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Abstract:

Molecular biology has experienced an exponentiaign in terms of access to data,
volume of results, and conceptual discoveries aemeyears. Making full use of the vast
amount of molecular biology data poses challengimigrmation science questions on
data retrieval, data mining, and data managemevitlecular biology has become a
computational science. Problems like Multiple Sewpge Alignment for structure
prediction, reconstructing haplotype data from dggo® data, discovering protein classes
and characterizing proteins from 2D gel electrope and other proteomic data,
building signaling network maps, aligning DNA fragnis, guessing evolutionary trees,
reconstructing large sequences from smaller omebsnaany other issues can be cast in
mathematical models. All of these questions candresidered optimization problems to
be attacked by means of standard techniques. WMghenormous quantity of data
available today modern molecular biologists seekue of computer science approaches
in order to solve biological problems. Thus, theldi of molecular biology provides
computer scientists with numerous challenging jprakand theoretical questions.

These issues in computational molecular biologyehsad to interesting theoretical
computer science problems; both in algorithm deaiggh complexity analysis. Numerous
uses of graphs and Network Flows represent biokbgibenomenon at many conceptual
levels. A few hundred papers have been publishgdboitixig or extending non trivial
classic graph theory for problems in biology. Feample the Euler path approach is
used in Genome Sequencing problems like Genomenfdgeand applications of tree-
design or network-design approximations are usedmintiple sequence alignment
problems.

We introduce the three problems 1. Antibody Impnigt 2. Patterns of Protein
Expression and 3. Genome Assembly in this propdstibwed by formal description,
background, related work, research plan, line t@fcktand time line of expected progress
for each problem.



Introduction to Problem 1: Antibody Imprinting

In the first problem we present a new Multiple Satee Alignment method to improve
the alignment of peptide fragments representingbady epitopes to discontinuous
regions of the one dimensional amino acid sequeofcesget proteins. A large fraction
of protein structures of interest cannot be solmd traditional structural biology
techniques such as X-ray crystallography and NMRic{dar Magnetic Resonance).
Antibodies can either recognize continuous or difooous epitopes, but virtually all
epitopes that have been analyzed in detail ar@uiiseious. Discontinuous epitopes can
potentially provide extremely useful structuraldmhation because with suitable analysis
they could reveal distant segments of primary secgi¢hat are in close proximity on the
native, folded protein and could reveal changgzratein structure in different functional
states when appropriate antibodies are avalfable

In this approach peptide probes selected experatigritom a random peptide library to
have a high affinity to antibodies of interest. Tduenputational problem addressed in our
previous work on this issue was to align each priobé/idually to the target protein.
These alignments were performed with a progranedaPIMAP*. Our goal here is to
improve the current EPIMAP program in such a wagt thstead of aligning each probe
individually to the target protein, it aligns alié probes simultaneously to the target
protein and also considers the substitutabilityhef aligned probe sequences. We hope
that this might lead to better epitope predictioig want to formalize this as a Multiple
Sequence Alignment problem and describe an efti@ggorithm that will work well in
practice for inputs of interest.

Introduction to Problem 2: Patterns of Protein Expression

In the second problem our aim is to present amiefft algorithm to discover groups of
proteins that are up or down regulated as a fumctib biochemical stimulation that
would help characterize responses of cells or déssas monitored in 2D gel
electrophoresis experiments. 2D gel electrophorésis widely used technique to
separate proteins and modified proteins and caenfq@oyed in a multicolor format to
detect changes in the levels of proteins and nmexdlifiroteins in systems of interest. In
the simplist multiplex experiment proteins from exmental and control samples are
labeled with different colored fluorescent dyesxeai together and separated on 2D gels.
These gels use two sequentially performed sepasaiio acrylamide media. The first
dimension is isoelectric focusing, that separatgsatmino acid composition, and the
second dimension separates by molecular weight produces a 2D pattern of spots
each representing a protein or a modified form gbratein. These 2D patterns are
detected by scanning the gels with lasers to détedluorescently-labeled proteins.

The different colored images are normalized byrthaal intensity and the ratios of the
different protein forms determine. Protein spdiattexhibit statistically significant
changes between experimental and control samples tlzen analyzed by Mass
Spectrometry (MS).



The main goal in this project is to look more clysa# the experimental data and identify
patterns of clusters of proteins that not only geatihe most in size and intensity but also
to consider the patterns of proteins that undeligbtsbut correlated expression changes.
We want to develop a combinatorial algorithm tostproblem to identify interesting
protein clusters and in many cases try to solv@ aptimality.

Introduction to Problem 3: Genome Assembly

Genome assembly refers to the process of takiagge humber of short DNA sequences
which are generated by shotgun sequencing and lpemn ttogether to create a
representation of the original chromosome sequefroes which the DNA originated.
Assembling genomes computationally is challengimgaboise genomes often contain
large numbers of identical “repeated” sequencepe@ts). These repeats can be
thousands of nucleotides long and can occur iremdfft locations, especially in large
genomes. | studied and reviewed different compatati algorithms and mathematical
formulation that have been used in the currentbilallle assembly software platforms to
gain an appreciation of the breadth and depth eif thotential. In this third and final
problem | will be working on computational genomssembly and identifying copy
number variations. | will be seeking structuraligats that would lead to the discovery of
gene(s) responsible for the cause of MS in one raostdin the other in the genome
sequence of Identical Twins. | will be working dtet National Center for Genome
Resources (NCGR) on this project, were the genorie b& sequenced under the
supervision of Dr. Joann Mudge, Research ScieatiBitCGR, and the computer science
work will be supervised by Dr. Brendan Mumey, Asate Professor at Montana State
University —-Bozeman, Montana.



