledEdge of a document-graph or Master Document-Graph contains an 

EdgeLabel object. This indicates that all graphs under consideration have directed and 

labeled edges. Although the frequencies of the edges are not used in our approach, we 

kept a frequency field for future use.  
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LabeledEdge Object 
 

Each instance of the LabeledEdge class represents the actual edge of a graph 

in GDClust system. A document-graph or the Master Document-Graph is an instance of 

DirectedGraph<LabeledEdge> object. Therefore, an edge of a 

DirectedGraph is a LabeledEdge and the label of that edge is an EdgeLabel 

object. The LabeledEdge class has several fields among which the followings are very 

important: 

1. boolean edgeStatus; // true if forward edge, false if backward edge 

2. boolean isEdgeTraversed = false; 
/* Facilitates DFS traversal by checking the pre-traversed edges while generating 
DFS-Tree */ 
 

3. double depth = 0.0; 
/* To facilitate Gaussian minimum support strategy. This depth is dependent on 
the MDG, so when we use WordNet it should not be greater than 18. depth = 0 
means that the edge has not been yet traversed for generating DFS-code. */ 

 

The value of depth of the LabeledEdge informs about the abstraction level of an 

edge in the ontology and in our case depth 18≤  as WordNet has a maximum of 18 levels 

in its IS-A noun taxonomy. It is hard to distinguish the accurate abstraction level of a 

keyword in the taxonomy because of multiple senses of the keyword. For example, in 

Figure 10, the abstraction level of the keyword F can be 2, 3 or 4. In our investigation, we 

have used the ceiling value of the average depth of F. So the average depth of F is 

2 3 4
3

3

+ + = . The depth of a LabeledEdge is determined from the average depths of 

the source and the target synset of this particular edge.  
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Subgraph Object 
 

The Subgraph class represents a subgraph in GDClust system. Most of the 

methods of the Subgraph class are used to maintain and retrieve two of its private 

fields. The fields are: 

1. HashSet subgraphEdgeIDsHash and 

2. HashSet documentSuppHash. 

subgraphEdgeIDsHash is a simple HashSet that stores the DFS-codes of the edges 

of this subgraph. Since the DFS-codes of the edges of each subgraph are stored in a 

HashSet, comparison between two subgraphs can be even minimized to just one 

integer. We implemented such mechanism, so we do not have to even check each edge of 

the two subgraphs. For this purpose, we take the advantage of object-oriented facility and 

override the hashCode() method. In general, Java Virtual Machine (JVM) imposes a 

unique hashcode for each object running under it. JVM imposes this hashcode only if the 

hashCode() method is not overridden. Therefore, for each Subgraph object, if we 

A 

B 

F 

E 

C 

D 

G 

H 

 

Figure 10: Hierarchy of a keyword-synset F. 
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do not override the hashCode() method, we have a hashcode provided by the virtual 

machine for each subgraph object. Now, even if we have the same list of edges in two 

subgraphs, due to any other temporary facilitating fields of the subgraph class, JVM 

would impose different hashcodes for these two subgraphs. To avoid this, we needed to 

override the hashCode() method inside Subgraph class. We did it in such a way 

that the hashcode of the subgraph is dependent on the HashSet of the DFS-codes of the 

edges only. Therefore the equality comparison between two subgraphs hash been reduced 

to the comparison of two hashchodes of the two corresponding HashSets. The 

overridden hashCode() method of our Subgraph class is as follows: 

public int hashCode(){ 
return subgraphEdgeIDsHash.hashCode(); 

} 
 

The equals() method of Subgraph class uses the hashCode() in the following 

way: 

public boolean equals(Object o){ 
Subgraph s = (Subgraph) o; 
HashSet hs= s.getSubgraphEdgeIDsHash(); 
return   
      subgraphEdgeIDsHash.hashCode()==hs.hashCode(); 

} 
 

A subgraph object of GDClust-Plus maintains another important HashSet 

named neighbouringEdgeIDsHash. This HashSet contains important 

information about the neighborhood edges of a subgraph in Master Document-Graph to 

facilitate the Subgraph-Extension mining mechanism. 
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Interface with WordNet 
 

