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ABSTRACT

The ability to identify particular features and structures, such as faces or types of

scenery in images, is a topic with many available applications and potential solutions.

In this paper we discuss solar images and the results of our preliminary investigation

of techniques that can be used to identify solar phenomena in images from the

TRACE satellite. Being able to automatically identify various phenomena in solar

images is of great interest for scientists studying phenomena on the sun. A set of

characteristics that can be quickly extracted from solar images needs to be acquired.

These characteristics are used to create classifiers for various phenomena contained

in solar images. There are many obstacles that need to be overcome when extracting

features and creating these classifiers. These include the inherent unbalanced data sets

due to varying rates at which different phenomena appear and multiple phenomenon

that could appear in each image. The classifiers that have been generated were used

in the creation of an information retrieval system to make finding phenomenon solar

images quick and easy.
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INTRODUCTION

This paper discusses an investigation into creating classifiers for use in an

Information Retrieval (IR) system for solar images. To be useful in practice, our

classifiers need to be fast and accurate. Currently we are working with images from

the Transition Region and Coronal Explorer (TRACE) satellite. This satellite takes

images of the sun at regular intervals. The image repository size for TRACE is

approximately one terabyte and is growing at the rate of 260 megabytes a day. Future

satellites will be capable of taking higher resolution images at a faster rate than the

current satellite. We are developing this system with the intent that it will be able

to scale with the increased data rate of images in the future.

There are several difficulties that need to be understood with our classification

problem. First, for each image there are multiple classes to choose from as opposed to

binary classification where only two labels occur. The second issue is that each image

may also by labeled multiple times with several different classes, because multiple

phenomena can occur in the same image. Also, as with any real world problems, the

classes are significantly imbalanced, with some classes appearing more than others.

The paper is broken into four sections. The introduction section will introduce

the topic and provide motivation for this research. Similar systems that currently

exist along with related research will be discussed. The second section will discuss

the images, the file format they are in, and how they are processed to extract features.

The third section discusses the creation of classifiers.
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Motivation

As noted in the introduction, the current repository of images from TRACE is

growing at a rapid pace. With a new image being taken at a rate of nearly one every

three minutes, it becomes nearly impossible for humans to analyze every image. This

problem will only become worse as new equipment becomes available that can gather

data at a faster rate.

To help alleviate this problem an automated computer process will be needed to

help analyze the incoming information. This paper discusses our investigation into

creating such an Information Retrieval system for images of the sun. The goals of this

system are to quickly classify features in new images as they come in and provide a

basic search by sample interface that can be used to search a database of solar images

for images with similar attributes.

Scope

The scope of this thesis covers three main areas that are separated into chapters.

The first chapter covers processing the solar images, extracting attributes from the

images, and storing these attributes for later use. The second chapter discusses the

creation of classifiers based on the extracted attributes. These classifiers are used for

identifying phenomena contained within the images. In the third chapter we discuss

the prototype Information Retrieval system created using the classifiers trained in

the second chapter. In the final chapter conclusions and ideas for future work are

presented.

An overview of our proposed system is presented in Figure 1. The major

components of this system are a Query Interface, an Information Retrieval mechanism,
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and organization of Virtual Solar Observatory’s (VSO) data into catalogs of labeled

images.

Figure 1: Data flow through the image classifying and searching mechanism.

Image Classification

We take advantage of image classification to increase the speed of processing the

example-based queries. By pre-classifying images, we can significantly reduce the

number of images we need to look at while responding to the user’s query. We

will do so by filtering out classes of phenomena that are not relevant to the user’s

query. This may seem to be restrictive at first glance, but it is the only practical

approach when dealing with large data repositories, where brute force comparison

of users’ image(s) with all the images stored in the database is simply not feasible.

The practical solution is to build accurate classifiers and use them to make sure the
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VSO’s images are labeled properly, and to match the user’s images to the appropriate

catalogs.

To classify the images we use a multi-level arrangement of binary classifiers similar

to the arrangement shown in Figure 2. This “gradual filtering” approach is founded

on other well known classifiers’ fusion techniques and is proposed here to quickly

prune irrelevant images from further consideration. We believe this technique is very

effective when dealing with large repositories of data that contain a high percentage

of one type of phenomenon. We first apply binary classifiers, focusing on filtering out

sections of the images that do not contain any phenomena (i.e. Quiet Sun images).

The following classifiers will be used later to determine what phenomena occur

in portions of the images that were recognized as non-Quiet, and provide a proper

label. This allows a classifier to specialize in deciding if a single phenomenon exists

in an image without having to worry about the classification results being skewed

towards more frequent types of phenomena. This is a well known issue and described

in [1, 2, 3]. The system should also scale well, as classifiers will be able to run in

parallel and in a distributed fashion on a cluster of computers. The modular design

also means that individual classifiers can be modified without affecting the rest of our

image labeling system.

A set of solar images, that have been labeled by human experts, have been used

for training and testing the classifiers. After the classifiers are trained, they are

used to label the remaining images in our repository and add the references about

the newly labeled images to the appropriate phenomena’s catalogs. Each new image

that is put into the database will have an attribute vector, ~i, created by our image

processing module and is to be labeled by our classifiers (see Information Retrieval

component in Figure 1). These two crucial pieces of information are then stored in our

repository and used while searching for images. They are used to first quickly filter
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out segments of images that are not relevant. We then refine our search by ranking

based on evaluating the angle between the query vector, ~qavg, and the relevant image

vectors, ~i, in the catalog.

Figure 2: A sample arrangement of binary classifiers to produce a set of labels.

For the development of our prototype we used classifiers present in Weka [4]. Weka

is a well known package of data mining tools which provides a variety of known, well

maintained classifying algorithms. This allows us to experiment with several kinds

of classifiers quickly and easily. Because each image of the sun may contain multiple

phenomena, multiple labels could be given to each image by human experts and by

our prototype classifier.
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Information Retrieval

The Information Retrieval component, as seen in Figure 1 is responsible for

analyzing the query image(s) and retrieving similar images from the TRACE image

repositories. Distinct features are extracted from the sample image(s) during Image

Preprocessing. Classification of the sample image(s) is performed based on the

extracted information. After each sample image has been classified, we select similar

images from the data catalogs related to the query and rank them from most relevant

to least relevant. The ranking function can be modified based on the user’s feedback

for subsequent queries.

