
AN EMPIRICAL STUDY OF THE STOCHASTIC EVOLUTION ALGORITHM
FOR THE VLSI CELL PLACEMENT PROBLEM

by

Natrajan Thamizhmani

A project submitted in partial fulfillment
of the requirements for the degree

of

Master of Science

in

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

February 2008

1

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... 3
ABSTRACT ... 4
INTRODUCTION ... 5

Concept of Evolution ... 5
Stochastic Evolution Algorithm Overview .. 6
Experimental Goals .. 7
Hardware and Software .. 7

HEURISTICS FOR COMBINATORIAL OPTIMIZATION PROBLEMS 8
Combinatorial Optimization Problems .. 8
Why use heuristics? ... 8
Modern Heuristics .. 9
Simulated Annealing Algorithm .. 9
Advantages and Disadvantages .. 10

STOCHASTIC EVOLUTION ALGORITHM .. 11
Algorithm definition .. 11
Initial Placement .. 14
Selection ... 14
Control Parameter (p) .. 15
Termination condition .. 16
Theoretical Foundations ... 16
Advantages and Disadvantages .. 17

VLSI CELL PLACEMENT PROBLEM ... 18
Problem Description .. 18
Checkerboard model .. 20
Placement Algorithms .. 20
Initial placement configuration .. 21
Selection ... 21
Move operation .. 22
Semi-perimeter method .. 23

EXPERIMENTAL RESULTS ... 24
Data Sets .. 24
Experimental Results ... 25

CONCLUSION AND FUTURE DIRECTIONS ... 27
Concluding Remarks .. 27
Future Directions ... 27
References .. 29

2

ACKNOWLEDGEMENTS

I sincerely thank Dr. Year Back Yoo, my advisor, for providing me with guidance

to my research and helping me with it throughout my research process. I also extend my

gratitude to the faculty and staff members of the Department of Computer Science who

have helped me throughout my graduate education.

I would also like to thank my parents, Thamizhmani Thambi and Mangalam

Ganapathy, for their never ending love and affection and providing me with everything I

have now and encouraging me to pursue my graduate education; my grandmother,

Lakshmi Ganapathy for her love and affection and for being my inspiration. Thanks to

my sister, Lakshmi Thamizhmani for her love and affection, support, friendship,

encouragement and for being my role model since my childhood; and God, for making

things possible.

3

ABSTRACT

The Stochastic Evolution (SE) algorithm is a relatively new heuristic method that
is used for combinatorial optimization that exploits an analogy between biological
evolution and combinatorial optimization.

The SE algorithm begins with a random initial solution or with a previously found
good solution to the problem and simulates the evolution process by eliminating the bad
characteristics of the older generation resulting in an improved newer generation solution.
The SE algorithm achieves this using functions and operations which test the suitability
of characteristics for the existing environment. Each characteristic of a species in the
current generation has to prove its suitability under the existing environmental conditions
in order to remain unchanged in the next generation. This process is repeated until a
certain number of iterations is completed or until no significant improvement is noticed
and the solution to the problem is obtained.

In this project, the SE algorithm is studied and implemented to solve the very
large scale integration cell placement problem, and the quality of the solutions and the
running times of the algorithm are compared with those generated by the Simulated
Annealing (SA) algorithm.

The SE algorithm after experiments shows that it produces results that are
comparable to the results that were generated by the SA algorithm. The SE algorithm
seems to be suitable in cases where the size of the input is considerably large. The SE
algorithm starts consuming more time than the SA algorithm as the size of the input
increases. The feature in the SE algorithm which increases the number of trials if the
newer generation is better than the older could increase the running time of the SE
algorithm considerably.

4

CHAPTER 1

INTRODUCTION

Concept of Evolution

According to Darwin's theory of evolution, evolution is a slow gradual process

that acts by taking advantage of slight successive variations. Certain characteristics that

are inherited from one generation to the next are slightly changed over time. Such

changes among population could be because of various reasons. Individuals of a

population undergo such changes to adapt themselves and become well suited to their

existing environment. Natural selection is the process by which characteristics that are

useful for the population in the existing environment are retained and less useful

characteristics start to disappear from the individuals in the population. Individuals in a

population who can better adapt to the conditions and survive reproduce and breed more

successfully [1]. With time the individuals adapt and undergo changes in traits which

happen as a result of the change in their genes from one generation to the other. The

individuals who have the ability to adapt and survive end up living for successfully

longer time periods.

