
Univel Particle Transport from Nonunivel Geometries with Juniper

by

Aaron D. Hall

A thesis proposal submitted in partial fulfillment
of the comprehensive exam requirements for the degree

of

Doctor of Philosophy

in

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

April 2009

ii

PROJECT SUMMARY

The problem of this study is to evaluate univel-based neutral particle transport
simulation where the univels must be rasterized from non-univel geometries, especially
as applied to the issue of designing active scanners for applications such as radioactive
contraband smuggling, and with consideration for unstructured mesh geometries for
multiphysics interfacing.

The specific objectives of this study are: to implement particle transport simula-
tion with a univel-based geometric representation, supporting the extended reactions
and material types necessary in evaluating active scanner designs for detecting smug-
gled nuclear material; to construct mesh representations of input geometries for use
by outside tools for other physical simulations, supporting multiphysics problems like
Gen-4 reactor design; and to evaluate the effectiveness and cost tradeoffs of antialiased
univelization and transport.

Univel geometries have proven benefits for particle transport simulation; extend-
ing their reach to rasterizing non-univel input is a new approach that advances the
general problem. In particular antialiased rasterization with high-dimensional vec-
tors is a novel, untested approach. Advancement here has broader implications for
applications like the above-mentioned active scanner development and Gen-4 nuclear
reactor design.

Important literature topics that provide pertinent background include the particle
transport problem and physics issues, the relationship of computational geometry and
computer graphics to physics simulation, raster geometry in voxels and univels, raster
antialiasing, vector quantization—algorithms and high-dimensional spatial indexing,
mesh geometries and boundary evaluation and merging, data representations and file
formats, and lastly the use of Java in scientific computing.

This study’s approach is to develop and evaluate Juniper, a Monte-Carlo particle
transport program, using a univelized geometry representation and written in Java.
Its components provide core transport functionality, translation from MCNP input,
an improved input representation, rasterization of geometries to univel form, including
antialiased rasterization, and mesh generation. Once these components are sufficiently
functional the study will validate and evaluate Juniper’s performance against MCNP,
and evaluate antialiased versus aliased univel performance.

iii

TABLE OF CONTENTS

PROJECT SUMMARY .. ii

LIST OF TABLES . iv

LIST OF FIGURES . v

1. INTRODUCTION AND PROBLEM .. 1

Introduction and Background . 1
Statement of the Problem . 5
Purpose . 5
Conceptual Framework . 6
Assumptions and Limitations . 8
Questions to be Answered . 10
Significance of the Study . 10
Definition of Terms. 11

2. REVIEW OF THE LITERATURE.. 16

3. APPROACH.. 26

Current Approach . 27
Transcore . 27
Translate. 28
JTDL . 30
Trace . 34
Antalun . 35
Sinnet . 43

Future Work . 44
Sinnet . 45
Antalun . 45
JTDL . 46
Overall . 47
Timeline . 47

REFERENCES CITED .. 49

iv

LIST OF TABLES

Table Page

1. Geomes in JTDL . 32

2. Transformations in JTDL . 32

3. V-Model forms of CSG operators . 42

v

LIST OF FIGURES

Figure Page

1. Nuclear material detectors . 4

2. Relative general performance of spatial indices, as reported in the
literature. 22

3. Juniper overall architecture . 27

4. Geome primitives . 31

5. Antialiased univel test model “eggcrate” . 36

6. Distance function converted to crisp interior/exterior distinction 38

7. Piecewise linear v-model. 38

8. Gaussian v-model . 39

9. Vector quantization in 2-D . 40

10. An example of volumetric meshing produced by Sinnet followed by
TetGen. 44

1

INTRODUCTION AND PROBLEM

Introduction and Background

In the mid-20th century interest in the problem of subatomic particle transport

physics expanded alongside technological changes. The invention of nuclear reactors

raised practical particle transport problems with geometries far more complex than

had been previously examined. While problems with the simplest geometries have

analytic solutions, these required numerical methods. The difficulty of calculating

those methods would have been overwhelming but for another timely invention, the

computer.

The most prominent numerical method for solving particle transport problems is

Monte Carlo. In it virtual particles are projected through the problem space. These

analogues of real particles are treated as pointlike, traveling with constant velocity

and energy between collisions, and colliding only with materials in the problem space,

not other particles. With simplifying assumptions like these the probabilities of the

various possible collisions and subsequent reactions a particle might experience are

assembled in a set of cross-section data. These cross-sections can be very complex

as they depend on the particle type and energy, and on the nuclides comprising each

material type. Pseudorandom numbers are used to sample the probability distribu-

tions in the cross-section data to determine each virtual particle’s initial state, the

2

distance to its next collision, and the details of the reaction at that collision. This

iterates until the particle is absorbed at a collision or leaves the problem space, where-

upon the process repeats, often for millions of particles. By measuring the desired

properties—such as flux through a particular object—of these projected particles,

the method creates a statistical sample of the true values that would result from the

complete physics of the problem.

MCN, the Monte Carlo Neutron transport program, was created at Los Alamos in

1967. Its successor, MCNP, is one of the most widely used particle transport simula-

tors in the field. Its input file format reflects that age: organized around a sequence of

80-column (punch) cards, it uses a terse language of mnemonics, specially-interpreted

columns, and exceptional cases largely to work around the limitations of that for-

mat. It also represents its problem geometries with polynomial surface functions.

Tracking particles through this type of geometry suffers the problem of expensive

particle-surface intersection calculations. This cost can be alleviated by substituting

a discrete geometry made of a regular grid of rectangular elements, univels. The

Minerva radiotherapy transport program uses such a model based on the natural uni-

velization of three-dimensional MRI or CT scan data. Where other physical processes

such as heat flow are to be simulated along with radiation transport, neither of these

geometry representations is appropriate. Rather, a polygon boundary mesh and then

tetrahedral volumetric mesh are necessary for common finite element method (FEM)

programs.

3

? ? ?

The problem of detecting smuggled nuclear material is an ongoing one. Exist-

ing detectors rely on the materials’ naturally-emitted radiation, and can be foiled

by methods like shielding. An active scanner would project neutron radiation into

the scanned object (such as an ITU shipping container) and detect the induced ra-

diation signature (Figure 1). Developing such a detector requires building a large

library of radiation signatures through both experiments and simulations. A more

efficient particle transport simulator would help this process; the Minerva approach

is a natural fit. The next generation of nuclear powerplant reactor design, “Gen 4”,

is anticipated to yield improvements in safety, operating cost, waste generation, and

antiproliferation issues. There is also interest in supporting high-temperature hy-

drogen cogeneration to contribute to a “hydrogen economy”. Although more efficient

particle transport simulation would also benefit this application, reactor problems are

complicated by the aforementioned need to support multiple physics domains such as

mechanical stress and heat flow.

? ? ?

Aliasing is a fundamental problem in rasterization, as in any form of pulse-code

modulation. Signal features with frequencies beyond the Nyquist limit of the sampling

density become distorted. This includes the rasterization needed to convert an input

geometric model in a CSG form to a univel representation, where high-frequency fea-

tures are found in small objects and sharp edges. Two-dimensional raster antialiasing

4

Figure 1. Nuclear material detectors.

is a well-studied problem in the world of computer graphics. There antialiasing filters

remove high-frequency structure and combine three-dimensional color vectors into

blended colors. When memory capacity is limited, those colors may then be quan-

tized to a limited palette. An antialiased univelization proceeds analagously, though

blending material vectors which may have more than a hundred dimensions. Memory

limitations and the nature of the transport algorithm call for similar quantization to a

material palette, a more difficult problem in that high a dimensionality, although high-

dimensional quantization has appeared in speech compression and image-similarity

applications.

Converting a CSG or surface function geometry representation into a mesh ge-

ometry is known as boundary evaluation and merging. Boundary evaluation, the

simpler of the stages, converts primitive objects or surfaces into a mesh form through

type-specific conversions. Merging uses mesh equivalents to CSG Boolean combining

5

operators to combine submeshes into the eventual world model. Once this surface

mesh is complete, it can be converted to a volumetric mesh of Delaunay tetrahedra by

adding interior Steiner points, forming a model appropriate for other physics domains

mentioned above.