Phenomena Catalogs

The backbone of the system are the Phenomena Catalogs, shown in Figure 1,

maintained in our repository. The phenomena catalogs contain collections of pointers

to the original images, features that have been extracted from the images, and the

results of our classification. The Searching & Ranking component, shown in Figure 1,

uses the classification results and extracted attributes from the images to quickly

select and rank images that are similar to the query. We decided to utilize pre-

classification mechanisms and catalogs to speed up the image retrieval process. Brute

force mechanisms, as used in [5], would generate too much of a delay when used with

such a large image repository as VSO. The phenomena catalogs will be populated by

images from the TRACE mission. As new images are made available, they will be

classified and kept in the appropriate catalogs.

Query Interface

The first module, the one users will have direct interaction with, is the Query

Interface from Figure 1. The first step is to start a query by providing image(s)
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with an example phenomenon. Other constraints, if known to the user, can also be

provided, such as dates and wavelengths, to confine the search. After the query has

been submitted and results have been returned, the researcher may opt to refine the

search. This is done intuitively via interactively selecting images that are interesting

and uninteresting to modify the search. The refined query can then be resubmitted

and new, more relevant results can be returned for the researcher to further review.

Background

Automatically detecting phenomena in solar images has become a popular topic

in recent years. Zharkova et al. [6] discuss several methods for identifying features

in solar images including Artificial Neural Networks, Bayesian interference, and

shape correlation. Five different phenomena are discussed: sunspots, Inference,

plage, coronal mass ejections, and flares. Nine techniques for feature detection were

used: histograms, Laplacian of Gaussian, Region Growing, Simulated Annealing,

Baysian Inference, Artificial Neural Networks, Hough Transforms, Valley Detection,

and Multiple Abstraction Level Mining. Each technique was only used to find a

specific kind of phenomena. There was no single technique discussed that could find

a variety of phenomena.

Zharkov et al. [7] did a statistical analysis of sunspots during the years of 1996–

2004. Their study showed regular intervals for when sunspots can be expected to

appear on the sun. This knowledge could be used for identifying sun spots based

on the date the image was taken. During a time when there is higher sun spot

activity, there is a greater probability that the phenomena being identified is a sun

spot. Likewise during a time of lesser sun spot activity there is a lesser probability

that the phenomena is a sun spot.
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Turmon et al. [8] use a statistical analysis for identifying and labeling active

regions of the sun. Three types of structures were analyzed in this study; Umbra

and Penumbra from Sun Spots, Faculae, and the background of the sun. Michelson

Doppler Interferometer (MDI) pictograms and magnetograms used together can

identify phenomena accurately. A Bayesian image-segmentation technique was used

for classifying the phenomena. It was trained using pre-labeled images.

Wit [9] used a Bayesian classifier for segmenting solar images and claimed to be

able to track structures in near real time. Different features last for different periods

of time, such as Solar Flares last for a relatively short period of time compared to

Sun Spots. Being able to track structures from image to image could be used in the

future as another data point to consider.

Zharkova and Schetinn [10] have trained a neural network to identify filaments

within solar images. Unfortunately the neural network was only trained to identify

one kind of phenomenon and not many different kinds of phenomena. Training the

neural network takes time and it is difficult to know when a neural network has been

trained properly, although it runs quickly when identifying filaments. Delouille, De

Patoul, and Hochedez [11] used wavelet analysis along with the CLARA clustering

algorithm to segment mosaics of the sun.

There have also been many papers from the computer science domain that deal

with analyzing and clustering images. Goldberger et al. [12] broke down images

into features such as texture and shape and modeled these features with a Gaussian

Mixture Model (GMM). These GMMs are then grouped together using an Information

Bottleneck (IB) method.

Deselars et al. [13] used a K-Means clustering algorithm and a Lyman Break

Galaxies (LBG) clustering algorithm to group images. For processing the images an

integral transformation was performed on the images. This provided a single number
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to represent the image. In addition, a histogram of the image was produced as well

as a histogram describing the texture of the image.

Hoiem et al. [14] broke down images into statistical structures for classification.

They used a histogram and texture features from the entire image as well as predefined

scalings of the image. The image and down sampled images were also divided into a

dynamic grid of cropped images. Histograms and texture features were also extracted

from cropped images and used in the classification process. SnapFind [15] took

this technique a step farther and integrated it with the Diamond Framework. The

Diamond Framework allows interactive searching of images by discarding potential

images early in the processing of the images.

Similar Systems

There are only a few image searching systems currently available. Different

systems use different approaches. For example, services such Google’s Image Search

[16] do not have to rely on just the contents of the image, these services can also take

advantage of the text content in which the image was found. This can essentially

reduce the image search to the use of well known text based search mechanisms

where an image is returned instead of text.

Information Retrieval of similar images, based on the features extracted directly

from them, as opposed to text-based methods, has also been making progress recently,

although data mining of images is a more computationally intense and complex

process. Currently research is taking place to help catalog and diagnose medical

images as shown in [17, 18, 19, 20]. There has also been a great deal of research dealing

with regular photos. This work focuses on extracting features from images and using

them for image clustering, classification, and searching purposes [21, 12, 14, 13]. There

have also been attempts to apply feature recognition algorithms directly to solar data.
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These attempts typically focus on a single type of phenomenon [22, 10, 6] causing

them to have limited benefits to the broad community of solar scientists. They have

been built by solar physicists to solve their immediate needs and do not focus on a

modular, universal approach that scales well to larger data sets and can be improved

using feedback. In this research, we want to propose a universal solution, that could

help to integrate these efforts.

To the best of our knowledge, there are currently only a few interactive image

searching systems available. This leads us to believe that a large scale image

searching system is practically achievable, but enough challenges remain to make this

a non-trivial research project. Two papers [5, 20] published in 2007 discuss recently

developed systems that allow for searching images by example. These two systems

extract and analyze information from the images in different ways, suggesting that

domain specific approaches are required to achieve the best results.

The first similar image searching system, called MassFind [20], is an interactive

image retrieval system developed mainly in Intel Research labs. Its purpose is to help

with the analysis of mammograms. A new digitized mammogram, that has not been

analyzed, is used as the sample input image. The system returns similar images to

the user to allow comparison with the undiagnosed image. The purpose is to allow

for better medical analysis of the sample. The process of submitting an image for the

retrieval of similar images provided the initial motivation for our work.

The results of this study are evaluated in terms of precision at n. This is the

number of correct images there are out of n returned images. An image is considered

correct if it has the same diagnosis as the test input image. If 20 images are returned

and 15 are correct, the precision at n would be 0.75. The precision at n in this study

ranges from 0.59 to 0.68. It should be noted that this system is domain-specific and

uses techniques that are not necessarily applicable for dealing with solar images. The
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work also clearly shows the practical benefits of building domain-specific systems for

this kind of applications.

