APRIORI APPROACH TO GRAPH-BASED CLUSTERING

OF TEXT DOCUMENTS

by

Mahmud Shahriar Hossain

A thesis submitted in partial fulfillment
of the requirements for the degree
of
Master of Science
in

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

April 2008

O©COPYRIGHT
by
Mahmud Shahriar Hossain
2008

All Rights Reserved

APPROVAL

of a thesis submitted by

Mahmud Shahriar Hossain

This thesis has been read by each member of tisestbemmittee and has been
found to be satisfactory regarding content, Englisage, format, citation, bibliographic
style, and consistency, and is ready for submissidhe Division of Graduate Education.

Dr. Rafal A. Angryk

Approved for the Department of Computer Science

Dr. John Paxton

Approved for the Division of Graduate Education

Dr. Carl A. Fox

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfilment tfe requirements for a master’'s
degree at Montana State University, | agree thatlibrary shall make it available to
borrowers under rules of the Library.

If I have indicated my intention to copyright thisesis by including a copyright
notice page, copying is allowable only for schglgrlirposes, consistent with “fair use”
as prescribed in the U.S. Copyright Law. Requestpérmission for extended quotation
from or reproduction of this thesis in whole or parts may be granted only by the

copyright holder.

Mahmud Shahriar Hossain

April 2008

To

My Father

TABLE OF CONTENTS

1. INTRODUGCTION ..ottt ettt e e e et e e e et e e e et e e e eaa s aaeannsneeeesnnaaeens 1
Problem Description and Motivation Behind GraphdshB®ocument Clustering 1
Yol 0] o[TSP PPPPTT 4
LItErature REVIEW.........uiiiiiiiiiiiiiie ettt e e e e e e s e e bbb bbb eeeeeees 5
OUutline Of the THESIS......coiii e e 8

2. GDCIUSt OVERVIEW ..ot ettt e e e e e 10
ATCRITECIUIE. ...t e e e e e e e 10

CoNVErSION MOAUIE..........coooiiiiiii e 10
GDCIUSE MOAUIE ...t 11
TexXt DOCUMENT ATCRIVE........uuiiiiiiiiiiiies sttt e e e 11
WordNet Dictionary Database............coooiieeeeeeiiii 12
Document-Graph Database...............eevvs e e e eeeevennrinsanaseeeeeeeseaeeeeseeeeenees 14
Construction of Document-Graph and Master Docun@aiph.............cccoeeevieeenenn. 14

3. INTERNAL MECHANISMS: APRIORI PARADIGMcccmiiiiiiiiiiiiiiiiaaeeeeeeeeeaen 17
APIION PAradigmooooeeeeiiiiiiiiiie ettt e e e e e e e e e e aeeeeeeaaeeeeeenneee 18
Dynamic Minimum SUpport SIrategyoovvvcceeeeeeeeeeeeeeeeerrr e e e e e e e eeeeas 19

Motivation toward Gaussian Minimum Support Strategy.............ccvvvvvevvvvennnnnns 20
Gaussian Minimum Support Strategy and Motivatiomaa Data Dimensionality 24
Candidate GENEIALION...........ooiiiiiiiieie et e e e e e e e e e e e e eeeeeeeeaeaneees 29
Candidate Generation Mechanism in GDCIUSL.. . .evvviiiiiiiiiiiiiiiiiiieeeeeeeennnnn 29
Candidate Generation in GDClust-Plus: Subgraphriska Mining..................... 32
4. INTERNAL MECHANISMS: CLUSTERINGccoii e 34
Hierarchical Agglomerative Clustering (HAC) ... ccoeie i 34
Measures of Similarity between DOCUMENt-GraphS . .veeveeeiiiiiiiiiiiiaiiis 35
Traditional Document Clustering Mechanism for Exaion.....................cccoevvvvvnnnnn. 40
Measuring Clustering Accuracy: Silhouette Coeffitie............ccevvvvvviiriiiiiniieeeeeeenn, 41
5. INTERFACE IMPLEMENTATION ..ottt 43
Object-Oriented Paradigmoooiiii ot re e e e e 43
[STo (o =T =T o<1 @] o] =Y ! F S 43

LabeledEAQEDDJECT.uuiiiiiiiiiiiiiee e rmmmmm e 44

Vi

TABLE OF CONTENTS — CONTINUED

SubgraphODBJECE ... e 45
Interface With WOIANETiiiiii e e e e a7
TG AP T L e —————————————————— 48

6. EXPERIMENTAL RESULTS. .. oot e e e et e e e e et e e e e e e eenneas 50
Document-Graph CONSITUCTIONuu..e. . s s ese e e s e e e e e eeeeeeeeeesesessesssnnnnnnnnes 50
Performance Of GDCIUST........uuiiiii e e e e e e e e 51
Performance of GDClust-Plus: Subgraph-Extensionmgin.............ccccceeeveeeeeeeeeen.n. 55
GDCIUSE VS. GDCIUSE-PIUS ...ttt eeemmmiee et 57
Clustering Accuracy Measurement: Silhouette CoffiC.................ccoovvvivviiiiiininnnn, 60
Clustering Accuracy with Different Similarity Mea®s$cccccvvvvviiiiiiiieeiieneeenn. 61
Comparison of GDClust-Plus with Traditional System...............ccooovvvviiiccieeenn. 63

7. CONCLUSIONuttttiiiiiee ettt e e e e e e e e e e e e e e s s s e s snnnnreaaaaaaaaaaeeas 66
LIMIEALIONS 1ottt ettt e e e e e e e e e e e e e e et b b beeenee e e e e e e e e e nnnnnnnn 66
FULUNE WOTKS .ottt 111 e et ettt e s e e e e e ennaaaaeeaeeeeeeeeeeees 67

REFERENGCESooiiiiiiiiiiiit e e ettt e e e e s st e e e e e s et aaansbneaeeeeeannsees 68

APPENDIX A: SUBGRAPH-EXTENSION MINING FOR LARGE DAASET 75

Vil

LIST OF TABLES

Table Page
1. Algorithm for construction of document-graphs.............cccooviiiiiiciciienen. 9.1
2. A sample transaction table of market basket.....c......ccccoeeiiiiiiiies 17
3. AP0 AIGOIEAML Lo 19
4. Differences between Dice and Jaccard coeffisient................ccccevvviiieeieinnnnnnn. 7.3
5. Differences between Cosine and Dice coefficientS...........cccceeeeeiiiiiiiiiiiiinns 38
6. Number ok-edge subgraphs and attempts to conskrectge subgraphs. 53
7. Impact of Gaussian minimum support on numbdrefige subgraphs. 54
8. Impact ofw on number ofl-edge subgraphs.ceeiiiiiiiiiicii 55
9. Number ok-edge subgraphs and corresponding number of attempt............. 56
10. Comparison between GDClust and GDCIUSt-PIUS................ovvviiiiiiiiiieeeeeennn. 59
11. Information about Subgraph Extension Mining-fure 20................ccoevvvvvrnnnns 76

viii

LIST OF FIGURES

Figure Page
1. Traditional keyword-based approach and sensedogsproach.ccccceeeeeeennnn. 3
2. Architecture of GDClust and its flow of data................cccccciiiiiiiiiiiiie, 12
3. Behavior of datasets and the relation with MR&OOoOMYy.............ooevvvvviiiiinnnnnnn. 21
4. Gaussian minimum support strategy for multileweling.ccccovviiiiiinnn. 24
5. lllustration of edges at different depth of MadDocument-Graph...................... 25
6. A document-graph containing only one keywordsgn...............oeoevvvevevviinnnnnns 26
7. Generation of -edge subgraph from twedge subgraphs.ccceevvvvviiiinnns 29
8. Attempts to combinennopwith other5-edge subgraphs df4).ccccceveveens 31
9. Subgraph-Extension Mining of subgrdpimopfor GDClust-Plus.c........ 33
10. Hierarchy of a Keyword-SYNSBL........cccooeiieiiiiiiieeee e 45
11. Document-graph construction time B00documents...........ccccceeeeeiieeeeeeeeeeenn. 50
12. Document-graph construction time E00documents............ccccceeeeiieeeeeeeeeeenn. 51
13.k-edge subgraph discovery time using FSG Approacb@Elust. 52
14.k-edge subgraph discovery time using Subgraph Extemining.................... 56
15. Comparison between FSG and Subgraph-Extensimngrapproach................ 58

16. Representation of Figure 15 with shorter boundéthe scale. 58

LIST OF FIGURES — CONTINUED

Figure Page
17. Average silhouette coefficient calculated fiffedent numbers of clusters. 61
18. Clustering accuracy with different kinds of Barity measures............ccccceeeenn... 62
19. Comparison of Subgraph Extension Mining witditional systems. 65

20. Time elapsed to detect differdmedge subgraphs..........cccccciiiiiiiiieeieenee. 76

ABSTRACT

This thesis report introduces a new technique audwent clustering based on
frequent senses. The developed system, named GDQBraph-Based Document
Clustering) [1], works with frequent senses rattiemn dealing with frequent keywords
used in traditional text mining techniques. GDClystesents text documents as
hierarchical document-graphs and uses an Aprioradgdgm to find the frequent
subgraphs, which reflect frequent senses. Discavieegiuent subgraphs are then utilized
to generate accurate sense-based document clugfergpropose a novel multilevel
Gaussian minimum support strategy for candidatgmsydh generation. Additionally, we
introduce another novel mechanism called SubgragierASion mining that reduces the
number of candidates and overhead imposed by #uititmal Apriori-based candidate
generation mechanism. GDClust utilizes an Engbstyliage thesaurus (WordNet [2]) to
construct document-graphs and exploits graph-bds¢al mining techniques for sense
discovery and clustering. It is an automated systamd requires minimal human
interaction for the clustering purpose.

CHAPTER 1

INTRODUCTION

In this chapter, we introduce the motivation of @rdoased Document Clustering,
its mutual benefits over traditional clusteringheigues, and the related literature. We
call our system GDClust, which stands for Grapheda®ocument Clustering. We also
developed an enhanced version of the GDClust-streidhat significantly outperforms
our original version of the system. We call thisvngystem GDClust-Plus. The overall
GDClust system is described in Chapter 2. As anrongment in GDClust-Plus, we
introduced a new mechanism and named it SubgrapimErwn mining. It is described in
Chapter 3. In the context of this thesis, we shsdl the terms GDClust and GDClust-Plus
interchangeably. When we refer to GDClust-Plus,naicate our specific enhancement.
It should be mentioned that both systems are bnilthe GDClust-architecture, but some
of the graph-mining techniques are enhanced in @Btc?lus to improve performance.

Problem Description and Motivation
Behind Graph-based Document Clustering

The last decade has seen a significant increasesgarch on text clustering,
natural language processing and textual informagiiraction. Most of these techniques
rely on searching for identical words and countihgir occurrences. The goal of our
research is to develop a new, human-like, hieraathilocument clustering technique
driven by recent discoveries in the area of grapéeld data mining and hierarchical

clustering of text documents. The major motivationour approach comes from typical

human behavior when people are given the taskgs#rozing multiple documents. As an
example, consider the behavior of a scientific baaktor who is faced with the
complicated problem of organizing multiple reseapelpers into a single volume with a
hierarchical table of contents. Typically, even g@pfrom the same research area are
written (1) in multiple writing styles (e.g. usinfglusters” instead of “concentration
points”), (2) on different levels of detail (e.qurgey papers versus works discussing the
complexity of a single algorithm) and (3) in refiece to different aspects of an analyzed
area (e.g. clustering of numeric versus descriftata). Instead of searching for identical
words and counting their occurrences, as many kvellvn computer-based text
clustering techniques do [3, 4, 5], the human buaimally remembers only a few crucial
keywords, which provide the editor with a compréssepresentation of the analyzed
document. These keywords, discovered thanks texpert’'s knowledge (replaced in our
case by ontology), are then used by the book ethtdit a given research paper into a
book’s organization scheme, reflected by the tableontents.

The major focus of this work was to develop techegjthat deal effectively with
the multiple levels of abstraction occurring in matural language. We developed an
approach that organizes text data into a meanirgéuarchy based more on the gradual
similarity of ideas carried in the papers and t#ld by the topic’s ontology rather than
on the identity of words included in the papersisTgrovides a broad range of computer
users with the ability to process text data in aeveffective way.

As the outcome, we achieve a hierarchy of meaningfms that are generated by

the intersection of graphs (i.e. graph represemtatf text files) and the WordNet

ontology [2, 6] available for the topic. Human kgsror computers can use this hierarchy
to efficiently navigate enormous repositories ot #ata.

We sight an example where traditional keyword basetiniques are unable to
retrieve similar senses from two text documents, ®DClust is able to discover their
similarity. Consider two documentdpcl anddoc2 Supposedocl contains the terms
insect lepidopteran and caterpillar, whereasdoc2 contains the termsmyriapod
merostomatandmealworm Although human beings can easily understandhibtt of
the documents contain information about soarhropod traditional text mining

techniques will consider these two documents distinom each other (i.e., in two

arthropod

\ M erostomata

lepidopteran

myriapod
mealwor m

cater pillar

Figure 1: Traditional keyword-based approach amdedased approach.

different clusters) because the documents do ne¢ lamy common term. In contrast,
GDClust offers a graph-based approach where theéersyss able to automatically
investigate the abstractions of the terms. GDCGligsects high similarity betweedocl
and doc2 by detecting a common subgraph for these two deotsnin the language
ontology and places them in the same cluster. Eiduitlustrates this scenario between
the traditional approach and our sense based agprém a traditional approach, these
two documents are totally different, as they do m@te any common terms, but in our
approach the abstractions of both documents ovealagh signify high degree of
similarity.

