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Abstract: 
 

Molecular biology has experienced an exponential growth in terms of access to data, 
volume of results, and conceptual discoveries in recent years. Making full use of the vast 
amount of molecular biology data poses challenging information science questions on 
data retrieval, data mining, and data management.  Molecular biology has become a 
computational science. Problems like Multiple Sequence Alignment for structure 
prediction, reconstructing haplotype data from genotype data, discovering protein classes 
and characterizing proteins from 2D gel electrophoresis and other proteomic data, 
building signaling network maps, aligning DNA fragments, guessing evolutionary trees, 
reconstructing large sequences from smaller ones, and many other issues can be cast in 
mathematical models. All of these questions can be considered optimization problems to 
be attacked by means of standard techniques. With the enormous quantity of data 
available today modern molecular biologists seek the use of computer science approaches 
in order to solve biological problems. Thus, the field of molecular biology provides 
computer scientists with numerous challenging practical and theoretical questions. 
 
These issues in computational molecular biology have led to interesting theoretical 
computer science problems; both in algorithm design and complexity analysis. Numerous 
uses of graphs and Network Flows represent biological phenomenon at many conceptual 
levels. A few hundred papers have been published exploiting or extending non trivial 
classic graph theory for problems in biology. For example the Euler path approach is 
used in Genome Sequencing problems like Genome Assembly, and applications of tree-
design or network-design approximations are used in multiple sequence alignment 
problems. 
 
We introduce the three problems 1. Antibody Imprinting,  2. Patterns of Protein 
Expression and  3. Genome Assembly in this proposal, followed by formal description, 
background, related work, research plan, line of attack and time line of expected progress 
for each problem. 
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Introduction to Problem 1: Antibody Imprinting 
In the first problem we present a new Multiple Sequence Alignment method to improve 
the alignment of peptide fragments representing antibody epitopes to discontinuous 
regions of the one dimensional amino acid sequences of target proteins. A large fraction 
of protein structures of interest cannot be solved by traditional structural biology 
techniques such as X-ray crystallography and NMR (Nuclear Magnetic Resonance). 
Antibodies can either recognize continuous or discontinuous epitopes, but virtually all 
epitopes that have been analyzed in detail are discontinuous. Discontinuous epitopes can 
potentially provide extremely useful structural information because with suitable analysis 
they could reveal distant segments of primary sequence that are in close proximity on the 
native, folded protein and could reveal changes in protein structure in different functional 
states when appropriate antibodies are available[2]. 
 
In this approach peptide probes selected experimentally from a random peptide library to 
have a high affinity to antibodies of interest. The computational problem addressed in our 
previous work on this issue was to align each probe individually to the target protein. 
These alignments were performed with a program called EPIMAP[1]. Our goal here is to 
improve the current EPIMAP program in such a way that instead of aligning each probe 
individually to the target protein, it aligns all the probes simultaneously to the target 
protein and also considers the substitutability of the aligned probe sequences. We hope 
that this might lead to better epitope predictions. We want to formalize this as a Multiple 
Sequence Alignment problem and describe an efficient algorithm that will work well in 
practice for inputs of interest. 
 
Introduction to Problem 2: Patterns of Protein Expression 
In the second problem our aim is to present an efficient algorithm to discover groups of 
proteins that are up or down regulated as a function of biochemical stimulation that 
would help characterize responses of cells or tissues as monitored in 2D gel 
electrophoresis experiments. 2D gel electrophoresis is a widely used technique to 
separate proteins and modified proteins and can be employed in a multicolor format to 
detect changes in the levels of proteins and modified proteins in systems of interest. In 
the simplist multiplex experiment proteins from experimental and control samples are 
labeled with different colored fluorescent dyes, mixed together and separated on 2D gels. 
These gels use two sequentially performed separations in acrylamide media.  The first 
dimension is isoelectric focusing, that separates by amino acid composition, and the 
second dimension separates by molecular weight. This produces a 2D pattern of spots 
each representing a protein or a modified form of a protein. These 2D patterns are 
detected by scanning the gels with lasers to detect the fluorescently-labeled proteins.   
 
The different colored images are normalized by their total intensity and the ratios of the 
different protein forms determine.  Protein spots that exhibit statistically significant 
changes between experimental and control samples are then analyzed by Mass 
Spectrometry (MS).  
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The main goal in this project is to look more closely at the experimental data and identify 
patterns of clusters of proteins that not only change the most in size and intensity but also 
to consider the patterns of proteins that undergo slight but correlated expression changes. 
We want to develop a combinatorial algorithm to this problem to identify interesting 
protein clusters and in many cases try to solve it to optimality. 
 