Many researchers over the whole world are working on different projects for data 

mining and considering WordNet as their reference of lexical database when required. As 

a result, a vast number of interfaces and APIs were developed in the past years to retrieve 

data from the WordNet dictionary. Among them .NET, COM, Java, Haskell, Lisp, 

OCaml, Palm, Perl, PHP, Prolog, Python and Ruby interfaces and APIs are being 

mentioned most frequently. WordNet was developed by Cognitive Science Laboratory of 

Princeton University [2], they provide necessary libraries (library functions are described 

in Section 3 of [50] ) and the API to access the WordNet dictionary using C++. The 

interface header and the library functions are available as wn.h and wn.lib with the 

distribution package. Besides, there are also Java APIs like JWNL [51] and JWordnet 

[52], which can be used to retrieve our WordNet ontology from WordNet lexical 

reference system.  

Android Technologies, Inc. provides a MySQL version of the WordNet converted 

from the Prolog files of the WordNet database. They took the Prolog database format of 

WordNet 2.0 files and converted them to MySQL batch script format. So researchers can 

import the files in MySQL and use them as needed. Android Technologies also provide 

the translation documentation for Prolog format to MySQL table format [53]. The 

MySQL version of WordNet raised interest among many programmers due to the 

simplicity of retrieval of needed ontologies directly from the dictionary database. 
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WNSQLBUILDER [54] is a Java tool from Sourceforge project to build the SQL 

database from the WordNet releases. The project also provides MySQL and PostGreSQL 

ready-to-use versions of the WordNet databases. 

The latest Windows version of WordNet is WordNet2.1. In GDClust, we used a 

low level interface named WordNet Java Native interface (WNJN [55]) to communicate 

with the WordNet dictionary. WNJN is able to communicate with the latest Win32 

version of WordNet. Moreover, since the WNJN uses low level platform dependent C++ 

codes, the interface is fast. Another advantage of WNJN is that it uses the original data of 

WordNet without any modification. Therefore, we have chosen WNJN as a bridge 

between GDClust and WordNet. 

 
JGraphT 

 

JGraphT is a Java graph library that provides mathematical graph-theory objects 

[56]. JGraphT supports various types of graphs including: 

1. directed and undirected graphs 

2. graphs with weighted, unweighted, labeled or any user-defined edges 

3. various edge multiplicity options including: simple-graphs, multigraphs, 

pseudographs 

4. unmodifiable graphs, which allow modules to provide “read-only” access to internal 

graphs 

5. listenable graphs, which allow external listeners to track modification events 

6. all compositions of the above mentioned graphs.  
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Although powerful, JGraphT is designed to be simple. For example, graph vertices and 

edges can be of any objects. We took this facility and incorporated LabeledEdge in 

the graphs for our document-graphs and Master Document-Graph. A JGraphT graph 

takes up very little room in the memory, and it is possible to create stream of graphs by 

overriding some of the original JGraphT methods. So, one can handle graphs even with a 

few million vertices and edges, and the graph objects can also be stored on disk, since 

they can be serialized. GDClust only utilizes the data structure of JGraphT for document-

graphs and the Master Document-Graph. Thus, although GDClust handles thousand of 

document-graphs with thousands of edges, the memory and disk usage is very efficient. 
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CHAPTER 6  

EXPERIMENTAL RESULTS 

 
The majority of our experimental results can be found in this chapter. The 

machine we used to execute all our experiments had an Intel Pentium 4 CPU (2.0 GHz) 

and 1GB of RAM running under Windows XP. All our experiments are conducted on the 

20 News Groups dataset [37], which is regarded as a benchmark collection of data for 

natural language processing.  

 
Document-Graph Construction 

 

Figure 11 shows the scalability of our document-graph construction algorithm 

(which is depicted in Table 1). It shows that the algorithm performs its execution in linear 

fashion with an increasing number of documents. In the experiment shown in Figure 

11(a), a total of 100 unique keywords with highest information gain were selected from a 
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Figure 11: Document-graph construction time for 2000 documents. 
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maximum of 2000 documents. Figure 11(b) shows the experiment with 200 keywords 

from the same set of 2000 document. Both experiments show that the behavior is linear. 