5

Stochastic Evolution Algorithm Overview

In 1990, Youssef G. Saab and Vasant B. Rao at University of Illinois proposed the

stochastic evolution algorithm in their publication Stochastic Evolution: A Fast Effective

Heuristic for Some Generic Layout Problems. The Stochastic Evolution (SE) algorithm is

an efficient and easy-to-implement heuristic which has been applied successfully to the

traveling salesman problem and the network bisection problem.

The SE algorithm takes a random initial configuration, or a previously known

good solution as its input. The characteristics of a species in the current generation have

to prove their suitability under the existing conditions in order to be retained for the next

generation. The cost involved is calculated during each evolution. If an improvement is

found, the remaining number of trials is increased as an incentive. A cost increasing move

is occasionally accepted stochastically. Thus, during each evolution, we accept all cost

improving evolutions, and stochastically accepting steps that do not improve the cost

ensures that the algorithm does not get caught in a local minimal value. The algorithm

aims for a better solution during each iteration and continues until a specific number of

trials is reached or there is no improvement over a certain period of time. The solution

obtained when the algorithm terminates is taken as the solution to the problem.

6

Experimental Goals

This project aims to implement the SE algorithm on a combinatorial optimization

problem to examine the efficiency of this relatively new heuristic method. We choose the

VLSI cell placement problem and we compare the efficiency of the SE algorithm with a

well known heuristic, Simulated Annealing (SA) [2]. Not much experimental study has

been done in comparing different heuristics for the VLSI cell placement problem.

We implement both algorithms on the same computer system using the same

programming language. We then compare the quality of the solutions as well as the

execution time on the benchmark dataset inputs.

Hardware and Software

All the programs were run on a standalone machine which had the Intel Pentium

Dual CPU T2310 processor and had 1 GB of RAM and ran the 32 bit version of the

Windows Vista Operating System.

Java was used as the programming language to implement the SE and the SA

algorithms using Eclipse – an open source development platform.

7

CHAPTER 2

HEURISTICS FOR COMBINATORIAL OPTIMIZATION PROBLEMS

Combinatorial Optimization Problems

Combinatorial optimization problems are problems which have a discrete set of

possible solutions. These problems seek a global minimum among these various possible

solutions. Some well known combinatorial optimization problems include the network

bisection problem, the traveling salesman problem, the job scheduling problem and the

VLSI cell placement problem. Such problems have a global minimum solution which

most heuristics seek to reach. However, all these problems are known to be NP-

complete. This would mean that an enormous amount of time would be required to solve

or compute and find the optimal solution through an exhaustive search.

Why use heuristics?

Heuristics are simple sets of rules that aim at solving a hard problem. Several

heuristic methods are used in day to day life with or without realizing them. Heuristics

provide a description of the successive stages of a decision process. The heuristic might

often involve a decision making step at a certain stage during the search for a solution [3,

4]. Well chosen heuristics work pretty efficiently and can give solutions close enough to

the global optimal solution in a reasonable amount of time. Therefore they have proved to

be time saving methods that give acceptable results as compared to exhaustive searches

which could require exponential time to obtain the optimal solution of the problems.

8

Modern Heuristics

There are a variety of modern heuristics that have been applied to combinatorial

optimization problems. Some of these heuristics include the widely used and well known

SA method, the Tabu search, various genetic algorithms, ant colony optimization,

stochastic evolution and simulated evolution [2, 7].

The SE algorithm is one of the several heuristics which helps in solving hard

problems relatively quickly as compared to exhaustive search. The SE algorithm is

described in detail in Chapter 3. However it is not a rule that a near-optimal solution is

always guaranteed while using heuristics.

Simulated Annealing Algorithm

Simulated annealing algorithm is a general adaptive heuristic and the best known

method for module placement. Though it is known to be a time consuming method, it

yields excellent results. It works with most of the combinatorial optimization problems.