With implementing GDClust, we aim to develop a doemt clustering technique
that is able to cluster documents using commonesereather than perfectly matching
keywords. We provide a clustering technique thasusnowledge about terms, rather
than trust in document corpora to provide suchrmétion implicitly. Therefore, the
developed system works well both for a very largeo documents as well as for smaller
document repositories with skewed (e.g., certapictoelated) distributions of frequent

terms.

Scope

In this thesis, we developed a graph-mining teammidor clustering text
documents. We represent the documents of a reppsitographs. Our system depends

on background knowledge of the English languagelogy that is constructed from the

IS-A relationships of noun words of the WordNetitexk reference system [2]. In this
work, we have concentrated on the noun keywordseotlocuments.

We utilize an Apriori paradigm [7] to mine subgrapkhat was originally
developed for mining frequent itemsets in a marasket dataset [8]. We exploit
Hierarchical Agglomerative Clustering (HAC) [9] ttuster text documents based on the
appearance of frequent subgraphs in the graphsemiaions of the documents. Another
aim of this thesis is to analyze clustering quabty investigating different similarity
measures. We use the Silhouette Coefficient tautatke the quality of the clustering. We
also compare the quality of clustering using GDCWish the traditional keyword-based

approaches.

Literature Review

The benefit of our document clustering approadhas it can group documents in
the same cluster even if they do not contain comikeywords. Instead, the clustered
documents possess the same sense, discovered lsyniierity of common abstract
terms and relations between them, which is refteete our document-graphs. Other
existing clustering techniques cannot perform flug of discovery or do this work only
to a limited degree, such as Latent Semantic Inde}) [10, 11]. LSI can cluster
documents even if their keywords are not common,itodepends on other common
words appearing frequently in the document whileking for a specific keyword.
Although this kind of clustering is very populardiepends entirely on a large number of

input documents to broaden knowledge, which is nadljulimited to the information

implicitly stored in the clustered documents’ capuOther document clustering
techniques [3, 4, 5] depend on either probabiligtiethods or distance and similarity
measures between keywords. Their performance depamdhe selection of keywords
and on the construction of feature vectors for doents. All these mechanisms suffer
from the fact that they do not offer human-likepse-based document clustering.

Developing algorithms that discover all frequerdbcurring subgraphs in a large
graph database, is particularly challenging and pdationally intensive, since graph
isomorphism plays a key role throughout the comra [12]. Nevertheless, various
researchers have used graph models in complexetatasd found them useful in the
chemical domains [13, 14, 15, 16], computer visieohnology [17, 18], image and
object retrieval [19], social network analysis [20]d machine learning [21, 22, 23]. In
our work, we utilize the power of graphs to modebaplex sense of text data.

There had been extensive research work on gengrassociation rules from
frequent itemsets [24, 25]. Agrawal et al. [7] pvepd the Apriori approach for
association rule mining [8]. Park et al. [26] pospd a hash table-based version of the
Apriori approach improve the efficiency of associatrule mining. Additionally, some
transaction reduction approaches have been progmsédgjrawal et al. [7], Park et al.
[26] and Han et al. [27]. In our work, we utilizevariation of multilevel association rule
mining [27] for the frequent sense discovery precbg proposing a novel Gaussian
minimum support strategy [1] for the frequent s@pdr discovery on multiple levels of

the English language taxonomy.

Kuramochi et al. [12, 28] present an efficient aitjon named Frequent Subgraph
Discovery (FSG) that finds all frequent subgrapha iarge graph database. In the paper,
the researchers evaluated the performance of goithim using both real and artificial
datasets. Their results show that despite the lymdgrcomplexity associated with graph
isomorphism, FSG is effective in finding all freautly occurring subgraphs in datasets
containing over 100,000 graphs and scales lineaith respect to the size of the
database. Moreover, Yan et al. [29] describe aworiign called gSpan (graph-based
Substructure pattern mining) that discovers fregumrbstructures without candidate
generation. gSpan builds a new lexicographic oaskeong graphs and maps each graph
to a unique minimum Depth First Search code (comyndinown as DFS-code), its
canonical label. Based on this lexicographic ord&pan adopts the depth-first search
strategy to mine connected frequent subgraphsiegifly. The performance study,
portrayed in the paper, shows that gSpan subdigntiatperforms some of the other
substructure mining algorithms [29], sometimes byeder of magnitude. The existence
of efficient algorithms to mine frequent subgragttsn graphs leads us to believe that
constructing document-graphs and discovering frefjsabgraphs to gain sense-based
clustering of our work is feasible. Therefore, ur @reliminary version of GDClust [1],
we used the FSG strategy in the Apriori paradigatet, we introduced the Subgraph-
Extension mining technique for efficient candidageneration. We call this enhanced
system GDClust-Plus.

There are other well-known subgraph discovery systkke DSPM (Diagonally

Subgraph Pattern Mining) [30], TreeMiner [31], GRARGraph Similarity Filtering)

[32], PIS (Partition-based Graph Index and Seaf88) and SUBDUE [34]. All these
systems deal with multiple aspects of efficiengjfrent subgraph mining. Most of these
systems have been tested on real and artificiakdég of chemical compounds. However,
none of them has been used to mine text data.isnréport, we discuss GDClust that
performs frequent subgraph discovery from a tegbséory with the aim of document
clustering.

The work closest to our approach of sense-basefecing that we managed to
find in recent literature is a graph query refinammethod proposed by Tomita et al.
[35]. Their system depends on user interactionttier hierarchic organization of a text
guery. In contrast, we depend on a predefined ogyolWordNet) to automatically
retrieve frequent subgraphs from text documentsClaBt offers a fully automated
system that utilizes the Apriori-based subgraphcalisry technique to harness the

capability of sense-based document clustering.

Outline of the Thesis

We give an overview of the GDClust architectureCimapter 2. Crucial internal
mechanisms of our work are explained in detailsCimapter 3 and Chapter 4. We
concentrate on graph-mining strategies and thdiaecements in Chapter 3. Chapter 4
includes the Hierarchical Agglomerative ClusterifgAC) technique and evaluation
measures to assess our clusters’ accuracy. Weilnkegtiportant implementation details

in Chapter 5. All the experimental results of tiwsrk are placed in Chapter 6. Then, we

conclude this thesis in Chapter 7 describing theecd limitations of GDClust and our

plans for improvements in the future.

10

CHAPTER 2

GDClust OVERVIEW

In this chapter, we provide an overview of our GDIl system for sense
discovery and document clustering. GDClust takes$ t®cuments as input, converts
each document into corresponding document-grapls fsubgraphs in the document-
graphs to establish similarity between senses ef dbcuments and finally outputs
possible sense-based clusters of those text dod¢aniris chapter illustrates a top-view

of the overall GDClust system.

Architecture

GDClust is composed of two basic components: (IDV@wsion Module and (2)
GDClust Module. It uses three different databag&}: Text Document Archive, (2)
WordNet and (3) Document Graph Database (DGD). Geer of the entire system is

shown in Figure 2.

Conversion Module

Conversion Module is responsible for convertingheéext document into its
corresponding graph representation. The module WsasINet [2] as its background
knowledge. It utilizes BOW Toolkit [36] to retrieveneaningful keywords from the
documents. After the retrieval, keywords are storethe Term-Document Archive. The
Conversion Unit picks the document’s keywords frima archive (all keywords for a

single document at one time) and converts them ant@rresponding document-graph.

11

The Conversion Unit utilizes the WordNet's IS-A taechy (hypernymy-hyponymy
relationship) to construct the document-graphsatgets one document at a time to
minimize the memory consumption because the gesgrdocument-graphs (for say
20,000document-graphs) may not fit into the main memaxly.document-graphs are
stored in the same repository, calldcument-Graph Database (DGDJhe document-
graph construction algorithm is described in Tablef “Construction of Document-

Graph and Master Document-Graph” section.

GDClust Module

GDClust module is composed of two unitSubgraph Discovery Unitnd
Clustering Unit The Subgraph Discovery Unit picks up documenpigsafrom DGD to
discover frequent subgraphs representing frequenses. Discovered subgraphs are
assigned ID’s and stored in DGD. The ClusteringtUakes the advantage of the
frequent subgraph discovery process. It clustersuments utilizing the discovered
frequent senses by the Subgraph Discovery Unit.offiler information regarding the
clustering (frequent subgraphs, frequency counte@fBubgraphs in the documents, etc.)
is stored in DGD for future use. Chapter 3 and @®vag respectively describe the

subgraph discovery process and the clustering méshaused by GDClust module.

Text Document Archive

Text Document Archive contains the actual input @DClust. This archive
contains the text documents that need to be ckdtdén our experiments, we have used

text documents fron20 News Groups dataset [37J0 News Groups dataset is used in

Text Document GDClust Module

|
Archive I | Subgraph Clustering
: Discovery Unit
| Unit
\

- -

e o o B L e e S e e) i

{ 1
! I
' 1
: 1
! 1
) I Cluster
! Term Document I outputs
: Archive I
! |
' I
' Store
1
']___document _ DGD
! Igraphs in » (Document-Graph
' Y I DGD Database)
\\ 5

WordNet

Figure 2: Architecture of GDClust and its flow ditd.

different literature and considered as a benchmgrkilataset for clustering and

classification purpose.

WordNet Dictionary Database

GDClust utilized the WordNet lexical reference syst as background
knowledge. Our approach does not directly lookhatrheaning of the related keywords
in the WordNet dictionary rather it utilizes then¢mage ontology from references of
synsets and their semantic relations. In the comtie¥ordNet ontology, aynseis a set
of synonymous words in WordNet. GDClust is not adifional corpora-based
mechanism of sense disambiguation. It does nothgsdescription or example sentences

of synsets provided by WordNet to distinguish megnof two keywords. Instead, it

13

completely relies on document-graphs and the desemlv subgraphs in them to find
similarity between two documents. Therefore, the osWordNet in GDClust is limited
to the retrieval of the language ontology only.

WordNet divides its whole lexical reference systieno five categories: nouns,
verbs, adjectives, adverbs and function words [B8ction words are basically non-
content words like prepositions and conjunctiorat tinay mislead language-processing
tasks since they are non-informative. In our wav&,have concentrated on noun synsets.
In WordNet, synsets are usually connected to o$lyesets via a number of semantic
relations. These relations vary based on the typeood. For example, nouns have five
kinds of relations, which are stated below [39]:

(1) hypernymsY is a hypernym ok if every X is a kind ofY. Example:Agaric is a
hypernym ofmushroombecausenushroonis a kind ofagaric.

(2) hyponymsyY is a hyponym o if every Y is a kind ofX. Example:Mushroomis a
hyponym ofagaric, becausenushroonis a kind ofagaric.

(3) coordinateterms Y is a coordinate term of if X andY share a hypernym. Example:
Lepiota is a coordinate term afhushroom because bothepiota and mushroomare
agarics.

(4) holonym Y is a holonym oiX if X is a part ofY. Example:Fomesis a holonym of
agaric, becauseagaricis a member of gend#omes

(5) meronymY is a meronym oK if Y is a part oiX. Example:Agaric is a meronym of

Fomes becauseagaricis a member of genlomes

14

We have utilized théypernymy-hyponynrelationships of noun synsets to build

up the English language ontology.

Document-Graph Database

GDClust uses BOW Toolkit and the WordNet 2.1 taxagoto convert a
document to its corresponding document-graph. Theomes of the Conversion Module
of Figure 2 are document-graphs representing et text documents. These documents
are stored in Document-Graph Database to be utsdoathe GDClust module. Besides
the regular document-graphs, we store a Master menttGraph (MDG) in the
Document-Graph Database, which helps us later gwubbgraph discovery by providing
the language ontology. The construction mechanignMaster Document-Graph is

described in the following section.

Construction of Document-Graph and Master Docunignaiph

GDClust utilizes document-graphs representing tdstuments. Constructed
document-graphs become inputs for the GDClust ModblFigure 2. In this section, we
describe the algorithm for constructing documeiipgs and our Master Document-
Graph.

Table 1 illustrates the algorithm for constructmindividual document-graphs.
WordNet provides a hierarchic representation of lishgwords. We utilized the
WordNet's noun taxonomy, which provideshgpernymy-hyponymiyelation between

concepts and allows constructingcancept treewith up to maximuml8 levels of

15

Table 1: Algorithm for construction of document-gina.

(1) For each documerd;, construct a document-grah, wherel<i<n, andn is

the total number of documents {

(2) For each keywordk where1<j<sm and m is the number of keywords in

documenD; {

(3) Traverse WordNet taxonomy up to the topmost leDering the traversal,
consider each synset as a vertexs considered as a directed edge between
two verticesvy; andVy, iff Vs is the hypernym o¥;.