Introduction to Problem 3: Genome Assembly 
Genome assembly refers to the process of taking a large number of short DNA sequences 
which are generated by shotgun sequencing and put them together to create a 
representation of the original chromosome sequences from which the DNA originated. 
Assembling genomes computationally is challenging because genomes often contain 
large numbers of identical “repeated” sequences (repeats). These repeats can be 
thousands of nucleotides long and can occur in different locations, especially in large 
genomes. I studied and reviewed different computational algorithms and mathematical 
formulation that have been used in the currently available assembly software platforms to 
gain an appreciation of the breadth and depth of their potential. In this third and final 
problem I will be working on computational genome assembly and identifying copy 
number variations. I will be seeking structural variants that would lead to the discovery of 
gene(s) responsible for the cause of MS in one and not in the other in the genome 
sequence of Identical Twins. I will be working at the National Center for Genome 
Resources (NCGR) on this project, were the genome will be sequenced under the 
supervision of Dr. Joann Mudge, Research Scientist at NCGR, and the computer science 
work will be supervised by Dr. Brendan Mumey, Associate Professor at Montana State 
University –Bozeman, Montana. 
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Problem 1 
 

Algorithm Improvement and Validation Using Known 3D Structures for 
Mapping Discontinuous Antibody Epitopes to Reveal Structural Features of 

Proteins 
 

Introduction:  
 
Proteins are large organic compounds composed of linear polypeptide chains. To fully 
understand the biological role of a protein one requires knowledge of its structure, 
function, and mechanism. There are about 1,000,000 different protein forms in human 
cells and each protein form has its own folded functional structure.  Whenever the three 
dimensional structure of a protein could be determined, the information has provided 
important insights into mechanisms of action and may be extremely useful in drug design. 
With the increased amount of proteins becoming available traditional methods like X-ray 
crystallography or Nuclear Magnetic Resonance (NMR) are often not feasible for protein 
structure determination. Therefore, computationally predicting the structure of proteins is 
an increasingly popular approach are becoming increasingly popular. 
 
Background:  
 
This project is a collaboration work with Dr. Algirdas Jesaitis from the Microbiology 
Department and Dr. Edward Dratz from the Chemistry and Biochemistry department at 
Montana State University.  One of the main aims of biological research is to understand 
how cells work and define the rules by which they interact and function. A main concept 
is “form follows function”, which means that if we know the detailed shape of a molecule 
on a molecular scale we are then much more likely to understand the function of that 
molecule. Antibodies that bind to the surfaces of a protein of interest can carry 
information on the structure of the protein and the present project strives to extract that 
information. 
 
The general structure of all antibodies is very similar, but a small region at the tips of the 
protein is extremely variable.  Differences in the variable regions allow millions of 
antibodies with slightly different binding site structures to exist. This region is known as 
the hyper variable region. Each of these variants can bind to a different target, known as 
an antigen. This huge diversity of antibodies allows the immune system to recognize an 
equally wide diversity of antigens. The unique part of the antigen recognized by an 
antibody is called an epitope. The alignments of  the antibody epitopes to the 
discontinuous regions of the one dimensional amino acid sequence of a target protein 
indicates how segments of the protein sequence must be folded together and provide long 
range constraints for providing information on  the 3-D protein structure. Antibodies can 
recognize either continuous or discontinuous epitopes, but all of the known antibody-
protein antigen structures have discontinuous epitopes (Rubenstein, et al, 2008). 
Discontinuous epitopes can provide useful structural information in the antibody 
imprinting process, by revealing segments of primary sequence that are in close 
proximity on the native, folded protein.  
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Related Work:  
 
The Antibody Imprinting Method: 
 
Antibody imprinting works by using antibodies to select peptide sequences from large 
random peptide libraries [2]. The sequences selected by the antibody are called “probes” 
and after several rounds of selection and enrichment have relatively high affinity for the 
antibody (that binds the protein of interest). Our group has developed an algorithm called 
EPIMAP that computationally evaluates which protein residues form the epitope surface, 
based on the probe sequences selected and the one-dimensional antigen protein sequence. 
 
Step 1: Find an antibody that binds the protein under conditions of interest. 

 
1lk3.pdb(Source:www.pdb.org) 

Antigen Antibody Reaction (Using Chimera Program) 
 

Step 2: Probe the antibody with a random peptide library of short peptide sequences 
(displayed on bacteriophage or alternatively on ribosomes, yeast or other library host).  
 
Probe sequences are used to witness protein structure. The bacteriophages that bear the 
strongly binding peptide probes are are diluted to form individual clones on bacterial 
lawns.  A number of clones are picked and the DNA that codes for the selected peptide is 
amplified by PCR and the DNA is sequenced from the selected phage DNA clones.  We 
then carry out our analysis using a number of these selected peptide sequences that serve 
as a witness to discontinuous epitopes and thus the folded structure of the protein 
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EPIMAP Program :  
 
A new algorithm was developed to computationally predict the epitope where the 
antibody binds to the target protein, based on aligning individual mimetic probe 
sequences. The probe amino acid sequence, s, is aligned to one or more regions of the 
target protein amino acid sequence, t. The probe amino acid sequence(s) is usually about 
8 -20 amino acids long and the target amino acid sequence (t) is several hundred in length. 
This method is approached as a more complex combinatorial alignment problem than is 
commonly used to assess relatedness of protein or DNA sequences. This method allows 
sequence reversals of the probe amino acid sequence to align to the underlying protein 
(target) sequence and complex gap patterns are allowed in matching probe and the target 
sequences. These gaps can be large numerous when the epitope is discontinuous. 
 