Problem 1

Algorithm Improvement and Validation Using Known 3D Structures for
Mapping Discontinuous Antibody Epitopes to Reveal uctural Features of
Proteins

Introduction:

Proteins are large organic compounds composecdeéaiipolypeptide chains. To fully

understand the biological role of a protein oneunex knowledge of its structure,

function, and mechanism. There are about 1,000¢d@€rent protein forms in human

cells and each protein form has its own folded fiomal structure. Whenever the three
dimensional structure of a protein could be deteedj the information has provided
important insights into mechanisms of action ang & extremely useful in drug design.
With the increased amount of proteins becominglabk traditional methods like X-ray

crystallography or Nuclear Magnetic Resonance (NM#R)often not feasible for protein

structure determination. Therefore, computationpiydicting the structure of proteins is
an increasingly popular approach are becoming asongly popular.

Background:

This project is a collaboration work with Dr. Aldas Jesaitis from the Microbiology

Department and Dr. Edward Dratz from the Chemiatrg Biochemistry department at
Montana State University. One of the main aim®iofogical research is to understand
how cells work and define the rules by which thetgiact and function. A main concept
is “form follows function”, which means that if wenow the detailed shape of a molecule
on a molecular scale we are then much more likelyriderstand the function of that
molecule. Antibodies that bind to the surfaces opratein of interest can carry

information on the structure of the protein and pinesent project strives to extract that
information.

The general structure of all antibodies is veryilsimbut a small region at the tips of the
protein is extremely variable. Differences in thariable regions allow millions of
antibodies with slightly different binding site @ttures to exist. This region is known as
the hyper variable region. Each of these variaatshind to a different target, known as
an antigen. This huge diversity of antibodies alidive immune system to recognize an
equally wide diversity of antigens. The unique paiitthe antigen recognized by an
antibody is called an epitope. The alignments ohe fantibody epitopes to the
discontinuous regions of the one dimensional anasicid sequence of a target protein
indicates how segments of the protein sequence beustided together and provide long
range constraints for providing information on 8¥® protein structure. Antibodies can
recognize either continuous or discontinuous epgofut all of the known antibody-
protein antigen structures have discontinuous pe#o(Rubenstein, et al, 2008).
Discontinuous epitopes can provide useful struttundormation in the antibody
imprinting process, by revealing segments of primaequence that are in close
proximity on the native, folded protein.



Related Work:

The Antibody Imprinting Method:

Antibody imprinting works by using antibodies toes# peptide sequences from large
random peptide libraries [2]. The sequences saldayethe antibody are called “probes”
and after several rounds of selection and enricinawve relatively high affinity for the

antibody (that binds the protein of interest). Quwup has developed an algorithm called
EPIMAP that computationally evaluates which proteisidues form the epitope surface,
based on the probe sequences selected and thenogestnal antigen protein sequence.

Sep 1: Find an antibody that binds the protein under @tk of interest.

Antigen Antibody Surface Interaction Region
Antibody Chain H (Green)

Antigen Chain A (Red)

Antibody Chain L (Blue)

11k3.pdb(Source:www.pdb.org)
Antigen Antibody Reaction (Using Chimera Program)

Sep 2: Probe the antibody with a random peptide librafysloort peptide sequences
(displayed on bacteriophage or alternatively ongdmes, yeast or other library host).

Probe sequences are used to witness protein segudtihe bacteriophages that bear the
strongly binding peptide probes are are dilutedoton individual clones on bacterial
lawns. A number of clones are picked and the DN&# todes for the selected peptide is
amplified by PCR and the DNA is sequenced fromslected phage DNA clones. We
then carry out our analysis using a number of tisetected peptide sequences that serve
as a witness to discontinuous epitopes and thuektied structure of the protein



EPIMAP Program:

A new algorithm was developed to computationallgdict the epitope where the
antibody binds to the target protein, based onnalgy individual mimetic probe
sequences. The probe amino acid sequence, sgiedlto one or more regions of the
target protein amino acid sequence, t. The probaaacid sequence(s) is usually about
8 -20 amino acids long and the target amino aajdesece (t) is several hundred in length.
This method is approached as a more complex conabpiabalignment problem than is
commonly used to assess relatedness of proteirNér §&quences. This method allows
sequence reversals of the probe amino acid sequeralegn to the underlying protein
(target) sequence and complex gap patterns angealin matching probe and the target
sequences. These gaps can be large numerous vehepitibpe is discontinuous.

To evaluate the quality of the alignments this mdthses a two part scoring system that
is composed of a substitution score and an epiggpe cost. The substitution score is
calculated with a substitution matrix and the gpét@ap cost is calculated by examining
the number of amino acid residues skipped alongattgeet amino acid sequence between
successive aligned probe positions. The computtigmoblem is thus to find an
alignment that maximizes the score. Different gagt enodels have been used to evaluate
the quality of the alignments. EPIMAP program inmpénts this algorithm and produces
a list of the top-scoring alignment(s) of the prdbeprotein. Typically 50-100 probe
sequences will be known experimentally and areviddally aligned using EPIMAP.

Input: The linear amino acid sequences of the peptideegpand the target protein.

Output: A mapping of probe positions to target positioasu@lly including insertions
and deletions).