4) E is labeled by;:::V,. If there is any repeated vertex or edge that was
detected earlier for another keywdgdt # j) of the same documerd;, do
not add the repeated vertices and edges;totherwise, add vertices and
edges tdG;.

(5) } // End of “For each keyword”

(6) } // End of “For each document”

abstractions. Aconceptin a document-graph is a node containing $iyasetfrom
WordNet. All nouns in WordNet are merged to a snglpmost synset (i.¢entity}). Our
document-graph construction algorithm selects mative keywords from the document
and retrieves corresponding synsets from WordN&nT it traverses to the topmost level
of abstraction to discover all related abstraangeand their relations. The graph of the
links between keywords’ synsets of each document their abstracts compose the
individual document-graph.

As stated in previous section, Document-Graph Calalso contains another
large graph representing the whole ontology neddedubgraph discovery. We name
this graph aMaster Document-Graph (MDGANn MDG is a single graph composed of all
the edges and vertices of all the document-graphihe database. In other words, a
Master Document-Graph is a combined document-g@pttaining all the keywords

found in all text documents. More formally,

16

Ep U Evpe (2.1)

where E;, indicates the edge-set of a document-grapfand E,,; denotes the edge-set

of the Master Document-Graph. Equation (2.1) inisdahat the edge-set of a document-

graph is a subset of the edge-set of the Masteufent-Graph. Besides that,
Evps = LDJ Ep (2.2)

Equation (2.2) indicates that the Master DocumerrapB is composed of all the edges of
all the document-graphs. Each edge of a documeammthghas a unigue DFS-code. This
DFS-code is generated from the DFS order traverfstie DFS-tree [40] of the Master
Document-Graph. GDClust forces the DFS-code ofeithges of the Master Document-
Graph to all the edges of all document-graphs. dfoeg, an edge of a document-graph
can be identified using the Master Document-Graged DFS-code.

Later, in Chapter 3, we illustrate how a Master Duent-Graph benefits the
pruning mechanism at the very first level of theridp paradigm. We also show how it

benefits subgraph discovery process by enhancingidate generation mechanism.

17

CHAPTER 3

INTERNAL MECHANISMS: APRIORI PARADIGM

Both GDClust and GDClust-Plus use frequent subgragohrepresent senses
common among the document-graphs. Two documentigraghich contain some
common frequent subgraphs, do not necessarily fmy@ave common keywords. Our
system not only looks at the original keywords biso the origin of the keywords and
their neighboring (i.e. abstract) synsets. Two edéht words, leading to the same
hypernym, have a good chance to generate two hgjhijfar subgraphs, which reflects
their shared sense. Our aim is to discover fregsenses rather than to look for frequent
common keywords in the text documents. We utilimeAgriori paradigm for subgraph
discovery in the document-graphs.

The association rule mining technique [8] presengsoblem for discovering the
associated items in a list of transactions. A sangEnsaction list is shown in Table 2.
We can easily find that Bread is more likely todssociated with Peanut Butter. We can
easily sort small lists. However, human judgmergsdoot work that well when there are

millions of transactions in the transaction-tatiée aim of the Apriori algorithm is to

Table 2: A sample transaction table of market blaske

Transaction ltems
T1 Bread, Jelly, Peanut Butter
T2 Bread, Peanut Butter
T3 Bread, Milk, Peanut Butter
T4 Beer, Bread
T5 Beer, Milk

18

find frequent itemsets from a list of transactioiitie algorithm concentrates on the
corresponding supports of the items and itemse®ipport ox% for an association rule
R means thak% of all the transactions under analysis show tteah$ mentioned iR
appear together in market baskets. The suppgBrefad, Peanut Butterfrom Table 2 is
60% as Bread and Peanut Butter appear together indd@eénsactions.

In our work, we replace transactions with docungmagphs, items with edges and
item-sets with subgraphs (i.e., sets of connectige®. The association rule mining
problem of market basket data analysis crops upuinresearch area in the form of
frequent subgraph discovery problem. While disciogpsubgraphs, we take advantage
of domain characteristics of the background knogtedor efficient processing (We
discuss the domain characteristics of backgrourmvladge later in this chapter). The
advantages mainly emerge in the form of Master Dwmt-Graph. This chapter
illustrates the internal mechanism of our Aprioaradigm used in GDClust and its

improved version proposed in GDClust-Plus.

Apriori Paradigm

Table 3 portrays the modified high-level algorithfor frequent subgraph
discovery using the Apriori paradigm. The nd_fr equent _1- edge_subgr aphs
procedure utilizes the Dynamic minimum supporttetyg (explained in the next section)
to selectl-edge subgraphs from the document-graphs.afivaé or i _gen procedure in
the algorithm joins and prunes the subgraphs. énjdin operation, &-edge candidate

subgraph is generated by combining t@oel)}edge subgraphs dfy;. This k-edge

19

Table 3: Apriori algorithm.
Input:
D: a database of document-graphs
min_sup the minimum support threshold
Output:
L: frequent subgraphs D
M ethod:
(1) L.=find_frequent 1-edge_subgraphs(D);
(2) for (k=2; Lx-1#®D; k++){

3) Geapriori _gen(Lk-a);

(4) for each document-gragim D{

(5) Co= CNg;

(6) for each candidate subgragiCy
(7) s.count++;

(8) }

9) L={ sO Ck | s.count> min_sup
(10) '}

(11) returnL=U, Lk

subgraph becomes a membelLpbnly if it passes thenin_supthreshold. The details of
this joining operation are described later in ttiapter. In GDClust, we used FSG [12,
28] to generate potential candidates. In GDCluasPthis portion is enhanced, and we
introduce a novel mechanism named Subgraph-Extemsinoing. Our major change to
improve efficiency is incorporated gpri ori _gen procedure. We explain Subgraph-
Extension mining in section titled “Candidate Getien in GDClust-Plus: Subgraph

Extension Mining”.

Dynamic Minimum Support Strategy

We use the WordNet ontology as background knowlexfghe natural language
domain. Since using the WordNet ontology resultsairlarge graph of the whole

language-domain used in our system, we introdubéaster Document-Graph (MDG)

20

and propose a Dynamic minimum support strategyoi IDClust and GDClust-Plus.
Dynamic minimum support removes unnecessary edgdsas they are not considered in
the Apriori process. Unnecessary edges are those abpear in too many (or all)
documents, as well as those that are too speaifit egppear rarely in the document-

graphs.

Motivation toward Gaussian Minimum Support Strategy

We observed that human-based communications telnel tonducted on common
levels of abstraction. For instance, general dagatyp conversations contain neither too
abstract nor too specific keywords. In contrastiuees by professors and presentations
by graduate students may contain specific keywthrdsare found at the bottom level of
a natural language ontology. This establishes that distribution of informative
keywords is highly domain dependent.

Figure 3(a) shows an example of abstraction-basstlibdition of keywords
where keywords are concentrated at two levels efahtology. This may indicate an
ontology that has a compldwpernymy-hyponymaelation, in which it is hard to figure
out a single level of communication. This type ehhvior may be expected in popular
magazine articles (e.g., the magazines of IEEE Camnrations Society), where some of
the documents are general in notion but the othezsspecific. Figure 3(b) shows a
document corpora with specific keywords. Reseaagters, scientific journals, technical

books fall into this category.

21

p

minimum
| support

minimum
support

in_su

£ €
(a) Scientific and general topics (e.g., (b) Scientific Data
Magazines of IEEE Communications Society) 4, Documents, 400 keywords,
Gaussian Parameters: A=2208, b=8, w=4

_ 2500
(3
- —_——— 2 A 0
©
. S 2000
s
‘™ o
X 1500 A
s, ©
o% son >
H .0 S (&) 4
S R et R & 1000
° 3.11 & .: : /I. ° 3.\\: =)
o
° '. ° . [y 8 500 7
AL . % L
L] L] é w
O -a---0] ;
Q.

minimum OAdNMITINONOODOANM L O~
AddAd—d A
support

Abstraction Level

—e— [req. Count from our data
—=—=—Gaussian Trend Line

(c) General Topics (d) Experimental result on 20-News
Groups Datas

min_su

Figure 3: Behavior of datasets and the relatioh WIDG taxonomy.

In our work, we used th20 News Groups dataset [37] for all experiments. Fégu
3(c) is a representation of our keywords in thetexinof WordNet’'s ontology. The gray
dots indicate keywords found in our repository wheatched to the levels of the
ontology. It shows that the majority of the keywsm@e located at the mid-levels of the
hierarchy, and very few keywords are placed at blotom and top levels. Our
experimental result on a subset of the 20 News @& alataset (shown in Figure 3 (d))

supports our keyword-distribution theory. The bldiaoke of Figure 3(d) indicates that the

22

most frequent words are foundlavel 8 of the WordNet ontology. Gaussian trend-line
(the gray dashed line) can be compared with thekblme to find a support for a
Gaussian shaped distribution of keywords. Therefsimece our domain follows the
Gaussian trend, we remove edges from the Aprigegigm in a Gaussian fashion.

We use Gaussian minimum support strategy to lilmt mumber of candidate
subgraphs with extremely abstract and very speaifieanings. Since WordNet's
ontology merges to a single term (i.&entity”), the topmost level of abstraction is a
common vertex for all the generated document-grajdecause of this, subgraphs
involving vertices from the top levels of abstraatiwill be less useful for clustering.
Moreover, terms near the lowest level of abstractie less important because they
appear rarely in the document-graphs, and as &,reswms appearing in the intermediate
levels of the taxonomy generate more representatiusters labels than subgraphs
containing terms at high and low levels of abstoact

Our Apriori paradigm imposes the minimum supporthe 1-edge subgraphs at
the very beginning of the Apriori algorithm in Gaien normalization fashion. It assigns
different minimum support thresholds based on ¢ne's abstraction level, and to do this
assignment in less time, the paradigm uses the evld3bcument-Graph instead of
WordNet. Each edge of the Master Document-Graphriked according to the levels in
WordNet taxonomy. Currently, WordNet ha8 abstraction levels in its noun taxonomy,
but the edges of the Master Document-Graph do @awe o cover all the levels.
Therefore, the maximum abstraction level in the tlaBocument-Graph is bounded by

[<18.

max —

23

The Gaussian function possesses a shape that mateheriteria. It has a smaller
minimum support for the terms located at the intirate levels, and the function
assigns higher minimum support thresholds to telonated at the lower and higher
levels of the Master Document-Graph. The approadkes the mid-levels of the
taxonomy formed by Master Document-Graph more igmdr It also assumes, based on
observation, that the generated document-graphdaioora lot of common, but
uninteresting, subgraphs at the topmost level astthdt, but not frequent, subgraphs at
the bottom levels. The first would generate largsters with low inter-cluster similarity,
and the second would generate a huge number ofsweal clusters.

The Gaussian function can be defined as:
f(x)= Agxbr=2¢ (3.1)
whereA is the height of the Gaussian pebks the position of the center of the peak and
cis defined as:
w

“T 2 2n(2) (3.2)

wherew is the width of the curve aA/2. In our case,b=1,./2. We apply this

behavior to model the minimum support of mining tikeNel senses from the WordNet
taxonomy. This is illustrated in Figure 4 (Figuréc)3is repeated in Figure 4). The
hierarchy drawn in the figure indicates our Mafdecument-Graph. The Gaussian graph
indicates that the varying minimum support thredhisllargest at the highest and lowest
levels (i.e., levell and levellqa). The model generates our pre-defined minimum

support,min_suponly at the mid level of the taxonomy and apphegradual increment

1 level

“—A—>

<+—W

P

minimum
support

min_su

Figure 4: Gaussian minimum support strategy fortileunel mining.

of minimum support at higher and lower levels. @aa shift themin_supvalue to other
levels by changindy of equation (1). Moreover, mofieedge subgraphs can be removed
from Apriori’'s candidate list by reducing to make the curve narrower. The impacts of

different values omin_supandw on subgraph mining are explained in Chapter 6.

Gaussian Minimum Support Strategy and Motivatioma@ Data Dimensionality

In a document-graph, some edges are directly linkiga keyword-synsetgsince
at least one of its vertices contains the keywagrtsst) while most are not. Although our
Gaussian minimum support strategy removes edgesredge candidate list.() in the
find_frequent 1-edge_subgraphs procedure of the Apriori paradigm (Table
3), the aim is not to prune edges related to keghwvdrut rather to emphasize all edges
near frequent keywords. This pruning physically rafes neither the document-graphs
nor the Master Document-Graph. Dynamic minimum swpptrategy is used to prune
edges froml-edge candidate lisL{), just before feedingd; to the next iteration of the

Apriori algorithm. In all subsequent iterationsAgfriori, the minimum support threshold

25

is no longer dynamic. Rather, it becomes a constemtsup(this is the lowest minimum
support threshold of Figure 4). All the edges pdufremL; infi nd_frequent 1-
edge_subgr aphs never become a part of the higher-order candilistte (L, where
n>1). We can quickly perform the pruning operationlarbecause our edgeslia have
incorporated information about their correspondiggstraction level in the Master
Document-Graph. Details of this procedure are desdrin chapter 5 (section title:
“LabeledEdgebject”).