The second system, known as Diamond SnapFind [23], has been developed at

Carnegie Mellon University. This program also allows interactive searching of photo

albums. Gibbons et al. [5] discuss the latest version for interactive searching using

several test scenarios. Some of the scenarios include finding photos containing a sail

boat or finding photos from weddings. With the application, users were able to find a

desired subset of pictures as requested by the scenarios. Figure 3 shows the querying

interface with some results from the wedding scenario.

Figure 3: SnapFind displaying results from interactive search.

The scenarios included catalogs of pictures ranging in size from 1072 to 32,796

images. Due to the small size of the data repository, the authors were able to

take advantage of some brute force techniques that would not be suitable for our
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application. We believe that a well known database searching strategy called

“filter and refine” [24] can be developed to handle much larger data-sets such as

TRACES’s on-line image repositories. To accomplish this we plan to concentrate

on characteristics that can be extracted quickly from solar images and distinguish

between different types of phenomena well.

Image Format

The images from TRACE are contained in a Flexible Image Transport System

(FITS) file. FITS is the data format standard used by astrophysicists from NASA

and around the world. While the FITS format has been designed to store any type

of information, it is generally used to store images [25]. Each file contains a header

section and a section containing the data. The header section many contain extra

information about the file such as the time the image was taken and the resolution

of the image. Image data is generally in 8, 16, 32, or 64 bit grayscale image [26, 27].

There are several libraries available for reading and writing the FITS file format

including libraries for Perl, C/C++, and Fortran [28].

There are also many programs for reading and writing the FITS format. These

include the open source FV [29] and DS9 [30] programs. The TRACE group uses

SolarSoft [31] for analyzing the images. SolarSoft requires the installation of the IDL

language and programming environment [32] to run properly.

The TRACE Satellite

The TRACE [33] satellite telescope is able to take a picture of the sun

approximately once every three minutes. The image is in a high resolution with

each pixel representing 0.5 arc seconds of the sun. Unfortunately the majority of the

images are 1024 pixels wide by 1024 pixels high, so each image only represents a small
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portion of the sun. TRACE is also able to take images in many different wavelengths.

This is done because different phenomena are visible in different wavelengths. The

wavelengths TRACE is able to take images at are: 171Å, 195Å, 248Å, 1216Å, 1550Å,

1600Å, 1700Å, and White Light [34].

Classifiers, Evaluations & Measures

For this project we trained two classifiers, C4.5 and Support Vector Machines

(SVM) [1]. These two classifiers were chosen based on preliminary experiments with

the labeled dataset. The boosting algorithm, AdaBoost, was also applied to help

increase the accuracy of the classifiers. C4.5 is a tree based classifier that uses the

attributes in the feature vector to split the dataset into smaller datasets. The attribute

to split on is chosen by the amount of information gain from splitting on the particular

attribute. The algorithm recurses on the smaller datasets until a tree is built that

will properly classify the training data.

SVM classifiers produces a hyperplane in n-dimensional space that linearly

separates points by their class into 2 regions. The algorithm will attempt to find

a boundary between the two classes with the maximum margin or distance between

them. The larger the margin, the better the classifier is able to accurately classify

future samples.

In addition to using the C4.5 and SVM algorithms, we augmented the creation of

the classifiers with AdaBoost. AdaBoost causes classification algorithms to produce

different classifiers based on misclassified instances from a previous generation. It does

this by modifying weights associated with each instance. For misclassified instances

the weights are increased and likewise for correctly identified instances the weights

are decreased.
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To evaluate the classifiers and IR system we use a selection of measurements that

are commonly used to evaluate classifiers and Information Retrieval systems. They

are Precision, Recall, F-Measure, and ROC-Curves.

Precision, Recall, and F-Measure are three measures that are used while analyzing

the accuracy of our classifiers. Precision, as shown in Equation 1, gives the fraction

of items that have been correctly classified. Recall, as shown in Equation 2, is the

probability that a given item from that class will be selected. In unbalanced data

sets, measures such as Recall alone aren’t enough to analyze the quality of a classifier.

If a classifier returns every item in the data set, the Recall will be 100%. F-Measure,

as shown in Equation 3 is the harmonic mean between precision and recall. Higher

values for recall and precision make the f-measure value approach 1.

Precision =
|{Human Label} ∩ {Classifier Label}|

|{Classifier Label}|
(1)

Recall =
|{Human Label} ∩ {Classifier Label}|

|{Human Label}|
(2)

F-Measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(3)

Receiver Operating Characteristic (ROC) curves are a useful tool for determining

the accuracy of a binary classifiers. ROC curves were developed to help analyze

radar images. The ROC curve plots the true-positive rate on the y-axis and the

false-positive rate on the x-axis. The area under the curve represents the accuracy of

the classifier overall. The closer the area under the curve is to 1.0, the more accurate

the classifier. The accuracy of the classifier decreases as the area under the curve

approaches 0.5. At 0.5 the classifier would not be any better then randomly picking

a class.
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Figure 4: A sample ROC curve

Modifications of Precision and Recall are used for the analysis of the IR system.

These modifications are shown in Equations 4 and 5. The modifications take into

account the ranking of the returned images. The modified equations return the recall

or precision at rank k. The set of relevant images returned by the system is denoted a

Iq. A relevance list is created for each position, (r1, r2, · · · , rn) where ri = 1 if ii ∈ Iq

or 0 if ii /∈ Iq. The set of relevant images out of set I is denoted as Iq. In our case

there are 32 images in I, and the number of images in Iq varies depending on the

query.

Recall(k) =
1

|Iq|
∑

1≤i≤k

ri (4)

Precision(k) =
1

k

∑
1≤i≤k

ri (5)
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Precision for rank k is calculated with Equation 5. Recall for rank k is calculated

with Equation 4. Recall is the number of relevant images returned at rank k divided

by the total number of relevant images, Iq in the set.
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IMAGE PROCESSING

In this section we discuses how the images are processed from the FITS file format

into the feature vectors we use. First we discuss the set of images we use for this

project. Then we discuss how the images are cleaned up and normalized. Third, the

process of extracting information for the creation of our attribute vectors is discussed.

Finally we discuss sampling techniques we used for creating the classifiers.

Data Set

The TRACE images were downloaded from the TRACE image repository. The

images are from 1999 and 2001, when there was high activity on the sun and from

2007, when there was low activity in the sun. These images have been hand labeled

by students who study the sun. We have 232 images labeled with 433 labels. The

labeling of images continues to help increase the variety of images for future research

projects.

