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ABSTRACT

The Stochastic Evolution (SE) algorithm is a relatively new heuristic method that 
is  used  for  combinatorial optimization  that  exploits  an  analogy  between  biological 
evolution and combinatorial optimization. 

The SE algorithm begins with a random initial solution or with a previously found 
good solution to the problem and simulates the evolution process by eliminating the bad 
characteristics of the older generation resulting in an improved newer generation solution. 
The SE algorithm achieves this using functions and operations which test the suitability 
of characteristics for the existing environment.  Each characteristic of a species in the 
current generation has to prove its suitability under the existing environmental conditions 
in order to remain unchanged in the next generation. This process is repeated until  a 
certain number of iterations is completed or until no significant improvement is noticed 
and the solution to the problem is obtained.

In this project,  the SE algorithm is studied and implemented to solve the very 
large scale integration cell placement problem, and the quality of the solutions and the 
running times  of  the  algorithm are  compared with  those generated by the  Simulated 
Annealing (SA) algorithm.  

The  SE  algorithm  after  experiments  shows  that  it  produces  results  that  are 
comparable to the results that were generated by the SA algorithm. The SE algorithm 
seems to be suitable in cases where the size of the input is considerably large. The SE 
algorithm starts  consuming more time than the SA algorithm as the size of the input 
increases. The feature in the SE algorithm which increases the number of trials if the 
newer  generation  is  better  than  the  older  could  increase  the  running time  of  the  SE 
algorithm considerably.
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CHAPTER 1

INTRODUCTION

Concept of Evolution

According to Darwin's theory of evolution, evolution is a slow gradual process 

that acts by taking advantage of slight successive variations. Certain characteristics that 

are  inherited  from one  generation  to  the  next  are  slightly  changed  over  time.  Such 

changes  among  population  could  be  because  of  various  reasons.  Individuals  of  a 

population undergo such changes to adapt themselves and become well suited to their 

existing environment. Natural selection is the process by which characteristics that are 

useful  for  the  population  in  the  existing  environment  are  retained  and  less  useful 

characteristics start to disappear from the individuals in the population. Individuals in a 

population who can better adapt to the conditions and survive reproduce and breed more 

successfully [1]. With time the individuals adapt and undergo changes in traits which 

happen as a result of the change in their genes from one generation to the other. The 

individuals  who have the  ability to  adapt  and survive  end up living for  successfully 

longer time periods.
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Stochastic Evolution Algorithm Overview

In 1990, Youssef G. Saab and Vasant B. Rao at University of Illinois proposed the 

stochastic evolution algorithm in their publication Stochastic Evolution: A Fast Effective 

Heuristic for Some Generic Layout Problems. The Stochastic Evolution (SE) algorithm is 

an efficient and easy-to-implement heuristic which has been applied successfully to the 

traveling salesman problem and the network bisection problem.

The SE algorithm takes a random initial  configuration, or a previously known 

good solution as its input. The characteristics of a species in the current generation have 

to prove their suitability under the existing conditions in order to be retained for the next 

generation. The cost involved is calculated during each evolution. If an improvement is 

found, the remaining number of trials is increased as an incentive. A cost increasing move 

is occasionally accepted stochastically.  Thus, during each evolution, we accept all cost 

improving evolutions, and stochastically accepting steps that do not improve the cost 

ensures that the algorithm does not get caught in a local minimal value. The algorithm 

aims for a better solution during each iteration and continues until a specific number of 

trials is reached or there is no improvement over a certain period of time. The solution 

obtained when the algorithm terminates is taken as the solution to the problem.
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Experimental Goals

This project aims to implement the SE algorithm on a combinatorial optimization 

problem to examine the efficiency of this relatively new heuristic method. We choose the 

VLSI cell placement problem and we compare the efficiency of the SE algorithm with a 

well known heuristic, Simulated Annealing (SA) [2].  Not much experimental study has 

been done in comparing different heuristics for the VLSI cell placement problem. 