The corresponding MDG of Figure 11(a) contained 853 unique edges whereas the MDG 

related to Figure 11(b) contained 1331 edges. Database D of the Apriori algorithm of 

Table 3 contains the generated 2000 document-graphs.  

For most of the experiments in this chapter, we used a subset of the 20 News 

Groups dataset with 5000 documents from only 10 groups. The graph for the scalability 

test with these 5000 documents is drawn in Figure 12. The Master Document-Graph of 

the generated 5000 document-graphs contained 1304 unique edges. 

 
Performance of GDClust 

 

This section provides experimental results of GDClust using the FSG approach. 

All of the 1304 edges of the MDG were 1-edge candidates before calling the 

find_frequent_1-edge_subgraphs procedure of Table 3. This procedure 

 
5000 Documents, 200 Keywords, 10 Groups

MDG contains 1304 edges

Number of Documents

0
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00
22

50
25

00
27

50
30

00
32

50
35

00
37

50
40

00
42

50
45

00
47

50
50

00

T
im

e 
(m

s)

0.0

200.0x103

400.0x103

600.0x103

800.0x103

1.0x106

1.2x106

1.4x106

 

Figure 12: Document-graph construction time for 5000 documents. 
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utilizes the Gaussian minimum support strategy to prune 1-edge subgraphs from L1. After 

this mechanism is applied, a total of 123 edges were left in L1. In this experiment, the 

Apriori paradigm discovered the largest frequent subgraph with 19 edges. Figure 13 

shows the Apriori algorithm’s execution time to discover k-edge subgraphs using the 

FSG approach.  

Table 6 shows the number of detected k-edge subgraphs and the number of 

attempts to combine (k-1)-edge subgraphs at each iteration of the Apriori paradigm. It 

shows that 10-edge subgraphs are most frequent in our document-graph archive. A total 

of 713 different 10-edge subgraphs passed the minimum support threshold min_sup. 

Since 10-edge subgraphs are the most frequent ones, obviously the number of attempts to 

construct 11-edge subgraphs from 10-edge subgraphs reaches the maximum (marked in 

bold in Table 6). The execution time for generating k-edge subgraphs depends on the 

number of (k-1)-edge subgraphs generated in the previous iteration of the Apriori 
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Figure 13: k-edge subgraph discovery time using FSG Approach of GDClust. 
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paradigm. Since the number of 10-edge subgraphs is the maximum, the peak of the line 

in Figure 13 is at 11-edges. 

For this simulation, min_sup is set to 5% (allowing the Gaussian minimum 

supports to be in the range [5, 100], resulting the amplitude of the Gaussian function, 

A=95), and the c value of equation (3.1) is derived with w=(25% of lmax) in equation 

(3.2). We found lmax=14 from the Master Document-Graph of these 5000-document 

graphs. The motivation of setting w to (25% of lmax) appeared from the experimental 

result shown in Figure 3(d). It shows that the keyword distribution fits the Gaussian 

shape with w=(25% of 16) where lmax was 16 for that specific dataset. 

Table 6: Number of k-edge subgraphs and attempts to construct k-edge subgraphs. 
 

Information about the experiment: 5000 documents, 200 Keywords, min_sup=5%, 
w=(25%of lmax), 123 1-edge subgraphs. 

k Number of k-edge subgraphs Number of attempts to construct k-
edge subgraph 

2 107 123X123 
3 177 11342 
4 309 31152 
5 439 95172 
6 537 192282 
7 614 287832 
8 677 376382 
9 708 457652 

10 713 500556 
11 694 507656 
12 656 480942 
13 596 429680 
14 520 354620 
15 416 269880 
16 263 172640 
17 98 68906 
18 15 9506 
19 1 210 
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To show the impact of Gaussian minimum support, we collected the number of 

selected 1-edge subgraphs from the candidate list of 1304 edges with different min_sup 

and placed them in Table 7. It shows that the lower the min_sup (small min_sup indicates 

high amplitude A of equation 3.1), the higher the number of 1-edge subgraphs after 

Gaussian filtration. Although Table 7 does not show it, sometimes, if min_sup is very 

small, the reduction of the min_sup value may not result in further inclusion of 1-edge 

subgraphs if all edges in the mid-levels are already included by a higher min_sup. In that 

case, w can be increased to include additional 1-edges subgraphs, if necessary. 