Sample Alignment Result:

. & IGN DE.IRW 5 . & E probe GIGNDEIRW bp 0 score 6.55 ZZx
& IGN DE.IRW 5 % B probe GIGNDEIRW bp 0 score 6.55 Zx
. WRI P DN GM& z probe GMGNDEIRW bp 0 score 6.68
. WR LEF DN GIZ B probe GIGNDELREW bp 0 score 6.75
. GNGVEGERE . probe GNGVEGREIV bp 0 score 7.07
WRI P DNGNG . probe GNGNDEIRW bp 0 score 7.13

« . ALZEMIOFYLEEVMFOQAENCDEDIFAHVNILGENLEILRLELRRCHRFLECENGEGIGERIFAVEQVENAF NELQERGIYEAMIER . . . <- Target Protein
A A AAA AAA AARAANAA A mAA ARAAAA A A <- known epitope positions
... 567B5901234567050123456789012345678001234567890123456782012345678501234567895901234567890. .. <~ target numbers
[ 7 g =l 0 ok 2 3 At

To solve the alignment problem a branch-and-bougarithm was used



Research Plan:

Improvement of the Algorithm:

In the above described work prior efforts develogbd EPIMAP algorithm that
computationally evaluated the epitope based onniakg individual mimetic probe
sequences derived from an experimental procesedcahtibody imprinting for the
protein of interest. The goal of my work is to irope the current approach to examine
and evaluate all possible ways to map all the depgpitope sequences (probe sequence
set) simultaneously onto the sequence of the tangeein (protein target sequence) in
guestion, which would greatly increase the sizthefsearch space but could well lead to
better epitope predictions. . This problem can ppr@ached as a Multiple Sequence
Alignment problem.

The Multiple Sequence Alignment Problem:

As mentioned previously the principal prior goal mbtein sequence alignment is to
discover biological similarities among proteins. INple sequence alignment can be a
useful technique for studying and analyzing segeestiucture relationships. So Multiple
sequence alignments remains an important areasefireh as biological inferences can
be made from the conservation or variation witlia aligned positions, especially with
reference to the structure of at least one of ligaed sequences.

In protein sequence alignment, the degree of siityilaetween amino acids occupying a
particular position in the sequence can be intéedreas a rough measure of how
conserved a particular region is among lineages dlibsence of substitutions, or the
presence of only very conservative substitutions iparticular region of the sequence,
suggests that this region has structural or funetiomportance. In the previous EPIMAP
approach only two sequences are aligned at a bmeprobe sequence at a time against
the target sequence. Multiple sequence alignmeatrporates more than two sequences
at a time. In our approach the goal would be tgradill the probes sequences against the
target sequence at once. This method should allopraved identification of the
conserved sequence across the target. This codsesgguence can be used in
conjunction with the structural information of ttagget protein.

Multiple sequence alignment problems are computatip difficult to produce and most
formulations of the problem are NP complete comtoinal problems. To solve this
probe-target alignment problem a branch-and-bougdrithm will be used to find

optimal and suboptimal alignments and also to prina the corresponding decision
problem is NP complete.



Secondary Structure Scoring Function:

As mentioned earlier proteins are composed of amrids that are joined together in
peptide chains. The size and shape of the diffemeriho acid side chain cause space
constraints that limit the range of rotation of tiends adjoining the peptide bonds. The
two of the most easily achievable conformationgespond to the most common forms
of protein secondary structure, namely thielix andp-sheet. Theu-helix is formed
when the amino acid backbone curls around at 3.B@mcids per turnp-sheets are
formed when two adjacent strands of peptide li@ iplane and form hydrogen bonds
between their respective backbones. The chaingeifioamally 2.0 amino acids per turn
with 180 degree turns between residues.

The current EPIMAP version does not take into ant@my gap cost evaluation for the
secondary structure. An important objective is magpriove our scoring function by
including secondary structure considerations.

Proposed Lines of Attack:

1. To develop means to examine and evaluate and ingpieNultiple Sequence
Alignment methods in which all the epitope-mimgieptide (probe sequences)
can be mapped onto the sequence of the targeirpmotguestion simultaneously,
to better recognize discontinuous epitopes thatigeoproximity constraints on
the 3-D structure of the protein.

2. Study the Computational Complexity and devise gffitalgorithms to find
optimal and suboptimal solutions

3. Generate synthetic data sets which can be useddohine-learning and cross-
validation approaches.

4. Test the systems devised on cases where the epéop&nown from antibody-
antigen x-ray structures and experimental probeesgtes have been obtained.

Exploring Synthetic Data sets:
Introduction and Motivation:

The problem addressed in this section is to mieeRBB for known protein-antibody
complexes in order to develop synthetic test c&sasgne the performance of EPIMAP.
There are over 225 examples of known protein-adgbstructures in the PDB [e.qg.
Rubinstein, et al, 2008]. We have done a signitiGanount of work in this research to
date and have developed an automated system fatimgesynthetic test cases for
EPIMAP from these structures. These test casesip#renefficient training of scoring

parameters within EPIMAP with a goal to improve iuserall epitope-prediction

accuracy.



We follow a standard machine-learning cross-valisaapproach in which some of the
data is held out as a test set and the remainitagislased to train with. In order to create
the training data, we have developed a random Wwaled approach on the antibody
based on certain rules for generating probe setdeWe are still collecting test set data,
our initial results appear to have been usefuéfiming the performance of EPIMAP.

We expect that our synthetic data sets will be wexgful in studying and understanding
the problem much better and further improve thdoperance of EPIMAP. This initial
work was presented in part as a poster at the Newidd Bioinformatics Symposium,
Proteomics including NanoBiolT, Marci'8- 9" 2007, Santa Fe, New Mexico.