The pruning mechanism works in such a way thatetihges at the upper part of
the Master Document-Graph are forced higher minimsapport than the edges
representing a moderate degree of abstraction.|&iyian edge with extremely high
specificity is also forced a higher minimum supptiin an edge with moderate
abstraction. This does not disqualify such edgespbetely, but it implies that the edges
with high and low abstraction values must appeamiore document-graphs to be
considered as candidates. Because an edge witlderate (mid-level) abstraction value

has the lowest minimum support threshold, it capeap in fewer document-graphs and

Figure 5: lllustration of edges at different deptfiMaster Document-Graph.

26

still be recognized as frequent. For example, d®rsihe three edges, e, and g, in
Li(Figure 5). Using an object-oriented paradigm, \@@ present an edge’s abstraction
level asdept h. Assumee, .deptte 7, e, .depthe ¢ and e, .depth= 17. Also consider that,
after applying the Gaussian minimum support stsateg L, the imposed minimum
supports of these three edges becomes, .minimum _sup post 98,

e .minimum _sup pot 5¢and e,.minimum_sup port 97. If there are200 document-
graphs, theg must appear in at leab96 document-graphss, must appear in at leakd
document-graphs anel must be an edge of at led€4 document-graphs. This way, we
get rid of the too abstract and too specific edijes.

Now, after pruningl-edge candidates, we may be left with no edgescttiire
linked with keyword-synsets. But we have at leasha edges from the mid-levels, even
if the keyword-synset is at the bottom. We can #ay because the construction of
Master Document-Graph ensuresntsnotonicbehavior. We call our Master Document-

Graph monotonic in terms of support count of thgesdbecause an edgeconnected

Figure 6: A document-graph containing only one kesdwsynset.

27

(directly or not) to an edgeat the lower abstraction level always has a sugpgher, or
at least equal, to the one represented.itHence, removing a keyword-edgeat the
bottom of the tree would at least keep its abstact in midlevel. We show an example
in Figure 6, where we consider that the documeaplgrhas only one keyword-synset
indicated by gray circle. For this document-graplthough edges that are directly

attached to the keyword-synset (eg.,ande;) may not appear ih, after the Gaussian

minimum support strategy is applied, (because tieye been imposed high minimum
support threshold i.e., they must appear in a miglenber of document-graphs to pass

Gaussian-based threshold), some edges from thdenets (e.g.,e;, e, etc) will still

survive in L; because they must have the lowest minimum supiweshold (i.e.,
min_sup and Master Document-Graph is monotonic. We r&danin_supas the user-
provided minimum support parameter indicated inuFég4. This is generally the static
minimum support used in regular bag-of-token-bagpgdroaches. If someone ensures
that a keyword will survive in a vector-based resprgation of a document with a
minimum supporimin_supusing the regular approach, then we can ensuteatHaast
some edges will survive from the mid-levels forstlkeyword. This is true for two
reasons:
1. The minimum support at exactly mid-levehmsn_sup
2. The monotonic behavior of Master Document-Grapluesssthat the usuaupport
count of an edge at mid-level (and for top level) isajee or equal to the usual
support countf an edge at lower level

Now, we summarize three cases:

28

1. For very specific keyword-synsets, we ensure thaeast some edges would be
picked up by Gaussian minimum support strategyhdit tkkeyword was considered
frequent in traditional bag-of-tokens-based appno&eom the experiment in Figure
3(d) we can see that keywords at the bottom leastsmostly infrequent. Previous
arguments on the monotonic property of Master DantrGraphs show that if an
infrequent keyword is frequent enough to passntite supof the Apriori paradigm,
even if its directly connected edge is removed ftanthere will be at least one edge
left in Ly from mid-level of the MDG that represents its laglevel of abstraction.
Hence, Gaussian minimum support automatically pickd-level abstractions of
infrequent keyword-synsets.

2. For edges that are at mid-levels, Gaussian minimsupport strategy applies
minimum support near tmin_sup so that their candidacy becomes something like in
the traditional approach. Figure 3(d) also shoved thost frequent keyword-synsets
are found at the mid-levels. So, Gaussian minimuppsrt strategy directly keeps
keyword-edges i, where the keyword-synsets are found in mid-leveatsl Figure
3(d) ensures that keywords are most frequent afeniels.

3. For very abstract keywords, we do not guarantee dhg edge with or without a
keyword-synset attached will appear Lin after we apply the Gaussian minimum
support strategy. This is because, in our case,atigtract edges with attached
keyword-synsets are poor candidates for clustebagause of the result of the

monotonic behavior of our MDG where the edges lthkéth abstract keywords tend

29

to appear in a majority of our document-graphs @omes, even in all the

documents).

Candidate Generation

In this section, we describe the candidate germearatiechanisms of GDClust and
GDClust-Plus. GDClust-Plus outperforms GDClust diee its efficient candidate

generation technique which is based on SubgrapérSkin mining.

Candidate Generation Mechanism in GDClust

The document-graph construction algorithm (Table eisures that each
document-graph does not contain more than one tdedge between two vertices.
Additionally, the overall sense discovery concepuges that a subgraph does not appear
more than once in an individual document-graphoun case, all the edges and vertices
of a document-graph are uniquely labeled. We géaerkedge candidate subgraph by
combining two K-1)}edge subgraphs where these tvelfedge subgraphs have a
commoncore subgrapl12] of (k-2)}edges. In GDClust, eadhedge subgraph object
composed of a connected edge-list and a list oé®tltat generated thisedge subgraph

from a(k-1)}edge subgraph. Consider tGedge subgrapmnopgof Figure 7 that has

0 g =

Figure 7: Generation of&edge subgraph from twsedge subgraphs.

30

been generated from twb-edge subgraphtmnop and mnopqg (each of the5-edge
subgraphs having a common canaop.

GDClust requires multiple comparisons between solgraphs while generating
a higher order subgraph. To avoid the cost of coispa between each edge of
subgraphs, GDClust assigns a unique code for edmjraph from the list of their edges.
This code is stored as tlhash-codeof the subgraph object. Sectio8ubgraphObject”
of Chapter 5 explains how hash-codes are genefatea subgraph object. Therefore,
checking two core subgraphs to see whether thesegmond to each other is just an
integer hash-code comparison. The resulting catelidabgraphs, maintaining the
minimum support, are chosen for the next iteratibthe Apriori algorithm.

Now, we describe an example to better illustrate high cost of theCore-
subgraph strategy of GDClus€onsider an instance in which we have a tot&?10b-
edge subgraphs in the candidatellistWe would try to generateGedge subgraph from
this list. Consider the situation of generatingdidates using ong-edge subgraph (e.g.,
Imnop of Ls. The FSG approach of our original GDClust triestonbine all othe0
subgraphs wittmnopbut succeeds, let us assume, only in three cBgpse 8 illustrates
that Imnop is successfully combined with onfgnopq mnopr and mnops All 17 other
attempts to generate @&edge subgraph withmnop fail because thet-edge core-
subgraphs, analyzed in this case, do not match.ngnioesel 7 failed attempts, only the
attempt withtmnozis shown in Figure 8 with the label “Not Generétekhe rest of the

failed attempts are indicated by dotted lines.

31

The instance of Figure 8 is depicted only for onkgsaph kmnop. For all these
5-edge subgraphs &f, there would be a total afix 20= 42(blind attempts to generate
6-edge subgraphs. Some of these attempts wouldedidoet most would fail to generate
acceptables-edge candidates. Although the original GDClustfilizes hash-codes of
subgraphs and core-subgraphs for faster comparigocennot avoid comparing a large
number of hash-codes for all candidates. In GDERlgs, we smartly reduce the number
of attempts to combine subgraphs by applying oubg&ph-Extension Mining

technique, which is described in the following sdwztion.

Figure 8: Attempts to combirimnopwith other5-edge subgraphs af4).

32

Candidate Generation in GDClust-Plus: Subgraphrisia Mining

Rather than trying a brute-force strategy of alsgble combinations, like in
Frequent Subgraph Mining (FSG) [28], in GDClustdWse use the Master Document-
Graph (MDG) as the source of background knowledge to reducebeu of attempts
needed to generatekaedge subgraph froitk-1)}-edge subgraphs. The Master Document-
Graph ensures that an extension ok-adge subgraph can generate(kal)-edge
subgraph. We maintain a neighboring-edges’ list dach (k-1}edge subgraphsée
“SubgraphObject” section of Chapter 5) and try to generegedidates for frequent
higher order subgraphs by taking edges only from tieighboring-edges’ list. The
neighboring-edges’ list of a subgraph contains dhlyse edges that passed Dynamic
minimum support strategy ihi nd_f requent _1- edge_subgr aphs procedure of
Apriori Algorithm (Table 3), which further reducéise unnecessary generation of higher
order subgraphs that will not pase_supof step 9 of the Apriori Algorithm.

Figure 9 shows the Subgraph-Extension mechanisnsubgrapnimnop which
can be compared with FSG approach of Figure 8.gfag edges of Figure 9 indicate the
subgraph subject toward an extension, while a béde indicates an extension of the
gray subgraph maintained in our MDG. The same mt&tas used for both Figure 8 and
Figure 9. The neighboring-edges’ listlofnop contains edgefy, r, s}. Unlike in Figure
8, in the (GDClust-Plus) example presented in g8y the new Subgraph-Extension
mining strategy does not try to generate higheewostibgraph0 times. Rather, it tries
only three times, using the knowledge about neighgoedges ofmnopin MDG. This

results in only three attempts to generate highéerocandidate subgraphs, and none of

.
.
.
.
-

Master Document-Graph

Figure 9: Subgraph-Extension Mining of subgraphopfor GDClust-Plus.

these attempts fails at step 3 of the Apriori Aifon (Table 3) because the mechanism
depends on the physical evidence of possible extend herefore, the Subgraph-
Extension mining strategy in GDClust-Plus offeraavel knowledge-based mechanism
that eliminates unnecessary comparisons (of cobgraphs) or attempts to combine
subgraphs.

A Performance comparison between GDClust and GD@EWs is shown in

Chapter 6 (section title: “GDClust vs. GDClust-P)us

34

CHAPTER 4

INTERNAL MECHANISMS: CLUSTERING

This chapter describes the clustering mechanisnciwhve used both with
GDClust and GDClust-Plus. The first section of thismpter describes our clustering
technique, and the second section presents thdastynimeasures used during our
clustering experiments. We also present traditiahastering mechanisms and explain

our measure for evaluation of clusters’ qualityhis chapter.

Hierarchical Agglomerative Clustering (HAC)

GDClust and GDClust-Plus use Hierarchical AgglorieeaClustering (HAC) [9]
to group documents. The clustering unit (Figureasigns unique identification to
frequent subgraphs retrieved by the Apriori aldont (Table 3). Information about
document-graphs is stored in a hash table whereeéfeis the document name. The
corresponding value against a key contains a veamtdhe subgraphs’ identification
numbers, which appear in the corresponding docwgneth. The hash table does not
contain the frequent subgraphs; rather it contaimyg frequent subgraphs’ identification
numbers against each unique document name.

The clustering unit (Figure 2) constructs a disknty matrix that stores
dissimilarities between every pair of document-ggapDissimilarity between a pair of
document-graph&; andG; is measured using the formula:

d=1.0-similarity (4.1)

35

The similarity values range betwefgh 1] for all the measures we used. We describe the

similarity measures used for our experiments infdlewing section.

Measures of Similarity between Document-Graphs

Similarity between two document-graphs can be fousidg different measures.
We performed our experiments using the followingpdr similarity measures:

1. Matching coefficient

2. Jaccard coefficient

3. Dice coefficient

4. Cosine coefficient

5. Overlap coefficient.

Among these five types of similarity measures, Matg Coefficient is the
simplest. It counts only the number of common saphs in two document-graphs. More

formally:
Sim(Gl !Gz }/Iatching = count(FSG(Q’ () FSG(Q‘ (42)

We normalized it to the rand®, 1]. It is clear that this similarity measure concatds
on the matched subgraphs only. If two documentiigdave a large number of matches
with a large number of mismatches, the matchindficoent only counts the matches and
totally ignores the mismatches. Matching coeffitiean be used in the test where the
number of mismatches is negligible. In consequentejoes not convey enough
significance in document clustering domain, becatwge large document-graphs can

possess lots of matching subgraphs but an equaberuof mismatching subgraphs as

36

well. Hence, ignoring the number of mismatches doaisallow for proper similarity
evaluation of two documents (especially when atleae of them is of a large size).

Since both the common subgraphs and uncommon fliggere important, we
need other similarity measures. Now, we descrilseald Coefficient [42, 43] that takes
both numbers of matches and mismatches into accébatformula is:

_count(FSG(G n FSG(&)

sim(G, ,G Yaccard = count(FSG(G I FSG(&) (43)

whereFSG(G) andFSG(G) are the sets of frequent subgraphs that appetydnment-
graphG; and G, respectively. The dividend of equation (4.3) is ttumber of common
frequent subgraphs between document-graphsnd G,, and the divisor is the total
number of unique frequent subgraph&irandG,.