We implement  both  algorithms on  the  same computer  system using  the  same 

programming language.  We then compare  the  quality of  the  solutions as  well  as  the 

execution time on the benchmark dataset inputs.

Hardware and Software

All the programs were run on a standalone machine which had the Intel Pentium 

Dual CPU T2310 processor and had 1 GB of RAM and ran the 32 bit version of the 

Windows Vista Operating System. 

Java was used as the programming language to implement the SE and the SA 

algorithms using Eclipse – an open source development platform. 
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CHAPTER 2

HEURISTICS FOR COMBINATORIAL OPTIMIZATION PROBLEMS

Combinatorial Optimization Problems

Combinatorial optimization problems are problems which have a discrete set of 

possible solutions. These problems seek a global minimum among these various possible 

solutions. Some well known combinatorial optimization problems include the network 

bisection problem, the traveling salesman problem, the job scheduling problem and the 

VLSI cell placement problem. Such problems have a global minimum solution which 

most  heuristics  seek  to  reach. However,  all  these  problems  are  known  to  be  NP- 

complete. This would mean that an enormous amount of time would be required to solve 

or compute and find the optimal solution through an exhaustive search.

Why use heuristics?

Heuristics are simple sets of rules that aim at solving a hard problem. Several 

heuristic methods are used in day to day life with or without realizing them. Heuristics 

provide a description of the successive stages of a decision process. The heuristic might 

often involve a decision making step at a certain stage during the search for a solution [3, 

4]. Well chosen heuristics work pretty efficiently and can give solutions close enough to 

the global optimal solution in a reasonable amount of time. Therefore they have proved to 

be time saving methods that give acceptable results as compared to exhaustive searches 

which could require exponential time to obtain the optimal solution of the problems.
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Modern Heuristics

There are a variety of modern heuristics that have been applied to combinatorial 

optimization problems. Some of these heuristics include the widely used and well known 

SA method,  the  Tabu  search,  various  genetic  algorithms,  ant  colony  optimization, 

stochastic evolution and simulated evolution [2, 7].

The SE algorithm is one of the several heuristics which helps in solving hard 

problems  relatively  quickly  as  compared  to  exhaustive  search.  The  SE  algorithm is 

described in detail in Chapter 3. However it is not a rule that a near-optimal solution is 

always guaranteed while using heuristics. 

Simulated Annealing Algorithm

Simulated annealing algorithm is a general adaptive heuristic and the best known 

method for module placement. Though it is known to be a time consuming method, it 

yields excellent results. It works with most of the combinatorial optimization problems. 

The SA algorithm is  also a  non-deterministic  algorithm and is  robust  in  nature.  One 

typical feature of the SA algorithm is that, besides accepting solutions with improved 

cost, it also, to a limited extent, accepts solutions with deteriorated cost. This algorithm 

also involves some parameters that play a vital part in the execution of the algorithm. It is 

also easy to implement [2, 7]. 

The basic procedure in the SA algorithm is to accept all moves that result in a cost 

reduction. Certain moves that result in a cost increase are accepted probabilistically. A 

parameter T, called the temperature is used to control the acceptance probability. ∆Cost is 

the difference in costs before and after the move was made.
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The acceptance probability, Aij can be summed up as follows [7].

Aij =         

Here, i and j represent the previous and current state respectively

Advantages and Disadvantages

The SA is a robust and easy to implement technique. This algorithm can be used 

to  implement  various  combinatorial  optimization  problems.  It  provides  solutions  of 

reasonably good quality. It is popular and the most widely used algorithm.

The algorithm involves various parameters which need to be set appropriately to 

get  reasonably  good  solutions.  It  is  also  a  well  known  fact  that  a  great  deal  of 

computation time will be needed for finding solutions using the SA algorithm. 
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CHAPTER 3

STOCHASTIC EVOLUTION ALGORITHM

Algorithm definition

Stochastic evolution is a powerful general and randomized iterative heuristic for 

solving combinatorial optimization problems. The algorithm was proposed by Youssef 

Saab and Vasanth Rao in 1989. It is stochastic because the decision to accept a move is a 

probabilistic decision. Moves that improve the cost function are accepted with probability 

one, and bad moves may also get accepted with a non-zero probability. The SE algorithm 

is a non-deterministic  algorithm, an algorithm with one or more choice points where 

multiple continuations are possible and the choice point taken is not known ahead of 

time. The word evolution is used in reference to the evolution processes of biological 

species [7]. 