Edges can be pruned even with fixed min_sup, but varying width denoted by w, of 

the Gaussian minimum support curve. A narrower Gaussian curve (smaller w) would 

result in fewer subgraphs, whereas a broader Gaussian curve (larger w) will generate 

more 1-edge subgraphs. This behavior is reflected in Table 8. It shows that with a fixed 

min_sup, the number of selected 1-edge subgraphs increases with increasing values of w 

 

Table 7: Impact of Gaussian minimum support on number of 1-edge subgraphs. 
 

Information about the experiment: varying min_sup, w=(25% of lmax), 1304 edges in 
MDG. 

min_sup (%) Number of 1-edge subgraphs after Gaussian minimum 
support strategy 

1 290 
2 245 
3 190 
4 149 
5 123 
6 107 
7 100 
8 80 
9 67 
10 61 

 



 
TABLE  
 

55 

(i.e., widening the Gaussian curve). Therefore, one can fine tune the parameters of the 

Gaussian function for expected accuracy in a specific domain. 

One can also move the center of the Gaussian curve’s peak by controlling the b 

value of the equation (3.1), skewing the curve in any direction (i.e., toward more or less 

abstract levels of MDG). In all of our experiments, we kept the curve symmetric because 

most of the important senses of the document-graphs are represented by the midlevel of 

the ontology (i.e., MDG) and similar document-graphs have the tendency to start 

overlapping at midlevel (discussed in Chapter 3). 

 
Performance of GDClust-Plus: Subgraph-Extension mining 

 

In this section, we use the same dataset with 5000 documents and 200 keywords 

that we used for the previous section. min_sup has been set to 5% and w=(25% of lmax). 

Figure 14 shows the runtime required to detect certain k-edge subgraphs. Table 9 shows 

information about the quantity of k-edge subgraphs generated and the number of attempts 

made to construct these subgraphs from (k-1)-edge ones.  The table shows that Subgraph- 

Table 8: Impact of w on number of 1-edge subgraphs.  
 

Information about the experiment: varying w, min_sup=5%. 
x 

( w =x % of lmax ) 
Number of 1-edge subgraphs after Gaussian minimum 

support strategy 
1 98 

12.5 98 
25 123 

37.5 155 
50 201 

67.5 259 
75 295 

87.5 327 
100 341 
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Figure 14: k-edge subgraph discovery time using Subgraph Extension Mining. 

 
 
Table 9: Number of k-edge subgraphs and corresponding number of attempts. 
 

Information about the experiment: 5000 documents, 200 Keywords, min_sup=5%, 
w=(25%of lmax)) using Subgraph Extension Mining. 

k Number of k-edge subgraphs Number of attempts to construct k-
edge subgraph 

2 107 224 
3 177 655 
4 309 1666 
5 439 3639 
6 537 5814 
7 614 7519 
8 677 9083 
9 708 10450 
10 713 11259 
11 694 11681 
12 656 11691 
13 596 11293 
14 520 10465 
15 416 9248 
16 263 7454 
17 98 4726 
18 15 1763 
19 1 98 
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Extension mining found the largest subgraph with 19 edges during this subgraph 

discovery process. 

The numbers of subgraphs of Table 9 perfectly matches the numbers of subgraphs 

in Table 6, confirming that our Subgraph-Extension mining approach performs the 

discovery of subgraphs accurately. Once again, among all k-edge subgraphs, 10-edge 

subgraphs are the most frequent. In our Subgraph-Extension mining process, the number 

of attempts to generate k-edge subgraphs from (k-1)-edge subgraphs depends on the 

MDG-driven neighborhood lists of those (k-1)-edge subgraphs. As the result, the number 

of attempts is far lower than with the FSG approach of GDClust (because we avoid 

unsuccessful attempts to generate candidate subgraphs).  

The Appendix of this thesis contains an experiment on Subgraph-Extension 

mining with a large dataset of 15000 documents. We compare the performance of 

Subgraph-Extension mining with the FSG approach of GDClust in the following section. 