Although the Jaccard coefficient takes the numbér nismatches into
consideration in some way, it can strongly panelimse document-graphs which have
small number of common subgraphs but also a mugipebinumber of subgraphs which
do not match. We analyze and compare this similangasure with the Dice coefficient
[43, 44], which normalizes the number of commongsaphs by the total number of
subgraphs in two documents:

2xcount(FSG(G h FSG(&))
count(FSG(G)¥ count(FSG(LG

Sim(Gl -Gz bice = (44)

As a result of this normalization, the Dice coeéiit does not penalize the document-

graphs with a small number of common subgraphseshly as Jaccard coefficient.

37

To illustrate the effect of this normalization weosv a simple example in Table

4. Let us assume that we have two document-graptend G,. Each of these document-
graphs has a total ofl0 frequent subgraphs, i.e.count(FSG(G)¥ 11 and
count(FSG(G)F 1. Let us now consider cases with different numbarscommon

subgraphs occurring in both the document-graphsskigev that the Jaccard coefficient

signifies lower similarity betwees, and G, than the Dice coefficient. Table 4 shows the
results of our analysis. It shows that for any nemtif common subgraphs, except when
the number isl0O, the Jaccard coefficient is smaller than the Dioefficient, and the
percentage of difference between the Dice and dédauzefficients is highesté4{.4%
when the number of common subgraphs is lowest Grdy one common subgraph). The
percentage difference gradually decreases as timparuof common subgraphs in both
document-graphs increases. Therefore, the Jacoefficient penalizes document-graphs
with smaller number of common subgraphs more thanliice coefficient does. When

Table 4: Differences between Dice and Jaccard icosfts.
(count(FSG(G)F 1tandcount(FSG(G)¥ 11).

Number of common Jaccard Dice Difference (in %)
subgraphs (Dice— .Jaccardx 100)
Dice
1 0.0526 0.10 47.4
2 0.1111 0.20 44.4
3 0.1765 0.30 41.2
4 0.2500 0.40 37.5
5 0.3333 0.50 33.3
6 0.4286 0.60 28.6
7 0.5385 0.70 23.1
8 0.6667 0.80 16.7
9 0.8182 0.90 9.1
10 1.0000 1.00 0.0

38

number of common subgraphs tends to rise, therdiffe between Dice and Jaccard
coefficient has a tendency to get smaller.

The Cosine coefficient becomes the same as the Doadficient only for
document-graphs with identical number of frequembgsaphs. Plus, it penalizes the
similarity value of two document-graphs less selyeréhen the numbers of frequent
subgraphs are very different. Due to the bettdrilga of similarity values even when
comparing documents with significantly differentzes, the Cosine coefficient is
commonly used in many text-clustering applicatighso, in our case, we do not want to
make two document-graphs dissimilar based onlyhenproperty that one of them has
few frequent subgraphs compared the other. Then€osoefficient [45] for binary
vectors is defined as follows:

count(FSG(G h FSG(G))
Jeount(FSG(G)x count(FSG(S |

Sim(Gl -Gz ltosine: (45)

Table 5 shows that the Dice coefficient is smatlean the Cosine coefficient
except, except when there are an equal numbeeqiiént subgraphs @, andG,. We

Table 5: Differences between Cosine and Dice aueffis.

Number of count count Dice Cosine | Difference (in %)
common | (FSG(Gy)) | (FSG(G,)) Cosine- Dice
(——<——-—%100)
subgraphs Cosine
50 50 500 0.1818] 0.3162 42.5
50 100 500 0.1667] 0.2236 25.5
50 150 500 0.1538 0.1826 15.7
50 200 500 0.1429] 0.1581 9.6
50 250 500 0.1333 0.1414 5.7
50 300 500 0.1250, 0.1291 3.2
50 350 500 0.1176/ 0.119% 1.6
50 400 500 0.1111] 0.11183 0.6
50 450 500 0.1053] 0.1054 0.1
50 500 500 0.1000, 0.1000 0.0

39

typically see that the higher the difference betwiie numbers of frequent subgraphs in
G; and Gy, the higher the percent difference between then@osnd Dice coefficients.
Hence the Dice coefficient panelizes more harshéntthe Cosine coefficient when the
difference between the numbers of frequent subgrapthe compared document-graphs
is substantial. Both the coefficients tend to geteerclose similarity values when the
difference between the numbers of frequent subgraplcompared documents is small.
It should be mentioned that we kept the numberashraon subgraphs fixed 0 in
Table 5, to make sure that the corresponding diddef Dice and Cosine do not change
due to varying number of common subgraphs. Thisressthat all the presented changes
in Dice and Cosine coefficients are only outcomésvarying number of frequent
subgraphs ;.

For experimental purpose, we also show another umeasamed Overlap
coefficient [46] of similarity. The value of the @xtap coefficient reaches the maximum
when every frequent subgraph of one document-gegygears in the set of frequent
subgraphs of the other document-graph. The forfaul®verlap coefficient is:

count(FSG(G h FSG(G))

(4.6)
MIN (count(FSG(G)),count(FSG(L)

Sim(Gl -Gz bverlap =

Therefore, it reflects inclusion property of suljgra of one document-graph in another.
In Chapter 6, we show using experimental resultg imaccurate the clustering becomes
using the Overlap coefficient in our system.

Chapter 6 (section title: “Clustering Accuracy witBifferent Similarity

Measures”) shows experimental results of our ctiugjdor different similarity measures.

40

Traditional Document Clustering Mechanism for Eation

There are direct bag-of-token based approachegsidoument clustering. We
compared our system against the ordinary vectorem@gresentation of documents. We
can construct the dissimilarity matrix for our Hiechical Agglomerative Clustering
using the classic Cosine coefficient, reflecting #imgle between every pair of documents
represented as vectors of tokens. The simplest twaypeasure the Cosine similarity
between two document vectds andD; is to utilize the frequencies of the keywords

without any kind of normalization. The formula is:

g(fit x fjt)
()2 (04)

t=1 t=1

similarity(D; ,D; kosine = (4.7)

where f;, indicates the frequency of tiie¢h keyword in documerd;, and f, indicates

the frequency of theth keyword in documerid; .

From the previous section, we know that Cosine faoeift is not influenced by
one document being small compared to the otherthgetrequencies of the keywords in
equation (4.7) do not portray any parameter to exsizle how important a keyword is to
the corresponding document in essence to the edbti@ment archive. Théerm
frequency-inverse document frequency (tf-idfa weight used in text mining for this
purpose. To get thierm frequencyfi, the count; is normalized by the total number of
important keywords in documei}, to prevent bias toward longer documents to give a

measure of the importance of thth keyword,

41

(4.8)

Theinverse document frequency;idfa measure of the general importance of the
t-th keyword. It is usually obtained by dividing tmeimber of all documents by the
number of documents containing the keyword, anéhtpkhe natural logarithm of the

guotient. Therefore, thef; of thet-th keyword is:

idf, = In{ N] (4.9)

|{ D, : keyword O D}|

whereN is the total number of documents in the archive fam : keyword 0 B}| indicates

the number of documents whet¢h keyword has frequency, >0. tf-idf of the t-th
keyword in documenD; is simply measured by multiplying the correspogdfrandidf :
tfidf,, = tf, xidf, (4.10)

For better results, equation (4.7) can be rearcngagtf-idf in the formula:

.
" (tfidf, xtfidf ,)
similarity(D; ,D; kosine = ——— (4.11)

JZT: (tfia2)ET: (tfiaif 2)

t=1 t=1

The corresponding experimental results on qualitythe clustering using the

classical Cosine measures are portrayed in Chépter

Measuring Clustering Accuracy: Silhouette Coeffitie

In many popular clustering algorithms, the numbkexpected clustera is an

input parameter provided by the user. To evalua¢equality of clustering at the given

42

number of clustergs, one can use silhouette coefficient [47, 48]s laliso possible to find
out a number of clusters for which the average silhouette coefficient has highest
valueH, by simulating the clustering with different numbef output cluster<n< N,
whereN in our case is the total number of document-graphs

Assume that the cluster to which objets assigned is denoted AsLet a(i) be
the average dissimilarity af to all other objects of the clusté: For any clustelC
different fromA, let d(i,C) be the average dissimilarity ofto all objects ofC. After
computingd(i,C) for all available clusters (excep), the smallest average dissimilarity

denoted aSJ(i)=cl’:n¢i2 [d(i,C), is selected. The silhouette coefficient of objeatenoted

asS(i), is then obtained by combiniragi) andb(i) as follows:

1—%, it a(i)<b(i)
s(i)=1o, it a(i)=b(i) (4.12)

D)1 it agi)>b(i)

a(i)
Silhouette coefficient of an individual clustertiee average of silhouette coefficiedii)
for all the elements assigned to this particularstedr [48]. An overall measure of
goodness of a clustering can be obtained by comgptitie average silhouette coefficient
of all data points [49]. We get the most naturaimber of groupings by looking at the

number of clusters for which there is a peak in pha reflecting average silhouette

coefficient. Experimental results on this evaluatmechanism are given in Chapter 6.

43

CHAPTER 5

INTERFACE IMPLEMENTATION

This chapter describes some important classesabdtave designed, and some

pre-existing API that help us to interface GDClasti GDClust-Plus with WordNet.

Object-Oriented Paradigm

The GDClust system has been built using Objectr®@etk Programming with a
mechanism allowing to reduce the task of subgraphparison to an integer comparison
only. While comparing two subgraphs, GDClust doaisraquire comparing each edge of
those subgraphs; rather it requires comparing omty hashcodes. The hashcodes are
generated from the list of DFS-codes of the eddes subgraph when it is createské
section titled “Construction of Document-Graph alMhster Document-Graph” of

Chapter 2 for the generation of DFS-codes).

EdgeLabelObject

The EdgelLabel class is defined to maintain the basic informatadrout an
edge. An instance of this class stores informalike source, target, frequency of the
edge, etc. In our system, the source and the targetivo different synsets of WordNet.
A Label edEdge of a document-graph or Master Document-Graph auitan
EdgelLabel object. This indicates that all graphs under atersition have directed and
labeled edges. Although the frequencies of the £dge not used in our approach, we

kept af r equency field for future use.

44

LabeledEdgébject

Each instance of theabel edEdge class represents the actual edge of a graph
in GDClust system. A document-graph or the Mastecubnent-Graph is an instance of
Di rect edG aph<Label edEdge> object. Therefore, an edge of a
Di rect edG aph is aLabel edEdge and the label of that edge is BdgelLabel

object. TheLabel edEdge class has several fields among which the followiage very

important:

1. bool ean edgeSt at us; // true if forward edge, false if backward edge

2. bool ean i sedgeTraversed = fal se;
[* Facilitates DFS traversal by checking the preatersed edges while generating
DFS-Tree */

3. doubl e depth = 0.0;
[* To facilitate Gaussian minimum support strategiis depth is dependent on
the MDG, so when we use WordNet it should not leatgr than 18. depth = 0
means that the edge has not been yet traversaegefmrating DFS-code. */

The value ofdept h of the Label edEdge informs about the abstraction level of an

edge in the ontology and in our casepth< 1€ as WordNet has a maximum 18 levels

in its 1S-A noun taxonomy. It is hard to distinduithe accurate abstraction level of a
keyword in the taxonomy because of multiple serdethe keyword. For example, in
Figure 10, the abstraction level of the keywBrdan be2, 3 or 4. In our investigation, we
have used the ceiling value of the average depth. o the average depth Bfis

2+3+4

=3. The depth of d.abel edEdge is determined from the average depths of

the source and the target synset of this parti@dge.

45

Figure 10: Hierarchy of a keyword-syn$et

SubgraphObject

The Subgr aph class represents a subgraph in GDClust systemt bfothe
methods of theSubgr aph class are used to maintain and retrieve two opitgate
fields. The fields are:

1. HashSet subgraphEdgel DsHash and

2. HashSet docunment SuppHash.

subgr aphEdgel DsHash is a simpleHashSet that stores the DFS-codes of the edges
of t hi s subgraph. Since the DFS-codes of the edges of amjraph are stored in a
HashSet, comparison between two subgraphs can be evenmmeil to just one
integer. We implemented such mechanism, so we tlhawe to even check each edge of
the two subgraphs. For this purpose, we take tkiardadge of object-oriented facility and
override thehashCode() method. In general, Java Virtual Machine (JVM) oses a
unique hashcode for each object running unde¥M Imposes this hashcode only if the

hashCode() method is not overridden. Therefore, for e&tlbgr aph object, if we

46

do not override thbashCode() method, we have a hashcode provided by the virtual
machine for each subgraph object. Now, even if aeehthe same list of edges in two
subgraphs, due to any other temporary facilitafialgls of thesubgr aph class, JVM
would impose different hashcodes for these two maits. To avoid this, we needed to
override thehashCode() method insideSubgr aph class. We did it in such a way
that the hashcode of the subgraph is dependetiedtias hSet of the DFS-codes of the
edges only. Therefore the equality comparison betve/o subgraphs hash been reduced
to the comparison of two hashchodes of the two espondingHashSets. The

overridderhashCode() method of ouSubgr aph class is as follows:

public int hashCode(){
return subgraphEdgel DsHash. hashCode() ;
}
The equal s() method ofSubgr aph class uses thkashCode() in the following
way:

publ i c bool ean equal s(Obj ect 0){
Subgraph s = (Subgraph) o;
HashSet hs= s. get Subgr aphEdgel DsHash() ;
return
subgr aphEdgel DsHash. hashCode() ==hs. hashCode() ;

A subgraph object of GDClust-Plus maintains anotmeportant HashSet
named nei ghbouri ngEdgel DsHash. This HashSet contains important
information about the neighborhood edges of a sapigin Master Document-Graph to

facilitate the Subgraph-Extension mining mechanism.