Statement of the Problem

Univel geometries have proven efficiency benefits for particle transport simulation

where the input geometry is itself inherently raster, benefits that might be extensible

to other geometry representations. Therefore, the problem of this study is to eval-

uate univel-based neutral particle transport simulation where the univels must be

rasterized from non-univel geometries, especially as applying to the issue of designing

active scanners for applications such as radioactive contraband smuggling, and with

consideration for unstructured mesh geometries for multiphysics interfacing.

Purpose

The specific objectives of this study are

• to implement general neutral-particle transport simulation, with a univel-based

geometric model representation, including support for (γ, n) and (γ, fission)

reactions, and the broad library of material types, necessary for evaluating

neutron- and γ-photon- based active scanner designs for detecting fissile nuclear

material smuggled inside ITU cargo shipping containers;

6

• to construct PLC mesh representations of input geometries in parallel with

univelized representations, suitable for use by outside tools for other physical

simulations, to support multiphysics evaluation of problems such as Gen-4 nu-

clear reactor design;

• to develop a translation-friendly input file format, one that faithfully supports

translation of MCNP input files to enable cross-validation between MCNP and

Juniper, but more human-readable to improve flexibility, and more machine-

readable with better structure and fewer special cases, using graph-based geom-

etry and material specifications to aid factoring and reuse of common subunits;

• to support antialiased univelization and transport on antialiased geometric mod-

els, and to evaluate the tradeoffs among effectiveness, computational cost, and

ultimately the utility of this approach.

Conceptual Framework

Although an early inspiration for a univel geometric model in particle transport

was the inherently raster nature of patient scan data, it brings additional efficiency

benefits making it attractive for other problem types. In fact for a NURBS-based

geometric model 65% to 90% of particle tracking time is spent calculating particle-

NURBS intersections. [1] With a univel geometry particle tracking can instead be

calculated with an algorithm analogous to the Bresenham line-drawing algorithm,

using mostly integer arithmetic for a significant speed improvement. A second benefit

7

is the indifference of the transport algorithm to model complexity—all univel models

of the same size have the same transport cost, a property not true of a surface-function

model where adding complexity adds intersection calculations. This is equally true

for an antialiasing extension: the more complicated rasterization is more costly up

front, but it doesn’t add to the transport cost.

In rasterization fine features, with a spatial frequency on the order of the uni-

velization sampling frequency or higher, are distorted by aliasing. The impact of this

on the veracity of transport calculations is unknown. Antialiasing techniques, well-

established in domains like computer graphics, are often used to mitigate the negative

consequences of aliasing. One approach, prefiltering, eliminates high-frequency com-

ponents of the signal prior to sampling. This might be accomplished spatially by

“blurring” the signal image or objects, or by blurring the samples by using weighted-

area sampling rather than point sampling. Another approach, postfiltering, typically

uses supersampling to combine multiple point samples into one result pixel. In recur-

sive subdivision supersampling the sampled pixel area is subdivided into, for example,

four subpixels, each of which is sampled directly or subdivided recursively until some

limit, and the multiple subsamples combine into an overall value. Stochastic su-

persampling randomly selects a certain number of point subsamples within an area

around the pixel and combines those into the overall value.

Non-antialiased univel data consists of a regular grid of indices into a table of

material data. When antialiased, each univel may potentially be a unique material

8

vector of over a hundred dimensions, requiring quantization to reduce back to in-

dex/table form. The classic algorithm for vector quantization is due to Lloyd [2],

constructing an inital codebook of representative vectors, then iteratively refining

those code vectors based on which signal vectors quantize to them (their “support”),

in a manner reminiscent of the k-means clustering algorithm. The algorithm relies

on nearest-neighbor queries of the vector space, which is difficult to perform effi-

ciently on high-dimensional vectors. Spatial indices that support such queries on

high-dimensional data is an area of ongoing research.

Computational physics methods on discretized geometries divide geometric rep-

resentations into two categories, structured meshes and unstructured meshes. A uni-

velized model, with its regular Cartesian cells, is considered a structured mesh. For

particle transport univels are appropriate, but they do distort certain properties of

the geometry that makes them unsuitable for certain other physics domains. This

particularly includes transforming smooth boundaries into jagged ones, which changes

the surface areas and normals of objects. An unstructured mesh representation, using

an arbitrarily-connected graph of arbitrarily-located vertices, can represent the same

original geometry in a way more appropriate to those physics domains at the cost of

mesh complexity.

9

Assumptions and Limitations

Juniper stores the univel grid internally as a flat array. For even the largest

simulations under consideration this is sufficient, and the entire world model fits in

memory. However future large problems and/or smaller univel sizes may exhaust

memory, requiring more complex space-partitioning data structures such as an octree

or 256-tree. Juniper only handles uncharged particles with straight-line paths between

collisions, neutrons and photons. This limitation is shared by MCNP. Juniper doesn’t

match all of MCNP’s capabilities, rather, it prioritizes the subset of most-used and

interrogation-specific features, especially in its current implementation. The particle-

transport properties of nuclides, embodied in the cross section library, can usually

but not always be assumed to be independent of the molecular context (e.g., what

other nuclides are in proximity due to chemical bonding). Juniper supports only

a limited set of context-sensitive nuclide cross-section data: protium (hydrogen) in

water, in polymer, or in general; deuterium in D2O only; oxygen in water or in

general; and carbon-12 in graphite, in polymer, or in general. Other situations are

not supported. For that matter its cross-section library contains only 84 nuclides

out of the 339 that occur in nature. Just mentioned was the problem that univels

don’t preserve the surface area and normals of objects; these aren’t necessary for

particle transport calculations. There is an irreconcilable tradeoff when meshing

curved surfaces, for any mesh resolution, where to locate vertices representing the

10

surface—to minimize the error in volume, minimize the error in surface area, minimize

the surface deviation (distance between true and meshed surfaces), or minimize the

error in vertex placement (distance between true surface and vertices). Which to

optimize is domain-dependent, but for its purposes Juniper uses the latter, minimizing

the error in vertex placement.

Questions to be Answered

• Can Juniper improve on the effectiveness/efficiency of MCNP for particle trans-

port simulation, taking advantage of univel-based transport calculations, con-

firming the experience of Tirade but with additional reactions supporting broader

problem types?

• Do antialiased univel models give improved simulation results versus simple

univelization? In particular what is the univel resolution vs. result fidelity

tradeoff with and without antialiasing?

• Can the specific properties of material vectors be used to offset their problems

with high-dimensional vector quantization?

• If antialiased univel models do give improved simulation results, what is the

computational cost and is it worth it? Here the interesting tradeoff is between

computational time, space, and result quality.

11

Significance of the Study

Fundamentally, the radiation transport problem is itself significant. The planned

applications to developing active detectors for smuggled nuclear material, and to de-

veloping fourth-generation nuclear power plants, are timely issues with the potential

for real-world implications. Pushing the state of the art in radiation transport simu-

lator capabilities contributes to the general problem even beyond these specific appli-

cations. Univelizing non-univel geometries for particle transport is a new approach,

and while there’s been some work on antialiased voxellization for computer graphics,

antialiasing with high-dimensional (material) vectors has not been done before.

Definition of Terms

Card Originally an 80-column punch card, one (80-character-limited) line of text in

an MCNP input file.

Cell A geometric region that may be assigned attributes such as material or tally

information, defined by a Boolean combination of mathematical surfaces.

Cross-Section The probability of a reaction between a particle and some material,

represented as a hypothetical cross-sectional area of material which a point-

like particle will react with only if it intersects. Typically measured in barns,

10−28m2.

12

DAG (Directed Acyclic Graph) A directed graph without cycles. Used by Juniper

to model the CSG geometry structure as it’s more general than a tree but can

still represent a parent/child relationship.

Euler Angles One representation of rotation, or orientation, in three-dimensional

space. There is a perilous diversity of conventions for their interpretation; Ju-

niper follows the x convention, where the three Euler angles φ, θ, and ψ are

applied in sequence as rotations about the z, x′, and z′ axes respectively, with a

right-handed coordinate system and right-handed rotations. (A w′ axis is what

a w axis becomes after one rotation step.) For example, the rotation matrix

when φ 6= 0, θ = 0, ψ = 0 would be cosφ sinφ 0
− sinφ cosφ 0

0 0 1


Geome A primitive three-dimensional geometric element in Juniper’s CSG model,

such as a sphere, cylinder, or parallelepiped.