The SA algorithm is also a non-deterministic algorithm and is robust in nature. One

typical feature of the SA algorithm is that, besides accepting solutions with improved

cost, it also, to a limited extent, accepts solutions with deteriorated cost. This algorithm

also involves some parameters that play a vital part in the execution of the algorithm. It is

also easy to implement [2, 7].

The basic procedure in the SA algorithm is to accept all moves that result in a cost

reduction. Certain moves that result in a cost increase are accepted probabilistically. A

parameter T, called the temperature is used to control the acceptance probability. ∆Cost is

the difference in costs before and after the move was made.

9

The acceptance probability, Aij can be summed up as follows [7].

Aij =

Here, i and j represent the previous and current state respectively

Advantages and Disadvantages

The SA is a robust and easy to implement technique. This algorithm can be used

to implement various combinatorial optimization problems. It provides solutions of

reasonably good quality. It is popular and the most widely used algorithm.

The algorithm involves various parameters which need to be set appropriately to

get reasonably good solutions. It is also a well known fact that a great deal of

computation time will be needed for finding solutions using the SA algorithm.

10

e-∆Cost /T if ∆Costij>0

1 if ∆Costij≤0

CHAPTER 3

STOCHASTIC EVOLUTION ALGORITHM

Algorithm definition

Stochastic evolution is a powerful general and randomized iterative heuristic for

solving combinatorial optimization problems. The algorithm was proposed by Youssef

Saab and Vasanth Rao in 1989. It is stochastic because the decision to accept a move is a

probabilistic decision. Moves that improve the cost function are accepted with probability

one, and bad moves may also get accepted with a non-zero probability. The SE algorithm

is a non-deterministic algorithm, an algorithm with one or more choice points where

multiple continuations are possible and the choice point taken is not known ahead of

time. The word evolution is used in reference to the evolution processes of biological

species [7].

Combinatorial optimization problems can be modeled in a number of ways. SE

adopts the following generic model:

Given a finite set M of movable elements and a finite set L of locations, a state is

defined as a function S: M → L satisfying certain constraints [7].

The SE algorithm includes the steps shown in Figure 1. Though it shows the

outline of the algorithm, there can be slight modifications based on the type of problem

it implements. We shall examine and describe in depth the steps of this algorithm in the

following section.

11

Algorithm SE (S0, p0, R)

Begin
BestS = S = S0;
BestCost = CurCost = Cost(S);
p = p0;
ρ = 0;
Repeat

PrevCost = CurCost;
S = PERTURB(S,p);
CurCost = Cost(S);
UPDATE (p,PrevCost,CurCost);
If (CurCost < BestCost) Then

BestS = S;
BestCost = CurCost;
ρ = ρ – R;

Else
ρ = ρ +1;

EndIf
Until ρ > R

Return (BestS);
End

Figure 1: General outline of the SE algorithm [7]

As we can see from the algorithm the inputs to the SE algorithm are:

1. an initial state (solution) S0,
2. an initial value p0 of the control parameter p, and
3. a stopping criterion parameter R.

Throughout the search for the optimal solution, S holds the current state

(solution), while BestS holds the best state. If the algorithm generates a worse state, a

uniformly distributed random number in the range [-p, 0] is drawn. The new uphill state

is accepted if the magnitude of the loss is greater than the random number, otherwise the

current state is maintained. Therefore, p is a function of the average magnitude of the

uphill moves that the algorithm will tolerate. The parameter R represents the expected

number of iterations the algorithm needs until an improvement in the cost with respect to

the best solution seen so far takes place. Finally the variable ρ is a counter used to decide

12

when to stop the search. ρ is initialized to zero and R - ρ is equal to the number of

remaining generations before the algorithm stops [7].

Figure 2 shows the general outline of the PERTURB and the UPDATE methods

which are two very important procedures of the SE algorithm.