Methodology:

In our approach we identify 10 PDB (Protein DatanBaantibody-antigen complexes.
Out of the 10 complexes 5 are used as training skttaand 5 are used as test data sets.
We identify the antibody region that lie closehe tantigen surface [how] and create a set
random probes sequences each of length 9 by doiramnadom walk on the antibody
residues following certain rules. Once we have tao$esynthetic probe sequences we
mutate them using two amino acid substitution pbdhbg matrices. The matrices used
are the BLOSUMA40 substitution matrix and the Tarfgedjuency of interaction matrix
and retain an unmutated set of probes (equivatentutating with an Identity Matrix).
After the data sets were generated we run themRINIEP, using a range of gap scoring
parameters. Table 1 (title it) shows some of thecsed results obtained.

[PDB  [Sub. Prob. [Maximum [Gap Alignment  |Alignment
Code |Matrix |Matrix [Gap Cost [Extension [Score Iécore (After
[for Cost (Before Filtering)
compleX [Filtering)
1BVK | tangel | Tangel 2 0.3 1.72 1.37
1BVK | Pearson Identity 1 0.3 2.92 2.58
1C08 | tangel| Tange 2 0.3 1.60 0.41
1KB5 | tangel | Tange 1 0.3 0.99 1.05

Table 1: EPIMAP Score for the synthetic data seegated.



EPIMAP Parameter Space Explored:

Maximum Gap Cost: 1.0, 1.5, 2.0

Gap Extension Cost: 0.3, 0.5, 0.8

Maximum Top Scores to keep: 3

Maximum Top Solutions to keep: 10

Substitution Matrices Used: Pearson Matrix, tadetrix and Argos Matrix.

For each of the 5 training cases we have 81 diftemmbinations of EPIMAP
Parameters that were run through EPIMAP. The restdim this program are then fed
into another program that our group developed dallee EPIFILTER program. This
program selects the best mutually compatible aligmis(one for each probe sequence in
the set). After we get the results we pick out plaeameters that yielded the highest
alignment score. Using these selected parametersuwedhe 5 test cases that were
generated at the beginning with the EPIMAP and HHIER program.

Alignment Score Mechanism:

The alignment scoring mechanism that we have use@arsis simple. The average
frequency for the epitope residues within the proty to the antibody and divide by the
average frequency of all the residues

If, a =Average frequencies for the Epitope Residues
If, B = Average frequencies for the entire protein

Then the Alignment Score (S) is defined as &/$

At the present time not all of our experiments hdeen run (several hours of
computational time is required for each EPIMAP riife found some interesting results
for a selected set of cases. This is a work igm@ss and we have not found one single
combination of EPIMAP parameters that works wellaih cases, at this point in the
process. We expect that synthetic data sets wilinvaluable [how can you be so
confident that the random walk sets will be invalea—maybe the selection by the
antibody is more guided by preferred interactionsst-peed to have thought this out] for
improving and refining EPIMAP and the antibody immping approach to computational
epitope prediction.

10



Problem 2

Analysis of 2D Electrophoresis Gel Data using Diffential Two Color
Fluorescent Dye Detection

Project Overview:

This is a local collaboration project with Dr. EdwaDratz’s laboratory from the

Chemistry and Biochemistry Department at MontareteSUniversity. The general goal
of this research project is to discover and impleiha® efficient combinatorial algorithm

for our research work in proteomics. This projectibout analyzing 2D gels which are
produced by high resolution gel electrophoresishriepies. The currently used
techniques used focus on the that undergo thedaop@nges in amounts resulting from
biological stimulation or disease states compareddntrols. The main goal of this

project is to investigate 2D electrophoresis geétgoas and identify the protein clusters
that undergo correlated modifications and to sealentify the global pattern of change.
We want to develop and implement an algorithm tntdy clusters of proteins and use
the information in the pattern change to charazntette proteins in the samples.

Introduction:

Biomedical researchers are very much interestedniderstanding what proteins are
involved in biological responses and understandihg networks of responses.
Proteomics is an experimental approach that analgiteof the proteins in samples and
identifies the proteins that change in responsditdogical stimuli or disease state.
Computational proteomics concentrates on identiboaof proteins that change with
stimuli, and characterization of protein modificaus that change qualitatively and
guantitatively. A proteomic experiment involves thealysis of samples that contains
complex mixtures of proteins that typically occut a wide range of different

concentrations. The process of identifying protefirsn these biological samples is
complex and the low abundance proteins are mostlyohserved with current methods.
New, more powerful detection methods are under ldpweent (at MSU and elsewhere)
and prospects are good that changes in the lowest proteins will be detectable in a
year or so. The most dominant proteomic methodd ase 2D electrophoretic gels and
shotgun liquid chromatography. After 2DE proteinge aligested with proteolytic

enzymes and identified by mass spectrometry. In dhetgun method the complex
mixtures of proteins are digested into hyper compheixtures of smaller peptide

components of the proteins before LC-MS/MS.

Large Scale Protein Analysis:

The most widely used method for defining a prote@neé global changes in the protein
has been 2D electrophoresis. Gel electrophoresisy&y common technique used in the
separation of protein molecules using an elecuitent applied to a gel matrix. 2D gel
electrophoresis (2-DE_first separates proteinsasetheir isoelectric point (pl), in the
first dimension and separates by molecular weighthe second dimension. Plain 2D
electrophoresis gel is an older technique and thcen has been improved using

11



multicolor, multiplex detection. In the new apptbadifferent protein samples are
covalently labeled with different fluorescent dyds different colored labeled proteins
are then mixed together and separated on the sameAdter separation the patterns of
proteins and are detected by laser scanning. €otvédbeling of protein samples with
different-colored fluorescent dyes before 2-D elguhoresis enables much more
accurate analysis of differences in protein abuoddretween samples. The end product
of this experiment is a pattern of spots and smdéaas displays each protein and
modified protein in a complex proteome. The prefértechnique used to identify each
spot of interest is the Mass Spectrometry (MS)etermining the identity of the proteins
or modified proteins. The analysis of such imageséantends to identify those proteins
or modified that change in abundance, reflectiragibemical and biomedical conditions
in an organism.