To evaluate the quality of the alignments this method uses a two part scoring system that 
is composed of a substitution score and an epitope gap cost. The substitution score is 
calculated with a substitution matrix and the epitope gap cost is calculated by examining 
the number of amino acid residues skipped along the target amino acid sequence between 
successive aligned probe positions. The computational problem is thus to find an 
alignment that maximizes the score. Different gap cost models have been used to evaluate 
the quality of the alignments. EPIMAP program implements this algorithm and produces 
a list of the top-scoring alignment(s) of the probe to protein. Typically 50-100 probe 
sequences will be known experimentally and are individually aligned using EPIMAP. 
 
Input: The linear amino acid sequences of the peptide probe and the target protein. 
 
Output: A mapping of probe positions to target positions (usually including insertions 
and deletions). 
 
Sample Alignment Result:  
 

 
 
To solve the alignment problem a branch-and-bound algorithm was used[1] 
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Research Plan: 
 
Improvement of the Algorithm: 
 
In the above described work prior efforts developed the EPIMAP algorithm that 
computationally evaluated the epitope based on aligning individual mimetic probe 
sequences derived from an experimental process called antibody imprinting for the 
protein of interest. The goal of my work is to improve the current approach to examine 
and evaluate all possible ways to map all the peptide epitope sequences (probe sequence 
set) simultaneously onto the sequence of the target protein (protein target sequence) in 
question, which would greatly increase the size of the search space but could well lead to 
better epitope predictions. . This problem can be approached as a Multiple Sequence 
Alignment problem. 
 
The Multiple Sequence Alignment Problem:  
 
As mentioned previously the principal prior goal of protein sequence alignment is to 
discover biological similarities among proteins. Multiple sequence alignment can be a 
useful technique for studying and analyzing sequence-structure relationships. So Multiple 
sequence alignments remains an important area of research as biological inferences can 
be made from the conservation or variation within the aligned positions, especially with 
reference to the structure of at least one of the aligned sequences. 
 
In protein sequence alignment, the degree of similarity between amino acids occupying a 
particular position in the sequence can be interpreted as a rough measure of how 
conserved a particular region is among lineages. The absence of substitutions, or the 
presence of only very conservative substitutions in a particular region of the sequence, 
suggests that this region has structural or functional importance. In the previous EPIMAP 
approach only two sequences are aligned at a time, one probe sequence at a time against 
the target sequence. Multiple sequence alignment incorporates more than two sequences 
at a time. In our approach the goal would be to align all the probes sequences against the 
target sequence at once. This method should allow improved identification of the 
conserved sequence across the target. This conserved sequence can be used in 
conjunction with the structural information of the target protein.  
 
Multiple sequence alignment problems are computationally difficult to produce and most 
formulations of the problem are NP complete combinatorial problems. To solve this 
probe-target alignment problem a branch-and-bound algorithm will be used to find 
optimal and suboptimal alignments and also to prove that the corresponding decision 
problem is NP complete. 
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Secondary Structure Scoring Function: 
 
As mentioned earlier proteins are composed of amino acids that are joined together in 
peptide chains. The size and shape of the different amino acid side chain cause space 
constraints that limit the range of rotation of the bonds adjoining the peptide bonds. The 
two of the most easily achievable conformations correspond to the most common forms 
of protein secondary structure, namely the α-helix and β-sheet. The α-helix is formed 
when the amino acid backbone curls around at 3.6 amino acids per turn. β-sheets are 
formed when two adjacent strands of peptide lie in a plane and form hydrogen bonds 
between their respective backbones. The chains in are formally 2.0 amino acids per turn 
with 180 degree turns between residues. 
 
The current EPIMAP version does not take into account any gap cost evaluation for the 
secondary structure. An important objective is to improve our scoring function by 
including secondary structure considerations. 
 
Proposed Lines of Attack: 
 

1. To develop means to examine and evaluate and implement Multiple Sequence 
Alignment methods in which all the epitope-mimetic peptide (probe sequences) 
can be mapped onto the sequence of the target protein in question simultaneously, 
to better recognize discontinuous epitopes that provide proximity constraints on 
the 3-D structure of the protein. 

2. Study the Computational Complexity and devise efficient algorithms to find 
optimal and suboptimal solutions 

3. Generate synthetic data sets which can be used for machine-learning and cross-
validation approaches. 

4. Test the systems devised on cases where the epitopes are known from antibody-
antigen x-ray structures and experimental probe sequences have been obtained.  