47

Interface with WordNet

Many researchers over the whole world are workingliéferent projects for data
mining and considering WordNet as their refererfidexcal database when required. As
a result, a vast number of interfaces and APIs wexeloped in the past years to retrieve
data from the WordNet dictionary. Among them .NEJOM, Java, Haskell, Lisp,
OCaml, Palm, Perl, PHP, Prolog, Python and Rubgriates and APIs are being
mentioned most frequently. WordNet was develope@bgnitive Science Laboratory of
Princeton University [2], they provide necessabydries (library functions are described
in Section 3 of [50]) and the API to access therdiet dictionary using C++. The
interface header and the library functions arelakbs aswn. h andwn. | i b with the
distribution package. Besides, there are also 2®Ms like JWNL [51] and JWordnet
[52], which can be used to retrieve our WordNetotogy from WordNet lexical
reference system.

Android Technologies, Inc. provides a MySQL versadrthe WordNet converted
from the Prolog files of the WordNet database. Ttamk the Prolog database format of
WordNet 2.0 files and converted them to MySQL batchpt format. So researchers can
import the files in MySQL and use them as needawrgid Technologies also provide
the translation documentation for Prolog formatMySQL table format [53]. The
MySQL version of WordNet raised interest among mamggrammers due to the

simplicity of retrieval of needed ontologies dilgdtom the dictionary database.

48

WNSQLBUILDER [54] is a Java tool from Sourceforg®ject to build the SQL
database from the WordNet releases. The projectpatsvides MySQL and PostGreSQL
ready-to-use versions of the WordNet databases.

The latest Windows version of WordNet is WordNet2rl GDClust, we used a
low level interface named WordNet Java Native fiatse (WNJIN [55]) to communicate
with the WordNet dictionary. WNJN is able to comruate with the latest Win32
version of WordNet. Moreover, since the WNJN usws llevel platform dependent C++
codes, the interface is fast. Another advantag&/iN is that it uses the original data of
WordNet without any modification. Therefore, we bBaghosen WNJN as a bridge

between GDClust and WordNet.

JGraphT

JGraphT is a Java graph library that provides nma#ttieal graph-theory objects

[56]. JGraphT supports various types of graphsusholg:

1. directed and undirected graphs

2. graphs with weighted, unweighted, labeled or argr-aefined edges

3. various edge multiplicity options including: simgieaphs, multigraphs,
pseudographs

4. unmodifiable graphs, which allow modules to providead-only” access to internal
graphs

5. listenable graphs, which allow external listenersrack modification events

6. all compositions of the above mentioned graphs.

49

Although powerful, JGraphT is designed to be simpler example, graph vertices and
edges can be of any objects. We took this facditg incorporated.abel edEdge in

the graphs for our document-graphs and Master Death@raph. A JGraphT graph
takes up very little room in the memory, and ip@ssible to create stream of graphs by
overriding some of the original JGraphT methods.@@ can handle graphs eweith a
few million vertices and edges, and the graph dbjean also be stored on disk, since
they can be serialized. GDClust only utilizes théadstructure of JGraphT for document-
graphs and the Master Document-Graph. Thus, alth@iQClust handles thousand of

document-graphs with thousands of edges, the meamatygisk usage is very efficient.

50

CHAPTER 6

EXPERIMENTAL RESULTS

The majority of our experimental results can benfbun this chapter. The
machine we used to execute all our experimentsahalatel Pentium 4 CPW2(0 GHz)
and 1GB of RAM running under Windows XP. All ourpeximents are conducted on the

20 News Groups dataset [37], which is regarded asrehmark collection of data for

natural language processing.

Document-Graph Construction

Figure 11 shows the scalability of our documenpgraonstruction algorithm
(which is depicted in Table 1). It shows that thgoathm performs its execution in linear
fashion with an increasing number of documentsthie experiment shown in Figure

11(a), a total ofL.00 unique keywords with highest information gain weedected from a

2000 documents, 100 keywords 2000 documents, 200 keywords

200X10° MDG contains 853 edges MDG contains 1331 edges

500x10°

3
250x10 400x10°

200x10° A

@ ’gaoomw 1
E 150x103 -
GE) _g 200x10° -
= 100x10° { =

50x10° | 100x103 -

0 —————— 0
o

1000 1
1100 A
1200 +
1300 +
1400 +

[eNoloNoNololoNoNe)
OO0 O0OO0O0O000O0
ANMIT IO O~

1500 1
1600 -
1700 +
1800 1
1900 +
2000

Number of Documents Number of Documents

(a) 100 Keywords (b) 200 Keywords
Figure 11: Document-graph construction timeZ600documents.

51

5000 Documents, 200 Keywords, 10 Groups

1.4x106 MDG contains 1304 edges

1.2x108 -
1.0x108 -
800.0x10° -

600.0x10° -

Time (ms)

400.0x108 4

200.0x10°® A

0.0

[ejoloNololoNoloololololojololoNeNoNeNe]

nomomomomnmononmonmownmowmo

NIOMNOANLMNMNOANULNMNMNOANLNONLLMNO
Ad T dNNNNOOONMSE W0
Number of Documents

Figure 12: Document-graph construction time3600documents.

maximum of2000 documents. Figure 11(b) shows the experiment 2@ keywords
from the same set @000document. Both experiments show that the behasibnear.
The corresponding MDG of Figure 11(a) contai®&d unique edges whereas the MDG
related to Figure 11(b) containd®31 edges. Databade of the Apriori algorithm of
Table 3 contains the genera@@b0document-graphs.

For most of the experiments in this chapter, wedusesubset of the0 News
Groups dataset witB000 documents from onl{t0 groups. The graph for the scalability
test with thes&000 documents is drawn in Figure 12. The Master DocurBaph of

the generateB000document-graphs contain@804unique edges.

Performance of GDClust

This section provides experimental results of GBClusing the FSG approach.
All of the 1304 edges of the MDG werd-edge candidates before calling the

find _frequent 1-edge subgraphs procedure of Table 3. This procedure

52

FSG Approach of GDClust, 5000 Documents, 200 Keywords

100 min_sup=5%, W=(25% of Imax), =14
1x106 -
1x1068 -
» 1x1068 A
E s
p 800x103 +
g 600x103 -
= 600x
400x103 -
200x103 -
0
N < © 0 o N < © ©
— — — — —

k-edge subgraph
Figure 13k-edge subgraph discovery time using FSG Approach@Elust.

utilizes the Gaussian minimum support strategyrtm@l-edge subgraphs from. After
this mechanism is applied, a total 13 edges were left ih;. In this experiment, the
Apriori paradigm discovered the largest frequentbgsaph with19 edges. Figure 13
shows the Apriori algorithm’s execution time to aiser k-edge subgraphs using the
FSG approach.

Table 6 shows the number of detecteddge subgraphs and the number of
attempts to combiné-1)edge subgraphs at each iteration of the Aprioraggm. It
shows thatlO-edge subgraphs are most frequent in our docunraptigarchive. A total
of 713 different 10-edge subgraphs passed the minimum support thceshiol sup
Sincel0-edge subgraphs are the most frequent ones, olyitesnumber of attempts to
constructll-edge subgraphs frot0-edge subgraphs reaches the maximum (marked in
bold in Table 6). The execution time for generatikagdge subgraphs depends on the

number of (k-1}edge subgraphs generated in the previous iteratfothe Apriori

53

Table 6: Number ok-edge subgraphs and attempts to consk«ecige subgraphs.

Information about the experimenE000 documents 200 Keywords, min_sup=5%,
w=(25%0f hay, 123 1ledge subgraphs.

k Number of k-edge subgraphs Number of attemptsto construct k-
edge subgraph

2 107 12X123

3 177 11342

4 309 31152

5 439 95172

6 537 192282

7 614 287832

8 677 376382

9 708 457652
10 713 500556
11 694 507656

12 656 480942
13 596 429680
14 520 354620
15 416 269880
16 263 172640
17 o8 68906
18 15 9506
19 1 210

paradigm. Since the number b®-edge subgraphs is the maximum, the peak of tlee lin
in Figure 13 is all-edges.

For this simulation,min_supis set to5% (allowing the Gaussian minimum
supports to be in the rang®, 100], resulting the amplitude of the Gaussian function,
A=95), and thec value of equation (3.1) is derived with—(25% of |,y in equation
(3.2). We foundlyna=14 from the Master Document-Graph of thes@00document
graphs. The motivation of setting to (25% of hay appeared from the experimental
result shown in Figure 3(d). It shows that the kesdvdistribution fits the Gaussian

shape withw=(25% of 16)wherel.xwas16 for that specific dataset.

54

Table 7: Impact of Gaussian minimum support on nemab1-edge subgraphs.

Information about the experiment: varyingn_sup, w=(25% ofJay, 1304edges in

MDG.

min_sup (%)

Number of 1-edge subgraphs after Gaussian minimum
support strategy

290

245

190

149

123

107

100

80

67

BSlojo|N|o|ua|sw Nk

61

To show the impact of Gaussian minimum support,coléected the number of

selectedl-edge subgraphs from the candidate lisi 8P4 edges with differeniin_sup

and placed them in Table 7. It shows that the Ialwemin_sup(smallmin_supindicates

high amplitudeA of equation 3.1), the higher the numberleédge subgraphs after

Gaussian filtration. Although Table 7 does not shgvwsometimes, ifmin_supis very

small, the reduction of themin_supvalue may not result in further inclusion biedge

subgraphs if all edges in the mid-levels are alyeadluded by a highemin_sup In that

casew can be increased to include additiohadges subgraphs, if necessary.

Edges can be pruned even with fixath_sup but varying width denoted lwy, of

the Gaussian minimum support curve. A narrower Gauascurve (smallew) would

result in fewer subgraphs, whereas a broader Gaussirve (largew) will generate

more 1-edge subgraphs. This behavior is reflected in &&blit shows that with a fixed

min_sup the number of selecteldedge subgraphs increases with increasing values of

55

Table 8: Impact ofv on number ofi-edge subgraphs.
Information about the experiment: varyimgmin_sup=5%

X Number of 1-edge subgraphs after Gaussian minimum
(W =X % Of Imax) support strategy

1 98
12.5 98
25 123
37.5 155
50 201
67.5 259
75 295
87.5 327
100 341

(i.e., widening the Gaussian curve). Therefore, cae fine tune the parameters of the
Gaussian function for expected accuracy in a sigesdmain.

One can also move the center of the Gaussian aupegik by controlling thb
value of the equation (3.1), skewing the curvenwy direction (i.e., toward more or less
abstract levels of MDG). In all of our experimeni® kept the curve symmetric because
most of the important senses of the document-graphsepresented by the midlevel of
the ontology (i.e., MDG) and similar document-grephave the tendency to start

overlapping at midlevel (discussed in Chapter 3).

Performance of GDClust-Plus: Subgraph-Extensionmgin

In this section, we use the same dataset 80®0 documents an@00 keywords
that we used for the previous sectiamnn_suphas been set 8% andw=(25% of |hay).
Figure 14 shows the runtime required to detectagekiedge subgraphs. Table 9 shows
information about the quantity &fedge subgraphs generated and the number of atempt

made to construct these subgraphs f(ksh)-edge ones. The table shows that Subgraph-

56

5000 Documents, 200 Keywords
Subgraph-Extension Mining Approach of GDClust
min_sup=5%, w=(25% of Iy ax), Imax=14
25x108

20x108 4

15x108 1

10x108 |

Time (ms)

5x103 1

0

O N < © 0 O N & © oo O
o 1 +H -+ —H «

k-edge subgraph
Figure 14k-edge subgraph discovery time using Subgraph Extefnining.

Table 9: Number ok-edge subgraphs and corresponding number of attempt

Information about the experimen&§000 documents,200 Keywords, min_sup=5%,
w=(25%0f Ihay) Using Subgraph Extension Mining.

k Number of k-edge subgraphs | Number of attemptsto construct k-
edge subgraph
2 107 224
3 177 655
4 309 1666
5 439 3639
6 537 5814
7 614 7519
8 677 9083
9 708 10450
10 713 11259
11 694 11681
12 656 11691
13 596 11293
14 520 10465
15 416 9248
16 263 7454
17 98 4726
18 15 1763
19 1 98

57

Extension mining found the largest subgraph wi edges during this subgraph
discovery process.

The numbers of subgraphs of Table 9 perfectly nest¢the numbers of subgraphs
in Table 6, confirming that our Subgraph-Extensimining approach performs the
discovery of subgraphs accurately. Once again, gnadink-edge subgraphd,0-edge
subgraphs are the most frequent. In our SubgrapérBon mining process, the number
of attempts to generateedge subgraphs frortk-1}edge subgraphs depends on the
MDG-driven neighborhood lists of thogle-1}edge subgraphs. As the result, the number
of attempts is far lower than with the FSG approatiGDClust (because we avoid
unsuccessful attempts to generate candidate suig)rap

The Appendix of this thesis contains an experiment Subgraph-Extension
mining with a large dataset df5000 documents. We compare the performance of

Subgraph-Extension mining with the FSG approadB@Clust in the following section.