Research Plan:

Source of Experimental Data:

For this project we will be using several data setsated by Dr. Dratz’s laboratory from
the Chemsitry and Biochemistry Department at Moat&tate University and their
collaborators at other centers. One data set densf intensity values and X,y
coordinates representing protein in human plasmapeoing type 2 diabetic with healthy
control humans. Another data set studies the regsoof human white blood cells to
innate immune stimulators and a third data setissuithe responses of developing rat or
mouse brains to essential fatty acids.

Initial Work:

The data obtained looks pretty imposing. It ligets vertically (~680) with their spot

intensities under "blue”, "green™ and "red" columeterring to the colors of the dye used
to image the spots. The blue dye is ignored inititgal data sets as it had a high
background and an improved blue dye has been dabigmd prepared for future
experiments. The green and red are labeled eifhbetic or control (healthy). All the

pools were compared for both green and red dyesfamdl that the red dye was less
"well-behaved" under the experimental conditionsdum the initial experiments, in that
it seems to introduce more noise. Future experisnesill use modified experimental

conditions that will provide better red dye data. i this initial data set we can try
comparing diabetic with healthy just using the &rédata.

12



Spot t- Test p-Value
fraction 1, spot X 1624 Y 800, green cd_alig 0®BP136 8.20304E-0
fraction 1, spot X 830 Y 1046, green cd_alig 0231263 0.00117842
fraction 1, spot X 1927 Y 1040, red cd_align 0. BEE32 0.00136734
fraction 1, spot X 306 Y 1326, green cd_alig 03699 0.00412022
fraction 1, spot X 2001 Y 226, green cd_alig 0®RIBI8 0.00435103

=]

=]

=]

=]

OO 00 1o == Ot

fraction 1, spot X 324 Y 515, red cd_align 0.985441 0.006508994
fraction 1, spot X 974 Y 439, green cd_align 0. G2 0.00652811

fraction 1, spot X 1451 Y 796, red cd_align 0.98p80P 0.00872704
fraction 1, spot X 853 Y 1546, red cd_align 0.979515 0.00887600¢
fraction 1, spot X 1356 Y 966, red cd_align 0.976281 0.00908558¢
fraction 1, spot X 728 Y 969, red cd_align 0.977A38B 0.009910431
fraction 1, spot X 1934 Y 803, red cd_align 0.974836 0.013149994
fraction 1, spot X 240 Y 376, red cd_align 0.96 7652 0.0142763

O

fraction 1, spot X 1476 Y 1366, red cd_align 0.9830207 0.014468892
fraction 1, spot X 851 Y 1376, green cd_alig 04852 0.01527549

>S5
0

Table: Top 15 t-Test spots

By looking into the data the interesting columngeavihe normalized value column for

the control, green in this case and normalizedevaliumn for diabetic sample, red in

this case. We calculated the ratios of diabeticcomtrol for each sample. It was

interesting to see that the ratios were somewlffgreint when the dyes are interchanged.
The ratios were different when the dyes were im@nged apparently because different
dyes quench the proteins to a somewhat differet@nelx Also a t-test was computed on
all the spots and sorted by significance. In theasadwe found that the green dye is
definitely outperforming the red, but there weii# some significant red spots.

Microarray data is used in the systematic studgesfe expression, their functions, and
their interactions. Analogously, proteomics is #tedy of proteins, protein complexes,
their localization, their interactions, and posisiational modifications. Technologies for
DNA microarray data and proteomics data investogetiare increasingly leading to new
insights into mechanisms of living systems.

Proteomics data evokes all proteins in any givelh aed also the set of all protein

isoforms and modifications. Proteomics complemdmtetional genomics approaches,
including microarray-based expression profilesteaystic phenotypic profiles at the cell

and organism level, systematic genetics and smalikenle-based arrays. Proteomics
would not be practical without the previous achmeeats of genomics, which provides
the gene sequences and the blueprint of possible g®ducts that are the focal point of
proteomic studies.
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The next step would be is to try some simple chusgeof the spots using k-means and
also some hierarchical techniques.

At first we wanted to try some existing softwateeliGeneSpring and/or MeV and
Principal Component Analysis

Algorithm Implementation Approach:

Clustering data has been widely recognized as aguolxtechnique in Computer Science
and Statistics and is being studied extensivelyeirent years. Significant amount of
research has been done in discovering interestempes of genes in microarray data
based on their expression similarities across plalttamples or conditions. Proteomics
is often considered next step in the study of lgwial systems after genomics. In our
initial approach we treated the proteomics dataesasithe microarray data. The input is
in the form of a m*n matrix. Each row represertie intensity of each fraction for
different samples and dyes. There have been malfoytsefcarried out recently on
analyzing proteomics data. The main goal in Chirsgeto classify objects into different
groups, or more precisely, partitioning of a datiisto subsets, so that the data in each
subset share some common trait.