Concerning distribution of the samples, we currently have labeled 232 images

whose attributes are analyzed. The phenomena we have identified in these images

are: coronal loops, filaments, flares, and sun spots. There are 276 coronal loops, 13

filaments, 7 flares and 17 sun spots labeled. The remaining 120 labels are of regions

where no phenomena exist that we are calling the empty-sun.

As for the wavelength distributions, for the labeled images there are 22 in the

171Å spectrum, 43 in the 195Å spectrum, 8 in the 1216Å spectrum, 1 in the 1550Å

spectrum, 7 in the 1600Å spectrum, and 5 in the white light spectrum. Due to the

way the TRACE satellite takes images, there are many more images in the 171Å and

195Å spectrums.
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A large number of the images tend to contain empty-sun, and are not very

interesting for further analysis. By identifying what parts of the sun are active,

we can reduce the areas that need to be analyzed with more complex methods. To

sample images for this analysis, we randomly selected labeled images in a distribution

where half of the selected images contained the empty sun. The remaining images

selected contained a phenomenon. The samples were normalized with a min-max

normalization with the minimum and maximum numbers coming from the entire set

of images and not just the sampled images.

Preprocessing the Images

The first piece of software the images are processed with is called SolarSoft.

SolarSoft is written in the IDL language and used is by researchers studying TRACE

images for analyzing the solar images. While SolarSoft is difficult to learn, the IDL

language provides a powerful scripting environment for manipulating data. SolarSoft

provides many useful functions for manipulating and viewing TRACE images. We

use SolarSoft’s built in functions to help remove noise, normalize, and save the images

into the TIFF file format.

The command trace prep is used to prepare raw images for further manipulation.

To prepare images it fills in pixels with a value of zero with the mean pixel value

of the image. Then it replaces saturated pixels with a value less then 4095. Third

it subtracts the dark pedestal and current from each image. Optionally trace prep

will also call other functions for the images. These functions remove radiation belt

spikes and streaks, remove the background diffraction pattern, normalize each image,

and correct pointing in the index structure. Included in the header file of the image

is calibration information and trace prep can take advantage of this information for
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adjusting the colors in the image. The trace prep function is an on going piece of

work in SolarSoft and new features are being added as they are required.

trace read is a method that allows SolarSoft to read in FITS images. When used

in combination with a filter, specific images can be read. A filter can be for a certain

time frame, a certain frequency, or a certain region of the sun. A corresponding

method called trace write allows for writing manipulated images back to disk in a

variety of formats including JPEG, FITS, TIFF, and BITMAPS.

Segmenting the Images

When extracting features from images, what part or parts of the image these

features should be extracted from needs to be decided. Features can be extracted from

the entire image or from sections of the image. Currently two techniques are used for

segmenting images into sub regions. In the first technique a fixed Grid Segmentation

(GS) is used. The image is broken up into 128 by 128 pixel non overlapping sub-

images. This gives us an 8 by 8 grid over a 1024 by 1024 sized solar image. The

grid size is also convenient because it is a powers of two number and the corner grids

tend to be filled with black as seen in Figure 5(a). The attributes as described in

the Feature Extraction section are extracted from each sub image. A sample image

is shown in Figure 5(a).

For the second technique a Thresholding Segmentation (TS) technique is used. All

pixels with less then a certain intensity value are marked as black and pixels above

that value are marked as white. This gives a segmentation map that can be applied

to the original image. Groups of contiguous black or white pixels containing 500 or

more pixels have features extracted as described in the Feature Extraction section.
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(a) Grid Segmentation Example.

(b) Threshold Segmentation Example.

Figure 5: Examples showing how we are currently segmenting the solar images
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Regions containing less then 500 pixels tended not to be very interesting and were

omitted. A sample image is shown in Figure 5(b).

Feature Extraction

To produce~i, the images are first segmented into smaller regions for the extraction

of texture information [35]. We have worked with two kinds of image segmentation

that is performed on the images. The first is Gridded Segmentation [5, 36] as shown

in Figure 5(a). This technique breaks the image into 128 by 128 pixel blocks and

is very fast. Another approach we implemented is Threshold Segmentation [37], as

shown in Figure 5(b), where the appropriate threshold value was derived by values

from the quiet sun. It breaks the image into darker and lighter regions. Adjoining

pixels are considered a segment from which to extract texture information.

Every image that is put into the system is processed and an attribute vector,

~i, is created to represent the image, as reflected in the Image Processing module

in Figure 1. These techniques are commonly used in search engines [38, 39] and

will increase the search speed [21, 40] in the case of large data repositories such as

TRACE. Representing the images in the form of attribute vectors also allows us to

compute the similarity of two images by calculating the angle between the two image

vectors. The attribute vector, ~i, is used as input for training the classifiers, labeling

new images, analyzing queries, and ranking the relevance of returned images. The

vectors are stored in the database associated with the original images. An attribute

vector is used instead of the entire image because it is much smaller and easier to

manipulate then an image.
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µn =
L−1∑
i=0

(zi −m)np(zi) (6)

R = 1− 1

1 + σ2(z)
(7)

e = −
L−1∑
i−0

p(zi) log2 p(zi) (8)

U =
L−1∑
i=0

p2(zi) (9)

The values in our attribute vector ~i reflect different types of texture information

extracted from the intensity of the images and sub-images. The attributes extracted

so far are the mean intensity (z̄), the standard deviation of the intensity (σz), the

Third Moment (µ3) and Fourth Moment (µ4) as in Equation 6, Uniformity as in

Equation 9, Entropy as in Equation 8, and Relative Smoothness as in Equation 7.

We have chosen these characteristics for our preliminary investigation because the

values they produce are not influenced by different orientations of the same kinds

of phenomenon in different images. These attributes can also be extracted from the

images quickly, an important aspect when dealing with large sets of VSO images.

Table 1 shows the minimum and maximum values generated from our training data.