Combinatorial optimization problems can be modeled in a number of ways. SE 

adopts the following generic model:

Given a finite set M of movable elements and a finite set L of locations, a state is  

defined as a function S: M → L satisfying certain constraints [7].

The SE algorithm includes the steps  shown in Figure 1.  Though it  shows the 

outline of the algorithm, there can be slight modifications based on the type of problem 

it implements. We shall examine and describe in depth the steps of this algorithm in the 

following section.
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Algorithm SE (S0, p0, R)

Begin
BestS = S = S0;
BestCost = CurCost = Cost(S);
p = p0;
ρ = 0;
Repeat

PrevCost = CurCost;
S = PERTURB(S,p);
CurCost = Cost(S);
UPDATE (p,PrevCost,CurCost);
If (CurCost < BestCost) Then

BestS = S;
BestCost = CurCost;
ρ = ρ – R;

Else
ρ = ρ +1;

EndIf
Until ρ > R

Return (BestS);
End

Figure 1: General outline of the SE algorithm [7]

As we can see from the algorithm the inputs to the SE algorithm are:

1. an initial state (solution) S0,
2. an initial value p0 of the control parameter p, and
3. a stopping criterion parameter R.

Throughout  the  search  for  the  optimal  solution,  S holds  the  current  state 

(solution), while  BestS holds the best state. If the algorithm generates a worse state, a 

uniformly distributed random number in the range [-p, 0] is drawn. The new uphill state 

is accepted if the magnitude of the loss is greater than the random number, otherwise the 

current state is maintained. Therefore,  p is a function of the average magnitude of the 

uphill moves that the algorithm will tolerate. The parameter  R represents the expected 

number of iterations the algorithm needs until an improvement in the cost with respect to 

the best solution seen so far takes place. Finally the variable ρ is a counter used to decide 
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when to stop the search.  ρ is initialized to zero and  R - ρ is  equal to the number of 

remaining generations before the algorithm stops [7].

Figure 2 shows the general outline of the PERTURB and the UPDATE methods 

which are two very important procedures of the SE algorithm.

FUNCTION PERTURB(S,p)

Begin
ForEach (m є M) Do

S' = MOVE(S,m);
Gain (m) = Cost(S) – Cost(S');
If (Gain (m) > RANDINT (-p, 0)) Then

S = S'
EndIf

EndFor;
S = MAKE_STATE(S);
Return(S)

End

PROCEDURE UPDATE (p, PrevCost, CurCost);

Begin
If (PrevCost = CurCost) Then

p = p + pincr;
Else

p = p0;
EndIf;

End

Figure 2: Perturb and Update methods [7]
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Initial Placement

It  is  well  known  that  each  state  is  a  potential  solution  in  a  combinatorial 

optimization problem. The initial placement is also a potential solution to the placement 

problem starting from which we seek better results. The starting placement is either a 

previously well  known good placement  or  a  random placement.  We,  for  comparison 

reasons,  create  an  initial  placement  which  is  common  for  both  the  SE  and  the  SA 

algorithms. 

Selection

During the selection phase of the algorithm we determine whether or not a cell 

should remain in its current location. Each of the movable elements is moved around and 

the current cost is compared to the previous cost before the move was made and thus by 

comparing the costs we can decide whether the cell deserves to stay in its current location 

or if moving the cell to another location will yield a better cost. 

The Gain value, which was calculated to be the difference in the cost before and 

after the move was made, is compared to the random integer that is generated between 0 

and -p and if the Gain value is more than the generated integer, the new state is retained. 