FUNCTION PERTURB(S,p)

Begin
ForEach (m є M) Do

S' = MOVE(S,m);
Gain (m) = Cost(S) – Cost(S');
If (Gain (m) > RANDINT (-p, 0)) Then

S = S'
EndIf

EndFor;
S = MAKE_STATE(S);
Return(S)

End

PROCEDURE UPDATE (p, PrevCost, CurCost);

Begin
If (PrevCost = CurCost) Then

p = p + pincr;
Else

p = p0;
EndIf;

End

Figure 2: Perturb and Update methods [7]

13

Initial Placement

It is well known that each state is a potential solution in a combinatorial

optimization problem. The initial placement is also a potential solution to the placement

problem starting from which we seek better results. The starting placement is either a

previously well known good placement or a random placement. We, for comparison

reasons, create an initial placement which is common for both the SE and the SA

algorithms.

Selection

During the selection phase of the algorithm we determine whether or not a cell

should remain in its current location. Each of the movable elements is moved around and

the current cost is compared to the previous cost before the move was made and thus by

comparing the costs we can decide whether the cell deserves to stay in its current location

or if moving the cell to another location will yield a better cost.

The Gain value, which was calculated to be the difference in the cost before and

after the move was made, is compared to the random integer that is generated between 0

and -p and if the Gain value is more than the generated integer, the new state is retained.

Gain (m) = Cost(S) – Cost(S')

This step will only ensure that all moves that prove to cause a decrease in the cost

after a move is made will always be retained and moves that cause a negative Gain value

14

will probabilistically be accepted [7].

Control Parameter (p)

The control parameter, p, plays a significant role in the algorithm. This parameter

ensures that the algorithm doesn't get caught in a local minimum cost value. Even when it

does get caught, we accept negative Gain values probabilistically. This is done by

comparing the Gain value with the random number generated. The control parameter

plays an important role in the generation of this random number. Each time after the

PERTURB function is called the control parameter value is updated. If the cost remained

same after the function call, the p value is increased by pincr, a predefined value;

otherwise, it is set to the initial p value. This will ensure that the range in which the

random integer is generated is expanded and it will be more likely that the algorithm will

escape the local minimal solution in the following iterations.

15

Termination condition

The SE algorithm will have to stop at some point and provide a solution to the

problem. This can be decided by doing one of the following.

1. Allowing the algorithm to run until a specific number of iterations, R, are completed

2. Terminate the algorithm when there is no cost improvement over a specific number of

generations.

The more commonly used method is to run the algorithms over a predefined

number of iterations R. The selection of this parameter determines the running time of the

algorithm and therefore should be done carefully. A very high R value will result in the

algorithm running for longer than needed. A low value will result in not giving enough

time to the algorithm to improve the initial state. Therefore it is important to choose an

optimal value for this parameter. Depending on the problem, the type of termination is

decided.

Theoretical Foundations

SE has been very successful at solving problems like the traveling salesman

problem and the network bisection problem. Youssef G. Saab and Vasant B. Rao, who

proposed the SE algorithm, have suggested that the SE algorithm works better than the

SA algorithm. Over time, the solution improves because the cells which are already well

placed retain their locations during subsequent iterations and other cells try to move to

better locations and consequently improve and produce a better solution.

16

Advantages and Disadvantages

The SE algorithm is used to solve a wide variety of combinatorial optimization

problems. This algorithm is adaptive; it uses a set of control variables that can be

modified to adapt better to the particular problem being solved. It has also proved to yield

better quality solutions at a faster execution speed in comparison to other algorithms and

evolution-based methods. SE is well suited for problems of large size [6].

Modeling the states of the problem is a major challenge. Setting the initial values

for the parameters used in the algorithm is difficult. The value of the control parameter p

should not be too low or too high. A low value will result in certain moves not being

performed and a high value will result in large negative Gains being accepted. Therefore

an appropriate value selection for p is crucial. While selecting the total number of

iterations, R, we should again be sure it is not too low or too high. A low value might

cause the search for the solution not to be done properly and a high value might result in

unnecessary execution of the algorithm in the later stages [6].

17

CHAPTER 4

VLSI CELL PLACEMENT PROBLEM

Problem Description

Placement is the process of arranging circuit components on a layout surface. The

placement problem is a generalization of the quadratic assignment problem, which is NP-

complete. The placement problem can be defined as follows [7].