For Gridded Segmentation: For Threshold Segmentation:
Image Feature: Min Max ∆ Min Max ∆

Mean (z̄) 0 253.0 253.0 87.846 236.773 148.926
Std. Dev. (σz) 0 108.067 108.067 2.067 74.308 72.241

Entropy (e) 0 7.225 7.225 0.816 6.906 6.090
3rd Moment (µ3) -1,348,610 790,790 2,139,400 -204,512.0 144,632.0 349,144
4th Moment (µ4) 0 2.473 ∗ 107 2.473 ∗ 107 56.698 3.486 ∗ 107 3.486 ∗ 107

Rel. Smoothness (R) 0 0.153 0.153 6.67 ∗ 10−5 7.94 ∗ 10−2 7.93 ∗ 10−2

Uniformity (U) 7.07 ∗ 10−3 1.0 0.992 9.55 ∗ 10−3 0.637 0.627

Table 1: Minimum and Maximum Values generated by each extracted feature.
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To improve our search capabilities, we decided to extend our ~i with additional

non-texture features extracted from the headers of the images in the FITS file format.

These include items such as the wavelength in which the image was taken, the arc

second of the pixels and the center of the sun relative to the image. These features

along with extracted texture features, that were mentioned earlier, are used to create

an ~i for each solar image.

Supporting Image Libraries

Several approaches have been evaluated for producing attributes from TRACE

images for proper phenomenon recognition. These approaches include Gabor filters

[19, 41] and Gaussian Mixture Models [42]. OpenCV [43] includes many different

algorithms for transforming and analyzing the structure of images. OpenCV also

provides many of these methods for analyzing images. Some of the methods provided

by OpenCV include an algorithm to automatically extract blobs or connected

components from the images. The blobs contain interesting objects from the image

that could be further processed. Another method that produces Eigenvectors and

Eigenvalues for images was also investigated. A third method that was investigated

from OpenCV is a pyramid segmentation algorithm.

Sampling

Sample datasets were created to train the classifiers. The sample datsets have

an equal distribution between the label we are training to identify and all of the

other labels. Two different techniques were used in order to minimize the effects of

our imbalanced dataset. These techniques are Random Under Sampling (RUS) and

Random Over Sampling (ROS) as described in [44].
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RUS is sampling without replacement. This method ensures that a data sample is

never represented twice in our sample dataset. It is used because we want the classes

to be equally represented. This technique focuses on labels that are well represented

in our dataset such as the empty-sun and coronal loops.

ROS is the process of oversampling our labeled data. We use a random selection

with replacement, and ensure that 50% of our sampled images contain the label of

interest. This guarantees that the label in question is equally represented, although

many of the selected elements may be duplicates. This technique focuses on labels

that are underrepresented in our dataset such as flares and filaments.

For the two labels we have the most, Empty-Sun and Coronal Loop, we performed

RUS selecting 10% of the instances with an equal distribution between the two labels.

For each label, 10 sample sets were generated for the classifiers to be trained and

evaluated. With the remaining labels we limited our random sample size to 50 because

there are a fewer number of data instances with these other types of solar phenomenon.

In this case we used both sampling techniques. Once again 10 sample sets were

generated for each sampling technique and each label.

Benchmark Creation

Part of this work is to create a set of standardized solar images that can be used

as a benchmark for solar image IR systems. This is similar to the TREC[45] dataset

of text documents that is commonly used to benchmark text based IR systems. The

TREC dataset contains a set of documents and a standard set of queries for evaluating

the IR system. Our dataset contains about 1600 images along with 6 sample query

images. This paper provides results from our IR system using the set of images we

have selected.
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TRAINING CLASSIFIERS

There are several difficulties that need to be understood with our classification

problem so the correct decisions can be made. First of all there are multiple classes to

choose from for each image. The second issue is that each image may also by labeled

multiple times with several different classes. Having multiple classes isn’t necessarily

a problem. Zhang et. al [46] state that multi-class problems can always be reduced to

multiple binary classification problems. Our solution for this is laying out the binary

classifiers in a way that will give images their proper label.

Another issue is that training data sets are inherently imbalanced and this

imbalance needs to be understood and compensated. The labels in the data sets

are imbalanced because the phenomena in the images appear over time at different

rates. AdaBoost is one technique that can be used to help compensate for imbalanced

data sets. We are also using two sampling techniques as described in Chapter 2.

For the first version of our system, several types of classifiers have been trained

for each potential label. These classifiers are C4.5, AdaBoost C4.5, SVM and

AdaBoost SVM. In prior investigations, C4.5 has been useful as a binary classifier

for determining areas of images that contain the empty sun or not. AdaBoost has

been shown to increase the accuracy of many classifiers, and were used in an attempt

to improve these classifiers while training them. A SVM classifier is used as part of

the work in [47, 46, 48] for classifying medical images and texture features, therefore

we believe that SVM classifiers can also be useful for classifying phenomena in our

images.
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Evaluation of Extracted Features

First we evaluate features we have extracted to see how well they work for being

able to identify phenomenon in an image. We use ReliefFAttribue with Ranker search

and CFsubSet with a BestFirst search using 10-fold cross validation.

ReliefFAttribute gives each attribute a merit in the range -1 and 1. A positive

merit means the attribute is a good selector. A negative merit means the attribute

is not a good selector [49]. This algorithm works by first randomly selecting an

instance. It then finds the k nearest neighbors that have the same label and the

k nearest neighbors that have different labels. The weights for each attribute are

then adjusted based on the difference between the selected instances and the nearest

neighbors.

CFsSubSet evaluates sets of attributes instead of attributes individually. It will

first compute a correlation matrix, then it uses a heuristic to find a set of attributes

that have high merit. Attributes that are highly correlated with the class and have

low inter-correlation have higher merit [49].

With 10 fold cross validation, the set of data is split into 10 equal sized partitions

with the classes represented with approximately the same ratios as the entire set. The

evaluation is run 10 times, each time a different partition is used as the test data and

the rest of the data is used as the classification data [4].

The results from ReliefFAttribute with Ranker search from Table ?? show us

that the mean and wavelength attributes are good at determining if a phenomena

exists in a particular region. The results from CFsSubset with BestFirst search from

Table ?? show us that the mean and third moment attributes are good at determining

if a phenomena exists in a particular region or not using the Threshold Segmented

images. For both Grid Segmented images and Threshold Segmented images, using
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ReliefFAttribute ranking give wavelength as the attribute with the most merit. In

both cases the entropy attribute is ranked second.

By evaluation of the features we can conclude that the mean is a good indicator

to identify if a phenomenon exists in a region or not. We believe this is because

regions where phenomena exits tend to have a significantly different average then the

surrounding areas. The wavelength and entropy attributes are good indicators to

identify what phenomenon is in the region of the image. The wavelength attribute is

ranked highly because different phenomena tend to show up in certain wavelengths,

but not others.