Gain (m) = Cost(S) – Cost(S')

This step will only ensure that all moves that prove to cause a decrease in the cost 

after a move is made will always be retained and moves that cause a negative Gain value 
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will probabilistically be accepted [7]. 

Control Parameter (  p)  

The control parameter, p, plays a significant role in the algorithm. This parameter 

ensures that the algorithm doesn't get caught in a local minimum cost value. Even when it 

does  get  caught,  we  accept  negative  Gain values  probabilistically.  This  is  done  by 

comparing the  Gain value with the random number generated. The control parameter 

plays an important role in the generation of this random number. Each time after the 

PERTURB function is called the control parameter value is updated. If the cost remained 

same  after  the  function  call,  the  p  value  is  increased  by  pincr,  a  predefined  value; 

otherwise, it is set to the initial  p value. This will ensure that the range in which the 

random integer is generated is expanded and it will be more likely that the algorithm will 

escape the local minimal solution in the following iterations.
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Termination condition

The SE algorithm will have to stop at some point and provide a solution to the 

problem. This can be decided by doing one of the following.

1.  Allowing the algorithm to run until a specific number of iterations, R, are completed

2.  Terminate the algorithm when there is no cost improvement over a specific number of 

generations.

The more  commonly used  method is  to  run the  algorithms over  a  predefined 

number of iterations R. The selection of this parameter determines the running time of the 

algorithm and therefore should be done carefully. A very high R value will result in the 

algorithm running for longer than needed. A low value will result in not giving enough 

time to the algorithm to improve the initial state. Therefore it is important to choose an 

optimal value for this parameter. Depending on the problem, the type of termination is 

decided.

Theoretical Foundations

SE has  been  very  successful  at  solving  problems  like  the  traveling  salesman 

problem and the network bisection problem. Youssef G. Saab and Vasant B. Rao, who 

proposed the SE algorithm, have suggested that the SE algorithm works better than the 

SA algorithm. Over time, the solution improves because the cells which are already well 

placed retain their locations during subsequent iterations and other cells try to move to 

better locations and consequently improve and produce a better solution.
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Advantages and Disadvantages

The SE algorithm is used to solve a wide variety of combinatorial optimization 

problems.  This  algorithm is  adaptive;  it  uses  a  set  of  control  variables  that  can  be 

modified to adapt better to the particular problem being solved. It has also proved to yield 

better quality solutions at a faster execution speed in comparison to other algorithms and 

evolution-based methods. SE is well suited for problems of large size [6].

Modeling the states of the problem is a major challenge. Setting the initial values 

for the parameters used in the algorithm is difficult. The value of the control parameter p 

should not be too low or too high. A low value will result in certain moves not being 

performed and a high value will result in large negative Gains being accepted. Therefore 

an  appropriate  value  selection  for  p  is  crucial.  While  selecting  the  total  number  of 

iterations,  R, we should again be sure it is not too low or too high. A low value might 

cause the search for the solution not to be done properly and a high value might result in 

unnecessary execution of the algorithm in the later stages [6].
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CHAPTER 4

VLSI CELL PLACEMENT PROBLEM

Problem Description

Placement is the process of arranging circuit components on a layout surface. The 

placement problem is a generalization of the quadratic assignment problem, which is NP-

complete. The placement problem can be defined as follows [7].

Given an electrical circuit of modules with predefined input and output terminals 
and interconnected in a predefined way, construct  a layout indicating the posi-
tions of the modules so the estimated wire length and layout area are minimized. 

The inputs to the problem are the module description, consisting of the shapes, 

sizes, and terminal locations, and the netlist, describing the interconnections between the 

terminals of the modules. The output is a list of x- and y-coordinates for all modules.