 
GDClust vs. GDClust-Plus 

 

GDClust-Plus outperforms GDClust by a high magnitude due to our novel 

Subgraph-Extension mining technique. Figure 15 shows the difference between the 

runtime of these two approaches by combining Figure 13 and Figure 14 from the 

previous two sections. The gray line indicates the time necessary to discover k-edge 

subgraphs using GDClust’s FSG approach. The black line indicates the performance of 

the Subgraph-Extension mining approach of GDClust-Plus. Due to the significant speed 

of the Subgraph-Extension mining, the black line looks linear and almost flat when it is 
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compared with the gray line of the FSG approach, although the actual behavior of 

Subgraph-Extension mining is not really linear. We made the boundary of the scale of the 

Y-axis of Figure 15 smaller and redraw it in Figure 16 just for an illustration. Both the 

curves have their peaks  near to the maximum number of k-edge  subgraphs  (in this case,  
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Figure 15: Comparison between FSG and Subgraph-Extension mining approach. 
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Figure 16: Representation of Figure 15 with shorter boundary of the scale. 
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k=10). Although, they have the similar tendency, GDClust-Plus’s Subgraph-Extension 

mining approach performs around 60 times better than GDClust’s FSG approach when 

detecting 10-edge subgraphs.  This  number  is not  static and can vary depending  on  the 

document-archive size, the number of 1-edge candidates generated using Gaussian 

dynamic minimum support strategy and the number of subgraphs generated at lower 

values of k (which is also dependent on the character of the document corpora).  

The difference is the most visible at k=11 where the blind generation of FSG 

reached its peak caused by the maximum number of 10-edge subgraphs. For generating 

Table 10: Comparison between GDClust and GDClust-Plus. 
Information about the experiment: 5000 documents, 200 Keywords, min_sup=5%, 
w=(25%of lmax)) using Subgraph Extension Mining. 

Number of attempts to construct    
k-edge subgraph 

k 
Number of k-edge 

subgraphs FSG strategy of 
GDClust 

Subgraph 
Extension Mining 
of GDClust-Plus 

Saved attempts 
(in %) 

 

2 107 123X123 224 98.5 
3 177 11342 655 94.2 
4 309 31152 1666 94.7 
5 439 95172 3639 96.2 
6 537 192282 5814 97.0 
7 614 287832 7519 97.4 
8 677 376382 9083 97.6 
9 708 457652 10450 97.7 

10 713 500556 11259 97.8 
11 694 507656 11681 97.7 
12 656 480942 11691 97.6 
13 596 429680 11293 97.4 
14 520 354620 10465 97.0 
15 416 269880 9248 96.6 
16 263 172640 7454 95.7 
17 98 68906 4726 93.1 
18 15 9506 1763 81.5 
19 1 210 98 53.3 
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11-edge candidate subgraphs, the overhead was effectively reduced by our Subgraph-

Extension mining approach from 507656 to 11681 attempts (saving 97.7% attempts). 

GDClust-Plus does not try to combine every (k-1)-edge subgraph to generate k-edge 

subgraphs. Rather, it makes this attempts only when provided with the evidence of 

neighborhood from the MDG. As a result, it will perform same or better than FSG 

approach. If the MDG composes to a star then the Subgraph-Extension mining approach 

would perform the same as FSG approach. In practice, it is very unlikely that the MDG 

would form a star. So, the chance that the Subgraph-Extension mining approach would 

perform better than FSG approach is very high. Table 10 combines the number of 

attempts to construct k-edge subgraphs from (k-1)-edge subgraphs using both the 

approaches. It shows a significant differences in the numbers of attempts between these 

two algorithms and illustrates why GDClust-Plus dominates over the original GDClust.  