Data clustering is a common technique for staastitata analysis and is used in many
fields. Clustering algorithms are applied to thdat to discover expression patterns that
may be the key in understanding many genetic pathwislany different approaches
have been previously developed for clustering jmeteThere are abundant software
packages available to identify subsets of intemgspiroteins. The main objective of this
research project is to identify interesting clustef proteins and look into the global
pattern of change. The currently used methods takg into consideration the proteins
that change the most and neglect the protein patthiat change in more subtle patterns
and thus neglect global pattern of change. We stighat looking into the patterns of
change could well provide valuable information iharacterizing the networks of
proteins interacting in the samples.

We hope our algorithmic approach would be capalbl@iscovering the expression
patterns for the proteins that have less strikingnges in the 2D gel data. We hope for
moderately sized problems we can often guarantgetik solution found is optimal. The
input to this algorithm would consist of data widlach fraction (spot) against the
normalized peak values (spot intensity) for theegrdye and the red dye which are used
to image the spots. The patterns would be obsarvedtime series after stimulus, in a
dose-response patter, or in the present case—erpatt protein changes that occurs in
comparing samples from numerous patients and derdraeveral groups of patients and
controls. The data is typically represented igdagxpression matrices.

14



Problem Complexity:

The complexity of the clustering problem will degeon the exact problem formulation
and the various functions that will be used in ¢valuation of the cluster. We expect
that the related optimization problem will be NEemplete.

Proposed Lines of Attack:

1. Since we are looking at the 2D gel electrophordata we have normalized peak
values for each sample in this case diabetic vazsosol. First green dye is used
for control and red dye is used for diabetic, thieey interchange the dyes by
using red for control and green for diabetic. Alirst line of attack we did some
simple analysis by calculating the ratio of diabdt control in each sample.
Some preliminary results are included in the exgabeesults section.

2. Adapt microarray clustering techniques like k-mealsstering and some other
hierarchical techniques to the experimental datailave to try some simple
clustering of the spots.

3. Describe a clustering algorithm to apply to thes¢adto identify interesting
classes of proteins and look at their expressidtes to seek understanding of
functional protein networks.

Expected Results:

We want to develop an efficient algorithm for amathg and clustering proteins to
identify the pattern changes and characterize tb&eins in the samples and hopefully
find new insights into proteins relevant to dialset&/e would also like to use other
available clustering approaches for the analysishef protein expression data and
compare it with the algorithm implemented in thisriu
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Problem 3
Multiple Sclerosis (MS) — Identical Twins Genome Sgiencing Project

Introduction:

Contrary to our previous beliefs, identical twinge anot genetically identical
(references!!). The presumption has always beenidleatical twins are identical down
to the details of their DNA sequences. But recemegic studies have shown the DNA of
identical twins are not always identical.. Somesntleere are subtle differences in the
DNA due to the Copy Number Variations (CNVs)(refases). Researchers suggest that
these subtle differences may lead to a better stateting of genetic diseases when
studies are conducted on discordant monozygotiastyA pair of twins where one has a
disorder and the other does not). In those disecnaeonozygotic twins, one might have
diseases like Multiple Sclerosis (MS), Parkinsoaisd the other does not. Studies
indicate that CNV might play a critical role andstiean be effectively studies in identical
twins.

Copy Number Variation:

Copy number variation of DNA sequences refers ® differences in the number of
copies of a particular region in the genome. Defedj Insertions, and complex multi-site
variants are collectively termed copy number verat or copy number polymorphisms
(CNPs). Recent multiple studies have discoveredy copmber variation of DNA
segments ranging from kilo bases to mega baseaganrsall humans and mammals and
other organisms examined. Differences in the DNdusece of our genomes contribute
to each individual's unigueness. CNVs are importatause they can lead to expression
of different amounts of proteins and modified pnmuse and these submicroscopic
variations can influence many traits, includingcaibility to disease.

The CNVs influence gene expression, phenotypicatian and adaptation by disrupting
genes and altering gene dosage and can causeedissas micro deletion or micro
duplication disorders or confer risk to complexedise traits such as HIV-1 infection
[reference] and glomerulonephritfd. CNVs often represent an appreciable minority of
causative alleles at genes at which other typasughtion are strongly associated with
specific diseases: CHARGE syndrome21 and Parkissand Alzheimer's disead®.
Furthermore, CNVs can influence gene expressioirdatlly through position effects,
predispose to deleterious genetic changes, or geaubstrates for chromosomal change
in evolution®®?.

CNVs that are benign variants will not directly saudisease, but there are several
instances where CNVs that affect critical developtakgenes do cause disease. Genes
that are involved in immune system and brain deweknt and activity tend to be
enriched in CNVs. Capturing all the variation iretgenome will help identify those
genes that play important roles in human healtntihg for genes underlying common
diseases.
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Multiple Sclerosis (MS):

Multiple Sclerosis, also known as disseminated resie or encephalomyelitis

disseminata is a complex, inflammatory, autoimmudemyelinating disease of the
central nervous system, affecting nearly one mmllpeople worldwide. It strikes most

often the early adult years. Its symptoms includmbness, impaired vision, and loss of
balance, weakness, bladder dysfunction, and psggiuall changes.

Genetics and Multiple Sclerosis:

Research scientists and physicians who have hestutiied the question of what makes
humans susceptible to MS are convinced that thegggvat we inherit from our ancestors
are an important factor. Many research groups lsagched for the genes that make
humans susceptible to developing MS. Understandiogr genes contribute to
determining who gets MS will provide major cluestie cause and may point to ways of
preventing and treating MS. Even though in thesitad sense, MS is not considered as
an inherited disorder, there is strong evidenceufaport the fact that genetic factors play
an important and significant role in MS.