(a)
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(b) (c)

Figure 3: (a) A tree circuit.  (b) A 2-D placement of gates.  (c) A 2-D symbolic 
placement

Consider the circuit of Figure 3(a); suppose that we need to place the gates on a 

two-dimensional  surface.  One  such  placement  is  shown  in  Figure  3(b),  Figure  3(c) 

represents an equivalent symbolic representation. In the symbolic representation, we can 

observe that the gates are represented as boxes and the nets as black lines [7]. It  is 

possible to estimate the wire length from the symbolic representation. The area of a 

layout comprises the functional area and the wiring area. The functional area is the total 

of all the areas of the functional cells. The functional area remains unchanged for all 

placements. It is the wiring area which changes with the placement. This is because of 

the minimum separation that must be maintained between two wires and between a wire 

and a functional cell [7].
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A placement that requires a large amount of wiring space must necessarily involve 

long wires and hence a large value of total wire length. The overall wire length for a 

placement P can be calculated using methods like the semi perimeter method etc.

A placement consists of nodes, terminals and nets. Nodes are the cells that can be 

moved and placed in the available locations in the layout board. Terminals are cell that 

are  immovable.  They have a  predefined location in  which they are  seated.  Nets are 

simple rules that define which cells should be interconnected.

Checkerboard model

A placement problem in which the cells are assumed to be squares and of equal 

size and all terminals are assumed to be at the center of the cell is called the checkerboard 

model. The length of the interconnection from one cell to the next is one unit. There are 

also no horizontal row spaces. 

Placement Algorithms

The main objectives of a placement algorithm are to minimize the total chip area 

and the total estimated wire length for all the nets. The chip area usage has to be optim-

ized in order to fit more functionality into a given chip area. The wire length has to be 

minimized in order to reduce the capacitive delays associated with longer nets and speed 

up the operation of the chip [2].
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Placement algorithms can be classified into two major classes: constructive place-

ment and iterative improvement. In constructive placement, a method is used to build up 

a placement from scratch; in iterative improvement, algorithms start with an initial place-

ment and repeatedly modify it in search of a cost reduction.

Other  possible  classifications  for  placement  algorithms  are  deterministic  al-

gorithms and probabilistic algorithms. Algorithms that function on the basis of fixed con-

nectivity rules or formulas or determine the placement by solving simultaneous equations 

are deterministic and will always produce the same result for a particular placement prob-

lem. Probabilistic algorithms, on the other hand, work by randomly examining configura-

tions and may produce a different result each time they are run. Constructive algorithms 

are usually deterministic, whereas iterative improvement algorithms are usually probabil-

istic [2].

Initial placement configuration

The initial configuration that could be used for the placement problem can be a 

previously known good placement or it can be a random placement. Using previously 

known good configurations often have proved to produce better solutions. Placements 

can be generated by randomly assigning the movable cells to the available locations on 

the layout board.

Selection

During the selection step, the set of movable cells is scanned and ordered in a 
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specific fashion. The ordering could be based on the number of nets the cells are involved 

in or it could be a random ordering. In some algorithms, like the SE algorithm [8], during 

the selection step the cells are arranged in decreasing order of the degree,  where the 

degree represents the number of nets in the net list the cell is connected to.

Move operation

The move operation can be of two types: Simple move or Compound move. Given 

a function S: M→L and a movable element m  M, a simple move from S with respect to 

m is just a change in the value of S(m), i.e., a simple move generates a new function S':  

M→L such that S' (m) ≠ S (m) while S' (m') =  S (m') for all m' ≠ m  M. A compound 

move is a sequence of simple moves. Move operations are also sometimes defined based 

on the problem and are often altered based on requirements [6, 16].
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Semi-perimeter method

The semi-perimeter method is one of the well  known methods for wire length 

estimation. In this method the perimeter of the smallest rectangle that connects the pins of 

the cells of a net is calculated. Half of the perimeter calculated gives the length or cost of 

the wire needed for that net to be used in the chip. Since it is efficient it is a commonly 

used method for wire length estimation.  For nets  with more pins,  the estimated wire 

length using this method will be less than the actual wire length that will be needed. 

However,  in  comparison  to  other  wire  length  estimation  methods  like  Steiner  tree, 

minimal spanning tree, chain connections, and others this method gives a fairly good 

estimate. An example of how the semi-perimeter is calculated [2] is shown in Figure 4.