Heaviside Function (Step Function) In Juniper, converts distance-function repre-

sentations of geometric components into discrete inside/outside decisions. De-

fined as

H(x) =

{
0 : x < 0
1 : x ≥ 0

ITU (Intermodal Transport Unit) ISO-standard shipping container. Typically a

corrugated steel box 8′ wide, 9′6′′ tall, and 20′ or 40′ long.

13

JTDL (Juniper Trial Description Language) XML-based input format for Juniper.

MCNP (Monte Carlo Neutron Photon) Particle transport simulator, supporting

neutron and photon transport calculations through surface-function-defined ge-

ometric cells.

Mean Free Path The average distance a particle travels through a material be-

tween (reaction) collisions. It depends on the material type and density, and

particle type and energy.

Mole Fraction The amount of a constituent substance in a mixture, measured as a

ratio of moles of constituent to combined moles of mixture. A mole of a substance

is the count of formula units (such as molecules) divided by Avogadro’s number

(about 6.022× 1023).

Monte Carlo A form of computational simulation using pseudorandom samples

of the problem space. In particle transport, virtual particles probabilistically

sample the geometry and space of possible reactions and particle paths.

Nuclide A particular substance identified by the specific makeup of its nuclei, that

is, its count of protons and neutrons. Each nuclide is some isotope of some

element.

NURBS (Non-Uniform Rational B-Spline) A smooth n-dimensional curve or sur-

face shaped piecewise by control points. Can be used to represent surfaces

14

bounding 3-D volumes for particle transport geometric models, although ray-

NURBS intersection calculations are costly.

Nyquist Limit Half a given sampling frequency. Signal frequencies higher than this

limit can’t be fully reconstructed from their samples, instead yielding aliasing

artifacts.

PLC (Piecewise Linear Complex) A type of geometric structure more general than

a polyhedron. Made up of vertices, edges, and planar facets—which may be

concave and have holes or interior vertices and edges, even disconnected.

Rasterization Conversion of geometric or image information from a vector format

of shapes to a regular grid of raster elements, typically pixels (in 2-D) or voxels

(in 3-D).

Univel Uniform volume element. Similar to a voxel but with any aspect ratio, i.e.,

a parallelepiped but not necessarily a cube. Particularly useful for medical scan

data made up of a stack of slices, where the between-slice distance is often not

the same as the within-slice pixel size.

V-Model A geometric object representation with fuzzy boundaries. The “exterior-

ness” of any point is given as a continuous value on [0, 1] with the 0.5 isosurface

at the conventional (crisp) object boundary.

15

Voxel 3-D (volumetric) analogue of a pixel, one cell of a space subdivided into a

Cartesian grid of cubical cells.

16

REVIEW OF THE LITERATURE

This study is examining rasterized univel particle transport, the issues of data

representation and file format useful to that end, the possible benefit of antialising

the rasterization, and generating mesh geometries alongside univel ones for multi-

physics support. Therefore this review will consider the particle transport problem

and programs simulating it, the relationship between computer graphics and gen-

eral computational geometry, voxels and univels in 3-d geometry, antialiasing, vector

quantization as it applies to color reduction and antialiasing, high-dimensional spatial

indexing, constructing geometric meshes from other representations, file formats for

scientific data and geometric representations, and the issue of numerical computing

in the Java language.

In simulating neutral particle (e.g., neutrons and γ photons) transport through

practical geometries, analytical methods are insoluble and numerical approaches must

be used insted. A common numerical approach is Monte Carlo, which simulates a

finite number N of particle “histories” through the geometry, selecting reactions prob-

abilistically from probability density functions with a pseudorandom number genera-

tor, building a tally x̂ of some property of interest, that approximates the true value

x̄ with sufficient histories. Lewis et al. (1984) discuss this in depth. [3] One of the

most prominent Monte Carlo particle transport simulators is MCNP (Monte Carlo

N-Particle). [4] It supports several particle types, a large number of reaction types,

17

criticality analysis, general sources and tallies, and techniques for variance reduction.

Geant4 (GEometry ANd Tracking) is another, more recent, Monte Carlo transport

program. It is similarly broad-featured supporting many applications but its prime

motivation was in detector design for particle accelerators, focusing on high-energy

physics. [5] Then MINERVA is a more specialized transport program designed specif-

ically for radiotherapy planning. [6] Using univel geometry for its particle transport

core, that core was the inspiration and starting point for Juniper.

There is a close similarity between Monte Carlo methods for solving particle trans-

port problems and approaches like ray tracing or radiosity for solving the rendering

equation. [7] This is one of many fundamental analogies between issues in the do-

mains of computer graphics and particle transport, being as they are highly based on

three-dimensional computational geometry. This raises opportunities for making use

of established computer graphics techniques toward particle transport; a rich collec-

tion of such computational geometry resources intended for graphics applications but

useful to Juniper lies in the book Geometric Tools for Computer Graphics. [8]

In typical particle transport simulations with surface-function-based geometries

a significant contributor to computational cost are particle-surface intersection calcu-

lations. This can be improved by substituting an transport algorithm using mostly

integer arithmetic in a way analagous to the Bresenham line rasterization algorithm,

making use of a univel-based geometry. [1] A univel is a three-dimensional volume

element similar to a voxel; voxels are receiving increased attention for volumetric

18

applications in computer graphics for many of the same reasons that pixels, the 2-d

raster representation, did: as memory increases to support the relatively large stor-

age overhead, the computational advantages of raster formats become attractive. [9]

This phenomenon applies also to particle transport, but where the input geometry

is not already in univel form it must be converted (univelized). The most common

way of doing this is point sampling: querying the input geometry at a representative

point in each univel, typically the univel’s center, and assigning that value to the

entire univel. [10] Usually the sampling points (and univel arrangement) are selected

on a Cartesian lattice, however, a similar accuracy can be obtained with 29.3% fewer

samples by using a body-centered cubic lattice instead, at the cost of complexity. [11]

The problems caused by aliasing in 2-d rasterization, such as missing details and

“jaggies” at boundaries, have been well-known for some time[12] and extend also to

the 3-d case. Many antialiasing methods exist to reduce the harmful effects of alias-

ing, these include sampling more than one point per univel (supersampling), randomly

jittering the sample points away from pixel/univel centers (stochastic sampling), or

prefiltering the image components prior to point sampling to reduce high-frequency

information. [13, 14] A prefiltering method designed specifically for volume graphics

voxelization is the V-model approach. [15] This approach converts the object repre-

sentations into a three-dimensional density function, where the function is chosen to

have no spatial frequencies above the sampling density’s limit. Point-sampling these

models yields a fuzzy classification of interiorness for the voxels (or univels) without

19

aliasing. In the computer graphics domain voxel antialiasing serves somewhat differ-

ent goals than pixel antialiasing, as the latter aims to maximize the subjective visual

quality of rasterizations while the former aims to maximize the quality of subsequent

volume graphics calculations. [10] The needs of the particle transport problem share

goals similar to those of volume graphics.

Juniper requires the antialiased, per-univel material vectors to be reduced to in-

dices into a much smaller table of reference vectors, a quantization problem. The

algorithm due to Lloyd [2] sets the standard for constructing a vector quantization

codebook from a set of training vectors. For situations like this where, once the

codebook is created, only the training data need be quantized, the problem is known

as “cluster analysis” and is fundamentally related to the k-means clustering algo-

rithm. [16] Originally described for one-dimensional quantization, it can be extended

to apply equally well in higher-dimensional vector spaces. [17] Vector quantization

can produce a 17-fold reduction in data size in volumetric data [18], but although this

paper included a discussion of higher-dimensionality issues, the results were based on

1-d vectors only. Higher-dimensional quantization for image data is described in Xi-

ang (1997), which quantizes 2-d image pixels, but 3-d color vectors (in an RGB color

space). [19] Another approach to 3-d color vector quantization instead uses fuzzy

set membership to perform many-to-many mapping between data vectors and code

vectors as an intermediate step, with good results. [20]

20

Lloyd’s algorithm involves repeated nearest-neighbor queries over the vector data,

queries which contribute much to the computational cost of the algorithm. That cost

can be mitigated by effective spatial indexing of the vectors for efficient querying.