Given an electrical circuit of modules with predefined input and output terminals
and interconnected in a predefined way, construct a layout indicating the posi-
tions of the modules so the estimated wire length and layout area are minimized.

The inputs to the problem are the module description, consisting of the shapes,

sizes, and terminal locations, and the netlist, describing the interconnections between the

terminals of the modules. The output is a list of x- and y-coordinates for all modules.

(a)

2

3

1

4

5

7

8

6

18

(b) (c)

Figure 3: (a) A tree circuit. (b) A 2-D placement of gates. (c) A 2-D symbolic
placement

Consider the circuit of Figure 3(a); suppose that we need to place the gates on a

two-dimensional surface. One such placement is shown in Figure 3(b), Figure 3(c)

represents an equivalent symbolic representation. In the symbolic representation, we can

observe that the gates are represented as boxes and the nets as black lines [7]. It is

possible to estimate the wire length from the symbolic representation. The area of a

layout comprises the functional area and the wiring area. The functional area is the total

of all the areas of the functional cells. The functional area remains unchanged for all

placements. It is the wiring area which changes with the placement. This is because of

the minimum separation that must be maintained between two wires and between a wire

and a functional cell [7].

211

5 53

64

78

7

2

3

64

8

19

A placement that requires a large amount of wiring space must necessarily involve

long wires and hence a large value of total wire length. The overall wire length for a

placement P can be calculated using methods like the semi perimeter method etc.

A placement consists of nodes, terminals and nets. Nodes are the cells that can be

moved and placed in the available locations in the layout board. Terminals are cell that

are immovable. They have a predefined location in which they are seated. Nets are

simple rules that define which cells should be interconnected.

Checkerboard model

A placement problem in which the cells are assumed to be squares and of equal

size and all terminals are assumed to be at the center of the cell is called the checkerboard

model. The length of the interconnection from one cell to the next is one unit. There are

also no horizontal row spaces.

Placement Algorithms

The main objectives of a placement algorithm are to minimize the total chip area

and the total estimated wire length for all the nets. The chip area usage has to be optim-

ized in order to fit more functionality into a given chip area. The wire length has to be

minimized in order to reduce the capacitive delays associated with longer nets and speed

up the operation of the chip [2].

20

Placement algorithms can be classified into two major classes: constructive place-

ment and iterative improvement. In constructive placement, a method is used to build up

a placement from scratch; in iterative improvement, algorithms start with an initial place-

ment and repeatedly modify it in search of a cost reduction.

Other possible classifications for placement algorithms are deterministic al-

gorithms and probabilistic algorithms. Algorithms that function on the basis of fixed con-

nectivity rules or formulas or determine the placement by solving simultaneous equations

are deterministic and will always produce the same result for a particular placement prob-

lem. Probabilistic algorithms, on the other hand, work by randomly examining configura-

tions and may produce a different result each time they are run. Constructive algorithms

are usually deterministic, whereas iterative improvement algorithms are usually probabil-

istic [2].

Initial placement configuration

The initial configuration that could be used for the placement problem can be a

previously known good placement or it can be a random placement. Using previously

known good configurations often have proved to produce better solutions. Placements

can be generated by randomly assigning the movable cells to the available locations on

the layout board.

Selection

During the selection step, the set of movable cells is scanned and ordered in a

21

specific fashion. The ordering could be based on the number of nets the cells are involved

in or it could be a random ordering. In some algorithms, like the SE algorithm [8], during

the selection step the cells are arranged in decreasing order of the degree, where the

degree represents the number of nets in the net list the cell is connected to.

Move operation

The move operation can be of two types: Simple move or Compound move. Given

a function S: M→L and a movable element m M, a simple move from S with respect to

m is just a change in the value of S(m), i.e., a simple move generates a new function S':

M→L such that S' (m) ≠ S (m) while S' (m') = S (m') for all m' ≠ m M. A compound

move is a sequence of simple moves. Move operations are also sometimes defined based

on the problem and are often altered based on requirements [6, 16].

22

Semi-perimeter method

The semi-perimeter method is one of the well known methods for wire length

estimation. In this method the perimeter of the smallest rectangle that connects the pins of

the cells of a net is calculated. Half of the perimeter calculated gives the length or cost of

the wire needed for that net to be used in the chip. Since it is efficient it is a commonly

used method for wire length estimation. For nets with more pins, the estimated wire

length using this method will be less than the actual wire length that will be needed.