Figure 4: Semi-perimeter wire length = X + Y.
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CHAPTER 5

EXPERIMENTAL RESULTS

Data Sets

To test the effectiveness of the SE and SA algorithms on the VLSI cell placement 

problem, datasets were selected from various sources.  The files selected were  Cross,  

MPIO, SubOpt_1, SubOpt_4 and p1UnitWDims.  Each of these files contains the details 

about the placement problem. The number of movable nodes, the number of nets and the 

net details are found in these files. These were selected as the inputs for the placement 

problem because these inputs were of various sizes. All inputs were of bookshelf format. 

The datasets that were used were of diverse types and have nodes and nets ranging 

between a few movable cells to a few thousand movable cells. The number of nodes and 

nets in the input files are given in the Table 1. Each of these variations was tested a total 

of 10 times. Each of these placements represents different types of placement.

Input file name SubOpt_4

(A)

Cross

(B)

SubOpt_1

(C)

p1UnitWDims

(D)

MPIO

(E)
Nodes 280 386 500 833 2404

Terminals 30 26 252 81 4
Nets 485 681 252 902 4800

  

Table 1: Details of the input files [14, 15]

The input files SubOpt_4, Cross, SubOpt_1, p1UnitWDims, MPIO are referred to 

as A, B, C, D and E respectively.
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Experimental Results

The SE and the SA algorithms were run against the VLSI cell placement problem 

for the various datasets mentioned in Table 1. As already mentioned in the previous sec-

tion, the datasets used were of various sizes and types. Each of these inputs was imple-

mented for both the algorithms and tested for a total of 10 times, and their average values 

were recorded. 

The average results obtained for both the algorithms after the experiments were 

conducted for 10 trials are shown in Table 2.

Input File 

Name

Wire length CPU Time
SE SA SE SA

A 1445 1303 137 164
B 3215 2891 206 227
C 9764 9778 193 177
D 6790 7225 258 231
E 6923007 6923642 474 384

Table 2: Experimental results comparing SE and SA

The wire lengths for the SE and the SA algorithm were obtained for these datasets 

and compared in terms of the quality of their  solution and the time taken by the al-

gorithms to compute the wire length and the placement. The CPU time is represented in 

minutes. The algorithms were run for almost the same time and the results were obtained. 

The CPU times of the SE and the SA algorithm are fairly comparable. It can be noted that 

the CPU time of SE algorithm increases with increase in the size of the input.
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The results obtained from the not-so-very-popular SE algorithm are comparable to 

the results obtained from the widely known and used SA algorithm. As the graph in Fig-

ure 5 indicates, the SE algorithm produces results comparable to the results produced by 

SA algorithm. The heights of the blocks in the column graph of Figure 5, lie closely to 

each other thus indicating how close and comparable the two methods are. 

Figure 5: Column graph comparing SA and SE  
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

Concluding Remarks

From the experimental results shown in Chapter 5, we can observe that the SE al-

gorithm competes well with the SA algorithm. The solutions produced by the less known 

SE algorithm were comparable to the most widely used popular SA algorithm. Though it 

cannot be concluded from the results that the SE algorithm is the superior algorithm, giv-

en almost same amount of time the two algorithms produce almost same quality solu-

tions. It can also be noted that with increasing input size, the SE algorithm takes more 

CPU time and produces slightly better quality solutions. This suggests that the SE al-

gorithm might be well suited for large sized inputs and problems. This also suggests that 

the SE algorithm can be applied for various other combinatorial optimization problems 

too and can produce solutions of good quality.

Future Directions

The results indicate that the SE algorithm could be applied for various other com-

binatorial optimization problems and the heuristic could give results similar to the simu-

lated annealing algorithm. 

Parallelizing the SE algorithm can produce better results than the sequential ver-

sion of the SE algorithm. This is because when the solution space is searched in parallel 

and the current best solution amongst the results obtained is used as the starting point for 
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further steps, this would result in a faster search and could produce better quality solu-

tions.
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