 
Clustering Accuracy Measurement: Silhouette Coefficient 

 

The frequent subgraphs discovered using either the FSG approach of GDClust or 

Subgraph-Extension mining approach of GDClust-Plus are used to cluster the 20 News 

Groups corpora. For our experiments, 5000 documents were chosen from 10 different 

news groups. Figure 17 shows the average silhouette coefficients for different numbers of 

clusters generated by our hierarchical agglomerative clustering (HAC). As the tendency 

of the curve is downward after certain number of clusters, we displayed silhouettes only 

up to 50 clusters in Figure 17. The graph shows that the maximum average silhouette 

coefficient (i.e., the best clustering) is found when the number of clusters is 8. The result 
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of 0.99 is very good, as average silhouette coefficient falls into [-1, 1]. So, our best result 

is really close to the number of groups in the input documents (our 5000 documents had 

10 predefined groups). It needs to be noted that all the average silhouettes displayed in 

Figure 17 are greater than 0.8 which is particularly good. This means that average 

silhouette coefficient remains high in the neighborhood of pre-labeled number of clusters 

(i.e. 10) and gradually falls downward in our a plot. This demonstrates a close match of 

cluster numbers with the number of predefined groups of the dataset. 

 

 

Clustering Accuracy with Different Similarity Measures 
 

We discussed different graph similarity measures in Chapter 4. In this section we 

show results of our analysis using those similarity measures. We used the same subset of 

the 20 News Groups dataset (5000 documents from 10 groups and 200 keywords) for 

clustering.  
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Figure 17: Average silhouette coefficient calculated for different numbers of clusters. 
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Clustering with Cosine Coefficient
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Clustering with Jaccard Coefficient
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Clustering with Overlap Coefficient

Number of Clusters

0 2 4 6 8 10 12 14 16 18 20 22 24

A
ve

ra
ge

 S
C

0.0

0.2

0.4

0.6

0.8

1.0

 
(e) 

Figure 18: Clustering accuracy with different kinds of similarity measures. 
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Figure 18 shows our analysis with different similarity measures. It shows that we 

always get the highest average silhouette coefficient at 8 clusters using any similarity 

measure, except for the Overlap coefficient of Figure 18(e). The value of the Overlap 

coefficient is the maximum when every frequent subgraph of one document-graph 

appears in the set of frequent subgraphs of the other document-graph. This rarely happens 

in our document-graphs. As we remove very common 1-edge subgraphs near the top 

levels of the hierarchy, it is unlikely that a lot of subgraphs will match between two 

document-graphs. Figure 18(e) shows that average silhouette is less than 0.8 for every 

number of clusters except for 2. This illustrates that the Overlap coefficient does not meet 

our purpose.  

Although the Dice, Jaccard and Matching coefficients show that the best 

clustering is found when there are 8 groups in the dataset, they all keep showing high 

accuracy when the number of clusters increases. From this perspective, Figure 18(a) 

shows better variation on the average silhouette coefficient for a different number of 

clusters confirming well-known opinion that Cosine coefficient is more appropriate in 

our case of documents’ clustering. This is especially interesting, in the context of the fact 

that Cosine coefficient became popular to balance similarities between documents of 

significantly different size. 

 
Comparison of GDClust-Plus with Traditional System 

 

We discussed the traditional bag-of-tokens strategy for document clustering in 

Chapter 4. In this section, we compare the accuracies of the traditional document 
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clustering and the sense-based clustering mechanism of GDClust. To make sure our 

results can be easily compared, we used the same archive of 5000 documents from 10 

groups with 200 keywords that we discussed before. As for traditional approaches, we 

directly used equation (4.7) and (4.11) to construct the distance matrix for Hierarchical 

Agglomerative Clustering. We plot average silhouette coefficients for different numbers 

of clusters and compare them with the results achieved for GDClust (Figure 17). Results 

of the clustering with three mechanisms: (1) GDClust (or GDClust-Plus), (2) traditional 

frequency-based document clustering and (3) traditional tf-idf based document clustering 

are depicted in Figure 19. The dashed line of Figure 19 is a copy of results reported in 

Figure 17. The gray line indicates results from the traditional (i.e., un-normalized) vector 

representation of documents with cosine distance measurement using frequency of terms 

only, where the solid black line is an outcome of similar vector representation of 

documents with utilized tf-idf (i.e., counts of terms’ frequencies are properly normalized, 

reducing differences between long and short documents).  