Rank (i) Attribute Merit ∆ i-(i+1) Weighted Average
1 Wave Length 0.235 0.157 1.099
2 Mean 0.078 0.016 0.468
3 Std. Dev. 0.062 0.011 0.310
4 Entropy 0.051 0.006 0.204
5 R 0.045 0.007 0.135
6 Fourth Moment 0.038 0.014 0.076
7 Third Moment 0.024 0.009 0.024
8 Uniformity 0.015 0.000

Table 2: Comparing phenomena to the empty sun.

Rank (i) Attribute Merit ∆ i-(i+1) Weighted Average
1 Wave Length 0.360 0.161 2.520
2 Mean 0.199 0.136 1.194
3 Std. Dev. 0.063 0.009 0.315
4 Entropy 0.054 0.008 0.216
5 R 0.046 0.028 0.138
6 Third Moment 0.018 0.002 0.036
7 Uniformity 0.016 0.007 0.016
8 Fourth Moment 0.009 0.000

Table 3: Comparing phenomena to the empty sun.
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Attribute Sample 1 Sample 2 Sample 3 Sample 4
Wave Length 10 9 10 10

Mean 10 10 10 10
Std. Dev. 9 0 10 10
Entropy 1 0 0 0

Third Moment 0 0 1 1
Fourth Moment 0 0 0 0

R 0 0 0 0
Uniformity 0 5 4 8

Table 4: Comparing phenomena to the empty sun.

Attribute Sample 1 Sample 2 Sample 3 Sample 4
Wave Length 0 0 0 0

Mean 10 10 10 0
Std. Dev. 0 0 0 0
Entropy 0 0 0 0

Third Moment 10 10 10 10
Fourth Moment 0 0 0 0

R 0 0 0 0
Uniformity 0 0 0 8

Table 5: Comparing phenomena to the empty sun.

Training of Classifiers

When creating a sample data set for a particular label, we create a new temporary

data set for that label. For example, when creating classifiers for the Empty-Sun, we

first give all of the data that is not labeled with the empty sun the label of ‘other’.

This would cause the ‘other’ label to reflect the frequency of phenomenon occurrences.

From this new data set we randomly sample and create a sample data set for training.

Two series of tests were performed. First, for the two labels we have the most

of, Empty-Sun and Coronal Loop, we performed RUS selecting 10% of the instances
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with an equal distribution between the two labels. For each label, 10 sample sets

were generated for the classifiers to be trained and evaluated. The average AUC for

these tests are presented.

C4.5 and Support Vector Machine were used for classifiers. AdaBoost was also

applied to these two classifiers. These 2 classifiers performed the best based on our

previous investigations where we also analyzed ID3, and Bayesian classifiers. A 10-

fold cross validation was used when generating the results. These two classifiers were

chosen based on knowledge gained from prior experiments. The average AUC and

F-Measure values are presented in Tables 2 and 3.

C4.5 SVM AdaB C4.5 AdaB SVM
AUC 0.915 0.921 0.963 0.900
Precision 0.916 0.902 0.910 0.910
Recall 0.930 0.941 0.935 0.902
F-Measure 0.922 0.921 0.922 0.920

Table 6: Average values for detecting the Empty-Sun.

Table 2 shows the results for the Empty-Sun labeled data. Overall, the classifiers

we produce have a large AUC. For the C4.5 classifier, AdaBoost tended to help

increase the accuracy of the classifier. With the SVM classifier AdaBoost tended to

decrease the accuracy of the classifiers. Overall, these results show that for recognizing

the Empty-Sun, the C4.5 classifier with AdaBoost gave the best results.

Table 3 shows the results for the Coronal-Loop labeled data. The sample data

sets and results were generated in the same manner as the Empty-Sun data. Once

again the classifiers generated have high accuracy. While SVM with AdaBoost does

not lose accuracy over the standard version like the Empty-Sun labeled data, C4.5

with AdaBoost once again performs the best overall. Initially we had very high hopes

for SVMs, as these classifiers tend to be fast and accurate. Now, we believe that
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our results show that sampling, forced by our unbalanced data, can cause removal of

instances along the maximum margin hyperplanes, which resulted in a decrease of an

average SVM’s accuracy.

C4.5 SVM AdaB C4.5 AdaB SVM
AUC 0.943 0.947 0.976 0.969
Precision 0.954 0.981 0.958 0.963
Recall 0.931 0.910 0.942 0.931
F-Measure 0.942 0.945 0.950 0.946

Table 7: Average values for detecting the Coronal Loops.

Table 4 shows us the average AUC for both ROS and RUS for every label. Table 5

shows us the average F-Measure for both ROS and RUS for every label. Overall these

classifiers are quite good with a majority of them having an AUC of over 0.90.

C4.5 SVM AdaB C4.5 AdaB SVM
Phenomenon RUS ROS RUS ROS RUS ROS RUS ROS
Empty Sun 0.795 0.872 0.940 0.923 0.920 0.912 0.939 0.920
Coronal Loop 0.897 0.905 0.932 0.922 0.911 0.917 0.912 0.912
Sun Spot 0.890 0.917 0.922 0.958 0.901 0.932 0.944 0.943
Filament 0.838 0.960 0.832 0.848 0.875 0.783 0.898 0.897
Flare 0.977 0.970 0.988 0.980 0.977 0.967 0.977 0.976

Table 8: Average AUC for ROS and RUS.

C4.5 SVM AdaB C4.5 AdaB SVM
Label RUS ROS RUS ROS RUS ROS RUS ROS
Empty Sun 0.873 0.885 0.936 0.883 0.900 0.862 0.929 0.925
C. Loop 0.880 0.883 0.932 0.917 0.886 0.900 0.927 0.914
Sun Spot 0.875 0.924 0.914 0.956 0.891 0.923 0.933 0.941
Filament 0.840 0.847 0.864 0.853 0.840 0.837 0.845 0.814
Flare 0.975 0.967 0.987 0.979 0.967 0.955 0.988 0.979

Table 9: Average F-Measure for RUS and ROS.
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With the second technique we created classifiers for each type of label. Because

there are fewer numbers of data instances with these other types of solar phenomenon,

we limited our random sample size to 50, with an equal distribution between the label

in question and the ‘other’ label. Two different sampling techniques, ROS and RUS,

were also used. Once again 10 sample sets were generated for each sampling technique

and each label. The average AUC and F-Measure are presented in Tables 4 and 5.

The minimum and maximum AUC are presented in Tables 6 and 7.