 
Exploring Synthetic Data sets: 
 
Introduction and Motivation:  
 
The problem addressed in this section is to mine the PDB for known protein-antibody 
complexes in order to develop synthetic test cases to tune the performance of EPIMAP. 
There are over 225 examples of known protein-antibody structures in the PDB [e.g. 
Rubinstein, et al, 2008]. We have done a significant amount of work in this research to 
date and have developed an automated system for creating synthetic test cases for 
EPIMAP from these structures. These test cases permit the efficient training of scoring 
parameters within EPIMAP with a goal to improve its overall epitope-prediction 
accuracy. 
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We follow a standard machine-learning cross-validation approach in which some of the 
data is held out as a test set and the remaining data is used to train with. In order to create 
the training data, we have developed a random walk based approach on the antibody 
based on certain rules for generating probe sets. While we are still collecting test set data, 
our initial results appear to have been useful in refining the performance of EPIMAP. 
We expect that our synthetic data sets will be very useful in studying and understanding 
the problem much better and further improve the performance of EPIMAP. This initial 
work was presented in part as a poster at the New Mexico Bioinformatics Symposium, 
Proteomics including NanoBioIT, March 8th – 9th 2007, Santa Fe, New Mexico.  
 
Methodology:  
 
In our approach we identify 10 PDB (Protein Data Bank) antibody-antigen complexes. 
Out of the 10 complexes 5 are used as training data sets and 5 are used as test data sets. 
We identify the antibody region that lie close to the antigen surface [how] and create a set 
random probes sequences each of length 9 by doing a random walk on the antibody 
residues following certain rules. Once we have a set of synthetic probe sequences we 
mutate them using two amino acid substitution probability matrices.  The matrices used 
are the BLOSUM40 substitution matrix and the Tangel frequency of interaction matrix 
and retain an unmutated set of probes (equivalent to mutating with an Identity Matrix). 
After the data sets were generated we run them on EPIMAP, using a range of gap scoring 
parameters. Table 1 (title it) shows some of the selected results obtained.   
 
 

PDB 
Code 
for 
complex 

Sub. 
Matrix  

Prob. 
Matrix  

Maximum 
Gap Cost 

Gap 
Extension 
Cost 

Alignment 
Score 
(Before 
Filtering)  

Alignment 
Score (After 
Filtering)  

1BVK tangel Tangel 2 0.3 1.72 1.37 
1BVK Pearson Identity 1 0.3 2.92 2.58 
1C08 tangel Tangel 2 0.3 1.60 0.41 
1KB5 tangel Tangel 1 0.3 0.99 1.05 

 
Table 1: EPIMAP Score for the synthetic data set generated. 
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EPIMAP Parameter Space Explored: 
 
Maximum Gap Cost: 1.0, 1.5, 2.0 
Gap Extension Cost: 0.3, 0.5, 0.8 
Maximum Top Scores to keep: 3 
Maximum Top Solutions to keep: 10 
Substitution Matrices Used: Pearson Matrix, tangel Matrix and Argos Matrix. 
 
For each of the 5 training cases we have 81 different combinations of EPIMAP 
Parameters that were run through EPIMAP. The results from this program are then fed 
into another program that our group developed called the EPIFILTER program. This 
program selects the best mutually compatible alignments (one for each probe sequence in 
the set). After we get the results we pick out the parameters that yielded the highest 
alignment score. Using these selected parameters we run the 5 test cases that were 
generated at the beginning with the EPIMAP and EPIFILTER program. 
 
Alignment Score Mechanism:  
 
The alignment scoring mechanism that we have usee so far is simple. The average 
frequency for the epitope residues within the proximity to the antibody and divide by the 
average frequency of all the residues 
 
If, α =Average frequencies for the Epitope Residues 
If, β = Average frequencies for the entire protein 
 
Then the Alignment Score (S) is defined as S = α / β 
 
At the present time not all of our experiments have been run (several hours of 
computational time is required for each EPIMAP run). We found some interesting results 
for a selected set of cases.  This is a work in progress and we have not found one single 
combination of EPIMAP parameters that works well in all cases, at this point in the 
process.  We expect that synthetic data sets will be invaluable [how can you be so 
confident that the random walk sets will be invaluable—maybe the selection by the 
antibody is more guided by preferred interactions—just need to have thought this out] for 
improving and refining EPIMAP and the antibody imprinting approach to computational 
epitope prediction. 
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Problem 2 
 

Analysis of 2D Electrophoresis Gel Data using Differential Two Color 
Fluorescent Dye Detection  

 
Project Overview:  
 
This is a local collaboration project with Dr. Edward Dratz’s laboratory from the 
Chemistry and Biochemistry Department at Montana State University. The general goal 
of this research project is to discover and implement an efficient combinatorial algorithm 
for our research work in proteomics. This project is about analyzing 2D gels which are 
produced by high resolution gel electrophoresis techniques. The currently used 
techniques used focus on the that undergo the largest changes in amounts resulting from 
biological stimulation or disease states compared to controls. The main goal of this 
project is to investigate 2D electrophoresis gel patterns and identify the protein clusters 
that undergo correlated modifications and to seek to identify the global pattern of change. 
We want to develop and implement an algorithm to identify clusters of proteins and use 
the information in the pattern change to characterize the proteins in the samples. 
 