GDClust vs. GDClust-Plus

GDClust-Plus outperforms GDClust by a high magretudlie to our novel
Subgraph-Extension mining technique. Figure 15 shaoke difference between the
runtime of these two approaches by combining FigiBeand Figure 14 from the
previous two sections. The gray line indicates tihee necessary to discové&redge
subgraphs using GDClust's FSG approach. The biaekihdicates the performance of
the Subgraph-Extension mining approach of GDClhss-FDue to the significant speed

of the Subgraph-Extension mining, the black lineklinear and almost flat when it is

58

compared with the gray line of the FSG approacthoalgh the actual behavior of
Subgraph-Extension mining is not really linear. iWade the boundary of the scale of the
Y-axis of Figure 15 smaller and redraw it in Figd& just for an illustration. Both the

curves have their peaks near to the maximum nuofideedge subgraphs (in this case,

5000 documents, 200 keywords
min_sup=5%, w=(25% of Imay), Imax=14
P}
1.4x10° A o o

1.6x108

1.2x108 - 7
1.0x106 o

(ms)

800.0x10° A o

ime

600.0x10°

T
o

400.0x103 o

200.0x103 - o
o o

R S S S S i i

N < © © o N < © [ee]
— — — — —

k-edge subgraphs

—o— k vs SubgraphExt Mining Time(ms)
o k vs FSGtime (ms)

Figure 15: Comparison between FSG and SubgrapmEigte mining approach.

5000 documents, 200 keywords
min_sup=5%, w=(25% of Imax), Imax=14

100x10° 5

80x10° 1

60x10° -

Time (ms)

40x108 A
o

20x10° -
o
0 9 ‘ ‘ ‘ ‘ ‘ ‘ ‘

N < © [ce) o N < © [ce)
— — — — —

k-edge subgraphs
—o— k vs SubgraphExt Mining Time(ms)
o— kvs FSG time (ms)

Figure 16: Representation of Figure 15 with shdstamdary of the scale.

59

k=10). Although, they have the similar tendency, GDE€RkIS’s Subgraph-Extension
mining approach performs aroulB@ times better than GDClust's FSG approach when
detectinglO-edge subgraphs. This number is not staticcandvary depending on the
document-archive size, the number bedge candidates generated using Gaussian
dynamic minimum support strategy and the numbesulfgraphs generated at lower
values ofk (which is also dependent on the character of dueighent corpora).

The difference is the most visible kt11 where the blind generation of FSG
reached its peak caused by the maximum numbé&f-efdge subgraphs. For generating
Table 10: Comparison between GDClust and GDCluss-PlI

Information about the experimens000 documents,200 Keywords, min_sup=5%,
w=(25%0f Ihay) using Subgraph Extension Mining.

Number of attemptsto construct
k-edge subgraph Saved attempts
k Nurrsullj)sr rOf kh-sdge FSG strategy of Subgraph (in %)
grap GDClust Extension Mining
of GDClust-Plus

2 107 12X123 224 98.5
3 177 11342 655 94.2
4 309 31152 1666 94.7
5 439 95172 3639 96.2
6 537 192282 5814 97.0
I 614 287832 7519 97.4
8 677 376382 9083 97.6
9 708 457652 10450 97.7
10 713 500556 11259 97.8
11 694 507656 11681 97.7
12 656 480942 11691 97.6
13 596 429680 11293 97.4
14 520 354620 10465 97.0
15 416 269880 9248 96.6
16 263 172640 7454 95.7
17 98 68906 4726 93.1
18 15 9506 1763 81.5
19 1 210 o8 53.3

60

11-edge candidate subgraphs, the overhead was eéflyctieduced by our Subgraph-
Extension mining approach fro®07656to 11681 attempts (savin@®7.7% attempts).
GDClust-Plus does not try to combine evé€kyl)}edge subgraph to generdteedge
subgraphs. Rather, it makes this attempts only wir@vided with the evidence of
neighborhood from the MDG. As a result, it will fem same or better than FSG
approach. If the MDG composes to a star then thm@ph-Extension mining approach
would perform the same as FSG approach. In pradtice very unlikely that the MDG
would form a star. So, the chance that the SubgEadbnsion mining approach would
perform better than FSG approach is very high. &ald combines the number of
attempts to construck-edge subgraphs fronfk-1}edge subgraphs using both the
approaches. It shows a significant differencesheriumbers of attempts between these

two algorithms and illustrates why GDClust-Plus dwaes over the original GDClust.

Clustering Accuracy Measurement: Silhouette Coigfific

The frequent subgraphs discovered using eitheF8t@ approach of GDClust or
Subgraph-Extension mining approach of GDClust-Ritesused to cluster tH20 News
Groups corpora. For our experimens00 documents were chosen frobd different
news groups. Figure 17 shows the average silhoceg#icients for different numbers of
clusters generated by our hierarchical agglomeratlustering (HAC). As the tendency
of the curve is downward after certain number obtdrs, we displayed silhouettes only
up to 50 clusters in Figure 17. The graph shows that thgirmam average silhouette

coefficient (i.e., the best clustering) is foundemtthe number of clusters8s The result

61

5000 Documents, 10 groups, 200 Keywords
Hierarchical Agglomerative Clustering, used Cosine Coefficient

1.00 -

o o
© ©
o a

Average silhouette coefficient
&
[$]

0.80 T

T T T T T T T T T T T T T T T T T
ONSTOOONTOWOOANTOWOONT O ®®O
ATd A AN NNNNOONOO®OS

T T T
N < © 0O
< S S W0

Number of Clusters

Figure 17: Average silhouette coefficient calculiafier different numbers of clusters.

of 0.99 is very good, as average silhouette caeffidalls into[-1, 1]. So, our best result
is really close to the number of groups in the tnocuments (ous000documents had
10 predefined groups). It needs to be noted thathallaverage silhouettes displayed in
Figure 17 are greater tham8 which is particularly good. This means that averag
silhouette coefficient remains high in the neigtitmard of pre-labeled number of clusters
(i.e. 10) and gradually falls downward in our a plot. THesmonstrates a close match of

cluster numbers with the number of predefined gsafthe dataset.

Clustering Accuracy with Different Similarity Meass

We discussed different graph similarity measureShapter 4. In this section we
show results of our analysis using those similangasures. We used the same subset of
the 20 News Groups dataseb@00 documents froml0 groups and200 keywords) for

clustering.

Average SC

Average SC

1.00 -

0.95 -

0.90 -

0.85

0.80

1.00 +

0.95 -

0.90 -

0.85 -

0.80

Clustering with Cosine Coefficient

T T T T T T T T T T T T
O N ¥ © 0 O N & © 0 O N <
o - = +H4 " N N N

Number of Clusters
(@)

Clustering with Jaccard Coefficient

O N < © 0 O N < © 0o O «
— — — — N N
Number of Clusters

(©)

24 A

62

Average SC

Average SC

Clustering with Dice Coefficient

1.00
0.95 -
0.90 H
0.85 1
0800 +—/————F+——————————
O N < © 0 O N < ©W W O N <
o " 4 4 N N N
Number of Clusters
(b)
Clustering with Matching Coefficient
1.00 -
0.95 -
0.90 -
0.85
0.80

O N < O 0 O N < © 0 O N <
o 4 4 4 4 N N N
Number of Clusters

(d)

Clustering with Overlap Coefficient

0.6

0.4 4

Average SC

0.2 4

0.0

O N < © o O
—

T
N
—

< © 0o O N <
1 «+4 < N N «

Number of Clusters

(e)

Figure 18: Clustering accuracy with different kiredssimilarity measures.

63

Figure 18 shows our analysis with different similameasures. It shows that we
always get the highest average silhouette coeffiiicié 8 clusters using any similarity
measure, except for the Overlap coefficient of Fegli8(e). The value of the Overlap
coefficient is the maximum when every frequent sapf of one document-graph
appears in the set of frequent subgraphs of ther oibxcument-graph. This rarely happens
in our document-graphs. As we remove very comrii@dge subgraphs near the top
levels of the hierarchy, it is unlikely that a lot subgraphs will match between two
document-graphs. Figure 18(e) shows that averdheusite is less tha@.8 for every
number of clusters except f@r This illustrates that the Overlap coefficient so®t meet
our purpose.

Although the Dice, Jaccard and Matching coeffigershow that the best
clustering is found when there aBegroups in the dataset, they all keep showing high
accuracy when the number of clusters increasesn Rlhis perspective, Figure 18(a)
shows better variation on the average silhouetedficaent for a different number of
clusters confirming well-known opinion that Cosioeefficient is more appropriate in
our case of documents’ clustering. This is esplgcialeresting, in the context of the fact
that Cosine coefficient became popular to balangelasities between documents of

significantly different size.

Comparison of GDClust-Plus with Traditional System

We discussed the traditional bag-of-tokens strategydocument clustering in

Chapter 4. In this section, we compare the acocesaof the traditional document

64

clustering and the sense-based clustering mechaois@DClust. To make sure our
results can be easily compared, we used the sacheverof 5000 documents froni0
groups with200 keywords that we discussed before. As for tradéicapproaches, we
directly used equation (4.7) and (4.11) to constthe distance matrix for Hierarchical
Agglomerative Clustering. We plot average silhoaietefficients for different numbers
of clusters and compare them with the results aeklidor GDClust (Figure 17). Results
of the clustering with three mechanisms: (1) GDClas GDClust-Plus), (2) traditional
frequency-based document clustering and (3) taditi tf-idf based document clustering
are depicted in Figure 19. The dashed line of FEdLf is a copy of results reported in
Figure 17. The gray line indicates results fromttlaglitional (i.e., un-normalized) vector
representation of documents with cosine distancasorement using frequency of terms
only, where the solid black line is an outcome ohilar vector representation of
documents with utilized tf-idf (i.e., counts ofhes’ frequencies are properly normalized,
reducing differences between long and short doctshen

Figure 19 shows that GDClust detects best clugiewith 8 clusters. It also
shows a very high average silhouette with clusters indicating highly accurate
clustering. In contrary, the vector representatbbrmilocuments cannot show satisfactory
accuracy with any number of clusters, except Zprwhich is not desired fob000
documents ofl0 groups. Also with large numbers of clusters, dolguency-based and
tf-idf based clustering mechanisms quickly reachegative average silhouettes. The
frequency-based traditional approach results im#gative average silhouette coefficient

after 17 clusters, and the tf-idf based approach genereggative values aftdrl clusters.

65

5000 Documents, 10 groups, 200 Keywords
o Cosine with frequency
——o—— Cosine with TFIDF
— —> — GDClust with Cosine

1.0 A C/O_O‘Omo-o-o_O—o_o_o.o.4:)._0—0—0—0-0-4l

3,0_0,0—0'
0.8 A

0.6 A

0.4 1

Average SC

0.2 4

0.0 4 S S e G S T e WG W S W

T T T T T T T T T T T T
N < © [ce) o N < (o] [ee) o N <
— — - - - N N N

Number of Clusters

Figure 19: Comparison of Subgraph Extension Miminip traditional systems.

Although average silhouettes can be in the rdrbel], a negative value is definitely
undesirable because this corresponds to a casehich ihe average dissimilarity of
documents in the cluster is greater than the mimramnerage dissimilarity of documents
in other clusters [49]. Therefore, a negative ayersilhouette coefficient at any number
of clusters indicates strongly inaccurate clusteahthat number.

Because GDClust is a subgraph-based clustering anesth, although there are
only 200 keywords, it discovers enough frequent subgraphgdch of the documents to
cluster properly. It results in positive averagkaiettes at every number of clusters.
Therefore, we can conclude that our GDClust sysiteroapable of providing proper

sense-based clusters, even with a small numbesyavdrds.

66

CHAPTER 7

CONCLUSION

GDClust presents a new technique for clusteringdexuments based on the co-
occurrence of frequent senses in the documentsd@heloped, novel approach offers an
interesting, sense-based alternative to the commosed bag-of-tokens technique for
clustering text documents. Unlike traditional syste GDClust harnesses its clustering
capability from the frequent senses discoveredha documents. It uses graph-based
mining technology to discover frequent senses. fidvelty of our work lies beneath two
new approaches introduced in this report: Dynamiaimum support strategy and
Subgraph-Extension mining technique. Subgraph-EBxe&n mining technique
outperforms FSG strategy by high magnitudes. Bsside have shown that GDClust
performs more accurately than traditional syste@i3Clust is an automated system and

requires minimal user interaction for its operasion

Limitations

To keep things simple, we used only noun keywondalli our experiments. We
believe however that our techniques will work weith all parts of speech that are
provided with a hierarchical ontology. Our claimbased on the observation that all our
approaches are graph-based and do not focus arothgarison of the actual keywords.
The document-graph construction algorithm (Table@)ld be modified to incorporate

all the parts of speech if necessary. Indeed, basedur experiments, we started to

67

believe that the noun keywords from the text doaushare enough to cluster documents

accurately.