Most spatial indexing methods contain at their core, or are derived from, the R-Tree—

which is in essence a B-Tree of spatial bounding boxes. [21, 22] Multiple R-Trees are

possible for the same underlying data, with different patterns of directory rectangles

at the non-leaf nodes. Finding good R-Tree structures can significantly impact perfor-

mance, and is the goal of the R*-Tree modification. [23] One early alternative to the

R-Tree family is the Grid File, which independently subdivides each dimension of the

data, then assembles convex rectangular portions of the subdivisions as buckets. [24]

This approach doesn’t scale well to higher dimensions, partly because each query

must search every dimension’s index. However all traditional spatial indexing meth-

ods must deal with the so-called curse of dimensionality—the exponential relationship

between dimension number and volume. Dimensions beyond two, or certainly three,

are problematic for spatial indexing. [25] Quite a few improved indexing methods

have been proposed in recent years that achieve some incremental gains over the di-

mensionality problem. These methods variously involve using bounding hyperspheres

instead of hyperrectangles at the directory non-leaf nodes (SS-Tree) [26]; using the

intersection of a hypersphere and a hyperrectangle to bound non-leaf nodes (SR-Tree)

[27]; calculating the Voroni nearest-neighborhood of the code vectors, then storing

their bounding hyperrectangles in an R-family-Tree (NN-Cell) [28]; using the Hilbert

21

Curve or other space-filling curve to map n-dimensional coordinates to one dimension,

then indexing that derived coordinate in a B-Tree (Hilbert Curve Index) [29]; further

improving the tree structure of R*-Trees with a better node-splitting algorithm and

larger directory “supernodes” (X-Tree) [30]; dividing the n-dimensional space into

2n hyperpyramids, then subdividing those into parallel hyperfrustra, and using a to-

tal ordering of hyperfrustra to create a one-dimensional coordinate of each object,

which is indexed in a B+-Tree (Pyramidal Technique) [31]; or modifying the Pyrami-

dal Technique by subdividing the (hyper-)pyramids with spherical shells rather than

planes (SPY-TEC) [32], an approach that has specific advantages in high-dimensional

nearest-neighbor queries. [33] Lastly mention must be made of the non-index Linear

Search, as the curse of dimensionality means all spatial indexing methods eventually

fail to improve on it as n increases. A partial ordering of these techniques’ relative

performances on high-dimensional data, according to these sources, is summarized in

Figure 2.

Some physical simulations in 2-d and 3-d expect an unstructured, boundary-

conforming mesh—for example, the finite element method. In order for the mesh

elements to be well-shaped for the simulation, a common approach is Delaunay

tetrahedralization[34]: adding interior (Steiner) points to create tetrahedra conform-

ing with the input boundary, where the choice of new points, and post-placement

adjusting of the mesh, is done to maintain the Delauney criterion. In three dimen-

sions this criterion is that no vertex lies inside the bounding sphere of a tetrahedron.

22

Figure 2. Relative general performance of spatial indices, as reported in the literature.

Being Delaunay isn’t enough alone to guarantee a physically “good” mesh, there is for

example the possibility of sliver tetrahedra, but there are refinement techniques that

can remove most such problems. [35] One program that generates Delaunay tetera-

hedralizations from a surface mesh in PLC form, and that Juniper’s Sinnet mesher is

designed to use, is TetGen. [36]

In a constructive solid geometry (CSG) representation, objects are constructed

from 3-d primitives combined using regular Boolean operators, forming a tree or DAG

of composed units. In a boundary representation (B-rep) geometry, objects are repre-

sented by the vertices, edges, and oriented facets that constitute their boundary. [37]

23

The problem of converting a geometric model from a CSG representation to a B-rep

representation hinges on converting the CSG primitives, a relatively straightforward

prospect, and performing the equivalent of the Boolean operators on these “primi-

tive” B-reps. [38] This process is known as boundary evaluation and merging. Eberly

(1999) has a good explanation of the fundamentals of a common technique. [39]

However, there are a proliferation of difficult corner cases, especially in the three-

dimensional domain. Many of these are along the lines of coplanar contact, colliner

contact, or point contact; where objects intersect only in a lower-dimensional way.

Correct boundary evaluation and merging of these cases requires complex special

handling. [40, 41] Effective boundary evaluation and merging depends on appropriate

design choices for data structures of surface mesh representations, selecting the best

tradeoffs among flexibility, time and space efficiency, and ease of use. [42, 43]

There is a plethora of file formats for representing 3-d geometric models, using

different geometric representations and targeting different applications. The MCNP

“deck” input format was designed to answer needs very close to those of Juniper. [4]

But there are desirable features of an input format it doesn’t support, such as the

ability to represent hierarchical geometry trees, or supporting translation and ex-

change of geometry information through things like building on an underlying XML

basis. These are some of the features provided by the GDML geometry data exchange

format, designed closely with Geant4. [44] However with a different group of geometric

primitives translating certain MCNP problems into GDML is made difficult. Another

24

CFG geometry input file format is the Scene Description Language used by the ray-

tracing program POV-Ray. Despite being designed for the computer graphics domain

there are many commmonalities in the 3-d geometric modelling requirements. [45]

One insight provided by these existing formats is that there are multiple layers

of design choices in input formats: one being how to structure the geometric data,

another is how to represent that structure in a binary or text file serialization. One

general approach to the latter question, specifically intended for scientific data ex-

change, is HDF5. [46] This provides a general data model, binary file format for stor-

ing/exchanging data models, and a library and API for working with these files. Al-

ternatively there are more general approaches that seek to define standardized binary

encodings of more universal data models, on which domain-specific data structures

can be layered. These include EBML and the various encodings of ASN.1. [47, 48] Yet,

for reasons such as flexibility and long-term readability of archived data, experience

is showing textual, rather than binary, file formats are preferable. In particular lay-

ering a higher-level data model on the well-recognized XML format is a popular and

advantageous strategy. [49] McGrath (2003) examines the comparative strengths and

weaknesses of XML and binary data formats for scientific data specifically. [50] For

3-d geometric models both the aforementioned GDML and X3D formats are XML-

based. [44, 51] X3D is an ISO-standard data format for multimedia 3-d computer

graphics, a successor to VRML intended for web publishing, visualization, and other

applications.

25

The idea of using the Java language for computationally-intensive programs is

often automatically dismissed. There are considered to be fundamental weaknesses

in the language’s design interfering with speed, which is often considered a tradeoff

with other benefits like safety and expressiveness toward program design. [52] But

with appropriate language-specific techniques for design optimization, this tradeoff

can be adjusted to regain speed, though at the potential cost of reducing some of

those other benefits. [53] With regards to the object-oriented paradigm in general

Besset (2001) makes extensive use of both Java and Smalltalk for numerical methods

computation, and in comparison with C, finds in favor of the OO approach and

considers Java, at least, competitive with C. [54]

26

APPROACH

The Juniper program is at its heart a Monte-Carlo particle transport simulator,

using a univelized geometry representation and written in Java, intended for a range

of applications including evaluating neutron- and γ-photon-based active scanner de-

signs for detecting fissile nuclear material smuggled inside standard ITU shipping con-

tainers, and exploring problems of next-generation nuclear reactor design. It draws

from the INEL/MSU radiotherapy simulator Minerva and the particle transport pro-

gram MCNP, and includes broader reaction and material types and provisions for

translating MCNP input, generating univel geometries from nonunivel representa-

tions (including antialiasing), and generating PLC surface mesh representations of its

geometries. In this way it can achieve the stated objectives of expanded univelized

particle transport, multiphysics mesh support, improved input data representation

supporting MCNP validation, and evaluating antialiased univelization. Juniper is

formed from six modules providing the core transport functionality and associated

support: Transcore, handling the particle transport; Translate, which converts MCNP

input files for use with Juniper; JTDL, the input format for specifying geometries and

run data; Trace, which rasterizes input geometries into univel form; Antalun, an ex-

perimental antialiasing rasterizer; and Sinnet, which converts geometries to a mesh

representation to support multiphysics simulations. Figure 3 shows the relationships

among these modules.