Introduction:  
 
Biomedical researchers are very much interested in understanding what proteins are 
involved in biological responses and understanding the networks of responses. 
Proteomics is an experimental approach that analyzes all of the proteins in samples and 
identifies the proteins that change in response to biological stimuli or disease state. 
Computational proteomics concentrates on identification of proteins that change with 
stimuli, and characterization of protein modifications that change qualitatively and 
quantitatively. A proteomic experiment involves the analysis of samples that contains 
complex mixtures of proteins that typically occur at a wide range of different 
concentrations. The process of identifying proteins from these biological samples is 
complex and the low abundance proteins are mostly not observed with current methods. 
New, more powerful detection methods are under development (at MSU and elsewhere) 
and prospects are good that changes in the lowest level proteins will be detectable in a 
year or so. The most dominant proteomic methods used are 2D electrophoretic gels and 
shotgun liquid chromatography. After 2DE proteins are digested with proteolytic 
enzymes and identified by mass spectrometry. In the shotgun method the complex 
mixtures of proteins are digested into hyper complex mixtures of smaller peptide 
components of the proteins before LC-MS/MS. 
 
Large Scale Protein Analysis: 
 
The most widely used method for defining a proteome and global changes in the protein 
has been 2D electrophoresis. Gel electrophoresis is a very common technique used in the 
separation of protein molecules using an electric current applied to a gel matrix. 2D gel 
electrophoresis (2-DE_first separates proteins based on their isoelectric point (pI), in the 
first dimension and separates by molecular weight in the second dimension. Plain 2D 
electrophoresis gel is an older technique and recently it has been improved using 
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multicolor, multiplex detection.  In the new approach different protein samples are 
covalently labeled with different fluorescent dyes, the different colored labeled proteins 
are then mixed together and separated on the same gel.  After separation the patterns of 
proteins and are detected by laser scanning.  Covalent labeling of protein samples with 
different-colored fluorescent dyes before 2-D electrophoresis enables much more 
accurate analysis of differences in protein abundance between samples.  The end product 
of this experiment is a pattern of spots and smears that displays each protein and 
modified protein in a complex proteome. The preferred technique used to identify each 
spot of interest is the Mass Spectrometry (MS) for determining the identity of the proteins 
or modified proteins. The analysis of such image series intends to identify those proteins 
or modified that change in abundance, reflecting biochemical and biomedical conditions 
in an organism.  
 
Research Plan: 
 
Source of Experimental Data:  
 
For this project we will be using several data sets created by Dr. Dratz’s laboratory from 
the Chemsitry and Biochemistry Department at Montana State University and their 
collaborators at other centers. One data set consists of intensity values and x,y 
coordinates representing protein in human plasma comparing type 2 diabetic with healthy 
control humans.  Another data set studies the responses of human white blood cells to 
innate immune stimulators and a third data set studies the responses of developing rat or 
mouse brains to essential fatty acids. 
 
Initial Work: 
 
The data obtained looks pretty imposing. It lists spots vertically (~680) with their spot 
intensities under "blue", "green" and "red" columns referring to the colors of the dye used 
to image the spots.  The blue dye is ignored in the initial data sets as it had a high 
background and an improved blue dye has been designed and prepared for future 
experiments. The green and red are labeled either diabetic or control (healthy).  All the 
pools were compared for both green and red dyes and found that the red dye was less 
"well-behaved" under the experimental conditions used in the initial experiments, in that 
it seems to introduce more noise.  Future experiments will use modified experimental 
conditions that will provide better red dye data. So in this initial data set we can try 
comparing diabetic with healthy just using the "green" data. 
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Spot t- Test p-Value 
fraction 1, spot X 1624 Y 800, green cd_align 0.999811136 8.20304E-05 
fraction 1, spot X 830 Y 1046, green cd_align 0.997290263 0.001178421 
fraction 1, spot X 1927 Y 1040, red cd_align 0.996856532 0.001367341 
fraction 1, spot X 306 Y 1326, green cd_align 0.990557699 0.004120222 
fraction 1, spot X 2001 Y 226, green cd_align 0.990031398 0.004351032 
fraction 1, spot X 324 Y 515, red cd_align 0.985124241 0.006508994 
fraction 1, spot X 974 Y 439, green cd_align 0.985080862 0.006528118 
fraction 1, spot X 1451 Y 796, red cd_align 0.980105802 0.00872704 
fraction 1, spot X 853 Y 1546, red cd_align 0.979769676 0.008876006 
fraction 1, spot X 1356 Y 966, red cd_align 0.979296971 0.009085589 
fraction 1, spot X 728 Y 969, red cd_align 0.977438787 0.009910431 
fraction 1, spot X 1934 Y 803, red cd_align 0.970174836 0.013149994 
fraction 1, spot X 240 Y 376, red cd_align 0.96766203 0.0142763 
fraction 1, spot X 1476 Y 1366, red cd_align 0.967233007 0.014468892 
fraction 1, spot X 851 Y 1376, green cd_align 0.965438252 0.015275498 

 
Table: Top 15 t-Test spots 

 
By looking into the data the interesting columns were the normalized value column for 
the control, green in this case and normalized value column for diabetic sample, red in 
this case. We calculated the ratios of diabetic to control for each sample. It was 
interesting to see that the ratios were somewhat different when the dyes are interchanged. 
The ratios were different when the dyes were interchanged apparently because different 
dyes quench the proteins to a somewhat different extend. Also a t-test was computed on 
all the spots and sorted by significance. In this data we found that the green dye is 
definitely outperforming the red, but there were still some significant red spots. 
 