However, in comparison to other wire length estimation methods like Steiner tree,

minimal spanning tree, chain connections, and others this method gives a fairly good

estimate. An example of how the semi-perimeter is calculated [2] is shown in Figure 4.

Figure 4: Semi-perimeter wire length = X + Y.

23

X

Y

CHAPTER 5

EXPERIMENTAL RESULTS

Data Sets

To test the effectiveness of the SE and SA algorithms on the VLSI cell placement

problem, datasets were selected from various sources. The files selected were Cross,

MPIO, SubOpt_1, SubOpt_4 and p1UnitWDims. Each of these files contains the details

about the placement problem. The number of movable nodes, the number of nets and the

net details are found in these files. These were selected as the inputs for the placement

problem because these inputs were of various sizes. All inputs were of bookshelf format.

The datasets that were used were of diverse types and have nodes and nets ranging

between a few movable cells to a few thousand movable cells. The number of nodes and

nets in the input files are given in the Table 1. Each of these variations was tested a total

of 10 times. Each of these placements represents different types of placement.

Input file name SubOpt_4

(A)

Cross

(B)

SubOpt_1

(C)

p1UnitWDims

(D)

MPIO

(E)
Nodes 280 386 500 833 2404

Terminals 30 26 252 81 4
Nets 485 681 252 902 4800

Table 1: Details of the input files [14, 15]

The input files SubOpt_4, Cross, SubOpt_1, p1UnitWDims, MPIO are referred to

as A, B, C, D and E respectively.

24

Experimental Results

The SE and the SA algorithms were run against the VLSI cell placement problem

for the various datasets mentioned in Table 1. As already mentioned in the previous sec-

tion, the datasets used were of various sizes and types. Each of these inputs was imple-

mented for both the algorithms and tested for a total of 10 times, and their average values

were recorded.

The average results obtained for both the algorithms after the experiments were

conducted for 10 trials are shown in Table 2.

Input File

Name

Wire length CPU Time
SE SA SE SA

A 1445 1303 137 164
B 3215 2891 206 227
C 9764 9778 193 177
D 6790 7225 258 231
E 6923007 6923642 474 384

Table 2: Experimental results comparing SE and SA

The wire lengths for the SE and the SA algorithm were obtained for these datasets

and compared in terms of the quality of their solution and the time taken by the al-

gorithms to compute the wire length and the placement. The CPU time is represented in

minutes. The algorithms were run for almost the same time and the results were obtained.

The CPU times of the SE and the SA algorithm are fairly comparable. It can be noted that

the CPU time of SE algorithm increases with increase in the size of the input.

25

The results obtained from the not-so-very-popular SE algorithm are comparable to

the results obtained from the widely known and used SA algorithm. As the graph in Fig-

ure 5 indicates, the SE algorithm produces results comparable to the results produced by

SA algorithm. The heights of the blocks in the column graph of Figure 5, lie closely to

each other thus indicating how close and comparable the two methods are.

Figure 5: Column graph comparing SA and SE

26

0

2000

4000

6000

8000

10000

12000

SubOpt_4 Cross SubOpt_1 p1UnitW-
Dims

Data Sets

W
ir

e
le

n
g

th

Stochastic Evolution

Simulated Annealing

CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

Concluding Remarks

From the experimental results shown in Chapter 5, we can observe that the SE al-

gorithm competes well with the SA algorithm. The solutions produced by the less known

SE algorithm were comparable to the most widely used popular SA algorithm. Though it

cannot be concluded from the results that the SE algorithm is the superior algorithm, giv-

en almost same amount of time the two algorithms produce almost same quality solu-

tions. It can also be noted that with increasing input size, the SE algorithm takes more

CPU time and produces slightly better quality solutions. This suggests that the SE al-

gorithm might be well suited for large sized inputs and problems. This also suggests that

the SE algorithm can be applied for various other combinatorial optimization problems

too and can produce solutions of good quality.