Figure 19 shows that GDClust detects best clustering with 8 clusters. It also 

shows a very high average silhouette with 10 clusters indicating highly accurate 

clustering. In contrary, the vector representation of documents cannot show satisfactory 

accuracy with any number of clusters, except for 2, which is not desired for 5000 

documents of 10 groups. Also with large numbers of clusters, both frequency-based and 

tf-idf based clustering mechanisms quickly reaches negative average silhouettes. The 

frequency-based traditional approach results in the negative average silhouette coefficient 

after 17 clusters, and the tf-idf based approach generates negative values after 11 clusters. 
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Although average silhouettes can be in the range [-1, 1], a negative value is definitely 

undesirable because this corresponds to a case in which the average dissimilarity of 

documents in the cluster is greater than the minimum average dissimilarity of documents 

in other clusters [49]. Therefore, a negative average silhouette coefficient at any number 

of clusters indicates strongly inaccurate clustering at that number.  

Because GDClust is a subgraph-based clustering mechanism, although there are 

only 200 keywords, it discovers enough frequent subgraphs for each of the documents to 

cluster properly. It results in positive average silhouettes at every number of clusters. 

Therefore, we can conclude that our GDClust system is capable of providing proper 

sense-based clusters, even with a small number of keywords. 
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Figure 19: Comparison of Subgraph Extension Mining with traditional systems. 
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CHAPTER 7  

CONCLUSION 

 
GDClust presents a new technique for clustering text documents based on the co-

occurrence of frequent senses in the documents. The developed, novel approach offers an 

interesting, sense-based alternative to the commonly used bag-of-tokens technique for 

clustering text documents. Unlike traditional systems, GDClust harnesses its clustering 

capability from the frequent senses discovered in the documents. It uses graph-based 

mining technology to discover frequent senses. The novelty of our work lies beneath two 

new approaches introduced in this report: Dynamic minimum support strategy and 

Subgraph-Extension mining technique. Subgraph-Extension mining technique 

outperforms FSG strategy by high magnitudes. Besides, we have shown that GDClust 

performs more accurately than traditional systems. GDClust is an automated system and 

requires minimal user interaction for its operations. 

 
Limitations 

 

To keep things simple, we used only noun keywords in all our experiments. We 

believe however that our techniques will work well with all parts of speech that are 

provided with a hierarchical ontology. Our claim is based on the observation that all our 

approaches are graph-based and do not focus on the comparison of the actual keywords. 

The document-graph construction algorithm (Table 2) could be modified to incorporate 

all the parts of speech if necessary. Indeed, based on our experiments, we started to 
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believe that the noun keywords from the text documents are enough to cluster documents 

accurately.  

 
Future Works 

 

In the future, we want to develop an intelligent system for the Dynamic minimum 

support strategy. In our system, since the 20 News Groups dataset follows Gaussian 

trend, we have utilized Gaussian minimum support strategy for generating Dynamic 

minimum support thresholds. In Chapter 3, we describe that the domain behavior for the 

keywords can be different than the Gaussian trend, depending on the document archive. 

This requires an intelligent system to determine the shape of the Dynamic minimum 

support curve if the domain is unknown.  
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APPENDIX A 

SUBGRAPH-EXTENSION MINING FOR LARGE DATASET 
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From the experimental results of Chapter 6, we know that the GDClust’s FSG 

approach is less efficient than the Subgraph-Extension mining approach. This is why it is 

very time inefficient to conduct subgraph discovery on large datasets using FSG approach 

of GDClust. GDClust-Plus’s Subgraph-Extension mining approach provides faster 

execution even with large datasets. Figure 20 shows an example with 15000 documents 

and 200 keywords. Table 11 contains the corresponding information. 

 

Table 11: Information 
about Subgraph Extension 
Mining of Figure 20. 

k N(k) Attempts 
(k) 

2 65 132 
3 101 317 
4 181 726 
5 306 1610 
6 464 3144 
7 621 5302 
8 758 7757 
9 830 10163 
10 832 11748 
11 769 12305 
12 650 11797 
13 479 10272 
14 293 7755 
15 140 4835 
16 47 2343 
17 10 795 
18 1 170 

N(k)=Number of k-edge subgraphs 
Attempts(k) = Number of attempts 
to construct k-edge subgraphs 

Subgraph Extension Mining
15,000 Documents, 200 keywords

(Among 1306 edges 53 edges were
left after Gaussian Dynamic)
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Figure 20: Time elapsed to detect different k-edge 
subgraphs. 