27

Univel Transport Section

Manual Modelling

MCNP Modelling Tool

MCNP Input

Translate

Trace Univelizer

Univel Grid

PLC Surface Model

Sinnet Mesher

TetGen

Tetrahedral Volume Model

Other Simulation Codes

Other Results

JTDL Input

Juniper Results

Transcore

Outside Components
Antalun Univelizer

Figure 3. Juniper overall architecture.

Current Approach

Transcore

Simulating particle transport through a geometric model is the responsibility of

Transcore. It draws from the INEL/MSU radiotherapy simulator Minerva’s trans-

port module, JART, as well as the MCNP transport simulator. As a Monte Carlo

simulation engine it generates virtual particles and tracks them as they move, collide,

28

and react with the modelled geometric structure. A pseudorandom number genera-

tor selects the initial particle’s state, locations of collisions, types of reactions, and

other processes of the particles’ tracks based on the input problem description and

a database of reaction types and properties per nuclide, the cross-section database.

Like many Monte Carlo transport simulators the particle tracking is not directly ana-

logue: adjustments improve efficiency and reduce variance in the final result. Princi-

pal among these is the association of a weight with the virtual particles. A particle

with weight 1.0 might be said to correspond with one physical particle. Then to en-

sure good sampling of part of the problem space, if a reaction called for a particle to

be absorbed with 80% probability, the particle would instead be always kept alive but

with a new weight of 0.2. High-interest areas might be sampled with many particle

histories by “splitting” a particle into multiple copies, preserving the total weight.

Lastly to ensure the program doesn’t spend excessive time calculating the histories

of very-low-weight particles not contributing much to the result, those particles are

culled in a probabilistic fashion, so as to maintain conservation of weight.

Translate

The Translate module of Juniper is responsible for converting MCNP input files,

based on surface and cell geometry definitions, into Juniper’s input format—JTDL.

To this end JTDL includes several features specifically to aid translation, described

later. The first stage of translation must preprocess certain idiosyncrasies of the

29

MCNP input format. MCNP limits line length to 80 characters, using “continua-

tion cards” to spread long input units across multiple lines. Some types of MCNP

input form 2-D tables of data listing attributes of objects. The default table format

orients the “attribute” dimension down multiple lines, with the “object” dimension

along each line. This was considered inconvenient for actual cards of input, so tables

may be flipped. The preprocessor converts input cards into abstract lines represent-

ing one discrete input unit each. MCNP input also contains “special syntax items”

which substitute letter codes for expected numeric entries; shorthand forms for repeti-

tion, skipping defaults, linearly interpolating a range of entries, or more complicated

operations. The preprocessor unpacks these codes. After preprocessing, Translate

separately converts the geometry, material, source, and run parameter sections of the

MCNP input.

The geometry of a problem in MCNP input files is defined in two separate sec-

tions: a list of oriented surface functions, and a list of “cells” defined by Boolean

combinations of some surfaces. There may also be macrobodies: precombined sur-

faces forming more complicated shapes. Translate matches this structure by first

translating the surfaces and macrobodies to equivalent primitive or composed CSG

objects, placed in a DAG forest of components. Then it translates the cells themselves

into portions of the JTDL world structure, referencing the appropriate components.

Each MCNP cell also references an entry in its material/region table. These

data can be directly translated to JTDL material and region specifications, placed

30

in separate areas much like the geometric components. Those portions of the world

structure representing cells then reference their regions in the same way. Particle

sources in MCNP input are also directly translatable to their JTDL equivalents—

a source occupies a region of space (either spheric, cylindric, or a cartesian box).

Within that region new particles are generated with attributes that may be constant,

drawn from a random sampling of probability density functions, or specified by certain

functions of other parameters. Lastly, parameters controlling the specific simulation

run must be translated in a more ad-hoc fashion.

JTDL

The Juniper Trial Description Language (JTDL) is an XML-based input format

for Juniper. By using XML Juniper can take advantage of existing parser and emit-

ter libraries available across multiple platforms and environments. This includes

automatic input validation against a JTDL schema and composition of multiple

files. JTDL was partially inspired by the Geometry Description Markup Language

(GDML), an XML-based geometry data exchange format developed for use by partic-

ipants in the Simulation subproject of the CERN Large Hadron Collider Computing

Grid Project. Some limitations prevent GDML from being directly useful for Juniper

input: having a different group of geometric primitives, translation of certain MCNP

problems is more difficult; more generally their approach to geometry specification is

not as flexible as one might like; and it is not clear how to smoothly integrate the

31

needed extensions for Juniper’s handling of things like material and region attributes,

particle sources, and result tallies.

The geometric model in JTDL uses constructive solid geometry to combine primi-

tive elements (“geomes”) and transformations into an overall geometry DAG analagous

to a scene graph. The currently supported primitives are listed in Table 1 and shown

in Figure 4. The types of primitives supported and the methods of defining them

often specifically support direct translation of MCNP input files, e.g., oid and volume

objects. Geomes combine by the standard CSG set functions “union”, “intersect”,

“negate”, and “subtract”. These can themselves be composed with primitives or

other composites. Any geometry node, primitive or composite, is transformable by

any combination of the operations listed in Table 2.

Box Torus

Cylinder Cone Truncated
Cone

Volume Oid

Elliptical TorusPlane

Figure 4. Geome primitives.

32

Table 1. Geomes in JTDL.
Name Description How Specified

box orthogonal rectangular paral-
lelepiped

defined by two opposite corner
points

plane infinite plane (extending to world
boundaries)

either by normal vector and offset,
or three points

torus possibly ellipsoidal torus center point, hole vector, one ma-
jor and two minor radii

cylinder possibly infinite solid cylinder two end points, radius, infinite
flag

cone cone of one sheet, possibly trun-
cated, infinite, or both

either by top and bottom points
and radii; or by vertex, open-
ing vector and angle, and possibly
truncation offset(s)

volume general hexahedron between six and eight vertices
oid general quadratic (spheroid,

paraboloid, hyperboloid)
coefficients to quadratic distance
function Ax2+By2+Cz2+Dxy+
Eyz+Fzx+Gx+Hy+Jz+K = 0

Table 2. Transformations in JTDL.
Name Description

translate
scale uniform or separately by dimension
rotate either by axis and angle or by three Euler angles
shear separately by three orthogonal shear planes
matrix general transformation matrix

33

In addition to describing the geometrical structure of the model, JTDL supports

defining a set of material types to be associated with that model. A material type may

be a composition of other materials, in ratios specified by mole fraction or mass frac-

tion. Ultimately the primitive material types are called nuclides, specific elemental

isotopes. Each nuclide corresponds with a specific entry in the transport core’s library

of cross-section data. This hierarchical composition of materials naturally supports

techniques such as combining isotopes into a library of natural-isotopic-abundance

elements, combining those into common compounds, and combining those into useful

mixtures, all using the same mechanism. Lastly material types combine with a den-

sity, definable in various useful units, and other attributes into a region. These regions

associate with nodes in the geometric structure to determine the particle transport

physical properties within that part of the geometry during the simulation.

Ultimately in a JTDL input geometry all these elements (geomes, set opera-

tors, transforms, materials, and regions) combine with cross-referencing into a singly-

rooted DAG, similar to a scene graph in computer graphics, fully defining the problem

structure. Region and material descriptions can be attached to arbitrary nodes at any

level of the geometry. Any component can be defined in-place, in a separate section

of the file, or in other files, and any node can be named for inclusion by reference

elsewhere. This flexibility eases multiple approaches to input definition, whether dif-

ferent types of manual design, machine construction from a GUI design program, or

34

machine translation from other file types (especially MCNP input). MCNP only as-

signs its equivalent of regions and materials to top-level geometric areas, called cells,

keeping those material definitions in a separate table. JTDL directly supports this ap-

proach. Also in JTDL, model portions being included by reference can be copied with

variations in any parameter, allowing “template” constructs as a basis for individual

variants as needed. This also directly supports translation from MCNP files. At the

same time JTDL supports partitioned input, separated into predeveloped libraries of

common things like material types, model components, and particle sources; a partic-

ular geometry for a particular problem; and multiple sets of run-control parameters

for various types of simulations on that geometry.