Microarray data is used in the systematic study of gene expression, their functions, and 
their interactions. Analogously, proteomics is the study of proteins, protein complexes, 
their localization, their interactions, and posttranslational modifications. Technologies for 
DNA microarray data and proteomics data investigations are increasingly leading to new 
insights into mechanisms of living systems. 
 
Proteomics data evokes all proteins in any given cell and also the set of all protein 
isoforms and modifications.  Proteomics complements functional genomics approaches, 
including microarray-based expression profiles, systematic phenotypic profiles at the cell 
and organism level, systematic genetics and small-molecule-based arrays. Proteomics 
would not be practical without the previous achievements of genomics, which provides 
the gene sequences and the blueprint of possible gene products that are the focal point of 
proteomic studies. 
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The next step would be is to try some simple clustering of the spots using k-means and 
also some hierarchical techniques. 
 
At first we wanted to try some existing software like GeneSpring and/or MeV and 
Principal Component Analysis 
 
Algorithm Implementation Approach: 
 
Clustering data has been widely recognized as a powerful technique in Computer Science 
and Statistics and is being studied extensively in recent years. Significant amount of 
research has been done in discovering interesting classes of genes in microarray data 
based on their expression similarities across multiple samples or conditions. Proteomics 
is often considered next step in the study of biological systems after genomics. In our 
initial approach we treated the proteomics data same as the microarray data. The input is 
in the form of a m*n matrix.  Each row represents the intensity of each fraction for 
different samples and dyes. There have been many efforts carried out recently on 
analyzing proteomics data.  The main goal in Clustering to classify objects into different 
groups, or more precisely, partitioning of a data set into subsets, so that the data in each 
subset share some common trait.   
 
Data clustering is a common technique for statistical data analysis and is used in many 
fields. Clustering algorithms are applied to these data to discover expression patterns that 
may be the key in understanding many genetic pathways. Many different approaches 
have been previously developed for clustering proteins. There are abundant software 
packages available to identify subsets of interesting proteins. The main objective of this 
research project is to identify interesting clusters of proteins and look into the global 
pattern of change. The currently used methods only take into consideration the proteins 
that change the most and neglect the protein patterns that change in more subtle patterns 
and thus neglect global pattern of change. We suspect that looking into the patterns of 
change could well provide valuable information in characterizing the networks of 
proteins interacting in the samples. 
 
We hope our algorithmic approach would be capable of discovering the expression 
patterns for the proteins that have less striking changes in the 2D gel data. We hope for 
moderately sized problems we can often guarantee that the solution found is optimal. The 
input to this algorithm would consist of data with each fraction (spot) against the 
normalized peak values (spot intensity) for the green dye and the red dye which are used 
to image the spots. The patterns would be observed in a time series after stimulus, in a 
dose-response patter, or in the present case—a pattern of protein changes that occurs in 
comparing samples from numerous patients and controls or several groups of patients and 
controls.  The data is typically represented in large expression matrices.  
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Problem Complexity: 
 
The complexity of the clustering problem will depend on the exact problem formulation 
and the various functions that will be used in the evaluation of the cluster.  We expect 
that the related optimization problem will be NP – complete. 
 
Proposed Lines of Attack: 
 

1. Since we are looking at the 2D gel electrophoresis data we have normalized peak 
values for each sample in this case diabetic versus control. First green dye is used 
for control and red dye is used for diabetic, then they interchange the dyes by 
using red for control and green for diabetic. As a first line of attack we did some 
simple analysis by calculating the ratio of diabetic to control in each sample. 
Some preliminary results are included in the expected results section. 

 
2. Adapt microarray clustering techniques like k-means clustering and some other 

hierarchical techniques to the experimental data available to try some simple 
clustering of the spots. 

 
3. Describe a clustering algorithm to apply to these data to identify interesting 

classes of proteins and look at their expression patterns to seek understanding of 
functional protein networks. 