Future Directions

The results indicate that the SE algorithm could be applied for various other com-

binatorial optimization problems and the heuristic could give results similar to the simu-

lated annealing algorithm.

Parallelizing the SE algorithm can produce better results than the sequential ver-

sion of the SE algorithm. This is because when the solution space is searched in parallel

and the current best solution amongst the results obtained is used as the starting point for

27

further steps, this would result in a faster search and could produce better quality solu-

tions.

28

References

[1] On the Origin of Species by Charles Darwin
A Facsimile of the First Edition with an Introduction by Ernst Mayr

[2] VLSI Cell Placement Techniques - K. SHAHOOKAR AND P. MAZUMDER
ACM Computing Surveys, Vol 23, No 2, June 1991

[3] Heuristics and Biases – The psychology of Intuitive Judgment
Edited by Thomas Gilovich, Dale Griffin, Daniel Kahneham

[4] Simple Heuristics that make us smart Gerd Gigerenzer, Peter M Todd and the ABC
Research Group

[5] Y.Saab and V.Rao. An evolution-based approach to partitioning ASIC systems. 26th

ACM/IEEE Design Automation Conference, 1989. Pg 767-770

[6] Y.Saab and V.Rao. Stochastic evolution: A fast effective heuristic for some generic
layout problems. 27th ACM/IEEE Design Automation Conference, 1990. Pg 26-31

[7] Iterative Computer Algorithms with Applications in Engineering – Solving
Combinatorial Optimization Problems by Sait and Youssef

[8] R. Kling and P. Banerjee, “ESP: Placement by simulated evolution,” IEEE Trans.
Computer- Aided Design, vol. 8, no. 3, pp. 245-256, Mar. 1989

[9] J. Cohoon and W. Paris, “Genetic Placement,” Proc. IEEE International Conference
On Computer-Aided Design, pp. 422-425, 1986.

[10] S. Nahar, S. Sahni, and E. Shragowitz, “Simulated Annealing and Combinatorial Op-
timization,” Proc. 23rd Design Automation Conference, pp. 293-299.1986.

[11] B. Dunham, D. Fridshal, R. Fridshal, and J.North, “Design by Natural Selection,”
Synthese, D. Reidel Publication Company, Dordrecht-Holland, pp. 254-259. 1963.

[12] A. Dunlop and B. Kemighan, “A Procedure for Placement of Standard-Cell VLSI
Circuits,” IEEE Trans. Computer-Aided Design, vol. CAD-4, no. 1, pp. 92-98, Jan. 1985.

[13] Analysis of Convergence Properties of a Stochastic Evolution Algorithm, Chi-Yu
Mao and Yu Hen Hu, IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 15, no. 7, Jul 1996

[14] http://vlsicad.eecs.umich.edu/BK/FEATURE/

[15] http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Placement/TESTCASES/

29

[16] Combinatorial Optimization by Stochastic Evolution, IEEE Trans. Computer-Aided
Design, vol. 10. no. 4, Apr 1991

[17] Ant Colony Optimization, Marco Dorigo and Thomas Stutzle, ISBN 0262042193,
Published 2004, MIT Press

30

	ACKNOWLEDGEMENTS
	ABSTRACT
	INTRODUCTION
	Concept of Evolution
	Stochastic Evolution Algorithm Overview
	Experimental Goals
	Hardware and Software

	HEURISTICS FOR COMBINATORIAL OPTIMIZATION PROBLEMS
	Combinatorial Optimization Problems
	Why use heuristics?
	Modern Heuristics
	Simulated Annealing Algorithm
	Advantages and Disadvantages

	STOCHASTIC EVOLUTION ALGORITHM
	Algorithm definition
	Initial Placement
	Selection
	Control Parameter (p)
	Termination condition
	Theoretical Foundations
	Advantages and Disadvantages

	VLSI CELL PLACEMENT PROBLEM
	Problem Description
	Checkerboard model
	Placement Algorithms
	Initial placement configuration
	Selection
	Move operation
	Semi-perimeter method

	EXPERIMENTAL RESULTS
	Data Sets
	Experimental Results

	CONCLUSION AND FUTURE DIRECTIONS
	Concluding Remarks
	Future Directions
	References