Future Works

In the future, we want to develop an intelligenstsyn for the Dynamic minimum
support strategy. In our system, since #teNews Groups dataset follows Gaussian
trend, we have utilized Gaussian minimum suppaudtegy for generating Dynamic
minimum support thresholds. In Chapter 3, we dbsctiat the domain behavior for the
keywords can be different than the Gaussian trdagending on the document archive.
This requires an intelligent system to determine shape of the Dynamic minimum

support curve if the domain is unknown.

68

REFERENCES

. M. S. Hossain and R. Angryk, “GDClust: A Graph-Baseocument Clustering
Technique”,2007 IEEE International Conference on Data MininG®M'07), IEEE
ICDM Workshop on Mining Graphs and Complex StruesulEEE Press, Omaha,
NE, USA, October 28-31, 2007, pp. 417-422.

. “WordNet: A Lexical Database for the English Langeg Cognitive Science
Laboratory Princeton Universityhttp://wordnet.princeton.edu/

. F. Sebastiani, “Machine learning in automated tategorization”ACM Computing
Surveysv. 34 (1), 2002, pp. 1-47.

. C. D. Manning and H. Schutze, “Foundations of Natluianguage Processing¥liT
Press 1999.

. C. Cleverdon, “Optimizing convenient online accegsbibliographic databases”,
Information Survey and Use. 4 (1), 1984, pp. 37-47.

. G. Miller, R. Beckwith, C. FellBaum, D. Gross, K.ilMr, and R. Tengi, “Five papers
on WordNet”,Princeton UniversityAugust 1993.

. R. Agrawal, and R. Srikant, “Fast Algorithms for mitig Association Rules”,
Proceedings of International Conference on VerygeaData Bases (VLDB'94)
Santiago, Chile, September 1994, pp. 487-499.

. R. Agrawal, T. Imieliski, and A. Swami, “Mining association rules betwesets of
items in large databasesProceedings of the 1993 ACM SIGMOD international
conference on Management of daféashington, D.C., USA, 1993, pp. 207-216.

. T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: Afficient Data Clustering
Method for Very Large DatabasesProceedings of ACM SIGMOD International
Conference on Management of Data (SIGMOD'&)ntreal, Quebec, Canada, June
4-6, 1996, pp. 103-114.

69

10.S. Deerwester, S. T. Dumais, T. K. Landauer, G.Pdnas, and R. A. Harshman,
“Indexing by latent semantic analysisdournal of the Society for Information
Sciencev. 41(6), 1990, pp. 391-407.

11.S. T. Dumais, G. W. Furnas, T. K. Landauer, andD8erwester, “Using latent
semantic analysis to improve information retriey&foceedings of Conference on
Human Factors in ComputinéNew York, 1998, pp. 281-285.

12.M. Kuramochi and G. Karypis, “An efficient algorth for discovering frequent
subgraphs”,IEEE Transactions on Knowledge and Data Engineerimg 16(9),
September 2004, pp.1038-1051.

13.R. N. Chittimoori, L. B. Holder, and D. J. Cook, palying the SUBDUE
substructure discovery system to the chemical iyxaiomain”, Proceedings of the
12th International Florida Al Research Society Goehce 1999, pp. 90-94.

14.L. Dehaspe, H. Toivonen, and R. D. King. “Findingeduent substructures in
chemical compounds”,Proceedings of the 4th International Conference on
Knowledge Discovery and Data Mining998, pp. 30-36.

15.A. Srinivasan, R. D. King, S. Muggleton, and M.E]. Sternberg, “Carcinogenesis
predictions using ILP”Proceedings of the 7th International Workshop ogulstive
Logic Programmingv. 1297, 1997, pp. 273-287.

16.A. Srinivasan, R. D. King, S. H. Muggleton, and Bternberg, “The predictive
toxicology evaluation challenge”Proceedings of the 15th International Joint
Conference on Artificial Intelligence (IJCARB997, pp. 1-6.

17.H. Kalviainen, and E. Oja. “Comparisons of attrimligraph matching algorithms for
computer vision”, Proceedings of STEP-90, Finnish Artificial Inte#ligce
SymposiumOulu, Finland, June 1990, pp. 354-368.

70

18.D. A. L. Piriyakumar, and P. Levi, “An efficient Abased algorithm for optimal
graph matching applied to computer visioBRWSIA-98Munich, 1998.

19.D. Dupplaw and P. H. Lewis, “Content-based imageieveal with scale-spaced
object trees”,Proceeding of SPIE: Storage and Retrieval for MeDi@abases\v.
3972, 2000, pp. 253-261.

20.M. E. J. Newman, “The structure and function of ptem networks”,Society for
Industrial and Applied Mathematics (SIAM) Review45(2), 2003, pp. 167-256.

21.C. W. K. Chen and D. Y. Y. Yun, “Unifying graph-ncaing problem with a practical
solution”, Proceeding of International Conference on Syste8ignals, Control,
ComputersSeptember 1998.

22.L. Holder, D. Cook, and S. Djoko, “Substructurectigery in the SUBDUE system”,
Proceedings of the Workshop on Knowledge DiscoveBatabases1994, pp. 169—
180.

23.K. Yoshida and H. Motoda, “CLIP: Concept learningnrh inference patterns”,
Artificial Intelligence v. 75(1), 1995, pp. 63-92.

24.R. Agrawal, M. Mehta, J. Shafer, R. Srikant, A. #ugy and T. Bollinger, “The Quest
Data Mining System”Proceeding on 2nd International Conference on Déiaing
and Knowledge Discovery (KDD'9@ortland, OR, USA, August 1996, pp. 244-249.

25.H. Mannila, H. Toivonen, and I. Verkamo, “EfficieAtigorithms for Discovering
Association Rules”Proceedings of AAAlI Workshop on Knowledge Discowery
Databases (KDD-94) Seattle, Washington, USA, July 1994, pp. 181-192

26.J. S. Park, M. S. Chen, and P. S. Yu, “An effectiash-based algorithm for mining
association rules”Proceedings of the ACM SIGMOD international confeee on
Management of data (SIGMOD'93an Jose, CA, USA, May 1995, pp. 175-186.

71

27.J. Han, and Y. Fu, “Discovery of Multiple-Level Assation Rules from Large
Databases”Proceedings of the #international Conference on Very Large Data
Bases (VLDB’95)Zurick, Switzerland, September 1995. pp. 420-431.

28.M. Kuramochi, and G. Karypis, “Frequent subgraptdvery”,Proceedings of IEEE
International Conference on Data Mining9 November-2 December. 2001, pp. 313—
320.

29.X. Yan, and J. Han, “gSpan: graph-based substrigattern mining”Proceedings
of IEEE International Conference on Data Minjrigecember 2002, pp. 721-724.

30.C. Moti, and G. Ehud, “Diagonally Subgraphs Patts&tining”, Proceedings of the
9th ACM SIGMOD workshop on Research issues in datang and knowledge
discovery June 2004, pp. 51-58.

31.M. J. Zaki, “Efficiently mining frequent trees infarest”, Proceedings of the eighth
ACM SIGKDD international conference on Knowledgscdvery and data mining,
KDD'02, 2002, pp. 71-80.

32.X. Yan, P. S. Yu, and J. Han, “Substructure Sintjfaearch in Graph Databases”,
Proceedings of the 2005 ACM SIGMOD internationaifecence on Management of
data, SIGMOD'052005, pp. 766-777.

33.X. Yan, F. Zhu, J. Han, and P. S. Yu, “Searchingshuctures with Superimposed
Distance”,Proceedings of the 22nd International ConferenceData Engineering ,
ICDE'06, 2006, pp. 88-97.

34.N. Ketkar, L. Holder, D. Cook, R. Shah, and J. @bSubdue: Compression-based
Frequent Pattern Discovery in Graph DaRpceedings of the ACM KDD Workshop
on Open-Source Data Miningugust 2005, pp. 71-76.

35.J. Tomita, and G. Kikui, “Interactive Web search dmaphical query refinement”,
Proceedings of the 10th international World WidebW¢enference (WWWQ13001,
pp. 190-191.

72

36.A. McCallum, “Bow: A Toolkit for Statistical Langwge Modeling, Text Retrieval,
Classification and Clustering'hittp://www.cs.cmu.edu/~mccallum/bow/

37.“20 News Groups datasetittp://people.csail.mit.edu/jrennie/20Newsgroups/

38.T. R. Gruber, “A translation approach to portablatotogy specifications”
Knowledge Acquisitianv. 5(2), pp. 199-220, 1993.

39.M. S. Hossain, M. Akbar, and R. Angryk, “Sense BaSgganization of Descriptive
Data”, 2007 IEEE International Conference on Systems, Bath CyberneticslEEE
Press, Montreal, Quebec, Canada, October 7-10, p0A68-473.

40.T. Cormen, C. Leiserson, R. Rivest and C. Steinfréduction to Algorithms”,
Second Edition, MIT Press, McGraw-Hill Book Compar8ection 22.3, pp. 540-
549.

41.E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P.ylkdR. Motwani, J. D. Ullman, and
C. Yang, “Finding interesting associations withostipport pruning”, IEEE
Transactions on Knowledge and Data Engineeringl3(1), January/February 2001,
pp. 64-78.

42.D. Gibson, R. Kumar, and A. Tomkins, “Discoveringrde dense subgraphs in
massive graphsProceedings of the $1international conference on Very large data
bases (VLDB'05)Trondheim, Norway, 2005, pp. 721 - 732.

43.P. Ganesan, H. Garcia-Molina, and J. Widom, “Expigi hierarchical domain
structure to compute similarityACM Transactions on Information Systems (TQIS)
v. 21(1), January 2003, pp. 64 - 93.

44.D. Lin, “An information-theoretic definition of siarity”, Proceedings of the 15th
International Conf. on Machine Learninlorgan Kaufmann, San Francisco, CA,
(1998), pp. 296-304.

73

45.H. Chen, M. Lin and Y. Wei, “Novel association maas using web search with
double checking”, Proceedings of the 21st International Conference on
Computational Linguistics and the %4annual meeting of the ACLSydney,
Australia, 2006, pp. 1009 - 1016.

46.R. White, J. Jose, “A study of topic similarity nseiees”, Proceedings of the 27th
annual international ACM SIGIR conference on Reslkeaand development in
information retrieval Sheffield, United Kingdom, July 2004, pp. 5215

47.F. Lin, C. M. Hsueh, “Knowledge map creation andintenance for virtual
communities of practice”International Journal of Information Processing and
Management, ACM;. 42(2), 2006, pp. 551-568.

48.N. R. Adam, V. P. Janeja, and V. Atluri, “Neighbodd Based Detection of
Anomalies in High Dimensional Spatio-temporal SenBatasets”,Proceedings of
ACM Symposium on Applied ComputiiMarch 2004, pp. 576-583.

49.Tan P. N., Steinbachm M., Kumar V., “Introductiandata mining” Addison-Wesley
ISBN: 0321321367, April 2005, pp. 539-547.

50.“Library Functions for WordNet"http://wordnet.princeton.edu/doc

51.“JWNL (Java WordNet Library)’http://sourceforge.net/projects/jwordnet

52.“JWordNet”, http://sourceforge.net/projects/jwn/

53.“WordNet 2.0 data files in MySQL format”, Android ethnologies Inc,.
http://www.androidtech.com/html/wordnet-mysaql-2Qoph

54.“WordNet SQL Builder” http://wnsqlbuilder.sourceforge.net/

55.“WordNet JNI Java Native Supportittp://sourceforge.net/projects/wnjn/

74

56.“JGraphT”, http://jgrapht.sourceforge.net/

57.J. Han and M. Kamber, “Data Mining: Concepts anahheques”, 2nd Edition,
Morgan Kaufmann PublSBN: 1558609016, March 2006, pp. 234-242.

75

APPENDIX A

SUBGRAPH-EXTENSION MINING FOR LARGE DATASET

76

From the experimental results of Chapter 6, we ktiaw the GDClust's FSG
approach is less efficient than the Subgraph-Exensining approach. This is why it is
very time inefficient to conduct subgraph discovenylarge datasets using FSG approach
of GDClust. GDClust-Plus’s Subgraph-Extension mynapproach provides faster
execution even with large datasets. Figure 20 slamwexample witd5000documents

and200keywords. Table 11 contains the correspondingmétion.

Table 11: Information Subgraph Extension Mining
about Subgraph Extension 15,000 Documents, 200 keywords
Mining of Figure 20. (Among 1306 edges 53 edges were

k N(k) [Attempts left after Gaussian Dynamic)

(K) min_sup=6%, w = 25%0f |max

2 65 132 70x103

3 101 317 60x1083 |

4 181 726

5 | 306 | 1610 7 D0x10°

6 | 464 | 3144 £ 40x10° |

7 621 5302 2 30x103

8 758 7757 ~ 20x103 -

9 830 10163 3 |

10| 832 | 11748 10)(13 -

11 769 12305 ‘ ‘ ‘ ‘ ‘ ‘ ‘

12| 650 | 11797 MY e 3 s3 33
13 479 10272

14 293 7755 k-edge subgraphs

15 140 4835 Figure 20: Time elapsed to detect differdeedge
16 47 2343 subgraphs.

17 10 795

18 1 170

N(k)=Number ofk-edge subgraphs
Attempts(k) = Number of attempts
to construck-edge subgraphs