C4.5 SVM AdaB C4.5 AdaB SVM
Phenomenon Min Max Min Max Min Max Min Max
Empty Sun 0.795 0.965 0.838 1.0 0.835 0.972 0.830 1.0
Coronal Loop 0.837 0.972 0.883 0.960 0.846 0.973 0.851 0.978
Sun Spot 0.793 0.966 0.890 0.975 0.834 0.949 0.944 0.974
Filament 0.700 0.909 0.799 0.870 0.803 0.975 0.840 0.955
Flare 0.958 1.0 0.978 1.0 0.958 1.0 0.958 1.0

Table 10: Minimum and Maximum AUC values using the RUS technique.

C4.5 SVM AdaB C4.5 AdaB SVM
Phenomenon Min Max Min Max Min Max Min Max
Empty Sun 0.800 0.946 0.876 0.960 0.881 0.949 0.835 0.972
Coronal Loop 0.802 0.977 0.845 1.0 0.872 0.976 0.800 1.0
Sun Spot 0.858 1.0 0.917 1.0 0.842 1.0 0.878 1.0
Filament 0.780 0.954 0.746 0.904 0.793 0.936 0.942 0.942
Flare 0.881 1.0 0.934 1.0 0.903 1.0 0.952 1.0

Table 11: Minimum and Maximum AUC values using the ROS technique.

In general using the second technique of selecting smaller sample sets, generates

less accurate classifiers for the Empty-Sun and Coronal Loop labeled data. This is

probably due to the lower sample size of 50 instances instead of using a larger 10%

of the labeled data set per random sample.



32

The Filament labeled data had the least accurate classifiers generated. All of the

classifiers generated for the filament data had an average AUC of under 0.90, except

for the C4.5 classifier using RUS. The same sample data sets also created classifiers

with the lowest AUC when AdaBoost was applied to C4.5. The Flare labeled data

had the best classifiers generated. The RUS technique generated the best classifiers

as opposed to the ROS technique for this label. The classifiers for the Coronal Loops

are also quite good. Overall the values are quite high. The AUC is highest for the

AdaBoost C4.5 at 0.976 and lowest for C4.5 at 0.943. The remaining tables show the

minimum and maximum AUC and F-Measure values produced.

The highest AUC of 0.982 was achieved by the AdaBoost C4.5 classifier, while the

lowest of 0.971 was given by the C4.5 classifier. For the Empty-Sun classifiers, the

lowest average AUC was 0.900 for the AdaBoost SVM classifier. The highest average

AUC achieved was 0.963 for the AdaBoost C4.5 classifier.

Our results show the average values produced by the classifiers are quite good

overall. The expert originated choice of the labeled images could be part of the

reason these results are so good. We expect these numbers to change as the data set

increases in size and more randomly chosen images are labeled.

Conclusions

Overall the classifiers generated by our labeled images have a high accuracy. By

fusing classifiers, we hope to increase the accuracy of identifying phenomena in images.

We can conclude, by comparing the classifiers generated for the Empty-Sun and

Coronal-Loop in the two tests, that having a larger sample data set will give us

better classifiers. As the number of labeled images increases, we should be able to

generate better classifiers for all of the labels.
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There are instances where using AdaBoost helps and instances where AdaBoost

will hinder the creation of the classifier. With the larger labeled data sets of

the Empty-Sun and Coronal-Loop, AdaBoost helps to increase the accuracy of the

classifier. In the case of the Flare data, AdaBoost tended to decrease the accuracy of

the classifiers generated.

The next step is creating an information retrieval system based around these

classifiers. We plan on using the information gained from this work to create a set of

cascading classifiers, where the results of one stage will determine what classifiers are

used next on the image in question. Because the Empty-Sun represents a majority of

the images and the generated classifiers have a high accuracy, this would be a good

first classifier for processing the images. This will reduce the amount of work the

other classifiers need to do in terms of number of images to process and the variety

of data they will need to use to determine what the image contains.

For further development of our IR system, are incorporating the C4.5 classifiers

with AdaBoost for identifying the Empty-Sun and Coronal Loops. This particular

classifier was able to best identify these portions of the images in our current data set.

To identify Sun Spots, using a SVM classifier using ROS produced the best result.

To identify Flares, we will use a SVM classifier with RUS. Our results show us that

Filaments will be the most difficult to identify reliably, though the C4.5 classifier

using ROS has produced the best results so far, and is used in our IR system.
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INFORMATION RETRIEVAL

The Information Retrieval (IR) component of the system allows a user to submit

a sample image containing a phenomenon and have similar images returned to the

user. The image based searching mechanism will provide a convenient way for solar

scientists to search for images by using an image that contain an event of interest.

This chapter discusses the components of the IR system, the procedure we used for

testing the system, and evaluation of the search results.

System Components

For searching the database a researcher can submit sample image(s) in a FITS,

JPEG, or TIFF image format, along with other search criteria, to the system. If

the uploaded image is a JPEG or TIFF file, we assume that the file has already been

processed by trace prep from SolarSoft. If the submitted image is in the FITS format,

the system runs trace prep on the image and internally saves it as a TIFF file. The

uploaded image is then displayed to the user so a region of interest can be selected.

The sample images are pre-processed in the same way as discussed in chapter 2,

we denote an individual feature vector for our query as ~q. After ~q labels for the images

are produced, using our classifiers discussed in chapter 3 (Classifier & Multi-labeling

module in Figure 1). The extra constraints can be items listed in the headers of FITS

images, such as wavelength or date ranges the search should focus on.

To improve our search capabilities, we decided to extend our ~i with additional

non-texture features extracted from the headers of the images in the FITS file format

commonly used by NASA. These include items such as the wavelength the image was

taken in, the arc second of the pixels and the center of the sun relative to the image.
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These features along with extracted texture features that were mentioned earlier, are

used to create an ~i for each solar image.

A common query vector, denoted by ~qavg, with the same features as in ~i, is

produced by calculating an average sum of the image vectors as shown in Equation 10,

where Q is the set of sample images provided by the user. Now the query vector

represents an average of the user’s sample image(s) shown by arrows 4–5 in Figure 1.

To limit the amount of original images that need to be processed, the labels produced

by the classifiers for querying images are used for filtering. Collections of labels

generated by our classifiers, extended with labels generated for our “average sample”

vector, ~qavg are used to limit catalogs to only those which have the same labels. Images

in these catalogs that have the most similar ~i’s are returned.

~qavg =
1

|Q|

|Q|∑
i=1

~qi (10)

This is the time where the similarity based ranking happens. For each catalog

recognized as relevant to the user’s sample, an angle between ~qavg is calculated and

the ~i’s stored in the catalog. The ranking is based on the degree of its angle to ~qavg.