Trace

Preparing the input problem model for particle transport simulation requires the

CSG model be rasterized into a discrete univel representation. The Trace module

performs this function. The most straightforward method is to point-sample the

DAG structure along a Cartesian grid, on the centerpoints of the univels. The most-

specific region attribute of the model at each point is assigned to its univel, although

this region-resolution behavior can be changed in the input file for special cases. The

typical ITU container problems are much larger, physically, than patient scan data.

However, for transport efficiency keeping the univel model as a single in-memory array

is desirable. As an opposite consideration, to avoid transport artifacts, the univel size

must be smaller than the mean free path of the tracked particles, typically on the

35

order of 1
2
cm linearly. The univel grid array stores for each univel a two-byte index

into a region table, while that table stores the appropriate simulation data for its

region.

When visually examining model univelizations is useful, a simple display tool

renders the univel grid with OpenGL fat points. It colors these points with a user-

specified mapping between nuclide type and primary color, showing material com-

binations using color blending. Additionally, the user can highlight specific regions

with individual colors as well. The user can navigate around and through the 3-D

model, slicing with arbitrary cutting planes to view the internal structure. Figure 5

shows a screenshot of this program.

Antalun

The conflicting limitations of physical accuracy and memory capacity on univel

size and problem size are joined by an aliasing problem: a thin slab of material

(such as the wall of an ITU container) could have a thickness on the order of one

univel size. After rasterization the slab’s thickness would be substantially altered,

and where the slab passes between sampling points it may disappear entirely. Similar

problems affect any fine features of the geometry. The computer graphics world has

used anti-aliasing techniques for some time, and those techniques—especially for 3-

D voxellization antialiasing—can be adapted for univel rasterization. Experimenting

with this approach is the domain of the Antalun module. The model shown in Figure 5

36

Figure 5. Antialiased univel test model “eggcrate”.

has been antialiased by Antalun; note the blended transitions between colored regions

(in the diagram red is mapped to hydrogen, green to carbon, and blue to nitrogen).

A principal obstacle is that, in computer graphics, each pixel or voxel value is

typically a color vector in some 3-D space like RGB. The antialiasing process creates

uniformly blended color vectors around high-frequency areas which, for most modern

applications, can be stored completely. But univel values in Juniper’s models are high-

dimensionality region/material vectors. Storing a unique, blended material vector for

each antialiased univel results in unworkably large model sizes. A necessary step, then,

is quantizing these material vectors into a region table of at most 32,767 entries.

37

Antalun uses a prefiltering approach to antialiasing, where the object model itself

is filtered of object details with higher frequency than the Nyquist limit of the univel

resolution. It does this by switching to a V-Model representation of geomes and CSG

combining functions. Conventional geome primitives can be treated as a distance

function representing the distance from any point to its surface, which is then passed

through a Heaviside function to flatten it to a crisp inside/outside predicate (Figure

6). In a V-Model that distance function is instead scaled onto [0, 1], interpreted as

a fuzzy predicate where the conventional object surface lies at the 0.5 distance. The

scaling might use a linear (Figure 7), quadratic, or Gaussian transformation (Figure

8) with the “spread” tuned according to a resolution parameter. The CSG combining

functions also have V-Model equivalents, shown in Table 3. The method II column

is the standard interpretation of fuzzy set operations, but methods I and III can

give more physically approprate results. With the CSG geometry reinterpreted as

a V-Model, it is Cartesian-sampled with regular points like Trace, only this time

producing an alias-free rasterization with (potentially) unique material vectors for

each univel.

With over 100 unique nuclides these material vectors have a high dimensionality,

although in practice each contains only a subset of the possible nuclides, a sparse

vector. But these material vectors are still incompatible with the transport approach,

expecting indexed regions. What’s more there is the size problem: consider a 1-meter

cube univelized at 0.5 cm resolution. The univel grid will have 8,000,000 univels; if

38

0.0

0.5

1.0

d 2d0

Distance

Model
Density

Object Interior Object Exterior

Figure 6. Distance function converted to crisp interior/exterior distinction.

d 2d0

Distance

0.0

0.5

1.0

Model
Density

Object Interior Object Exterior

2w

Figure 7. Piecewise linear v-model.

39

d 2d0

Distance

0.0

0.5

1.0

Model
Density

Object Interior Object Exterior

2w

Figure 8. Gaussian v-model.

each univel has a complete material vector (76× 8) bytes, the grid occupies 4.5 GiB.

So the univel grid must be returned to a form where each univel references a region

table entry. Here again graphics techniques are useful: until recently limitations of

display hardware and storage size led image data to often be kept in a palettized

format—a color table and an image map referencing that table. “Color quantization”

algorithms construct a good color palette for a full-color image. Following such an

approach, that 1-meter cube’s material vectors would be quantized into 215 regions

in an antialiased region table, and 2-Byte univels, giving a 15 MiB univel grid and

19 MiB material palette, only 34 MiB total. Figure 9 shows how three original basis

materials might be blended into many unique material vectors, then with a smaller

number of code vectors dividing the vector space into nearest-neighborhood Voroni

regions each vector in a region is mapped to the defining code vector.

40

H density

C
 d

en
si

ty

Basis Materials

Mixed Materials

Code Vectors

Voroni Regions

2−D Quantization

Figure 9. Vector quantization in 2-D.

Antalun uses a common algorithm for developing a vector quantization codebook

from a set of training data due to Lloyd, shown in Algorithm 1. A particular

challenge in applying this algorithm for high-dimension material vectors is identifying

the nearest-neighbor codebook vector to an original material vector, more efficiently

than a simple linear search through the codebook. Either the codebook, or the space

of material vectors, or both could be indexed spatially to support more efficient

nearest-neighbor queries. Over the years considerable work has gone into spatial

indexing, although primarily for 2- and 3-D data due to the “curse of dimensionality”

41

which makes higher-dimensional data difficult to efficiently index. Currently Antalun

supports two index structures beyond the null-hypothesis linear search: Spy-Tec and

NnCell.

Spy-Tec (Spherical Pyramid-Technique) rescales each dimension from [0,∞) to

[0, 1). Then it subdivides this rescaled hyperspace into pyramids with their vertex at

the center and their base covering one of the space’s bounding hyperplanes. (Thus,

for n dimensions, 2n pyramids.) If necessary it subdivides each pyramid into slices

along equal distance-to-center hyperspheres. The (slices of) pyramids are numbered

in a way that supports a total ordering, flattening n-dimensional vectors to a single

coordinate. That coordinate can be used to index the vectors in something like a B+-

tree while preserving spatial relationships in a way that supports nearest-neighbor

queries. For the Nn-Cell approach each code vector has a surrounding orthogonal

bounding box approximating the Voroni nearest-neighborhood. These cells can be

organized in a conventional hyperdimensional spatial index (the designers suggest an

X-tree or R*-tree), and nearest-neighbor queries become fast point queries.

42

Table 3. V-Model forms of CSG operators.
Operator Method I Method II Method III

Union saturating add: maximum: inclusion-exclusion sum:

D∪(A, p) = min

[
1,

∑
a∈A

d(a, p)

]
max
a∈A

[d(a, p)] a long seriesa

Intersection product: minimum: product:

D∩(A, p) =
∏
a∈A

d(a, p) min
a∈A

[d(a, p)]
∏
a∈A

d(a, p)

Negation D¬(a, p) = 1− d(a, p)
Subtraction defined in terms of the other functions:
D−(A, p) = D∩(B, p), B = {a0,¬a1,¬a2, . . .}

awhich series is familiar from probability theory:∑
a∈A

d(a, p)−
∑

a,b∈A

d(a, p)d(b, p) +
∑

a,b,c∈A

d(a, p)d(b, p)d(c, p)− · · ·+ (−1)n−1
∏
a∈A

d(a, p), n = |A|

Algorithm 1: Lloyd’s as used by Antalun

Data: X, a set of material vectors
Data: B ⊂ X, a set of basis material vectors of size r
Data: C0, an empty codebook of n vectors (n > r)
Result: Cq, an appropriately-filled quantization codebook

initialize the first r entries of C0 from B
fill the remaining n− r entries by some method
for k ← 0 do
{quantize X using Ck and evaluate }
foreach x ∈ X do

find codevector y ∈ Ck such that distortion d(x, y) is minimized
add x to Sy, the set of vectors supporting codevector y
update overall distortion D with d(x, y) by some method

if D < Dge or k = klim then
{Dge is "good enough" distortion, klim is iteration limit }
return Ck

{mutate codebook according to centroids of supports }
foreach z ∈ Ck do

let z′ be the centroid of Sz

add z′ to Ck+1

k ← k + 1

43

Sinnet

Examining more sophisticated questions about a physical system often involves

combining simulations of multiple different physical processes on the same geometric

structure (multiphysics). While univel representations of models’ geometric structures

are useful for particle-transport calculations, they’re less suited to other problems such

as heat transfer where finite element methods are preferable. For this reason Sinnet,

an extension to Juniper, converts any JTDL model into a matching 3-D surface mesh

representation. This mesh can be passed on to a program called TetGen to fill the

interiors into a solid mesh according to the Delauney criterion, producing a volumetric

mesh suitable for passing on to other physics simulations. Figure 10 shows an interior

cutaway of such a mesh produced from Sinnet and TetGen.