Next Generation Sequencing Technology:

For the past several years, the main sequencing Di¢&hodology has been Sanger
sequencing. This sequencing method has major tionis and remains prohibitively

costly and time consuming for many genome projeRecently there have been many
sequencing technologies developed that have tlenfpaltto overcome these limitations,
but at the same time the data produced by the$mdéxgies pose new challenges in
assembling the sequence reads.

The new sequencing technologies, called next-ggaeraequencers, have the ability to
process millions of sequence reads in parallel. Adgd-generation sequencers are much
less expensive to use and are much faster. Somimeofcommercially available
sequencers are:

1. Roche (454) GS FLX sequencer
2. 2. lllumina genome analyzer
3. 3. Applied Biosystems SOLID sequencer.

All these sequencers produce shorter read lengths,250 Base Pairs depending on the
platform, than capillary sequencers--which prodéseé — 800 base pair read lengths. The
shorter reads are harder to assemble and can irttpacttility of the data for various
applications such as de novo assembly and gensagquencing.
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Genome Sequencing of Identical Twins:

From the numerous research studies conductedclealy evident that identical twins,
genetically identical from conception, are not idlead for various traits and diseases.
This project involves the complete genome sequeht&ins where one has MS and the
other the other does not. | will be working at NC@Rational Center for Genome
Resources) under the direct supervision of Dr. dddndge, Research Scientist at NCGR
and Dr. Brendan Mumey, Associate Professor, Demartraf Computer Science here at
Montana State University — Bozeman.

National Center for Genome Resources (NCGR) in&SBat New Mexico, is a nonprofit
research institute dedicated to improving humanlthheand nutrition, focusing on
collaborative research at the intersection of bessme, computing, and mathematics.
Research scientists and software engineers at NG@&y the influence of genetic
variability of both host and pathogen on infectiadisease progression and develop
scientific software solutions to support and enaihtese studies.

The sequencing technology used at NCGR’s GenomeeBeimg Center is lllumina
Genome Analyzer. lllumina Genome Analyzer Systeilmaised on the Solexa sequencing
technology, providing a high-speed, massively parajenetic analysis system for
genetic analysis and functional genomics. Some hef highlight features of this
technology are, it has scalable ultra-high throwglgnd it requires sample input as low
as 100 ng - 1ug, enabling a host of applicationsrevsample is limited. Also it is simple,
fast, and automated.

NCGR has undertaken the research project of semgetiee genomes of identical twins,
one having MS and other does not. | will be a drthis research project working
primarily on assembly, assembly validation, assgnploilst processing, identification of
Copy Number Variants (CNVs), Single Nucleotide motyphisms (SNPs) Structural
Variants and difference discovery.

Genome Assembly:

An important and a critical step in the sequena@hgenomes is to assemble all the short
reads or fragments that are extracted from the kangp form a set of contiguous
sequences (contigs), that represents the DNA in sdm@ple. Assembling genome
computationally is challenging because genomesagoriarge numbers of identical
sequences (repeats). These repeats can be thowdanaseotides long and can occur in
different locations, especially in large genomes.
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fragocats —

Figure 2. BAC by BAC (Hierarchical) Sequencing

Figure 1 represents shotgun sequencing where the Bduence of an organism is
sheared into a large number of small fragmentsurgig represents the BAC by BAC
Sequencing approach, where the long lines reprasdintidual BAC’s. A minimum
tiling path (thick lines) is chosen, such that eaake in the genome is covered by at least
one BAC and the overlap between the BAC’s is minadi Each BAC in the tiling path

is sequenced through the shotgun method.
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Comparison: Sanger Reads Vs Solexa Short Reads:

The following table shows how much the amount gfussice read increase from Sanger
technology to the Solexa short read technologyliiderent organisms

Sanger Reads
with 8X Solexa Short
Coverage Reads with 100X
Organism Genome size (1000 nt) Coverage (36 nt)
Virus, Phageb-
X174 5,400 43 15,000
Bacterium
Escherichia coli
(million reads) 4,000,000 32,000 11,111,111
Nematode,
Caenorhabditis
elegans (million
reads) 98,000,000 784,000 272,222,222
Plant,Arabidopsis
thaliana (million
reads) 157,000,000 1,256,000 436,111,111
Mammal,Homo
sapiens (billion
reads) 3,200,000,000 25,600,000 | 8,888,888,889

Research Plan:

Sepl: The first step is to sequence the genome ofdhatical Twins. We are expecting
to have the data available by the end of Novembece we have the sequence data, the
next step is to assemble the short read sequenddeak into the contig assembly.

Sep 2: After the assembly process, the next logical steld be to validate the
assembly by aligning the contigs to the referermeogie. This can be done by existing
methods like GMAP (Genomic Mapping and Alignmenbd?am) or BALST (Basic
Local Alignment Search Tool) from NCBI. One waytésmake sure all the contigs from
the assembly had at least one hit with the refergenome. This is one way to look in
the quality of the assembly, but we are also reb@ag different ideas for validation and
also possibly some assembly post processing.

Sep 3: Identify CNVs, SNPs, and Structural Variants
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Expected Results:

The above described steps hopefully would leadhto itdentification and difference
discovery of the genes that are responsible foc#luse of MS in one twin and not in the
other.

Final Conclusions and Approximate Time Line of Expected Pgress:

We have introduced three interesting research enablin computational genomics and
proteomics and presented with some backgroundietelork and proposed solutions
and improvements to each of the problems.

Problem 1: Significant amount of work has been done and # logical step would be
is to implement the multiple sequence alignmenta@g@gh and improve the alignment.