The user can also limit the number of results that are displayed, or retrieve the next

set of relevant results.

The ordering function is based on a cosine similarity function. This function

was chosen for our preliminary analysis because it is simple to implement, and it

is commonly used in text based IR systems. One of the major benefits of using

a cosine similarity function is it measures the similarity on the angle between two

vectors instead of the distance between two points. This has the benefit of making

two vectors that point in the same direction have a small angle, even though the

vectors may have very different lengths.
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Evaluation of our Sample-based IR

The images were submitted to the system and the region in question was selected.

The top 32 images were verified by eye to determine if they contained a similar

phenomenon to the sample image or not. For example, if the sample image contained

a coronal loop and the returned image in question contained an coronal loop, this

result was given a 1. If the returned image did not contain a coronal loop, the result

was given a 0. The results were used as input into Equations 4 and 5. Recall vs.

Precision graphs were created by plotting points where the input for k was in the

range 1 to 32.

The images used for our results are presented in the Appendix in Figures 11–14.

The first image was from February 28, 2007. The wavelength the image was taken in

is 171Å, and the image contains a Coronal Loop. The next two images were taken on

the same day of March 26, 2000 and are both of the same region. The wavelength the

images were taken in are 195Å and 171Å. The final image was also taken on March

26, 2000 and this image was taken in the White Light spectrum. This image contains

a sun spot.

Initially recall is a low number, because we are looking at the total number of

accurately returned images up to 32 instead of just up to k. A perfect graph would

have precision with a value of 1 all for every corresponding recall along the x-axis.

The graphs we present in our results show the recall versus the precision for the

queries. First we show the average of the queries in Figure 6. This graph shows all

of the queries averaged together, giving the average precision of 0.75 overall. The

result of the best query, from the second query image, is shown in Figure 8. The

results for the third query image, shown in Figure 9, are similar to the results from

the second query image. This is not surprising as both images come from the same
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Figure 6: Average Recall vs. Precision for all of our sample images.

day and region of the sun. The largest difference is the wavelength the two images

were taken.

The results in the graphs show a range of precision varying between 0.5 and 1.0.

The 1.0 value happens when k is 1, meaning that the first result returned for the

query is accurate. The average precision for our best query is 0.83. The lowest

average precision value for our queries is 0.59. The average precision averaged over

all of our queries is 0.75, meaning that on average, we can expect 75% of the returned

images in our queries to be relevant.

These results show us that for a given search, we can expect more then half of the

returned images to be relevant. In these results for the best case we can expect 83%

of the returned images to be relevant. The images containing coronal loops also had
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Figure 7: Results from the first sample query image containing a coronal loop.

Figure 8: Results from the second query image containing the best results.
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Figure 9: Results from the third query image.

Figure 10: Results the fourth sample query image containing a sun spot.
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a higher average precision than the image containing the sun spot. Part of the reason

for this could be because there are more images in the database containing coronal

loops than sun spots. Overall this IR system works and returns relevant images, but

there is room for improvement.

Experimenting with different ranking algorithms for this application is the next

step. While we are currently using a cosine similarity ordering that provides adequate

results, there is obviously room for improvements. Now that this system is in place,

it should be much simpler to add extra new features to the system to see how they

effect the performance of the system.
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CONCLUSIONS AND FUTURE WORK

Throughout this project we have created a dataset of images that can be used as a

benchmark, extracted information from the images, built classifiers from the extracted

information, and built a prototype IR system. The dataset, combined with the results

from our prototype IR system gives researchers a baseline system to compare with

future results. It is our hope that the benchmark dataset we have created will be

used in the future by other researchers.

We have been able to process the solar images, taking them from a raw FITS

format and represent them as a feature vector denoted as ~i. This step involved

cleaning up the images using SolarSoft, and then extracting attributes from the

cleaned up images using OpenCV. We discovered that the extracted attributes of

mean and standard deviation have a high merit for differentiating between various

phenomena, and the attribute wavelength, that is present in the headers of the files,

had the most merit.

The features we extract from the solar images, while simplistic, have proven useful

in creating classifiers that can identify phenomena in solar images. Specifically, the

classifier for the empty-sun is highly accurate with an AUC of 0.982. This is significant

because this classifier can be used to discard portions of the image that contain no

phenomena, reducing the number of comparisons that need to be made. The coronal

loop classifier also has a high AUC of 0.976. While the classifiers for other labels do

not have as high of accuracy, it is our hope that as the benchmark dataset matures

and new techniques are used, more accurate classifiers can be produced for these

labels.

The classifiers we created also provide the basis of a prototype IR system. The

results from this system show that when searching for a coronal loop or sun spot, we
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can expect more then half of the returned images to be relevant. In our results in

the best case we can expect 83% of the returned images to be relevant. The images

containing coronal loops also had a higher average precision than images containing

the sun spots. Overall this IR system works, returns relevant images, and provides a

baseline for other systems to compare.

Concerning future work, every component in the system could use improvements

through more research. First of all new attributes should be investigated to add

to the feature vector ~i. Wavelet, Fourier transforms, and fractal signatures [50, 51]

are all potential attributes that should be investigated. More image segmentations

techniques can be investigated. These include techniques such as Normalized Cuts [52]

and techniques that take advantage of domain specific knowledge, such as the

curvature of the Sun in the case of solar repositories. OpenCV along with other

image processing libraries should also be revisited to better understand what feature

extracting methods they could provide.

Different classifiers can also be investigated. With the development of new

features extracted from the images, the current classifiers might not work. Different

classification algorithms will need to be investigated that would work better with

different attributes contained within the feature vector ~i. A different combination of

the cascading classifiers can also be investigated. Currently we are using one binary

classifier for each label. Future work could include creating an ensemble of classifiers

for each label. One could also take the idea further, creating sub-label variations

on the same type of phenomena. In this case a classifier could be created for each

sub-label that could give a more precise idea of what was contained in an image.

Finally there are modifications to the IR system. Experimenting with different

ranking algorithms for this application is the next step. While we are currently using

a cosine similarity ordering that provides adequate results, it remains to be seen how
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different ordering algorithms could affect the outcome.

While this project has produced a working prototype system, more research can

be done on every component of the system. Now that a prototype system has been

created, future research can focus on improving this system instead of implementing

the components from scratch.
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APPENDIX A

SAMPLE QUERY IMAGES
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Figure 11: The first sample query image.
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Figure 12: The second sample query image.
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Figure 13: The third sample query image.
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Figure 14: The fourth sample query image.
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