The fundamental problem Sinnet must solve is converting a CSG geometry speci-

fication into a matching surface mesh representation, a process called boundary eval-

uation and merging. In this Sinnet makes use of the fact that a set of CSG primitive

objects, combined using Boolean operators, is equivalent to a set of planar mesh ele-

ments called PLCs combined using Euler operations. To perform boundary evaluation

it converts each geome primitive into a corresponding PLC mesh. Each geome type

has a custom PLC equivalent representation. Merging these PLC meshes into more

complex meshes, following the structure of the Boolean operators, is the more difficult

part of the problem. There are a number of special cases possible that require more

specific, ad-hoc techniques to correctly merge problematic submeshes. Additionally

44

Figure 10. An example of volumetric meshing produced by Sinnet followed by TetGen.

there’s a fundamental tradeoff when converting CSG primitives into PLC form where

the CSG object has curved surfaces: no PLC can match the objects surfaces com-

pletely correctly. Increasing the vertex count of the PLC can improve fidelity at

the cost of mesh complexity. This tradeoff is managed by Sinnet through a set of

user-input constraints.

45

Future Work

At the time of writing, Juniper is capable of translating many MCNP input files to

JTDL form, rasterizing them without antialiasing to a univel grid, and run transport

simulations on that univel model. However it needs work to expand its handling of

particle sources, certain reactions, and result tallies. Lacking efficiency tuning at the

algorithm and implementation levels, it currently runs at about 1:1 speed compared

with MCNP on a simple searchlight problem. It also needs correctness validation

against MCNP simulations and experimental results. It can produce antialiased ras-

terizations, but this is a more speculative part of the program not integrated with

the transport core. It can convert many input geometries to PLC mesh form, but

handling for several degenerate cases is not yet implemented. More specifically:

Sinnet

Sinnet can generate PLC representations of the most important geomes, but

doesn’t yet implement torus or oid. I’ll add these. Additionally, degenerate mesh-

merging cases that have been left for future development include abutting objects

(which intersect only along coplanar facets) and objects intersecting only along collinear

edges.

Antalun

The most opportunity for future work lies in exploring antialiasing issues. The

current high-dimensional spatial indices Antalun uses are designed for indexing large

46

counts of dynamic sets of vectors. But the antialiasing algorithm uses periods of

repeated queries of a static vector set, followed by mass reorganization and more

queries, iteratively. Here is an opportunity to look into “packing” algorithms for an

optimizing index that takes advantage of this use pattern. The antialiasing algorithm,

although following Lloyd’s algorithm, has several opportunities for custom refinement

in places such as generating the initial codebook and refining the error criterion, per-

haps in domain-aware ways. On that subject, although blended material vectors are

quite high-dimensional, they’re also sparse. A domain-aware dimensionality reduction

technique could improve index performance.

There is an additional question of the suitability of dithering, either as an alterna-

tive to this antialiasing or in combination with it, as a way of reducing the systematic

error from univel rasterization. Antalun currently doesn’t use dithering, raising first

the question of whether it would be valid to the underlying particle transport physics,

then—if so—what tradeoffs are involved in its use.

JTDL

Although hand-editing of JTDL input files is workable, producing more compli-

cated input scenarios would be made greatly easier by a graphical input tool. This

could be a complete bespoke modeling program, or a tool to add Juniper-specific

problem information to a geometric model created using a preexisting design pro-

gram. In that case there would be a need for additional translation capability to

47

convert between JTDL and other 3-D CAD formats. Such broader translation could

also include converting to and from formats like GDML to aid data sharing.

Overall

As mentioned Antalun is a tangent project on the side of Juniper, without enough

integration to run transport simulations on the antialiased univel meshes. These

runs would be important to evaluating the tradeoffs and ultimately the usefulness of

antialiasing in this application. For it and the rest of Juniper, as a work in progress

there is significant debugging needed, as well as corner cases that have been left

unimplemented along the way to getting the essential backbone functional. It will

eventually need the aforementioned correctness validation, and experiment runs to

evaluate the antialiasing tradeoffs. It has been designed in a way that should support

parallelization across multiple processors, but this is currently unimplemented.

Timeline

My goal is to graduate in December of 2010, with four journal papers related to

the research either accepted or under review by then. My timeline for accomplishing

this is:

Date Submitted Topic
15 Sep 2009 First refereed journal paper Either JTDL or Juniper
15 Jan 2010 Second refereed journal paper Other of JTDL or Juniper
15 May 2010 Third refereed journal paper Either Antalun or Sinnet
15 Sep 2010 Fourth refereed journal paper Other of Antalun or Sinnet
15 Dec 2010 Defense of thesis

This schedule is relatively conservative, but it includes slack to accommodate any

roadblocks or resubmissions.

48

In addition we will be submitting papers to refereed conferences based on partial

results, with the papers’ timing depending on the deadlines of appropriate conferences.

For example we currently intend to submit two papers to WorldComp’09 by 27 May

2009. In total my goal is to get four journal papers and four refereed conference

proceedings papers from this research.

These publications will be in addition to my current published refereed journal

paper[55], not related to this research.

49

REFERENCES CITED

[1] M.W. Frandsen. Rapid Geometry Interrogation for a Uniform Volume Element-
Based Monte Carlo Particle Transport Simulation. Master’s thesis, Montana
State University, Bozeman, 1998.

[2] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–137, 1982.

[3] E.E. Lewis and W.F. Miller. Computational methods of neutron transport. John
Wiley & Sons New York, 1984.

[4] X-5 Monte Carlo Team. MCNP–A General Monte Carlo N-Particle Transport
Code, Version 5. Los Alamos National Laboratory, 04 2003.

[5] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai,
D. Axen, S. Banerjee, G. Barrand, et al. GEANT4—a simulation toolkit.
Nuclear Inst. and Methods in Physics Research, A, 506(3):250–303, 2003.

[6] CA Wemple, DE Wessol, DW Nigg, JJ Cogliati, ML Milvich, C. Frederickson,
M. Perkins, and GJ Harkin. MINERVA—a multi-modal radiation treatment
planning system. Applied Radiation and Isotopes, 61(5):745–752, 2004.

[7] J. Arvo and D. Kirk. Particle transport and image synthesis. In Proceedings of
the 17th annual conference on Computer graphics and interactive techniques,
pages 63–66. ACM New York, NY, USA, 1990.

[8] P.J. Schneider and D.H. Eberly. Geometric Tools for Computer Graphics. Mor-
gan Kaufmann, 2003.

[9] A. Kaufman, D. Cohen, and R. Yagel. Volume graphics. Computer, 26(7):51–64,
1993.

[10] SW Wang and AE Kaufman. Volume sampled voxelization of geometric prim-
itives. In Visualization, 1993. Visualization’93, Proceedings., IEEE Confer-
ence on, pages 78–84, 1993.

[11] T. Theußl, T. Möller, and M.E. Gröller. Optimal regular volume sampling. In
Proceedings of the conference on Visualization’01, pages 91–98. IEEE Com-
puter Society Washington, DC, USA, 2001.

50

[12] F.C. Crow. The aliasing problem in computer-generated shaded images. Com-
munications of the ACM, 20(11):799–805, 1977.