 
 
Expected Results: 
 
We want to develop an efficient algorithm for analyzing and clustering proteins to 
identify the pattern changes and characterize the proteins in the samples and hopefully 
find new insights into proteins relevant to diabetes. We would also like to use other 
available clustering approaches for the analysis of the protein expression data and 
compare it with the algorithm implemented in this work. 
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Problem 3 
 

Multiple Sclerosis (MS) – Identical Twins Genome Sequencing Project 
 
Introduction: 
 
Contrary to our previous beliefs, identical twins are not genetically identical 
(references!!). The presumption has always been that identical twins are identical down 
to the details of their DNA sequences. But recent genetic studies have shown the DNA of 
identical twins are not always identical.. Sometimes there are subtle differences in the 
DNA due to the Copy Number Variations (CNVs)(references). Researchers suggest that 
these subtle differences may lead to a better understanding of genetic diseases when 
studies are conducted on discordant monozygotic twins (A pair of twins where one has a 
disorder and the other does not). In those discordant monozygotic twins, one might have 
diseases like Multiple Sclerosis (MS), Parkinson’s and the other does not. Studies 
indicate that CNV might play a critical role and this can be effectively studies in identical 
twins.  
 
Copy Number Variation: 
 
Copy number variation of DNA sequences refers to the differences in the number of 
copies of a particular region in the genome. Deletions, Insertions, and complex multi-site 
variants are collectively termed copy number variations or copy number polymorphisms 
(CNPs). Recent multiple studies have discovered copy number variation of DNA 
segments ranging from kilo bases to mega bases in size in all humans and mammals and 
other organisms examined. Differences in the DNA sequence of our genomes contribute 
to each individual’s uniqueness. CNVs are important because they can lead to expression 
of different amounts of proteins and modified proteins and these submicroscopic 
variations can influence many traits, including susceptibility to disease. 
 
The CNVs influence gene expression, phenotypic variation and adaptation by disrupting 
genes and altering gene dosage and can cause disease, as in micro deletion or micro 
duplication disorders or confer risk to complex disease traits such as HIV-1 infection 
[reference]  and glomerulonephritis [30]. CNVs often represent an appreciable minority of 
causative alleles at genes at which other types of mutation are strongly associated with 
specific diseases: CHARGE syndrome21 and Parkinson’s and Alzheimer’s disease [30]. 
Furthermore, CNVs can influence gene expression indirectly through position effects, 
predispose to deleterious genetic changes, or provide substrates for chromosomal change 
in evolution [30]. 
 
CNVs that are benign variants will not directly cause disease, but there are several 
instances where CNVs that affect critical developmental genes do cause disease. Genes 
that are involved in immune system and brain development and activity tend to be 
enriched in CNVs. Capturing all the variation in the genome will help identify those 
genes that play important roles in human health, hunting for genes underlying common 
diseases. 
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Multiple Sclerosis (MS): 
 
Multiple Sclerosis, also known as disseminated sclerosis or encephalomyelitis 
disseminata is a complex, inflammatory, autoimmune, demyelinating disease of the 
central nervous system, affecting nearly one million people worldwide. It strikes most 
often the early adult years. Its symptoms include numbness, impaired vision, and loss of 
balance, weakness, bladder dysfunction, and psychological changes. 
 
Genetics and Multiple Sclerosis: 
 
Research scientists and physicians who have heavily studied the question of what makes 
humans susceptible to MS are convinced that the genes that we inherit from our ancestors 
are an important factor. Many research groups have searched for the genes that make 
humans susceptible to developing MS.  Understanding how genes contribute to 
determining who gets MS will provide major clues to the cause and may point to ways of 
preventing and treating MS. Even though in the classical sense, MS is not considered as 
an inherited disorder, there is strong evidence to support the fact that genetic factors play 
an important and significant role in MS. 
 
Next Generation Sequencing Technology: 
 
For the past several years, the main sequencing DNA methodology has been Sanger 
sequencing. This sequencing method has major limitations and remains prohibitively 
costly and time consuming for many genome projects. Recently there have been many 
sequencing technologies developed that have the potential to overcome these limitations, 
but at the same time the data produced by these technologies pose new challenges in 
assembling the sequence reads. 
 
The new sequencing technologies, called next-generation sequencers, have the ability to 
process millions of sequence reads in parallel. The next-generation sequencers are much 
less expensive to use and are much faster.  Some of the commercially available 
sequencers are: 
 
1. Roche (454) GS FLX sequencer 
2. 2. Illumina genome analyzer 
3. 3. Applied Biosystems SOLiD sequencer. 
 
All these sequencers produce shorter read lengths, 35 – 250 Base Pairs depending on the 
platform, than capillary sequencers--which produce 650 – 800 base pair read lengths. The 
shorter reads are harder to assemble and can impact the utility of the data for various 
applications such as de novo assembly and genome resequencing. 
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Genome Sequencing of Identical Twins: 
 
From the numerous research studies conducted it is clearly evident that identical twins, 
genetically identical from conception, are not identical for various traits and diseases. 
This project involves the complete genome sequence of twins where one has MS and the 
other the other does not. I will be working at NCGR (National Center for Genome 
Resources) under the direct supervision of Dr. Joann Mudge, Research Scientist at NCGR 
and Dr. Brendan Mumey, Associate Professor, Department of Computer Science here at 
Montana State University – Bozeman.  
 