Problem 2: We started with doing some initial analysis on thgerimental data by
calculating ratios of diabetic to control and atemnputed t-test on all the spots. The next
step is in designing and implementing an efficiggorithm for clustering proteins. Once
the methods are developed | would like to see plieg to one or more additional data
sets.

Problem 3: The Identical Twin genome sequence data shoulavbagable by the end of

November 2008 and | will be at NCGR working on ttemputational analysis of the
genome sequence. | will be spending the entiremgmemester at NCGR working on this
research project.

In fall 2008 the goal would be to implement thestéuing algorithm for problem 2 to
discover interesting classes of proteins and ldothair expression patterns. In spring
2009 as mentioned above | will be working on the-Méntical Twin project. By
summer 2009/fall2009 we plan on having all theelpeblems completed.

21



References:

1.

Brendan Mumey, Brian W. Bailey, Bonnie Kirkpatricklgirdas J. Jesaitis,
Thomas Angel, Edward A. Dratz: A New Method for Ndapy Discontinuous
Antibody Epitopes to Reveal Structural Features Rybteins. Journal of
Computational Biology 10(3/4): 555-567 (2003)

Padlan, E. 1996. X-ray crystallography of antibedfglv. Protein Chem. 49, 57-
133

Brendan Mumey, Nathaniel Ohler, Thomas Angel, Algg Jesaitis, Edward
Dratz. Filtering Epitope Alignments to Improve Rxot Surface Prediction. ISPA
Workshops 2006: 648-657

Baker, D., and Sali, A.2001.Protein structure preadin and structural genomics,
Science 294(5540), 93-96

A. Fiser, R.K.G. Do, A. Sali Protein Sci. 9, 172800).

Jones DT, Taylor WR, Thornton JM. A new approachrtaein fold recognition
Nature 1992;358:86—-89

Salamov, A. A. & Solovyev, V. V. (1995). Predictiohprotein secondary
structure by combining nearest- neighbor algoritlamd multiple sequence
alignments. J. Mol. Biol.247, 11-15.

Brendan Mumey, Louise Showe, Micheal Showe. Disdoge Classes in
Microarray Data using Island Counts, Journal of Govatorial Optimization
(2007) 13:207-216

Jacques Colinge, Keiryn L. Bennett. IntroductionGomputational Proteomics,
PLOS Computational Biology, July 2007, Volume 3us 7.

10.A. Malcom Campbell, Laurie J.Heyer (2002) DiscongriGenomics, Proteomics

and Bioinformatics.

11.Madeira, S.C., Arlindo L. Oliveira. 2004. Biclusteg Algorithms for Biological

Data Analysis: A Survey. IEEE/ACM Transactions oonn@utational Biology
and Bioinformatics (TCBB)

12.Ben-Dor A, Friedman N, Yakhini Z (2001). Class @gery in Gene Expression

Data. In RECOMB ’'01:Proceedings of the fifth annudkrnational conference
on Research in Computational Molecular Biology

13.Bickel D(2003). Robust Cluster Analysis of MicraayrGene Expression Data

with The number of clusters determined biologicaByoinformatics 19(7):818-
824

22



14.Mardis ER, The impact of next-generation sequentaofjnology on genetics.
Trends Genet. 2008 Mar;24(3):133-41.

15.Daniel Zerbino, Ewan Birney, Velvet: Algorithms fde Novo Short Read
Assembly Using De Bruijn Graphs, Genome Researblighed March 18 2008

16.Sajjad Hossain, Navid Azimi, and Steven Skiena, s@ilizing short-read
assemblies around lone Sanger reads ???

17.Juliane C. Dohm, Claudio Lottaz, Tatiana Borodiaagd Heinz Himmelbauer,
SHARCGS, a fast and highly accurate short-readnasiyealgorithm for de novo
sequencing, Genome Research 2007 17:1697-1706

18.John D Keccecioghu, Eugene W Meyers, Combinataklgbrithms for DNA
sequence assembly

19.Mihai Pop, Steven L. Salzberg, Martin Shumway, Geadequence Assembly:
Algorithms and Issues, IEEE July 2002

20.A. Kalyanaraman, S.J Emrich, P.S Schnable, S. Alassembling genomes on
large-scale parallel computers, Journal of Paralhel Distributed Computing 67
(2007) 1240-1255

21.Weichum Huang, and Gabor T Marth, EagleView: a gemassembly viewer for
ne>r$t generation sequencing technologies, GenomealRds Published online Jun
11" 2008

22.Pavel A. Pevzner, and Haixu Tang, Fragment Assemtitydouble-barreled data,
Bioinformatics, April 2, 2001

23.Mark J. Chaisson, and Pavel A. Pevzner, Short rfeagiment assembly of
bacterial genomes, Genome Research 2008 18: 324-330

24.Pavel A. Pevzner, Haixu Tang and Maichael S. WaernAn Wulerian path
approach to DNA fragment assembly, 9748-9753, PNAGgust 14' 2001,
vol.98 no.17

25.Andreas Sundquist, Mostafa Ronaghi, Haixu TangePBevzner, and Serafim
Batzoglou, Whole-Genome Sequencing and Assembliz Wigh Throughput,
Short-Read Technologies, PLoSone May 2007, Issed &}

26.Dan Gusfield, Algorithms on Strings and Sequendégsmputer Science and
Computational Biology ???

23



27.Basic Local Alignment Search Tool, Altschul, etl@P0.
28. http://www.cbcb.umd.edu/research/assembly_primgnish
29. http://www.ncgr.org

30. http://www.wikipedia.org

31.Global variation in copy number in the human genoRedon, et al, Nature, Vol
444, 23 November 2006

24