[13] M.A.Z. Dippé and E.H. Wold. Antialiasing through stochastic sampling. ACM
SIGGRAPH Computer Graphics, 19(3):69–78, 1985.

[14] A. Norton, A.P. Rockwood, and P.T. Skolmoski. Clamping: A method of an-
tialiasing textured surfaces by bandwidth limiting in object space. ACM
SIGGRAPH Computer Graphics, 16(3):1–8, 1982.

[15] M. Sramek and A.E. Kaufman. Alias-Free Voxelization of Geometric Ob-
jects. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER
GRAPHICS, pages 251–267, 1999.

[16] J.B. MacQueen and WESTERN MANAGEMENT SCIENCE INST UNIV OF
CALIFORNIA LOS ANGELES. Some methods for classification and analysis
of multivariate observations, 1966.

[17] Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design. Com-
munications, IEEE Transactions on [legacy, pre-1988], 28(1):84–95, 1980.

[18] P. Ning and L. Hesselink. Vector quantization for volume rendering. In Proceed-
ings of the 1992 workshop on Volume visualization, pages 69–74. ACM New
York, NY, USA, 1992.

[19] Z. Xiang. Color image quantization by minimizing the maximum intercluster
distance. ACM Transactions on Graphics (TOG), 16(3):260–276, 1997.

[20] F. Chung and B.Y.M. Fung. Fuzzy color quantization and its application to
scene change detection. In Proceedings of the 5th ACM SIGMM international
workshop on Multimedia information retrieval, pages 157–162. ACM Press
New York, NY, USA, 2003.

[21] A. Guttman. R-trees: A dynamic index structure for spatial searching. ACM
Sigmod Record, 14(2):47–57, 1984.

[22] Douglas Comer. Ubiquitous b-tree. ACM Comput. Surv., 11(2):121–137, 1979.

[23] N. Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: an
efficient and robust access method for points and rectangles. In Proceedings
of the 1990 ACM SIGMOD international conference on Management of data,
pages 322–331. ACM New York, NY, USA, 1990.

51

[24] J. Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. The Grid File:
An Adaptable, Symmetric Multikey File Structure. ACM Transactions on
Database Systems, 9(1):38–71, 1984.

[25] S. Berchtold, C. Böhm, D.A. Keim, and H.P. Kriegel. A cost model for
nearest neighbor search in high-dimensional data space. In Proceedings of
the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, pages 78–86. ACM New York, NY, USA, 1997.

[26] DA White and R. Jain. Similarity indexing with the SS-tree. In Data Engi-
neering, 1996. Proceedings of the Twelfth International Conference on, pages
516–523, Feb-1 Mar 1996.

[27] N. Katayama. The SR-tree: an index structure for high-dimensional nearest
neighbor queries. In Proceedings of the 1997 ACM SIGMOD international
conference on Management of data, pages 369–380. ACM New York, NY,
USA, 1997.

[28] S. Berchtold, D.A. Keim, H.P. Kriegel, and T. Seidl. Indexing the Solution Space:
A New Technique for Nearest Neighbor Search in High-Dimensional Space.
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,
pages 45–57, 2000.

[29] JK Lawder and PJH King. Querying multi-dimensional data indexed using the
Hilbert space-filling curve. ACM SIGMOD Record, 30(1):19–24, 2001.

[30] S. Berchtold, D.A. Keim, and H.P. Kriegel. The X-tree: An Index Structure for
High-Dimensional Data. Readings in Multimedia Computing and Networking,
2001.

[31] S. Berchtold, C. Böhm, and H.P. Kriegal. The pyramid-technique: towards
breaking the curse of dimensionality. ACM SIGMOD Record, 27(2):142–153,
1998.

[32] D.H. Lee and H.J. Kim. SPY-TEC: An efficient indexing method for similar-
ity search in high-dimensional data spaces. Data & Knowledge Engineering,
34(1):77–97, 2000.

[33] D.H. Lee and H.J. Kim. An Efficient Technique for Nearest-Neighbor Query
Processing on the SPY-TEC. IEEE TRANSACTIONS ON KNOWLEDGE
AND DATA ENGINEERING, pages 1472–1486, 2003.

52

[34] J.R. Shewchuk. Tetrahedral mesh generation by Delaunay refinement. In Pro-
ceedings of the fourteenth annual symposium on Computational geometry,
pages 86–95. ACM New York, NY, USA, 1998.

[35] X.Y. Li and S.H. Teng. Generating well-shaped Delaunay meshes in 3D. In Pro-
ceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms,
pages 28–37. Society for Industrial and Applied Mathematics Philadelphia,
PA, USA, 2001.

[36] Hang Si. TetGen A Quality Tetrahedral Mesh Generator and Three-Dimensional
Delaunay Triangulator, 01 2006.

[37] N. M. Patrikalakis. Computational Geometry, 2003. MIT OpenCourseWare
lecture notes 13.472J / 1.128J / 2.158J / 16.940J, how to cite?

[38] Y. Luo. Relation between Boolean operators and Euler operators. In Proceedings
on the second ACM symposium on Solid modeling and applications, pages
477–478. ACM New York, NY, USA, 1993.

[39] D.H. Eberly. Polysolids and boolean operations. Documentation, Geometric
Tools, Inc., 1999.

[40] AAG Requicha and HB Voelcker. Boolean operations in solid modeling: Bound-
ary evaluation and merging algorithms. Proceedings of the IEEE, 73(1):30–44,
1985.

[41] R.B. Tilove. Set Membership Classification: A Unified Approach to Geometric
Intersection Problems. IEEE Transactions on Computers, C-29(10):874–883,
Oct 1980.

[42] Lutz Kettner. Using generic programming for designing a data structure for
polyhedral surfaces. Computational Geometry, 13(1):65–90, May 1999.

[43] T.J. Alumbaugh and X. Jiao. Compact Array-Based Mesh Data Structures. In
Proceedings of the 14th International Meshing Roundtable. Springer, 2005.

[44] R. Chytracek, J. Mccormick, W. Pokorski, and G. Santin. Geometry Description
Markup Language for Physics Simulation and Analysis Applications. IEEE
Transactions on Nuclear Science, 53(5 Part 2):2892–2896, 2006.

[45] P.O.V.R. Team. POV-Ray–the persistence of Vision Raytracer, 2005.

53

[46] M. Folk. Introduction to HDF5. NCSA/University of Illinois at Urbana-
Champaign http://hdf. ncsa. uiuc. edu/HDF5/papers, 2000.

[47] Martin Nilsson. Extensible Binary Markup Language. Draft specification, Ma-
troska, 2004.

[48] B.S. Kaliski Jr. A Layman’s Guide to a Subset of ASN.1, BER, and DER. RSA
Laboratories, November, 1993.

[49] D. Gruhl, D. Meredith, and J. Pieper. A case study on alternate representations
of data structures in XML. In Proceedings of the 2005 ACM symposium on
Document engineering, pages 217–219. ACM New York, NY, USA, 2005.

[50] R.E. McGrath. XML and Scientific File Formats. In 2003 Seattle Annual Meeting,
2003.

[51] ISO/IEC FDIS 19775-1:2008. Information Technology–Computer graphics and
image processing–Extensible 3D (X3D). ISO, Geneva, Switzerland, 2008.

[52] James W. Cooper. Is Java Fast Enough? Java Pro Magazine, Mar 2002.

[53] J. Shirazi. Java Performance Tuning. O’Reilly, 2003.

[54] D.H. Besset. Object-Oriented Implementation of Numerical Methods: An Intro-
duction with Java and Smalltalk. Morgan Kaufmann, 2001.

[55] T.E. Lindley, T. Laberge, A. Hall, D. Hewett-Emmett, P.J. Walsh, and P.M.
Anderson. Sequence, expression and evolutionary relationships of carbamoyl
phosphate synthetase I in the toad Xenopus laevis. Journal of Experimental
Zoology Part A: Ecological Genetics and Physiology, (3), 2007.

54

COLOPHON

“There is something fascinating about science. One gets such wholesale re-
turns of conjecture out of such a trifling investment of fact.”
—Mark Twain

Version Final JT5I-2 rendered from the source by LATEX2εon May 18, 2009, (BE-
SHAHS).