National Center for Genome Resources (NCGR) in Santa Fe, New Mexico, is a nonprofit 
research institute dedicated to improving human health and nutrition, focusing on 
collaborative research at the intersection of bioscience, computing, and mathematics. 
Research scientists and software engineers at NCGR study the influence of genetic 
variability of both host and pathogen on infectious disease progression and develop 
scientific software solutions to support and enable those studies. 
 
The sequencing technology used at NCGR’s Genome Sequencing Center is Illumina 
Genome Analyzer. Illumina Genome Analyzer System is based on the Solexa sequencing 
technology, providing a high-speed, massively parallel genetic analysis system for 
genetic analysis and functional genomics. Some of the highlight features of this 
technology are, it has scalable ultra-high throughput and it requires sample input as low 
as 100 ng - 1µg, enabling a host of applications where sample is limited. Also it is simple, 
fast, and automated. 
 
NCGR has undertaken the research project of sequencing the genomes of identical twins, 
one having MS and other does not. I will be a part of this research project working 
primarily on assembly, assembly validation, assembly post processing, identification of 
Copy Number Variants (CNVs), Single Nucleotide polymorphisms (SNPs) Structural 
Variants and difference discovery. 
 
Genome Assembly: 
 
An important and a critical step in the sequencing of genomes is to assemble all the short 
reads or fragments that are extracted from the sample to form a set of contiguous 
sequences (contigs), that represents the DNA in the sample. Assembling genome 
computationally is challenging because genomes contain large numbers of identical 
sequences (repeats). These repeats can be thousands of nucleotides long and can occur in 
different locations, especially in large genomes. 
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Figure 1. Whole Genome Shotgun Sequencing 

 
 

 
 

Figure 2. BAC by BAC (Hierarchical) Sequencing 
 

 
Figure 1 represents shotgun sequencing where the DNA sequence of an organism is 
sheared into a large number of small fragments. Figure 2 represents the BAC by BAC  
Sequencing approach, where the long lines represent individual BAC’s. A minimum 
tiling path (thick lines) is chosen, such that each base in the genome is covered by at least 
one BAC and the overlap between the BAC’s is minimized. Each BAC in the tiling path 
is sequenced through the shotgun method. 
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Comparison: Sanger Reads Vs Solexa Short Reads: 
 
The following table shows how much the amount of sequence read increase from Sanger 
technology to the Solexa short read technology for different organisms 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Research Plan: 
 
Step1: The first step is to sequence the genome of the Identical Twins. We are expecting 
to have the data available by the end of November. Once we have the sequence data, the 
next step is to assemble the short read sequences and look into the contig assembly.  
 
Step 2: After the assembly process, the next logical step would be to validate the 
assembly by aligning the contigs to the reference genome. This can be done by existing 
methods like GMAP (Genomic Mapping and Alignment Program) or BALST (Basic 
Local Alignment Search Tool) from NCBI. One way is to make sure all the contigs from 
the assembly had at least one hit with the reference genome. This is one way to look in 
the quality of the assembly, but we are also researching different ideas for validation and 
also possibly some assembly post processing.  
 
Step 3: Identify CNVs, SNPs, and Structural Variants  
 
 
 

 Organism Genome size 

Sanger Reads 
with 8X 
Coverage 
(1000 nt) 

Solexa Short 
Reads with 100X 
Coverage (36 nt) 

Virus, Phage Φ-
X174 5,400 43 15,000 
Bacterium 
Escherichia coli 
(million reads) 4,000,000 32,000 11,111,111 
Nematode, 
Caenorhabditis 
elegans (million 
reads) 98,000,000 784,000 272,222,222 
Plant, Arabidopsis 
thaliana (million 
reads) 157,000,000 1,256,000 436,111,111 
Mammal, Homo 
sapiens (billion 
reads) 3,200,000,000 25,600,000 8,888,888,889 
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Expected Results: 
 
The above described steps hopefully would lead to the identification and difference 
discovery of the genes that are responsible for the cause of MS in one twin and not in the 
other. 
 
Final Conclusions and Approximate Time Line of Expected Progress: 
 
We have introduced three interesting research problems in computational genomics and 
proteomics and presented with some background, related work and proposed solutions 
and improvements to each of the problems.  
 
Problem 1: Significant amount of work has been done and the next logical step would be 
is to implement the multiple sequence alignment approach and improve the alignment. 
 
Problem 2: We started with doing some initial analysis on the experimental data by 
calculating ratios of diabetic to control and also computed t-test on all the spots. The next 
step is in designing and implementing an efficient algorithm for clustering proteins. Once 
the methods are developed I would like to see it applied to one or more additional data 
sets. 
 
Problem 3: The Identical Twin genome sequence data should be available by the end of 
November 2008 and I will be at NCGR working on the computational analysis of the 
genome sequence. I will be spending the entire spring semester at NCGR working on this 
research project. 
 
In fall 2008 the goal would be to implement the clustering algorithm for problem 2 to 
discover interesting classes of proteins and look at their expression patterns. In spring 
2009 as mentioned above I will be working on the MS-Identical Twin project. By 
summer 2009/fall2009 we plan on having all the three problems completed. 
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